Linux 2.6.27.11
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / ub.c
blob3a281ef11ffa9a96543358dc91c817805eedc981
1 /*
2 * The low performance USB storage driver (ub).
4 * Copyright (c) 1999, 2000 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
5 * Copyright (C) 2004 Pete Zaitcev (zaitcev@yahoo.com)
7 * This work is a part of Linux kernel, is derived from it,
8 * and is not licensed separately. See file COPYING for details.
10 * TODO (sorted by decreasing priority)
11 * -- Return sense now that rq allows it (we always auto-sense anyway).
12 * -- set readonly flag for CDs, set removable flag for CF readers
13 * -- do inquiry and verify we got a disk and not a tape (for LUN mismatch)
14 * -- verify the 13 conditions and do bulk resets
15 * -- highmem
16 * -- move top_sense and work_bcs into separate allocations (if they survive)
17 * for cache purists and esoteric architectures.
18 * -- Allocate structure for LUN 0 before the first ub_sync_tur, avoid NULL. ?
19 * -- prune comments, they are too volumnous
20 * -- Resove XXX's
21 * -- CLEAR, CLR2STS, CLRRS seem to be ripe for refactoring.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/usb.h>
26 #include <linux/usb_usual.h>
27 #include <linux/blkdev.h>
28 #include <linux/timer.h>
29 #include <linux/scatterlist.h>
30 #include <scsi/scsi.h>
32 #define DRV_NAME "ub"
34 #define UB_MAJOR 180
37 * The command state machine is the key model for understanding of this driver.
39 * The general rule is that all transitions are done towards the bottom
40 * of the diagram, thus preventing any loops.
42 * An exception to that is how the STAT state is handled. A counter allows it
43 * to be re-entered along the path marked with [C].
45 * +--------+
46 * ! INIT !
47 * +--------+
48 * !
49 * ub_scsi_cmd_start fails ->--------------------------------------\
50 * ! !
51 * V !
52 * +--------+ !
53 * ! CMD ! !
54 * +--------+ !
55 * ! +--------+ !
56 * was -EPIPE -->-------------------------------->! CLEAR ! !
57 * ! +--------+ !
58 * ! ! !
59 * was error -->------------------------------------- ! --------->\
60 * ! ! !
61 * /--<-- cmd->dir == NONE ? ! !
62 * ! ! ! !
63 * ! V ! !
64 * ! +--------+ ! !
65 * ! ! DATA ! ! !
66 * ! +--------+ ! !
67 * ! ! +---------+ ! !
68 * ! was -EPIPE -->--------------->! CLR2STS ! ! !
69 * ! ! +---------+ ! !
70 * ! ! ! ! !
71 * ! ! was error -->---- ! --------->\
72 * ! was error -->--------------------- ! ------------- ! --------->\
73 * ! ! ! ! !
74 * ! V ! ! !
75 * \--->+--------+ ! ! !
76 * ! STAT !<--------------------------/ ! !
77 * /--->+--------+ ! !
78 * ! ! ! !
79 * [C] was -EPIPE -->-----------\ ! !
80 * ! ! ! ! !
81 * +<---- len == 0 ! ! !
82 * ! ! ! ! !
83 * ! was error -->--------------------------------------!---------->\
84 * ! ! ! ! !
85 * +<---- bad CSW ! ! !
86 * +<---- bad tag ! ! !
87 * ! ! V ! !
88 * ! ! +--------+ ! !
89 * ! ! ! CLRRS ! ! !
90 * ! ! +--------+ ! !
91 * ! ! ! ! !
92 * \------- ! --------------------[C]--------\ ! !
93 * ! ! ! !
94 * cmd->error---\ +--------+ ! !
95 * ! +--------------->! SENSE !<----------/ !
96 * STAT_FAIL----/ +--------+ !
97 * ! ! V
98 * ! V +--------+
99 * \--------------------------------\--------------------->! DONE !
100 * +--------+
104 * This many LUNs per USB device.
105 * Every one of them takes a host, see UB_MAX_HOSTS.
107 #define UB_MAX_LUNS 9
112 #define UB_PARTS_PER_LUN 8
114 #define UB_MAX_CDB_SIZE 16 /* Corresponds to Bulk */
116 #define UB_SENSE_SIZE 18
121 /* command block wrapper */
122 struct bulk_cb_wrap {
123 __le32 Signature; /* contains 'USBC' */
124 u32 Tag; /* unique per command id */
125 __le32 DataTransferLength; /* size of data */
126 u8 Flags; /* direction in bit 0 */
127 u8 Lun; /* LUN */
128 u8 Length; /* of of the CDB */
129 u8 CDB[UB_MAX_CDB_SIZE]; /* max command */
132 #define US_BULK_CB_WRAP_LEN 31
133 #define US_BULK_CB_SIGN 0x43425355 /*spells out USBC */
134 #define US_BULK_FLAG_IN 1
135 #define US_BULK_FLAG_OUT 0
137 /* command status wrapper */
138 struct bulk_cs_wrap {
139 __le32 Signature; /* should = 'USBS' */
140 u32 Tag; /* same as original command */
141 __le32 Residue; /* amount not transferred */
142 u8 Status; /* see below */
145 #define US_BULK_CS_WRAP_LEN 13
146 #define US_BULK_CS_SIGN 0x53425355 /* spells out 'USBS' */
147 #define US_BULK_STAT_OK 0
148 #define US_BULK_STAT_FAIL 1
149 #define US_BULK_STAT_PHASE 2
151 /* bulk-only class specific requests */
152 #define US_BULK_RESET_REQUEST 0xff
153 #define US_BULK_GET_MAX_LUN 0xfe
157 struct ub_dev;
159 #define UB_MAX_REQ_SG 9 /* cdrecord requires 32KB and maybe a header */
160 #define UB_MAX_SECTORS 64
163 * A second is more than enough for a 32K transfer (UB_MAX_SECTORS)
164 * even if a webcam hogs the bus, but some devices need time to spin up.
166 #define UB_URB_TIMEOUT (HZ*2)
167 #define UB_DATA_TIMEOUT (HZ*5) /* ZIP does spin-ups in the data phase */
168 #define UB_STAT_TIMEOUT (HZ*5) /* Same spinups and eject for a dataless cmd. */
169 #define UB_CTRL_TIMEOUT (HZ/2) /* 500ms ought to be enough to clear a stall */
172 * An instance of a SCSI command in transit.
174 #define UB_DIR_NONE 0
175 #define UB_DIR_READ 1
176 #define UB_DIR_ILLEGAL2 2
177 #define UB_DIR_WRITE 3
179 #define UB_DIR_CHAR(c) (((c)==UB_DIR_WRITE)? 'w': \
180 (((c)==UB_DIR_READ)? 'r': 'n'))
182 enum ub_scsi_cmd_state {
183 UB_CMDST_INIT, /* Initial state */
184 UB_CMDST_CMD, /* Command submitted */
185 UB_CMDST_DATA, /* Data phase */
186 UB_CMDST_CLR2STS, /* Clearing before requesting status */
187 UB_CMDST_STAT, /* Status phase */
188 UB_CMDST_CLEAR, /* Clearing a stall (halt, actually) */
189 UB_CMDST_CLRRS, /* Clearing before retrying status */
190 UB_CMDST_SENSE, /* Sending Request Sense */
191 UB_CMDST_DONE /* Final state */
194 struct ub_scsi_cmd {
195 unsigned char cdb[UB_MAX_CDB_SIZE];
196 unsigned char cdb_len;
198 unsigned char dir; /* 0 - none, 1 - read, 3 - write. */
199 enum ub_scsi_cmd_state state;
200 unsigned int tag;
201 struct ub_scsi_cmd *next;
203 int error; /* Return code - valid upon done */
204 unsigned int act_len; /* Return size */
205 unsigned char key, asc, ascq; /* May be valid if error==-EIO */
207 int stat_count; /* Retries getting status. */
208 unsigned int timeo; /* jiffies until rq->timeout changes */
210 unsigned int len; /* Requested length */
211 unsigned int current_sg;
212 unsigned int nsg; /* sgv[nsg] */
213 struct scatterlist sgv[UB_MAX_REQ_SG];
215 struct ub_lun *lun;
216 void (*done)(struct ub_dev *, struct ub_scsi_cmd *);
217 void *back;
220 struct ub_request {
221 struct request *rq;
222 unsigned int current_try;
223 unsigned int nsg; /* sgv[nsg] */
224 struct scatterlist sgv[UB_MAX_REQ_SG];
229 struct ub_capacity {
230 unsigned long nsec; /* Linux size - 512 byte sectors */
231 unsigned int bsize; /* Linux hardsect_size */
232 unsigned int bshift; /* Shift between 512 and hard sects */
236 * This is a direct take-off from linux/include/completion.h
237 * The difference is that I do not wait on this thing, just poll.
238 * When I want to wait (ub_probe), I just use the stock completion.
240 * Note that INIT_COMPLETION takes no lock. It is correct. But why
241 * in the bloody hell that thing takes struct instead of pointer to struct
242 * is quite beyond me. I just copied it from the stock completion.
244 struct ub_completion {
245 unsigned int done;
246 spinlock_t lock;
249 static inline void ub_init_completion(struct ub_completion *x)
251 x->done = 0;
252 spin_lock_init(&x->lock);
255 #define UB_INIT_COMPLETION(x) ((x).done = 0)
257 static void ub_complete(struct ub_completion *x)
259 unsigned long flags;
261 spin_lock_irqsave(&x->lock, flags);
262 x->done++;
263 spin_unlock_irqrestore(&x->lock, flags);
266 static int ub_is_completed(struct ub_completion *x)
268 unsigned long flags;
269 int ret;
271 spin_lock_irqsave(&x->lock, flags);
272 ret = x->done;
273 spin_unlock_irqrestore(&x->lock, flags);
274 return ret;
279 struct ub_scsi_cmd_queue {
280 int qlen, qmax;
281 struct ub_scsi_cmd *head, *tail;
285 * The block device instance (one per LUN).
287 struct ub_lun {
288 struct ub_dev *udev;
289 struct list_head link;
290 struct gendisk *disk;
291 int id; /* Host index */
292 int num; /* LUN number */
293 char name[16];
295 int changed; /* Media was changed */
296 int removable;
297 int readonly;
299 struct ub_request urq;
301 /* Use Ingo's mempool if or when we have more than one command. */
303 * Currently we never need more than one command for the whole device.
304 * However, giving every LUN a command is a cheap and automatic way
305 * to enforce fairness between them.
307 int cmda[1];
308 struct ub_scsi_cmd cmdv[1];
310 struct ub_capacity capacity;
314 * The USB device instance.
316 struct ub_dev {
317 spinlock_t *lock;
318 atomic_t poison; /* The USB device is disconnected */
319 int openc; /* protected by ub_lock! */
320 /* kref is too implicit for our taste */
321 int reset; /* Reset is running */
322 int bad_resid;
323 unsigned int tagcnt;
324 char name[12];
325 struct usb_device *dev;
326 struct usb_interface *intf;
328 struct list_head luns;
330 unsigned int send_bulk_pipe; /* cached pipe values */
331 unsigned int recv_bulk_pipe;
332 unsigned int send_ctrl_pipe;
333 unsigned int recv_ctrl_pipe;
335 struct tasklet_struct tasklet;
337 struct ub_scsi_cmd_queue cmd_queue;
338 struct ub_scsi_cmd top_rqs_cmd; /* REQUEST SENSE */
339 unsigned char top_sense[UB_SENSE_SIZE];
341 struct ub_completion work_done;
342 struct urb work_urb;
343 struct timer_list work_timer;
344 int last_pipe; /* What might need clearing */
345 __le32 signature; /* Learned signature */
346 struct bulk_cb_wrap work_bcb;
347 struct bulk_cs_wrap work_bcs;
348 struct usb_ctrlrequest work_cr;
350 struct work_struct reset_work;
351 wait_queue_head_t reset_wait;
353 int sg_stat[6];
358 static void ub_cleanup(struct ub_dev *sc);
359 static int ub_request_fn_1(struct ub_lun *lun, struct request *rq);
360 static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun,
361 struct ub_scsi_cmd *cmd, struct ub_request *urq);
362 static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun,
363 struct ub_scsi_cmd *cmd, struct ub_request *urq);
364 static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
365 static void ub_end_rq(struct request *rq, unsigned int status,
366 unsigned int cmd_len);
367 static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun,
368 struct ub_request *urq, struct ub_scsi_cmd *cmd);
369 static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
370 static void ub_urb_complete(struct urb *urb);
371 static void ub_scsi_action(unsigned long _dev);
372 static void ub_scsi_dispatch(struct ub_dev *sc);
373 static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
374 static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
375 static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc);
376 static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
377 static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
378 static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
379 static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
380 static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
381 int stalled_pipe);
382 static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd);
383 static void ub_reset_enter(struct ub_dev *sc, int try);
384 static void ub_reset_task(struct work_struct *work);
385 static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun);
386 static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun,
387 struct ub_capacity *ret);
388 static int ub_sync_reset(struct ub_dev *sc);
389 static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe);
390 static int ub_probe_lun(struct ub_dev *sc, int lnum);
394 #ifdef CONFIG_USB_LIBUSUAL
396 #define ub_usb_ids storage_usb_ids
397 #else
399 static struct usb_device_id ub_usb_ids[] = {
400 { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, US_SC_SCSI, US_PR_BULK) },
404 MODULE_DEVICE_TABLE(usb, ub_usb_ids);
405 #endif /* CONFIG_USB_LIBUSUAL */
408 * Find me a way to identify "next free minor" for add_disk(),
409 * and the array disappears the next day. However, the number of
410 * hosts has something to do with the naming and /proc/partitions.
411 * This has to be thought out in detail before changing.
412 * If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure.
414 #define UB_MAX_HOSTS 26
415 static char ub_hostv[UB_MAX_HOSTS];
417 #define UB_QLOCK_NUM 5
418 static spinlock_t ub_qlockv[UB_QLOCK_NUM];
419 static int ub_qlock_next = 0;
421 static DEFINE_SPINLOCK(ub_lock); /* Locks globals and ->openc */
424 * The id allocator.
426 * This also stores the host for indexing by minor, which is somewhat dirty.
428 static int ub_id_get(void)
430 unsigned long flags;
431 int i;
433 spin_lock_irqsave(&ub_lock, flags);
434 for (i = 0; i < UB_MAX_HOSTS; i++) {
435 if (ub_hostv[i] == 0) {
436 ub_hostv[i] = 1;
437 spin_unlock_irqrestore(&ub_lock, flags);
438 return i;
441 spin_unlock_irqrestore(&ub_lock, flags);
442 return -1;
445 static void ub_id_put(int id)
447 unsigned long flags;
449 if (id < 0 || id >= UB_MAX_HOSTS) {
450 printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id);
451 return;
454 spin_lock_irqsave(&ub_lock, flags);
455 if (ub_hostv[id] == 0) {
456 spin_unlock_irqrestore(&ub_lock, flags);
457 printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id);
458 return;
460 ub_hostv[id] = 0;
461 spin_unlock_irqrestore(&ub_lock, flags);
465 * This is necessitated by the fact that blk_cleanup_queue does not
466 * necesserily destroy the queue. Instead, it may merely decrease q->refcnt.
467 * Since our blk_init_queue() passes a spinlock common with ub_dev,
468 * we have life time issues when ub_cleanup frees ub_dev.
470 static spinlock_t *ub_next_lock(void)
472 unsigned long flags;
473 spinlock_t *ret;
475 spin_lock_irqsave(&ub_lock, flags);
476 ret = &ub_qlockv[ub_qlock_next];
477 ub_qlock_next = (ub_qlock_next + 1) % UB_QLOCK_NUM;
478 spin_unlock_irqrestore(&ub_lock, flags);
479 return ret;
483 * Downcount for deallocation. This rides on two assumptions:
484 * - once something is poisoned, its refcount cannot grow
485 * - opens cannot happen at this time (del_gendisk was done)
486 * If the above is true, we can drop the lock, which we need for
487 * blk_cleanup_queue(): the silly thing may attempt to sleep.
488 * [Actually, it never needs to sleep for us, but it calls might_sleep()]
490 static void ub_put(struct ub_dev *sc)
492 unsigned long flags;
494 spin_lock_irqsave(&ub_lock, flags);
495 --sc->openc;
496 if (sc->openc == 0 && atomic_read(&sc->poison)) {
497 spin_unlock_irqrestore(&ub_lock, flags);
498 ub_cleanup(sc);
499 } else {
500 spin_unlock_irqrestore(&ub_lock, flags);
505 * Final cleanup and deallocation.
507 static void ub_cleanup(struct ub_dev *sc)
509 struct list_head *p;
510 struct ub_lun *lun;
511 struct request_queue *q;
513 while (!list_empty(&sc->luns)) {
514 p = sc->luns.next;
515 lun = list_entry(p, struct ub_lun, link);
516 list_del(p);
518 /* I don't think queue can be NULL. But... Stolen from sx8.c */
519 if ((q = lun->disk->queue) != NULL)
520 blk_cleanup_queue(q);
522 * If we zero disk->private_data BEFORE put_disk, we have
523 * to check for NULL all over the place in open, release,
524 * check_media and revalidate, because the block level
525 * semaphore is well inside the put_disk.
526 * But we cannot zero after the call, because *disk is gone.
527 * The sd.c is blatantly racy in this area.
529 /* disk->private_data = NULL; */
530 put_disk(lun->disk);
531 lun->disk = NULL;
533 ub_id_put(lun->id);
534 kfree(lun);
537 usb_set_intfdata(sc->intf, NULL);
538 usb_put_intf(sc->intf);
539 usb_put_dev(sc->dev);
540 kfree(sc);
544 * The "command allocator".
546 static struct ub_scsi_cmd *ub_get_cmd(struct ub_lun *lun)
548 struct ub_scsi_cmd *ret;
550 if (lun->cmda[0])
551 return NULL;
552 ret = &lun->cmdv[0];
553 lun->cmda[0] = 1;
554 return ret;
557 static void ub_put_cmd(struct ub_lun *lun, struct ub_scsi_cmd *cmd)
559 if (cmd != &lun->cmdv[0]) {
560 printk(KERN_WARNING "%s: releasing a foreign cmd %p\n",
561 lun->name, cmd);
562 return;
564 if (!lun->cmda[0]) {
565 printk(KERN_WARNING "%s: releasing a free cmd\n", lun->name);
566 return;
568 lun->cmda[0] = 0;
572 * The command queue.
574 static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
576 struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
578 if (t->qlen++ == 0) {
579 t->head = cmd;
580 t->tail = cmd;
581 } else {
582 t->tail->next = cmd;
583 t->tail = cmd;
586 if (t->qlen > t->qmax)
587 t->qmax = t->qlen;
590 static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
592 struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
594 if (t->qlen++ == 0) {
595 t->head = cmd;
596 t->tail = cmd;
597 } else {
598 cmd->next = t->head;
599 t->head = cmd;
602 if (t->qlen > t->qmax)
603 t->qmax = t->qlen;
606 static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc)
608 struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
609 struct ub_scsi_cmd *cmd;
611 if (t->qlen == 0)
612 return NULL;
613 if (--t->qlen == 0)
614 t->tail = NULL;
615 cmd = t->head;
616 t->head = cmd->next;
617 cmd->next = NULL;
618 return cmd;
621 #define ub_cmdq_peek(sc) ((sc)->cmd_queue.head)
624 * The request function is our main entry point
627 static void ub_request_fn(struct request_queue *q)
629 struct ub_lun *lun = q->queuedata;
630 struct request *rq;
632 while ((rq = elv_next_request(q)) != NULL) {
633 if (ub_request_fn_1(lun, rq) != 0) {
634 blk_stop_queue(q);
635 break;
640 static int ub_request_fn_1(struct ub_lun *lun, struct request *rq)
642 struct ub_dev *sc = lun->udev;
643 struct ub_scsi_cmd *cmd;
644 struct ub_request *urq;
645 int n_elem;
647 if (atomic_read(&sc->poison)) {
648 blkdev_dequeue_request(rq);
649 ub_end_rq(rq, DID_NO_CONNECT << 16, blk_rq_bytes(rq));
650 return 0;
653 if (lun->changed && !blk_pc_request(rq)) {
654 blkdev_dequeue_request(rq);
655 ub_end_rq(rq, SAM_STAT_CHECK_CONDITION, blk_rq_bytes(rq));
656 return 0;
659 if (lun->urq.rq != NULL)
660 return -1;
661 if ((cmd = ub_get_cmd(lun)) == NULL)
662 return -1;
663 memset(cmd, 0, sizeof(struct ub_scsi_cmd));
665 blkdev_dequeue_request(rq);
667 urq = &lun->urq;
668 memset(urq, 0, sizeof(struct ub_request));
669 urq->rq = rq;
672 * get scatterlist from block layer
674 sg_init_table(&urq->sgv[0], UB_MAX_REQ_SG);
675 n_elem = blk_rq_map_sg(lun->disk->queue, rq, &urq->sgv[0]);
676 if (n_elem < 0) {
677 /* Impossible, because blk_rq_map_sg should not hit ENOMEM. */
678 printk(KERN_INFO "%s: failed request map (%d)\n",
679 lun->name, n_elem);
680 goto drop;
682 if (n_elem > UB_MAX_REQ_SG) { /* Paranoia */
683 printk(KERN_WARNING "%s: request with %d segments\n",
684 lun->name, n_elem);
685 goto drop;
687 urq->nsg = n_elem;
688 sc->sg_stat[n_elem < 5 ? n_elem : 5]++;
690 if (blk_pc_request(rq)) {
691 ub_cmd_build_packet(sc, lun, cmd, urq);
692 } else {
693 ub_cmd_build_block(sc, lun, cmd, urq);
695 cmd->state = UB_CMDST_INIT;
696 cmd->lun = lun;
697 cmd->done = ub_rw_cmd_done;
698 cmd->back = urq;
700 cmd->tag = sc->tagcnt++;
701 if (ub_submit_scsi(sc, cmd) != 0)
702 goto drop;
704 return 0;
706 drop:
707 ub_put_cmd(lun, cmd);
708 ub_end_rq(rq, DID_ERROR << 16, blk_rq_bytes(rq));
709 return 0;
712 static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun,
713 struct ub_scsi_cmd *cmd, struct ub_request *urq)
715 struct request *rq = urq->rq;
716 unsigned int block, nblks;
718 if (rq_data_dir(rq) == WRITE)
719 cmd->dir = UB_DIR_WRITE;
720 else
721 cmd->dir = UB_DIR_READ;
723 cmd->nsg = urq->nsg;
724 memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg);
727 * build the command
729 * The call to blk_queue_hardsect_size() guarantees that request
730 * is aligned, but it is given in terms of 512 byte units, always.
732 block = rq->sector >> lun->capacity.bshift;
733 nblks = rq->nr_sectors >> lun->capacity.bshift;
735 cmd->cdb[0] = (cmd->dir == UB_DIR_READ)? READ_10: WRITE_10;
736 /* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */
737 cmd->cdb[2] = block >> 24;
738 cmd->cdb[3] = block >> 16;
739 cmd->cdb[4] = block >> 8;
740 cmd->cdb[5] = block;
741 cmd->cdb[7] = nblks >> 8;
742 cmd->cdb[8] = nblks;
743 cmd->cdb_len = 10;
745 cmd->len = rq->nr_sectors * 512;
748 static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun,
749 struct ub_scsi_cmd *cmd, struct ub_request *urq)
751 struct request *rq = urq->rq;
753 if (rq->data_len == 0) {
754 cmd->dir = UB_DIR_NONE;
755 } else {
756 if (rq_data_dir(rq) == WRITE)
757 cmd->dir = UB_DIR_WRITE;
758 else
759 cmd->dir = UB_DIR_READ;
762 cmd->nsg = urq->nsg;
763 memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg);
765 memcpy(&cmd->cdb, rq->cmd, rq->cmd_len);
766 cmd->cdb_len = rq->cmd_len;
768 cmd->len = rq->data_len;
771 * To reapply this to every URB is not as incorrect as it looks.
772 * In return, we avoid any complicated tracking calculations.
774 cmd->timeo = rq->timeout;
777 static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
779 struct ub_lun *lun = cmd->lun;
780 struct ub_request *urq = cmd->back;
781 struct request *rq;
782 unsigned int scsi_status;
783 unsigned int cmd_len;
785 rq = urq->rq;
787 if (cmd->error == 0) {
788 if (blk_pc_request(rq)) {
789 if (cmd->act_len >= rq->data_len)
790 rq->data_len = 0;
791 else
792 rq->data_len -= cmd->act_len;
793 scsi_status = 0;
794 } else {
795 if (cmd->act_len != cmd->len) {
796 scsi_status = SAM_STAT_CHECK_CONDITION;
797 } else {
798 scsi_status = 0;
801 } else {
802 if (blk_pc_request(rq)) {
803 /* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */
804 memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE);
805 rq->sense_len = UB_SENSE_SIZE;
806 if (sc->top_sense[0] != 0)
807 scsi_status = SAM_STAT_CHECK_CONDITION;
808 else
809 scsi_status = DID_ERROR << 16;
810 } else {
811 if (cmd->error == -EIO &&
812 (cmd->key == 0 ||
813 cmd->key == MEDIUM_ERROR ||
814 cmd->key == UNIT_ATTENTION)) {
815 if (ub_rw_cmd_retry(sc, lun, urq, cmd) == 0)
816 return;
818 scsi_status = SAM_STAT_CHECK_CONDITION;
822 urq->rq = NULL;
824 cmd_len = cmd->len;
825 ub_put_cmd(lun, cmd);
826 ub_end_rq(rq, scsi_status, cmd_len);
827 blk_start_queue(lun->disk->queue);
830 static void ub_end_rq(struct request *rq, unsigned int scsi_status,
831 unsigned int cmd_len)
833 int error;
834 long rqlen;
836 if (scsi_status == 0) {
837 error = 0;
838 } else {
839 error = -EIO;
840 rq->errors = scsi_status;
842 rqlen = blk_rq_bytes(rq); /* Oddly enough, this is the residue. */
843 if (__blk_end_request(rq, error, cmd_len)) {
844 printk(KERN_WARNING DRV_NAME
845 ": __blk_end_request blew, %s-cmd total %u rqlen %ld\n",
846 blk_pc_request(rq)? "pc": "fs", cmd_len, rqlen);
850 static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun,
851 struct ub_request *urq, struct ub_scsi_cmd *cmd)
854 if (atomic_read(&sc->poison))
855 return -ENXIO;
857 ub_reset_enter(sc, urq->current_try);
859 if (urq->current_try >= 3)
860 return -EIO;
861 urq->current_try++;
863 /* Remove this if anyone complains of flooding. */
864 printk(KERN_DEBUG "%s: dir %c len/act %d/%d "
865 "[sense %x %02x %02x] retry %d\n",
866 sc->name, UB_DIR_CHAR(cmd->dir), cmd->len, cmd->act_len,
867 cmd->key, cmd->asc, cmd->ascq, urq->current_try);
869 memset(cmd, 0, sizeof(struct ub_scsi_cmd));
870 ub_cmd_build_block(sc, lun, cmd, urq);
872 cmd->state = UB_CMDST_INIT;
873 cmd->lun = lun;
874 cmd->done = ub_rw_cmd_done;
875 cmd->back = urq;
877 cmd->tag = sc->tagcnt++;
879 #if 0 /* Wasteful */
880 return ub_submit_scsi(sc, cmd);
881 #else
882 ub_cmdq_add(sc, cmd);
883 return 0;
884 #endif
888 * Submit a regular SCSI operation (not an auto-sense).
890 * The Iron Law of Good Submit Routine is:
891 * Zero return - callback is done, Nonzero return - callback is not done.
892 * No exceptions.
894 * Host is assumed locked.
896 static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
899 if (cmd->state != UB_CMDST_INIT ||
900 (cmd->dir != UB_DIR_NONE && cmd->len == 0)) {
901 return -EINVAL;
904 ub_cmdq_add(sc, cmd);
906 * We can call ub_scsi_dispatch(sc) right away here, but it's a little
907 * safer to jump to a tasklet, in case upper layers do something silly.
909 tasklet_schedule(&sc->tasklet);
910 return 0;
914 * Submit the first URB for the queued command.
915 * This function does not deal with queueing in any way.
917 static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
919 struct bulk_cb_wrap *bcb;
920 int rc;
922 bcb = &sc->work_bcb;
925 * ``If the allocation length is eighteen or greater, and a device
926 * server returns less than eithteen bytes of data, the application
927 * client should assume that the bytes not transferred would have been
928 * zeroes had the device server returned those bytes.''
930 * We zero sense for all commands so that when a packet request
931 * fails it does not return a stale sense.
933 memset(&sc->top_sense, 0, UB_SENSE_SIZE);
935 /* set up the command wrapper */
936 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
937 bcb->Tag = cmd->tag; /* Endianness is not important */
938 bcb->DataTransferLength = cpu_to_le32(cmd->len);
939 bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0;
940 bcb->Lun = (cmd->lun != NULL) ? cmd->lun->num : 0;
941 bcb->Length = cmd->cdb_len;
943 /* copy the command payload */
944 memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE);
946 UB_INIT_COMPLETION(sc->work_done);
948 sc->last_pipe = sc->send_bulk_pipe;
949 usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe,
950 bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc);
952 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
953 /* XXX Clear stalls */
954 ub_complete(&sc->work_done);
955 return rc;
958 sc->work_timer.expires = jiffies + UB_URB_TIMEOUT;
959 add_timer(&sc->work_timer);
961 cmd->state = UB_CMDST_CMD;
962 return 0;
966 * Timeout handler.
968 static void ub_urb_timeout(unsigned long arg)
970 struct ub_dev *sc = (struct ub_dev *) arg;
971 unsigned long flags;
973 spin_lock_irqsave(sc->lock, flags);
974 if (!ub_is_completed(&sc->work_done))
975 usb_unlink_urb(&sc->work_urb);
976 spin_unlock_irqrestore(sc->lock, flags);
980 * Completion routine for the work URB.
982 * This can be called directly from usb_submit_urb (while we have
983 * the sc->lock taken) and from an interrupt (while we do NOT have
984 * the sc->lock taken). Therefore, bounce this off to a tasklet.
986 static void ub_urb_complete(struct urb *urb)
988 struct ub_dev *sc = urb->context;
990 ub_complete(&sc->work_done);
991 tasklet_schedule(&sc->tasklet);
994 static void ub_scsi_action(unsigned long _dev)
996 struct ub_dev *sc = (struct ub_dev *) _dev;
997 unsigned long flags;
999 spin_lock_irqsave(sc->lock, flags);
1000 ub_scsi_dispatch(sc);
1001 spin_unlock_irqrestore(sc->lock, flags);
1004 static void ub_scsi_dispatch(struct ub_dev *sc)
1006 struct ub_scsi_cmd *cmd;
1007 int rc;
1009 while (!sc->reset && (cmd = ub_cmdq_peek(sc)) != NULL) {
1010 if (cmd->state == UB_CMDST_DONE) {
1011 ub_cmdq_pop(sc);
1012 (*cmd->done)(sc, cmd);
1013 } else if (cmd->state == UB_CMDST_INIT) {
1014 if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0)
1015 break;
1016 cmd->error = rc;
1017 cmd->state = UB_CMDST_DONE;
1018 } else {
1019 if (!ub_is_completed(&sc->work_done))
1020 break;
1021 del_timer(&sc->work_timer);
1022 ub_scsi_urb_compl(sc, cmd);
1027 static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1029 struct urb *urb = &sc->work_urb;
1030 struct bulk_cs_wrap *bcs;
1031 int len;
1032 int rc;
1034 if (atomic_read(&sc->poison)) {
1035 ub_state_done(sc, cmd, -ENODEV);
1036 return;
1039 if (cmd->state == UB_CMDST_CLEAR) {
1040 if (urb->status == -EPIPE) {
1042 * STALL while clearning STALL.
1043 * The control pipe clears itself - nothing to do.
1045 printk(KERN_NOTICE "%s: stall on control pipe\n",
1046 sc->name);
1047 goto Bad_End;
1051 * We ignore the result for the halt clear.
1054 /* reset the endpoint toggle */
1055 usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe),
1056 usb_pipeout(sc->last_pipe), 0);
1058 ub_state_sense(sc, cmd);
1060 } else if (cmd->state == UB_CMDST_CLR2STS) {
1061 if (urb->status == -EPIPE) {
1062 printk(KERN_NOTICE "%s: stall on control pipe\n",
1063 sc->name);
1064 goto Bad_End;
1068 * We ignore the result for the halt clear.
1071 /* reset the endpoint toggle */
1072 usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe),
1073 usb_pipeout(sc->last_pipe), 0);
1075 ub_state_stat(sc, cmd);
1077 } else if (cmd->state == UB_CMDST_CLRRS) {
1078 if (urb->status == -EPIPE) {
1079 printk(KERN_NOTICE "%s: stall on control pipe\n",
1080 sc->name);
1081 goto Bad_End;
1085 * We ignore the result for the halt clear.
1088 /* reset the endpoint toggle */
1089 usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe),
1090 usb_pipeout(sc->last_pipe), 0);
1092 ub_state_stat_counted(sc, cmd);
1094 } else if (cmd->state == UB_CMDST_CMD) {
1095 switch (urb->status) {
1096 case 0:
1097 break;
1098 case -EOVERFLOW:
1099 goto Bad_End;
1100 case -EPIPE:
1101 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1102 if (rc != 0) {
1103 printk(KERN_NOTICE "%s: "
1104 "unable to submit clear (%d)\n",
1105 sc->name, rc);
1107 * This is typically ENOMEM or some other such shit.
1108 * Retrying is pointless. Just do Bad End on it...
1110 ub_state_done(sc, cmd, rc);
1111 return;
1113 cmd->state = UB_CMDST_CLEAR;
1114 return;
1115 case -ESHUTDOWN: /* unplug */
1116 case -EILSEQ: /* unplug timeout on uhci */
1117 ub_state_done(sc, cmd, -ENODEV);
1118 return;
1119 default:
1120 goto Bad_End;
1122 if (urb->actual_length != US_BULK_CB_WRAP_LEN) {
1123 goto Bad_End;
1126 if (cmd->dir == UB_DIR_NONE || cmd->nsg < 1) {
1127 ub_state_stat(sc, cmd);
1128 return;
1131 // udelay(125); // usb-storage has this
1132 ub_data_start(sc, cmd);
1134 } else if (cmd->state == UB_CMDST_DATA) {
1135 if (urb->status == -EPIPE) {
1136 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1137 if (rc != 0) {
1138 printk(KERN_NOTICE "%s: "
1139 "unable to submit clear (%d)\n",
1140 sc->name, rc);
1141 ub_state_done(sc, cmd, rc);
1142 return;
1144 cmd->state = UB_CMDST_CLR2STS;
1145 return;
1147 if (urb->status == -EOVERFLOW) {
1149 * A babble? Failure, but we must transfer CSW now.
1151 cmd->error = -EOVERFLOW; /* A cheap trick... */
1152 ub_state_stat(sc, cmd);
1153 return;
1156 if (cmd->dir == UB_DIR_WRITE) {
1158 * Do not continue writes in case of a failure.
1159 * Doing so would cause sectors to be mixed up,
1160 * which is worse than sectors lost.
1162 * We must try to read the CSW, or many devices
1163 * get confused.
1165 len = urb->actual_length;
1166 if (urb->status != 0 ||
1167 len != cmd->sgv[cmd->current_sg].length) {
1168 cmd->act_len += len;
1170 cmd->error = -EIO;
1171 ub_state_stat(sc, cmd);
1172 return;
1175 } else {
1177 * If an error occurs on read, we record it, and
1178 * continue to fetch data in order to avoid bubble.
1180 * As a small shortcut, we stop if we detect that
1181 * a CSW mixed into data.
1183 if (urb->status != 0)
1184 cmd->error = -EIO;
1186 len = urb->actual_length;
1187 if (urb->status != 0 ||
1188 len != cmd->sgv[cmd->current_sg].length) {
1189 if ((len & 0x1FF) == US_BULK_CS_WRAP_LEN)
1190 goto Bad_End;
1194 cmd->act_len += urb->actual_length;
1196 if (++cmd->current_sg < cmd->nsg) {
1197 ub_data_start(sc, cmd);
1198 return;
1200 ub_state_stat(sc, cmd);
1202 } else if (cmd->state == UB_CMDST_STAT) {
1203 if (urb->status == -EPIPE) {
1204 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1205 if (rc != 0) {
1206 printk(KERN_NOTICE "%s: "
1207 "unable to submit clear (%d)\n",
1208 sc->name, rc);
1209 ub_state_done(sc, cmd, rc);
1210 return;
1214 * Having a stall when getting CSW is an error, so
1215 * make sure uppper levels are not oblivious to it.
1217 cmd->error = -EIO; /* A cheap trick... */
1219 cmd->state = UB_CMDST_CLRRS;
1220 return;
1223 /* Catch everything, including -EOVERFLOW and other nasties. */
1224 if (urb->status != 0)
1225 goto Bad_End;
1227 if (urb->actual_length == 0) {
1228 ub_state_stat_counted(sc, cmd);
1229 return;
1233 * Check the returned Bulk protocol status.
1234 * The status block has to be validated first.
1237 bcs = &sc->work_bcs;
1239 if (sc->signature == cpu_to_le32(0)) {
1241 * This is the first reply, so do not perform the check.
1242 * Instead, remember the signature the device uses
1243 * for future checks. But do not allow a nul.
1245 sc->signature = bcs->Signature;
1246 if (sc->signature == cpu_to_le32(0)) {
1247 ub_state_stat_counted(sc, cmd);
1248 return;
1250 } else {
1251 if (bcs->Signature != sc->signature) {
1252 ub_state_stat_counted(sc, cmd);
1253 return;
1257 if (bcs->Tag != cmd->tag) {
1259 * This usually happens when we disagree with the
1260 * device's microcode about something. For instance,
1261 * a few of them throw this after timeouts. They buffer
1262 * commands and reply at commands we timed out before.
1263 * Without flushing these replies we loop forever.
1265 ub_state_stat_counted(sc, cmd);
1266 return;
1269 if (!sc->bad_resid) {
1270 len = le32_to_cpu(bcs->Residue);
1271 if (len != cmd->len - cmd->act_len) {
1273 * Only start ignoring if this cmd ended well.
1275 if (cmd->len == cmd->act_len) {
1276 printk(KERN_NOTICE "%s: "
1277 "bad residual %d of %d, ignoring\n",
1278 sc->name, len, cmd->len);
1279 sc->bad_resid = 1;
1284 switch (bcs->Status) {
1285 case US_BULK_STAT_OK:
1286 break;
1287 case US_BULK_STAT_FAIL:
1288 ub_state_sense(sc, cmd);
1289 return;
1290 case US_BULK_STAT_PHASE:
1291 goto Bad_End;
1292 default:
1293 printk(KERN_INFO "%s: unknown CSW status 0x%x\n",
1294 sc->name, bcs->Status);
1295 ub_state_done(sc, cmd, -EINVAL);
1296 return;
1299 /* Not zeroing error to preserve a babble indicator */
1300 if (cmd->error != 0) {
1301 ub_state_sense(sc, cmd);
1302 return;
1304 cmd->state = UB_CMDST_DONE;
1305 ub_cmdq_pop(sc);
1306 (*cmd->done)(sc, cmd);
1308 } else if (cmd->state == UB_CMDST_SENSE) {
1309 ub_state_done(sc, cmd, -EIO);
1311 } else {
1312 printk(KERN_WARNING "%s: wrong command state %d\n",
1313 sc->name, cmd->state);
1314 ub_state_done(sc, cmd, -EINVAL);
1315 return;
1317 return;
1319 Bad_End: /* Little Excel is dead */
1320 ub_state_done(sc, cmd, -EIO);
1324 * Factorization helper for the command state machine:
1325 * Initiate a data segment transfer.
1327 static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1329 struct scatterlist *sg = &cmd->sgv[cmd->current_sg];
1330 int pipe;
1331 int rc;
1333 UB_INIT_COMPLETION(sc->work_done);
1335 if (cmd->dir == UB_DIR_READ)
1336 pipe = sc->recv_bulk_pipe;
1337 else
1338 pipe = sc->send_bulk_pipe;
1339 sc->last_pipe = pipe;
1340 usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, sg_virt(sg),
1341 sg->length, ub_urb_complete, sc);
1343 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1344 /* XXX Clear stalls */
1345 ub_complete(&sc->work_done);
1346 ub_state_done(sc, cmd, rc);
1347 return;
1350 if (cmd->timeo)
1351 sc->work_timer.expires = jiffies + cmd->timeo;
1352 else
1353 sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT;
1354 add_timer(&sc->work_timer);
1356 cmd->state = UB_CMDST_DATA;
1360 * Factorization helper for the command state machine:
1361 * Finish the command.
1363 static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc)
1366 cmd->error = rc;
1367 cmd->state = UB_CMDST_DONE;
1368 ub_cmdq_pop(sc);
1369 (*cmd->done)(sc, cmd);
1373 * Factorization helper for the command state machine:
1374 * Submit a CSW read.
1376 static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1378 int rc;
1380 UB_INIT_COMPLETION(sc->work_done);
1382 sc->last_pipe = sc->recv_bulk_pipe;
1383 usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe,
1384 &sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc);
1386 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1387 /* XXX Clear stalls */
1388 ub_complete(&sc->work_done);
1389 ub_state_done(sc, cmd, rc);
1390 return -1;
1393 if (cmd->timeo)
1394 sc->work_timer.expires = jiffies + cmd->timeo;
1395 else
1396 sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT;
1397 add_timer(&sc->work_timer);
1398 return 0;
1402 * Factorization helper for the command state machine:
1403 * Submit a CSW read and go to STAT state.
1405 static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1408 if (__ub_state_stat(sc, cmd) != 0)
1409 return;
1411 cmd->stat_count = 0;
1412 cmd->state = UB_CMDST_STAT;
1416 * Factorization helper for the command state machine:
1417 * Submit a CSW read and go to STAT state with counter (along [C] path).
1419 static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1422 if (++cmd->stat_count >= 4) {
1423 ub_state_sense(sc, cmd);
1424 return;
1427 if (__ub_state_stat(sc, cmd) != 0)
1428 return;
1430 cmd->state = UB_CMDST_STAT;
1434 * Factorization helper for the command state machine:
1435 * Submit a REQUEST SENSE and go to SENSE state.
1437 static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1439 struct ub_scsi_cmd *scmd;
1440 struct scatterlist *sg;
1441 int rc;
1443 if (cmd->cdb[0] == REQUEST_SENSE) {
1444 rc = -EPIPE;
1445 goto error;
1448 scmd = &sc->top_rqs_cmd;
1449 memset(scmd, 0, sizeof(struct ub_scsi_cmd));
1450 scmd->cdb[0] = REQUEST_SENSE;
1451 scmd->cdb[4] = UB_SENSE_SIZE;
1452 scmd->cdb_len = 6;
1453 scmd->dir = UB_DIR_READ;
1454 scmd->state = UB_CMDST_INIT;
1455 scmd->nsg = 1;
1456 sg = &scmd->sgv[0];
1457 sg_init_table(sg, UB_MAX_REQ_SG);
1458 sg_set_page(sg, virt_to_page(sc->top_sense), UB_SENSE_SIZE,
1459 (unsigned long)sc->top_sense & (PAGE_SIZE-1));
1460 scmd->len = UB_SENSE_SIZE;
1461 scmd->lun = cmd->lun;
1462 scmd->done = ub_top_sense_done;
1463 scmd->back = cmd;
1465 scmd->tag = sc->tagcnt++;
1467 cmd->state = UB_CMDST_SENSE;
1469 ub_cmdq_insert(sc, scmd);
1470 return;
1472 error:
1473 ub_state_done(sc, cmd, rc);
1477 * A helper for the command's state machine:
1478 * Submit a stall clear.
1480 static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
1481 int stalled_pipe)
1483 int endp;
1484 struct usb_ctrlrequest *cr;
1485 int rc;
1487 endp = usb_pipeendpoint(stalled_pipe);
1488 if (usb_pipein (stalled_pipe))
1489 endp |= USB_DIR_IN;
1491 cr = &sc->work_cr;
1492 cr->bRequestType = USB_RECIP_ENDPOINT;
1493 cr->bRequest = USB_REQ_CLEAR_FEATURE;
1494 cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT);
1495 cr->wIndex = cpu_to_le16(endp);
1496 cr->wLength = cpu_to_le16(0);
1498 UB_INIT_COMPLETION(sc->work_done);
1500 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
1501 (unsigned char*) cr, NULL, 0, ub_urb_complete, sc);
1503 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1504 ub_complete(&sc->work_done);
1505 return rc;
1508 sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT;
1509 add_timer(&sc->work_timer);
1510 return 0;
1515 static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd)
1517 unsigned char *sense = sc->top_sense;
1518 struct ub_scsi_cmd *cmd;
1521 * Find the command which triggered the unit attention or a check,
1522 * save the sense into it, and advance its state machine.
1524 if ((cmd = ub_cmdq_peek(sc)) == NULL) {
1525 printk(KERN_WARNING "%s: sense done while idle\n", sc->name);
1526 return;
1528 if (cmd != scmd->back) {
1529 printk(KERN_WARNING "%s: "
1530 "sense done for wrong command 0x%x\n",
1531 sc->name, cmd->tag);
1532 return;
1534 if (cmd->state != UB_CMDST_SENSE) {
1535 printk(KERN_WARNING "%s: sense done with bad cmd state %d\n",
1536 sc->name, cmd->state);
1537 return;
1541 * Ignoring scmd->act_len, because the buffer was pre-zeroed.
1543 cmd->key = sense[2] & 0x0F;
1544 cmd->asc = sense[12];
1545 cmd->ascq = sense[13];
1547 ub_scsi_urb_compl(sc, cmd);
1551 * Reset management
1552 * XXX Move usb_reset_device to khubd. Hogging kevent is not a good thing.
1553 * XXX Make usb_sync_reset asynchronous.
1556 static void ub_reset_enter(struct ub_dev *sc, int try)
1559 if (sc->reset) {
1560 /* This happens often on multi-LUN devices. */
1561 return;
1563 sc->reset = try + 1;
1565 #if 0 /* Not needed because the disconnect waits for us. */
1566 unsigned long flags;
1567 spin_lock_irqsave(&ub_lock, flags);
1568 sc->openc++;
1569 spin_unlock_irqrestore(&ub_lock, flags);
1570 #endif
1572 #if 0 /* We let them stop themselves. */
1573 struct ub_lun *lun;
1574 list_for_each_entry(lun, &sc->luns, link) {
1575 blk_stop_queue(lun->disk->queue);
1577 #endif
1579 schedule_work(&sc->reset_work);
1582 static void ub_reset_task(struct work_struct *work)
1584 struct ub_dev *sc = container_of(work, struct ub_dev, reset_work);
1585 unsigned long flags;
1586 struct ub_lun *lun;
1587 int lkr, rc;
1589 if (!sc->reset) {
1590 printk(KERN_WARNING "%s: Running reset unrequested\n",
1591 sc->name);
1592 return;
1595 if (atomic_read(&sc->poison)) {
1597 } else if ((sc->reset & 1) == 0) {
1598 ub_sync_reset(sc);
1599 msleep(700); /* usb-storage sleeps 6s (!) */
1600 ub_probe_clear_stall(sc, sc->recv_bulk_pipe);
1601 ub_probe_clear_stall(sc, sc->send_bulk_pipe);
1602 } else if (sc->dev->actconfig->desc.bNumInterfaces != 1) {
1604 } else {
1605 if ((lkr = usb_lock_device_for_reset(sc->dev, sc->intf)) < 0) {
1606 printk(KERN_NOTICE
1607 "%s: usb_lock_device_for_reset failed (%d)\n",
1608 sc->name, lkr);
1609 } else {
1610 rc = usb_reset_device(sc->dev);
1611 if (rc < 0) {
1612 printk(KERN_NOTICE "%s: "
1613 "usb_lock_device_for_reset failed (%d)\n",
1614 sc->name, rc);
1617 if (lkr)
1618 usb_unlock_device(sc->dev);
1623 * In theory, no commands can be running while reset is active,
1624 * so nobody can ask for another reset, and so we do not need any
1625 * queues of resets or anything. We do need a spinlock though,
1626 * to interact with block layer.
1628 spin_lock_irqsave(sc->lock, flags);
1629 sc->reset = 0;
1630 tasklet_schedule(&sc->tasklet);
1631 list_for_each_entry(lun, &sc->luns, link) {
1632 blk_start_queue(lun->disk->queue);
1634 wake_up(&sc->reset_wait);
1635 spin_unlock_irqrestore(sc->lock, flags);
1639 * This is called from a process context.
1641 static void ub_revalidate(struct ub_dev *sc, struct ub_lun *lun)
1644 lun->readonly = 0; /* XXX Query this from the device */
1646 lun->capacity.nsec = 0;
1647 lun->capacity.bsize = 512;
1648 lun->capacity.bshift = 0;
1650 if (ub_sync_tur(sc, lun) != 0)
1651 return; /* Not ready */
1652 lun->changed = 0;
1654 if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) {
1656 * The retry here means something is wrong, either with the
1657 * device, with the transport, or with our code.
1658 * We keep this because sd.c has retries for capacity.
1660 if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) {
1661 lun->capacity.nsec = 0;
1662 lun->capacity.bsize = 512;
1663 lun->capacity.bshift = 0;
1669 * The open funcion.
1670 * This is mostly needed to keep refcounting, but also to support
1671 * media checks on removable media drives.
1673 static int ub_bd_open(struct inode *inode, struct file *filp)
1675 struct gendisk *disk = inode->i_bdev->bd_disk;
1676 struct ub_lun *lun = disk->private_data;
1677 struct ub_dev *sc = lun->udev;
1678 unsigned long flags;
1679 int rc;
1681 spin_lock_irqsave(&ub_lock, flags);
1682 if (atomic_read(&sc->poison)) {
1683 spin_unlock_irqrestore(&ub_lock, flags);
1684 return -ENXIO;
1686 sc->openc++;
1687 spin_unlock_irqrestore(&ub_lock, flags);
1689 if (lun->removable || lun->readonly)
1690 check_disk_change(inode->i_bdev);
1693 * The sd.c considers ->media_present and ->changed not equivalent,
1694 * under some pretty murky conditions (a failure of READ CAPACITY).
1695 * We may need it one day.
1697 if (lun->removable && lun->changed && !(filp->f_flags & O_NDELAY)) {
1698 rc = -ENOMEDIUM;
1699 goto err_open;
1702 if (lun->readonly && (filp->f_mode & FMODE_WRITE)) {
1703 rc = -EROFS;
1704 goto err_open;
1707 return 0;
1709 err_open:
1710 ub_put(sc);
1711 return rc;
1716 static int ub_bd_release(struct inode *inode, struct file *filp)
1718 struct gendisk *disk = inode->i_bdev->bd_disk;
1719 struct ub_lun *lun = disk->private_data;
1720 struct ub_dev *sc = lun->udev;
1722 ub_put(sc);
1723 return 0;
1727 * The ioctl interface.
1729 static int ub_bd_ioctl(struct inode *inode, struct file *filp,
1730 unsigned int cmd, unsigned long arg)
1732 struct gendisk *disk = inode->i_bdev->bd_disk;
1733 void __user *usermem = (void __user *) arg;
1735 return scsi_cmd_ioctl(filp, disk->queue, disk, cmd, usermem);
1739 * This is called by check_disk_change if we reported a media change.
1740 * The main onjective here is to discover the features of the media such as
1741 * the capacity, read-only status, etc. USB storage generally does not
1742 * need to be spun up, but if we needed it, this would be the place.
1744 * This call can sleep.
1746 * The return code is not used.
1748 static int ub_bd_revalidate(struct gendisk *disk)
1750 struct ub_lun *lun = disk->private_data;
1752 ub_revalidate(lun->udev, lun);
1754 /* XXX Support sector size switching like in sr.c */
1755 blk_queue_hardsect_size(disk->queue, lun->capacity.bsize);
1756 set_capacity(disk, lun->capacity.nsec);
1757 // set_disk_ro(sdkp->disk, lun->readonly);
1759 return 0;
1763 * The check is called by the block layer to verify if the media
1764 * is still available. It is supposed to be harmless, lightweight and
1765 * non-intrusive in case the media was not changed.
1767 * This call can sleep.
1769 * The return code is bool!
1771 static int ub_bd_media_changed(struct gendisk *disk)
1773 struct ub_lun *lun = disk->private_data;
1775 if (!lun->removable)
1776 return 0;
1779 * We clean checks always after every command, so this is not
1780 * as dangerous as it looks. If the TEST_UNIT_READY fails here,
1781 * the device is actually not ready with operator or software
1782 * intervention required. One dangerous item might be a drive which
1783 * spins itself down, and come the time to write dirty pages, this
1784 * will fail, then block layer discards the data. Since we never
1785 * spin drives up, such devices simply cannot be used with ub anyway.
1787 if (ub_sync_tur(lun->udev, lun) != 0) {
1788 lun->changed = 1;
1789 return 1;
1792 return lun->changed;
1795 static struct block_device_operations ub_bd_fops = {
1796 .owner = THIS_MODULE,
1797 .open = ub_bd_open,
1798 .release = ub_bd_release,
1799 .ioctl = ub_bd_ioctl,
1800 .media_changed = ub_bd_media_changed,
1801 .revalidate_disk = ub_bd_revalidate,
1805 * Common ->done routine for commands executed synchronously.
1807 static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1809 struct completion *cop = cmd->back;
1810 complete(cop);
1814 * Test if the device has a check condition on it, synchronously.
1816 static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun)
1818 struct ub_scsi_cmd *cmd;
1819 enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) };
1820 unsigned long flags;
1821 struct completion compl;
1822 int rc;
1824 init_completion(&compl);
1826 rc = -ENOMEM;
1827 if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
1828 goto err_alloc;
1830 cmd->cdb[0] = TEST_UNIT_READY;
1831 cmd->cdb_len = 6;
1832 cmd->dir = UB_DIR_NONE;
1833 cmd->state = UB_CMDST_INIT;
1834 cmd->lun = lun; /* This may be NULL, but that's ok */
1835 cmd->done = ub_probe_done;
1836 cmd->back = &compl;
1838 spin_lock_irqsave(sc->lock, flags);
1839 cmd->tag = sc->tagcnt++;
1841 rc = ub_submit_scsi(sc, cmd);
1842 spin_unlock_irqrestore(sc->lock, flags);
1844 if (rc != 0)
1845 goto err_submit;
1847 wait_for_completion(&compl);
1849 rc = cmd->error;
1851 if (rc == -EIO && cmd->key != 0) /* Retries for benh's key */
1852 rc = cmd->key;
1854 err_submit:
1855 kfree(cmd);
1856 err_alloc:
1857 return rc;
1861 * Read the SCSI capacity synchronously (for probing).
1863 static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun,
1864 struct ub_capacity *ret)
1866 struct ub_scsi_cmd *cmd;
1867 struct scatterlist *sg;
1868 char *p;
1869 enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 };
1870 unsigned long flags;
1871 unsigned int bsize, shift;
1872 unsigned long nsec;
1873 struct completion compl;
1874 int rc;
1876 init_completion(&compl);
1878 rc = -ENOMEM;
1879 if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
1880 goto err_alloc;
1881 p = (char *)cmd + sizeof(struct ub_scsi_cmd);
1883 cmd->cdb[0] = 0x25;
1884 cmd->cdb_len = 10;
1885 cmd->dir = UB_DIR_READ;
1886 cmd->state = UB_CMDST_INIT;
1887 cmd->nsg = 1;
1888 sg = &cmd->sgv[0];
1889 sg_init_table(sg, UB_MAX_REQ_SG);
1890 sg_set_page(sg, virt_to_page(p), 8, (unsigned long)p & (PAGE_SIZE-1));
1891 cmd->len = 8;
1892 cmd->lun = lun;
1893 cmd->done = ub_probe_done;
1894 cmd->back = &compl;
1896 spin_lock_irqsave(sc->lock, flags);
1897 cmd->tag = sc->tagcnt++;
1899 rc = ub_submit_scsi(sc, cmd);
1900 spin_unlock_irqrestore(sc->lock, flags);
1902 if (rc != 0)
1903 goto err_submit;
1905 wait_for_completion(&compl);
1907 if (cmd->error != 0) {
1908 rc = -EIO;
1909 goto err_read;
1911 if (cmd->act_len != 8) {
1912 rc = -EIO;
1913 goto err_read;
1916 /* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */
1917 nsec = be32_to_cpu(*(__be32 *)p) + 1;
1918 bsize = be32_to_cpu(*(__be32 *)(p + 4));
1919 switch (bsize) {
1920 case 512: shift = 0; break;
1921 case 1024: shift = 1; break;
1922 case 2048: shift = 2; break;
1923 case 4096: shift = 3; break;
1924 default:
1925 rc = -EDOM;
1926 goto err_inv_bsize;
1929 ret->bsize = bsize;
1930 ret->bshift = shift;
1931 ret->nsec = nsec << shift;
1932 rc = 0;
1934 err_inv_bsize:
1935 err_read:
1936 err_submit:
1937 kfree(cmd);
1938 err_alloc:
1939 return rc;
1944 static void ub_probe_urb_complete(struct urb *urb)
1946 struct completion *cop = urb->context;
1947 complete(cop);
1950 static void ub_probe_timeout(unsigned long arg)
1952 struct completion *cop = (struct completion *) arg;
1953 complete(cop);
1957 * Reset with a Bulk reset.
1959 static int ub_sync_reset(struct ub_dev *sc)
1961 int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber;
1962 struct usb_ctrlrequest *cr;
1963 struct completion compl;
1964 struct timer_list timer;
1965 int rc;
1967 init_completion(&compl);
1969 cr = &sc->work_cr;
1970 cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
1971 cr->bRequest = US_BULK_RESET_REQUEST;
1972 cr->wValue = cpu_to_le16(0);
1973 cr->wIndex = cpu_to_le16(ifnum);
1974 cr->wLength = cpu_to_le16(0);
1976 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
1977 (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl);
1979 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) {
1980 printk(KERN_WARNING
1981 "%s: Unable to submit a bulk reset (%d)\n", sc->name, rc);
1982 return rc;
1985 init_timer(&timer);
1986 timer.function = ub_probe_timeout;
1987 timer.data = (unsigned long) &compl;
1988 timer.expires = jiffies + UB_CTRL_TIMEOUT;
1989 add_timer(&timer);
1991 wait_for_completion(&compl);
1993 del_timer_sync(&timer);
1994 usb_kill_urb(&sc->work_urb);
1996 return sc->work_urb.status;
2000 * Get number of LUNs by the way of Bulk GetMaxLUN command.
2002 static int ub_sync_getmaxlun(struct ub_dev *sc)
2004 int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber;
2005 unsigned char *p;
2006 enum { ALLOC_SIZE = 1 };
2007 struct usb_ctrlrequest *cr;
2008 struct completion compl;
2009 struct timer_list timer;
2010 int nluns;
2011 int rc;
2013 init_completion(&compl);
2015 rc = -ENOMEM;
2016 if ((p = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
2017 goto err_alloc;
2018 *p = 55;
2020 cr = &sc->work_cr;
2021 cr->bRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
2022 cr->bRequest = US_BULK_GET_MAX_LUN;
2023 cr->wValue = cpu_to_le16(0);
2024 cr->wIndex = cpu_to_le16(ifnum);
2025 cr->wLength = cpu_to_le16(1);
2027 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->recv_ctrl_pipe,
2028 (unsigned char*) cr, p, 1, ub_probe_urb_complete, &compl);
2030 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0)
2031 goto err_submit;
2033 init_timer(&timer);
2034 timer.function = ub_probe_timeout;
2035 timer.data = (unsigned long) &compl;
2036 timer.expires = jiffies + UB_CTRL_TIMEOUT;
2037 add_timer(&timer);
2039 wait_for_completion(&compl);
2041 del_timer_sync(&timer);
2042 usb_kill_urb(&sc->work_urb);
2044 if ((rc = sc->work_urb.status) < 0)
2045 goto err_io;
2047 if (sc->work_urb.actual_length != 1) {
2048 nluns = 0;
2049 } else {
2050 if ((nluns = *p) == 55) {
2051 nluns = 0;
2052 } else {
2053 /* GetMaxLUN returns the maximum LUN number */
2054 nluns += 1;
2055 if (nluns > UB_MAX_LUNS)
2056 nluns = UB_MAX_LUNS;
2060 kfree(p);
2061 return nluns;
2063 err_io:
2064 err_submit:
2065 kfree(p);
2066 err_alloc:
2067 return rc;
2071 * Clear initial stalls.
2073 static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe)
2075 int endp;
2076 struct usb_ctrlrequest *cr;
2077 struct completion compl;
2078 struct timer_list timer;
2079 int rc;
2081 init_completion(&compl);
2083 endp = usb_pipeendpoint(stalled_pipe);
2084 if (usb_pipein (stalled_pipe))
2085 endp |= USB_DIR_IN;
2087 cr = &sc->work_cr;
2088 cr->bRequestType = USB_RECIP_ENDPOINT;
2089 cr->bRequest = USB_REQ_CLEAR_FEATURE;
2090 cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT);
2091 cr->wIndex = cpu_to_le16(endp);
2092 cr->wLength = cpu_to_le16(0);
2094 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
2095 (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl);
2097 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) {
2098 printk(KERN_WARNING
2099 "%s: Unable to submit a probe clear (%d)\n", sc->name, rc);
2100 return rc;
2103 init_timer(&timer);
2104 timer.function = ub_probe_timeout;
2105 timer.data = (unsigned long) &compl;
2106 timer.expires = jiffies + UB_CTRL_TIMEOUT;
2107 add_timer(&timer);
2109 wait_for_completion(&compl);
2111 del_timer_sync(&timer);
2112 usb_kill_urb(&sc->work_urb);
2114 /* reset the endpoint toggle */
2115 usb_settoggle(sc->dev, endp, usb_pipeout(sc->last_pipe), 0);
2117 return 0;
2121 * Get the pipe settings.
2123 static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev,
2124 struct usb_interface *intf)
2126 struct usb_host_interface *altsetting = intf->cur_altsetting;
2127 struct usb_endpoint_descriptor *ep_in = NULL;
2128 struct usb_endpoint_descriptor *ep_out = NULL;
2129 struct usb_endpoint_descriptor *ep;
2130 int i;
2133 * Find the endpoints we need.
2134 * We are expecting a minimum of 2 endpoints - in and out (bulk).
2135 * We will ignore any others.
2137 for (i = 0; i < altsetting->desc.bNumEndpoints; i++) {
2138 ep = &altsetting->endpoint[i].desc;
2140 /* Is it a BULK endpoint? */
2141 if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
2142 == USB_ENDPOINT_XFER_BULK) {
2143 /* BULK in or out? */
2144 if (ep->bEndpointAddress & USB_DIR_IN) {
2145 if (ep_in == NULL)
2146 ep_in = ep;
2147 } else {
2148 if (ep_out == NULL)
2149 ep_out = ep;
2154 if (ep_in == NULL || ep_out == NULL) {
2155 printk(KERN_NOTICE "%s: failed endpoint check\n", sc->name);
2156 return -ENODEV;
2159 /* Calculate and store the pipe values */
2160 sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0);
2161 sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0);
2162 sc->send_bulk_pipe = usb_sndbulkpipe(dev,
2163 ep_out->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2164 sc->recv_bulk_pipe = usb_rcvbulkpipe(dev,
2165 ep_in->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2167 return 0;
2171 * Probing is done in the process context, which allows us to cheat
2172 * and not to build a state machine for the discovery.
2174 static int ub_probe(struct usb_interface *intf,
2175 const struct usb_device_id *dev_id)
2177 struct ub_dev *sc;
2178 int nluns;
2179 int rc;
2180 int i;
2182 if (usb_usual_check_type(dev_id, USB_US_TYPE_UB))
2183 return -ENXIO;
2185 rc = -ENOMEM;
2186 if ((sc = kzalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL)
2187 goto err_core;
2188 sc->lock = ub_next_lock();
2189 INIT_LIST_HEAD(&sc->luns);
2190 usb_init_urb(&sc->work_urb);
2191 tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc);
2192 atomic_set(&sc->poison, 0);
2193 INIT_WORK(&sc->reset_work, ub_reset_task);
2194 init_waitqueue_head(&sc->reset_wait);
2196 init_timer(&sc->work_timer);
2197 sc->work_timer.data = (unsigned long) sc;
2198 sc->work_timer.function = ub_urb_timeout;
2200 ub_init_completion(&sc->work_done);
2201 sc->work_done.done = 1; /* A little yuk, but oh well... */
2203 sc->dev = interface_to_usbdev(intf);
2204 sc->intf = intf;
2205 // sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber;
2206 usb_set_intfdata(intf, sc);
2207 usb_get_dev(sc->dev);
2209 * Since we give the interface struct to the block level through
2210 * disk->driverfs_dev, we have to pin it. Otherwise, block_uevent
2211 * oopses on close after a disconnect (kernels 2.6.16 and up).
2213 usb_get_intf(sc->intf);
2215 snprintf(sc->name, 12, DRV_NAME "(%d.%d)",
2216 sc->dev->bus->busnum, sc->dev->devnum);
2218 /* XXX Verify that we can handle the device (from descriptors) */
2220 if (ub_get_pipes(sc, sc->dev, intf) != 0)
2221 goto err_dev_desc;
2224 * At this point, all USB initialization is done, do upper layer.
2225 * We really hate halfway initialized structures, so from the
2226 * invariants perspective, this ub_dev is fully constructed at
2227 * this point.
2231 * This is needed to clear toggles. It is a problem only if we do
2232 * `rmmod ub && modprobe ub` without disconnects, but we like that.
2234 #if 0 /* iPod Mini fails if we do this (big white iPod works) */
2235 ub_probe_clear_stall(sc, sc->recv_bulk_pipe);
2236 ub_probe_clear_stall(sc, sc->send_bulk_pipe);
2237 #endif
2240 * The way this is used by the startup code is a little specific.
2241 * A SCSI check causes a USB stall. Our common case code sees it
2242 * and clears the check, after which the device is ready for use.
2243 * But if a check was not present, any command other than
2244 * TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE).
2246 * If we neglect to clear the SCSI check, the first real command fails
2247 * (which is the capacity readout). We clear that and retry, but why
2248 * causing spurious retries for no reason.
2250 * Revalidation may start with its own TEST_UNIT_READY, but that one
2251 * has to succeed, so we clear checks with an additional one here.
2252 * In any case it's not our business how revaliadation is implemented.
2254 for (i = 0; i < 3; i++) { /* Retries for the schwag key from KS'04 */
2255 if ((rc = ub_sync_tur(sc, NULL)) <= 0) break;
2256 if (rc != 0x6) break;
2257 msleep(10);
2260 nluns = 1;
2261 for (i = 0; i < 3; i++) {
2262 if ((rc = ub_sync_getmaxlun(sc)) < 0)
2263 break;
2264 if (rc != 0) {
2265 nluns = rc;
2266 break;
2268 msleep(100);
2271 for (i = 0; i < nluns; i++) {
2272 ub_probe_lun(sc, i);
2274 return 0;
2276 err_dev_desc:
2277 usb_set_intfdata(intf, NULL);
2278 usb_put_intf(sc->intf);
2279 usb_put_dev(sc->dev);
2280 kfree(sc);
2281 err_core:
2282 return rc;
2285 static int ub_probe_lun(struct ub_dev *sc, int lnum)
2287 struct ub_lun *lun;
2288 struct request_queue *q;
2289 struct gendisk *disk;
2290 int rc;
2292 rc = -ENOMEM;
2293 if ((lun = kzalloc(sizeof(struct ub_lun), GFP_KERNEL)) == NULL)
2294 goto err_alloc;
2295 lun->num = lnum;
2297 rc = -ENOSR;
2298 if ((lun->id = ub_id_get()) == -1)
2299 goto err_id;
2301 lun->udev = sc;
2303 snprintf(lun->name, 16, DRV_NAME "%c(%d.%d.%d)",
2304 lun->id + 'a', sc->dev->bus->busnum, sc->dev->devnum, lun->num);
2306 lun->removable = 1; /* XXX Query this from the device */
2307 lun->changed = 1; /* ub_revalidate clears only */
2308 ub_revalidate(sc, lun);
2310 rc = -ENOMEM;
2311 if ((disk = alloc_disk(UB_PARTS_PER_LUN)) == NULL)
2312 goto err_diskalloc;
2314 sprintf(disk->disk_name, DRV_NAME "%c", lun->id + 'a');
2315 disk->major = UB_MAJOR;
2316 disk->first_minor = lun->id * UB_PARTS_PER_LUN;
2317 disk->fops = &ub_bd_fops;
2318 disk->private_data = lun;
2319 disk->driverfs_dev = &sc->intf->dev;
2321 rc = -ENOMEM;
2322 if ((q = blk_init_queue(ub_request_fn, sc->lock)) == NULL)
2323 goto err_blkqinit;
2325 disk->queue = q;
2327 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
2328 blk_queue_max_hw_segments(q, UB_MAX_REQ_SG);
2329 blk_queue_max_phys_segments(q, UB_MAX_REQ_SG);
2330 blk_queue_segment_boundary(q, 0xffffffff); /* Dubious. */
2331 blk_queue_max_sectors(q, UB_MAX_SECTORS);
2332 blk_queue_hardsect_size(q, lun->capacity.bsize);
2334 lun->disk = disk;
2335 q->queuedata = lun;
2336 list_add(&lun->link, &sc->luns);
2338 set_capacity(disk, lun->capacity.nsec);
2339 if (lun->removable)
2340 disk->flags |= GENHD_FL_REMOVABLE;
2342 add_disk(disk);
2344 return 0;
2346 err_blkqinit:
2347 put_disk(disk);
2348 err_diskalloc:
2349 ub_id_put(lun->id);
2350 err_id:
2351 kfree(lun);
2352 err_alloc:
2353 return rc;
2356 static void ub_disconnect(struct usb_interface *intf)
2358 struct ub_dev *sc = usb_get_intfdata(intf);
2359 struct ub_lun *lun;
2360 unsigned long flags;
2363 * Prevent ub_bd_release from pulling the rug from under us.
2364 * XXX This is starting to look like a kref.
2365 * XXX Why not to take this ref at probe time?
2367 spin_lock_irqsave(&ub_lock, flags);
2368 sc->openc++;
2369 spin_unlock_irqrestore(&ub_lock, flags);
2372 * Fence stall clearings, operations triggered by unlinkings and so on.
2373 * We do not attempt to unlink any URBs, because we do not trust the
2374 * unlink paths in HC drivers. Also, we get -84 upon disconnect anyway.
2376 atomic_set(&sc->poison, 1);
2379 * Wait for reset to end, if any.
2381 wait_event(sc->reset_wait, !sc->reset);
2384 * Blow away queued commands.
2386 * Actually, this never works, because before we get here
2387 * the HCD terminates outstanding URB(s). It causes our
2388 * SCSI command queue to advance, commands fail to submit,
2389 * and the whole queue drains. So, we just use this code to
2390 * print warnings.
2392 spin_lock_irqsave(sc->lock, flags);
2394 struct ub_scsi_cmd *cmd;
2395 int cnt = 0;
2396 while ((cmd = ub_cmdq_peek(sc)) != NULL) {
2397 cmd->error = -ENOTCONN;
2398 cmd->state = UB_CMDST_DONE;
2399 ub_cmdq_pop(sc);
2400 (*cmd->done)(sc, cmd);
2401 cnt++;
2403 if (cnt != 0) {
2404 printk(KERN_WARNING "%s: "
2405 "%d was queued after shutdown\n", sc->name, cnt);
2408 spin_unlock_irqrestore(sc->lock, flags);
2411 * Unregister the upper layer.
2413 list_for_each_entry(lun, &sc->luns, link) {
2414 del_gendisk(lun->disk);
2416 * I wish I could do:
2417 * queue_flag_set(QUEUE_FLAG_DEAD, q);
2418 * As it is, we rely on our internal poisoning and let
2419 * the upper levels to spin furiously failing all the I/O.
2424 * Testing for -EINPROGRESS is always a bug, so we are bending
2425 * the rules a little.
2427 spin_lock_irqsave(sc->lock, flags);
2428 if (sc->work_urb.status == -EINPROGRESS) { /* janitors: ignore */
2429 printk(KERN_WARNING "%s: "
2430 "URB is active after disconnect\n", sc->name);
2432 spin_unlock_irqrestore(sc->lock, flags);
2435 * There is virtually no chance that other CPU runs a timeout so long
2436 * after ub_urb_complete should have called del_timer, but only if HCD
2437 * didn't forget to deliver a callback on unlink.
2439 del_timer_sync(&sc->work_timer);
2442 * At this point there must be no commands coming from anyone
2443 * and no URBs left in transit.
2446 ub_put(sc);
2449 static struct usb_driver ub_driver = {
2450 .name = "ub",
2451 .probe = ub_probe,
2452 .disconnect = ub_disconnect,
2453 .id_table = ub_usb_ids,
2456 static int __init ub_init(void)
2458 int rc;
2459 int i;
2461 for (i = 0; i < UB_QLOCK_NUM; i++)
2462 spin_lock_init(&ub_qlockv[i]);
2464 if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0)
2465 goto err_regblkdev;
2467 if ((rc = usb_register(&ub_driver)) != 0)
2468 goto err_register;
2470 usb_usual_set_present(USB_US_TYPE_UB);
2471 return 0;
2473 err_register:
2474 unregister_blkdev(UB_MAJOR, DRV_NAME);
2475 err_regblkdev:
2476 return rc;
2479 static void __exit ub_exit(void)
2481 usb_deregister(&ub_driver);
2483 unregister_blkdev(UB_MAJOR, DRV_NAME);
2484 usb_usual_clear_present(USB_US_TYPE_UB);
2487 module_init(ub_init);
2488 module_exit(ub_exit);
2490 MODULE_LICENSE("GPL");