2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
42 struct pipe_buffer
*buf
)
44 struct page
*page
= buf
->page
;
45 struct address_space
*mapping
;
49 mapping
= page_mapping(page
);
51 WARN_ON(!PageUptodate(page
));
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
61 wait_on_page_writeback(page
);
63 if (page_has_private(page
) &&
64 !try_to_release_page(page
, GFP_KERNEL
))
68 * If we succeeded in removing the mapping, set LRU flag
71 if (remove_mapping(mapping
, page
)) {
72 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
86 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
87 struct pipe_buffer
*buf
)
89 page_cache_release(buf
->page
);
90 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
98 struct pipe_buffer
*buf
)
100 struct page
*page
= buf
->page
;
103 if (!PageUptodate(page
)) {
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
110 if (!page
->mapping
) {
116 * Uh oh, read-error from disk.
118 if (!PageUptodate(page
)) {
124 * Page is ok afterall, we are done.
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
137 .map
= generic_pipe_buf_map
,
138 .unmap
= generic_pipe_buf_unmap
,
139 .confirm
= page_cache_pipe_buf_confirm
,
140 .release
= page_cache_pipe_buf_release
,
141 .steal
= page_cache_pipe_buf_steal
,
142 .get
= generic_pipe_buf_get
,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
146 struct pipe_buffer
*buf
)
148 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
151 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
152 return generic_pipe_buf_steal(pipe
, buf
);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
157 .map
= generic_pipe_buf_map
,
158 .unmap
= generic_pipe_buf_unmap
,
159 .confirm
= generic_pipe_buf_confirm
,
160 .release
= page_cache_pipe_buf_release
,
161 .steal
= user_page_pipe_buf_steal
,
162 .get
= generic_pipe_buf_get
,
166 * splice_to_pipe - fill passed data into a pipe
167 * @pipe: pipe to fill
171 * @spd contains a map of pages and len/offset tuples, along with
172 * the struct pipe_buf_operations associated with these pages. This
173 * function will link that data to the pipe.
176 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
177 struct splice_pipe_desc
*spd
)
179 unsigned int spd_pages
= spd
->nr_pages
;
180 int ret
, do_wakeup
, page_nr
;
189 if (!pipe
->readers
) {
190 send_sig(SIGPIPE
, current
, 0);
196 if (pipe
->nrbufs
< pipe
->buffers
) {
197 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (pipe
->buffers
- 1);
198 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
200 buf
->page
= spd
->pages
[page_nr
];
201 buf
->offset
= spd
->partial
[page_nr
].offset
;
202 buf
->len
= spd
->partial
[page_nr
].len
;
203 buf
->private = spd
->partial
[page_nr
].private;
205 if (spd
->flags
& SPLICE_F_GIFT
)
206 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
215 if (!--spd
->nr_pages
)
217 if (pipe
->nrbufs
< pipe
->buffers
)
223 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
229 if (signal_pending(current
)) {
237 if (waitqueue_active(&pipe
->wait
))
238 wake_up_interruptible_sync(&pipe
->wait
);
239 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
243 pipe
->waiting_writers
++;
245 pipe
->waiting_writers
--;
252 if (waitqueue_active(&pipe
->wait
))
253 wake_up_interruptible(&pipe
->wait
);
254 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
257 while (page_nr
< spd_pages
)
258 spd
->spd_release(spd
, page_nr
++);
263 static void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
265 page_cache_release(spd
->pages
[i
]);
269 * Check if we need to grow the arrays holding pages and partial page
272 int splice_grow_spd(struct pipe_inode_info
*pipe
, struct splice_pipe_desc
*spd
)
274 if (pipe
->buffers
<= PIPE_DEF_BUFFERS
)
277 spd
->pages
= kmalloc(pipe
->buffers
* sizeof(struct page
*), GFP_KERNEL
);
278 spd
->partial
= kmalloc(pipe
->buffers
* sizeof(struct partial_page
), GFP_KERNEL
);
280 if (spd
->pages
&& spd
->partial
)
288 void splice_shrink_spd(struct pipe_inode_info
*pipe
,
289 struct splice_pipe_desc
*spd
)
291 if (pipe
->buffers
<= PIPE_DEF_BUFFERS
)
299 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
300 struct pipe_inode_info
*pipe
, size_t len
,
303 struct address_space
*mapping
= in
->f_mapping
;
304 unsigned int loff
, nr_pages
, req_pages
;
305 struct page
*pages
[PIPE_DEF_BUFFERS
];
306 struct partial_page partial
[PIPE_DEF_BUFFERS
];
308 pgoff_t index
, end_index
;
311 struct splice_pipe_desc spd
= {
315 .ops
= &page_cache_pipe_buf_ops
,
316 .spd_release
= spd_release_page
,
319 if (splice_grow_spd(pipe
, &spd
))
322 index
= *ppos
>> PAGE_CACHE_SHIFT
;
323 loff
= *ppos
& ~PAGE_CACHE_MASK
;
324 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
325 nr_pages
= min(req_pages
, pipe
->buffers
);
328 * Lookup the (hopefully) full range of pages we need.
330 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, spd
.pages
);
331 index
+= spd
.nr_pages
;
334 * If find_get_pages_contig() returned fewer pages than we needed,
335 * readahead/allocate the rest and fill in the holes.
337 if (spd
.nr_pages
< nr_pages
)
338 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
339 index
, req_pages
- spd
.nr_pages
);
342 while (spd
.nr_pages
< nr_pages
) {
344 * Page could be there, find_get_pages_contig() breaks on
347 page
= find_get_page(mapping
, index
);
350 * page didn't exist, allocate one.
352 page
= page_cache_alloc_cold(mapping
);
356 error
= add_to_page_cache_lru(page
, mapping
, index
,
358 if (unlikely(error
)) {
359 page_cache_release(page
);
360 if (error
== -EEXIST
)
365 * add_to_page_cache() locks the page, unlock it
366 * to avoid convoluting the logic below even more.
371 spd
.pages
[spd
.nr_pages
++] = page
;
376 * Now loop over the map and see if we need to start IO on any
377 * pages, fill in the partial map, etc.
379 index
= *ppos
>> PAGE_CACHE_SHIFT
;
380 nr_pages
= spd
.nr_pages
;
382 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
383 unsigned int this_len
;
389 * this_len is the max we'll use from this page
391 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
392 page
= spd
.pages
[page_nr
];
394 if (PageReadahead(page
))
395 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
396 page
, index
, req_pages
- page_nr
);
399 * If the page isn't uptodate, we may need to start io on it
401 if (!PageUptodate(page
)) {
405 * Page was truncated, or invalidated by the
406 * filesystem. Redo the find/create, but this time the
407 * page is kept locked, so there's no chance of another
408 * race with truncate/invalidate.
410 if (!page
->mapping
) {
412 page
= find_or_create_page(mapping
, index
,
413 mapping_gfp_mask(mapping
));
419 page_cache_release(spd
.pages
[page_nr
]);
420 spd
.pages
[page_nr
] = page
;
423 * page was already under io and is now done, great
425 if (PageUptodate(page
)) {
431 * need to read in the page
433 error
= mapping
->a_ops
->readpage(in
, page
);
434 if (unlikely(error
)) {
436 * We really should re-lookup the page here,
437 * but it complicates things a lot. Instead
438 * lets just do what we already stored, and
439 * we'll get it the next time we are called.
441 if (error
== AOP_TRUNCATED_PAGE
)
449 * i_size must be checked after PageUptodate.
451 isize
= i_size_read(mapping
->host
);
452 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
453 if (unlikely(!isize
|| index
> end_index
))
457 * if this is the last page, see if we need to shrink
458 * the length and stop
460 if (end_index
== index
) {
464 * max good bytes in this page
466 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
471 * force quit after adding this page
473 this_len
= min(this_len
, plen
- loff
);
477 spd
.partial
[page_nr
].offset
= loff
;
478 spd
.partial
[page_nr
].len
= this_len
;
486 * Release any pages at the end, if we quit early. 'page_nr' is how far
487 * we got, 'nr_pages' is how many pages are in the map.
489 while (page_nr
< nr_pages
)
490 page_cache_release(spd
.pages
[page_nr
++]);
491 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
494 error
= splice_to_pipe(pipe
, &spd
);
496 splice_shrink_spd(pipe
, &spd
);
501 * generic_file_splice_read - splice data from file to a pipe
502 * @in: file to splice from
503 * @ppos: position in @in
504 * @pipe: pipe to splice to
505 * @len: number of bytes to splice
506 * @flags: splice modifier flags
509 * Will read pages from given file and fill them into a pipe. Can be
510 * used as long as the address_space operations for the source implements
514 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
515 struct pipe_inode_info
*pipe
, size_t len
,
521 isize
= i_size_read(in
->f_mapping
->host
);
522 if (unlikely(*ppos
>= isize
))
525 left
= isize
- *ppos
;
526 if (unlikely(left
< len
))
529 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
537 EXPORT_SYMBOL(generic_file_splice_read
);
539 static const struct pipe_buf_operations default_pipe_buf_ops
= {
541 .map
= generic_pipe_buf_map
,
542 .unmap
= generic_pipe_buf_unmap
,
543 .confirm
= generic_pipe_buf_confirm
,
544 .release
= generic_pipe_buf_release
,
545 .steal
= generic_pipe_buf_steal
,
546 .get
= generic_pipe_buf_get
,
549 static ssize_t
kernel_readv(struct file
*file
, const struct iovec
*vec
,
550 unsigned long vlen
, loff_t offset
)
558 /* The cast to a user pointer is valid due to the set_fs() */
559 res
= vfs_readv(file
, (const struct iovec __user
*)vec
, vlen
, &pos
);
565 static ssize_t
kernel_write(struct file
*file
, const char *buf
, size_t count
,
573 /* The cast to a user pointer is valid due to the set_fs() */
574 res
= vfs_write(file
, (const char __user
*)buf
, count
, &pos
);
580 ssize_t
default_file_splice_read(struct file
*in
, loff_t
*ppos
,
581 struct pipe_inode_info
*pipe
, size_t len
,
584 unsigned int nr_pages
;
585 unsigned int nr_freed
;
587 struct page
*pages
[PIPE_DEF_BUFFERS
];
588 struct partial_page partial
[PIPE_DEF_BUFFERS
];
589 struct iovec
*vec
, __vec
[PIPE_DEF_BUFFERS
];
594 struct splice_pipe_desc spd
= {
598 .ops
= &default_pipe_buf_ops
,
599 .spd_release
= spd_release_page
,
602 if (splice_grow_spd(pipe
, &spd
))
607 if (pipe
->buffers
> PIPE_DEF_BUFFERS
) {
608 vec
= kmalloc(pipe
->buffers
* sizeof(struct iovec
), GFP_KERNEL
);
613 offset
= *ppos
& ~PAGE_CACHE_MASK
;
614 nr_pages
= (len
+ offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
616 for (i
= 0; i
< nr_pages
&& i
< pipe
->buffers
&& len
; i
++) {
619 page
= alloc_page(GFP_USER
);
624 this_len
= min_t(size_t, len
, PAGE_CACHE_SIZE
- offset
);
625 vec
[i
].iov_base
= (void __user
*) page_address(page
);
626 vec
[i
].iov_len
= this_len
;
633 res
= kernel_readv(in
, vec
, spd
.nr_pages
, *ppos
);
644 for (i
= 0; i
< spd
.nr_pages
; i
++) {
645 this_len
= min_t(size_t, vec
[i
].iov_len
, res
);
646 spd
.partial
[i
].offset
= 0;
647 spd
.partial
[i
].len
= this_len
;
649 __free_page(spd
.pages
[i
]);
655 spd
.nr_pages
-= nr_freed
;
657 res
= splice_to_pipe(pipe
, &spd
);
664 splice_shrink_spd(pipe
, &spd
);
668 for (i
= 0; i
< spd
.nr_pages
; i
++)
669 __free_page(spd
.pages
[i
]);
674 EXPORT_SYMBOL(default_file_splice_read
);
677 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
678 * using sendpage(). Return the number of bytes sent.
680 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
681 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
683 struct file
*file
= sd
->u
.file
;
684 loff_t pos
= sd
->pos
;
687 ret
= buf
->ops
->confirm(pipe
, buf
);
689 more
= (sd
->flags
& SPLICE_F_MORE
) || sd
->len
< sd
->total_len
;
690 if (file
->f_op
&& file
->f_op
->sendpage
)
691 ret
= file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
692 sd
->len
, &pos
, more
);
701 * This is a little more tricky than the file -> pipe splicing. There are
702 * basically three cases:
704 * - Destination page already exists in the address space and there
705 * are users of it. For that case we have no other option that
706 * copying the data. Tough luck.
707 * - Destination page already exists in the address space, but there
708 * are no users of it. Make sure it's uptodate, then drop it. Fall
709 * through to last case.
710 * - Destination page does not exist, we can add the pipe page to
711 * the page cache and avoid the copy.
713 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
714 * sd->flags), we attempt to migrate pages from the pipe to the output
715 * file address space page cache. This is possible if no one else has
716 * the pipe page referenced outside of the pipe and page cache. If
717 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
718 * a new page in the output file page cache and fill/dirty that.
720 int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
721 struct splice_desc
*sd
)
723 struct file
*file
= sd
->u
.file
;
724 struct address_space
*mapping
= file
->f_mapping
;
725 unsigned int offset
, this_len
;
731 * make sure the data in this buffer is uptodate
733 ret
= buf
->ops
->confirm(pipe
, buf
);
737 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
740 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
741 this_len
= PAGE_CACHE_SIZE
- offset
;
743 ret
= pagecache_write_begin(file
, mapping
, sd
->pos
, this_len
,
744 AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
748 if (buf
->page
!= page
) {
750 * Careful, ->map() uses KM_USER0!
752 char *src
= buf
->ops
->map(pipe
, buf
, 1);
753 char *dst
= kmap_atomic(page
, KM_USER1
);
755 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
756 flush_dcache_page(page
);
757 kunmap_atomic(dst
, KM_USER1
);
758 buf
->ops
->unmap(pipe
, buf
, src
);
760 ret
= pagecache_write_end(file
, mapping
, sd
->pos
, this_len
, this_len
,
765 EXPORT_SYMBOL(pipe_to_file
);
767 static void wakeup_pipe_writers(struct pipe_inode_info
*pipe
)
770 if (waitqueue_active(&pipe
->wait
))
771 wake_up_interruptible(&pipe
->wait
);
772 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
776 * splice_from_pipe_feed - feed available data from a pipe to a file
777 * @pipe: pipe to splice from
778 * @sd: information to @actor
779 * @actor: handler that splices the data
782 * This function loops over the pipe and calls @actor to do the
783 * actual moving of a single struct pipe_buffer to the desired
784 * destination. It returns when there's no more buffers left in
785 * the pipe or if the requested number of bytes (@sd->total_len)
786 * have been copied. It returns a positive number (one) if the
787 * pipe needs to be filled with more data, zero if the required
788 * number of bytes have been copied and -errno on error.
790 * This, together with splice_from_pipe_{begin,end,next}, may be
791 * used to implement the functionality of __splice_from_pipe() when
792 * locking is required around copying the pipe buffers to the
795 int splice_from_pipe_feed(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
800 while (pipe
->nrbufs
) {
801 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
802 const struct pipe_buf_operations
*ops
= buf
->ops
;
805 if (sd
->len
> sd
->total_len
)
806 sd
->len
= sd
->total_len
;
808 ret
= actor(pipe
, buf
, sd
);
817 sd
->num_spliced
+= ret
;
820 sd
->total_len
-= ret
;
824 ops
->release(pipe
, buf
);
825 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (pipe
->buffers
- 1);
828 sd
->need_wakeup
= true;
837 EXPORT_SYMBOL(splice_from_pipe_feed
);
840 * splice_from_pipe_next - wait for some data to splice from
841 * @pipe: pipe to splice from
842 * @sd: information about the splice operation
845 * This function will wait for some data and return a positive
846 * value (one) if pipe buffers are available. It will return zero
847 * or -errno if no more data needs to be spliced.
849 int splice_from_pipe_next(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
851 while (!pipe
->nrbufs
) {
855 if (!pipe
->waiting_writers
&& sd
->num_spliced
)
858 if (sd
->flags
& SPLICE_F_NONBLOCK
)
861 if (signal_pending(current
))
864 if (sd
->need_wakeup
) {
865 wakeup_pipe_writers(pipe
);
866 sd
->need_wakeup
= false;
874 EXPORT_SYMBOL(splice_from_pipe_next
);
877 * splice_from_pipe_begin - start splicing from pipe
878 * @sd: information about the splice operation
881 * This function should be called before a loop containing
882 * splice_from_pipe_next() and splice_from_pipe_feed() to
883 * initialize the necessary fields of @sd.
885 void splice_from_pipe_begin(struct splice_desc
*sd
)
888 sd
->need_wakeup
= false;
890 EXPORT_SYMBOL(splice_from_pipe_begin
);
893 * splice_from_pipe_end - finish splicing from pipe
894 * @pipe: pipe to splice from
895 * @sd: information about the splice operation
898 * This function will wake up pipe writers if necessary. It should
899 * be called after a loop containing splice_from_pipe_next() and
900 * splice_from_pipe_feed().
902 void splice_from_pipe_end(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
905 wakeup_pipe_writers(pipe
);
907 EXPORT_SYMBOL(splice_from_pipe_end
);
910 * __splice_from_pipe - splice data from a pipe to given actor
911 * @pipe: pipe to splice from
912 * @sd: information to @actor
913 * @actor: handler that splices the data
916 * This function does little more than loop over the pipe and call
917 * @actor to do the actual moving of a single struct pipe_buffer to
918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
922 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
927 splice_from_pipe_begin(sd
);
929 ret
= splice_from_pipe_next(pipe
, sd
);
931 ret
= splice_from_pipe_feed(pipe
, sd
, actor
);
933 splice_from_pipe_end(pipe
, sd
);
935 return sd
->num_spliced
? sd
->num_spliced
: ret
;
937 EXPORT_SYMBOL(__splice_from_pipe
);
940 * splice_from_pipe - splice data from a pipe to a file
941 * @pipe: pipe to splice from
942 * @out: file to splice to
943 * @ppos: position in @out
944 * @len: how many bytes to splice
945 * @flags: splice modifier flags
946 * @actor: handler that splices the data
949 * See __splice_from_pipe. This function locks the pipe inode,
950 * otherwise it's identical to __splice_from_pipe().
953 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
954 loff_t
*ppos
, size_t len
, unsigned int flags
,
958 struct splice_desc sd
= {
966 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
973 * generic_file_splice_write - splice data from a pipe to a file
975 * @out: file to write to
976 * @ppos: position in @out
977 * @len: number of bytes to splice
978 * @flags: splice modifier flags
981 * Will either move or copy pages (determined by @flags options) from
982 * the given pipe inode to the given file.
986 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
987 loff_t
*ppos
, size_t len
, unsigned int flags
)
989 struct address_space
*mapping
= out
->f_mapping
;
990 struct inode
*inode
= mapping
->host
;
991 struct splice_desc sd
= {
1001 splice_from_pipe_begin(&sd
);
1003 ret
= splice_from_pipe_next(pipe
, &sd
);
1007 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1008 ret
= file_remove_suid(out
);
1010 file_update_time(out
);
1011 ret
= splice_from_pipe_feed(pipe
, &sd
, pipe_to_file
);
1013 mutex_unlock(&inode
->i_mutex
);
1015 splice_from_pipe_end(pipe
, &sd
);
1020 ret
= sd
.num_spliced
;
1023 unsigned long nr_pages
;
1026 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1028 err
= generic_write_sync(out
, *ppos
, ret
);
1033 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
1039 EXPORT_SYMBOL(generic_file_splice_write
);
1041 static int write_pipe_buf(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1042 struct splice_desc
*sd
)
1047 ret
= buf
->ops
->confirm(pipe
, buf
);
1051 data
= buf
->ops
->map(pipe
, buf
, 0);
1052 ret
= kernel_write(sd
->u
.file
, data
+ buf
->offset
, sd
->len
, sd
->pos
);
1053 buf
->ops
->unmap(pipe
, buf
, data
);
1058 static ssize_t
default_file_splice_write(struct pipe_inode_info
*pipe
,
1059 struct file
*out
, loff_t
*ppos
,
1060 size_t len
, unsigned int flags
)
1064 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, write_pipe_buf
);
1072 * generic_splice_sendpage - splice data from a pipe to a socket
1073 * @pipe: pipe to splice from
1074 * @out: socket to write to
1075 * @ppos: position in @out
1076 * @len: number of bytes to splice
1077 * @flags: splice modifier flags
1080 * Will send @len bytes from the pipe to a network socket. No data copying
1084 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
1085 loff_t
*ppos
, size_t len
, unsigned int flags
)
1087 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
1090 EXPORT_SYMBOL(generic_splice_sendpage
);
1093 * Attempt to initiate a splice from pipe to file.
1095 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
1096 loff_t
*ppos
, size_t len
, unsigned int flags
)
1098 ssize_t (*splice_write
)(struct pipe_inode_info
*, struct file
*,
1099 loff_t
*, size_t, unsigned int);
1102 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1105 if (unlikely(out
->f_flags
& O_APPEND
))
1108 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
1109 if (unlikely(ret
< 0))
1112 if (out
->f_op
&& out
->f_op
->splice_write
)
1113 splice_write
= out
->f_op
->splice_write
;
1115 splice_write
= default_file_splice_write
;
1117 return splice_write(pipe
, out
, ppos
, len
, flags
);
1121 * Attempt to initiate a splice from a file to a pipe.
1123 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
1124 struct pipe_inode_info
*pipe
, size_t len
,
1127 ssize_t (*splice_read
)(struct file
*, loff_t
*,
1128 struct pipe_inode_info
*, size_t, unsigned int);
1131 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
1134 ret
= rw_verify_area(READ
, in
, ppos
, len
);
1135 if (unlikely(ret
< 0))
1138 if (in
->f_op
&& in
->f_op
->splice_read
)
1139 splice_read
= in
->f_op
->splice_read
;
1141 splice_read
= default_file_splice_read
;
1143 return splice_read(in
, ppos
, pipe
, len
, flags
);
1147 * splice_direct_to_actor - splices data directly between two non-pipes
1148 * @in: file to splice from
1149 * @sd: actor information on where to splice to
1150 * @actor: handles the data splicing
1153 * This is a special case helper to splice directly between two
1154 * points, without requiring an explicit pipe. Internally an allocated
1155 * pipe is cached in the process, and reused during the lifetime of
1159 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
1160 splice_direct_actor
*actor
)
1162 struct pipe_inode_info
*pipe
;
1169 * We require the input being a regular file, as we don't want to
1170 * randomly drop data for eg socket -> socket splicing. Use the
1171 * piped splicing for that!
1173 i_mode
= in
->f_path
.dentry
->d_inode
->i_mode
;
1174 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
1178 * neither in nor out is a pipe, setup an internal pipe attached to
1179 * 'out' and transfer the wanted data from 'in' to 'out' through that
1181 pipe
= current
->splice_pipe
;
1182 if (unlikely(!pipe
)) {
1183 pipe
= alloc_pipe_info(NULL
);
1188 * We don't have an immediate reader, but we'll read the stuff
1189 * out of the pipe right after the splice_to_pipe(). So set
1190 * PIPE_READERS appropriately.
1194 current
->splice_pipe
= pipe
;
1202 len
= sd
->total_len
;
1206 * Don't block on output, we have to drain the direct pipe.
1208 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
1212 loff_t pos
= sd
->pos
, prev_pos
= pos
;
1214 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
1215 if (unlikely(ret
<= 0))
1219 sd
->total_len
= read_len
;
1222 * NOTE: nonblocking mode only applies to the input. We
1223 * must not do the output in nonblocking mode as then we
1224 * could get stuck data in the internal pipe:
1226 ret
= actor(pipe
, sd
);
1227 if (unlikely(ret
<= 0)) {
1236 if (ret
< read_len
) {
1237 sd
->pos
= prev_pos
+ ret
;
1243 pipe
->nrbufs
= pipe
->curbuf
= 0;
1249 * If we did an incomplete transfer we must release
1250 * the pipe buffers in question:
1252 for (i
= 0; i
< pipe
->buffers
; i
++) {
1253 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1256 buf
->ops
->release(pipe
, buf
);
1266 EXPORT_SYMBOL(splice_direct_to_actor
);
1268 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1269 struct splice_desc
*sd
)
1271 struct file
*file
= sd
->u
.file
;
1273 return do_splice_from(pipe
, file
, &file
->f_pos
, sd
->total_len
,
1278 * do_splice_direct - splices data directly between two files
1279 * @in: file to splice from
1280 * @ppos: input file offset
1281 * @out: file to splice to
1282 * @len: number of bytes to splice
1283 * @flags: splice modifier flags
1286 * For use by do_sendfile(). splice can easily emulate sendfile, but
1287 * doing it in the application would incur an extra system call
1288 * (splice in + splice out, as compared to just sendfile()). So this helper
1289 * can splice directly through a process-private pipe.
1292 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1293 size_t len
, unsigned int flags
)
1295 struct splice_desc sd
= {
1304 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1311 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1312 struct pipe_inode_info
*opipe
,
1313 size_t len
, unsigned int flags
);
1316 * Determine where to splice to/from.
1318 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1319 struct file
*out
, loff_t __user
*off_out
,
1320 size_t len
, unsigned int flags
)
1322 struct pipe_inode_info
*ipipe
;
1323 struct pipe_inode_info
*opipe
;
1324 loff_t offset
, *off
;
1327 ipipe
= get_pipe_info(in
);
1328 opipe
= get_pipe_info(out
);
1330 if (ipipe
&& opipe
) {
1331 if (off_in
|| off_out
)
1334 if (!(in
->f_mode
& FMODE_READ
))
1337 if (!(out
->f_mode
& FMODE_WRITE
))
1340 /* Splicing to self would be fun, but... */
1344 return splice_pipe_to_pipe(ipipe
, opipe
, len
, flags
);
1351 if (!(out
->f_mode
& FMODE_PWRITE
))
1353 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1359 ret
= do_splice_from(ipipe
, out
, off
, len
, flags
);
1361 if (off_out
&& copy_to_user(off_out
, off
, sizeof(loff_t
)))
1371 if (!(in
->f_mode
& FMODE_PREAD
))
1373 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1379 ret
= do_splice_to(in
, off
, opipe
, len
, flags
);
1381 if (off_in
&& copy_to_user(off_in
, off
, sizeof(loff_t
)))
1391 * Map an iov into an array of pages and offset/length tupples. With the
1392 * partial_page structure, we can map several non-contiguous ranges into
1393 * our ones pages[] map instead of splitting that operation into pieces.
1394 * Could easily be exported as a generic helper for other users, in which
1395 * case one would probably want to add a 'max_nr_pages' parameter as well.
1397 static int get_iovec_page_array(const struct iovec __user
*iov
,
1398 unsigned int nr_vecs
, struct page
**pages
,
1399 struct partial_page
*partial
, int aligned
,
1400 unsigned int pipe_buffers
)
1402 int buffers
= 0, error
= 0;
1405 unsigned long off
, npages
;
1412 if (copy_from_user(&entry
, iov
, sizeof(entry
)))
1415 base
= entry
.iov_base
;
1416 len
= entry
.iov_len
;
1419 * Sanity check this iovec. 0 read succeeds.
1425 if (!access_ok(VERIFY_READ
, base
, len
))
1429 * Get this base offset and number of pages, then map
1430 * in the user pages.
1432 off
= (unsigned long) base
& ~PAGE_MASK
;
1435 * If asked for alignment, the offset must be zero and the
1436 * length a multiple of the PAGE_SIZE.
1439 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1442 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1443 if (npages
> pipe_buffers
- buffers
)
1444 npages
= pipe_buffers
- buffers
;
1446 error
= get_user_pages_fast((unsigned long)base
, npages
,
1447 0, &pages
[buffers
]);
1449 if (unlikely(error
<= 0))
1453 * Fill this contiguous range into the partial page map.
1455 for (i
= 0; i
< error
; i
++) {
1456 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1458 partial
[buffers
].offset
= off
;
1459 partial
[buffers
].len
= plen
;
1467 * We didn't complete this iov, stop here since it probably
1468 * means we have to move some of this into a pipe to
1469 * be able to continue.
1475 * Don't continue if we mapped fewer pages than we asked for,
1476 * or if we mapped the max number of pages that we have
1479 if (error
< npages
|| buffers
== pipe_buffers
)
1492 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1493 struct splice_desc
*sd
)
1498 ret
= buf
->ops
->confirm(pipe
, buf
);
1503 * See if we can use the atomic maps, by prefaulting in the
1504 * pages and doing an atomic copy
1506 if (!fault_in_pages_writeable(sd
->u
.userptr
, sd
->len
)) {
1507 src
= buf
->ops
->map(pipe
, buf
, 1);
1508 ret
= __copy_to_user_inatomic(sd
->u
.userptr
, src
+ buf
->offset
,
1510 buf
->ops
->unmap(pipe
, buf
, src
);
1518 * No dice, use slow non-atomic map and copy
1520 src
= buf
->ops
->map(pipe
, buf
, 0);
1523 if (copy_to_user(sd
->u
.userptr
, src
+ buf
->offset
, sd
->len
))
1526 buf
->ops
->unmap(pipe
, buf
, src
);
1529 sd
->u
.userptr
+= ret
;
1534 * For lack of a better implementation, implement vmsplice() to userspace
1535 * as a simple copy of the pipes pages to the user iov.
1537 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*iov
,
1538 unsigned long nr_segs
, unsigned int flags
)
1540 struct pipe_inode_info
*pipe
;
1541 struct splice_desc sd
;
1546 pipe
= get_pipe_info(file
);
1558 * Get user address base and length for this iovec.
1560 error
= get_user(base
, &iov
->iov_base
);
1561 if (unlikely(error
))
1563 error
= get_user(len
, &iov
->iov_len
);
1564 if (unlikely(error
))
1568 * Sanity check this iovec. 0 read succeeds.
1572 if (unlikely(!base
)) {
1577 if (unlikely(!access_ok(VERIFY_WRITE
, base
, len
))) {
1585 sd
.u
.userptr
= base
;
1588 size
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1614 * vmsplice splices a user address range into a pipe. It can be thought of
1615 * as splice-from-memory, where the regular splice is splice-from-file (or
1616 * to file). In both cases the output is a pipe, naturally.
1618 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1619 unsigned long nr_segs
, unsigned int flags
)
1621 struct pipe_inode_info
*pipe
;
1622 struct page
*pages
[PIPE_DEF_BUFFERS
];
1623 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1624 struct splice_pipe_desc spd
= {
1628 .ops
= &user_page_pipe_buf_ops
,
1629 .spd_release
= spd_release_page
,
1633 pipe
= get_pipe_info(file
);
1637 if (splice_grow_spd(pipe
, &spd
))
1640 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, spd
.pages
,
1641 spd
.partial
, flags
& SPLICE_F_GIFT
,
1643 if (spd
.nr_pages
<= 0)
1646 ret
= splice_to_pipe(pipe
, &spd
);
1648 splice_shrink_spd(pipe
, &spd
);
1653 * Note that vmsplice only really supports true splicing _from_ user memory
1654 * to a pipe, not the other way around. Splicing from user memory is a simple
1655 * operation that can be supported without any funky alignment restrictions
1656 * or nasty vm tricks. We simply map in the user memory and fill them into
1657 * a pipe. The reverse isn't quite as easy, though. There are two possible
1658 * solutions for that:
1660 * - memcpy() the data internally, at which point we might as well just
1661 * do a regular read() on the buffer anyway.
1662 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1663 * has restriction limitations on both ends of the pipe).
1665 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1668 SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct iovec __user
*, iov
,
1669 unsigned long, nr_segs
, unsigned int, flags
)
1675 if (unlikely(nr_segs
> UIO_MAXIOV
))
1677 else if (unlikely(!nr_segs
))
1681 file
= fget_light(fd
, &fput
);
1683 if (file
->f_mode
& FMODE_WRITE
)
1684 error
= vmsplice_to_pipe(file
, iov
, nr_segs
, flags
);
1685 else if (file
->f_mode
& FMODE_READ
)
1686 error
= vmsplice_to_user(file
, iov
, nr_segs
, flags
);
1688 fput_light(file
, fput
);
1694 SYSCALL_DEFINE6(splice
, int, fd_in
, loff_t __user
*, off_in
,
1695 int, fd_out
, loff_t __user
*, off_out
,
1696 size_t, len
, unsigned int, flags
)
1699 struct file
*in
, *out
;
1700 int fput_in
, fput_out
;
1706 in
= fget_light(fd_in
, &fput_in
);
1708 if (in
->f_mode
& FMODE_READ
) {
1709 out
= fget_light(fd_out
, &fput_out
);
1711 if (out
->f_mode
& FMODE_WRITE
)
1712 error
= do_splice(in
, off_in
,
1715 fput_light(out
, fput_out
);
1719 fput_light(in
, fput_in
);
1726 * Make sure there's data to read. Wait for input if we can, otherwise
1727 * return an appropriate error.
1729 static int ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1734 * Check ->nrbufs without the inode lock first. This function
1735 * is speculative anyways, so missing one is ok.
1743 while (!pipe
->nrbufs
) {
1744 if (signal_pending(current
)) {
1750 if (!pipe
->waiting_writers
) {
1751 if (flags
& SPLICE_F_NONBLOCK
) {
1764 * Make sure there's writeable room. Wait for room if we can, otherwise
1765 * return an appropriate error.
1767 static int opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1772 * Check ->nrbufs without the inode lock first. This function
1773 * is speculative anyways, so missing one is ok.
1775 if (pipe
->nrbufs
< pipe
->buffers
)
1781 while (pipe
->nrbufs
>= pipe
->buffers
) {
1782 if (!pipe
->readers
) {
1783 send_sig(SIGPIPE
, current
, 0);
1787 if (flags
& SPLICE_F_NONBLOCK
) {
1791 if (signal_pending(current
)) {
1795 pipe
->waiting_writers
++;
1797 pipe
->waiting_writers
--;
1805 * Splice contents of ipipe to opipe.
1807 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1808 struct pipe_inode_info
*opipe
,
1809 size_t len
, unsigned int flags
)
1811 struct pipe_buffer
*ibuf
, *obuf
;
1813 bool input_wakeup
= false;
1817 ret
= ipipe_prep(ipipe
, flags
);
1821 ret
= opipe_prep(opipe
, flags
);
1826 * Potential ABBA deadlock, work around it by ordering lock
1827 * grabbing by pipe info address. Otherwise two different processes
1828 * could deadlock (one doing tee from A -> B, the other from B -> A).
1830 pipe_double_lock(ipipe
, opipe
);
1833 if (!opipe
->readers
) {
1834 send_sig(SIGPIPE
, current
, 0);
1840 if (!ipipe
->nrbufs
&& !ipipe
->writers
)
1844 * Cannot make any progress, because either the input
1845 * pipe is empty or the output pipe is full.
1847 if (!ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
) {
1848 /* Already processed some buffers, break */
1852 if (flags
& SPLICE_F_NONBLOCK
) {
1858 * We raced with another reader/writer and haven't
1859 * managed to process any buffers. A zero return
1860 * value means EOF, so retry instead.
1867 ibuf
= ipipe
->bufs
+ ipipe
->curbuf
;
1868 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1869 obuf
= opipe
->bufs
+ nbuf
;
1871 if (len
>= ibuf
->len
) {
1873 * Simply move the whole buffer from ipipe to opipe
1878 ipipe
->curbuf
= (ipipe
->curbuf
+ 1) & (ipipe
->buffers
- 1);
1880 input_wakeup
= true;
1883 * Get a reference to this pipe buffer,
1884 * so we can copy the contents over.
1886 ibuf
->ops
->get(ipipe
, ibuf
);
1890 * Don't inherit the gift flag, we need to
1891 * prevent multiple steals of this page.
1893 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1897 ibuf
->offset
+= obuf
->len
;
1898 ibuf
->len
-= obuf
->len
;
1908 * If we put data in the output pipe, wakeup any potential readers.
1912 if (waitqueue_active(&opipe
->wait
))
1913 wake_up_interruptible(&opipe
->wait
);
1914 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
1917 wakeup_pipe_writers(ipipe
);
1923 * Link contents of ipipe to opipe.
1925 static int link_pipe(struct pipe_inode_info
*ipipe
,
1926 struct pipe_inode_info
*opipe
,
1927 size_t len
, unsigned int flags
)
1929 struct pipe_buffer
*ibuf
, *obuf
;
1930 int ret
= 0, i
= 0, nbuf
;
1933 * Potential ABBA deadlock, work around it by ordering lock
1934 * grabbing by pipe info address. Otherwise two different processes
1935 * could deadlock (one doing tee from A -> B, the other from B -> A).
1937 pipe_double_lock(ipipe
, opipe
);
1940 if (!opipe
->readers
) {
1941 send_sig(SIGPIPE
, current
, 0);
1948 * If we have iterated all input buffers or ran out of
1949 * output room, break.
1951 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
)
1954 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (ipipe
->buffers
-1));
1955 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1958 * Get a reference to this pipe buffer,
1959 * so we can copy the contents over.
1961 ibuf
->ops
->get(ipipe
, ibuf
);
1963 obuf
= opipe
->bufs
+ nbuf
;
1967 * Don't inherit the gift flag, we need to
1968 * prevent multiple steals of this page.
1970 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1972 if (obuf
->len
> len
)
1982 * return EAGAIN if we have the potential of some data in the
1983 * future, otherwise just return 0
1985 if (!ret
&& ipipe
->waiting_writers
&& (flags
& SPLICE_F_NONBLOCK
))
1992 * If we put data in the output pipe, wakeup any potential readers.
1996 if (waitqueue_active(&opipe
->wait
))
1997 wake_up_interruptible(&opipe
->wait
);
1998 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
2005 * This is a tee(1) implementation that works on pipes. It doesn't copy
2006 * any data, it simply references the 'in' pages on the 'out' pipe.
2007 * The 'flags' used are the SPLICE_F_* variants, currently the only
2008 * applicable one is SPLICE_F_NONBLOCK.
2010 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
2013 struct pipe_inode_info
*ipipe
= get_pipe_info(in
);
2014 struct pipe_inode_info
*opipe
= get_pipe_info(out
);
2018 * Duplicate the contents of ipipe to opipe without actually
2021 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
2023 * Keep going, unless we encounter an error. The ipipe/opipe
2024 * ordering doesn't really matter.
2026 ret
= ipipe_prep(ipipe
, flags
);
2028 ret
= opipe_prep(opipe
, flags
);
2030 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
2037 SYSCALL_DEFINE4(tee
, int, fdin
, int, fdout
, size_t, len
, unsigned int, flags
)
2046 in
= fget_light(fdin
, &fput_in
);
2048 if (in
->f_mode
& FMODE_READ
) {
2050 struct file
*out
= fget_light(fdout
, &fput_out
);
2053 if (out
->f_mode
& FMODE_WRITE
)
2054 error
= do_tee(in
, out
, len
, flags
);
2055 fput_light(out
, fput_out
);
2058 fput_light(in
, fput_in
);