1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
40 #include "blockcheck.h"
42 #include "extent_map.h"
45 #include "localalloc.h"
52 #include "refcounttree.h"
54 #include "buffer_head_io.h"
56 enum ocfs2_contig_type
{
63 static enum ocfs2_contig_type
64 ocfs2_extent_rec_contig(struct super_block
*sb
,
65 struct ocfs2_extent_rec
*ext
,
66 struct ocfs2_extent_rec
*insert_rec
);
68 * Operations for a specific extent tree type.
70 * To implement an on-disk btree (extent tree) type in ocfs2, add
71 * an ocfs2_extent_tree_operations structure and the matching
72 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
73 * for the allocation portion of the extent tree.
75 struct ocfs2_extent_tree_operations
{
77 * last_eb_blk is the block number of the right most leaf extent
78 * block. Most on-disk structures containing an extent tree store
79 * this value for fast access. The ->eo_set_last_eb_blk() and
80 * ->eo_get_last_eb_blk() operations access this value. They are
83 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
85 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
88 * The on-disk structure usually keeps track of how many total
89 * clusters are stored in this extent tree. This function updates
90 * that value. new_clusters is the delta, and must be
91 * added to the total. Required.
93 void (*eo_update_clusters
)(struct ocfs2_extent_tree
*et
,
97 * If this extent tree is supported by an extent map, insert
98 * a record into the map.
100 void (*eo_extent_map_insert
)(struct ocfs2_extent_tree
*et
,
101 struct ocfs2_extent_rec
*rec
);
104 * If this extent tree is supported by an extent map, truncate the
107 void (*eo_extent_map_truncate
)(struct ocfs2_extent_tree
*et
,
111 * If ->eo_insert_check() exists, it is called before rec is
112 * inserted into the extent tree. It is optional.
114 int (*eo_insert_check
)(struct ocfs2_extent_tree
*et
,
115 struct ocfs2_extent_rec
*rec
);
116 int (*eo_sanity_check
)(struct ocfs2_extent_tree
*et
);
119 * --------------------------------------------------------------
120 * The remaining are internal to ocfs2_extent_tree and don't have
125 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
131 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 * it exists. If it does not, et->et_max_leaf_clusters is set
133 * to 0 (unlimited). Optional.
135 void (*eo_fill_max_leaf_clusters
)(struct ocfs2_extent_tree
*et
);
138 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 * are contiguous or not. Optional. Don't need to set it if use
140 * ocfs2_extent_rec as the tree leaf.
142 enum ocfs2_contig_type
143 (*eo_extent_contig
)(struct ocfs2_extent_tree
*et
,
144 struct ocfs2_extent_rec
*ext
,
145 struct ocfs2_extent_rec
*insert_rec
);
150 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
159 struct ocfs2_extent_rec
*rec
);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
163 struct ocfs2_extent_rec
*rec
);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
167 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
168 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
169 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
170 .eo_extent_map_insert
= ocfs2_dinode_extent_map_insert
,
171 .eo_extent_map_truncate
= ocfs2_dinode_extent_map_truncate
,
172 .eo_insert_check
= ocfs2_dinode_insert_check
,
173 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
174 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
180 struct ocfs2_dinode
*di
= et
->et_object
;
182 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
183 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
186 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
188 struct ocfs2_dinode
*di
= et
->et_object
;
190 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
191 return le64_to_cpu(di
->i_last_eb_blk
);
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
197 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
198 struct ocfs2_dinode
*di
= et
->et_object
;
200 le32_add_cpu(&di
->i_clusters
, clusters
);
201 spin_lock(&oi
->ip_lock
);
202 oi
->ip_clusters
= le32_to_cpu(di
->i_clusters
);
203 spin_unlock(&oi
->ip_lock
);
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
207 struct ocfs2_extent_rec
*rec
)
209 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
211 ocfs2_extent_map_insert_rec(inode
, rec
);
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
217 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
219 ocfs2_extent_map_trunc(inode
, clusters
);
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
223 struct ocfs2_extent_rec
*rec
)
225 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
226 struct ocfs2_super
*osb
= OCFS2_SB(oi
->vfs_inode
.i_sb
);
228 BUG_ON(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
229 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
230 (oi
->ip_clusters
!= le32_to_cpu(rec
->e_cpos
)),
231 "Device %s, asking for sparse allocation: inode %llu, "
232 "cpos %u, clusters %u\n",
234 (unsigned long long)oi
->ip_blkno
,
235 rec
->e_cpos
, oi
->ip_clusters
);
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
)
242 struct ocfs2_dinode
*di
= et
->et_object
;
244 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
245 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
252 struct ocfs2_dinode
*di
= et
->et_object
;
254 et
->et_root_el
= &di
->id2
.i_list
;
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
260 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
262 et
->et_root_el
= &vb
->vb_xv
->xr_list
;
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
268 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
270 vb
->vb_xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
273 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
275 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
277 return le64_to_cpu(vb
->vb_xv
->xr_last_eb_blk
);
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree
*et
,
283 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
285 le32_add_cpu(&vb
->vb_xv
->xr_clusters
, clusters
);
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
289 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
290 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
291 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
292 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
297 struct ocfs2_xattr_block
*xb
= et
->et_object
;
299 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree
*et
)
304 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
305 et
->et_max_leaf_clusters
=
306 ocfs2_clusters_for_bytes(sb
, OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
312 struct ocfs2_xattr_block
*xb
= et
->et_object
;
313 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
315 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
318 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
320 struct ocfs2_xattr_block
*xb
= et
->et_object
;
321 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
323 return le64_to_cpu(xt
->xt_last_eb_blk
);
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree
*et
,
329 struct ocfs2_xattr_block
*xb
= et
->et_object
;
331 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
335 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
336 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
337 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
338 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
339 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
345 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
347 dx_root
->dr_last_eb_blk
= cpu_to_le64(blkno
);
350 static u64
ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
352 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
354 return le64_to_cpu(dx_root
->dr_last_eb_blk
);
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree
*et
,
360 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
362 le32_add_cpu(&dx_root
->dr_clusters
, clusters
);
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree
*et
)
367 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
369 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root
));
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree
*et
)
376 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
378 et
->et_root_el
= &dx_root
->dr_list
;
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops
= {
382 .eo_set_last_eb_blk
= ocfs2_dx_root_set_last_eb_blk
,
383 .eo_get_last_eb_blk
= ocfs2_dx_root_get_last_eb_blk
,
384 .eo_update_clusters
= ocfs2_dx_root_update_clusters
,
385 .eo_sanity_check
= ocfs2_dx_root_sanity_check
,
386 .eo_fill_root_el
= ocfs2_dx_root_fill_root_el
,
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
391 struct ocfs2_refcount_block
*rb
= et
->et_object
;
393 et
->et_root_el
= &rb
->rf_list
;
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
399 struct ocfs2_refcount_block
*rb
= et
->et_object
;
401 rb
->rf_last_eb_blk
= cpu_to_le64(blkno
);
404 static u64
ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
406 struct ocfs2_refcount_block
*rb
= et
->et_object
;
408 return le64_to_cpu(rb
->rf_last_eb_blk
);
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree
*et
,
414 struct ocfs2_refcount_block
*rb
= et
->et_object
;
416 le32_add_cpu(&rb
->rf_clusters
, clusters
);
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree
*et
,
421 struct ocfs2_extent_rec
*ext
,
422 struct ocfs2_extent_rec
*insert_rec
)
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops
= {
428 .eo_set_last_eb_blk
= ocfs2_refcount_tree_set_last_eb_blk
,
429 .eo_get_last_eb_blk
= ocfs2_refcount_tree_get_last_eb_blk
,
430 .eo_update_clusters
= ocfs2_refcount_tree_update_clusters
,
431 .eo_fill_root_el
= ocfs2_refcount_tree_fill_root_el
,
432 .eo_extent_contig
= ocfs2_refcount_tree_extent_contig
,
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
436 struct ocfs2_caching_info
*ci
,
437 struct buffer_head
*bh
,
438 ocfs2_journal_access_func access
,
440 struct ocfs2_extent_tree_operations
*ops
)
445 et
->et_root_journal_access
= access
;
447 obj
= (void *)bh
->b_data
;
450 et
->et_ops
->eo_fill_root_el(et
);
451 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
452 et
->et_max_leaf_clusters
= 0;
454 et
->et_ops
->eo_fill_max_leaf_clusters(et
);
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
458 struct ocfs2_caching_info
*ci
,
459 struct buffer_head
*bh
)
461 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_di
,
462 NULL
, &ocfs2_dinode_et_ops
);
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
466 struct ocfs2_caching_info
*ci
,
467 struct buffer_head
*bh
)
469 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_xb
,
470 NULL
, &ocfs2_xattr_tree_et_ops
);
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
474 struct ocfs2_caching_info
*ci
,
475 struct ocfs2_xattr_value_buf
*vb
)
477 __ocfs2_init_extent_tree(et
, ci
, vb
->vb_bh
, vb
->vb_access
, vb
,
478 &ocfs2_xattr_value_et_ops
);
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree
*et
,
482 struct ocfs2_caching_info
*ci
,
483 struct buffer_head
*bh
)
485 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_dr
,
486 NULL
, &ocfs2_dx_root_et_ops
);
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree
*et
,
490 struct ocfs2_caching_info
*ci
,
491 struct buffer_head
*bh
)
493 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_rb
,
494 NULL
, &ocfs2_refcount_tree_et_ops
);
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
500 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
503 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
505 return et
->et_ops
->eo_get_last_eb_blk(et
);
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree
*et
,
511 et
->et_ops
->eo_update_clusters(et
, clusters
);
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree
*et
,
515 struct ocfs2_extent_rec
*rec
)
517 if (et
->et_ops
->eo_extent_map_insert
)
518 et
->et_ops
->eo_extent_map_insert(et
, rec
);
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree
*et
,
524 if (et
->et_ops
->eo_extent_map_truncate
)
525 et
->et_ops
->eo_extent_map_truncate(et
, clusters
);
528 static inline int ocfs2_et_root_journal_access(handle_t
*handle
,
529 struct ocfs2_extent_tree
*et
,
532 return et
->et_root_journal_access(handle
, et
->et_ci
, et
->et_root_bh
,
536 static inline enum ocfs2_contig_type
537 ocfs2_et_extent_contig(struct ocfs2_extent_tree
*et
,
538 struct ocfs2_extent_rec
*rec
,
539 struct ocfs2_extent_rec
*insert_rec
)
541 if (et
->et_ops
->eo_extent_contig
)
542 return et
->et_ops
->eo_extent_contig(et
, rec
, insert_rec
);
544 return ocfs2_extent_rec_contig(
545 ocfs2_metadata_cache_get_super(et
->et_ci
),
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree
*et
,
550 struct ocfs2_extent_rec
*rec
)
554 if (et
->et_ops
->eo_insert_check
)
555 ret
= et
->et_ops
->eo_insert_check(et
, rec
);
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree
*et
)
563 if (et
->et_ops
->eo_sanity_check
)
564 ret
= et
->et_ops
->eo_sanity_check(et
);
568 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
570 struct ocfs2_extent_block
*eb
);
571 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
572 struct ocfs2_extent_tree
*et
,
573 struct ocfs2_path
*path
,
574 struct ocfs2_extent_rec
*insert_rec
);
576 * Reset the actual path elements so that we can re-use the structure
577 * to build another path. Generally, this involves freeing the buffer
580 void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
582 int i
, start
= 0, depth
= 0;
583 struct ocfs2_path_item
*node
;
588 for(i
= start
; i
< path_num_items(path
); i
++) {
589 node
= &path
->p_node
[i
];
597 * Tree depth may change during truncate, or insert. If we're
598 * keeping the root extent list, then make sure that our path
599 * structure reflects the proper depth.
602 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
604 path_root_access(path
) = NULL
;
606 path
->p_tree_depth
= depth
;
609 void ocfs2_free_path(struct ocfs2_path
*path
)
612 ocfs2_reinit_path(path
, 0);
618 * All the elements of src into dest. After this call, src could be freed
619 * without affecting dest.
621 * Both paths should have the same root. Any non-root elements of dest
624 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
628 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
629 BUG_ON(path_root_el(dest
) != path_root_el(src
));
630 BUG_ON(path_root_access(dest
) != path_root_access(src
));
632 ocfs2_reinit_path(dest
, 1);
634 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
635 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
636 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
638 if (dest
->p_node
[i
].bh
)
639 get_bh(dest
->p_node
[i
].bh
);
644 * Make the *dest path the same as src and re-initialize src path to
647 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
651 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
652 BUG_ON(path_root_access(dest
) != path_root_access(src
));
654 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
655 brelse(dest
->p_node
[i
].bh
);
657 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
658 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
660 src
->p_node
[i
].bh
= NULL
;
661 src
->p_node
[i
].el
= NULL
;
666 * Insert an extent block at given index.
668 * This will not take an additional reference on eb_bh.
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
671 struct buffer_head
*eb_bh
)
673 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
676 * Right now, no root bh is an extent block, so this helps
677 * catch code errors with dinode trees. The assertion can be
678 * safely removed if we ever need to insert extent block
679 * structures at the root.
683 path
->p_node
[index
].bh
= eb_bh
;
684 path
->p_node
[index
].el
= &eb
->h_list
;
687 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
688 struct ocfs2_extent_list
*root_el
,
689 ocfs2_journal_access_func access
)
691 struct ocfs2_path
*path
;
693 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
695 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
697 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
699 path_root_bh(path
) = root_bh
;
700 path_root_el(path
) = root_el
;
701 path_root_access(path
) = access
;
707 struct ocfs2_path
*ocfs2_new_path_from_path(struct ocfs2_path
*path
)
709 return ocfs2_new_path(path_root_bh(path
), path_root_el(path
),
710 path_root_access(path
));
713 struct ocfs2_path
*ocfs2_new_path_from_et(struct ocfs2_extent_tree
*et
)
715 return ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
,
716 et
->et_root_journal_access
);
720 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721 * otherwise it's the root_access function.
723 * I don't like the way this function's name looks next to
724 * ocfs2_journal_access_path(), but I don't have a better one.
726 int ocfs2_path_bh_journal_access(handle_t
*handle
,
727 struct ocfs2_caching_info
*ci
,
728 struct ocfs2_path
*path
,
731 ocfs2_journal_access_func access
= path_root_access(path
);
734 access
= ocfs2_journal_access
;
737 access
= ocfs2_journal_access_eb
;
739 return access(handle
, ci
, path
->p_node
[idx
].bh
,
740 OCFS2_JOURNAL_ACCESS_WRITE
);
744 * Convenience function to journal all components in a path.
746 int ocfs2_journal_access_path(struct ocfs2_caching_info
*ci
,
748 struct ocfs2_path
*path
)
755 for(i
= 0; i
< path_num_items(path
); i
++) {
756 ret
= ocfs2_path_bh_journal_access(handle
, ci
, path
, i
);
768 * Return the index of the extent record which contains cluster #v_cluster.
769 * -1 is returned if it was not found.
771 * Should work fine on interior and exterior nodes.
773 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
777 struct ocfs2_extent_rec
*rec
;
778 u32 rec_end
, rec_start
, clusters
;
780 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
781 rec
= &el
->l_recs
[i
];
783 rec_start
= le32_to_cpu(rec
->e_cpos
);
784 clusters
= ocfs2_rec_clusters(el
, rec
);
786 rec_end
= rec_start
+ clusters
;
788 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799 * ocfs2_extent_rec_contig only work properly against leaf nodes!
801 static int ocfs2_block_extent_contig(struct super_block
*sb
,
802 struct ocfs2_extent_rec
*ext
,
805 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
807 blk_end
+= ocfs2_clusters_to_blocks(sb
,
808 le16_to_cpu(ext
->e_leaf_clusters
));
810 return blkno
== blk_end
;
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
814 struct ocfs2_extent_rec
*right
)
818 left_range
= le32_to_cpu(left
->e_cpos
) +
819 le16_to_cpu(left
->e_leaf_clusters
);
821 return (left_range
== le32_to_cpu(right
->e_cpos
));
824 static enum ocfs2_contig_type
825 ocfs2_extent_rec_contig(struct super_block
*sb
,
826 struct ocfs2_extent_rec
*ext
,
827 struct ocfs2_extent_rec
*insert_rec
)
829 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
832 * Refuse to coalesce extent records with different flag
833 * fields - we don't want to mix unwritten extents with user
836 if (ext
->e_flags
!= insert_rec
->e_flags
)
839 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
840 ocfs2_block_extent_contig(sb
, ext
, blkno
))
843 blkno
= le64_to_cpu(ext
->e_blkno
);
844 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
845 ocfs2_block_extent_contig(sb
, insert_rec
, blkno
))
852 * NOTE: We can have pretty much any combination of contiguousness and
855 * The usefulness of APPEND_TAIL is more in that it lets us know that
856 * we'll have to update the path to that leaf.
858 enum ocfs2_append_type
{
863 enum ocfs2_split_type
{
869 struct ocfs2_insert_type
{
870 enum ocfs2_split_type ins_split
;
871 enum ocfs2_append_type ins_appending
;
872 enum ocfs2_contig_type ins_contig
;
873 int ins_contig_index
;
877 struct ocfs2_merge_ctxt
{
878 enum ocfs2_contig_type c_contig_type
;
879 int c_has_empty_extent
;
880 int c_split_covers_rec
;
883 static int ocfs2_validate_extent_block(struct super_block
*sb
,
884 struct buffer_head
*bh
)
887 struct ocfs2_extent_block
*eb
=
888 (struct ocfs2_extent_block
*)bh
->b_data
;
890 mlog(0, "Validating extent block %llu\n",
891 (unsigned long long)bh
->b_blocknr
);
893 BUG_ON(!buffer_uptodate(bh
));
896 * If the ecc fails, we return the error but otherwise
897 * leave the filesystem running. We know any error is
898 * local to this block.
900 rc
= ocfs2_validate_meta_ecc(sb
, bh
->b_data
, &eb
->h_check
);
902 mlog(ML_ERROR
, "Checksum failed for extent block %llu\n",
903 (unsigned long long)bh
->b_blocknr
);
908 * Errors after here are fatal.
911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
913 "Extent block #%llu has bad signature %.*s",
914 (unsigned long long)bh
->b_blocknr
, 7,
919 if (le64_to_cpu(eb
->h_blkno
) != bh
->b_blocknr
) {
921 "Extent block #%llu has an invalid h_blkno "
923 (unsigned long long)bh
->b_blocknr
,
924 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
928 if (le32_to_cpu(eb
->h_fs_generation
) != OCFS2_SB(sb
)->fs_generation
) {
930 "Extent block #%llu has an invalid "
931 "h_fs_generation of #%u",
932 (unsigned long long)bh
->b_blocknr
,
933 le32_to_cpu(eb
->h_fs_generation
));
940 int ocfs2_read_extent_block(struct ocfs2_caching_info
*ci
, u64 eb_blkno
,
941 struct buffer_head
**bh
)
944 struct buffer_head
*tmp
= *bh
;
946 rc
= ocfs2_read_block(ci
, eb_blkno
, &tmp
,
947 ocfs2_validate_extent_block
);
949 /* If ocfs2_read_block() got us a new bh, pass it up. */
958 * How many free extents have we got before we need more meta data?
960 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
961 struct ocfs2_extent_tree
*et
)
964 struct ocfs2_extent_list
*el
= NULL
;
965 struct ocfs2_extent_block
*eb
;
966 struct buffer_head
*eb_bh
= NULL
;
972 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
975 retval
= ocfs2_read_extent_block(et
->et_ci
, last_eb_blk
,
981 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
985 BUG_ON(el
->l_tree_depth
!= 0);
987 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
995 /* expects array to already be allocated
997 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
1000 static int ocfs2_create_new_meta_bhs(handle_t
*handle
,
1001 struct ocfs2_extent_tree
*et
,
1003 struct ocfs2_alloc_context
*meta_ac
,
1004 struct buffer_head
*bhs
[])
1006 int count
, status
, i
;
1007 u16 suballoc_bit_start
;
1009 u64 suballoc_loc
, first_blkno
;
1010 struct ocfs2_super
*osb
=
1011 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
1012 struct ocfs2_extent_block
*eb
;
1017 while (count
< wanted
) {
1018 status
= ocfs2_claim_metadata(handle
,
1022 &suballoc_bit_start
,
1030 for(i
= count
; i
< (num_got
+ count
); i
++) {
1031 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
1032 if (bhs
[i
] == NULL
) {
1037 ocfs2_set_new_buffer_uptodate(et
->et_ci
, bhs
[i
]);
1039 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
1041 OCFS2_JOURNAL_ACCESS_CREATE
);
1047 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
1048 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
1049 /* Ok, setup the minimal stuff here. */
1050 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
1051 eb
->h_blkno
= cpu_to_le64(first_blkno
);
1052 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
1053 eb
->h_suballoc_slot
=
1054 cpu_to_le16(meta_ac
->ac_alloc_slot
);
1055 eb
->h_suballoc_loc
= cpu_to_le64(suballoc_loc
);
1056 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
1057 eb
->h_list
.l_count
=
1058 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
1060 suballoc_bit_start
++;
1063 /* We'll also be dirtied by the caller, so
1064 * this isn't absolutely necessary. */
1065 ocfs2_journal_dirty(handle
, bhs
[i
]);
1074 for(i
= 0; i
< wanted
; i
++) {
1084 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1086 * Returns the sum of the rightmost extent rec logical offset and
1089 * ocfs2_add_branch() uses this to determine what logical cluster
1090 * value should be populated into the leftmost new branch records.
1092 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1093 * value for the new topmost tree record.
1095 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
1099 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1101 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
1102 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
1106 * Change range of the branches in the right most path according to the leaf
1107 * extent block's rightmost record.
1109 static int ocfs2_adjust_rightmost_branch(handle_t
*handle
,
1110 struct ocfs2_extent_tree
*et
)
1113 struct ocfs2_path
*path
= NULL
;
1114 struct ocfs2_extent_list
*el
;
1115 struct ocfs2_extent_rec
*rec
;
1117 path
= ocfs2_new_path_from_et(et
);
1123 status
= ocfs2_find_path(et
->et_ci
, path
, UINT_MAX
);
1129 status
= ocfs2_extend_trans(handle
, path_num_items(path
));
1135 status
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
1141 el
= path_leaf_el(path
);
1142 rec
= &el
->l_recs
[le32_to_cpu(el
->l_next_free_rec
) - 1];
1144 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
1147 ocfs2_free_path(path
);
1152 * Add an entire tree branch to our inode. eb_bh is the extent block
1153 * to start at, if we don't want to start the branch at the root
1156 * last_eb_bh is required as we have to update it's next_leaf pointer
1157 * for the new last extent block.
1159 * the new branch will be 'empty' in the sense that every block will
1160 * contain a single record with cluster count == 0.
1162 static int ocfs2_add_branch(handle_t
*handle
,
1163 struct ocfs2_extent_tree
*et
,
1164 struct buffer_head
*eb_bh
,
1165 struct buffer_head
**last_eb_bh
,
1166 struct ocfs2_alloc_context
*meta_ac
)
1168 int status
, new_blocks
, i
;
1169 u64 next_blkno
, new_last_eb_blk
;
1170 struct buffer_head
*bh
;
1171 struct buffer_head
**new_eb_bhs
= NULL
;
1172 struct ocfs2_extent_block
*eb
;
1173 struct ocfs2_extent_list
*eb_el
;
1174 struct ocfs2_extent_list
*el
;
1175 u32 new_cpos
, root_end
;
1179 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
1182 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
1185 el
= et
->et_root_el
;
1187 /* we never add a branch to a leaf. */
1188 BUG_ON(!el
->l_tree_depth
);
1190 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
1192 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
1193 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
1194 root_end
= ocfs2_sum_rightmost_rec(et
->et_root_el
);
1197 * If there is a gap before the root end and the real end
1198 * of the righmost leaf block, we need to remove the gap
1199 * between new_cpos and root_end first so that the tree
1200 * is consistent after we add a new branch(it will start
1203 if (root_end
> new_cpos
) {
1204 mlog(0, "adjust the cluster end from %u to %u\n",
1205 root_end
, new_cpos
);
1206 status
= ocfs2_adjust_rightmost_branch(handle
, et
);
1213 /* allocate the number of new eb blocks we need */
1214 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
1222 status
= ocfs2_create_new_meta_bhs(handle
, et
, new_blocks
,
1223 meta_ac
, new_eb_bhs
);
1229 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1230 * linked with the rest of the tree.
1231 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1233 * when we leave the loop, new_last_eb_blk will point to the
1234 * newest leaf, and next_blkno will point to the topmost extent
1236 next_blkno
= new_last_eb_blk
= 0;
1237 for(i
= 0; i
< new_blocks
; i
++) {
1239 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1240 /* ocfs2_create_new_meta_bhs() should create it right! */
1241 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1242 eb_el
= &eb
->h_list
;
1244 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, bh
,
1245 OCFS2_JOURNAL_ACCESS_CREATE
);
1251 eb
->h_next_leaf_blk
= 0;
1252 eb_el
->l_tree_depth
= cpu_to_le16(i
);
1253 eb_el
->l_next_free_rec
= cpu_to_le16(1);
1255 * This actually counts as an empty extent as
1258 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
1259 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
1261 * eb_el isn't always an interior node, but even leaf
1262 * nodes want a zero'd flags and reserved field so
1263 * this gets the whole 32 bits regardless of use.
1265 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
1266 if (!eb_el
->l_tree_depth
)
1267 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
1269 ocfs2_journal_dirty(handle
, bh
);
1270 next_blkno
= le64_to_cpu(eb
->h_blkno
);
1273 /* This is a bit hairy. We want to update up to three blocks
1274 * here without leaving any of them in an inconsistent state
1275 * in case of error. We don't have to worry about
1276 * journal_dirty erroring as it won't unless we've aborted the
1277 * handle (in which case we would never be here) so reserving
1278 * the write with journal_access is all we need to do. */
1279 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, *last_eb_bh
,
1280 OCFS2_JOURNAL_ACCESS_WRITE
);
1285 status
= ocfs2_et_root_journal_access(handle
, et
,
1286 OCFS2_JOURNAL_ACCESS_WRITE
);
1292 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, eb_bh
,
1293 OCFS2_JOURNAL_ACCESS_WRITE
);
1300 /* Link the new branch into the rest of the tree (el will
1301 * either be on the root_bh, or the extent block passed in. */
1302 i
= le16_to_cpu(el
->l_next_free_rec
);
1303 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
1304 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
1305 el
->l_recs
[i
].e_int_clusters
= 0;
1306 le16_add_cpu(&el
->l_next_free_rec
, 1);
1308 /* fe needs a new last extent block pointer, as does the
1309 * next_leaf on the previously last-extent-block. */
1310 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
1312 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
1313 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
1315 ocfs2_journal_dirty(handle
, *last_eb_bh
);
1316 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1318 ocfs2_journal_dirty(handle
, eb_bh
);
1321 * Some callers want to track the rightmost leaf so pass it
1324 brelse(*last_eb_bh
);
1325 get_bh(new_eb_bhs
[0]);
1326 *last_eb_bh
= new_eb_bhs
[0];
1331 for (i
= 0; i
< new_blocks
; i
++)
1332 brelse(new_eb_bhs
[i
]);
1341 * adds another level to the allocation tree.
1342 * returns back the new extent block so you can add a branch to it
1345 static int ocfs2_shift_tree_depth(handle_t
*handle
,
1346 struct ocfs2_extent_tree
*et
,
1347 struct ocfs2_alloc_context
*meta_ac
,
1348 struct buffer_head
**ret_new_eb_bh
)
1352 struct buffer_head
*new_eb_bh
= NULL
;
1353 struct ocfs2_extent_block
*eb
;
1354 struct ocfs2_extent_list
*root_el
;
1355 struct ocfs2_extent_list
*eb_el
;
1359 status
= ocfs2_create_new_meta_bhs(handle
, et
, 1, meta_ac
,
1366 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1367 /* ocfs2_create_new_meta_bhs() should create it right! */
1368 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1370 eb_el
= &eb
->h_list
;
1371 root_el
= et
->et_root_el
;
1373 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, new_eb_bh
,
1374 OCFS2_JOURNAL_ACCESS_CREATE
);
1380 /* copy the root extent list data into the new extent block */
1381 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1382 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1383 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1384 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1386 ocfs2_journal_dirty(handle
, new_eb_bh
);
1388 status
= ocfs2_et_root_journal_access(handle
, et
,
1389 OCFS2_JOURNAL_ACCESS_WRITE
);
1395 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1397 /* update root_bh now */
1398 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1399 root_el
->l_recs
[0].e_cpos
= 0;
1400 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1401 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1402 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1403 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1404 root_el
->l_next_free_rec
= cpu_to_le16(1);
1406 /* If this is our 1st tree depth shift, then last_eb_blk
1407 * becomes the allocated extent block */
1408 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1409 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1411 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1413 *ret_new_eb_bh
= new_eb_bh
;
1424 * Should only be called when there is no space left in any of the
1425 * leaf nodes. What we want to do is find the lowest tree depth
1426 * non-leaf extent block with room for new records. There are three
1427 * valid results of this search:
1429 * 1) a lowest extent block is found, then we pass it back in
1430 * *lowest_eb_bh and return '0'
1432 * 2) the search fails to find anything, but the root_el has room. We
1433 * pass NULL back in *lowest_eb_bh, but still return '0'
1435 * 3) the search fails to find anything AND the root_el is full, in
1436 * which case we return > 0
1438 * return status < 0 indicates an error.
1440 static int ocfs2_find_branch_target(struct ocfs2_extent_tree
*et
,
1441 struct buffer_head
**target_bh
)
1445 struct ocfs2_extent_block
*eb
;
1446 struct ocfs2_extent_list
*el
;
1447 struct buffer_head
*bh
= NULL
;
1448 struct buffer_head
*lowest_bh
= NULL
;
1454 el
= et
->et_root_el
;
1456 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1457 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1458 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1459 "Owner %llu has empty "
1460 "extent list (next_free_rec == 0)",
1461 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
1465 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1466 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1468 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1469 "Owner %llu has extent "
1470 "list where extent # %d has no physical "
1472 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
), i
);
1480 status
= ocfs2_read_extent_block(et
->et_ci
, blkno
, &bh
);
1486 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1489 if (le16_to_cpu(el
->l_next_free_rec
) <
1490 le16_to_cpu(el
->l_count
)) {
1497 /* If we didn't find one and the fe doesn't have any room,
1498 * then return '1' */
1499 el
= et
->et_root_el
;
1500 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1503 *target_bh
= lowest_bh
;
1512 * Grow a b-tree so that it has more records.
1514 * We might shift the tree depth in which case existing paths should
1515 * be considered invalid.
1517 * Tree depth after the grow is returned via *final_depth.
1519 * *last_eb_bh will be updated by ocfs2_add_branch().
1521 static int ocfs2_grow_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
1522 int *final_depth
, struct buffer_head
**last_eb_bh
,
1523 struct ocfs2_alloc_context
*meta_ac
)
1526 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1527 int depth
= le16_to_cpu(el
->l_tree_depth
);
1528 struct buffer_head
*bh
= NULL
;
1530 BUG_ON(meta_ac
== NULL
);
1532 shift
= ocfs2_find_branch_target(et
, &bh
);
1539 /* We traveled all the way to the bottom of the allocation tree
1540 * and didn't find room for any more extents - we need to add
1541 * another tree level */
1544 mlog(0, "need to shift tree depth (current = %d)\n", depth
);
1546 /* ocfs2_shift_tree_depth will return us a buffer with
1547 * the new extent block (so we can pass that to
1548 * ocfs2_add_branch). */
1549 ret
= ocfs2_shift_tree_depth(handle
, et
, meta_ac
, &bh
);
1557 * Special case: we have room now if we shifted from
1558 * tree_depth 0, so no more work needs to be done.
1560 * We won't be calling add_branch, so pass
1561 * back *last_eb_bh as the new leaf. At depth
1562 * zero, it should always be null so there's
1563 * no reason to brelse.
1565 BUG_ON(*last_eb_bh
);
1572 /* call ocfs2_add_branch to add the final part of the tree with
1574 mlog(0, "add branch. bh = %p\n", bh
);
1575 ret
= ocfs2_add_branch(handle
, et
, bh
, last_eb_bh
,
1584 *final_depth
= depth
;
1590 * This function will discard the rightmost extent record.
1592 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1594 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1595 int count
= le16_to_cpu(el
->l_count
);
1596 unsigned int num_bytes
;
1599 /* This will cause us to go off the end of our extent list. */
1600 BUG_ON(next_free
>= count
);
1602 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1604 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1607 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1608 struct ocfs2_extent_rec
*insert_rec
)
1610 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1611 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1612 struct ocfs2_extent_rec
*rec
;
1614 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1615 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1619 /* The tree code before us didn't allow enough room in the leaf. */
1620 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1623 * The easiest way to approach this is to just remove the
1624 * empty extent and temporarily decrement next_free.
1628 * If next_free was 1 (only an empty extent), this
1629 * loop won't execute, which is fine. We still want
1630 * the decrement above to happen.
1632 for(i
= 0; i
< (next_free
- 1); i
++)
1633 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1639 * Figure out what the new record index should be.
1641 for(i
= 0; i
< next_free
; i
++) {
1642 rec
= &el
->l_recs
[i
];
1644 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1649 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1650 insert_cpos
, insert_index
, has_empty
, next_free
, le16_to_cpu(el
->l_count
));
1652 BUG_ON(insert_index
< 0);
1653 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1654 BUG_ON(insert_index
> next_free
);
1657 * No need to memmove if we're just adding to the tail.
1659 if (insert_index
!= next_free
) {
1660 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1662 num_bytes
= next_free
- insert_index
;
1663 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1664 memmove(&el
->l_recs
[insert_index
+ 1],
1665 &el
->l_recs
[insert_index
],
1670 * Either we had an empty extent, and need to re-increment or
1671 * there was no empty extent on a non full rightmost leaf node,
1672 * in which case we still need to increment.
1675 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1677 * Make sure none of the math above just messed up our tree.
1679 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1681 el
->l_recs
[insert_index
] = *insert_rec
;
1685 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1687 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1689 BUG_ON(num_recs
== 0);
1691 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1693 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1694 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1695 memset(&el
->l_recs
[num_recs
], 0,
1696 sizeof(struct ocfs2_extent_rec
));
1697 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1702 * Create an empty extent record .
1704 * l_next_free_rec may be updated.
1706 * If an empty extent already exists do nothing.
1708 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1710 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1712 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1717 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1720 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1721 "Asked to create an empty extent in a full list:\n"
1722 "count = %u, tree depth = %u",
1723 le16_to_cpu(el
->l_count
),
1724 le16_to_cpu(el
->l_tree_depth
));
1726 ocfs2_shift_records_right(el
);
1729 le16_add_cpu(&el
->l_next_free_rec
, 1);
1730 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1734 * For a rotation which involves two leaf nodes, the "root node" is
1735 * the lowest level tree node which contains a path to both leafs. This
1736 * resulting set of information can be used to form a complete "subtree"
1738 * This function is passed two full paths from the dinode down to a
1739 * pair of adjacent leaves. It's task is to figure out which path
1740 * index contains the subtree root - this can be the root index itself
1741 * in a worst-case rotation.
1743 * The array index of the subtree root is passed back.
1745 int ocfs2_find_subtree_root(struct ocfs2_extent_tree
*et
,
1746 struct ocfs2_path
*left
,
1747 struct ocfs2_path
*right
)
1752 * Check that the caller passed in two paths from the same tree.
1754 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1760 * The caller didn't pass two adjacent paths.
1762 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1763 "Owner %llu, left depth %u, right depth %u\n"
1764 "left leaf blk %llu, right leaf blk %llu\n",
1765 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
1766 left
->p_tree_depth
, right
->p_tree_depth
,
1767 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1768 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1769 } while (left
->p_node
[i
].bh
->b_blocknr
==
1770 right
->p_node
[i
].bh
->b_blocknr
);
1775 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1778 * Traverse a btree path in search of cpos, starting at root_el.
1780 * This code can be called with a cpos larger than the tree, in which
1781 * case it will return the rightmost path.
1783 static int __ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1784 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1785 path_insert_t
*func
, void *data
)
1790 struct buffer_head
*bh
= NULL
;
1791 struct ocfs2_extent_block
*eb
;
1792 struct ocfs2_extent_list
*el
;
1793 struct ocfs2_extent_rec
*rec
;
1796 while (el
->l_tree_depth
) {
1797 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1798 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1799 "Owner %llu has empty extent list at "
1801 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1802 le16_to_cpu(el
->l_tree_depth
));
1808 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1809 rec
= &el
->l_recs
[i
];
1812 * In the case that cpos is off the allocation
1813 * tree, this should just wind up returning the
1816 range
= le32_to_cpu(rec
->e_cpos
) +
1817 ocfs2_rec_clusters(el
, rec
);
1818 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1822 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1824 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1825 "Owner %llu has bad blkno in extent list "
1826 "at depth %u (index %d)\n",
1827 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1828 le16_to_cpu(el
->l_tree_depth
), i
);
1835 ret
= ocfs2_read_extent_block(ci
, blkno
, &bh
);
1841 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1844 if (le16_to_cpu(el
->l_next_free_rec
) >
1845 le16_to_cpu(el
->l_count
)) {
1846 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1847 "Owner %llu has bad count in extent list "
1848 "at block %llu (next free=%u, count=%u)\n",
1849 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1850 (unsigned long long)bh
->b_blocknr
,
1851 le16_to_cpu(el
->l_next_free_rec
),
1852 le16_to_cpu(el
->l_count
));
1863 * Catch any trailing bh that the loop didn't handle.
1871 * Given an initialized path (that is, it has a valid root extent
1872 * list), this function will traverse the btree in search of the path
1873 * which would contain cpos.
1875 * The path traveled is recorded in the path structure.
1877 * Note that this will not do any comparisons on leaf node extent
1878 * records, so it will work fine in the case that we just added a tree
1881 struct find_path_data
{
1883 struct ocfs2_path
*path
;
1885 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1887 struct find_path_data
*fp
= data
;
1890 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1893 int ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1894 struct ocfs2_path
*path
, u32 cpos
)
1896 struct find_path_data data
;
1900 return __ocfs2_find_path(ci
, path_root_el(path
), cpos
,
1901 find_path_ins
, &data
);
1904 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1906 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1907 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1908 struct buffer_head
**ret
= data
;
1910 /* We want to retain only the leaf block. */
1911 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1917 * Find the leaf block in the tree which would contain cpos. No
1918 * checking of the actual leaf is done.
1920 * Some paths want to call this instead of allocating a path structure
1921 * and calling ocfs2_find_path().
1923 * This function doesn't handle non btree extent lists.
1925 int ocfs2_find_leaf(struct ocfs2_caching_info
*ci
,
1926 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1927 struct buffer_head
**leaf_bh
)
1930 struct buffer_head
*bh
= NULL
;
1932 ret
= __ocfs2_find_path(ci
, root_el
, cpos
, find_leaf_ins
, &bh
);
1944 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1946 * Basically, we've moved stuff around at the bottom of the tree and
1947 * we need to fix up the extent records above the changes to reflect
1950 * left_rec: the record on the left.
1951 * left_child_el: is the child list pointed to by left_rec
1952 * right_rec: the record to the right of left_rec
1953 * right_child_el: is the child list pointed to by right_rec
1955 * By definition, this only works on interior nodes.
1957 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1958 struct ocfs2_extent_list
*left_child_el
,
1959 struct ocfs2_extent_rec
*right_rec
,
1960 struct ocfs2_extent_list
*right_child_el
)
1962 u32 left_clusters
, right_end
;
1965 * Interior nodes never have holes. Their cpos is the cpos of
1966 * the leftmost record in their child list. Their cluster
1967 * count covers the full theoretical range of their child list
1968 * - the range between their cpos and the cpos of the record
1969 * immediately to their right.
1971 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1972 if (!ocfs2_rec_clusters(right_child_el
, &right_child_el
->l_recs
[0])) {
1973 BUG_ON(right_child_el
->l_tree_depth
);
1974 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1975 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1977 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1978 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1981 * Calculate the rightmost cluster count boundary before
1982 * moving cpos - we will need to adjust clusters after
1983 * updating e_cpos to keep the same highest cluster count.
1985 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1986 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1988 right_rec
->e_cpos
= left_rec
->e_cpos
;
1989 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1991 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1992 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1996 * Adjust the adjacent root node records involved in a
1997 * rotation. left_el_blkno is passed in as a key so that we can easily
1998 * find it's index in the root list.
2000 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
2001 struct ocfs2_extent_list
*left_el
,
2002 struct ocfs2_extent_list
*right_el
,
2007 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
2008 le16_to_cpu(left_el
->l_tree_depth
));
2010 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
2011 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
2016 * The path walking code should have never returned a root and
2017 * two paths which are not adjacent.
2019 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
2021 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
2022 &root_el
->l_recs
[i
+ 1], right_el
);
2026 * We've changed a leaf block (in right_path) and need to reflect that
2027 * change back up the subtree.
2029 * This happens in multiple places:
2030 * - When we've moved an extent record from the left path leaf to the right
2031 * path leaf to make room for an empty extent in the left path leaf.
2032 * - When our insert into the right path leaf is at the leftmost edge
2033 * and requires an update of the path immediately to it's left. This
2034 * can occur at the end of some types of rotation and appending inserts.
2035 * - When we've adjusted the last extent record in the left path leaf and the
2036 * 1st extent record in the right path leaf during cross extent block merge.
2038 static void ocfs2_complete_edge_insert(handle_t
*handle
,
2039 struct ocfs2_path
*left_path
,
2040 struct ocfs2_path
*right_path
,
2044 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
2045 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
2046 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2049 * Update the counts and position values within all the
2050 * interior nodes to reflect the leaf rotation we just did.
2052 * The root node is handled below the loop.
2054 * We begin the loop with right_el and left_el pointing to the
2055 * leaf lists and work our way up.
2057 * NOTE: within this loop, left_el and right_el always refer
2058 * to the *child* lists.
2060 left_el
= path_leaf_el(left_path
);
2061 right_el
= path_leaf_el(right_path
);
2062 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
2063 mlog(0, "Adjust records at index %u\n", i
);
2066 * One nice property of knowing that all of these
2067 * nodes are below the root is that we only deal with
2068 * the leftmost right node record and the rightmost
2071 el
= left_path
->p_node
[i
].el
;
2072 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2073 left_rec
= &el
->l_recs
[idx
];
2075 el
= right_path
->p_node
[i
].el
;
2076 right_rec
= &el
->l_recs
[0];
2078 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
2081 ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
2082 ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
2085 * Setup our list pointers now so that the current
2086 * parents become children in the next iteration.
2088 left_el
= left_path
->p_node
[i
].el
;
2089 right_el
= right_path
->p_node
[i
].el
;
2093 * At the root node, adjust the two adjacent records which
2094 * begin our path to the leaves.
2097 el
= left_path
->p_node
[subtree_index
].el
;
2098 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
2099 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
2101 ocfs2_adjust_root_records(el
, left_el
, right_el
,
2102 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
2104 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2106 ocfs2_journal_dirty(handle
, root_bh
);
2109 static int ocfs2_rotate_subtree_right(handle_t
*handle
,
2110 struct ocfs2_extent_tree
*et
,
2111 struct ocfs2_path
*left_path
,
2112 struct ocfs2_path
*right_path
,
2116 struct buffer_head
*right_leaf_bh
;
2117 struct buffer_head
*left_leaf_bh
= NULL
;
2118 struct buffer_head
*root_bh
;
2119 struct ocfs2_extent_list
*right_el
, *left_el
;
2120 struct ocfs2_extent_rec move_rec
;
2122 left_leaf_bh
= path_leaf_bh(left_path
);
2123 left_el
= path_leaf_el(left_path
);
2125 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
2126 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
2127 "Inode %llu has non-full interior leaf node %llu"
2129 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2130 (unsigned long long)left_leaf_bh
->b_blocknr
,
2131 le16_to_cpu(left_el
->l_next_free_rec
));
2136 * This extent block may already have an empty record, so we
2137 * return early if so.
2139 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
2142 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2143 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2145 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2152 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2153 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2160 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2168 right_leaf_bh
= path_leaf_bh(right_path
);
2169 right_el
= path_leaf_el(right_path
);
2171 /* This is a code error, not a disk corruption. */
2172 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
2173 "because rightmost leaf block %llu is empty\n",
2174 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2175 (unsigned long long)right_leaf_bh
->b_blocknr
);
2177 ocfs2_create_empty_extent(right_el
);
2179 ocfs2_journal_dirty(handle
, right_leaf_bh
);
2181 /* Do the copy now. */
2182 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2183 move_rec
= left_el
->l_recs
[i
];
2184 right_el
->l_recs
[0] = move_rec
;
2187 * Clear out the record we just copied and shift everything
2188 * over, leaving an empty extent in the left leaf.
2190 * We temporarily subtract from next_free_rec so that the
2191 * shift will lose the tail record (which is now defunct).
2193 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
2194 ocfs2_shift_records_right(left_el
);
2195 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2196 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
2198 ocfs2_journal_dirty(handle
, left_leaf_bh
);
2200 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2208 * Given a full path, determine what cpos value would return us a path
2209 * containing the leaf immediately to the left of the current one.
2211 * Will return zero if the path passed in is already the leftmost path.
2213 int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
2214 struct ocfs2_path
*path
, u32
*cpos
)
2218 struct ocfs2_extent_list
*el
;
2220 BUG_ON(path
->p_tree_depth
== 0);
2224 blkno
= path_leaf_bh(path
)->b_blocknr
;
2226 /* Start at the tree node just above the leaf and work our way up. */
2227 i
= path
->p_tree_depth
- 1;
2229 el
= path
->p_node
[i
].el
;
2232 * Find the extent record just before the one in our
2235 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2236 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2240 * We've determined that the
2241 * path specified is already
2242 * the leftmost one - return a
2248 * The leftmost record points to our
2249 * leaf - we need to travel up the
2255 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
2256 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
2257 &el
->l_recs
[j
- 1]);
2264 * If we got here, we never found a valid node where
2265 * the tree indicated one should be.
2268 "Invalid extent tree at extent block %llu\n",
2269 (unsigned long long)blkno
);
2274 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2283 * Extend the transaction by enough credits to complete the rotation,
2284 * and still leave at least the original number of credits allocated
2285 * to this transaction.
2287 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2289 struct ocfs2_path
*path
)
2292 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2294 if (handle
->h_buffer_credits
< credits
)
2295 ret
= ocfs2_extend_trans(handle
,
2296 credits
- handle
->h_buffer_credits
);
2302 * Trap the case where we're inserting into the theoretical range past
2303 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2304 * whose cpos is less than ours into the right leaf.
2306 * It's only necessary to look at the rightmost record of the left
2307 * leaf because the logic that calls us should ensure that the
2308 * theoretical ranges in the path components above the leaves are
2311 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2314 struct ocfs2_extent_list
*left_el
;
2315 struct ocfs2_extent_rec
*rec
;
2318 left_el
= path_leaf_el(left_path
);
2319 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2320 rec
= &left_el
->l_recs
[next_free
- 1];
2322 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2327 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2329 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2331 struct ocfs2_extent_rec
*rec
;
2336 rec
= &el
->l_recs
[0];
2337 if (ocfs2_is_empty_extent(rec
)) {
2341 rec
= &el
->l_recs
[1];
2344 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2345 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2351 * Rotate all the records in a btree right one record, starting at insert_cpos.
2353 * The path to the rightmost leaf should be passed in.
2355 * The array is assumed to be large enough to hold an entire path (tree depth).
2357 * Upon successful return from this function:
2359 * - The 'right_path' array will contain a path to the leaf block
2360 * whose range contains e_cpos.
2361 * - That leaf block will have a single empty extent in list index 0.
2362 * - In the case that the rotation requires a post-insert update,
2363 * *ret_left_path will contain a valid path which can be passed to
2364 * ocfs2_insert_path().
2366 static int ocfs2_rotate_tree_right(handle_t
*handle
,
2367 struct ocfs2_extent_tree
*et
,
2368 enum ocfs2_split_type split
,
2370 struct ocfs2_path
*right_path
,
2371 struct ocfs2_path
**ret_left_path
)
2373 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
2375 struct ocfs2_path
*left_path
= NULL
;
2376 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2378 *ret_left_path
= NULL
;
2380 left_path
= ocfs2_new_path_from_path(right_path
);
2387 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2393 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos
, cpos
);
2396 * What we want to do here is:
2398 * 1) Start with the rightmost path.
2400 * 2) Determine a path to the leaf block directly to the left
2403 * 3) Determine the 'subtree root' - the lowest level tree node
2404 * which contains a path to both leaves.
2406 * 4) Rotate the subtree.
2408 * 5) Find the next subtree by considering the left path to be
2409 * the new right path.
2411 * The check at the top of this while loop also accepts
2412 * insert_cpos == cpos because cpos is only a _theoretical_
2413 * value to get us the left path - insert_cpos might very well
2414 * be filling that hole.
2416 * Stop at a cpos of '0' because we either started at the
2417 * leftmost branch (i.e., a tree with one branch and a
2418 * rotation inside of it), or we've gone as far as we can in
2419 * rotating subtrees.
2421 while (cpos
&& insert_cpos
<= cpos
) {
2422 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2425 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
2431 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2432 path_leaf_bh(right_path
),
2433 "Owner %llu: error during insert of %u "
2434 "(left path cpos %u) results in two identical "
2435 "paths ending at %llu\n",
2436 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2438 (unsigned long long)
2439 path_leaf_bh(left_path
)->b_blocknr
);
2441 if (split
== SPLIT_NONE
&&
2442 ocfs2_rotate_requires_path_adjustment(left_path
,
2446 * We've rotated the tree as much as we
2447 * should. The rest is up to
2448 * ocfs2_insert_path() to complete, after the
2449 * record insertion. We indicate this
2450 * situation by returning the left path.
2452 * The reason we don't adjust the records here
2453 * before the record insert is that an error
2454 * later might break the rule where a parent
2455 * record e_cpos will reflect the actual
2456 * e_cpos of the 1st nonempty record of the
2459 *ret_left_path
= left_path
;
2463 start
= ocfs2_find_subtree_root(et
, left_path
, right_path
);
2465 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2467 (unsigned long long) right_path
->p_node
[start
].bh
->b_blocknr
,
2468 right_path
->p_tree_depth
);
2470 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2471 orig_credits
, right_path
);
2477 ret
= ocfs2_rotate_subtree_right(handle
, et
, left_path
,
2484 if (split
!= SPLIT_NONE
&&
2485 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2488 * A rotate moves the rightmost left leaf
2489 * record over to the leftmost right leaf
2490 * slot. If we're doing an extent split
2491 * instead of a real insert, then we have to
2492 * check that the extent to be split wasn't
2493 * just moved over. If it was, then we can
2494 * exit here, passing left_path back -
2495 * ocfs2_split_extent() is smart enough to
2496 * search both leaves.
2498 *ret_left_path
= left_path
;
2503 * There is no need to re-read the next right path
2504 * as we know that it'll be our current left
2505 * path. Optimize by copying values instead.
2507 ocfs2_mv_path(right_path
, left_path
);
2509 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2517 ocfs2_free_path(left_path
);
2523 static int ocfs2_update_edge_lengths(handle_t
*handle
,
2524 struct ocfs2_extent_tree
*et
,
2525 int subtree_index
, struct ocfs2_path
*path
)
2528 struct ocfs2_extent_rec
*rec
;
2529 struct ocfs2_extent_list
*el
;
2530 struct ocfs2_extent_block
*eb
;
2534 * In normal tree rotation process, we will never touch the
2535 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2536 * doesn't reserve the credits for them either.
2538 * But we do have a special case here which will update the rightmost
2539 * records for all the bh in the path.
2540 * So we have to allocate extra credits and access them.
2542 ret
= ocfs2_extend_trans(handle
, subtree_index
);
2548 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
2554 /* Path should always be rightmost. */
2555 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2556 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2559 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2560 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2561 rec
= &el
->l_recs
[idx
];
2562 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2564 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2565 el
= path
->p_node
[i
].el
;
2566 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2567 rec
= &el
->l_recs
[idx
];
2569 rec
->e_int_clusters
= cpu_to_le32(range
);
2570 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2572 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2578 static void ocfs2_unlink_path(handle_t
*handle
,
2579 struct ocfs2_extent_tree
*et
,
2580 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2581 struct ocfs2_path
*path
, int unlink_start
)
2584 struct ocfs2_extent_block
*eb
;
2585 struct ocfs2_extent_list
*el
;
2586 struct buffer_head
*bh
;
2588 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2589 bh
= path
->p_node
[i
].bh
;
2591 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2593 * Not all nodes might have had their final count
2594 * decremented by the caller - handle this here.
2597 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2599 "Inode %llu, attempted to remove extent block "
2600 "%llu with %u records\n",
2601 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2602 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2603 le16_to_cpu(el
->l_next_free_rec
));
2605 ocfs2_journal_dirty(handle
, bh
);
2606 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2610 el
->l_next_free_rec
= 0;
2611 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2613 ocfs2_journal_dirty(handle
, bh
);
2615 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2619 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2623 static void ocfs2_unlink_subtree(handle_t
*handle
,
2624 struct ocfs2_extent_tree
*et
,
2625 struct ocfs2_path
*left_path
,
2626 struct ocfs2_path
*right_path
,
2628 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2631 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2632 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2633 struct ocfs2_extent_list
*el
;
2634 struct ocfs2_extent_block
*eb
;
2636 el
= path_leaf_el(left_path
);
2638 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2640 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2641 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2644 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2646 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2647 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2649 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2650 eb
->h_next_leaf_blk
= 0;
2652 ocfs2_journal_dirty(handle
, root_bh
);
2653 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2655 ocfs2_unlink_path(handle
, et
, dealloc
, right_path
,
2659 static int ocfs2_rotate_subtree_left(handle_t
*handle
,
2660 struct ocfs2_extent_tree
*et
,
2661 struct ocfs2_path
*left_path
,
2662 struct ocfs2_path
*right_path
,
2664 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2667 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2668 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2669 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2670 struct ocfs2_extent_block
*eb
;
2674 right_leaf_el
= path_leaf_el(right_path
);
2675 left_leaf_el
= path_leaf_el(left_path
);
2676 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2677 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2679 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2682 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2683 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2685 * It's legal for us to proceed if the right leaf is
2686 * the rightmost one and it has an empty extent. There
2687 * are two cases to handle - whether the leaf will be
2688 * empty after removal or not. If the leaf isn't empty
2689 * then just remove the empty extent up front. The
2690 * next block will handle empty leaves by flagging
2693 * Non rightmost leaves will throw -EAGAIN and the
2694 * caller can manually move the subtree and retry.
2697 if (eb
->h_next_leaf_blk
!= 0ULL)
2700 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2701 ret
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
2702 path_leaf_bh(right_path
),
2703 OCFS2_JOURNAL_ACCESS_WRITE
);
2709 ocfs2_remove_empty_extent(right_leaf_el
);
2711 right_has_empty
= 1;
2714 if (eb
->h_next_leaf_blk
== 0ULL &&
2715 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2717 * We have to update i_last_eb_blk during the meta
2720 ret
= ocfs2_et_root_journal_access(handle
, et
,
2721 OCFS2_JOURNAL_ACCESS_WRITE
);
2727 del_right_subtree
= 1;
2731 * Getting here with an empty extent in the right path implies
2732 * that it's the rightmost path and will be deleted.
2734 BUG_ON(right_has_empty
&& !del_right_subtree
);
2736 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2743 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2744 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2751 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2759 if (!right_has_empty
) {
2761 * Only do this if we're moving a real
2762 * record. Otherwise, the action is delayed until
2763 * after removal of the right path in which case we
2764 * can do a simple shift to remove the empty extent.
2766 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2767 memset(&right_leaf_el
->l_recs
[0], 0,
2768 sizeof(struct ocfs2_extent_rec
));
2770 if (eb
->h_next_leaf_blk
== 0ULL) {
2772 * Move recs over to get rid of empty extent, decrease
2773 * next_free. This is allowed to remove the last
2774 * extent in our leaf (setting l_next_free_rec to
2775 * zero) - the delete code below won't care.
2777 ocfs2_remove_empty_extent(right_leaf_el
);
2780 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2781 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2783 if (del_right_subtree
) {
2784 ocfs2_unlink_subtree(handle
, et
, left_path
, right_path
,
2785 subtree_index
, dealloc
);
2786 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
2793 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2794 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2797 * Removal of the extent in the left leaf was skipped
2798 * above so we could delete the right path
2801 if (right_has_empty
)
2802 ocfs2_remove_empty_extent(left_leaf_el
);
2804 ocfs2_journal_dirty(handle
, et_root_bh
);
2808 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2816 * Given a full path, determine what cpos value would return us a path
2817 * containing the leaf immediately to the right of the current one.
2819 * Will return zero if the path passed in is already the rightmost path.
2821 * This looks similar, but is subtly different to
2822 * ocfs2_find_cpos_for_left_leaf().
2824 int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2825 struct ocfs2_path
*path
, u32
*cpos
)
2829 struct ocfs2_extent_list
*el
;
2833 if (path
->p_tree_depth
== 0)
2836 blkno
= path_leaf_bh(path
)->b_blocknr
;
2838 /* Start at the tree node just above the leaf and work our way up. */
2839 i
= path
->p_tree_depth
- 1;
2843 el
= path
->p_node
[i
].el
;
2846 * Find the extent record just after the one in our
2849 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2850 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2851 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2852 if (j
== (next_free
- 1)) {
2855 * We've determined that the
2856 * path specified is already
2857 * the rightmost one - return a
2863 * The rightmost record points to our
2864 * leaf - we need to travel up the
2870 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2876 * If we got here, we never found a valid node where
2877 * the tree indicated one should be.
2880 "Invalid extent tree at extent block %llu\n",
2881 (unsigned long long)blkno
);
2886 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2894 static int ocfs2_rotate_rightmost_leaf_left(handle_t
*handle
,
2895 struct ocfs2_extent_tree
*et
,
2896 struct ocfs2_path
*path
)
2899 struct buffer_head
*bh
= path_leaf_bh(path
);
2900 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
2902 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2905 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
2906 path_num_items(path
) - 1);
2912 ocfs2_remove_empty_extent(el
);
2913 ocfs2_journal_dirty(handle
, bh
);
2919 static int __ocfs2_rotate_tree_left(handle_t
*handle
,
2920 struct ocfs2_extent_tree
*et
,
2922 struct ocfs2_path
*path
,
2923 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2924 struct ocfs2_path
**empty_extent_path
)
2926 int ret
, subtree_root
, deleted
;
2928 struct ocfs2_path
*left_path
= NULL
;
2929 struct ocfs2_path
*right_path
= NULL
;
2930 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2932 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])));
2934 *empty_extent_path
= NULL
;
2936 ret
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
2942 left_path
= ocfs2_new_path_from_path(path
);
2949 ocfs2_cp_path(left_path
, path
);
2951 right_path
= ocfs2_new_path_from_path(path
);
2958 while (right_cpos
) {
2959 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
2965 subtree_root
= ocfs2_find_subtree_root(et
, left_path
,
2968 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2970 (unsigned long long)
2971 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2972 right_path
->p_tree_depth
);
2974 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2975 orig_credits
, left_path
);
2982 * Caller might still want to make changes to the
2983 * tree root, so re-add it to the journal here.
2985 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2992 ret
= ocfs2_rotate_subtree_left(handle
, et
, left_path
,
2993 right_path
, subtree_root
,
2995 if (ret
== -EAGAIN
) {
2997 * The rotation has to temporarily stop due to
2998 * the right subtree having an empty
2999 * extent. Pass it back to the caller for a
3002 *empty_extent_path
= right_path
;
3012 * The subtree rotate might have removed records on
3013 * the rightmost edge. If so, then rotation is
3019 ocfs2_mv_path(left_path
, right_path
);
3021 ret
= ocfs2_find_cpos_for_right_leaf(sb
, left_path
,
3030 ocfs2_free_path(right_path
);
3031 ocfs2_free_path(left_path
);
3036 static int ocfs2_remove_rightmost_path(handle_t
*handle
,
3037 struct ocfs2_extent_tree
*et
,
3038 struct ocfs2_path
*path
,
3039 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3041 int ret
, subtree_index
;
3043 struct ocfs2_path
*left_path
= NULL
;
3044 struct ocfs2_extent_block
*eb
;
3045 struct ocfs2_extent_list
*el
;
3048 ret
= ocfs2_et_sanity_check(et
);
3052 * There's two ways we handle this depending on
3053 * whether path is the only existing one.
3055 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3056 handle
->h_buffer_credits
,
3063 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
3069 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3078 * We have a path to the left of this one - it needs
3081 left_path
= ocfs2_new_path_from_path(path
);
3088 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
3094 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
3100 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
3102 ocfs2_unlink_subtree(handle
, et
, left_path
, path
,
3103 subtree_index
, dealloc
);
3104 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
3111 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
3112 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
3115 * 'path' is also the leftmost path which
3116 * means it must be the only one. This gets
3117 * handled differently because we want to
3118 * revert the root back to having extents
3121 ocfs2_unlink_path(handle
, et
, dealloc
, path
, 1);
3123 el
= et
->et_root_el
;
3124 el
->l_tree_depth
= 0;
3125 el
->l_next_free_rec
= 0;
3126 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3128 ocfs2_et_set_last_eb_blk(et
, 0);
3131 ocfs2_journal_dirty(handle
, path_root_bh(path
));
3134 ocfs2_free_path(left_path
);
3139 * Left rotation of btree records.
3141 * In many ways, this is (unsurprisingly) the opposite of right
3142 * rotation. We start at some non-rightmost path containing an empty
3143 * extent in the leaf block. The code works its way to the rightmost
3144 * path by rotating records to the left in every subtree.
3146 * This is used by any code which reduces the number of extent records
3147 * in a leaf. After removal, an empty record should be placed in the
3148 * leftmost list position.
3150 * This won't handle a length update of the rightmost path records if
3151 * the rightmost tree leaf record is removed so the caller is
3152 * responsible for detecting and correcting that.
3154 static int ocfs2_rotate_tree_left(handle_t
*handle
,
3155 struct ocfs2_extent_tree
*et
,
3156 struct ocfs2_path
*path
,
3157 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3159 int ret
, orig_credits
= handle
->h_buffer_credits
;
3160 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
3161 struct ocfs2_extent_block
*eb
;
3162 struct ocfs2_extent_list
*el
;
3164 el
= path_leaf_el(path
);
3165 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
3168 if (path
->p_tree_depth
== 0) {
3169 rightmost_no_delete
:
3171 * Inline extents. This is trivially handled, so do
3174 ret
= ocfs2_rotate_rightmost_leaf_left(handle
, et
, path
);
3181 * Handle rightmost branch now. There's several cases:
3182 * 1) simple rotation leaving records in there. That's trivial.
3183 * 2) rotation requiring a branch delete - there's no more
3184 * records left. Two cases of this:
3185 * a) There are branches to the left.
3186 * b) This is also the leftmost (the only) branch.
3188 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3189 * 2a) we need the left branch so that we can update it with the unlink
3190 * 2b) we need to bring the root back to inline extents.
3193 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
3195 if (eb
->h_next_leaf_blk
== 0) {
3197 * This gets a bit tricky if we're going to delete the
3198 * rightmost path. Get the other cases out of the way
3201 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
3202 goto rightmost_no_delete
;
3204 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3206 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3207 "Owner %llu has empty extent block at %llu",
3208 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
3209 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
3214 * XXX: The caller can not trust "path" any more after
3215 * this as it will have been deleted. What do we do?
3217 * In theory the rotate-for-merge code will never get
3218 * here because it'll always ask for a rotate in a
3222 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
,
3230 * Now we can loop, remembering the path we get from -EAGAIN
3231 * and restarting from there.
3234 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
, path
,
3235 dealloc
, &restart_path
);
3236 if (ret
&& ret
!= -EAGAIN
) {
3241 while (ret
== -EAGAIN
) {
3242 tmp_path
= restart_path
;
3243 restart_path
= NULL
;
3245 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
,
3248 if (ret
&& ret
!= -EAGAIN
) {
3253 ocfs2_free_path(tmp_path
);
3261 ocfs2_free_path(tmp_path
);
3262 ocfs2_free_path(restart_path
);
3266 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
3269 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
3272 if (rec
->e_leaf_clusters
== 0) {
3274 * We consumed all of the merged-from record. An empty
3275 * extent cannot exist anywhere but the 1st array
3276 * position, so move things over if the merged-from
3277 * record doesn't occupy that position.
3279 * This creates a new empty extent so the caller
3280 * should be smart enough to have removed any existing
3284 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3285 size
= index
* sizeof(struct ocfs2_extent_rec
);
3286 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
3290 * Always memset - the caller doesn't check whether it
3291 * created an empty extent, so there could be junk in
3294 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3298 static int ocfs2_get_right_path(struct ocfs2_extent_tree
*et
,
3299 struct ocfs2_path
*left_path
,
3300 struct ocfs2_path
**ret_right_path
)
3304 struct ocfs2_path
*right_path
= NULL
;
3305 struct ocfs2_extent_list
*left_el
;
3307 *ret_right_path
= NULL
;
3309 /* This function shouldn't be called for non-trees. */
3310 BUG_ON(left_path
->p_tree_depth
== 0);
3312 left_el
= path_leaf_el(left_path
);
3313 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3315 ret
= ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3316 left_path
, &right_cpos
);
3322 /* This function shouldn't be called for the rightmost leaf. */
3323 BUG_ON(right_cpos
== 0);
3325 right_path
= ocfs2_new_path_from_path(left_path
);
3332 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
3338 *ret_right_path
= right_path
;
3341 ocfs2_free_path(right_path
);
3346 * Remove split_rec clusters from the record at index and merge them
3347 * onto the beginning of the record "next" to it.
3348 * For index < l_count - 1, the next means the extent rec at index + 1.
3349 * For index == l_count - 1, the "next" means the 1st extent rec of the
3350 * next extent block.
3352 static int ocfs2_merge_rec_right(struct ocfs2_path
*left_path
,
3354 struct ocfs2_extent_tree
*et
,
3355 struct ocfs2_extent_rec
*split_rec
,
3358 int ret
, next_free
, i
;
3359 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3360 struct ocfs2_extent_rec
*left_rec
;
3361 struct ocfs2_extent_rec
*right_rec
;
3362 struct ocfs2_extent_list
*right_el
;
3363 struct ocfs2_path
*right_path
= NULL
;
3364 int subtree_index
= 0;
3365 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3366 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3367 struct buffer_head
*root_bh
= NULL
;
3369 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3370 left_rec
= &el
->l_recs
[index
];
3372 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3373 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3374 /* we meet with a cross extent block merge. */
3375 ret
= ocfs2_get_right_path(et
, left_path
, &right_path
);
3381 right_el
= path_leaf_el(right_path
);
3382 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3383 BUG_ON(next_free
<= 0);
3384 right_rec
= &right_el
->l_recs
[0];
3385 if (ocfs2_is_empty_extent(right_rec
)) {
3386 BUG_ON(next_free
<= 1);
3387 right_rec
= &right_el
->l_recs
[1];
3390 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3391 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3392 le32_to_cpu(right_rec
->e_cpos
));
3394 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3397 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3398 handle
->h_buffer_credits
,
3405 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3406 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3408 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3415 for (i
= subtree_index
+ 1;
3416 i
< path_num_items(right_path
); i
++) {
3417 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3424 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3433 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3434 right_rec
= &el
->l_recs
[index
+ 1];
3437 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, left_path
,
3438 path_num_items(left_path
) - 1);
3444 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3446 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3447 le64_add_cpu(&right_rec
->e_blkno
,
3448 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3450 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3452 ocfs2_cleanup_merge(el
, index
);
3454 ocfs2_journal_dirty(handle
, bh
);
3456 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3457 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
3462 ocfs2_free_path(right_path
);
3466 static int ocfs2_get_left_path(struct ocfs2_extent_tree
*et
,
3467 struct ocfs2_path
*right_path
,
3468 struct ocfs2_path
**ret_left_path
)
3472 struct ocfs2_path
*left_path
= NULL
;
3474 *ret_left_path
= NULL
;
3476 /* This function shouldn't be called for non-trees. */
3477 BUG_ON(right_path
->p_tree_depth
== 0);
3479 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3480 right_path
, &left_cpos
);
3486 /* This function shouldn't be called for the leftmost leaf. */
3487 BUG_ON(left_cpos
== 0);
3489 left_path
= ocfs2_new_path_from_path(right_path
);
3496 ret
= ocfs2_find_path(et
->et_ci
, left_path
, left_cpos
);
3502 *ret_left_path
= left_path
;
3505 ocfs2_free_path(left_path
);
3510 * Remove split_rec clusters from the record at index and merge them
3511 * onto the tail of the record "before" it.
3512 * For index > 0, the "before" means the extent rec at index - 1.
3514 * For index == 0, the "before" means the last record of the previous
3515 * extent block. And there is also a situation that we may need to
3516 * remove the rightmost leaf extent block in the right_path and change
3517 * the right path to indicate the new rightmost path.
3519 static int ocfs2_merge_rec_left(struct ocfs2_path
*right_path
,
3521 struct ocfs2_extent_tree
*et
,
3522 struct ocfs2_extent_rec
*split_rec
,
3523 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3526 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3527 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3528 struct ocfs2_extent_rec
*left_rec
;
3529 struct ocfs2_extent_rec
*right_rec
;
3530 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3531 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3532 struct buffer_head
*root_bh
= NULL
;
3533 struct ocfs2_path
*left_path
= NULL
;
3534 struct ocfs2_extent_list
*left_el
;
3538 right_rec
= &el
->l_recs
[index
];
3540 /* we meet with a cross extent block merge. */
3541 ret
= ocfs2_get_left_path(et
, right_path
, &left_path
);
3547 left_el
= path_leaf_el(left_path
);
3548 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3549 le16_to_cpu(left_el
->l_count
));
3551 left_rec
= &left_el
->l_recs
[
3552 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3553 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3554 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3555 le32_to_cpu(split_rec
->e_cpos
));
3557 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3560 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3561 handle
->h_buffer_credits
,
3568 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3569 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3571 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3578 for (i
= subtree_index
+ 1;
3579 i
< path_num_items(right_path
); i
++) {
3580 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3587 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3595 left_rec
= &el
->l_recs
[index
- 1];
3596 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3597 has_empty_extent
= 1;
3600 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3601 path_num_items(right_path
) - 1);
3607 if (has_empty_extent
&& index
== 1) {
3609 * The easy case - we can just plop the record right in.
3611 *left_rec
= *split_rec
;
3613 has_empty_extent
= 0;
3615 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3617 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3618 le64_add_cpu(&right_rec
->e_blkno
,
3619 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3621 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3623 ocfs2_cleanup_merge(el
, index
);
3625 ocfs2_journal_dirty(handle
, bh
);
3627 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3630 * In the situation that the right_rec is empty and the extent
3631 * block is empty also, ocfs2_complete_edge_insert can't handle
3632 * it and we need to delete the right extent block.
3634 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3635 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3637 ret
= ocfs2_remove_rightmost_path(handle
, et
,
3645 /* Now the rightmost extent block has been deleted.
3646 * So we use the new rightmost path.
3648 ocfs2_mv_path(right_path
, left_path
);
3651 ocfs2_complete_edge_insert(handle
, left_path
,
3652 right_path
, subtree_index
);
3656 ocfs2_free_path(left_path
);
3660 static int ocfs2_try_to_merge_extent(handle_t
*handle
,
3661 struct ocfs2_extent_tree
*et
,
3662 struct ocfs2_path
*path
,
3664 struct ocfs2_extent_rec
*split_rec
,
3665 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3666 struct ocfs2_merge_ctxt
*ctxt
)
3669 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3670 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3672 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3674 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3676 * The merge code will need to create an empty
3677 * extent to take the place of the newly
3678 * emptied slot. Remove any pre-existing empty
3679 * extents - having more than one in a leaf is
3682 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3688 rec
= &el
->l_recs
[split_index
];
3691 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3693 * Left-right contig implies this.
3695 BUG_ON(!ctxt
->c_split_covers_rec
);
3698 * Since the leftright insert always covers the entire
3699 * extent, this call will delete the insert record
3700 * entirely, resulting in an empty extent record added to
3703 * Since the adding of an empty extent shifts
3704 * everything back to the right, there's no need to
3705 * update split_index here.
3707 * When the split_index is zero, we need to merge it to the
3708 * prevoius extent block. It is more efficient and easier
3709 * if we do merge_right first and merge_left later.
3711 ret
= ocfs2_merge_rec_right(path
, handle
, et
, split_rec
,
3719 * We can only get this from logic error above.
3721 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3723 /* The merge left us with an empty extent, remove it. */
3724 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3730 rec
= &el
->l_recs
[split_index
];
3733 * Note that we don't pass split_rec here on purpose -
3734 * we've merged it into the rec already.
3736 ret
= ocfs2_merge_rec_left(path
, handle
, et
, rec
,
3737 dealloc
, split_index
);
3744 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3746 * Error from this last rotate is not critical, so
3747 * print but don't bubble it up.
3754 * Merge a record to the left or right.
3756 * 'contig_type' is relative to the existing record,
3757 * so for example, if we're "right contig", it's to
3758 * the record on the left (hence the left merge).
3760 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3761 ret
= ocfs2_merge_rec_left(path
, handle
, et
,
3769 ret
= ocfs2_merge_rec_right(path
, handle
,
3778 if (ctxt
->c_split_covers_rec
) {
3780 * The merge may have left an empty extent in
3781 * our leaf. Try to rotate it away.
3783 ret
= ocfs2_rotate_tree_left(handle
, et
, path
,
3795 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3796 enum ocfs2_split_type split
,
3797 struct ocfs2_extent_rec
*rec
,
3798 struct ocfs2_extent_rec
*split_rec
)
3802 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3803 le16_to_cpu(split_rec
->e_leaf_clusters
));
3805 if (split
== SPLIT_LEFT
) {
3807 * Region is on the left edge of the existing
3810 le32_add_cpu(&rec
->e_cpos
,
3811 le16_to_cpu(split_rec
->e_leaf_clusters
));
3812 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3813 le16_add_cpu(&rec
->e_leaf_clusters
,
3814 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3817 * Region is on the right edge of the existing
3820 le16_add_cpu(&rec
->e_leaf_clusters
,
3821 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3826 * Do the final bits of extent record insertion at the target leaf
3827 * list. If this leaf is part of an allocation tree, it is assumed
3828 * that the tree above has been prepared.
3830 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree
*et
,
3831 struct ocfs2_extent_rec
*insert_rec
,
3832 struct ocfs2_extent_list
*el
,
3833 struct ocfs2_insert_type
*insert
)
3835 int i
= insert
->ins_contig_index
;
3837 struct ocfs2_extent_rec
*rec
;
3839 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3841 if (insert
->ins_split
!= SPLIT_NONE
) {
3842 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3844 rec
= &el
->l_recs
[i
];
3845 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
3846 insert
->ins_split
, rec
,
3852 * Contiguous insert - either left or right.
3854 if (insert
->ins_contig
!= CONTIG_NONE
) {
3855 rec
= &el
->l_recs
[i
];
3856 if (insert
->ins_contig
== CONTIG_LEFT
) {
3857 rec
->e_blkno
= insert_rec
->e_blkno
;
3858 rec
->e_cpos
= insert_rec
->e_cpos
;
3860 le16_add_cpu(&rec
->e_leaf_clusters
,
3861 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3866 * Handle insert into an empty leaf.
3868 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3869 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3870 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3871 el
->l_recs
[0] = *insert_rec
;
3872 el
->l_next_free_rec
= cpu_to_le16(1);
3879 if (insert
->ins_appending
== APPEND_TAIL
) {
3880 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3881 rec
= &el
->l_recs
[i
];
3882 range
= le32_to_cpu(rec
->e_cpos
)
3883 + le16_to_cpu(rec
->e_leaf_clusters
);
3884 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3886 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3887 le16_to_cpu(el
->l_count
),
3888 "owner %llu, depth %u, count %u, next free %u, "
3889 "rec.cpos %u, rec.clusters %u, "
3890 "insert.cpos %u, insert.clusters %u\n",
3891 ocfs2_metadata_cache_owner(et
->et_ci
),
3892 le16_to_cpu(el
->l_tree_depth
),
3893 le16_to_cpu(el
->l_count
),
3894 le16_to_cpu(el
->l_next_free_rec
),
3895 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3896 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3897 le32_to_cpu(insert_rec
->e_cpos
),
3898 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3900 el
->l_recs
[i
] = *insert_rec
;
3901 le16_add_cpu(&el
->l_next_free_rec
, 1);
3907 * Ok, we have to rotate.
3909 * At this point, it is safe to assume that inserting into an
3910 * empty leaf and appending to a leaf have both been handled
3913 * This leaf needs to have space, either by the empty 1st
3914 * extent record, or by virtue of an l_next_rec < l_count.
3916 ocfs2_rotate_leaf(el
, insert_rec
);
3919 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
3920 struct ocfs2_extent_tree
*et
,
3921 struct ocfs2_path
*path
,
3922 struct ocfs2_extent_rec
*insert_rec
)
3924 int ret
, i
, next_free
;
3925 struct buffer_head
*bh
;
3926 struct ocfs2_extent_list
*el
;
3927 struct ocfs2_extent_rec
*rec
;
3930 * Update everything except the leaf block.
3932 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3933 bh
= path
->p_node
[i
].bh
;
3934 el
= path
->p_node
[i
].el
;
3936 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3937 if (next_free
== 0) {
3938 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3939 "Owner %llu has a bad extent list",
3940 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
3945 rec
= &el
->l_recs
[next_free
- 1];
3947 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3948 le32_add_cpu(&rec
->e_int_clusters
,
3949 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3950 le32_add_cpu(&rec
->e_int_clusters
,
3951 -le32_to_cpu(rec
->e_cpos
));
3953 ocfs2_journal_dirty(handle
, bh
);
3957 static int ocfs2_append_rec_to_path(handle_t
*handle
,
3958 struct ocfs2_extent_tree
*et
,
3959 struct ocfs2_extent_rec
*insert_rec
,
3960 struct ocfs2_path
*right_path
,
3961 struct ocfs2_path
**ret_left_path
)
3964 struct ocfs2_extent_list
*el
;
3965 struct ocfs2_path
*left_path
= NULL
;
3967 *ret_left_path
= NULL
;
3970 * This shouldn't happen for non-trees. The extent rec cluster
3971 * count manipulation below only works for interior nodes.
3973 BUG_ON(right_path
->p_tree_depth
== 0);
3976 * If our appending insert is at the leftmost edge of a leaf,
3977 * then we might need to update the rightmost records of the
3980 el
= path_leaf_el(right_path
);
3981 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3982 if (next_free
== 0 ||
3983 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3986 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3987 right_path
, &left_cpos
);
3993 mlog(0, "Append may need a left path update. cpos: %u, "
3994 "left_cpos: %u\n", le32_to_cpu(insert_rec
->e_cpos
),
3998 * No need to worry if the append is already in the
4002 left_path
= ocfs2_new_path_from_path(right_path
);
4009 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
4017 * ocfs2_insert_path() will pass the left_path to the
4023 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4029 ocfs2_adjust_rightmost_records(handle
, et
, right_path
, insert_rec
);
4031 *ret_left_path
= left_path
;
4035 ocfs2_free_path(left_path
);
4040 static void ocfs2_split_record(struct ocfs2_extent_tree
*et
,
4041 struct ocfs2_path
*left_path
,
4042 struct ocfs2_path
*right_path
,
4043 struct ocfs2_extent_rec
*split_rec
,
4044 enum ocfs2_split_type split
)
4047 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
4048 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
4049 struct ocfs2_extent_rec
*rec
, *tmprec
;
4051 right_el
= path_leaf_el(right_path
);
4053 left_el
= path_leaf_el(left_path
);
4056 insert_el
= right_el
;
4057 index
= ocfs2_search_extent_list(el
, cpos
);
4059 if (index
== 0 && left_path
) {
4060 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
4063 * This typically means that the record
4064 * started in the left path but moved to the
4065 * right as a result of rotation. We either
4066 * move the existing record to the left, or we
4067 * do the later insert there.
4069 * In this case, the left path should always
4070 * exist as the rotate code will have passed
4071 * it back for a post-insert update.
4074 if (split
== SPLIT_LEFT
) {
4076 * It's a left split. Since we know
4077 * that the rotate code gave us an
4078 * empty extent in the left path, we
4079 * can just do the insert there.
4081 insert_el
= left_el
;
4084 * Right split - we have to move the
4085 * existing record over to the left
4086 * leaf. The insert will be into the
4087 * newly created empty extent in the
4090 tmprec
= &right_el
->l_recs
[index
];
4091 ocfs2_rotate_leaf(left_el
, tmprec
);
4094 memset(tmprec
, 0, sizeof(*tmprec
));
4095 index
= ocfs2_search_extent_list(left_el
, cpos
);
4096 BUG_ON(index
== -1);
4101 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
4103 * Left path is easy - we can just allow the insert to
4107 insert_el
= left_el
;
4108 index
= ocfs2_search_extent_list(el
, cpos
);
4109 BUG_ON(index
== -1);
4112 rec
= &el
->l_recs
[index
];
4113 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4114 split
, rec
, split_rec
);
4115 ocfs2_rotate_leaf(insert_el
, split_rec
);
4119 * This function only does inserts on an allocation b-tree. For tree
4120 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4122 * right_path is the path we want to do the actual insert
4123 * in. left_path should only be passed in if we need to update that
4124 * portion of the tree after an edge insert.
4126 static int ocfs2_insert_path(handle_t
*handle
,
4127 struct ocfs2_extent_tree
*et
,
4128 struct ocfs2_path
*left_path
,
4129 struct ocfs2_path
*right_path
,
4130 struct ocfs2_extent_rec
*insert_rec
,
4131 struct ocfs2_insert_type
*insert
)
4133 int ret
, subtree_index
;
4134 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
4138 * There's a chance that left_path got passed back to
4139 * us without being accounted for in the
4140 * journal. Extend our transaction here to be sure we
4141 * can change those blocks.
4143 ret
= ocfs2_extend_trans(handle
, left_path
->p_tree_depth
);
4149 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
4157 * Pass both paths to the journal. The majority of inserts
4158 * will be touching all components anyway.
4160 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4166 if (insert
->ins_split
!= SPLIT_NONE
) {
4168 * We could call ocfs2_insert_at_leaf() for some types
4169 * of splits, but it's easier to just let one separate
4170 * function sort it all out.
4172 ocfs2_split_record(et
, left_path
, right_path
,
4173 insert_rec
, insert
->ins_split
);
4176 * Split might have modified either leaf and we don't
4177 * have a guarantee that the later edge insert will
4178 * dirty this for us.
4181 ocfs2_journal_dirty(handle
,
4182 path_leaf_bh(left_path
));
4184 ocfs2_insert_at_leaf(et
, insert_rec
, path_leaf_el(right_path
),
4187 ocfs2_journal_dirty(handle
, leaf_bh
);
4191 * The rotate code has indicated that we need to fix
4192 * up portions of the tree after the insert.
4194 * XXX: Should we extend the transaction here?
4196 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
4198 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
4207 static int ocfs2_do_insert_extent(handle_t
*handle
,
4208 struct ocfs2_extent_tree
*et
,
4209 struct ocfs2_extent_rec
*insert_rec
,
4210 struct ocfs2_insert_type
*type
)
4212 int ret
, rotate
= 0;
4214 struct ocfs2_path
*right_path
= NULL
;
4215 struct ocfs2_path
*left_path
= NULL
;
4216 struct ocfs2_extent_list
*el
;
4218 el
= et
->et_root_el
;
4220 ret
= ocfs2_et_root_journal_access(handle
, et
,
4221 OCFS2_JOURNAL_ACCESS_WRITE
);
4227 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
4228 ocfs2_insert_at_leaf(et
, insert_rec
, el
, type
);
4229 goto out_update_clusters
;
4232 right_path
= ocfs2_new_path_from_et(et
);
4240 * Determine the path to start with. Rotations need the
4241 * rightmost path, everything else can go directly to the
4244 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4245 if (type
->ins_appending
== APPEND_NONE
&&
4246 type
->ins_contig
== CONTIG_NONE
) {
4251 ret
= ocfs2_find_path(et
->et_ci
, right_path
, cpos
);
4258 * Rotations and appends need special treatment - they modify
4259 * parts of the tree's above them.
4261 * Both might pass back a path immediate to the left of the
4262 * one being inserted to. This will be cause
4263 * ocfs2_insert_path() to modify the rightmost records of
4264 * left_path to account for an edge insert.
4266 * XXX: When modifying this code, keep in mind that an insert
4267 * can wind up skipping both of these two special cases...
4270 ret
= ocfs2_rotate_tree_right(handle
, et
, type
->ins_split
,
4271 le32_to_cpu(insert_rec
->e_cpos
),
4272 right_path
, &left_path
);
4279 * ocfs2_rotate_tree_right() might have extended the
4280 * transaction without re-journaling our tree root.
4282 ret
= ocfs2_et_root_journal_access(handle
, et
,
4283 OCFS2_JOURNAL_ACCESS_WRITE
);
4288 } else if (type
->ins_appending
== APPEND_TAIL
4289 && type
->ins_contig
!= CONTIG_LEFT
) {
4290 ret
= ocfs2_append_rec_to_path(handle
, et
, insert_rec
,
4291 right_path
, &left_path
);
4298 ret
= ocfs2_insert_path(handle
, et
, left_path
, right_path
,
4305 out_update_clusters
:
4306 if (type
->ins_split
== SPLIT_NONE
)
4307 ocfs2_et_update_clusters(et
,
4308 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4310 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4313 ocfs2_free_path(left_path
);
4314 ocfs2_free_path(right_path
);
4319 static enum ocfs2_contig_type
4320 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree
*et
,
4321 struct ocfs2_path
*path
,
4322 struct ocfs2_extent_list
*el
, int index
,
4323 struct ocfs2_extent_rec
*split_rec
)
4326 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4327 u32 left_cpos
, right_cpos
;
4328 struct ocfs2_extent_rec
*rec
= NULL
;
4329 struct ocfs2_extent_list
*new_el
;
4330 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4331 struct buffer_head
*bh
;
4332 struct ocfs2_extent_block
*eb
;
4333 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
4336 rec
= &el
->l_recs
[index
- 1];
4337 } else if (path
->p_tree_depth
> 0) {
4338 status
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
4342 if (left_cpos
!= 0) {
4343 left_path
= ocfs2_new_path_from_path(path
);
4347 status
= ocfs2_find_path(et
->et_ci
, left_path
,
4352 new_el
= path_leaf_el(left_path
);
4354 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4355 le16_to_cpu(new_el
->l_count
)) {
4356 bh
= path_leaf_bh(left_path
);
4357 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4359 "Extent block #%llu has an "
4360 "invalid l_next_free_rec of "
4361 "%d. It should have "
4362 "matched the l_count of %d",
4363 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4364 le16_to_cpu(new_el
->l_next_free_rec
),
4365 le16_to_cpu(new_el
->l_count
));
4369 rec
= &new_el
->l_recs
[
4370 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4375 * We're careful to check for an empty extent record here -
4376 * the merge code will know what to do if it sees one.
4379 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4380 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4383 ret
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4388 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4389 rec
= &el
->l_recs
[index
+ 1];
4390 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4391 path
->p_tree_depth
> 0) {
4392 status
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
4396 if (right_cpos
== 0)
4399 right_path
= ocfs2_new_path_from_path(path
);
4403 status
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
4407 new_el
= path_leaf_el(right_path
);
4408 rec
= &new_el
->l_recs
[0];
4409 if (ocfs2_is_empty_extent(rec
)) {
4410 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4411 bh
= path_leaf_bh(right_path
);
4412 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4414 "Extent block #%llu has an "
4415 "invalid l_next_free_rec of %d",
4416 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4417 le16_to_cpu(new_el
->l_next_free_rec
));
4421 rec
= &new_el
->l_recs
[1];
4426 enum ocfs2_contig_type contig_type
;
4428 contig_type
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4430 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4431 ret
= CONTIG_LEFTRIGHT
;
4432 else if (ret
== CONTIG_NONE
)
4438 ocfs2_free_path(left_path
);
4440 ocfs2_free_path(right_path
);
4445 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree
*et
,
4446 struct ocfs2_insert_type
*insert
,
4447 struct ocfs2_extent_list
*el
,
4448 struct ocfs2_extent_rec
*insert_rec
)
4451 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4453 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4455 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4456 contig_type
= ocfs2_et_extent_contig(et
, &el
->l_recs
[i
],
4458 if (contig_type
!= CONTIG_NONE
) {
4459 insert
->ins_contig_index
= i
;
4463 insert
->ins_contig
= contig_type
;
4465 if (insert
->ins_contig
!= CONTIG_NONE
) {
4466 struct ocfs2_extent_rec
*rec
=
4467 &el
->l_recs
[insert
->ins_contig_index
];
4468 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4469 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4472 * Caller might want us to limit the size of extents, don't
4473 * calculate contiguousness if we might exceed that limit.
4475 if (et
->et_max_leaf_clusters
&&
4476 (len
> et
->et_max_leaf_clusters
))
4477 insert
->ins_contig
= CONTIG_NONE
;
4482 * This should only be called against the righmost leaf extent list.
4484 * ocfs2_figure_appending_type() will figure out whether we'll have to
4485 * insert at the tail of the rightmost leaf.
4487 * This should also work against the root extent list for tree's with 0
4488 * depth. If we consider the root extent list to be the rightmost leaf node
4489 * then the logic here makes sense.
4491 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4492 struct ocfs2_extent_list
*el
,
4493 struct ocfs2_extent_rec
*insert_rec
)
4496 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4497 struct ocfs2_extent_rec
*rec
;
4499 insert
->ins_appending
= APPEND_NONE
;
4501 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4503 if (!el
->l_next_free_rec
)
4504 goto set_tail_append
;
4506 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4507 /* Were all records empty? */
4508 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4509 goto set_tail_append
;
4512 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4513 rec
= &el
->l_recs
[i
];
4516 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4517 goto set_tail_append
;
4522 insert
->ins_appending
= APPEND_TAIL
;
4526 * Helper function called at the begining of an insert.
4528 * This computes a few things that are commonly used in the process of
4529 * inserting into the btree:
4530 * - Whether the new extent is contiguous with an existing one.
4531 * - The current tree depth.
4532 * - Whether the insert is an appending one.
4533 * - The total # of free records in the tree.
4535 * All of the information is stored on the ocfs2_insert_type
4538 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree
*et
,
4539 struct buffer_head
**last_eb_bh
,
4540 struct ocfs2_extent_rec
*insert_rec
,
4542 struct ocfs2_insert_type
*insert
)
4545 struct ocfs2_extent_block
*eb
;
4546 struct ocfs2_extent_list
*el
;
4547 struct ocfs2_path
*path
= NULL
;
4548 struct buffer_head
*bh
= NULL
;
4550 insert
->ins_split
= SPLIT_NONE
;
4552 el
= et
->et_root_el
;
4553 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4555 if (el
->l_tree_depth
) {
4557 * If we have tree depth, we read in the
4558 * rightmost extent block ahead of time as
4559 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4560 * may want it later.
4562 ret
= ocfs2_read_extent_block(et
->et_ci
,
4563 ocfs2_et_get_last_eb_blk(et
),
4569 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4574 * Unless we have a contiguous insert, we'll need to know if
4575 * there is room left in our allocation tree for another
4578 * XXX: This test is simplistic, we can search for empty
4579 * extent records too.
4581 *free_records
= le16_to_cpu(el
->l_count
) -
4582 le16_to_cpu(el
->l_next_free_rec
);
4584 if (!insert
->ins_tree_depth
) {
4585 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4586 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4590 path
= ocfs2_new_path_from_et(et
);
4598 * In the case that we're inserting past what the tree
4599 * currently accounts for, ocfs2_find_path() will return for
4600 * us the rightmost tree path. This is accounted for below in
4601 * the appending code.
4603 ret
= ocfs2_find_path(et
->et_ci
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4609 el
= path_leaf_el(path
);
4612 * Now that we have the path, there's two things we want to determine:
4613 * 1) Contiguousness (also set contig_index if this is so)
4615 * 2) Are we doing an append? We can trivially break this up
4616 * into two types of appends: simple record append, or a
4617 * rotate inside the tail leaf.
4619 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4622 * The insert code isn't quite ready to deal with all cases of
4623 * left contiguousness. Specifically, if it's an insert into
4624 * the 1st record in a leaf, it will require the adjustment of
4625 * cluster count on the last record of the path directly to it's
4626 * left. For now, just catch that case and fool the layers
4627 * above us. This works just fine for tree_depth == 0, which
4628 * is why we allow that above.
4630 if (insert
->ins_contig
== CONTIG_LEFT
&&
4631 insert
->ins_contig_index
== 0)
4632 insert
->ins_contig
= CONTIG_NONE
;
4635 * Ok, so we can simply compare against last_eb to figure out
4636 * whether the path doesn't exist. This will only happen in
4637 * the case that we're doing a tail append, so maybe we can
4638 * take advantage of that information somehow.
4640 if (ocfs2_et_get_last_eb_blk(et
) ==
4641 path_leaf_bh(path
)->b_blocknr
) {
4643 * Ok, ocfs2_find_path() returned us the rightmost
4644 * tree path. This might be an appending insert. There are
4646 * 1) We're doing a true append at the tail:
4647 * -This might even be off the end of the leaf
4648 * 2) We're "appending" by rotating in the tail
4650 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4654 ocfs2_free_path(path
);
4664 * Insert an extent into a btree.
4666 * The caller needs to update the owning btree's cluster count.
4668 int ocfs2_insert_extent(handle_t
*handle
,
4669 struct ocfs2_extent_tree
*et
,
4674 struct ocfs2_alloc_context
*meta_ac
)
4677 int uninitialized_var(free_records
);
4678 struct buffer_head
*last_eb_bh
= NULL
;
4679 struct ocfs2_insert_type insert
= {0, };
4680 struct ocfs2_extent_rec rec
;
4682 mlog(0, "add %u clusters at position %u to owner %llu\n",
4684 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
4686 memset(&rec
, 0, sizeof(rec
));
4687 rec
.e_cpos
= cpu_to_le32(cpos
);
4688 rec
.e_blkno
= cpu_to_le64(start_blk
);
4689 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4690 rec
.e_flags
= flags
;
4691 status
= ocfs2_et_insert_check(et
, &rec
);
4697 status
= ocfs2_figure_insert_type(et
, &last_eb_bh
, &rec
,
4698 &free_records
, &insert
);
4704 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4705 "Insert.contig_index: %d, Insert.free_records: %d, "
4706 "Insert.tree_depth: %d\n",
4707 insert
.ins_appending
, insert
.ins_contig
, insert
.ins_contig_index
,
4708 free_records
, insert
.ins_tree_depth
);
4710 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4711 status
= ocfs2_grow_tree(handle
, et
,
4712 &insert
.ins_tree_depth
, &last_eb_bh
,
4720 /* Finally, we can add clusters. This might rotate the tree for us. */
4721 status
= ocfs2_do_insert_extent(handle
, et
, &rec
, &insert
);
4725 ocfs2_et_extent_map_insert(et
, &rec
);
4735 * Allcate and add clusters into the extent b-tree.
4736 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4737 * The extent b-tree's root is specified by et, and
4738 * it is not limited to the file storage. Any extent tree can use this
4739 * function if it implements the proper ocfs2_extent_tree.
4741 int ocfs2_add_clusters_in_btree(handle_t
*handle
,
4742 struct ocfs2_extent_tree
*et
,
4743 u32
*logical_offset
,
4744 u32 clusters_to_add
,
4746 struct ocfs2_alloc_context
*data_ac
,
4747 struct ocfs2_alloc_context
*meta_ac
,
4748 enum ocfs2_alloc_restarted
*reason_ret
)
4752 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4753 u32 bit_off
, num_bits
;
4756 struct ocfs2_super
*osb
=
4757 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
4759 BUG_ON(!clusters_to_add
);
4762 flags
= OCFS2_EXT_UNWRITTEN
;
4764 free_extents
= ocfs2_num_free_extents(osb
, et
);
4765 if (free_extents
< 0) {
4766 status
= free_extents
;
4771 /* there are two cases which could cause us to EAGAIN in the
4772 * we-need-more-metadata case:
4773 * 1) we haven't reserved *any*
4774 * 2) we are so fragmented, we've needed to add metadata too
4776 if (!free_extents
&& !meta_ac
) {
4777 mlog(0, "we haven't reserved any metadata!\n");
4779 reason
= RESTART_META
;
4781 } else if ((!free_extents
)
4782 && (ocfs2_alloc_context_bits_left(meta_ac
)
4783 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4784 mlog(0, "filesystem is really fragmented...\n");
4786 reason
= RESTART_META
;
4790 status
= __ocfs2_claim_clusters(handle
, data_ac
, 1,
4791 clusters_to_add
, &bit_off
, &num_bits
);
4793 if (status
!= -ENOSPC
)
4798 BUG_ON(num_bits
> clusters_to_add
);
4800 /* reserve our write early -- insert_extent may update the tree root */
4801 status
= ocfs2_et_root_journal_access(handle
, et
,
4802 OCFS2_JOURNAL_ACCESS_WRITE
);
4808 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4809 mlog(0, "Allocating %u clusters at block %u for owner %llu\n",
4811 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
4812 status
= ocfs2_insert_extent(handle
, et
, *logical_offset
, block
,
4813 num_bits
, flags
, meta_ac
);
4819 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4821 clusters_to_add
-= num_bits
;
4822 *logical_offset
+= num_bits
;
4824 if (clusters_to_add
) {
4825 mlog(0, "need to alloc once more, wanted = %u\n",
4828 reason
= RESTART_TRANS
;
4834 *reason_ret
= reason
;
4838 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4839 struct ocfs2_extent_rec
*split_rec
,
4841 struct ocfs2_extent_rec
*rec
)
4843 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4844 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4846 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4848 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4849 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4851 split_rec
->e_blkno
= rec
->e_blkno
;
4852 le64_add_cpu(&split_rec
->e_blkno
,
4853 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4855 split_rec
->e_flags
= rec
->e_flags
;
4858 static int ocfs2_split_and_insert(handle_t
*handle
,
4859 struct ocfs2_extent_tree
*et
,
4860 struct ocfs2_path
*path
,
4861 struct buffer_head
**last_eb_bh
,
4863 struct ocfs2_extent_rec
*orig_split_rec
,
4864 struct ocfs2_alloc_context
*meta_ac
)
4867 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4868 struct ocfs2_extent_rec tmprec
;
4869 struct ocfs2_extent_list
*rightmost_el
;
4870 struct ocfs2_extent_rec rec
;
4871 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4872 struct ocfs2_insert_type insert
;
4873 struct ocfs2_extent_block
*eb
;
4877 * Store a copy of the record on the stack - it might move
4878 * around as the tree is manipulated below.
4880 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4882 rightmost_el
= et
->et_root_el
;
4884 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4886 BUG_ON(!(*last_eb_bh
));
4887 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4888 rightmost_el
= &eb
->h_list
;
4891 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4892 le16_to_cpu(rightmost_el
->l_count
)) {
4893 ret
= ocfs2_grow_tree(handle
, et
,
4894 &depth
, last_eb_bh
, meta_ac
);
4901 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4902 insert
.ins_appending
= APPEND_NONE
;
4903 insert
.ins_contig
= CONTIG_NONE
;
4904 insert
.ins_tree_depth
= depth
;
4906 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4907 le16_to_cpu(split_rec
.e_leaf_clusters
);
4908 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4909 le16_to_cpu(rec
.e_leaf_clusters
);
4911 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4912 insert
.ins_split
= SPLIT_LEFT
;
4913 } else if (insert_range
== rec_range
) {
4914 insert
.ins_split
= SPLIT_RIGHT
;
4917 * Left/right split. We fake this as a right split
4918 * first and then make a second pass as a left split.
4920 insert
.ins_split
= SPLIT_RIGHT
;
4922 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4923 &tmprec
, insert_range
, &rec
);
4927 BUG_ON(do_leftright
);
4931 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
4937 if (do_leftright
== 1) {
4939 struct ocfs2_extent_list
*el
;
4942 split_rec
= *orig_split_rec
;
4944 ocfs2_reinit_path(path
, 1);
4946 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4947 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
4953 el
= path_leaf_el(path
);
4954 split_index
= ocfs2_search_extent_list(el
, cpos
);
4962 static int ocfs2_replace_extent_rec(handle_t
*handle
,
4963 struct ocfs2_extent_tree
*et
,
4964 struct ocfs2_path
*path
,
4965 struct ocfs2_extent_list
*el
,
4967 struct ocfs2_extent_rec
*split_rec
)
4971 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
4972 path_num_items(path
) - 1);
4978 el
->l_recs
[split_index
] = *split_rec
;
4980 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
4986 * Split part or all of the extent record at split_index in the leaf
4987 * pointed to by path. Merge with the contiguous extent record if needed.
4989 * Care is taken to handle contiguousness so as to not grow the tree.
4991 * meta_ac is not strictly necessary - we only truly need it if growth
4992 * of the tree is required. All other cases will degrade into a less
4993 * optimal tree layout.
4995 * last_eb_bh should be the rightmost leaf block for any extent
4996 * btree. Since a split may grow the tree or a merge might shrink it,
4997 * the caller cannot trust the contents of that buffer after this call.
4999 * This code is optimized for readability - several passes might be
5000 * made over certain portions of the tree. All of those blocks will
5001 * have been brought into cache (and pinned via the journal), so the
5002 * extra overhead is not expressed in terms of disk reads.
5004 int ocfs2_split_extent(handle_t
*handle
,
5005 struct ocfs2_extent_tree
*et
,
5006 struct ocfs2_path
*path
,
5008 struct ocfs2_extent_rec
*split_rec
,
5009 struct ocfs2_alloc_context
*meta_ac
,
5010 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5013 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5014 struct buffer_head
*last_eb_bh
= NULL
;
5015 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
5016 struct ocfs2_merge_ctxt ctxt
;
5017 struct ocfs2_extent_list
*rightmost_el
;
5019 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
5020 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
5021 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
5027 ctxt
.c_contig_type
= ocfs2_figure_merge_contig_type(et
, path
, el
,
5032 * The core merge / split code wants to know how much room is
5033 * left in this allocation tree, so we pass the
5034 * rightmost extent list.
5036 if (path
->p_tree_depth
) {
5037 struct ocfs2_extent_block
*eb
;
5039 ret
= ocfs2_read_extent_block(et
->et_ci
,
5040 ocfs2_et_get_last_eb_blk(et
),
5047 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5048 rightmost_el
= &eb
->h_list
;
5050 rightmost_el
= path_root_el(path
);
5052 if (rec
->e_cpos
== split_rec
->e_cpos
&&
5053 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
5054 ctxt
.c_split_covers_rec
= 1;
5056 ctxt
.c_split_covers_rec
= 0;
5058 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
5060 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5061 split_index
, ctxt
.c_contig_type
, ctxt
.c_has_empty_extent
,
5062 ctxt
.c_split_covers_rec
);
5064 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
5065 if (ctxt
.c_split_covers_rec
)
5066 ret
= ocfs2_replace_extent_rec(handle
, et
, path
, el
,
5067 split_index
, split_rec
);
5069 ret
= ocfs2_split_and_insert(handle
, et
, path
,
5070 &last_eb_bh
, split_index
,
5071 split_rec
, meta_ac
);
5075 ret
= ocfs2_try_to_merge_extent(handle
, et
, path
,
5076 split_index
, split_rec
,
5088 * Change the flags of the already-existing extent at cpos for len clusters.
5090 * new_flags: the flags we want to set.
5091 * clear_flags: the flags we want to clear.
5092 * phys: the new physical offset we want this new extent starts from.
5094 * If the existing extent is larger than the request, initiate a
5095 * split. An attempt will be made at merging with adjacent extents.
5097 * The caller is responsible for passing down meta_ac if we'll need it.
5099 int ocfs2_change_extent_flag(handle_t
*handle
,
5100 struct ocfs2_extent_tree
*et
,
5101 u32 cpos
, u32 len
, u32 phys
,
5102 struct ocfs2_alloc_context
*meta_ac
,
5103 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5104 int new_flags
, int clear_flags
)
5107 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5108 u64 start_blkno
= ocfs2_clusters_to_blocks(sb
, phys
);
5109 struct ocfs2_extent_rec split_rec
;
5110 struct ocfs2_path
*left_path
= NULL
;
5111 struct ocfs2_extent_list
*el
;
5112 struct ocfs2_extent_rec
*rec
;
5114 left_path
= ocfs2_new_path_from_et(et
);
5121 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
5126 el
= path_leaf_el(left_path
);
5128 index
= ocfs2_search_extent_list(el
, cpos
);
5129 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5131 "Owner %llu has an extent at cpos %u which can no "
5132 "longer be found.\n",
5133 (unsigned long long)
5134 ocfs2_metadata_cache_owner(et
->et_ci
), cpos
);
5140 rec
= &el
->l_recs
[index
];
5141 if (new_flags
&& (rec
->e_flags
& new_flags
)) {
5142 mlog(ML_ERROR
, "Owner %llu tried to set %d flags on an "
5143 "extent that already had them",
5144 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5149 if (clear_flags
&& !(rec
->e_flags
& clear_flags
)) {
5150 mlog(ML_ERROR
, "Owner %llu tried to clear %d flags on an "
5151 "extent that didn't have them",
5152 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5157 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
5158 split_rec
.e_cpos
= cpu_to_le32(cpos
);
5159 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
5160 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
5161 split_rec
.e_flags
= rec
->e_flags
;
5163 split_rec
.e_flags
|= new_flags
;
5165 split_rec
.e_flags
&= ~clear_flags
;
5167 ret
= ocfs2_split_extent(handle
, et
, left_path
,
5168 index
, &split_rec
, meta_ac
,
5174 ocfs2_free_path(left_path
);
5180 * Mark the already-existing extent at cpos as written for len clusters.
5181 * This removes the unwritten extent flag.
5183 * If the existing extent is larger than the request, initiate a
5184 * split. An attempt will be made at merging with adjacent extents.
5186 * The caller is responsible for passing down meta_ac if we'll need it.
5188 int ocfs2_mark_extent_written(struct inode
*inode
,
5189 struct ocfs2_extent_tree
*et
,
5190 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
5191 struct ocfs2_alloc_context
*meta_ac
,
5192 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5196 mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n",
5197 inode
->i_ino
, cpos
, len
, phys
);
5199 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
5200 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents "
5201 "that are being written to, but the feature bit "
5202 "is not set in the super block.",
5203 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
5209 * XXX: This should be fixed up so that we just re-insert the
5210 * next extent records.
5212 ocfs2_et_extent_map_truncate(et
, 0);
5214 ret
= ocfs2_change_extent_flag(handle
, et
, cpos
,
5215 len
, phys
, meta_ac
, dealloc
,
5216 0, OCFS2_EXT_UNWRITTEN
);
5224 static int ocfs2_split_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
5225 struct ocfs2_path
*path
,
5226 int index
, u32 new_range
,
5227 struct ocfs2_alloc_context
*meta_ac
)
5229 int ret
, depth
, credits
;
5230 struct buffer_head
*last_eb_bh
= NULL
;
5231 struct ocfs2_extent_block
*eb
;
5232 struct ocfs2_extent_list
*rightmost_el
, *el
;
5233 struct ocfs2_extent_rec split_rec
;
5234 struct ocfs2_extent_rec
*rec
;
5235 struct ocfs2_insert_type insert
;
5238 * Setup the record to split before we grow the tree.
5240 el
= path_leaf_el(path
);
5241 rec
= &el
->l_recs
[index
];
5242 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
5243 &split_rec
, new_range
, rec
);
5245 depth
= path
->p_tree_depth
;
5247 ret
= ocfs2_read_extent_block(et
->et_ci
,
5248 ocfs2_et_get_last_eb_blk(et
),
5255 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5256 rightmost_el
= &eb
->h_list
;
5258 rightmost_el
= path_leaf_el(path
);
5260 credits
= path
->p_tree_depth
+
5261 ocfs2_extend_meta_needed(et
->et_root_el
);
5262 ret
= ocfs2_extend_trans(handle
, credits
);
5268 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
5269 le16_to_cpu(rightmost_el
->l_count
)) {
5270 ret
= ocfs2_grow_tree(handle
, et
, &depth
, &last_eb_bh
,
5278 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
5279 insert
.ins_appending
= APPEND_NONE
;
5280 insert
.ins_contig
= CONTIG_NONE
;
5281 insert
.ins_split
= SPLIT_RIGHT
;
5282 insert
.ins_tree_depth
= depth
;
5284 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
5293 static int ocfs2_truncate_rec(handle_t
*handle
,
5294 struct ocfs2_extent_tree
*et
,
5295 struct ocfs2_path
*path
, int index
,
5296 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5300 u32 left_cpos
, rec_range
, trunc_range
;
5301 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
5302 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5303 struct ocfs2_path
*left_path
= NULL
;
5304 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5305 struct ocfs2_extent_rec
*rec
;
5306 struct ocfs2_extent_block
*eb
;
5308 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
5309 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5318 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
5319 path
->p_tree_depth
) {
5321 * Check whether this is the rightmost tree record. If
5322 * we remove all of this record or part of its right
5323 * edge then an update of the record lengths above it
5326 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5327 if (eb
->h_next_leaf_blk
== 0)
5328 is_rightmost_tree_rec
= 1;
5331 rec
= &el
->l_recs
[index
];
5332 if (index
== 0 && path
->p_tree_depth
&&
5333 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5335 * Changing the leftmost offset (via partial or whole
5336 * record truncate) of an interior (or rightmost) path
5337 * means we have to update the subtree that is formed
5338 * by this leaf and the one to it's left.
5340 * There are two cases we can skip:
5341 * 1) Path is the leftmost one in our btree.
5342 * 2) The leaf is rightmost and will be empty after
5343 * we remove the extent record - the rotate code
5344 * knows how to update the newly formed edge.
5347 ret
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
5353 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5354 left_path
= ocfs2_new_path_from_path(path
);
5361 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
5370 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5371 handle
->h_buffer_credits
,
5378 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
5384 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
5390 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5391 trunc_range
= cpos
+ len
;
5393 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5396 memset(rec
, 0, sizeof(*rec
));
5397 ocfs2_cleanup_merge(el
, index
);
5400 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5401 if (is_rightmost_tree_rec
&& next_free
> 1) {
5403 * We skip the edge update if this path will
5404 * be deleted by the rotate code.
5406 rec
= &el
->l_recs
[next_free
- 1];
5407 ocfs2_adjust_rightmost_records(handle
, et
, path
,
5410 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5411 /* Remove leftmost portion of the record. */
5412 le32_add_cpu(&rec
->e_cpos
, len
);
5413 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5414 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5415 } else if (rec_range
== trunc_range
) {
5416 /* Remove rightmost portion of the record */
5417 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5418 if (is_rightmost_tree_rec
)
5419 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
5421 /* Caller should have trapped this. */
5422 mlog(ML_ERROR
, "Owner %llu: Invalid record truncate: (%u, %u) "
5424 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5425 le32_to_cpu(rec
->e_cpos
),
5426 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5433 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
5434 ocfs2_complete_edge_insert(handle
, left_path
, path
,
5438 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5440 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5447 ocfs2_free_path(left_path
);
5451 int ocfs2_remove_extent(handle_t
*handle
,
5452 struct ocfs2_extent_tree
*et
,
5454 struct ocfs2_alloc_context
*meta_ac
,
5455 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5458 u32 rec_range
, trunc_range
;
5459 struct ocfs2_extent_rec
*rec
;
5460 struct ocfs2_extent_list
*el
;
5461 struct ocfs2_path
*path
= NULL
;
5464 * XXX: Why are we truncating to 0 instead of wherever this
5467 ocfs2_et_extent_map_truncate(et
, 0);
5469 path
= ocfs2_new_path_from_et(et
);
5476 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5482 el
= path_leaf_el(path
);
5483 index
= ocfs2_search_extent_list(el
, cpos
);
5484 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5485 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5486 "Owner %llu has an extent at cpos %u which can no "
5487 "longer be found.\n",
5488 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5495 * We have 3 cases of extent removal:
5496 * 1) Range covers the entire extent rec
5497 * 2) Range begins or ends on one edge of the extent rec
5498 * 3) Range is in the middle of the extent rec (no shared edges)
5500 * For case 1 we remove the extent rec and left rotate to
5503 * For case 2 we just shrink the existing extent rec, with a
5504 * tree update if the shrinking edge is also the edge of an
5507 * For case 3 we do a right split to turn the extent rec into
5508 * something case 2 can handle.
5510 rec
= &el
->l_recs
[index
];
5511 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5512 trunc_range
= cpos
+ len
;
5514 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5516 mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d "
5517 "(cpos %u, len %u)\n",
5518 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5520 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
));
5522 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5523 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5530 ret
= ocfs2_split_tree(handle
, et
, path
, index
,
5531 trunc_range
, meta_ac
);
5538 * The split could have manipulated the tree enough to
5539 * move the record location, so we have to look for it again.
5541 ocfs2_reinit_path(path
, 1);
5543 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5549 el
= path_leaf_el(path
);
5550 index
= ocfs2_search_extent_list(el
, cpos
);
5551 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5552 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5553 "Owner %llu: split at cpos %u lost record.",
5554 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5561 * Double check our values here. If anything is fishy,
5562 * it's easier to catch it at the top level.
5564 rec
= &el
->l_recs
[index
];
5565 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5566 ocfs2_rec_clusters(el
, rec
);
5567 if (rec_range
!= trunc_range
) {
5568 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5569 "Owner %llu: error after split at cpos %u"
5570 "trunc len %u, existing record is (%u,%u)",
5571 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5572 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5573 ocfs2_rec_clusters(el
, rec
));
5578 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5587 ocfs2_free_path(path
);
5592 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5593 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5594 * number to reserve some extra blocks, and it only handles meta
5597 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5598 * and punching holes.
5600 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode
*inode
,
5601 struct ocfs2_extent_tree
*et
,
5602 u32 extents_to_split
,
5603 struct ocfs2_alloc_context
**ac
,
5606 int ret
= 0, num_free_extents
;
5607 unsigned int max_recs_needed
= 2 * extents_to_split
;
5608 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5612 num_free_extents
= ocfs2_num_free_extents(osb
, et
);
5613 if (num_free_extents
< 0) {
5614 ret
= num_free_extents
;
5619 if (!num_free_extents
||
5620 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
))
5621 extra_blocks
+= ocfs2_extend_meta_needed(et
->et_root_el
);
5624 ret
= ocfs2_reserve_new_metadata_blocks(osb
, extra_blocks
, ac
);
5635 ocfs2_free_alloc_context(*ac
);
5643 int ocfs2_remove_btree_range(struct inode
*inode
,
5644 struct ocfs2_extent_tree
*et
,
5645 u32 cpos
, u32 phys_cpos
, u32 len
, int flags
,
5646 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5649 int ret
, credits
= 0, extra_blocks
= 0;
5650 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
5651 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5652 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5654 struct ocfs2_alloc_context
*meta_ac
= NULL
;
5655 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
5657 if ((flags
& OCFS2_EXT_REFCOUNTED
) && len
) {
5658 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
&
5659 OCFS2_HAS_REFCOUNT_FL
));
5661 ret
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
5668 ret
= ocfs2_prepare_refcount_change_for_del(inode
,
5680 ret
= ocfs2_reserve_blocks_for_rec_trunc(inode
, et
, 1, &meta_ac
,
5687 mutex_lock(&tl_inode
->i_mutex
);
5689 if (ocfs2_truncate_log_needs_flush(osb
)) {
5690 ret
= __ocfs2_flush_truncate_log(osb
);
5697 handle
= ocfs2_start_trans(osb
,
5698 ocfs2_remove_extent_credits(osb
->sb
) + credits
);
5699 if (IS_ERR(handle
)) {
5700 ret
= PTR_ERR(handle
);
5705 ret
= ocfs2_et_root_journal_access(handle
, et
,
5706 OCFS2_JOURNAL_ACCESS_WRITE
);
5712 dquot_free_space_nodirty(inode
,
5713 ocfs2_clusters_to_bytes(inode
->i_sb
, len
));
5715 ret
= ocfs2_remove_extent(handle
, et
, cpos
, len
, meta_ac
, dealloc
);
5721 ocfs2_et_update_clusters(et
, -len
);
5723 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
5726 if (flags
& OCFS2_EXT_REFCOUNTED
)
5727 ret
= ocfs2_decrease_refcount(inode
, handle
,
5728 ocfs2_blocks_to_clusters(osb
->sb
,
5733 ret
= ocfs2_truncate_log_append(osb
, handle
,
5741 ocfs2_commit_trans(osb
, handle
);
5743 mutex_unlock(&tl_inode
->i_mutex
);
5746 ocfs2_free_alloc_context(meta_ac
);
5749 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
5754 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5756 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5757 struct ocfs2_dinode
*di
;
5758 struct ocfs2_truncate_log
*tl
;
5760 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5761 tl
= &di
->id2
.i_dealloc
;
5763 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5764 "slot %d, invalid truncate log parameters: used = "
5765 "%u, count = %u\n", osb
->slot_num
,
5766 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5767 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5770 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5771 unsigned int new_start
)
5773 unsigned int tail_index
;
5774 unsigned int current_tail
;
5776 /* No records, nothing to coalesce */
5777 if (!le16_to_cpu(tl
->tl_used
))
5780 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5781 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5782 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5784 return current_tail
== new_start
;
5787 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5790 unsigned int num_clusters
)
5793 unsigned int start_cluster
, tl_count
;
5794 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5795 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5796 struct ocfs2_dinode
*di
;
5797 struct ocfs2_truncate_log
*tl
;
5799 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5800 (unsigned long long)start_blk
, num_clusters
);
5802 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5804 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5806 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5808 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5809 * by the underlying call to ocfs2_read_inode_block(), so any
5810 * corruption is a code bug */
5811 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5813 tl
= &di
->id2
.i_dealloc
;
5814 tl_count
= le16_to_cpu(tl
->tl_count
);
5815 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5817 "Truncate record count on #%llu invalid "
5818 "wanted %u, actual %u\n",
5819 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5820 ocfs2_truncate_recs_per_inode(osb
->sb
),
5821 le16_to_cpu(tl
->tl_count
));
5823 /* Caller should have known to flush before calling us. */
5824 index
= le16_to_cpu(tl
->tl_used
);
5825 if (index
>= tl_count
) {
5831 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5832 OCFS2_JOURNAL_ACCESS_WRITE
);
5838 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5839 "%llu (index = %d)\n", num_clusters
, start_cluster
,
5840 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
);
5842 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5844 * Move index back to the record we are coalescing with.
5845 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5849 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5850 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5851 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5854 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5855 tl
->tl_used
= cpu_to_le16(index
+ 1);
5857 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5859 ocfs2_journal_dirty(handle
, tl_bh
);
5866 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5868 struct inode
*data_alloc_inode
,
5869 struct buffer_head
*data_alloc_bh
)
5873 unsigned int num_clusters
;
5875 struct ocfs2_truncate_rec rec
;
5876 struct ocfs2_dinode
*di
;
5877 struct ocfs2_truncate_log
*tl
;
5878 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5879 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5883 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5884 tl
= &di
->id2
.i_dealloc
;
5885 i
= le16_to_cpu(tl
->tl_used
) - 1;
5887 /* Caller has given us at least enough credits to
5888 * update the truncate log dinode */
5889 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5890 OCFS2_JOURNAL_ACCESS_WRITE
);
5896 tl
->tl_used
= cpu_to_le16(i
);
5898 ocfs2_journal_dirty(handle
, tl_bh
);
5900 /* TODO: Perhaps we can calculate the bulk of the
5901 * credits up front rather than extending like
5903 status
= ocfs2_extend_trans(handle
,
5904 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5910 rec
= tl
->tl_recs
[i
];
5911 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5912 le32_to_cpu(rec
.t_start
));
5913 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5915 /* if start_blk is not set, we ignore the record as
5918 mlog(0, "free record %d, start = %u, clusters = %u\n",
5919 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5921 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5922 data_alloc_bh
, start_blk
,
5937 /* Expects you to already be holding tl_inode->i_mutex */
5938 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5941 unsigned int num_to_flush
;
5943 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5944 struct inode
*data_alloc_inode
= NULL
;
5945 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5946 struct buffer_head
*data_alloc_bh
= NULL
;
5947 struct ocfs2_dinode
*di
;
5948 struct ocfs2_truncate_log
*tl
;
5952 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5954 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5956 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5957 * by the underlying call to ocfs2_read_inode_block(), so any
5958 * corruption is a code bug */
5959 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5961 tl
= &di
->id2
.i_dealloc
;
5962 num_to_flush
= le16_to_cpu(tl
->tl_used
);
5963 mlog(0, "Flush %u records from truncate log #%llu\n",
5964 num_to_flush
, (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
);
5965 if (!num_to_flush
) {
5970 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
5971 GLOBAL_BITMAP_SYSTEM_INODE
,
5972 OCFS2_INVALID_SLOT
);
5973 if (!data_alloc_inode
) {
5975 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
5979 mutex_lock(&data_alloc_inode
->i_mutex
);
5981 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
5987 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5988 if (IS_ERR(handle
)) {
5989 status
= PTR_ERR(handle
);
5994 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
5999 ocfs2_commit_trans(osb
, handle
);
6002 brelse(data_alloc_bh
);
6003 ocfs2_inode_unlock(data_alloc_inode
, 1);
6006 mutex_unlock(&data_alloc_inode
->i_mutex
);
6007 iput(data_alloc_inode
);
6014 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
6017 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6019 mutex_lock(&tl_inode
->i_mutex
);
6020 status
= __ocfs2_flush_truncate_log(osb
);
6021 mutex_unlock(&tl_inode
->i_mutex
);
6026 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
6029 struct ocfs2_super
*osb
=
6030 container_of(work
, struct ocfs2_super
,
6031 osb_truncate_log_wq
.work
);
6035 status
= ocfs2_flush_truncate_log(osb
);
6039 ocfs2_init_steal_slots(osb
);
6044 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6045 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
6048 if (osb
->osb_tl_inode
) {
6049 /* We want to push off log flushes while truncates are
6052 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6054 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
6055 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
6059 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
6061 struct inode
**tl_inode
,
6062 struct buffer_head
**tl_bh
)
6065 struct inode
*inode
= NULL
;
6066 struct buffer_head
*bh
= NULL
;
6068 inode
= ocfs2_get_system_file_inode(osb
,
6069 TRUNCATE_LOG_SYSTEM_INODE
,
6073 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
6077 status
= ocfs2_read_inode_block(inode
, &bh
);
6091 /* called during the 1st stage of node recovery. we stamp a clean
6092 * truncate log and pass back a copy for processing later. if the
6093 * truncate log does not require processing, a *tl_copy is set to
6095 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
6097 struct ocfs2_dinode
**tl_copy
)
6100 struct inode
*tl_inode
= NULL
;
6101 struct buffer_head
*tl_bh
= NULL
;
6102 struct ocfs2_dinode
*di
;
6103 struct ocfs2_truncate_log
*tl
;
6107 mlog(0, "recover truncate log from slot %d\n", slot_num
);
6109 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
6115 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6117 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6118 * validated by the underlying call to ocfs2_read_inode_block(),
6119 * so any corruption is a code bug */
6120 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6122 tl
= &di
->id2
.i_dealloc
;
6123 if (le16_to_cpu(tl
->tl_used
)) {
6124 mlog(0, "We'll have %u logs to recover\n",
6125 le16_to_cpu(tl
->tl_used
));
6127 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
6134 /* Assuming the write-out below goes well, this copy
6135 * will be passed back to recovery for processing. */
6136 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
6138 /* All we need to do to clear the truncate log is set
6142 ocfs2_compute_meta_ecc(osb
->sb
, tl_bh
->b_data
, &di
->i_check
);
6143 status
= ocfs2_write_block(osb
, tl_bh
, INODE_CACHE(tl_inode
));
6155 if (status
< 0 && (*tl_copy
)) {
6164 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
6165 struct ocfs2_dinode
*tl_copy
)
6169 unsigned int clusters
, num_recs
, start_cluster
;
6172 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6173 struct ocfs2_truncate_log
*tl
;
6177 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
6178 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
6182 tl
= &tl_copy
->id2
.i_dealloc
;
6183 num_recs
= le16_to_cpu(tl
->tl_used
);
6184 mlog(0, "cleanup %u records from %llu\n", num_recs
,
6185 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
));
6187 mutex_lock(&tl_inode
->i_mutex
);
6188 for(i
= 0; i
< num_recs
; i
++) {
6189 if (ocfs2_truncate_log_needs_flush(osb
)) {
6190 status
= __ocfs2_flush_truncate_log(osb
);
6197 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6198 if (IS_ERR(handle
)) {
6199 status
= PTR_ERR(handle
);
6204 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
6205 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
6206 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
6208 status
= ocfs2_truncate_log_append(osb
, handle
,
6209 start_blk
, clusters
);
6210 ocfs2_commit_trans(osb
, handle
);
6218 mutex_unlock(&tl_inode
->i_mutex
);
6224 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
6227 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6232 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6233 flush_workqueue(ocfs2_wq
);
6235 status
= ocfs2_flush_truncate_log(osb
);
6239 brelse(osb
->osb_tl_bh
);
6240 iput(osb
->osb_tl_inode
);
6246 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
6249 struct inode
*tl_inode
= NULL
;
6250 struct buffer_head
*tl_bh
= NULL
;
6254 status
= ocfs2_get_truncate_log_info(osb
,
6261 /* ocfs2_truncate_log_shutdown keys on the existence of
6262 * osb->osb_tl_inode so we don't set any of the osb variables
6263 * until we're sure all is well. */
6264 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
6265 ocfs2_truncate_log_worker
);
6266 osb
->osb_tl_bh
= tl_bh
;
6267 osb
->osb_tl_inode
= tl_inode
;
6274 * Delayed de-allocation of suballocator blocks.
6276 * Some sets of block de-allocations might involve multiple suballocator inodes.
6278 * The locking for this can get extremely complicated, especially when
6279 * the suballocator inodes to delete from aren't known until deep
6280 * within an unrelated codepath.
6282 * ocfs2_extent_block structures are a good example of this - an inode
6283 * btree could have been grown by any number of nodes each allocating
6284 * out of their own suballoc inode.
6286 * These structures allow the delay of block de-allocation until a
6287 * later time, when locking of multiple cluster inodes won't cause
6292 * Describe a single bit freed from a suballocator. For the block
6293 * suballocators, it represents one block. For the global cluster
6294 * allocator, it represents some clusters and free_bit indicates
6297 struct ocfs2_cached_block_free
{
6298 struct ocfs2_cached_block_free
*free_next
;
6301 unsigned int free_bit
;
6304 struct ocfs2_per_slot_free_list
{
6305 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
6308 struct ocfs2_cached_block_free
*f_first
;
6311 static int ocfs2_free_cached_blocks(struct ocfs2_super
*osb
,
6314 struct ocfs2_cached_block_free
*head
)
6319 struct inode
*inode
;
6320 struct buffer_head
*di_bh
= NULL
;
6321 struct ocfs2_cached_block_free
*tmp
;
6323 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
6330 mutex_lock(&inode
->i_mutex
);
6332 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
6338 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
6339 if (IS_ERR(handle
)) {
6340 ret
= PTR_ERR(handle
);
6347 bg_blkno
= head
->free_bg
;
6349 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
6351 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6352 head
->free_bit
, (unsigned long long)head
->free_blk
);
6354 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
6355 head
->free_bit
, bg_blkno
, 1);
6361 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
6368 head
= head
->free_next
;
6373 ocfs2_commit_trans(osb
, handle
);
6376 ocfs2_inode_unlock(inode
, 1);
6379 mutex_unlock(&inode
->i_mutex
);
6383 /* Premature exit may have left some dangling items. */
6385 head
= head
->free_next
;
6392 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6393 u64 blkno
, unsigned int bit
)
6396 struct ocfs2_cached_block_free
*item
;
6398 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6405 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6406 bit
, (unsigned long long)blkno
);
6408 item
->free_blk
= blkno
;
6409 item
->free_bit
= bit
;
6410 item
->free_next
= ctxt
->c_global_allocator
;
6412 ctxt
->c_global_allocator
= item
;
6416 static int ocfs2_free_cached_clusters(struct ocfs2_super
*osb
,
6417 struct ocfs2_cached_block_free
*head
)
6419 struct ocfs2_cached_block_free
*tmp
;
6420 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6424 mutex_lock(&tl_inode
->i_mutex
);
6427 if (ocfs2_truncate_log_needs_flush(osb
)) {
6428 ret
= __ocfs2_flush_truncate_log(osb
);
6435 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6436 if (IS_ERR(handle
)) {
6437 ret
= PTR_ERR(handle
);
6442 ret
= ocfs2_truncate_log_append(osb
, handle
, head
->free_blk
,
6445 ocfs2_commit_trans(osb
, handle
);
6447 head
= head
->free_next
;
6456 mutex_unlock(&tl_inode
->i_mutex
);
6459 /* Premature exit may have left some dangling items. */
6461 head
= head
->free_next
;
6468 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
6469 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6472 struct ocfs2_per_slot_free_list
*fl
;
6477 while (ctxt
->c_first_suballocator
) {
6478 fl
= ctxt
->c_first_suballocator
;
6481 mlog(0, "Free items: (type %u, slot %d)\n",
6482 fl
->f_inode_type
, fl
->f_slot
);
6483 ret2
= ocfs2_free_cached_blocks(osb
,
6493 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
6497 if (ctxt
->c_global_allocator
) {
6498 ret2
= ocfs2_free_cached_clusters(osb
,
6499 ctxt
->c_global_allocator
);
6505 ctxt
->c_global_allocator
= NULL
;
6511 static struct ocfs2_per_slot_free_list
*
6512 ocfs2_find_per_slot_free_list(int type
,
6514 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6516 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6519 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
6522 fl
= fl
->f_next_suballocator
;
6525 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
6527 fl
->f_inode_type
= type
;
6530 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
6532 ctxt
->c_first_suballocator
= fl
;
6537 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6538 int type
, int slot
, u64 suballoc
,
6539 u64 blkno
, unsigned int bit
)
6542 struct ocfs2_per_slot_free_list
*fl
;
6543 struct ocfs2_cached_block_free
*item
;
6545 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
6552 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6559 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6560 type
, slot
, bit
, (unsigned long long)blkno
);
6562 item
->free_bg
= suballoc
;
6563 item
->free_blk
= blkno
;
6564 item
->free_bit
= bit
;
6565 item
->free_next
= fl
->f_first
;
6574 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6575 struct ocfs2_extent_block
*eb
)
6577 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
6578 le16_to_cpu(eb
->h_suballoc_slot
),
6579 le64_to_cpu(eb
->h_suballoc_loc
),
6580 le64_to_cpu(eb
->h_blkno
),
6581 le16_to_cpu(eb
->h_suballoc_bit
));
6584 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6586 set_buffer_uptodate(bh
);
6587 mark_buffer_dirty(bh
);
6591 void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6592 unsigned int from
, unsigned int to
,
6593 struct page
*page
, int zero
, u64
*phys
)
6595 int ret
, partial
= 0;
6597 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6602 zero_user_segment(page
, from
, to
);
6605 * Need to set the buffers we zero'd into uptodate
6606 * here if they aren't - ocfs2_map_page_blocks()
6607 * might've skipped some
6609 ret
= walk_page_buffers(handle
, page_buffers(page
),
6614 else if (ocfs2_should_order_data(inode
)) {
6615 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
6621 SetPageUptodate(page
);
6623 flush_dcache_page(page
);
6626 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6627 loff_t end
, struct page
**pages
,
6628 int numpages
, u64 phys
, handle_t
*handle
)
6632 unsigned int from
, to
= PAGE_CACHE_SIZE
;
6633 struct super_block
*sb
= inode
->i_sb
;
6635 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6640 to
= PAGE_CACHE_SIZE
;
6641 for(i
= 0; i
< numpages
; i
++) {
6644 from
= start
& (PAGE_CACHE_SIZE
- 1);
6645 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
6646 to
= end
& (PAGE_CACHE_SIZE
- 1);
6648 BUG_ON(from
> PAGE_CACHE_SIZE
);
6649 BUG_ON(to
> PAGE_CACHE_SIZE
);
6651 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6654 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
6658 ocfs2_unlock_and_free_pages(pages
, numpages
);
6661 int ocfs2_grab_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6662 struct page
**pages
, int *num
)
6664 int numpages
, ret
= 0;
6665 struct address_space
*mapping
= inode
->i_mapping
;
6666 unsigned long index
;
6667 loff_t last_page_bytes
;
6669 BUG_ON(start
> end
);
6672 last_page_bytes
= PAGE_ALIGN(end
);
6673 index
= start
>> PAGE_CACHE_SHIFT
;
6675 pages
[numpages
] = find_or_create_page(mapping
, index
, GFP_NOFS
);
6676 if (!pages
[numpages
]) {
6684 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
6689 ocfs2_unlock_and_free_pages(pages
, numpages
);
6698 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6699 struct page
**pages
, int *num
)
6701 struct super_block
*sb
= inode
->i_sb
;
6703 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6704 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6706 return ocfs2_grab_pages(inode
, start
, end
, pages
, num
);
6710 * Zero the area past i_size but still within an allocated
6711 * cluster. This avoids exposing nonzero data on subsequent file
6714 * We need to call this before i_size is updated on the inode because
6715 * otherwise block_write_full_page() will skip writeout of pages past
6716 * i_size. The new_i_size parameter is passed for this reason.
6718 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6719 u64 range_start
, u64 range_end
)
6721 int ret
= 0, numpages
;
6722 struct page
**pages
= NULL
;
6724 unsigned int ext_flags
;
6725 struct super_block
*sb
= inode
->i_sb
;
6728 * File systems which don't support sparse files zero on every
6731 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6734 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6735 sizeof(struct page
*), GFP_NOFS
);
6736 if (pages
== NULL
) {
6742 if (range_start
== range_end
)
6745 ret
= ocfs2_extent_map_get_blocks(inode
,
6746 range_start
>> sb
->s_blocksize_bits
,
6747 &phys
, NULL
, &ext_flags
);
6754 * Tail is a hole, or is marked unwritten. In either case, we
6755 * can count on read and write to return/push zero's.
6757 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6760 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6767 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6768 numpages
, phys
, handle
);
6771 * Initiate writeout of the pages we zero'd here. We don't
6772 * wait on them - the truncate_inode_pages() call later will
6775 ret
= filemap_fdatawrite_range(inode
->i_mapping
, range_start
,
6787 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
6788 struct ocfs2_dinode
*di
)
6790 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
6791 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
6793 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
6794 memset(&di
->id2
, 0, blocksize
-
6795 offsetof(struct ocfs2_dinode
, id2
) -
6798 memset(&di
->id2
, 0, blocksize
-
6799 offsetof(struct ocfs2_dinode
, id2
));
6802 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
6803 struct ocfs2_dinode
*di
)
6805 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6806 di
->id2
.i_list
.l_tree_depth
= 0;
6807 di
->id2
.i_list
.l_next_free_rec
= 0;
6808 di
->id2
.i_list
.l_count
= cpu_to_le16(
6809 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
6812 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
6814 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6815 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6817 spin_lock(&oi
->ip_lock
);
6818 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
6819 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6820 spin_unlock(&oi
->ip_lock
);
6823 * We clear the entire i_data structure here so that all
6824 * fields can be properly initialized.
6826 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6828 idata
->id_count
= cpu_to_le16(
6829 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
6832 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
6833 struct buffer_head
*di_bh
)
6835 int ret
, i
, has_data
, num_pages
= 0;
6837 u64
uninitialized_var(block
);
6838 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6839 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6840 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6841 struct ocfs2_alloc_context
*data_ac
= NULL
;
6842 struct page
**pages
= NULL
;
6843 loff_t end
= osb
->s_clustersize
;
6844 struct ocfs2_extent_tree et
;
6847 has_data
= i_size_read(inode
) ? 1 : 0;
6850 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
6851 sizeof(struct page
*), GFP_NOFS
);
6852 if (pages
== NULL
) {
6858 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
6865 handle
= ocfs2_start_trans(osb
,
6866 ocfs2_inline_to_extents_credits(osb
->sb
));
6867 if (IS_ERR(handle
)) {
6868 ret
= PTR_ERR(handle
);
6873 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
6874 OCFS2_JOURNAL_ACCESS_WRITE
);
6882 unsigned int page_end
;
6885 ret
= dquot_alloc_space_nodirty(inode
,
6886 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6891 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
6893 ret
= ocfs2_claim_clusters(handle
, data_ac
, 1, &bit_off
,
6901 * Save two copies, one for insert, and one that can
6902 * be changed by ocfs2_map_and_dirty_page() below.
6904 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
6907 * Non sparse file systems zero on extend, so no need
6910 if (!ocfs2_sparse_alloc(osb
) &&
6911 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
6912 end
= PAGE_CACHE_SIZE
;
6914 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
6921 * This should populate the 1st page for us and mark
6924 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
6930 page_end
= PAGE_CACHE_SIZE
;
6931 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
6932 page_end
= osb
->s_clustersize
;
6934 for (i
= 0; i
< num_pages
; i
++)
6935 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
6936 pages
[i
], i
> 0, &phys
);
6939 spin_lock(&oi
->ip_lock
);
6940 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
6941 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6942 spin_unlock(&oi
->ip_lock
);
6944 ocfs2_dinode_new_extent_list(inode
, di
);
6946 ocfs2_journal_dirty(handle
, di_bh
);
6950 * An error at this point should be extremely rare. If
6951 * this proves to be false, we could always re-build
6952 * the in-inode data from our pages.
6954 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
6955 ret
= ocfs2_insert_extent(handle
, &et
, 0, block
, 1, 0, NULL
);
6961 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6965 if (ret
< 0 && did_quota
)
6966 dquot_free_space_nodirty(inode
,
6967 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6969 ocfs2_commit_trans(osb
, handle
);
6973 ocfs2_free_alloc_context(data_ac
);
6977 ocfs2_unlock_and_free_pages(pages
, num_pages
);
6985 * It is expected, that by the time you call this function,
6986 * inode->i_size and fe->i_size have been adjusted.
6988 * WARNING: This will kfree the truncate context
6990 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
6991 struct inode
*inode
,
6992 struct buffer_head
*di_bh
)
6994 int status
= 0, i
, flags
= 0;
6995 u32 new_highest_cpos
, range
, trunc_cpos
, trunc_len
, phys_cpos
, coff
;
6997 struct ocfs2_extent_list
*el
;
6998 struct ocfs2_extent_rec
*rec
;
6999 struct ocfs2_path
*path
= NULL
;
7000 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7001 struct ocfs2_extent_list
*root_el
= &(di
->id2
.i_list
);
7002 u64 refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
7003 struct ocfs2_extent_tree et
;
7004 struct ocfs2_cached_dealloc_ctxt dealloc
;
7008 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7009 ocfs2_init_dealloc_ctxt(&dealloc
);
7011 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
7012 i_size_read(inode
));
7014 path
= ocfs2_new_path(di_bh
, &di
->id2
.i_list
,
7015 ocfs2_journal_access_di
);
7022 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
7026 * Check that we still have allocation to delete.
7028 if (OCFS2_I(inode
)->ip_clusters
== 0) {
7034 * Truncate always works against the rightmost tree branch.
7036 status
= ocfs2_find_path(INODE_CACHE(inode
), path
, UINT_MAX
);
7042 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7043 OCFS2_I(inode
)->ip_clusters
, path
->p_tree_depth
);
7046 * By now, el will point to the extent list on the bottom most
7047 * portion of this tree. Only the tail record is considered in
7050 * We handle the following cases, in order:
7051 * - empty extent: delete the remaining branch
7052 * - remove the entire record
7053 * - remove a partial record
7054 * - no record needs to be removed (truncate has completed)
7056 el
= path_leaf_el(path
);
7057 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
7058 ocfs2_error(inode
->i_sb
,
7059 "Inode %llu has empty extent block at %llu\n",
7060 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7061 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7066 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
7067 rec
= &el
->l_recs
[i
];
7068 flags
= rec
->e_flags
;
7069 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
7071 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
7073 * Lower levels depend on this never happening, but it's best
7074 * to check it up here before changing the tree.
7076 if (root_el
->l_tree_depth
&& rec
->e_int_clusters
== 0) {
7077 ocfs2_error(inode
->i_sb
, "Inode %lu has an empty "
7078 "extent record, depth %u\n", inode
->i_ino
,
7079 le16_to_cpu(root_el
->l_tree_depth
));
7083 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7086 } else if (le32_to_cpu(rec
->e_cpos
) >= new_highest_cpos
) {
7088 * Truncate entire record.
7090 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7091 trunc_len
= ocfs2_rec_clusters(el
, rec
);
7092 blkno
= le64_to_cpu(rec
->e_blkno
);
7093 } else if (range
> new_highest_cpos
) {
7095 * Partial truncate. it also should be
7096 * the last truncate we're doing.
7098 trunc_cpos
= new_highest_cpos
;
7099 trunc_len
= range
- new_highest_cpos
;
7100 coff
= new_highest_cpos
- le32_to_cpu(rec
->e_cpos
);
7101 blkno
= le64_to_cpu(rec
->e_blkno
) +
7102 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
7105 * Truncate completed, leave happily.
7111 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
7113 status
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
7114 phys_cpos
, trunc_len
, flags
, &dealloc
,
7121 ocfs2_reinit_path(path
, 1);
7124 * The check above will catch the case where we've truncated
7125 * away all allocation.
7131 ocfs2_schedule_truncate_log_flush(osb
, 1);
7133 ocfs2_run_deallocs(osb
, &dealloc
);
7135 ocfs2_free_path(path
);
7142 * Expects the inode to already be locked.
7144 int ocfs2_prepare_truncate(struct ocfs2_super
*osb
,
7145 struct inode
*inode
,
7146 struct buffer_head
*fe_bh
,
7147 struct ocfs2_truncate_context
**tc
)
7150 unsigned int new_i_clusters
;
7151 struct ocfs2_dinode
*fe
;
7152 struct ocfs2_extent_block
*eb
;
7153 struct buffer_head
*last_eb_bh
= NULL
;
7159 new_i_clusters
= ocfs2_clusters_for_bytes(osb
->sb
,
7160 i_size_read(inode
));
7161 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
7163 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7164 "%llu\n", le32_to_cpu(fe
->i_clusters
), new_i_clusters
,
7165 (unsigned long long)le64_to_cpu(fe
->i_size
));
7167 *tc
= kzalloc(sizeof(struct ocfs2_truncate_context
), GFP_KERNEL
);
7173 ocfs2_init_dealloc_ctxt(&(*tc
)->tc_dealloc
);
7175 if (fe
->id2
.i_list
.l_tree_depth
) {
7176 status
= ocfs2_read_extent_block(INODE_CACHE(inode
),
7177 le64_to_cpu(fe
->i_last_eb_blk
),
7183 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
7186 (*tc
)->tc_last_eb_bh
= last_eb_bh
;
7192 ocfs2_free_truncate_context(*tc
);
7200 * 'start' is inclusive, 'end' is not.
7202 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7203 unsigned int start
, unsigned int end
, int trunc
)
7206 unsigned int numbytes
;
7208 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7209 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7210 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7212 if (end
> i_size_read(inode
))
7213 end
= i_size_read(inode
);
7215 BUG_ON(start
>= end
);
7217 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7218 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7219 !ocfs2_supports_inline_data(osb
)) {
7220 ocfs2_error(inode
->i_sb
,
7221 "Inline data flags for inode %llu don't agree! "
7222 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7223 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7224 le16_to_cpu(di
->i_dyn_features
),
7225 OCFS2_I(inode
)->ip_dyn_features
,
7226 osb
->s_feature_incompat
);
7231 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7232 if (IS_ERR(handle
)) {
7233 ret
= PTR_ERR(handle
);
7238 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7239 OCFS2_JOURNAL_ACCESS_WRITE
);
7245 numbytes
= end
- start
;
7246 memset(idata
->id_data
+ start
, 0, numbytes
);
7249 * No need to worry about the data page here - it's been
7250 * truncated already and inline data doesn't need it for
7251 * pushing zero's to disk, so we'll let readpage pick it up
7255 i_size_write(inode
, start
);
7256 di
->i_size
= cpu_to_le64(start
);
7259 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7260 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
7262 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
7263 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
7265 ocfs2_journal_dirty(handle
, di_bh
);
7268 ocfs2_commit_trans(osb
, handle
);
7274 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
)
7277 * The caller is responsible for completing deallocation
7278 * before freeing the context.
7280 if (tc
->tc_dealloc
.c_first_suballocator
!= NULL
)
7282 "Truncate completion has non-empty dealloc context\n");
7284 brelse(tc
->tc_last_eb_bh
);