Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / igb / igb_main.c
blob3881918f5382c4e1305e4c5127bfbb2180bb85cd
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/if_ether.h>
47 #include <linux/aer.h>
48 #ifdef CONFIG_IGB_DCA
49 #include <linux/dca.h>
50 #endif
51 #include "igb.h"
53 #define DRV_VERSION "2.1.0-k2"
54 char igb_driver_name[] = "igb";
55 char igb_driver_version[] = DRV_VERSION;
56 static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
58 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
60 static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
64 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
85 /* required last entry */
86 {0, }
89 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
91 void igb_reset(struct igb_adapter *);
92 static int igb_setup_all_tx_resources(struct igb_adapter *);
93 static int igb_setup_all_rx_resources(struct igb_adapter *);
94 static void igb_free_all_tx_resources(struct igb_adapter *);
95 static void igb_free_all_rx_resources(struct igb_adapter *);
96 static void igb_setup_mrqc(struct igb_adapter *);
97 void igb_update_stats(struct igb_adapter *);
98 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
99 static void __devexit igb_remove(struct pci_dev *pdev);
100 static int igb_sw_init(struct igb_adapter *);
101 static int igb_open(struct net_device *);
102 static int igb_close(struct net_device *);
103 static void igb_configure_tx(struct igb_adapter *);
104 static void igb_configure_rx(struct igb_adapter *);
105 static void igb_clean_all_tx_rings(struct igb_adapter *);
106 static void igb_clean_all_rx_rings(struct igb_adapter *);
107 static void igb_clean_tx_ring(struct igb_ring *);
108 static void igb_clean_rx_ring(struct igb_ring *);
109 static void igb_set_rx_mode(struct net_device *);
110 static void igb_update_phy_info(unsigned long);
111 static void igb_watchdog(unsigned long);
112 static void igb_watchdog_task(struct work_struct *);
113 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
114 static struct net_device_stats *igb_get_stats(struct net_device *);
115 static int igb_change_mtu(struct net_device *, int);
116 static int igb_set_mac(struct net_device *, void *);
117 static void igb_set_uta(struct igb_adapter *adapter);
118 static irqreturn_t igb_intr(int irq, void *);
119 static irqreturn_t igb_intr_msi(int irq, void *);
120 static irqreturn_t igb_msix_other(int irq, void *);
121 static irqreturn_t igb_msix_ring(int irq, void *);
122 #ifdef CONFIG_IGB_DCA
123 static void igb_update_dca(struct igb_q_vector *);
124 static void igb_setup_dca(struct igb_adapter *);
125 #endif /* CONFIG_IGB_DCA */
126 static bool igb_clean_tx_irq(struct igb_q_vector *);
127 static int igb_poll(struct napi_struct *, int);
128 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
129 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
130 static void igb_tx_timeout(struct net_device *);
131 static void igb_reset_task(struct work_struct *);
132 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
133 static void igb_vlan_rx_add_vid(struct net_device *, u16);
134 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
135 static void igb_restore_vlan(struct igb_adapter *);
136 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
137 static void igb_ping_all_vfs(struct igb_adapter *);
138 static void igb_msg_task(struct igb_adapter *);
139 static void igb_vmm_control(struct igb_adapter *);
140 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
141 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
142 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
143 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
144 int vf, u16 vlan, u8 qos);
145 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
146 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
147 struct ifla_vf_info *ivi);
149 #ifdef CONFIG_PM
150 static int igb_suspend(struct pci_dev *, pm_message_t);
151 static int igb_resume(struct pci_dev *);
152 #endif
153 static void igb_shutdown(struct pci_dev *);
154 #ifdef CONFIG_IGB_DCA
155 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
156 static struct notifier_block dca_notifier = {
157 .notifier_call = igb_notify_dca,
158 .next = NULL,
159 .priority = 0
161 #endif
162 #ifdef CONFIG_NET_POLL_CONTROLLER
163 /* for netdump / net console */
164 static void igb_netpoll(struct net_device *);
165 #endif
166 #ifdef CONFIG_PCI_IOV
167 static unsigned int max_vfs = 0;
168 module_param(max_vfs, uint, 0);
169 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
170 "per physical function");
171 #endif /* CONFIG_PCI_IOV */
173 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
174 pci_channel_state_t);
175 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
176 static void igb_io_resume(struct pci_dev *);
178 static struct pci_error_handlers igb_err_handler = {
179 .error_detected = igb_io_error_detected,
180 .slot_reset = igb_io_slot_reset,
181 .resume = igb_io_resume,
185 static struct pci_driver igb_driver = {
186 .name = igb_driver_name,
187 .id_table = igb_pci_tbl,
188 .probe = igb_probe,
189 .remove = __devexit_p(igb_remove),
190 #ifdef CONFIG_PM
191 /* Power Managment Hooks */
192 .suspend = igb_suspend,
193 .resume = igb_resume,
194 #endif
195 .shutdown = igb_shutdown,
196 .err_handler = &igb_err_handler
199 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
200 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
201 MODULE_LICENSE("GPL");
202 MODULE_VERSION(DRV_VERSION);
204 struct igb_reg_info {
205 u32 ofs;
206 char *name;
209 static const struct igb_reg_info igb_reg_info_tbl[] = {
211 /* General Registers */
212 {E1000_CTRL, "CTRL"},
213 {E1000_STATUS, "STATUS"},
214 {E1000_CTRL_EXT, "CTRL_EXT"},
216 /* Interrupt Registers */
217 {E1000_ICR, "ICR"},
219 /* RX Registers */
220 {E1000_RCTL, "RCTL"},
221 {E1000_RDLEN(0), "RDLEN"},
222 {E1000_RDH(0), "RDH"},
223 {E1000_RDT(0), "RDT"},
224 {E1000_RXDCTL(0), "RXDCTL"},
225 {E1000_RDBAL(0), "RDBAL"},
226 {E1000_RDBAH(0), "RDBAH"},
228 /* TX Registers */
229 {E1000_TCTL, "TCTL"},
230 {E1000_TDBAL(0), "TDBAL"},
231 {E1000_TDBAH(0), "TDBAH"},
232 {E1000_TDLEN(0), "TDLEN"},
233 {E1000_TDH(0), "TDH"},
234 {E1000_TDT(0), "TDT"},
235 {E1000_TXDCTL(0), "TXDCTL"},
236 {E1000_TDFH, "TDFH"},
237 {E1000_TDFT, "TDFT"},
238 {E1000_TDFHS, "TDFHS"},
239 {E1000_TDFPC, "TDFPC"},
241 /* List Terminator */
246 * igb_regdump - register printout routine
248 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
250 int n = 0;
251 char rname[16];
252 u32 regs[8];
254 switch (reginfo->ofs) {
255 case E1000_RDLEN(0):
256 for (n = 0; n < 4; n++)
257 regs[n] = rd32(E1000_RDLEN(n));
258 break;
259 case E1000_RDH(0):
260 for (n = 0; n < 4; n++)
261 regs[n] = rd32(E1000_RDH(n));
262 break;
263 case E1000_RDT(0):
264 for (n = 0; n < 4; n++)
265 regs[n] = rd32(E1000_RDT(n));
266 break;
267 case E1000_RXDCTL(0):
268 for (n = 0; n < 4; n++)
269 regs[n] = rd32(E1000_RXDCTL(n));
270 break;
271 case E1000_RDBAL(0):
272 for (n = 0; n < 4; n++)
273 regs[n] = rd32(E1000_RDBAL(n));
274 break;
275 case E1000_RDBAH(0):
276 for (n = 0; n < 4; n++)
277 regs[n] = rd32(E1000_RDBAH(n));
278 break;
279 case E1000_TDBAL(0):
280 for (n = 0; n < 4; n++)
281 regs[n] = rd32(E1000_RDBAL(n));
282 break;
283 case E1000_TDBAH(0):
284 for (n = 0; n < 4; n++)
285 regs[n] = rd32(E1000_TDBAH(n));
286 break;
287 case E1000_TDLEN(0):
288 for (n = 0; n < 4; n++)
289 regs[n] = rd32(E1000_TDLEN(n));
290 break;
291 case E1000_TDH(0):
292 for (n = 0; n < 4; n++)
293 regs[n] = rd32(E1000_TDH(n));
294 break;
295 case E1000_TDT(0):
296 for (n = 0; n < 4; n++)
297 regs[n] = rd32(E1000_TDT(n));
298 break;
299 case E1000_TXDCTL(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_TXDCTL(n));
302 break;
303 default:
304 printk(KERN_INFO "%-15s %08x\n",
305 reginfo->name, rd32(reginfo->ofs));
306 return;
309 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
310 printk(KERN_INFO "%-15s ", rname);
311 for (n = 0; n < 4; n++)
312 printk(KERN_CONT "%08x ", regs[n]);
313 printk(KERN_CONT "\n");
317 * igb_dump - Print registers, tx-rings and rx-rings
319 static void igb_dump(struct igb_adapter *adapter)
321 struct net_device *netdev = adapter->netdev;
322 struct e1000_hw *hw = &adapter->hw;
323 struct igb_reg_info *reginfo;
324 int n = 0;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { u64 a; u64 b; } *u0;
328 struct igb_buffer *buffer_info;
329 struct igb_ring *rx_ring;
330 union e1000_adv_rx_desc *rx_desc;
331 u32 staterr;
332 int i = 0;
334 if (!netif_msg_hw(adapter))
335 return;
337 /* Print netdevice Info */
338 if (netdev) {
339 dev_info(&adapter->pdev->dev, "Net device Info\n");
340 printk(KERN_INFO "Device Name state "
341 "trans_start last_rx\n");
342 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
343 netdev->name,
344 netdev->state,
345 netdev->trans_start,
346 netdev->last_rx);
349 /* Print Registers */
350 dev_info(&adapter->pdev->dev, "Register Dump\n");
351 printk(KERN_INFO " Register Name Value\n");
352 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
353 reginfo->name; reginfo++) {
354 igb_regdump(hw, reginfo);
357 /* Print TX Ring Summary */
358 if (!netdev || !netif_running(netdev))
359 goto exit;
361 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
362 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
363 " leng ntw timestamp\n");
364 for (n = 0; n < adapter->num_tx_queues; n++) {
365 tx_ring = adapter->tx_ring[n];
366 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
367 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
368 n, tx_ring->next_to_use, tx_ring->next_to_clean,
369 (u64)buffer_info->dma,
370 buffer_info->length,
371 buffer_info->next_to_watch,
372 (u64)buffer_info->time_stamp);
375 /* Print TX Rings */
376 if (!netif_msg_tx_done(adapter))
377 goto rx_ring_summary;
379 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
381 /* Transmit Descriptor Formats
383 * Advanced Transmit Descriptor
384 * +--------------------------------------------------------------+
385 * 0 | Buffer Address [63:0] |
386 * +--------------------------------------------------------------+
387 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
388 * +--------------------------------------------------------------+
389 * 63 46 45 40 39 38 36 35 32 31 24 15 0
392 for (n = 0; n < adapter->num_tx_queues; n++) {
393 tx_ring = adapter->tx_ring[n];
394 printk(KERN_INFO "------------------------------------\n");
395 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
396 printk(KERN_INFO "------------------------------------\n");
397 printk(KERN_INFO "T [desc] [address 63:0 ] "
398 "[PlPOCIStDDM Ln] [bi->dma ] "
399 "leng ntw timestamp bi->skb\n");
401 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
402 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
403 buffer_info = &tx_ring->buffer_info[i];
404 u0 = (struct my_u0 *)tx_desc;
405 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
406 " %04X %3X %016llX %p", i,
407 le64_to_cpu(u0->a),
408 le64_to_cpu(u0->b),
409 (u64)buffer_info->dma,
410 buffer_info->length,
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp,
413 buffer_info->skb);
414 if (i == tx_ring->next_to_use &&
415 i == tx_ring->next_to_clean)
416 printk(KERN_CONT " NTC/U\n");
417 else if (i == tx_ring->next_to_use)
418 printk(KERN_CONT " NTU\n");
419 else if (i == tx_ring->next_to_clean)
420 printk(KERN_CONT " NTC\n");
421 else
422 printk(KERN_CONT "\n");
424 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
425 print_hex_dump(KERN_INFO, "",
426 DUMP_PREFIX_ADDRESS,
427 16, 1, phys_to_virt(buffer_info->dma),
428 buffer_info->length, true);
432 /* Print RX Rings Summary */
433 rx_ring_summary:
434 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
435 printk(KERN_INFO "Queue [NTU] [NTC]\n");
436 for (n = 0; n < adapter->num_rx_queues; n++) {
437 rx_ring = adapter->rx_ring[n];
438 printk(KERN_INFO " %5d %5X %5X\n", n,
439 rx_ring->next_to_use, rx_ring->next_to_clean);
442 /* Print RX Rings */
443 if (!netif_msg_rx_status(adapter))
444 goto exit;
446 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
448 /* Advanced Receive Descriptor (Read) Format
449 * 63 1 0
450 * +-----------------------------------------------------+
451 * 0 | Packet Buffer Address [63:1] |A0/NSE|
452 * +----------------------------------------------+------+
453 * 8 | Header Buffer Address [63:1] | DD |
454 * +-----------------------------------------------------+
457 * Advanced Receive Descriptor (Write-Back) Format
459 * 63 48 47 32 31 30 21 20 17 16 4 3 0
460 * +------------------------------------------------------+
461 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
462 * | Checksum Ident | | | | Type | Type |
463 * +------------------------------------------------------+
464 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
465 * +------------------------------------------------------+
466 * 63 48 47 32 31 20 19 0
469 for (n = 0; n < adapter->num_rx_queues; n++) {
470 rx_ring = adapter->rx_ring[n];
471 printk(KERN_INFO "------------------------------------\n");
472 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
473 printk(KERN_INFO "------------------------------------\n");
474 printk(KERN_INFO "R [desc] [ PktBuf A0] "
475 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
476 "<-- Adv Rx Read format\n");
477 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
478 "[vl er S cks ln] ---------------- [bi->skb] "
479 "<-- Adv Rx Write-Back format\n");
481 for (i = 0; i < rx_ring->count; i++) {
482 buffer_info = &rx_ring->buffer_info[i];
483 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
484 u0 = (struct my_u0 *)rx_desc;
485 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
486 if (staterr & E1000_RXD_STAT_DD) {
487 /* Descriptor Done */
488 printk(KERN_INFO "RWB[0x%03X] %016llX "
489 "%016llX ---------------- %p", i,
490 le64_to_cpu(u0->a),
491 le64_to_cpu(u0->b),
492 buffer_info->skb);
493 } else {
494 printk(KERN_INFO "R [0x%03X] %016llX "
495 "%016llX %016llX %p", i,
496 le64_to_cpu(u0->a),
497 le64_to_cpu(u0->b),
498 (u64)buffer_info->dma,
499 buffer_info->skb);
501 if (netif_msg_pktdata(adapter)) {
502 print_hex_dump(KERN_INFO, "",
503 DUMP_PREFIX_ADDRESS,
504 16, 1,
505 phys_to_virt(buffer_info->dma),
506 rx_ring->rx_buffer_len, true);
507 if (rx_ring->rx_buffer_len
508 < IGB_RXBUFFER_1024)
509 print_hex_dump(KERN_INFO, "",
510 DUMP_PREFIX_ADDRESS,
511 16, 1,
512 phys_to_virt(
513 buffer_info->page_dma +
514 buffer_info->page_offset),
515 PAGE_SIZE/2, true);
519 if (i == rx_ring->next_to_use)
520 printk(KERN_CONT " NTU\n");
521 else if (i == rx_ring->next_to_clean)
522 printk(KERN_CONT " NTC\n");
523 else
524 printk(KERN_CONT "\n");
529 exit:
530 return;
535 * igb_read_clock - read raw cycle counter (to be used by time counter)
537 static cycle_t igb_read_clock(const struct cyclecounter *tc)
539 struct igb_adapter *adapter =
540 container_of(tc, struct igb_adapter, cycles);
541 struct e1000_hw *hw = &adapter->hw;
542 u64 stamp = 0;
543 int shift = 0;
546 * The timestamp latches on lowest register read. For the 82580
547 * the lowest register is SYSTIMR instead of SYSTIML. However we never
548 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
550 if (hw->mac.type == e1000_82580) {
551 stamp = rd32(E1000_SYSTIMR) >> 8;
552 shift = IGB_82580_TSYNC_SHIFT;
555 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
556 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
557 return stamp;
561 * igb_get_hw_dev - return device
562 * used by hardware layer to print debugging information
564 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
566 struct igb_adapter *adapter = hw->back;
567 return adapter->netdev;
571 * igb_init_module - Driver Registration Routine
573 * igb_init_module is the first routine called when the driver is
574 * loaded. All it does is register with the PCI subsystem.
576 static int __init igb_init_module(void)
578 int ret;
579 printk(KERN_INFO "%s - version %s\n",
580 igb_driver_string, igb_driver_version);
582 printk(KERN_INFO "%s\n", igb_copyright);
584 #ifdef CONFIG_IGB_DCA
585 dca_register_notify(&dca_notifier);
586 #endif
587 ret = pci_register_driver(&igb_driver);
588 return ret;
591 module_init(igb_init_module);
594 * igb_exit_module - Driver Exit Cleanup Routine
596 * igb_exit_module is called just before the driver is removed
597 * from memory.
599 static void __exit igb_exit_module(void)
601 #ifdef CONFIG_IGB_DCA
602 dca_unregister_notify(&dca_notifier);
603 #endif
604 pci_unregister_driver(&igb_driver);
607 module_exit(igb_exit_module);
609 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
611 * igb_cache_ring_register - Descriptor ring to register mapping
612 * @adapter: board private structure to initialize
614 * Once we know the feature-set enabled for the device, we'll cache
615 * the register offset the descriptor ring is assigned to.
617 static void igb_cache_ring_register(struct igb_adapter *adapter)
619 int i = 0, j = 0;
620 u32 rbase_offset = adapter->vfs_allocated_count;
622 switch (adapter->hw.mac.type) {
623 case e1000_82576:
624 /* The queues are allocated for virtualization such that VF 0
625 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
626 * In order to avoid collision we start at the first free queue
627 * and continue consuming queues in the same sequence
629 if (adapter->vfs_allocated_count) {
630 for (; i < adapter->rss_queues; i++)
631 adapter->rx_ring[i]->reg_idx = rbase_offset +
632 Q_IDX_82576(i);
633 for (; j < adapter->rss_queues; j++)
634 adapter->tx_ring[j]->reg_idx = rbase_offset +
635 Q_IDX_82576(j);
637 case e1000_82575:
638 case e1000_82580:
639 case e1000_i350:
640 default:
641 for (; i < adapter->num_rx_queues; i++)
642 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
643 for (; j < adapter->num_tx_queues; j++)
644 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
645 break;
649 static void igb_free_queues(struct igb_adapter *adapter)
651 int i;
653 for (i = 0; i < adapter->num_tx_queues; i++) {
654 kfree(adapter->tx_ring[i]);
655 adapter->tx_ring[i] = NULL;
657 for (i = 0; i < adapter->num_rx_queues; i++) {
658 kfree(adapter->rx_ring[i]);
659 adapter->rx_ring[i] = NULL;
661 adapter->num_rx_queues = 0;
662 adapter->num_tx_queues = 0;
666 * igb_alloc_queues - Allocate memory for all rings
667 * @adapter: board private structure to initialize
669 * We allocate one ring per queue at run-time since we don't know the
670 * number of queues at compile-time.
672 static int igb_alloc_queues(struct igb_adapter *adapter)
674 struct igb_ring *ring;
675 int i;
677 for (i = 0; i < adapter->num_tx_queues; i++) {
678 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
679 if (!ring)
680 goto err;
681 ring->count = adapter->tx_ring_count;
682 ring->queue_index = i;
683 ring->dev = &adapter->pdev->dev;
684 ring->netdev = adapter->netdev;
685 /* For 82575, context index must be unique per ring. */
686 if (adapter->hw.mac.type == e1000_82575)
687 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
688 adapter->tx_ring[i] = ring;
691 for (i = 0; i < adapter->num_rx_queues; i++) {
692 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
693 if (!ring)
694 goto err;
695 ring->count = adapter->rx_ring_count;
696 ring->queue_index = i;
697 ring->dev = &adapter->pdev->dev;
698 ring->netdev = adapter->netdev;
699 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
700 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
701 /* set flag indicating ring supports SCTP checksum offload */
702 if (adapter->hw.mac.type >= e1000_82576)
703 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
704 adapter->rx_ring[i] = ring;
707 igb_cache_ring_register(adapter);
709 return 0;
711 err:
712 igb_free_queues(adapter);
714 return -ENOMEM;
717 #define IGB_N0_QUEUE -1
718 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
720 u32 msixbm = 0;
721 struct igb_adapter *adapter = q_vector->adapter;
722 struct e1000_hw *hw = &adapter->hw;
723 u32 ivar, index;
724 int rx_queue = IGB_N0_QUEUE;
725 int tx_queue = IGB_N0_QUEUE;
727 if (q_vector->rx_ring)
728 rx_queue = q_vector->rx_ring->reg_idx;
729 if (q_vector->tx_ring)
730 tx_queue = q_vector->tx_ring->reg_idx;
732 switch (hw->mac.type) {
733 case e1000_82575:
734 /* The 82575 assigns vectors using a bitmask, which matches the
735 bitmask for the EICR/EIMS/EIMC registers. To assign one
736 or more queues to a vector, we write the appropriate bits
737 into the MSIXBM register for that vector. */
738 if (rx_queue > IGB_N0_QUEUE)
739 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
740 if (tx_queue > IGB_N0_QUEUE)
741 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
742 if (!adapter->msix_entries && msix_vector == 0)
743 msixbm |= E1000_EIMS_OTHER;
744 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
745 q_vector->eims_value = msixbm;
746 break;
747 case e1000_82576:
748 /* 82576 uses a table-based method for assigning vectors.
749 Each queue has a single entry in the table to which we write
750 a vector number along with a "valid" bit. Sadly, the layout
751 of the table is somewhat counterintuitive. */
752 if (rx_queue > IGB_N0_QUEUE) {
753 index = (rx_queue & 0x7);
754 ivar = array_rd32(E1000_IVAR0, index);
755 if (rx_queue < 8) {
756 /* vector goes into low byte of register */
757 ivar = ivar & 0xFFFFFF00;
758 ivar |= msix_vector | E1000_IVAR_VALID;
759 } else {
760 /* vector goes into third byte of register */
761 ivar = ivar & 0xFF00FFFF;
762 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
764 array_wr32(E1000_IVAR0, index, ivar);
766 if (tx_queue > IGB_N0_QUEUE) {
767 index = (tx_queue & 0x7);
768 ivar = array_rd32(E1000_IVAR0, index);
769 if (tx_queue < 8) {
770 /* vector goes into second byte of register */
771 ivar = ivar & 0xFFFF00FF;
772 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
773 } else {
774 /* vector goes into high byte of register */
775 ivar = ivar & 0x00FFFFFF;
776 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
778 array_wr32(E1000_IVAR0, index, ivar);
780 q_vector->eims_value = 1 << msix_vector;
781 break;
782 case e1000_82580:
783 case e1000_i350:
784 /* 82580 uses the same table-based approach as 82576 but has fewer
785 entries as a result we carry over for queues greater than 4. */
786 if (rx_queue > IGB_N0_QUEUE) {
787 index = (rx_queue >> 1);
788 ivar = array_rd32(E1000_IVAR0, index);
789 if (rx_queue & 0x1) {
790 /* vector goes into third byte of register */
791 ivar = ivar & 0xFF00FFFF;
792 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
793 } else {
794 /* vector goes into low byte of register */
795 ivar = ivar & 0xFFFFFF00;
796 ivar |= msix_vector | E1000_IVAR_VALID;
798 array_wr32(E1000_IVAR0, index, ivar);
800 if (tx_queue > IGB_N0_QUEUE) {
801 index = (tx_queue >> 1);
802 ivar = array_rd32(E1000_IVAR0, index);
803 if (tx_queue & 0x1) {
804 /* vector goes into high byte of register */
805 ivar = ivar & 0x00FFFFFF;
806 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
807 } else {
808 /* vector goes into second byte of register */
809 ivar = ivar & 0xFFFF00FF;
810 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
812 array_wr32(E1000_IVAR0, index, ivar);
814 q_vector->eims_value = 1 << msix_vector;
815 break;
816 default:
817 BUG();
818 break;
821 /* add q_vector eims value to global eims_enable_mask */
822 adapter->eims_enable_mask |= q_vector->eims_value;
824 /* configure q_vector to set itr on first interrupt */
825 q_vector->set_itr = 1;
829 * igb_configure_msix - Configure MSI-X hardware
831 * igb_configure_msix sets up the hardware to properly
832 * generate MSI-X interrupts.
834 static void igb_configure_msix(struct igb_adapter *adapter)
836 u32 tmp;
837 int i, vector = 0;
838 struct e1000_hw *hw = &adapter->hw;
840 adapter->eims_enable_mask = 0;
842 /* set vector for other causes, i.e. link changes */
843 switch (hw->mac.type) {
844 case e1000_82575:
845 tmp = rd32(E1000_CTRL_EXT);
846 /* enable MSI-X PBA support*/
847 tmp |= E1000_CTRL_EXT_PBA_CLR;
849 /* Auto-Mask interrupts upon ICR read. */
850 tmp |= E1000_CTRL_EXT_EIAME;
851 tmp |= E1000_CTRL_EXT_IRCA;
853 wr32(E1000_CTRL_EXT, tmp);
855 /* enable msix_other interrupt */
856 array_wr32(E1000_MSIXBM(0), vector++,
857 E1000_EIMS_OTHER);
858 adapter->eims_other = E1000_EIMS_OTHER;
860 break;
862 case e1000_82576:
863 case e1000_82580:
864 case e1000_i350:
865 /* Turn on MSI-X capability first, or our settings
866 * won't stick. And it will take days to debug. */
867 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
868 E1000_GPIE_PBA | E1000_GPIE_EIAME |
869 E1000_GPIE_NSICR);
871 /* enable msix_other interrupt */
872 adapter->eims_other = 1 << vector;
873 tmp = (vector++ | E1000_IVAR_VALID) << 8;
875 wr32(E1000_IVAR_MISC, tmp);
876 break;
877 default:
878 /* do nothing, since nothing else supports MSI-X */
879 break;
880 } /* switch (hw->mac.type) */
882 adapter->eims_enable_mask |= adapter->eims_other;
884 for (i = 0; i < adapter->num_q_vectors; i++)
885 igb_assign_vector(adapter->q_vector[i], vector++);
887 wrfl();
891 * igb_request_msix - Initialize MSI-X interrupts
893 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
894 * kernel.
896 static int igb_request_msix(struct igb_adapter *adapter)
898 struct net_device *netdev = adapter->netdev;
899 struct e1000_hw *hw = &adapter->hw;
900 int i, err = 0, vector = 0;
902 err = request_irq(adapter->msix_entries[vector].vector,
903 igb_msix_other, 0, netdev->name, adapter);
904 if (err)
905 goto out;
906 vector++;
908 for (i = 0; i < adapter->num_q_vectors; i++) {
909 struct igb_q_vector *q_vector = adapter->q_vector[i];
911 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
913 if (q_vector->rx_ring && q_vector->tx_ring)
914 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
915 q_vector->rx_ring->queue_index);
916 else if (q_vector->tx_ring)
917 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
918 q_vector->tx_ring->queue_index);
919 else if (q_vector->rx_ring)
920 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
921 q_vector->rx_ring->queue_index);
922 else
923 sprintf(q_vector->name, "%s-unused", netdev->name);
925 err = request_irq(adapter->msix_entries[vector].vector,
926 igb_msix_ring, 0, q_vector->name,
927 q_vector);
928 if (err)
929 goto out;
930 vector++;
933 igb_configure_msix(adapter);
934 return 0;
935 out:
936 return err;
939 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
941 if (adapter->msix_entries) {
942 pci_disable_msix(adapter->pdev);
943 kfree(adapter->msix_entries);
944 adapter->msix_entries = NULL;
945 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
946 pci_disable_msi(adapter->pdev);
951 * igb_free_q_vectors - Free memory allocated for interrupt vectors
952 * @adapter: board private structure to initialize
954 * This function frees the memory allocated to the q_vectors. In addition if
955 * NAPI is enabled it will delete any references to the NAPI struct prior
956 * to freeing the q_vector.
958 static void igb_free_q_vectors(struct igb_adapter *adapter)
960 int v_idx;
962 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
963 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
964 adapter->q_vector[v_idx] = NULL;
965 if (!q_vector)
966 continue;
967 netif_napi_del(&q_vector->napi);
968 kfree(q_vector);
970 adapter->num_q_vectors = 0;
974 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
976 * This function resets the device so that it has 0 rx queues, tx queues, and
977 * MSI-X interrupts allocated.
979 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
981 igb_free_queues(adapter);
982 igb_free_q_vectors(adapter);
983 igb_reset_interrupt_capability(adapter);
987 * igb_set_interrupt_capability - set MSI or MSI-X if supported
989 * Attempt to configure interrupts using the best available
990 * capabilities of the hardware and kernel.
992 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
994 int err;
995 int numvecs, i;
997 /* Number of supported queues. */
998 adapter->num_rx_queues = adapter->rss_queues;
999 adapter->num_tx_queues = adapter->rss_queues;
1001 /* start with one vector for every rx queue */
1002 numvecs = adapter->num_rx_queues;
1004 /* if tx handler is separate add 1 for every tx queue */
1005 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1006 numvecs += adapter->num_tx_queues;
1008 /* store the number of vectors reserved for queues */
1009 adapter->num_q_vectors = numvecs;
1011 /* add 1 vector for link status interrupts */
1012 numvecs++;
1013 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1014 GFP_KERNEL);
1015 if (!adapter->msix_entries)
1016 goto msi_only;
1018 for (i = 0; i < numvecs; i++)
1019 adapter->msix_entries[i].entry = i;
1021 err = pci_enable_msix(adapter->pdev,
1022 adapter->msix_entries,
1023 numvecs);
1024 if (err == 0)
1025 goto out;
1027 igb_reset_interrupt_capability(adapter);
1029 /* If we can't do MSI-X, try MSI */
1030 msi_only:
1031 #ifdef CONFIG_PCI_IOV
1032 /* disable SR-IOV for non MSI-X configurations */
1033 if (adapter->vf_data) {
1034 struct e1000_hw *hw = &adapter->hw;
1035 /* disable iov and allow time for transactions to clear */
1036 pci_disable_sriov(adapter->pdev);
1037 msleep(500);
1039 kfree(adapter->vf_data);
1040 adapter->vf_data = NULL;
1041 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1042 msleep(100);
1043 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1045 #endif
1046 adapter->vfs_allocated_count = 0;
1047 adapter->rss_queues = 1;
1048 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1049 adapter->num_rx_queues = 1;
1050 adapter->num_tx_queues = 1;
1051 adapter->num_q_vectors = 1;
1052 if (!pci_enable_msi(adapter->pdev))
1053 adapter->flags |= IGB_FLAG_HAS_MSI;
1054 out:
1055 /* Notify the stack of the (possibly) reduced Tx Queue count. */
1056 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
1060 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1061 * @adapter: board private structure to initialize
1063 * We allocate one q_vector per queue interrupt. If allocation fails we
1064 * return -ENOMEM.
1066 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1068 struct igb_q_vector *q_vector;
1069 struct e1000_hw *hw = &adapter->hw;
1070 int v_idx;
1072 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1073 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1074 if (!q_vector)
1075 goto err_out;
1076 q_vector->adapter = adapter;
1077 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1078 q_vector->itr_val = IGB_START_ITR;
1079 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1080 adapter->q_vector[v_idx] = q_vector;
1082 return 0;
1084 err_out:
1085 igb_free_q_vectors(adapter);
1086 return -ENOMEM;
1089 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1090 int ring_idx, int v_idx)
1092 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1094 q_vector->rx_ring = adapter->rx_ring[ring_idx];
1095 q_vector->rx_ring->q_vector = q_vector;
1096 q_vector->itr_val = adapter->rx_itr_setting;
1097 if (q_vector->itr_val && q_vector->itr_val <= 3)
1098 q_vector->itr_val = IGB_START_ITR;
1101 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1102 int ring_idx, int v_idx)
1104 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1106 q_vector->tx_ring = adapter->tx_ring[ring_idx];
1107 q_vector->tx_ring->q_vector = q_vector;
1108 q_vector->itr_val = adapter->tx_itr_setting;
1109 if (q_vector->itr_val && q_vector->itr_val <= 3)
1110 q_vector->itr_val = IGB_START_ITR;
1114 * igb_map_ring_to_vector - maps allocated queues to vectors
1116 * This function maps the recently allocated queues to vectors.
1118 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1120 int i;
1121 int v_idx = 0;
1123 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1124 (adapter->num_q_vectors < adapter->num_tx_queues))
1125 return -ENOMEM;
1127 if (adapter->num_q_vectors >=
1128 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1129 for (i = 0; i < adapter->num_rx_queues; i++)
1130 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1131 for (i = 0; i < adapter->num_tx_queues; i++)
1132 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1133 } else {
1134 for (i = 0; i < adapter->num_rx_queues; i++) {
1135 if (i < adapter->num_tx_queues)
1136 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1137 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1139 for (; i < adapter->num_tx_queues; i++)
1140 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1142 return 0;
1146 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1148 * This function initializes the interrupts and allocates all of the queues.
1150 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1152 struct pci_dev *pdev = adapter->pdev;
1153 int err;
1155 igb_set_interrupt_capability(adapter);
1157 err = igb_alloc_q_vectors(adapter);
1158 if (err) {
1159 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1160 goto err_alloc_q_vectors;
1163 err = igb_alloc_queues(adapter);
1164 if (err) {
1165 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1166 goto err_alloc_queues;
1169 err = igb_map_ring_to_vector(adapter);
1170 if (err) {
1171 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1172 goto err_map_queues;
1176 return 0;
1177 err_map_queues:
1178 igb_free_queues(adapter);
1179 err_alloc_queues:
1180 igb_free_q_vectors(adapter);
1181 err_alloc_q_vectors:
1182 igb_reset_interrupt_capability(adapter);
1183 return err;
1187 * igb_request_irq - initialize interrupts
1189 * Attempts to configure interrupts using the best available
1190 * capabilities of the hardware and kernel.
1192 static int igb_request_irq(struct igb_adapter *adapter)
1194 struct net_device *netdev = adapter->netdev;
1195 struct pci_dev *pdev = adapter->pdev;
1196 int err = 0;
1198 if (adapter->msix_entries) {
1199 err = igb_request_msix(adapter);
1200 if (!err)
1201 goto request_done;
1202 /* fall back to MSI */
1203 igb_clear_interrupt_scheme(adapter);
1204 if (!pci_enable_msi(adapter->pdev))
1205 adapter->flags |= IGB_FLAG_HAS_MSI;
1206 igb_free_all_tx_resources(adapter);
1207 igb_free_all_rx_resources(adapter);
1208 adapter->num_tx_queues = 1;
1209 adapter->num_rx_queues = 1;
1210 adapter->num_q_vectors = 1;
1211 err = igb_alloc_q_vectors(adapter);
1212 if (err) {
1213 dev_err(&pdev->dev,
1214 "Unable to allocate memory for vectors\n");
1215 goto request_done;
1217 err = igb_alloc_queues(adapter);
1218 if (err) {
1219 dev_err(&pdev->dev,
1220 "Unable to allocate memory for queues\n");
1221 igb_free_q_vectors(adapter);
1222 goto request_done;
1224 igb_setup_all_tx_resources(adapter);
1225 igb_setup_all_rx_resources(adapter);
1226 } else {
1227 igb_assign_vector(adapter->q_vector[0], 0);
1230 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1231 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1232 netdev->name, adapter);
1233 if (!err)
1234 goto request_done;
1236 /* fall back to legacy interrupts */
1237 igb_reset_interrupt_capability(adapter);
1238 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1241 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1242 netdev->name, adapter);
1244 if (err)
1245 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1246 err);
1248 request_done:
1249 return err;
1252 static void igb_free_irq(struct igb_adapter *adapter)
1254 if (adapter->msix_entries) {
1255 int vector = 0, i;
1257 free_irq(adapter->msix_entries[vector++].vector, adapter);
1259 for (i = 0; i < adapter->num_q_vectors; i++) {
1260 struct igb_q_vector *q_vector = adapter->q_vector[i];
1261 free_irq(adapter->msix_entries[vector++].vector,
1262 q_vector);
1264 } else {
1265 free_irq(adapter->pdev->irq, adapter);
1270 * igb_irq_disable - Mask off interrupt generation on the NIC
1271 * @adapter: board private structure
1273 static void igb_irq_disable(struct igb_adapter *adapter)
1275 struct e1000_hw *hw = &adapter->hw;
1278 * we need to be careful when disabling interrupts. The VFs are also
1279 * mapped into these registers and so clearing the bits can cause
1280 * issues on the VF drivers so we only need to clear what we set
1282 if (adapter->msix_entries) {
1283 u32 regval = rd32(E1000_EIAM);
1284 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1285 wr32(E1000_EIMC, adapter->eims_enable_mask);
1286 regval = rd32(E1000_EIAC);
1287 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1290 wr32(E1000_IAM, 0);
1291 wr32(E1000_IMC, ~0);
1292 wrfl();
1293 synchronize_irq(adapter->pdev->irq);
1297 * igb_irq_enable - Enable default interrupt generation settings
1298 * @adapter: board private structure
1300 static void igb_irq_enable(struct igb_adapter *adapter)
1302 struct e1000_hw *hw = &adapter->hw;
1304 if (adapter->msix_entries) {
1305 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1306 u32 regval = rd32(E1000_EIAC);
1307 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1308 regval = rd32(E1000_EIAM);
1309 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1310 wr32(E1000_EIMS, adapter->eims_enable_mask);
1311 if (adapter->vfs_allocated_count) {
1312 wr32(E1000_MBVFIMR, 0xFF);
1313 ims |= E1000_IMS_VMMB;
1315 if (adapter->hw.mac.type == e1000_82580)
1316 ims |= E1000_IMS_DRSTA;
1318 wr32(E1000_IMS, ims);
1319 } else {
1320 wr32(E1000_IMS, IMS_ENABLE_MASK |
1321 E1000_IMS_DRSTA);
1322 wr32(E1000_IAM, IMS_ENABLE_MASK |
1323 E1000_IMS_DRSTA);
1327 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1329 struct e1000_hw *hw = &adapter->hw;
1330 u16 vid = adapter->hw.mng_cookie.vlan_id;
1331 u16 old_vid = adapter->mng_vlan_id;
1333 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1334 /* add VID to filter table */
1335 igb_vfta_set(hw, vid, true);
1336 adapter->mng_vlan_id = vid;
1337 } else {
1338 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1341 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1342 (vid != old_vid) &&
1343 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1344 /* remove VID from filter table */
1345 igb_vfta_set(hw, old_vid, false);
1350 * igb_release_hw_control - release control of the h/w to f/w
1351 * @adapter: address of board private structure
1353 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1354 * For ASF and Pass Through versions of f/w this means that the
1355 * driver is no longer loaded.
1358 static void igb_release_hw_control(struct igb_adapter *adapter)
1360 struct e1000_hw *hw = &adapter->hw;
1361 u32 ctrl_ext;
1363 /* Let firmware take over control of h/w */
1364 ctrl_ext = rd32(E1000_CTRL_EXT);
1365 wr32(E1000_CTRL_EXT,
1366 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1370 * igb_get_hw_control - get control of the h/w from f/w
1371 * @adapter: address of board private structure
1373 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1374 * For ASF and Pass Through versions of f/w this means that
1375 * the driver is loaded.
1378 static void igb_get_hw_control(struct igb_adapter *adapter)
1380 struct e1000_hw *hw = &adapter->hw;
1381 u32 ctrl_ext;
1383 /* Let firmware know the driver has taken over */
1384 ctrl_ext = rd32(E1000_CTRL_EXT);
1385 wr32(E1000_CTRL_EXT,
1386 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1390 * igb_configure - configure the hardware for RX and TX
1391 * @adapter: private board structure
1393 static void igb_configure(struct igb_adapter *adapter)
1395 struct net_device *netdev = adapter->netdev;
1396 int i;
1398 igb_get_hw_control(adapter);
1399 igb_set_rx_mode(netdev);
1401 igb_restore_vlan(adapter);
1403 igb_setup_tctl(adapter);
1404 igb_setup_mrqc(adapter);
1405 igb_setup_rctl(adapter);
1407 igb_configure_tx(adapter);
1408 igb_configure_rx(adapter);
1410 igb_rx_fifo_flush_82575(&adapter->hw);
1412 /* call igb_desc_unused which always leaves
1413 * at least 1 descriptor unused to make sure
1414 * next_to_use != next_to_clean */
1415 for (i = 0; i < adapter->num_rx_queues; i++) {
1416 struct igb_ring *ring = adapter->rx_ring[i];
1417 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1422 * igb_power_up_link - Power up the phy/serdes link
1423 * @adapter: address of board private structure
1425 void igb_power_up_link(struct igb_adapter *adapter)
1427 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1428 igb_power_up_phy_copper(&adapter->hw);
1429 else
1430 igb_power_up_serdes_link_82575(&adapter->hw);
1434 * igb_power_down_link - Power down the phy/serdes link
1435 * @adapter: address of board private structure
1437 static void igb_power_down_link(struct igb_adapter *adapter)
1439 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1440 igb_power_down_phy_copper_82575(&adapter->hw);
1441 else
1442 igb_shutdown_serdes_link_82575(&adapter->hw);
1446 * igb_up - Open the interface and prepare it to handle traffic
1447 * @adapter: board private structure
1449 int igb_up(struct igb_adapter *adapter)
1451 struct e1000_hw *hw = &adapter->hw;
1452 int i;
1454 /* hardware has been reset, we need to reload some things */
1455 igb_configure(adapter);
1457 clear_bit(__IGB_DOWN, &adapter->state);
1459 for (i = 0; i < adapter->num_q_vectors; i++) {
1460 struct igb_q_vector *q_vector = adapter->q_vector[i];
1461 napi_enable(&q_vector->napi);
1463 if (adapter->msix_entries)
1464 igb_configure_msix(adapter);
1465 else
1466 igb_assign_vector(adapter->q_vector[0], 0);
1468 /* Clear any pending interrupts. */
1469 rd32(E1000_ICR);
1470 igb_irq_enable(adapter);
1472 /* notify VFs that reset has been completed */
1473 if (adapter->vfs_allocated_count) {
1474 u32 reg_data = rd32(E1000_CTRL_EXT);
1475 reg_data |= E1000_CTRL_EXT_PFRSTD;
1476 wr32(E1000_CTRL_EXT, reg_data);
1479 netif_tx_start_all_queues(adapter->netdev);
1481 /* start the watchdog. */
1482 hw->mac.get_link_status = 1;
1483 schedule_work(&adapter->watchdog_task);
1485 return 0;
1488 void igb_down(struct igb_adapter *adapter)
1490 struct net_device *netdev = adapter->netdev;
1491 struct e1000_hw *hw = &adapter->hw;
1492 u32 tctl, rctl;
1493 int i;
1495 /* signal that we're down so the interrupt handler does not
1496 * reschedule our watchdog timer */
1497 set_bit(__IGB_DOWN, &adapter->state);
1499 /* disable receives in the hardware */
1500 rctl = rd32(E1000_RCTL);
1501 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1502 /* flush and sleep below */
1504 netif_tx_stop_all_queues(netdev);
1506 /* disable transmits in the hardware */
1507 tctl = rd32(E1000_TCTL);
1508 tctl &= ~E1000_TCTL_EN;
1509 wr32(E1000_TCTL, tctl);
1510 /* flush both disables and wait for them to finish */
1511 wrfl();
1512 msleep(10);
1514 for (i = 0; i < adapter->num_q_vectors; i++) {
1515 struct igb_q_vector *q_vector = adapter->q_vector[i];
1516 napi_disable(&q_vector->napi);
1519 igb_irq_disable(adapter);
1521 del_timer_sync(&adapter->watchdog_timer);
1522 del_timer_sync(&adapter->phy_info_timer);
1524 netif_carrier_off(netdev);
1526 /* record the stats before reset*/
1527 igb_update_stats(adapter);
1529 adapter->link_speed = 0;
1530 adapter->link_duplex = 0;
1532 if (!pci_channel_offline(adapter->pdev))
1533 igb_reset(adapter);
1534 igb_clean_all_tx_rings(adapter);
1535 igb_clean_all_rx_rings(adapter);
1536 #ifdef CONFIG_IGB_DCA
1538 /* since we reset the hardware DCA settings were cleared */
1539 igb_setup_dca(adapter);
1540 #endif
1543 void igb_reinit_locked(struct igb_adapter *adapter)
1545 WARN_ON(in_interrupt());
1546 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1547 msleep(1);
1548 igb_down(adapter);
1549 igb_up(adapter);
1550 clear_bit(__IGB_RESETTING, &adapter->state);
1553 void igb_reset(struct igb_adapter *adapter)
1555 struct pci_dev *pdev = adapter->pdev;
1556 struct e1000_hw *hw = &adapter->hw;
1557 struct e1000_mac_info *mac = &hw->mac;
1558 struct e1000_fc_info *fc = &hw->fc;
1559 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1560 u16 hwm;
1562 /* Repartition Pba for greater than 9k mtu
1563 * To take effect CTRL.RST is required.
1565 switch (mac->type) {
1566 case e1000_i350:
1567 case e1000_82580:
1568 pba = rd32(E1000_RXPBS);
1569 pba = igb_rxpbs_adjust_82580(pba);
1570 break;
1571 case e1000_82576:
1572 pba = rd32(E1000_RXPBS);
1573 pba &= E1000_RXPBS_SIZE_MASK_82576;
1574 break;
1575 case e1000_82575:
1576 default:
1577 pba = E1000_PBA_34K;
1578 break;
1581 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1582 (mac->type < e1000_82576)) {
1583 /* adjust PBA for jumbo frames */
1584 wr32(E1000_PBA, pba);
1586 /* To maintain wire speed transmits, the Tx FIFO should be
1587 * large enough to accommodate two full transmit packets,
1588 * rounded up to the next 1KB and expressed in KB. Likewise,
1589 * the Rx FIFO should be large enough to accommodate at least
1590 * one full receive packet and is similarly rounded up and
1591 * expressed in KB. */
1592 pba = rd32(E1000_PBA);
1593 /* upper 16 bits has Tx packet buffer allocation size in KB */
1594 tx_space = pba >> 16;
1595 /* lower 16 bits has Rx packet buffer allocation size in KB */
1596 pba &= 0xffff;
1597 /* the tx fifo also stores 16 bytes of information about the tx
1598 * but don't include ethernet FCS because hardware appends it */
1599 min_tx_space = (adapter->max_frame_size +
1600 sizeof(union e1000_adv_tx_desc) -
1601 ETH_FCS_LEN) * 2;
1602 min_tx_space = ALIGN(min_tx_space, 1024);
1603 min_tx_space >>= 10;
1604 /* software strips receive CRC, so leave room for it */
1605 min_rx_space = adapter->max_frame_size;
1606 min_rx_space = ALIGN(min_rx_space, 1024);
1607 min_rx_space >>= 10;
1609 /* If current Tx allocation is less than the min Tx FIFO size,
1610 * and the min Tx FIFO size is less than the current Rx FIFO
1611 * allocation, take space away from current Rx allocation */
1612 if (tx_space < min_tx_space &&
1613 ((min_tx_space - tx_space) < pba)) {
1614 pba = pba - (min_tx_space - tx_space);
1616 /* if short on rx space, rx wins and must trump tx
1617 * adjustment */
1618 if (pba < min_rx_space)
1619 pba = min_rx_space;
1621 wr32(E1000_PBA, pba);
1624 /* flow control settings */
1625 /* The high water mark must be low enough to fit one full frame
1626 * (or the size used for early receive) above it in the Rx FIFO.
1627 * Set it to the lower of:
1628 * - 90% of the Rx FIFO size, or
1629 * - the full Rx FIFO size minus one full frame */
1630 hwm = min(((pba << 10) * 9 / 10),
1631 ((pba << 10) - 2 * adapter->max_frame_size));
1633 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1634 fc->low_water = fc->high_water - 16;
1635 fc->pause_time = 0xFFFF;
1636 fc->send_xon = 1;
1637 fc->current_mode = fc->requested_mode;
1639 /* disable receive for all VFs and wait one second */
1640 if (adapter->vfs_allocated_count) {
1641 int i;
1642 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1643 adapter->vf_data[i].flags = 0;
1645 /* ping all the active vfs to let them know we are going down */
1646 igb_ping_all_vfs(adapter);
1648 /* disable transmits and receives */
1649 wr32(E1000_VFRE, 0);
1650 wr32(E1000_VFTE, 0);
1653 /* Allow time for pending master requests to run */
1654 hw->mac.ops.reset_hw(hw);
1655 wr32(E1000_WUC, 0);
1657 if (hw->mac.ops.init_hw(hw))
1658 dev_err(&pdev->dev, "Hardware Error\n");
1660 if (hw->mac.type == e1000_82580) {
1661 u32 reg = rd32(E1000_PCIEMISC);
1662 wr32(E1000_PCIEMISC,
1663 reg & ~E1000_PCIEMISC_LX_DECISION);
1665 if (!netif_running(adapter->netdev))
1666 igb_power_down_link(adapter);
1668 igb_update_mng_vlan(adapter);
1670 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1671 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1673 igb_get_phy_info(hw);
1676 static const struct net_device_ops igb_netdev_ops = {
1677 .ndo_open = igb_open,
1678 .ndo_stop = igb_close,
1679 .ndo_start_xmit = igb_xmit_frame_adv,
1680 .ndo_get_stats = igb_get_stats,
1681 .ndo_set_rx_mode = igb_set_rx_mode,
1682 .ndo_set_multicast_list = igb_set_rx_mode,
1683 .ndo_set_mac_address = igb_set_mac,
1684 .ndo_change_mtu = igb_change_mtu,
1685 .ndo_do_ioctl = igb_ioctl,
1686 .ndo_tx_timeout = igb_tx_timeout,
1687 .ndo_validate_addr = eth_validate_addr,
1688 .ndo_vlan_rx_register = igb_vlan_rx_register,
1689 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1690 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1691 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1692 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1693 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1694 .ndo_get_vf_config = igb_ndo_get_vf_config,
1695 #ifdef CONFIG_NET_POLL_CONTROLLER
1696 .ndo_poll_controller = igb_netpoll,
1697 #endif
1701 * igb_probe - Device Initialization Routine
1702 * @pdev: PCI device information struct
1703 * @ent: entry in igb_pci_tbl
1705 * Returns 0 on success, negative on failure
1707 * igb_probe initializes an adapter identified by a pci_dev structure.
1708 * The OS initialization, configuring of the adapter private structure,
1709 * and a hardware reset occur.
1711 static int __devinit igb_probe(struct pci_dev *pdev,
1712 const struct pci_device_id *ent)
1714 struct net_device *netdev;
1715 struct igb_adapter *adapter;
1716 struct e1000_hw *hw;
1717 u16 eeprom_data = 0;
1718 static int global_quad_port_a; /* global quad port a indication */
1719 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1720 unsigned long mmio_start, mmio_len;
1721 int err, pci_using_dac;
1722 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1723 u32 part_num;
1725 err = pci_enable_device_mem(pdev);
1726 if (err)
1727 return err;
1729 pci_using_dac = 0;
1730 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1731 if (!err) {
1732 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1733 if (!err)
1734 pci_using_dac = 1;
1735 } else {
1736 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1737 if (err) {
1738 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1739 if (err) {
1740 dev_err(&pdev->dev, "No usable DMA "
1741 "configuration, aborting\n");
1742 goto err_dma;
1747 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1748 IORESOURCE_MEM),
1749 igb_driver_name);
1750 if (err)
1751 goto err_pci_reg;
1753 pci_enable_pcie_error_reporting(pdev);
1755 pci_set_master(pdev);
1756 pci_save_state(pdev);
1758 err = -ENOMEM;
1759 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1760 IGB_ABS_MAX_TX_QUEUES);
1761 if (!netdev)
1762 goto err_alloc_etherdev;
1764 SET_NETDEV_DEV(netdev, &pdev->dev);
1766 pci_set_drvdata(pdev, netdev);
1767 adapter = netdev_priv(netdev);
1768 adapter->netdev = netdev;
1769 adapter->pdev = pdev;
1770 hw = &adapter->hw;
1771 hw->back = adapter;
1772 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1774 mmio_start = pci_resource_start(pdev, 0);
1775 mmio_len = pci_resource_len(pdev, 0);
1777 err = -EIO;
1778 hw->hw_addr = ioremap(mmio_start, mmio_len);
1779 if (!hw->hw_addr)
1780 goto err_ioremap;
1782 netdev->netdev_ops = &igb_netdev_ops;
1783 igb_set_ethtool_ops(netdev);
1784 netdev->watchdog_timeo = 5 * HZ;
1786 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1788 netdev->mem_start = mmio_start;
1789 netdev->mem_end = mmio_start + mmio_len;
1791 /* PCI config space info */
1792 hw->vendor_id = pdev->vendor;
1793 hw->device_id = pdev->device;
1794 hw->revision_id = pdev->revision;
1795 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1796 hw->subsystem_device_id = pdev->subsystem_device;
1798 /* Copy the default MAC, PHY and NVM function pointers */
1799 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1800 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1801 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1802 /* Initialize skew-specific constants */
1803 err = ei->get_invariants(hw);
1804 if (err)
1805 goto err_sw_init;
1807 /* setup the private structure */
1808 err = igb_sw_init(adapter);
1809 if (err)
1810 goto err_sw_init;
1812 igb_get_bus_info_pcie(hw);
1814 hw->phy.autoneg_wait_to_complete = false;
1816 /* Copper options */
1817 if (hw->phy.media_type == e1000_media_type_copper) {
1818 hw->phy.mdix = AUTO_ALL_MODES;
1819 hw->phy.disable_polarity_correction = false;
1820 hw->phy.ms_type = e1000_ms_hw_default;
1823 if (igb_check_reset_block(hw))
1824 dev_info(&pdev->dev,
1825 "PHY reset is blocked due to SOL/IDER session.\n");
1827 netdev->features = NETIF_F_SG |
1828 NETIF_F_IP_CSUM |
1829 NETIF_F_HW_VLAN_TX |
1830 NETIF_F_HW_VLAN_RX |
1831 NETIF_F_HW_VLAN_FILTER;
1833 netdev->features |= NETIF_F_IPV6_CSUM;
1834 netdev->features |= NETIF_F_TSO;
1835 netdev->features |= NETIF_F_TSO6;
1836 netdev->features |= NETIF_F_GRO;
1838 netdev->vlan_features |= NETIF_F_TSO;
1839 netdev->vlan_features |= NETIF_F_TSO6;
1840 netdev->vlan_features |= NETIF_F_IP_CSUM;
1841 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1842 netdev->vlan_features |= NETIF_F_SG;
1844 if (pci_using_dac)
1845 netdev->features |= NETIF_F_HIGHDMA;
1847 if (hw->mac.type >= e1000_82576)
1848 netdev->features |= NETIF_F_SCTP_CSUM;
1850 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1852 /* before reading the NVM, reset the controller to put the device in a
1853 * known good starting state */
1854 hw->mac.ops.reset_hw(hw);
1856 /* make sure the NVM is good */
1857 if (igb_validate_nvm_checksum(hw) < 0) {
1858 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1859 err = -EIO;
1860 goto err_eeprom;
1863 /* copy the MAC address out of the NVM */
1864 if (hw->mac.ops.read_mac_addr(hw))
1865 dev_err(&pdev->dev, "NVM Read Error\n");
1867 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1868 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1870 if (!is_valid_ether_addr(netdev->perm_addr)) {
1871 dev_err(&pdev->dev, "Invalid MAC Address\n");
1872 err = -EIO;
1873 goto err_eeprom;
1876 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1877 (unsigned long) adapter);
1878 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1879 (unsigned long) adapter);
1881 INIT_WORK(&adapter->reset_task, igb_reset_task);
1882 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1884 /* Initialize link properties that are user-changeable */
1885 adapter->fc_autoneg = true;
1886 hw->mac.autoneg = true;
1887 hw->phy.autoneg_advertised = 0x2f;
1889 hw->fc.requested_mode = e1000_fc_default;
1890 hw->fc.current_mode = e1000_fc_default;
1892 igb_validate_mdi_setting(hw);
1894 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1895 * enable the ACPI Magic Packet filter
1898 if (hw->bus.func == 0)
1899 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1900 else if (hw->mac.type == e1000_82580)
1901 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1902 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1903 &eeprom_data);
1904 else if (hw->bus.func == 1)
1905 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1907 if (eeprom_data & eeprom_apme_mask)
1908 adapter->eeprom_wol |= E1000_WUFC_MAG;
1910 /* now that we have the eeprom settings, apply the special cases where
1911 * the eeprom may be wrong or the board simply won't support wake on
1912 * lan on a particular port */
1913 switch (pdev->device) {
1914 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1915 adapter->eeprom_wol = 0;
1916 break;
1917 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1918 case E1000_DEV_ID_82576_FIBER:
1919 case E1000_DEV_ID_82576_SERDES:
1920 /* Wake events only supported on port A for dual fiber
1921 * regardless of eeprom setting */
1922 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1923 adapter->eeprom_wol = 0;
1924 break;
1925 case E1000_DEV_ID_82576_QUAD_COPPER:
1926 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1927 /* if quad port adapter, disable WoL on all but port A */
1928 if (global_quad_port_a != 0)
1929 adapter->eeprom_wol = 0;
1930 else
1931 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1932 /* Reset for multiple quad port adapters */
1933 if (++global_quad_port_a == 4)
1934 global_quad_port_a = 0;
1935 break;
1938 /* initialize the wol settings based on the eeprom settings */
1939 adapter->wol = adapter->eeprom_wol;
1940 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1942 /* reset the hardware with the new settings */
1943 igb_reset(adapter);
1945 /* let the f/w know that the h/w is now under the control of the
1946 * driver. */
1947 igb_get_hw_control(adapter);
1949 strcpy(netdev->name, "eth%d");
1950 err = register_netdev(netdev);
1951 if (err)
1952 goto err_register;
1954 /* carrier off reporting is important to ethtool even BEFORE open */
1955 netif_carrier_off(netdev);
1957 #ifdef CONFIG_IGB_DCA
1958 if (dca_add_requester(&pdev->dev) == 0) {
1959 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1960 dev_info(&pdev->dev, "DCA enabled\n");
1961 igb_setup_dca(adapter);
1964 #endif
1965 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1966 /* print bus type/speed/width info */
1967 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1968 netdev->name,
1969 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1970 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
1971 "unknown"),
1972 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1973 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1974 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1975 "unknown"),
1976 netdev->dev_addr);
1978 igb_read_part_num(hw, &part_num);
1979 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1980 (part_num >> 8), (part_num & 0xff));
1982 dev_info(&pdev->dev,
1983 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1984 adapter->msix_entries ? "MSI-X" :
1985 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1986 adapter->num_rx_queues, adapter->num_tx_queues);
1988 return 0;
1990 err_register:
1991 igb_release_hw_control(adapter);
1992 err_eeprom:
1993 if (!igb_check_reset_block(hw))
1994 igb_reset_phy(hw);
1996 if (hw->flash_address)
1997 iounmap(hw->flash_address);
1998 err_sw_init:
1999 igb_clear_interrupt_scheme(adapter);
2000 iounmap(hw->hw_addr);
2001 err_ioremap:
2002 free_netdev(netdev);
2003 err_alloc_etherdev:
2004 pci_release_selected_regions(pdev,
2005 pci_select_bars(pdev, IORESOURCE_MEM));
2006 err_pci_reg:
2007 err_dma:
2008 pci_disable_device(pdev);
2009 return err;
2013 * igb_remove - Device Removal Routine
2014 * @pdev: PCI device information struct
2016 * igb_remove is called by the PCI subsystem to alert the driver
2017 * that it should release a PCI device. The could be caused by a
2018 * Hot-Plug event, or because the driver is going to be removed from
2019 * memory.
2021 static void __devexit igb_remove(struct pci_dev *pdev)
2023 struct net_device *netdev = pci_get_drvdata(pdev);
2024 struct igb_adapter *adapter = netdev_priv(netdev);
2025 struct e1000_hw *hw = &adapter->hw;
2027 /* flush_scheduled work may reschedule our watchdog task, so
2028 * explicitly disable watchdog tasks from being rescheduled */
2029 set_bit(__IGB_DOWN, &adapter->state);
2030 del_timer_sync(&adapter->watchdog_timer);
2031 del_timer_sync(&adapter->phy_info_timer);
2033 flush_scheduled_work();
2035 #ifdef CONFIG_IGB_DCA
2036 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2037 dev_info(&pdev->dev, "DCA disabled\n");
2038 dca_remove_requester(&pdev->dev);
2039 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2040 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2042 #endif
2044 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2045 * would have already happened in close and is redundant. */
2046 igb_release_hw_control(adapter);
2048 unregister_netdev(netdev);
2050 igb_clear_interrupt_scheme(adapter);
2052 #ifdef CONFIG_PCI_IOV
2053 /* reclaim resources allocated to VFs */
2054 if (adapter->vf_data) {
2055 /* disable iov and allow time for transactions to clear */
2056 pci_disable_sriov(pdev);
2057 msleep(500);
2059 kfree(adapter->vf_data);
2060 adapter->vf_data = NULL;
2061 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2062 msleep(100);
2063 dev_info(&pdev->dev, "IOV Disabled\n");
2065 #endif
2067 iounmap(hw->hw_addr);
2068 if (hw->flash_address)
2069 iounmap(hw->flash_address);
2070 pci_release_selected_regions(pdev,
2071 pci_select_bars(pdev, IORESOURCE_MEM));
2073 free_netdev(netdev);
2075 pci_disable_pcie_error_reporting(pdev);
2077 pci_disable_device(pdev);
2081 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2082 * @adapter: board private structure to initialize
2084 * This function initializes the vf specific data storage and then attempts to
2085 * allocate the VFs. The reason for ordering it this way is because it is much
2086 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2087 * the memory for the VFs.
2089 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2091 #ifdef CONFIG_PCI_IOV
2092 struct pci_dev *pdev = adapter->pdev;
2094 if (adapter->vfs_allocated_count > 7)
2095 adapter->vfs_allocated_count = 7;
2097 if (adapter->vfs_allocated_count) {
2098 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2099 sizeof(struct vf_data_storage),
2100 GFP_KERNEL);
2101 /* if allocation failed then we do not support SR-IOV */
2102 if (!adapter->vf_data) {
2103 adapter->vfs_allocated_count = 0;
2104 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2105 "Data Storage\n");
2109 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2110 kfree(adapter->vf_data);
2111 adapter->vf_data = NULL;
2112 #endif /* CONFIG_PCI_IOV */
2113 adapter->vfs_allocated_count = 0;
2114 #ifdef CONFIG_PCI_IOV
2115 } else {
2116 unsigned char mac_addr[ETH_ALEN];
2117 int i;
2118 dev_info(&pdev->dev, "%d vfs allocated\n",
2119 adapter->vfs_allocated_count);
2120 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2121 random_ether_addr(mac_addr);
2122 igb_set_vf_mac(adapter, i, mac_addr);
2125 #endif /* CONFIG_PCI_IOV */
2130 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2131 * @adapter: board private structure to initialize
2133 * igb_init_hw_timer initializes the function pointer and values for the hw
2134 * timer found in hardware.
2136 static void igb_init_hw_timer(struct igb_adapter *adapter)
2138 struct e1000_hw *hw = &adapter->hw;
2140 switch (hw->mac.type) {
2141 case e1000_i350:
2142 case e1000_82580:
2143 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2144 adapter->cycles.read = igb_read_clock;
2145 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2146 adapter->cycles.mult = 1;
2148 * The 82580 timesync updates the system timer every 8ns by 8ns
2149 * and the value cannot be shifted. Instead we need to shift
2150 * the registers to generate a 64bit timer value. As a result
2151 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2152 * 24 in order to generate a larger value for synchronization.
2154 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2155 /* disable system timer temporarily by setting bit 31 */
2156 wr32(E1000_TSAUXC, 0x80000000);
2157 wrfl();
2159 /* Set registers so that rollover occurs soon to test this. */
2160 wr32(E1000_SYSTIMR, 0x00000000);
2161 wr32(E1000_SYSTIML, 0x80000000);
2162 wr32(E1000_SYSTIMH, 0x000000FF);
2163 wrfl();
2165 /* enable system timer by clearing bit 31 */
2166 wr32(E1000_TSAUXC, 0x0);
2167 wrfl();
2169 timecounter_init(&adapter->clock,
2170 &adapter->cycles,
2171 ktime_to_ns(ktime_get_real()));
2173 * Synchronize our NIC clock against system wall clock. NIC
2174 * time stamp reading requires ~3us per sample, each sample
2175 * was pretty stable even under load => only require 10
2176 * samples for each offset comparison.
2178 memset(&adapter->compare, 0, sizeof(adapter->compare));
2179 adapter->compare.source = &adapter->clock;
2180 adapter->compare.target = ktime_get_real;
2181 adapter->compare.num_samples = 10;
2182 timecompare_update(&adapter->compare, 0);
2183 break;
2184 case e1000_82576:
2186 * Initialize hardware timer: we keep it running just in case
2187 * that some program needs it later on.
2189 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2190 adapter->cycles.read = igb_read_clock;
2191 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2192 adapter->cycles.mult = 1;
2194 * Scale the NIC clock cycle by a large factor so that
2195 * relatively small clock corrections can be added or
2196 * substracted at each clock tick. The drawbacks of a large
2197 * factor are a) that the clock register overflows more quickly
2198 * (not such a big deal) and b) that the increment per tick has
2199 * to fit into 24 bits. As a result we need to use a shift of
2200 * 19 so we can fit a value of 16 into the TIMINCA register.
2202 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2203 wr32(E1000_TIMINCA,
2204 (1 << E1000_TIMINCA_16NS_SHIFT) |
2205 (16 << IGB_82576_TSYNC_SHIFT));
2207 /* Set registers so that rollover occurs soon to test this. */
2208 wr32(E1000_SYSTIML, 0x00000000);
2209 wr32(E1000_SYSTIMH, 0xFF800000);
2210 wrfl();
2212 timecounter_init(&adapter->clock,
2213 &adapter->cycles,
2214 ktime_to_ns(ktime_get_real()));
2216 * Synchronize our NIC clock against system wall clock. NIC
2217 * time stamp reading requires ~3us per sample, each sample
2218 * was pretty stable even under load => only require 10
2219 * samples for each offset comparison.
2221 memset(&adapter->compare, 0, sizeof(adapter->compare));
2222 adapter->compare.source = &adapter->clock;
2223 adapter->compare.target = ktime_get_real;
2224 adapter->compare.num_samples = 10;
2225 timecompare_update(&adapter->compare, 0);
2226 break;
2227 case e1000_82575:
2228 /* 82575 does not support timesync */
2229 default:
2230 break;
2236 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2237 * @adapter: board private structure to initialize
2239 * igb_sw_init initializes the Adapter private data structure.
2240 * Fields are initialized based on PCI device information and
2241 * OS network device settings (MTU size).
2243 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2245 struct e1000_hw *hw = &adapter->hw;
2246 struct net_device *netdev = adapter->netdev;
2247 struct pci_dev *pdev = adapter->pdev;
2249 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2251 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2252 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2253 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2254 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2256 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2257 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2259 #ifdef CONFIG_PCI_IOV
2260 if (hw->mac.type == e1000_82576)
2261 adapter->vfs_allocated_count = max_vfs;
2263 #endif /* CONFIG_PCI_IOV */
2264 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2267 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2268 * then we should combine the queues into a queue pair in order to
2269 * conserve interrupts due to limited supply
2271 if ((adapter->rss_queues > 4) ||
2272 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2273 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2275 /* This call may decrease the number of queues */
2276 if (igb_init_interrupt_scheme(adapter)) {
2277 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2278 return -ENOMEM;
2281 igb_init_hw_timer(adapter);
2282 igb_probe_vfs(adapter);
2284 /* Explicitly disable IRQ since the NIC can be in any state. */
2285 igb_irq_disable(adapter);
2287 set_bit(__IGB_DOWN, &adapter->state);
2288 return 0;
2292 * igb_open - Called when a network interface is made active
2293 * @netdev: network interface device structure
2295 * Returns 0 on success, negative value on failure
2297 * The open entry point is called when a network interface is made
2298 * active by the system (IFF_UP). At this point all resources needed
2299 * for transmit and receive operations are allocated, the interrupt
2300 * handler is registered with the OS, the watchdog timer is started,
2301 * and the stack is notified that the interface is ready.
2303 static int igb_open(struct net_device *netdev)
2305 struct igb_adapter *adapter = netdev_priv(netdev);
2306 struct e1000_hw *hw = &adapter->hw;
2307 int err;
2308 int i;
2310 /* disallow open during test */
2311 if (test_bit(__IGB_TESTING, &adapter->state))
2312 return -EBUSY;
2314 netif_carrier_off(netdev);
2316 /* allocate transmit descriptors */
2317 err = igb_setup_all_tx_resources(adapter);
2318 if (err)
2319 goto err_setup_tx;
2321 /* allocate receive descriptors */
2322 err = igb_setup_all_rx_resources(adapter);
2323 if (err)
2324 goto err_setup_rx;
2326 igb_power_up_link(adapter);
2328 /* before we allocate an interrupt, we must be ready to handle it.
2329 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2330 * as soon as we call pci_request_irq, so we have to setup our
2331 * clean_rx handler before we do so. */
2332 igb_configure(adapter);
2334 err = igb_request_irq(adapter);
2335 if (err)
2336 goto err_req_irq;
2338 /* From here on the code is the same as igb_up() */
2339 clear_bit(__IGB_DOWN, &adapter->state);
2341 for (i = 0; i < adapter->num_q_vectors; i++) {
2342 struct igb_q_vector *q_vector = adapter->q_vector[i];
2343 napi_enable(&q_vector->napi);
2346 /* Clear any pending interrupts. */
2347 rd32(E1000_ICR);
2349 igb_irq_enable(adapter);
2351 /* notify VFs that reset has been completed */
2352 if (adapter->vfs_allocated_count) {
2353 u32 reg_data = rd32(E1000_CTRL_EXT);
2354 reg_data |= E1000_CTRL_EXT_PFRSTD;
2355 wr32(E1000_CTRL_EXT, reg_data);
2358 netif_tx_start_all_queues(netdev);
2360 /* start the watchdog. */
2361 hw->mac.get_link_status = 1;
2362 schedule_work(&adapter->watchdog_task);
2364 return 0;
2366 err_req_irq:
2367 igb_release_hw_control(adapter);
2368 igb_power_down_link(adapter);
2369 igb_free_all_rx_resources(adapter);
2370 err_setup_rx:
2371 igb_free_all_tx_resources(adapter);
2372 err_setup_tx:
2373 igb_reset(adapter);
2375 return err;
2379 * igb_close - Disables a network interface
2380 * @netdev: network interface device structure
2382 * Returns 0, this is not allowed to fail
2384 * The close entry point is called when an interface is de-activated
2385 * by the OS. The hardware is still under the driver's control, but
2386 * needs to be disabled. A global MAC reset is issued to stop the
2387 * hardware, and all transmit and receive resources are freed.
2389 static int igb_close(struct net_device *netdev)
2391 struct igb_adapter *adapter = netdev_priv(netdev);
2393 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2394 igb_down(adapter);
2396 igb_free_irq(adapter);
2398 igb_free_all_tx_resources(adapter);
2399 igb_free_all_rx_resources(adapter);
2401 return 0;
2405 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2406 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2408 * Return 0 on success, negative on failure
2410 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2412 struct device *dev = tx_ring->dev;
2413 int size;
2415 size = sizeof(struct igb_buffer) * tx_ring->count;
2416 tx_ring->buffer_info = vmalloc(size);
2417 if (!tx_ring->buffer_info)
2418 goto err;
2419 memset(tx_ring->buffer_info, 0, size);
2421 /* round up to nearest 4K */
2422 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2423 tx_ring->size = ALIGN(tx_ring->size, 4096);
2425 tx_ring->desc = dma_alloc_coherent(dev,
2426 tx_ring->size,
2427 &tx_ring->dma,
2428 GFP_KERNEL);
2430 if (!tx_ring->desc)
2431 goto err;
2433 tx_ring->next_to_use = 0;
2434 tx_ring->next_to_clean = 0;
2435 return 0;
2437 err:
2438 vfree(tx_ring->buffer_info);
2439 dev_err(dev,
2440 "Unable to allocate memory for the transmit descriptor ring\n");
2441 return -ENOMEM;
2445 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2446 * (Descriptors) for all queues
2447 * @adapter: board private structure
2449 * Return 0 on success, negative on failure
2451 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2453 struct pci_dev *pdev = adapter->pdev;
2454 int i, err = 0;
2456 for (i = 0; i < adapter->num_tx_queues; i++) {
2457 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2458 if (err) {
2459 dev_err(&pdev->dev,
2460 "Allocation for Tx Queue %u failed\n", i);
2461 for (i--; i >= 0; i--)
2462 igb_free_tx_resources(adapter->tx_ring[i]);
2463 break;
2467 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2468 int r_idx = i % adapter->num_tx_queues;
2469 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2471 return err;
2475 * igb_setup_tctl - configure the transmit control registers
2476 * @adapter: Board private structure
2478 void igb_setup_tctl(struct igb_adapter *adapter)
2480 struct e1000_hw *hw = &adapter->hw;
2481 u32 tctl;
2483 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2484 wr32(E1000_TXDCTL(0), 0);
2486 /* Program the Transmit Control Register */
2487 tctl = rd32(E1000_TCTL);
2488 tctl &= ~E1000_TCTL_CT;
2489 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2490 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2492 igb_config_collision_dist(hw);
2494 /* Enable transmits */
2495 tctl |= E1000_TCTL_EN;
2497 wr32(E1000_TCTL, tctl);
2501 * igb_configure_tx_ring - Configure transmit ring after Reset
2502 * @adapter: board private structure
2503 * @ring: tx ring to configure
2505 * Configure a transmit ring after a reset.
2507 void igb_configure_tx_ring(struct igb_adapter *adapter,
2508 struct igb_ring *ring)
2510 struct e1000_hw *hw = &adapter->hw;
2511 u32 txdctl;
2512 u64 tdba = ring->dma;
2513 int reg_idx = ring->reg_idx;
2515 /* disable the queue */
2516 txdctl = rd32(E1000_TXDCTL(reg_idx));
2517 wr32(E1000_TXDCTL(reg_idx),
2518 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2519 wrfl();
2520 mdelay(10);
2522 wr32(E1000_TDLEN(reg_idx),
2523 ring->count * sizeof(union e1000_adv_tx_desc));
2524 wr32(E1000_TDBAL(reg_idx),
2525 tdba & 0x00000000ffffffffULL);
2526 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2528 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2529 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2530 writel(0, ring->head);
2531 writel(0, ring->tail);
2533 txdctl |= IGB_TX_PTHRESH;
2534 txdctl |= IGB_TX_HTHRESH << 8;
2535 txdctl |= IGB_TX_WTHRESH << 16;
2537 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2538 wr32(E1000_TXDCTL(reg_idx), txdctl);
2542 * igb_configure_tx - Configure transmit Unit after Reset
2543 * @adapter: board private structure
2545 * Configure the Tx unit of the MAC after a reset.
2547 static void igb_configure_tx(struct igb_adapter *adapter)
2549 int i;
2551 for (i = 0; i < adapter->num_tx_queues; i++)
2552 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2556 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2557 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2559 * Returns 0 on success, negative on failure
2561 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2563 struct device *dev = rx_ring->dev;
2564 int size, desc_len;
2566 size = sizeof(struct igb_buffer) * rx_ring->count;
2567 rx_ring->buffer_info = vmalloc(size);
2568 if (!rx_ring->buffer_info)
2569 goto err;
2570 memset(rx_ring->buffer_info, 0, size);
2572 desc_len = sizeof(union e1000_adv_rx_desc);
2574 /* Round up to nearest 4K */
2575 rx_ring->size = rx_ring->count * desc_len;
2576 rx_ring->size = ALIGN(rx_ring->size, 4096);
2578 rx_ring->desc = dma_alloc_coherent(dev,
2579 rx_ring->size,
2580 &rx_ring->dma,
2581 GFP_KERNEL);
2583 if (!rx_ring->desc)
2584 goto err;
2586 rx_ring->next_to_clean = 0;
2587 rx_ring->next_to_use = 0;
2589 return 0;
2591 err:
2592 vfree(rx_ring->buffer_info);
2593 rx_ring->buffer_info = NULL;
2594 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2595 " ring\n");
2596 return -ENOMEM;
2600 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2601 * (Descriptors) for all queues
2602 * @adapter: board private structure
2604 * Return 0 on success, negative on failure
2606 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2608 struct pci_dev *pdev = adapter->pdev;
2609 int i, err = 0;
2611 for (i = 0; i < adapter->num_rx_queues; i++) {
2612 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2613 if (err) {
2614 dev_err(&pdev->dev,
2615 "Allocation for Rx Queue %u failed\n", i);
2616 for (i--; i >= 0; i--)
2617 igb_free_rx_resources(adapter->rx_ring[i]);
2618 break;
2622 return err;
2626 * igb_setup_mrqc - configure the multiple receive queue control registers
2627 * @adapter: Board private structure
2629 static void igb_setup_mrqc(struct igb_adapter *adapter)
2631 struct e1000_hw *hw = &adapter->hw;
2632 u32 mrqc, rxcsum;
2633 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2634 union e1000_reta {
2635 u32 dword;
2636 u8 bytes[4];
2637 } reta;
2638 static const u8 rsshash[40] = {
2639 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2640 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2641 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2642 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2644 /* Fill out hash function seeds */
2645 for (j = 0; j < 10; j++) {
2646 u32 rsskey = rsshash[(j * 4)];
2647 rsskey |= rsshash[(j * 4) + 1] << 8;
2648 rsskey |= rsshash[(j * 4) + 2] << 16;
2649 rsskey |= rsshash[(j * 4) + 3] << 24;
2650 array_wr32(E1000_RSSRK(0), j, rsskey);
2653 num_rx_queues = adapter->rss_queues;
2655 if (adapter->vfs_allocated_count) {
2656 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2657 switch (hw->mac.type) {
2658 case e1000_i350:
2659 case e1000_82580:
2660 num_rx_queues = 1;
2661 shift = 0;
2662 break;
2663 case e1000_82576:
2664 shift = 3;
2665 num_rx_queues = 2;
2666 break;
2667 case e1000_82575:
2668 shift = 2;
2669 shift2 = 6;
2670 default:
2671 break;
2673 } else {
2674 if (hw->mac.type == e1000_82575)
2675 shift = 6;
2678 for (j = 0; j < (32 * 4); j++) {
2679 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2680 if (shift2)
2681 reta.bytes[j & 3] |= num_rx_queues << shift2;
2682 if ((j & 3) == 3)
2683 wr32(E1000_RETA(j >> 2), reta.dword);
2687 * Disable raw packet checksumming so that RSS hash is placed in
2688 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2689 * offloads as they are enabled by default
2691 rxcsum = rd32(E1000_RXCSUM);
2692 rxcsum |= E1000_RXCSUM_PCSD;
2694 if (adapter->hw.mac.type >= e1000_82576)
2695 /* Enable Receive Checksum Offload for SCTP */
2696 rxcsum |= E1000_RXCSUM_CRCOFL;
2698 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2699 wr32(E1000_RXCSUM, rxcsum);
2701 /* If VMDq is enabled then we set the appropriate mode for that, else
2702 * we default to RSS so that an RSS hash is calculated per packet even
2703 * if we are only using one queue */
2704 if (adapter->vfs_allocated_count) {
2705 if (hw->mac.type > e1000_82575) {
2706 /* Set the default pool for the PF's first queue */
2707 u32 vtctl = rd32(E1000_VT_CTL);
2708 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2709 E1000_VT_CTL_DISABLE_DEF_POOL);
2710 vtctl |= adapter->vfs_allocated_count <<
2711 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2712 wr32(E1000_VT_CTL, vtctl);
2714 if (adapter->rss_queues > 1)
2715 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2716 else
2717 mrqc = E1000_MRQC_ENABLE_VMDQ;
2718 } else {
2719 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2721 igb_vmm_control(adapter);
2723 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2724 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2725 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2726 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2727 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2728 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2729 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2730 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2732 wr32(E1000_MRQC, mrqc);
2736 * igb_setup_rctl - configure the receive control registers
2737 * @adapter: Board private structure
2739 void igb_setup_rctl(struct igb_adapter *adapter)
2741 struct e1000_hw *hw = &adapter->hw;
2742 u32 rctl;
2744 rctl = rd32(E1000_RCTL);
2746 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2747 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2749 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2750 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2753 * enable stripping of CRC. It's unlikely this will break BMC
2754 * redirection as it did with e1000. Newer features require
2755 * that the HW strips the CRC.
2757 rctl |= E1000_RCTL_SECRC;
2759 /* disable store bad packets and clear size bits. */
2760 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2762 /* enable LPE to prevent packets larger than max_frame_size */
2763 rctl |= E1000_RCTL_LPE;
2765 /* disable queue 0 to prevent tail write w/o re-config */
2766 wr32(E1000_RXDCTL(0), 0);
2768 /* Attention!!! For SR-IOV PF driver operations you must enable
2769 * queue drop for all VF and PF queues to prevent head of line blocking
2770 * if an un-trusted VF does not provide descriptors to hardware.
2772 if (adapter->vfs_allocated_count) {
2773 /* set all queue drop enable bits */
2774 wr32(E1000_QDE, ALL_QUEUES);
2777 wr32(E1000_RCTL, rctl);
2780 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2781 int vfn)
2783 struct e1000_hw *hw = &adapter->hw;
2784 u32 vmolr;
2786 /* if it isn't the PF check to see if VFs are enabled and
2787 * increase the size to support vlan tags */
2788 if (vfn < adapter->vfs_allocated_count &&
2789 adapter->vf_data[vfn].vlans_enabled)
2790 size += VLAN_TAG_SIZE;
2792 vmolr = rd32(E1000_VMOLR(vfn));
2793 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2794 vmolr |= size | E1000_VMOLR_LPE;
2795 wr32(E1000_VMOLR(vfn), vmolr);
2797 return 0;
2801 * igb_rlpml_set - set maximum receive packet size
2802 * @adapter: board private structure
2804 * Configure maximum receivable packet size.
2806 static void igb_rlpml_set(struct igb_adapter *adapter)
2808 u32 max_frame_size = adapter->max_frame_size;
2809 struct e1000_hw *hw = &adapter->hw;
2810 u16 pf_id = adapter->vfs_allocated_count;
2812 if (adapter->vlgrp)
2813 max_frame_size += VLAN_TAG_SIZE;
2815 /* if vfs are enabled we set RLPML to the largest possible request
2816 * size and set the VMOLR RLPML to the size we need */
2817 if (pf_id) {
2818 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2819 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2822 wr32(E1000_RLPML, max_frame_size);
2825 static inline void igb_set_vmolr(struct igb_adapter *adapter,
2826 int vfn, bool aupe)
2828 struct e1000_hw *hw = &adapter->hw;
2829 u32 vmolr;
2832 * This register exists only on 82576 and newer so if we are older then
2833 * we should exit and do nothing
2835 if (hw->mac.type < e1000_82576)
2836 return;
2838 vmolr = rd32(E1000_VMOLR(vfn));
2839 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2840 if (aupe)
2841 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2842 else
2843 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2845 /* clear all bits that might not be set */
2846 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2848 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2849 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2851 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2852 * multicast packets
2854 if (vfn <= adapter->vfs_allocated_count)
2855 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2857 wr32(E1000_VMOLR(vfn), vmolr);
2861 * igb_configure_rx_ring - Configure a receive ring after Reset
2862 * @adapter: board private structure
2863 * @ring: receive ring to be configured
2865 * Configure the Rx unit of the MAC after a reset.
2867 void igb_configure_rx_ring(struct igb_adapter *adapter,
2868 struct igb_ring *ring)
2870 struct e1000_hw *hw = &adapter->hw;
2871 u64 rdba = ring->dma;
2872 int reg_idx = ring->reg_idx;
2873 u32 srrctl, rxdctl;
2875 /* disable the queue */
2876 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2877 wr32(E1000_RXDCTL(reg_idx),
2878 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2880 /* Set DMA base address registers */
2881 wr32(E1000_RDBAL(reg_idx),
2882 rdba & 0x00000000ffffffffULL);
2883 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2884 wr32(E1000_RDLEN(reg_idx),
2885 ring->count * sizeof(union e1000_adv_rx_desc));
2887 /* initialize head and tail */
2888 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2889 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2890 writel(0, ring->head);
2891 writel(0, ring->tail);
2893 /* set descriptor configuration */
2894 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2895 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2896 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2897 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2898 srrctl |= IGB_RXBUFFER_16384 >>
2899 E1000_SRRCTL_BSIZEPKT_SHIFT;
2900 #else
2901 srrctl |= (PAGE_SIZE / 2) >>
2902 E1000_SRRCTL_BSIZEPKT_SHIFT;
2903 #endif
2904 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2905 } else {
2906 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2907 E1000_SRRCTL_BSIZEPKT_SHIFT;
2908 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2910 if (hw->mac.type == e1000_82580)
2911 srrctl |= E1000_SRRCTL_TIMESTAMP;
2912 /* Only set Drop Enable if we are supporting multiple queues */
2913 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2914 srrctl |= E1000_SRRCTL_DROP_EN;
2916 wr32(E1000_SRRCTL(reg_idx), srrctl);
2918 /* set filtering for VMDQ pools */
2919 igb_set_vmolr(adapter, reg_idx & 0x7, true);
2921 /* enable receive descriptor fetching */
2922 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2923 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2924 rxdctl &= 0xFFF00000;
2925 rxdctl |= IGB_RX_PTHRESH;
2926 rxdctl |= IGB_RX_HTHRESH << 8;
2927 rxdctl |= IGB_RX_WTHRESH << 16;
2928 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2932 * igb_configure_rx - Configure receive Unit after Reset
2933 * @adapter: board private structure
2935 * Configure the Rx unit of the MAC after a reset.
2937 static void igb_configure_rx(struct igb_adapter *adapter)
2939 int i;
2941 /* set UTA to appropriate mode */
2942 igb_set_uta(adapter);
2944 /* set the correct pool for the PF default MAC address in entry 0 */
2945 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2946 adapter->vfs_allocated_count);
2948 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2949 * the Base and Length of the Rx Descriptor Ring */
2950 for (i = 0; i < adapter->num_rx_queues; i++)
2951 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
2955 * igb_free_tx_resources - Free Tx Resources per Queue
2956 * @tx_ring: Tx descriptor ring for a specific queue
2958 * Free all transmit software resources
2960 void igb_free_tx_resources(struct igb_ring *tx_ring)
2962 igb_clean_tx_ring(tx_ring);
2964 vfree(tx_ring->buffer_info);
2965 tx_ring->buffer_info = NULL;
2967 /* if not set, then don't free */
2968 if (!tx_ring->desc)
2969 return;
2971 dma_free_coherent(tx_ring->dev, tx_ring->size,
2972 tx_ring->desc, tx_ring->dma);
2974 tx_ring->desc = NULL;
2978 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2979 * @adapter: board private structure
2981 * Free all transmit software resources
2983 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2985 int i;
2987 for (i = 0; i < adapter->num_tx_queues; i++)
2988 igb_free_tx_resources(adapter->tx_ring[i]);
2991 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2992 struct igb_buffer *buffer_info)
2994 if (buffer_info->dma) {
2995 if (buffer_info->mapped_as_page)
2996 dma_unmap_page(tx_ring->dev,
2997 buffer_info->dma,
2998 buffer_info->length,
2999 DMA_TO_DEVICE);
3000 else
3001 dma_unmap_single(tx_ring->dev,
3002 buffer_info->dma,
3003 buffer_info->length,
3004 DMA_TO_DEVICE);
3005 buffer_info->dma = 0;
3007 if (buffer_info->skb) {
3008 dev_kfree_skb_any(buffer_info->skb);
3009 buffer_info->skb = NULL;
3011 buffer_info->time_stamp = 0;
3012 buffer_info->length = 0;
3013 buffer_info->next_to_watch = 0;
3014 buffer_info->mapped_as_page = false;
3018 * igb_clean_tx_ring - Free Tx Buffers
3019 * @tx_ring: ring to be cleaned
3021 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3023 struct igb_buffer *buffer_info;
3024 unsigned long size;
3025 unsigned int i;
3027 if (!tx_ring->buffer_info)
3028 return;
3029 /* Free all the Tx ring sk_buffs */
3031 for (i = 0; i < tx_ring->count; i++) {
3032 buffer_info = &tx_ring->buffer_info[i];
3033 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3036 size = sizeof(struct igb_buffer) * tx_ring->count;
3037 memset(tx_ring->buffer_info, 0, size);
3039 /* Zero out the descriptor ring */
3040 memset(tx_ring->desc, 0, tx_ring->size);
3042 tx_ring->next_to_use = 0;
3043 tx_ring->next_to_clean = 0;
3047 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3048 * @adapter: board private structure
3050 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3052 int i;
3054 for (i = 0; i < adapter->num_tx_queues; i++)
3055 igb_clean_tx_ring(adapter->tx_ring[i]);
3059 * igb_free_rx_resources - Free Rx Resources
3060 * @rx_ring: ring to clean the resources from
3062 * Free all receive software resources
3064 void igb_free_rx_resources(struct igb_ring *rx_ring)
3066 igb_clean_rx_ring(rx_ring);
3068 vfree(rx_ring->buffer_info);
3069 rx_ring->buffer_info = NULL;
3071 /* if not set, then don't free */
3072 if (!rx_ring->desc)
3073 return;
3075 dma_free_coherent(rx_ring->dev, rx_ring->size,
3076 rx_ring->desc, rx_ring->dma);
3078 rx_ring->desc = NULL;
3082 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3083 * @adapter: board private structure
3085 * Free all receive software resources
3087 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3089 int i;
3091 for (i = 0; i < adapter->num_rx_queues; i++)
3092 igb_free_rx_resources(adapter->rx_ring[i]);
3096 * igb_clean_rx_ring - Free Rx Buffers per Queue
3097 * @rx_ring: ring to free buffers from
3099 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3101 struct igb_buffer *buffer_info;
3102 unsigned long size;
3103 unsigned int i;
3105 if (!rx_ring->buffer_info)
3106 return;
3108 /* Free all the Rx ring sk_buffs */
3109 for (i = 0; i < rx_ring->count; i++) {
3110 buffer_info = &rx_ring->buffer_info[i];
3111 if (buffer_info->dma) {
3112 dma_unmap_single(rx_ring->dev,
3113 buffer_info->dma,
3114 rx_ring->rx_buffer_len,
3115 DMA_FROM_DEVICE);
3116 buffer_info->dma = 0;
3119 if (buffer_info->skb) {
3120 dev_kfree_skb(buffer_info->skb);
3121 buffer_info->skb = NULL;
3123 if (buffer_info->page_dma) {
3124 dma_unmap_page(rx_ring->dev,
3125 buffer_info->page_dma,
3126 PAGE_SIZE / 2,
3127 DMA_FROM_DEVICE);
3128 buffer_info->page_dma = 0;
3130 if (buffer_info->page) {
3131 put_page(buffer_info->page);
3132 buffer_info->page = NULL;
3133 buffer_info->page_offset = 0;
3137 size = sizeof(struct igb_buffer) * rx_ring->count;
3138 memset(rx_ring->buffer_info, 0, size);
3140 /* Zero out the descriptor ring */
3141 memset(rx_ring->desc, 0, rx_ring->size);
3143 rx_ring->next_to_clean = 0;
3144 rx_ring->next_to_use = 0;
3148 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3149 * @adapter: board private structure
3151 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3153 int i;
3155 for (i = 0; i < adapter->num_rx_queues; i++)
3156 igb_clean_rx_ring(adapter->rx_ring[i]);
3160 * igb_set_mac - Change the Ethernet Address of the NIC
3161 * @netdev: network interface device structure
3162 * @p: pointer to an address structure
3164 * Returns 0 on success, negative on failure
3166 static int igb_set_mac(struct net_device *netdev, void *p)
3168 struct igb_adapter *adapter = netdev_priv(netdev);
3169 struct e1000_hw *hw = &adapter->hw;
3170 struct sockaddr *addr = p;
3172 if (!is_valid_ether_addr(addr->sa_data))
3173 return -EADDRNOTAVAIL;
3175 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3176 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3178 /* set the correct pool for the new PF MAC address in entry 0 */
3179 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3180 adapter->vfs_allocated_count);
3182 return 0;
3186 * igb_write_mc_addr_list - write multicast addresses to MTA
3187 * @netdev: network interface device structure
3189 * Writes multicast address list to the MTA hash table.
3190 * Returns: -ENOMEM on failure
3191 * 0 on no addresses written
3192 * X on writing X addresses to MTA
3194 static int igb_write_mc_addr_list(struct net_device *netdev)
3196 struct igb_adapter *adapter = netdev_priv(netdev);
3197 struct e1000_hw *hw = &adapter->hw;
3198 struct netdev_hw_addr *ha;
3199 u8 *mta_list;
3200 int i;
3202 if (netdev_mc_empty(netdev)) {
3203 /* nothing to program, so clear mc list */
3204 igb_update_mc_addr_list(hw, NULL, 0);
3205 igb_restore_vf_multicasts(adapter);
3206 return 0;
3209 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3210 if (!mta_list)
3211 return -ENOMEM;
3213 /* The shared function expects a packed array of only addresses. */
3214 i = 0;
3215 netdev_for_each_mc_addr(ha, netdev)
3216 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3218 igb_update_mc_addr_list(hw, mta_list, i);
3219 kfree(mta_list);
3221 return netdev_mc_count(netdev);
3225 * igb_write_uc_addr_list - write unicast addresses to RAR table
3226 * @netdev: network interface device structure
3228 * Writes unicast address list to the RAR table.
3229 * Returns: -ENOMEM on failure/insufficient address space
3230 * 0 on no addresses written
3231 * X on writing X addresses to the RAR table
3233 static int igb_write_uc_addr_list(struct net_device *netdev)
3235 struct igb_adapter *adapter = netdev_priv(netdev);
3236 struct e1000_hw *hw = &adapter->hw;
3237 unsigned int vfn = adapter->vfs_allocated_count;
3238 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3239 int count = 0;
3241 /* return ENOMEM indicating insufficient memory for addresses */
3242 if (netdev_uc_count(netdev) > rar_entries)
3243 return -ENOMEM;
3245 if (!netdev_uc_empty(netdev) && rar_entries) {
3246 struct netdev_hw_addr *ha;
3248 netdev_for_each_uc_addr(ha, netdev) {
3249 if (!rar_entries)
3250 break;
3251 igb_rar_set_qsel(adapter, ha->addr,
3252 rar_entries--,
3253 vfn);
3254 count++;
3257 /* write the addresses in reverse order to avoid write combining */
3258 for (; rar_entries > 0 ; rar_entries--) {
3259 wr32(E1000_RAH(rar_entries), 0);
3260 wr32(E1000_RAL(rar_entries), 0);
3262 wrfl();
3264 return count;
3268 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3269 * @netdev: network interface device structure
3271 * The set_rx_mode entry point is called whenever the unicast or multicast
3272 * address lists or the network interface flags are updated. This routine is
3273 * responsible for configuring the hardware for proper unicast, multicast,
3274 * promiscuous mode, and all-multi behavior.
3276 static void igb_set_rx_mode(struct net_device *netdev)
3278 struct igb_adapter *adapter = netdev_priv(netdev);
3279 struct e1000_hw *hw = &adapter->hw;
3280 unsigned int vfn = adapter->vfs_allocated_count;
3281 u32 rctl, vmolr = 0;
3282 int count;
3284 /* Check for Promiscuous and All Multicast modes */
3285 rctl = rd32(E1000_RCTL);
3287 /* clear the effected bits */
3288 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3290 if (netdev->flags & IFF_PROMISC) {
3291 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3292 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3293 } else {
3294 if (netdev->flags & IFF_ALLMULTI) {
3295 rctl |= E1000_RCTL_MPE;
3296 vmolr |= E1000_VMOLR_MPME;
3297 } else {
3299 * Write addresses to the MTA, if the attempt fails
3300 * then we should just turn on promiscous mode so
3301 * that we can at least receive multicast traffic
3303 count = igb_write_mc_addr_list(netdev);
3304 if (count < 0) {
3305 rctl |= E1000_RCTL_MPE;
3306 vmolr |= E1000_VMOLR_MPME;
3307 } else if (count) {
3308 vmolr |= E1000_VMOLR_ROMPE;
3312 * Write addresses to available RAR registers, if there is not
3313 * sufficient space to store all the addresses then enable
3314 * unicast promiscous mode
3316 count = igb_write_uc_addr_list(netdev);
3317 if (count < 0) {
3318 rctl |= E1000_RCTL_UPE;
3319 vmolr |= E1000_VMOLR_ROPE;
3321 rctl |= E1000_RCTL_VFE;
3323 wr32(E1000_RCTL, rctl);
3326 * In order to support SR-IOV and eventually VMDq it is necessary to set
3327 * the VMOLR to enable the appropriate modes. Without this workaround
3328 * we will have issues with VLAN tag stripping not being done for frames
3329 * that are only arriving because we are the default pool
3331 if (hw->mac.type < e1000_82576)
3332 return;
3334 vmolr |= rd32(E1000_VMOLR(vfn)) &
3335 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3336 wr32(E1000_VMOLR(vfn), vmolr);
3337 igb_restore_vf_multicasts(adapter);
3340 /* Need to wait a few seconds after link up to get diagnostic information from
3341 * the phy */
3342 static void igb_update_phy_info(unsigned long data)
3344 struct igb_adapter *adapter = (struct igb_adapter *) data;
3345 igb_get_phy_info(&adapter->hw);
3349 * igb_has_link - check shared code for link and determine up/down
3350 * @adapter: pointer to driver private info
3352 bool igb_has_link(struct igb_adapter *adapter)
3354 struct e1000_hw *hw = &adapter->hw;
3355 bool link_active = false;
3356 s32 ret_val = 0;
3358 /* get_link_status is set on LSC (link status) interrupt or
3359 * rx sequence error interrupt. get_link_status will stay
3360 * false until the e1000_check_for_link establishes link
3361 * for copper adapters ONLY
3363 switch (hw->phy.media_type) {
3364 case e1000_media_type_copper:
3365 if (hw->mac.get_link_status) {
3366 ret_val = hw->mac.ops.check_for_link(hw);
3367 link_active = !hw->mac.get_link_status;
3368 } else {
3369 link_active = true;
3371 break;
3372 case e1000_media_type_internal_serdes:
3373 ret_val = hw->mac.ops.check_for_link(hw);
3374 link_active = hw->mac.serdes_has_link;
3375 break;
3376 default:
3377 case e1000_media_type_unknown:
3378 break;
3381 return link_active;
3385 * igb_watchdog - Timer Call-back
3386 * @data: pointer to adapter cast into an unsigned long
3388 static void igb_watchdog(unsigned long data)
3390 struct igb_adapter *adapter = (struct igb_adapter *)data;
3391 /* Do the rest outside of interrupt context */
3392 schedule_work(&adapter->watchdog_task);
3395 static void igb_watchdog_task(struct work_struct *work)
3397 struct igb_adapter *adapter = container_of(work,
3398 struct igb_adapter,
3399 watchdog_task);
3400 struct e1000_hw *hw = &adapter->hw;
3401 struct net_device *netdev = adapter->netdev;
3402 u32 link;
3403 int i;
3405 link = igb_has_link(adapter);
3406 if (link) {
3407 if (!netif_carrier_ok(netdev)) {
3408 u32 ctrl;
3409 hw->mac.ops.get_speed_and_duplex(hw,
3410 &adapter->link_speed,
3411 &adapter->link_duplex);
3413 ctrl = rd32(E1000_CTRL);
3414 /* Links status message must follow this format */
3415 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3416 "Flow Control: %s\n",
3417 netdev->name,
3418 adapter->link_speed,
3419 adapter->link_duplex == FULL_DUPLEX ?
3420 "Full Duplex" : "Half Duplex",
3421 ((ctrl & E1000_CTRL_TFCE) &&
3422 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3423 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3424 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3426 /* adjust timeout factor according to speed/duplex */
3427 adapter->tx_timeout_factor = 1;
3428 switch (adapter->link_speed) {
3429 case SPEED_10:
3430 adapter->tx_timeout_factor = 14;
3431 break;
3432 case SPEED_100:
3433 /* maybe add some timeout factor ? */
3434 break;
3437 netif_carrier_on(netdev);
3439 igb_ping_all_vfs(adapter);
3441 /* link state has changed, schedule phy info update */
3442 if (!test_bit(__IGB_DOWN, &adapter->state))
3443 mod_timer(&adapter->phy_info_timer,
3444 round_jiffies(jiffies + 2 * HZ));
3446 } else {
3447 if (netif_carrier_ok(netdev)) {
3448 adapter->link_speed = 0;
3449 adapter->link_duplex = 0;
3450 /* Links status message must follow this format */
3451 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3452 netdev->name);
3453 netif_carrier_off(netdev);
3455 igb_ping_all_vfs(adapter);
3457 /* link state has changed, schedule phy info update */
3458 if (!test_bit(__IGB_DOWN, &adapter->state))
3459 mod_timer(&adapter->phy_info_timer,
3460 round_jiffies(jiffies + 2 * HZ));
3464 igb_update_stats(adapter);
3466 for (i = 0; i < adapter->num_tx_queues; i++) {
3467 struct igb_ring *tx_ring = adapter->tx_ring[i];
3468 if (!netif_carrier_ok(netdev)) {
3469 /* We've lost link, so the controller stops DMA,
3470 * but we've got queued Tx work that's never going
3471 * to get done, so reset controller to flush Tx.
3472 * (Do the reset outside of interrupt context). */
3473 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3474 adapter->tx_timeout_count++;
3475 schedule_work(&adapter->reset_task);
3476 /* return immediately since reset is imminent */
3477 return;
3481 /* Force detection of hung controller every watchdog period */
3482 tx_ring->detect_tx_hung = true;
3485 /* Cause software interrupt to ensure rx ring is cleaned */
3486 if (adapter->msix_entries) {
3487 u32 eics = 0;
3488 for (i = 0; i < adapter->num_q_vectors; i++) {
3489 struct igb_q_vector *q_vector = adapter->q_vector[i];
3490 eics |= q_vector->eims_value;
3492 wr32(E1000_EICS, eics);
3493 } else {
3494 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3497 /* Reset the timer */
3498 if (!test_bit(__IGB_DOWN, &adapter->state))
3499 mod_timer(&adapter->watchdog_timer,
3500 round_jiffies(jiffies + 2 * HZ));
3503 enum latency_range {
3504 lowest_latency = 0,
3505 low_latency = 1,
3506 bulk_latency = 2,
3507 latency_invalid = 255
3511 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3513 * Stores a new ITR value based on strictly on packet size. This
3514 * algorithm is less sophisticated than that used in igb_update_itr,
3515 * due to the difficulty of synchronizing statistics across multiple
3516 * receive rings. The divisors and thresholds used by this fuction
3517 * were determined based on theoretical maximum wire speed and testing
3518 * data, in order to minimize response time while increasing bulk
3519 * throughput.
3520 * This functionality is controlled by the InterruptThrottleRate module
3521 * parameter (see igb_param.c)
3522 * NOTE: This function is called only when operating in a multiqueue
3523 * receive environment.
3524 * @q_vector: pointer to q_vector
3526 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3528 int new_val = q_vector->itr_val;
3529 int avg_wire_size = 0;
3530 struct igb_adapter *adapter = q_vector->adapter;
3532 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3533 * ints/sec - ITR timer value of 120 ticks.
3535 if (adapter->link_speed != SPEED_1000) {
3536 new_val = 976;
3537 goto set_itr_val;
3540 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3541 struct igb_ring *ring = q_vector->rx_ring;
3542 avg_wire_size = ring->total_bytes / ring->total_packets;
3545 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3546 struct igb_ring *ring = q_vector->tx_ring;
3547 avg_wire_size = max_t(u32, avg_wire_size,
3548 (ring->total_bytes /
3549 ring->total_packets));
3552 /* if avg_wire_size isn't set no work was done */
3553 if (!avg_wire_size)
3554 goto clear_counts;
3556 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3557 avg_wire_size += 24;
3559 /* Don't starve jumbo frames */
3560 avg_wire_size = min(avg_wire_size, 3000);
3562 /* Give a little boost to mid-size frames */
3563 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3564 new_val = avg_wire_size / 3;
3565 else
3566 new_val = avg_wire_size / 2;
3568 /* when in itr mode 3 do not exceed 20K ints/sec */
3569 if (adapter->rx_itr_setting == 3 && new_val < 196)
3570 new_val = 196;
3572 set_itr_val:
3573 if (new_val != q_vector->itr_val) {
3574 q_vector->itr_val = new_val;
3575 q_vector->set_itr = 1;
3577 clear_counts:
3578 if (q_vector->rx_ring) {
3579 q_vector->rx_ring->total_bytes = 0;
3580 q_vector->rx_ring->total_packets = 0;
3582 if (q_vector->tx_ring) {
3583 q_vector->tx_ring->total_bytes = 0;
3584 q_vector->tx_ring->total_packets = 0;
3589 * igb_update_itr - update the dynamic ITR value based on statistics
3590 * Stores a new ITR value based on packets and byte
3591 * counts during the last interrupt. The advantage of per interrupt
3592 * computation is faster updates and more accurate ITR for the current
3593 * traffic pattern. Constants in this function were computed
3594 * based on theoretical maximum wire speed and thresholds were set based
3595 * on testing data as well as attempting to minimize response time
3596 * while increasing bulk throughput.
3597 * this functionality is controlled by the InterruptThrottleRate module
3598 * parameter (see igb_param.c)
3599 * NOTE: These calculations are only valid when operating in a single-
3600 * queue environment.
3601 * @adapter: pointer to adapter
3602 * @itr_setting: current q_vector->itr_val
3603 * @packets: the number of packets during this measurement interval
3604 * @bytes: the number of bytes during this measurement interval
3606 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3607 int packets, int bytes)
3609 unsigned int retval = itr_setting;
3611 if (packets == 0)
3612 goto update_itr_done;
3614 switch (itr_setting) {
3615 case lowest_latency:
3616 /* handle TSO and jumbo frames */
3617 if (bytes/packets > 8000)
3618 retval = bulk_latency;
3619 else if ((packets < 5) && (bytes > 512))
3620 retval = low_latency;
3621 break;
3622 case low_latency: /* 50 usec aka 20000 ints/s */
3623 if (bytes > 10000) {
3624 /* this if handles the TSO accounting */
3625 if (bytes/packets > 8000) {
3626 retval = bulk_latency;
3627 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3628 retval = bulk_latency;
3629 } else if ((packets > 35)) {
3630 retval = lowest_latency;
3632 } else if (bytes/packets > 2000) {
3633 retval = bulk_latency;
3634 } else if (packets <= 2 && bytes < 512) {
3635 retval = lowest_latency;
3637 break;
3638 case bulk_latency: /* 250 usec aka 4000 ints/s */
3639 if (bytes > 25000) {
3640 if (packets > 35)
3641 retval = low_latency;
3642 } else if (bytes < 1500) {
3643 retval = low_latency;
3645 break;
3648 update_itr_done:
3649 return retval;
3652 static void igb_set_itr(struct igb_adapter *adapter)
3654 struct igb_q_vector *q_vector = adapter->q_vector[0];
3655 u16 current_itr;
3656 u32 new_itr = q_vector->itr_val;
3658 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3659 if (adapter->link_speed != SPEED_1000) {
3660 current_itr = 0;
3661 new_itr = 4000;
3662 goto set_itr_now;
3665 adapter->rx_itr = igb_update_itr(adapter,
3666 adapter->rx_itr,
3667 q_vector->rx_ring->total_packets,
3668 q_vector->rx_ring->total_bytes);
3670 adapter->tx_itr = igb_update_itr(adapter,
3671 adapter->tx_itr,
3672 q_vector->tx_ring->total_packets,
3673 q_vector->tx_ring->total_bytes);
3674 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3676 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3677 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3678 current_itr = low_latency;
3680 switch (current_itr) {
3681 /* counts and packets in update_itr are dependent on these numbers */
3682 case lowest_latency:
3683 new_itr = 56; /* aka 70,000 ints/sec */
3684 break;
3685 case low_latency:
3686 new_itr = 196; /* aka 20,000 ints/sec */
3687 break;
3688 case bulk_latency:
3689 new_itr = 980; /* aka 4,000 ints/sec */
3690 break;
3691 default:
3692 break;
3695 set_itr_now:
3696 q_vector->rx_ring->total_bytes = 0;
3697 q_vector->rx_ring->total_packets = 0;
3698 q_vector->tx_ring->total_bytes = 0;
3699 q_vector->tx_ring->total_packets = 0;
3701 if (new_itr != q_vector->itr_val) {
3702 /* this attempts to bias the interrupt rate towards Bulk
3703 * by adding intermediate steps when interrupt rate is
3704 * increasing */
3705 new_itr = new_itr > q_vector->itr_val ?
3706 max((new_itr * q_vector->itr_val) /
3707 (new_itr + (q_vector->itr_val >> 2)),
3708 new_itr) :
3709 new_itr;
3710 /* Don't write the value here; it resets the adapter's
3711 * internal timer, and causes us to delay far longer than
3712 * we should between interrupts. Instead, we write the ITR
3713 * value at the beginning of the next interrupt so the timing
3714 * ends up being correct.
3716 q_vector->itr_val = new_itr;
3717 q_vector->set_itr = 1;
3721 #define IGB_TX_FLAGS_CSUM 0x00000001
3722 #define IGB_TX_FLAGS_VLAN 0x00000002
3723 #define IGB_TX_FLAGS_TSO 0x00000004
3724 #define IGB_TX_FLAGS_IPV4 0x00000008
3725 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3726 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3727 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3729 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3730 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3732 struct e1000_adv_tx_context_desc *context_desc;
3733 unsigned int i;
3734 int err;
3735 struct igb_buffer *buffer_info;
3736 u32 info = 0, tu_cmd = 0;
3737 u32 mss_l4len_idx;
3738 u8 l4len;
3740 if (skb_header_cloned(skb)) {
3741 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3742 if (err)
3743 return err;
3746 l4len = tcp_hdrlen(skb);
3747 *hdr_len += l4len;
3749 if (skb->protocol == htons(ETH_P_IP)) {
3750 struct iphdr *iph = ip_hdr(skb);
3751 iph->tot_len = 0;
3752 iph->check = 0;
3753 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3754 iph->daddr, 0,
3755 IPPROTO_TCP,
3757 } else if (skb_is_gso_v6(skb)) {
3758 ipv6_hdr(skb)->payload_len = 0;
3759 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3760 &ipv6_hdr(skb)->daddr,
3761 0, IPPROTO_TCP, 0);
3764 i = tx_ring->next_to_use;
3766 buffer_info = &tx_ring->buffer_info[i];
3767 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3768 /* VLAN MACLEN IPLEN */
3769 if (tx_flags & IGB_TX_FLAGS_VLAN)
3770 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3771 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3772 *hdr_len += skb_network_offset(skb);
3773 info |= skb_network_header_len(skb);
3774 *hdr_len += skb_network_header_len(skb);
3775 context_desc->vlan_macip_lens = cpu_to_le32(info);
3777 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3778 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3780 if (skb->protocol == htons(ETH_P_IP))
3781 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3782 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3784 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3786 /* MSS L4LEN IDX */
3787 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3788 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3790 /* For 82575, context index must be unique per ring. */
3791 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3792 mss_l4len_idx |= tx_ring->reg_idx << 4;
3794 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3795 context_desc->seqnum_seed = 0;
3797 buffer_info->time_stamp = jiffies;
3798 buffer_info->next_to_watch = i;
3799 buffer_info->dma = 0;
3800 i++;
3801 if (i == tx_ring->count)
3802 i = 0;
3804 tx_ring->next_to_use = i;
3806 return true;
3809 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3810 struct sk_buff *skb, u32 tx_flags)
3812 struct e1000_adv_tx_context_desc *context_desc;
3813 struct device *dev = tx_ring->dev;
3814 struct igb_buffer *buffer_info;
3815 u32 info = 0, tu_cmd = 0;
3816 unsigned int i;
3818 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3819 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3820 i = tx_ring->next_to_use;
3821 buffer_info = &tx_ring->buffer_info[i];
3822 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3824 if (tx_flags & IGB_TX_FLAGS_VLAN)
3825 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3827 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3828 if (skb->ip_summed == CHECKSUM_PARTIAL)
3829 info |= skb_network_header_len(skb);
3831 context_desc->vlan_macip_lens = cpu_to_le32(info);
3833 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3835 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3836 __be16 protocol;
3838 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3839 const struct vlan_ethhdr *vhdr =
3840 (const struct vlan_ethhdr*)skb->data;
3842 protocol = vhdr->h_vlan_encapsulated_proto;
3843 } else {
3844 protocol = skb->protocol;
3847 switch (protocol) {
3848 case cpu_to_be16(ETH_P_IP):
3849 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3850 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3851 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3852 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3853 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3854 break;
3855 case cpu_to_be16(ETH_P_IPV6):
3856 /* XXX what about other V6 headers?? */
3857 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3858 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3859 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3860 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3861 break;
3862 default:
3863 if (unlikely(net_ratelimit()))
3864 dev_warn(dev,
3865 "partial checksum but proto=%x!\n",
3866 skb->protocol);
3867 break;
3871 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3872 context_desc->seqnum_seed = 0;
3873 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3874 context_desc->mss_l4len_idx =
3875 cpu_to_le32(tx_ring->reg_idx << 4);
3877 buffer_info->time_stamp = jiffies;
3878 buffer_info->next_to_watch = i;
3879 buffer_info->dma = 0;
3881 i++;
3882 if (i == tx_ring->count)
3883 i = 0;
3884 tx_ring->next_to_use = i;
3886 return true;
3888 return false;
3891 #define IGB_MAX_TXD_PWR 16
3892 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3894 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3895 unsigned int first)
3897 struct igb_buffer *buffer_info;
3898 struct device *dev = tx_ring->dev;
3899 unsigned int hlen = skb_headlen(skb);
3900 unsigned int count = 0, i;
3901 unsigned int f;
3902 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
3904 i = tx_ring->next_to_use;
3906 buffer_info = &tx_ring->buffer_info[i];
3907 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3908 buffer_info->length = hlen;
3909 /* set time_stamp *before* dma to help avoid a possible race */
3910 buffer_info->time_stamp = jiffies;
3911 buffer_info->next_to_watch = i;
3912 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
3913 DMA_TO_DEVICE);
3914 if (dma_mapping_error(dev, buffer_info->dma))
3915 goto dma_error;
3917 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3918 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3919 unsigned int len = frag->size;
3921 count++;
3922 i++;
3923 if (i == tx_ring->count)
3924 i = 0;
3926 buffer_info = &tx_ring->buffer_info[i];
3927 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3928 buffer_info->length = len;
3929 buffer_info->time_stamp = jiffies;
3930 buffer_info->next_to_watch = i;
3931 buffer_info->mapped_as_page = true;
3932 buffer_info->dma = dma_map_page(dev,
3933 frag->page,
3934 frag->page_offset,
3935 len,
3936 DMA_TO_DEVICE);
3937 if (dma_mapping_error(dev, buffer_info->dma))
3938 goto dma_error;
3942 tx_ring->buffer_info[i].skb = skb;
3943 tx_ring->buffer_info[i].shtx = skb_shinfo(skb)->tx_flags;
3944 /* multiply data chunks by size of headers */
3945 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
3946 tx_ring->buffer_info[i].gso_segs = gso_segs;
3947 tx_ring->buffer_info[first].next_to_watch = i;
3949 return ++count;
3951 dma_error:
3952 dev_err(dev, "TX DMA map failed\n");
3954 /* clear timestamp and dma mappings for failed buffer_info mapping */
3955 buffer_info->dma = 0;
3956 buffer_info->time_stamp = 0;
3957 buffer_info->length = 0;
3958 buffer_info->next_to_watch = 0;
3959 buffer_info->mapped_as_page = false;
3961 /* clear timestamp and dma mappings for remaining portion of packet */
3962 while (count--) {
3963 if (i == 0)
3964 i = tx_ring->count;
3965 i--;
3966 buffer_info = &tx_ring->buffer_info[i];
3967 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3970 return 0;
3973 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3974 u32 tx_flags, int count, u32 paylen,
3975 u8 hdr_len)
3977 union e1000_adv_tx_desc *tx_desc;
3978 struct igb_buffer *buffer_info;
3979 u32 olinfo_status = 0, cmd_type_len;
3980 unsigned int i = tx_ring->next_to_use;
3982 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3983 E1000_ADVTXD_DCMD_DEXT);
3985 if (tx_flags & IGB_TX_FLAGS_VLAN)
3986 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3988 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3989 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3991 if (tx_flags & IGB_TX_FLAGS_TSO) {
3992 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3994 /* insert tcp checksum */
3995 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3997 /* insert ip checksum */
3998 if (tx_flags & IGB_TX_FLAGS_IPV4)
3999 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4001 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4002 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4005 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4006 (tx_flags & (IGB_TX_FLAGS_CSUM |
4007 IGB_TX_FLAGS_TSO |
4008 IGB_TX_FLAGS_VLAN)))
4009 olinfo_status |= tx_ring->reg_idx << 4;
4011 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4013 do {
4014 buffer_info = &tx_ring->buffer_info[i];
4015 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4016 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4017 tx_desc->read.cmd_type_len =
4018 cpu_to_le32(cmd_type_len | buffer_info->length);
4019 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4020 count--;
4021 i++;
4022 if (i == tx_ring->count)
4023 i = 0;
4024 } while (count > 0);
4026 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4027 /* Force memory writes to complete before letting h/w
4028 * know there are new descriptors to fetch. (Only
4029 * applicable for weak-ordered memory model archs,
4030 * such as IA-64). */
4031 wmb();
4033 tx_ring->next_to_use = i;
4034 writel(i, tx_ring->tail);
4035 /* we need this if more than one processor can write to our tail
4036 * at a time, it syncronizes IO on IA64/Altix systems */
4037 mmiowb();
4040 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4042 struct net_device *netdev = tx_ring->netdev;
4044 netif_stop_subqueue(netdev, tx_ring->queue_index);
4046 /* Herbert's original patch had:
4047 * smp_mb__after_netif_stop_queue();
4048 * but since that doesn't exist yet, just open code it. */
4049 smp_mb();
4051 /* We need to check again in a case another CPU has just
4052 * made room available. */
4053 if (igb_desc_unused(tx_ring) < size)
4054 return -EBUSY;
4056 /* A reprieve! */
4057 netif_wake_subqueue(netdev, tx_ring->queue_index);
4058 tx_ring->tx_stats.restart_queue++;
4059 return 0;
4062 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4064 if (igb_desc_unused(tx_ring) >= size)
4065 return 0;
4066 return __igb_maybe_stop_tx(tx_ring, size);
4069 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4070 struct igb_ring *tx_ring)
4072 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4073 int tso = 0, count;
4074 u32 tx_flags = 0;
4075 u16 first;
4076 u8 hdr_len = 0;
4077 union skb_shared_tx *shtx = skb_tx(skb);
4079 /* need: 1 descriptor per page,
4080 * + 2 desc gap to keep tail from touching head,
4081 * + 1 desc for skb->data,
4082 * + 1 desc for context descriptor,
4083 * otherwise try next time */
4084 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4085 /* this is a hard error */
4086 return NETDEV_TX_BUSY;
4089 if (unlikely(shtx->hardware)) {
4090 shtx->in_progress = 1;
4091 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4094 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
4095 tx_flags |= IGB_TX_FLAGS_VLAN;
4096 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4099 if (skb->protocol == htons(ETH_P_IP))
4100 tx_flags |= IGB_TX_FLAGS_IPV4;
4102 first = tx_ring->next_to_use;
4103 if (skb_is_gso(skb)) {
4104 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
4106 if (tso < 0) {
4107 dev_kfree_skb_any(skb);
4108 return NETDEV_TX_OK;
4112 if (tso)
4113 tx_flags |= IGB_TX_FLAGS_TSO;
4114 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4115 (skb->ip_summed == CHECKSUM_PARTIAL))
4116 tx_flags |= IGB_TX_FLAGS_CSUM;
4119 * count reflects descriptors mapped, if 0 or less then mapping error
4120 * has occured and we need to rewind the descriptor queue
4122 count = igb_tx_map_adv(tx_ring, skb, first);
4123 if (!count) {
4124 dev_kfree_skb_any(skb);
4125 tx_ring->buffer_info[first].time_stamp = 0;
4126 tx_ring->next_to_use = first;
4127 return NETDEV_TX_OK;
4130 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4132 /* Make sure there is space in the ring for the next send. */
4133 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4135 return NETDEV_TX_OK;
4138 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4139 struct net_device *netdev)
4141 struct igb_adapter *adapter = netdev_priv(netdev);
4142 struct igb_ring *tx_ring;
4143 int r_idx = 0;
4145 if (test_bit(__IGB_DOWN, &adapter->state)) {
4146 dev_kfree_skb_any(skb);
4147 return NETDEV_TX_OK;
4150 if (skb->len <= 0) {
4151 dev_kfree_skb_any(skb);
4152 return NETDEV_TX_OK;
4155 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4156 tx_ring = adapter->multi_tx_table[r_idx];
4158 /* This goes back to the question of how to logically map a tx queue
4159 * to a flow. Right now, performance is impacted slightly negatively
4160 * if using multiple tx queues. If the stack breaks away from a
4161 * single qdisc implementation, we can look at this again. */
4162 return igb_xmit_frame_ring_adv(skb, tx_ring);
4166 * igb_tx_timeout - Respond to a Tx Hang
4167 * @netdev: network interface device structure
4169 static void igb_tx_timeout(struct net_device *netdev)
4171 struct igb_adapter *adapter = netdev_priv(netdev);
4172 struct e1000_hw *hw = &adapter->hw;
4174 /* Do the reset outside of interrupt context */
4175 adapter->tx_timeout_count++;
4177 if (hw->mac.type == e1000_82580)
4178 hw->dev_spec._82575.global_device_reset = true;
4180 schedule_work(&adapter->reset_task);
4181 wr32(E1000_EICS,
4182 (adapter->eims_enable_mask & ~adapter->eims_other));
4185 static void igb_reset_task(struct work_struct *work)
4187 struct igb_adapter *adapter;
4188 adapter = container_of(work, struct igb_adapter, reset_task);
4190 igb_dump(adapter);
4191 netdev_err(adapter->netdev, "Reset adapter\n");
4192 igb_reinit_locked(adapter);
4196 * igb_get_stats - Get System Network Statistics
4197 * @netdev: network interface device structure
4199 * Returns the address of the device statistics structure.
4200 * The statistics are actually updated from the timer callback.
4202 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
4204 /* only return the current stats */
4205 return &netdev->stats;
4209 * igb_change_mtu - Change the Maximum Transfer Unit
4210 * @netdev: network interface device structure
4211 * @new_mtu: new value for maximum frame size
4213 * Returns 0 on success, negative on failure
4215 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4217 struct igb_adapter *adapter = netdev_priv(netdev);
4218 struct pci_dev *pdev = adapter->pdev;
4219 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4220 u32 rx_buffer_len, i;
4222 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4223 dev_err(&pdev->dev, "Invalid MTU setting\n");
4224 return -EINVAL;
4227 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4228 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4229 return -EINVAL;
4232 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4233 msleep(1);
4235 /* igb_down has a dependency on max_frame_size */
4236 adapter->max_frame_size = max_frame;
4238 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4239 * means we reserve 2 more, this pushes us to allocate from the next
4240 * larger slab size.
4241 * i.e. RXBUFFER_2048 --> size-4096 slab
4244 if (adapter->hw.mac.type == e1000_82580)
4245 max_frame += IGB_TS_HDR_LEN;
4247 if (max_frame <= IGB_RXBUFFER_1024)
4248 rx_buffer_len = IGB_RXBUFFER_1024;
4249 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4250 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
4251 else
4252 rx_buffer_len = IGB_RXBUFFER_128;
4254 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4255 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4256 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4258 if ((adapter->hw.mac.type == e1000_82580) &&
4259 (rx_buffer_len == IGB_RXBUFFER_128))
4260 rx_buffer_len += IGB_RXBUFFER_64;
4262 if (netif_running(netdev))
4263 igb_down(adapter);
4265 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4266 netdev->mtu, new_mtu);
4267 netdev->mtu = new_mtu;
4269 for (i = 0; i < adapter->num_rx_queues; i++)
4270 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4272 if (netif_running(netdev))
4273 igb_up(adapter);
4274 else
4275 igb_reset(adapter);
4277 clear_bit(__IGB_RESETTING, &adapter->state);
4279 return 0;
4283 * igb_update_stats - Update the board statistics counters
4284 * @adapter: board private structure
4287 void igb_update_stats(struct igb_adapter *adapter)
4289 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
4290 struct e1000_hw *hw = &adapter->hw;
4291 struct pci_dev *pdev = adapter->pdev;
4292 u32 reg, mpc;
4293 u16 phy_tmp;
4294 int i;
4295 u64 bytes, packets;
4297 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4300 * Prevent stats update while adapter is being reset, or if the pci
4301 * connection is down.
4303 if (adapter->link_speed == 0)
4304 return;
4305 if (pci_channel_offline(pdev))
4306 return;
4308 bytes = 0;
4309 packets = 0;
4310 for (i = 0; i < adapter->num_rx_queues; i++) {
4311 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4312 struct igb_ring *ring = adapter->rx_ring[i];
4313 ring->rx_stats.drops += rqdpc_tmp;
4314 net_stats->rx_fifo_errors += rqdpc_tmp;
4315 bytes += ring->rx_stats.bytes;
4316 packets += ring->rx_stats.packets;
4319 net_stats->rx_bytes = bytes;
4320 net_stats->rx_packets = packets;
4322 bytes = 0;
4323 packets = 0;
4324 for (i = 0; i < adapter->num_tx_queues; i++) {
4325 struct igb_ring *ring = adapter->tx_ring[i];
4326 bytes += ring->tx_stats.bytes;
4327 packets += ring->tx_stats.packets;
4329 net_stats->tx_bytes = bytes;
4330 net_stats->tx_packets = packets;
4332 /* read stats registers */
4333 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4334 adapter->stats.gprc += rd32(E1000_GPRC);
4335 adapter->stats.gorc += rd32(E1000_GORCL);
4336 rd32(E1000_GORCH); /* clear GORCL */
4337 adapter->stats.bprc += rd32(E1000_BPRC);
4338 adapter->stats.mprc += rd32(E1000_MPRC);
4339 adapter->stats.roc += rd32(E1000_ROC);
4341 adapter->stats.prc64 += rd32(E1000_PRC64);
4342 adapter->stats.prc127 += rd32(E1000_PRC127);
4343 adapter->stats.prc255 += rd32(E1000_PRC255);
4344 adapter->stats.prc511 += rd32(E1000_PRC511);
4345 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4346 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4347 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4348 adapter->stats.sec += rd32(E1000_SEC);
4350 mpc = rd32(E1000_MPC);
4351 adapter->stats.mpc += mpc;
4352 net_stats->rx_fifo_errors += mpc;
4353 adapter->stats.scc += rd32(E1000_SCC);
4354 adapter->stats.ecol += rd32(E1000_ECOL);
4355 adapter->stats.mcc += rd32(E1000_MCC);
4356 adapter->stats.latecol += rd32(E1000_LATECOL);
4357 adapter->stats.dc += rd32(E1000_DC);
4358 adapter->stats.rlec += rd32(E1000_RLEC);
4359 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4360 adapter->stats.xontxc += rd32(E1000_XONTXC);
4361 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4362 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4363 adapter->stats.fcruc += rd32(E1000_FCRUC);
4364 adapter->stats.gptc += rd32(E1000_GPTC);
4365 adapter->stats.gotc += rd32(E1000_GOTCL);
4366 rd32(E1000_GOTCH); /* clear GOTCL */
4367 adapter->stats.rnbc += rd32(E1000_RNBC);
4368 adapter->stats.ruc += rd32(E1000_RUC);
4369 adapter->stats.rfc += rd32(E1000_RFC);
4370 adapter->stats.rjc += rd32(E1000_RJC);
4371 adapter->stats.tor += rd32(E1000_TORH);
4372 adapter->stats.tot += rd32(E1000_TOTH);
4373 adapter->stats.tpr += rd32(E1000_TPR);
4375 adapter->stats.ptc64 += rd32(E1000_PTC64);
4376 adapter->stats.ptc127 += rd32(E1000_PTC127);
4377 adapter->stats.ptc255 += rd32(E1000_PTC255);
4378 adapter->stats.ptc511 += rd32(E1000_PTC511);
4379 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4380 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4382 adapter->stats.mptc += rd32(E1000_MPTC);
4383 adapter->stats.bptc += rd32(E1000_BPTC);
4385 adapter->stats.tpt += rd32(E1000_TPT);
4386 adapter->stats.colc += rd32(E1000_COLC);
4388 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4389 /* read internal phy specific stats */
4390 reg = rd32(E1000_CTRL_EXT);
4391 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4392 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4393 adapter->stats.tncrs += rd32(E1000_TNCRS);
4396 adapter->stats.tsctc += rd32(E1000_TSCTC);
4397 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4399 adapter->stats.iac += rd32(E1000_IAC);
4400 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4401 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4402 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4403 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4404 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4405 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4406 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4407 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4409 /* Fill out the OS statistics structure */
4410 net_stats->multicast = adapter->stats.mprc;
4411 net_stats->collisions = adapter->stats.colc;
4413 /* Rx Errors */
4415 /* RLEC on some newer hardware can be incorrect so build
4416 * our own version based on RUC and ROC */
4417 net_stats->rx_errors = adapter->stats.rxerrc +
4418 adapter->stats.crcerrs + adapter->stats.algnerrc +
4419 adapter->stats.ruc + adapter->stats.roc +
4420 adapter->stats.cexterr;
4421 net_stats->rx_length_errors = adapter->stats.ruc +
4422 adapter->stats.roc;
4423 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4424 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4425 net_stats->rx_missed_errors = adapter->stats.mpc;
4427 /* Tx Errors */
4428 net_stats->tx_errors = adapter->stats.ecol +
4429 adapter->stats.latecol;
4430 net_stats->tx_aborted_errors = adapter->stats.ecol;
4431 net_stats->tx_window_errors = adapter->stats.latecol;
4432 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4434 /* Tx Dropped needs to be maintained elsewhere */
4436 /* Phy Stats */
4437 if (hw->phy.media_type == e1000_media_type_copper) {
4438 if ((adapter->link_speed == SPEED_1000) &&
4439 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4440 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4441 adapter->phy_stats.idle_errors += phy_tmp;
4445 /* Management Stats */
4446 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4447 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4448 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4451 static irqreturn_t igb_msix_other(int irq, void *data)
4453 struct igb_adapter *adapter = data;
4454 struct e1000_hw *hw = &adapter->hw;
4455 u32 icr = rd32(E1000_ICR);
4456 /* reading ICR causes bit 31 of EICR to be cleared */
4458 if (icr & E1000_ICR_DRSTA)
4459 schedule_work(&adapter->reset_task);
4461 if (icr & E1000_ICR_DOUTSYNC) {
4462 /* HW is reporting DMA is out of sync */
4463 adapter->stats.doosync++;
4466 /* Check for a mailbox event */
4467 if (icr & E1000_ICR_VMMB)
4468 igb_msg_task(adapter);
4470 if (icr & E1000_ICR_LSC) {
4471 hw->mac.get_link_status = 1;
4472 /* guard against interrupt when we're going down */
4473 if (!test_bit(__IGB_DOWN, &adapter->state))
4474 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4477 if (adapter->vfs_allocated_count)
4478 wr32(E1000_IMS, E1000_IMS_LSC |
4479 E1000_IMS_VMMB |
4480 E1000_IMS_DOUTSYNC);
4481 else
4482 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4483 wr32(E1000_EIMS, adapter->eims_other);
4485 return IRQ_HANDLED;
4488 static void igb_write_itr(struct igb_q_vector *q_vector)
4490 struct igb_adapter *adapter = q_vector->adapter;
4491 u32 itr_val = q_vector->itr_val & 0x7FFC;
4493 if (!q_vector->set_itr)
4494 return;
4496 if (!itr_val)
4497 itr_val = 0x4;
4499 if (adapter->hw.mac.type == e1000_82575)
4500 itr_val |= itr_val << 16;
4501 else
4502 itr_val |= 0x8000000;
4504 writel(itr_val, q_vector->itr_register);
4505 q_vector->set_itr = 0;
4508 static irqreturn_t igb_msix_ring(int irq, void *data)
4510 struct igb_q_vector *q_vector = data;
4512 /* Write the ITR value calculated from the previous interrupt. */
4513 igb_write_itr(q_vector);
4515 napi_schedule(&q_vector->napi);
4517 return IRQ_HANDLED;
4520 #ifdef CONFIG_IGB_DCA
4521 static void igb_update_dca(struct igb_q_vector *q_vector)
4523 struct igb_adapter *adapter = q_vector->adapter;
4524 struct e1000_hw *hw = &adapter->hw;
4525 int cpu = get_cpu();
4527 if (q_vector->cpu == cpu)
4528 goto out_no_update;
4530 if (q_vector->tx_ring) {
4531 int q = q_vector->tx_ring->reg_idx;
4532 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4533 if (hw->mac.type == e1000_82575) {
4534 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4535 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4536 } else {
4537 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4538 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4539 E1000_DCA_TXCTRL_CPUID_SHIFT;
4541 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4542 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4544 if (q_vector->rx_ring) {
4545 int q = q_vector->rx_ring->reg_idx;
4546 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4547 if (hw->mac.type == e1000_82575) {
4548 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4549 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4550 } else {
4551 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4552 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4553 E1000_DCA_RXCTRL_CPUID_SHIFT;
4555 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4556 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4557 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4558 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4560 q_vector->cpu = cpu;
4561 out_no_update:
4562 put_cpu();
4565 static void igb_setup_dca(struct igb_adapter *adapter)
4567 struct e1000_hw *hw = &adapter->hw;
4568 int i;
4570 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4571 return;
4573 /* Always use CB2 mode, difference is masked in the CB driver. */
4574 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4576 for (i = 0; i < adapter->num_q_vectors; i++) {
4577 adapter->q_vector[i]->cpu = -1;
4578 igb_update_dca(adapter->q_vector[i]);
4582 static int __igb_notify_dca(struct device *dev, void *data)
4584 struct net_device *netdev = dev_get_drvdata(dev);
4585 struct igb_adapter *adapter = netdev_priv(netdev);
4586 struct pci_dev *pdev = adapter->pdev;
4587 struct e1000_hw *hw = &adapter->hw;
4588 unsigned long event = *(unsigned long *)data;
4590 switch (event) {
4591 case DCA_PROVIDER_ADD:
4592 /* if already enabled, don't do it again */
4593 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4594 break;
4595 if (dca_add_requester(dev) == 0) {
4596 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4597 dev_info(&pdev->dev, "DCA enabled\n");
4598 igb_setup_dca(adapter);
4599 break;
4601 /* Fall Through since DCA is disabled. */
4602 case DCA_PROVIDER_REMOVE:
4603 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4604 /* without this a class_device is left
4605 * hanging around in the sysfs model */
4606 dca_remove_requester(dev);
4607 dev_info(&pdev->dev, "DCA disabled\n");
4608 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4609 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4611 break;
4614 return 0;
4617 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4618 void *p)
4620 int ret_val;
4622 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4623 __igb_notify_dca);
4625 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4627 #endif /* CONFIG_IGB_DCA */
4629 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4631 struct e1000_hw *hw = &adapter->hw;
4632 u32 ping;
4633 int i;
4635 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4636 ping = E1000_PF_CONTROL_MSG;
4637 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4638 ping |= E1000_VT_MSGTYPE_CTS;
4639 igb_write_mbx(hw, &ping, 1, i);
4643 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4645 struct e1000_hw *hw = &adapter->hw;
4646 u32 vmolr = rd32(E1000_VMOLR(vf));
4647 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4649 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4650 IGB_VF_FLAG_MULTI_PROMISC);
4651 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4653 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4654 vmolr |= E1000_VMOLR_MPME;
4655 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4656 } else {
4658 * if we have hashes and we are clearing a multicast promisc
4659 * flag we need to write the hashes to the MTA as this step
4660 * was previously skipped
4662 if (vf_data->num_vf_mc_hashes > 30) {
4663 vmolr |= E1000_VMOLR_MPME;
4664 } else if (vf_data->num_vf_mc_hashes) {
4665 int j;
4666 vmolr |= E1000_VMOLR_ROMPE;
4667 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4668 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4672 wr32(E1000_VMOLR(vf), vmolr);
4674 /* there are flags left unprocessed, likely not supported */
4675 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4676 return -EINVAL;
4678 return 0;
4682 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4683 u32 *msgbuf, u32 vf)
4685 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4686 u16 *hash_list = (u16 *)&msgbuf[1];
4687 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4688 int i;
4690 /* salt away the number of multicast addresses assigned
4691 * to this VF for later use to restore when the PF multi cast
4692 * list changes
4694 vf_data->num_vf_mc_hashes = n;
4696 /* only up to 30 hash values supported */
4697 if (n > 30)
4698 n = 30;
4700 /* store the hashes for later use */
4701 for (i = 0; i < n; i++)
4702 vf_data->vf_mc_hashes[i] = hash_list[i];
4704 /* Flush and reset the mta with the new values */
4705 igb_set_rx_mode(adapter->netdev);
4707 return 0;
4710 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4712 struct e1000_hw *hw = &adapter->hw;
4713 struct vf_data_storage *vf_data;
4714 int i, j;
4716 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4717 u32 vmolr = rd32(E1000_VMOLR(i));
4718 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4720 vf_data = &adapter->vf_data[i];
4722 if ((vf_data->num_vf_mc_hashes > 30) ||
4723 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4724 vmolr |= E1000_VMOLR_MPME;
4725 } else if (vf_data->num_vf_mc_hashes) {
4726 vmolr |= E1000_VMOLR_ROMPE;
4727 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4728 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4730 wr32(E1000_VMOLR(i), vmolr);
4734 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4736 struct e1000_hw *hw = &adapter->hw;
4737 u32 pool_mask, reg, vid;
4738 int i;
4740 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4742 /* Find the vlan filter for this id */
4743 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4744 reg = rd32(E1000_VLVF(i));
4746 /* remove the vf from the pool */
4747 reg &= ~pool_mask;
4749 /* if pool is empty then remove entry from vfta */
4750 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4751 (reg & E1000_VLVF_VLANID_ENABLE)) {
4752 reg = 0;
4753 vid = reg & E1000_VLVF_VLANID_MASK;
4754 igb_vfta_set(hw, vid, false);
4757 wr32(E1000_VLVF(i), reg);
4760 adapter->vf_data[vf].vlans_enabled = 0;
4763 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4765 struct e1000_hw *hw = &adapter->hw;
4766 u32 reg, i;
4768 /* The vlvf table only exists on 82576 hardware and newer */
4769 if (hw->mac.type < e1000_82576)
4770 return -1;
4772 /* we only need to do this if VMDq is enabled */
4773 if (!adapter->vfs_allocated_count)
4774 return -1;
4776 /* Find the vlan filter for this id */
4777 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4778 reg = rd32(E1000_VLVF(i));
4779 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4780 vid == (reg & E1000_VLVF_VLANID_MASK))
4781 break;
4784 if (add) {
4785 if (i == E1000_VLVF_ARRAY_SIZE) {
4786 /* Did not find a matching VLAN ID entry that was
4787 * enabled. Search for a free filter entry, i.e.
4788 * one without the enable bit set
4790 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4791 reg = rd32(E1000_VLVF(i));
4792 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4793 break;
4796 if (i < E1000_VLVF_ARRAY_SIZE) {
4797 /* Found an enabled/available entry */
4798 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4800 /* if !enabled we need to set this up in vfta */
4801 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4802 /* add VID to filter table */
4803 igb_vfta_set(hw, vid, true);
4804 reg |= E1000_VLVF_VLANID_ENABLE;
4806 reg &= ~E1000_VLVF_VLANID_MASK;
4807 reg |= vid;
4808 wr32(E1000_VLVF(i), reg);
4810 /* do not modify RLPML for PF devices */
4811 if (vf >= adapter->vfs_allocated_count)
4812 return 0;
4814 if (!adapter->vf_data[vf].vlans_enabled) {
4815 u32 size;
4816 reg = rd32(E1000_VMOLR(vf));
4817 size = reg & E1000_VMOLR_RLPML_MASK;
4818 size += 4;
4819 reg &= ~E1000_VMOLR_RLPML_MASK;
4820 reg |= size;
4821 wr32(E1000_VMOLR(vf), reg);
4824 adapter->vf_data[vf].vlans_enabled++;
4825 return 0;
4827 } else {
4828 if (i < E1000_VLVF_ARRAY_SIZE) {
4829 /* remove vf from the pool */
4830 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4831 /* if pool is empty then remove entry from vfta */
4832 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4833 reg = 0;
4834 igb_vfta_set(hw, vid, false);
4836 wr32(E1000_VLVF(i), reg);
4838 /* do not modify RLPML for PF devices */
4839 if (vf >= adapter->vfs_allocated_count)
4840 return 0;
4842 adapter->vf_data[vf].vlans_enabled--;
4843 if (!adapter->vf_data[vf].vlans_enabled) {
4844 u32 size;
4845 reg = rd32(E1000_VMOLR(vf));
4846 size = reg & E1000_VMOLR_RLPML_MASK;
4847 size -= 4;
4848 reg &= ~E1000_VMOLR_RLPML_MASK;
4849 reg |= size;
4850 wr32(E1000_VMOLR(vf), reg);
4854 return 0;
4857 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4859 struct e1000_hw *hw = &adapter->hw;
4861 if (vid)
4862 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4863 else
4864 wr32(E1000_VMVIR(vf), 0);
4867 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4868 int vf, u16 vlan, u8 qos)
4870 int err = 0;
4871 struct igb_adapter *adapter = netdev_priv(netdev);
4873 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4874 return -EINVAL;
4875 if (vlan || qos) {
4876 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4877 if (err)
4878 goto out;
4879 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4880 igb_set_vmolr(adapter, vf, !vlan);
4881 adapter->vf_data[vf].pf_vlan = vlan;
4882 adapter->vf_data[vf].pf_qos = qos;
4883 dev_info(&adapter->pdev->dev,
4884 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4885 if (test_bit(__IGB_DOWN, &adapter->state)) {
4886 dev_warn(&adapter->pdev->dev,
4887 "The VF VLAN has been set,"
4888 " but the PF device is not up.\n");
4889 dev_warn(&adapter->pdev->dev,
4890 "Bring the PF device up before"
4891 " attempting to use the VF device.\n");
4893 } else {
4894 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4895 false, vf);
4896 igb_set_vmvir(adapter, vlan, vf);
4897 igb_set_vmolr(adapter, vf, true);
4898 adapter->vf_data[vf].pf_vlan = 0;
4899 adapter->vf_data[vf].pf_qos = 0;
4901 out:
4902 return err;
4905 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4907 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4908 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4910 return igb_vlvf_set(adapter, vid, add, vf);
4913 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4915 /* clear flags */
4916 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
4917 adapter->vf_data[vf].last_nack = jiffies;
4919 /* reset offloads to defaults */
4920 igb_set_vmolr(adapter, vf, true);
4922 /* reset vlans for device */
4923 igb_clear_vf_vfta(adapter, vf);
4924 if (adapter->vf_data[vf].pf_vlan)
4925 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4926 adapter->vf_data[vf].pf_vlan,
4927 adapter->vf_data[vf].pf_qos);
4928 else
4929 igb_clear_vf_vfta(adapter, vf);
4931 /* reset multicast table array for vf */
4932 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4934 /* Flush and reset the mta with the new values */
4935 igb_set_rx_mode(adapter->netdev);
4938 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4940 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4942 /* generate a new mac address as we were hotplug removed/added */
4943 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4944 random_ether_addr(vf_mac);
4946 /* process remaining reset events */
4947 igb_vf_reset(adapter, vf);
4950 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4952 struct e1000_hw *hw = &adapter->hw;
4953 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4954 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4955 u32 reg, msgbuf[3];
4956 u8 *addr = (u8 *)(&msgbuf[1]);
4958 /* process all the same items cleared in a function level reset */
4959 igb_vf_reset(adapter, vf);
4961 /* set vf mac address */
4962 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4964 /* enable transmit and receive for vf */
4965 reg = rd32(E1000_VFTE);
4966 wr32(E1000_VFTE, reg | (1 << vf));
4967 reg = rd32(E1000_VFRE);
4968 wr32(E1000_VFRE, reg | (1 << vf));
4970 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4972 /* reply to reset with ack and vf mac address */
4973 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4974 memcpy(addr, vf_mac, 6);
4975 igb_write_mbx(hw, msgbuf, 3, vf);
4978 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4980 unsigned char *addr = (char *)&msg[1];
4981 int err = -1;
4983 if (is_valid_ether_addr(addr))
4984 err = igb_set_vf_mac(adapter, vf, addr);
4986 return err;
4989 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4991 struct e1000_hw *hw = &adapter->hw;
4992 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4993 u32 msg = E1000_VT_MSGTYPE_NACK;
4995 /* if device isn't clear to send it shouldn't be reading either */
4996 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4997 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4998 igb_write_mbx(hw, &msg, 1, vf);
4999 vf_data->last_nack = jiffies;
5003 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5005 struct pci_dev *pdev = adapter->pdev;
5006 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5007 struct e1000_hw *hw = &adapter->hw;
5008 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5009 s32 retval;
5011 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5013 if (retval) {
5014 /* if receive failed revoke VF CTS stats and restart init */
5015 dev_err(&pdev->dev, "Error receiving message from VF\n");
5016 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5017 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5018 return;
5019 goto out;
5022 /* this is a message we already processed, do nothing */
5023 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5024 return;
5027 * until the vf completes a reset it should not be
5028 * allowed to start any configuration.
5031 if (msgbuf[0] == E1000_VF_RESET) {
5032 igb_vf_reset_msg(adapter, vf);
5033 return;
5036 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5037 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5038 return;
5039 retval = -1;
5040 goto out;
5043 switch ((msgbuf[0] & 0xFFFF)) {
5044 case E1000_VF_SET_MAC_ADDR:
5045 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5046 break;
5047 case E1000_VF_SET_PROMISC:
5048 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5049 break;
5050 case E1000_VF_SET_MULTICAST:
5051 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5052 break;
5053 case E1000_VF_SET_LPE:
5054 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5055 break;
5056 case E1000_VF_SET_VLAN:
5057 if (adapter->vf_data[vf].pf_vlan)
5058 retval = -1;
5059 else
5060 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5061 break;
5062 default:
5063 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5064 retval = -1;
5065 break;
5068 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5069 out:
5070 /* notify the VF of the results of what it sent us */
5071 if (retval)
5072 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5073 else
5074 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5076 igb_write_mbx(hw, msgbuf, 1, vf);
5079 static void igb_msg_task(struct igb_adapter *adapter)
5081 struct e1000_hw *hw = &adapter->hw;
5082 u32 vf;
5084 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5085 /* process any reset requests */
5086 if (!igb_check_for_rst(hw, vf))
5087 igb_vf_reset_event(adapter, vf);
5089 /* process any messages pending */
5090 if (!igb_check_for_msg(hw, vf))
5091 igb_rcv_msg_from_vf(adapter, vf);
5093 /* process any acks */
5094 if (!igb_check_for_ack(hw, vf))
5095 igb_rcv_ack_from_vf(adapter, vf);
5100 * igb_set_uta - Set unicast filter table address
5101 * @adapter: board private structure
5103 * The unicast table address is a register array of 32-bit registers.
5104 * The table is meant to be used in a way similar to how the MTA is used
5105 * however due to certain limitations in the hardware it is necessary to
5106 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5107 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5109 static void igb_set_uta(struct igb_adapter *adapter)
5111 struct e1000_hw *hw = &adapter->hw;
5112 int i;
5114 /* The UTA table only exists on 82576 hardware and newer */
5115 if (hw->mac.type < e1000_82576)
5116 return;
5118 /* we only need to do this if VMDq is enabled */
5119 if (!adapter->vfs_allocated_count)
5120 return;
5122 for (i = 0; i < hw->mac.uta_reg_count; i++)
5123 array_wr32(E1000_UTA, i, ~0);
5127 * igb_intr_msi - Interrupt Handler
5128 * @irq: interrupt number
5129 * @data: pointer to a network interface device structure
5131 static irqreturn_t igb_intr_msi(int irq, void *data)
5133 struct igb_adapter *adapter = data;
5134 struct igb_q_vector *q_vector = adapter->q_vector[0];
5135 struct e1000_hw *hw = &adapter->hw;
5136 /* read ICR disables interrupts using IAM */
5137 u32 icr = rd32(E1000_ICR);
5139 igb_write_itr(q_vector);
5141 if (icr & E1000_ICR_DRSTA)
5142 schedule_work(&adapter->reset_task);
5144 if (icr & E1000_ICR_DOUTSYNC) {
5145 /* HW is reporting DMA is out of sync */
5146 adapter->stats.doosync++;
5149 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5150 hw->mac.get_link_status = 1;
5151 if (!test_bit(__IGB_DOWN, &adapter->state))
5152 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5155 napi_schedule(&q_vector->napi);
5157 return IRQ_HANDLED;
5161 * igb_intr - Legacy Interrupt Handler
5162 * @irq: interrupt number
5163 * @data: pointer to a network interface device structure
5165 static irqreturn_t igb_intr(int irq, void *data)
5167 struct igb_adapter *adapter = data;
5168 struct igb_q_vector *q_vector = adapter->q_vector[0];
5169 struct e1000_hw *hw = &adapter->hw;
5170 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5171 * need for the IMC write */
5172 u32 icr = rd32(E1000_ICR);
5173 if (!icr)
5174 return IRQ_NONE; /* Not our interrupt */
5176 igb_write_itr(q_vector);
5178 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5179 * not set, then the adapter didn't send an interrupt */
5180 if (!(icr & E1000_ICR_INT_ASSERTED))
5181 return IRQ_NONE;
5183 if (icr & E1000_ICR_DRSTA)
5184 schedule_work(&adapter->reset_task);
5186 if (icr & E1000_ICR_DOUTSYNC) {
5187 /* HW is reporting DMA is out of sync */
5188 adapter->stats.doosync++;
5191 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5192 hw->mac.get_link_status = 1;
5193 /* guard against interrupt when we're going down */
5194 if (!test_bit(__IGB_DOWN, &adapter->state))
5195 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5198 napi_schedule(&q_vector->napi);
5200 return IRQ_HANDLED;
5203 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5205 struct igb_adapter *adapter = q_vector->adapter;
5206 struct e1000_hw *hw = &adapter->hw;
5208 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5209 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5210 if (!adapter->msix_entries)
5211 igb_set_itr(adapter);
5212 else
5213 igb_update_ring_itr(q_vector);
5216 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5217 if (adapter->msix_entries)
5218 wr32(E1000_EIMS, q_vector->eims_value);
5219 else
5220 igb_irq_enable(adapter);
5225 * igb_poll - NAPI Rx polling callback
5226 * @napi: napi polling structure
5227 * @budget: count of how many packets we should handle
5229 static int igb_poll(struct napi_struct *napi, int budget)
5231 struct igb_q_vector *q_vector = container_of(napi,
5232 struct igb_q_vector,
5233 napi);
5234 int tx_clean_complete = 1, work_done = 0;
5236 #ifdef CONFIG_IGB_DCA
5237 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5238 igb_update_dca(q_vector);
5239 #endif
5240 if (q_vector->tx_ring)
5241 tx_clean_complete = igb_clean_tx_irq(q_vector);
5243 if (q_vector->rx_ring)
5244 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5246 if (!tx_clean_complete)
5247 work_done = budget;
5249 /* If not enough Rx work done, exit the polling mode */
5250 if (work_done < budget) {
5251 napi_complete(napi);
5252 igb_ring_irq_enable(q_vector);
5255 return work_done;
5259 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5260 * @adapter: board private structure
5261 * @shhwtstamps: timestamp structure to update
5262 * @regval: unsigned 64bit system time value.
5264 * We need to convert the system time value stored in the RX/TXSTMP registers
5265 * into a hwtstamp which can be used by the upper level timestamping functions
5267 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5268 struct skb_shared_hwtstamps *shhwtstamps,
5269 u64 regval)
5271 u64 ns;
5274 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5275 * 24 to match clock shift we setup earlier.
5277 if (adapter->hw.mac.type == e1000_82580)
5278 regval <<= IGB_82580_TSYNC_SHIFT;
5280 ns = timecounter_cyc2time(&adapter->clock, regval);
5281 timecompare_update(&adapter->compare, ns);
5282 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5283 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5284 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5288 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5289 * @q_vector: pointer to q_vector containing needed info
5290 * @buffer: pointer to igb_buffer structure
5292 * If we were asked to do hardware stamping and such a time stamp is
5293 * available, then it must have been for this skb here because we only
5294 * allow only one such packet into the queue.
5296 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5298 struct igb_adapter *adapter = q_vector->adapter;
5299 struct e1000_hw *hw = &adapter->hw;
5300 struct skb_shared_hwtstamps shhwtstamps;
5301 u64 regval;
5303 /* if skb does not support hw timestamp or TX stamp not valid exit */
5304 if (likely(!buffer_info->shtx.hardware) ||
5305 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5306 return;
5308 regval = rd32(E1000_TXSTMPL);
5309 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5311 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5312 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5316 * igb_clean_tx_irq - Reclaim resources after transmit completes
5317 * @q_vector: pointer to q_vector containing needed info
5318 * returns true if ring is completely cleaned
5320 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5322 struct igb_adapter *adapter = q_vector->adapter;
5323 struct igb_ring *tx_ring = q_vector->tx_ring;
5324 struct net_device *netdev = tx_ring->netdev;
5325 struct e1000_hw *hw = &adapter->hw;
5326 struct igb_buffer *buffer_info;
5327 union e1000_adv_tx_desc *tx_desc, *eop_desc;
5328 unsigned int total_bytes = 0, total_packets = 0;
5329 unsigned int i, eop, count = 0;
5330 bool cleaned = false;
5332 i = tx_ring->next_to_clean;
5333 eop = tx_ring->buffer_info[i].next_to_watch;
5334 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5336 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5337 (count < tx_ring->count)) {
5338 for (cleaned = false; !cleaned; count++) {
5339 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5340 buffer_info = &tx_ring->buffer_info[i];
5341 cleaned = (i == eop);
5343 if (buffer_info->skb) {
5344 total_bytes += buffer_info->bytecount;
5345 /* gso_segs is currently only valid for tcp */
5346 total_packets += buffer_info->gso_segs;
5347 igb_tx_hwtstamp(q_vector, buffer_info);
5350 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
5351 tx_desc->wb.status = 0;
5353 i++;
5354 if (i == tx_ring->count)
5355 i = 0;
5357 eop = tx_ring->buffer_info[i].next_to_watch;
5358 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5361 tx_ring->next_to_clean = i;
5363 if (unlikely(count &&
5364 netif_carrier_ok(netdev) &&
5365 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5366 /* Make sure that anybody stopping the queue after this
5367 * sees the new next_to_clean.
5369 smp_mb();
5370 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5371 !(test_bit(__IGB_DOWN, &adapter->state))) {
5372 netif_wake_subqueue(netdev, tx_ring->queue_index);
5373 tx_ring->tx_stats.restart_queue++;
5377 if (tx_ring->detect_tx_hung) {
5378 /* Detect a transmit hang in hardware, this serializes the
5379 * check with the clearing of time_stamp and movement of i */
5380 tx_ring->detect_tx_hung = false;
5381 if (tx_ring->buffer_info[i].time_stamp &&
5382 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5383 (adapter->tx_timeout_factor * HZ)) &&
5384 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5386 /* detected Tx unit hang */
5387 dev_err(tx_ring->dev,
5388 "Detected Tx Unit Hang\n"
5389 " Tx Queue <%d>\n"
5390 " TDH <%x>\n"
5391 " TDT <%x>\n"
5392 " next_to_use <%x>\n"
5393 " next_to_clean <%x>\n"
5394 "buffer_info[next_to_clean]\n"
5395 " time_stamp <%lx>\n"
5396 " next_to_watch <%x>\n"
5397 " jiffies <%lx>\n"
5398 " desc.status <%x>\n",
5399 tx_ring->queue_index,
5400 readl(tx_ring->head),
5401 readl(tx_ring->tail),
5402 tx_ring->next_to_use,
5403 tx_ring->next_to_clean,
5404 tx_ring->buffer_info[eop].time_stamp,
5405 eop,
5406 jiffies,
5407 eop_desc->wb.status);
5408 netif_stop_subqueue(netdev, tx_ring->queue_index);
5411 tx_ring->total_bytes += total_bytes;
5412 tx_ring->total_packets += total_packets;
5413 tx_ring->tx_stats.bytes += total_bytes;
5414 tx_ring->tx_stats.packets += total_packets;
5415 return (count < tx_ring->count);
5419 * igb_receive_skb - helper function to handle rx indications
5420 * @q_vector: structure containing interrupt and ring information
5421 * @skb: packet to send up
5422 * @vlan_tag: vlan tag for packet
5424 static void igb_receive_skb(struct igb_q_vector *q_vector,
5425 struct sk_buff *skb,
5426 u16 vlan_tag)
5428 struct igb_adapter *adapter = q_vector->adapter;
5430 if (vlan_tag && adapter->vlgrp)
5431 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5432 vlan_tag, skb);
5433 else
5434 napi_gro_receive(&q_vector->napi, skb);
5437 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5438 u32 status_err, struct sk_buff *skb)
5440 skb->ip_summed = CHECKSUM_NONE;
5442 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5443 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5444 (status_err & E1000_RXD_STAT_IXSM))
5445 return;
5447 /* TCP/UDP checksum error bit is set */
5448 if (status_err &
5449 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5451 * work around errata with sctp packets where the TCPE aka
5452 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5453 * packets, (aka let the stack check the crc32c)
5455 if ((skb->len == 60) &&
5456 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5457 ring->rx_stats.csum_err++;
5459 /* let the stack verify checksum errors */
5460 return;
5462 /* It must be a TCP or UDP packet with a valid checksum */
5463 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5464 skb->ip_summed = CHECKSUM_UNNECESSARY;
5466 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5469 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5470 struct sk_buff *skb)
5472 struct igb_adapter *adapter = q_vector->adapter;
5473 struct e1000_hw *hw = &adapter->hw;
5474 u64 regval;
5477 * If this bit is set, then the RX registers contain the time stamp. No
5478 * other packet will be time stamped until we read these registers, so
5479 * read the registers to make them available again. Because only one
5480 * packet can be time stamped at a time, we know that the register
5481 * values must belong to this one here and therefore we don't need to
5482 * compare any of the additional attributes stored for it.
5484 * If nothing went wrong, then it should have a skb_shared_tx that we
5485 * can turn into a skb_shared_hwtstamps.
5487 if (staterr & E1000_RXDADV_STAT_TSIP) {
5488 u32 *stamp = (u32 *)skb->data;
5489 regval = le32_to_cpu(*(stamp + 2));
5490 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5491 skb_pull(skb, IGB_TS_HDR_LEN);
5492 } else {
5493 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5494 return;
5496 regval = rd32(E1000_RXSTMPL);
5497 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5500 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5502 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5503 union e1000_adv_rx_desc *rx_desc)
5505 /* HW will not DMA in data larger than the given buffer, even if it
5506 * parses the (NFS, of course) header to be larger. In that case, it
5507 * fills the header buffer and spills the rest into the page.
5509 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5510 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5511 if (hlen > rx_ring->rx_buffer_len)
5512 hlen = rx_ring->rx_buffer_len;
5513 return hlen;
5516 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5517 int *work_done, int budget)
5519 struct igb_ring *rx_ring = q_vector->rx_ring;
5520 struct net_device *netdev = rx_ring->netdev;
5521 struct device *dev = rx_ring->dev;
5522 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5523 struct igb_buffer *buffer_info , *next_buffer;
5524 struct sk_buff *skb;
5525 bool cleaned = false;
5526 int cleaned_count = 0;
5527 int current_node = numa_node_id();
5528 unsigned int total_bytes = 0, total_packets = 0;
5529 unsigned int i;
5530 u32 staterr;
5531 u16 length;
5532 u16 vlan_tag;
5534 i = rx_ring->next_to_clean;
5535 buffer_info = &rx_ring->buffer_info[i];
5536 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5537 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5539 while (staterr & E1000_RXD_STAT_DD) {
5540 if (*work_done >= budget)
5541 break;
5542 (*work_done)++;
5544 skb = buffer_info->skb;
5545 prefetch(skb->data - NET_IP_ALIGN);
5546 buffer_info->skb = NULL;
5548 i++;
5549 if (i == rx_ring->count)
5550 i = 0;
5552 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5553 prefetch(next_rxd);
5554 next_buffer = &rx_ring->buffer_info[i];
5556 length = le16_to_cpu(rx_desc->wb.upper.length);
5557 cleaned = true;
5558 cleaned_count++;
5560 if (buffer_info->dma) {
5561 dma_unmap_single(dev, buffer_info->dma,
5562 rx_ring->rx_buffer_len,
5563 DMA_FROM_DEVICE);
5564 buffer_info->dma = 0;
5565 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5566 skb_put(skb, length);
5567 goto send_up;
5569 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5572 if (length) {
5573 dma_unmap_page(dev, buffer_info->page_dma,
5574 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5575 buffer_info->page_dma = 0;
5577 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5578 buffer_info->page,
5579 buffer_info->page_offset,
5580 length);
5582 if ((page_count(buffer_info->page) != 1) ||
5583 (page_to_nid(buffer_info->page) != current_node))
5584 buffer_info->page = NULL;
5585 else
5586 get_page(buffer_info->page);
5588 skb->len += length;
5589 skb->data_len += length;
5590 skb->truesize += length;
5593 if (!(staterr & E1000_RXD_STAT_EOP)) {
5594 buffer_info->skb = next_buffer->skb;
5595 buffer_info->dma = next_buffer->dma;
5596 next_buffer->skb = skb;
5597 next_buffer->dma = 0;
5598 goto next_desc;
5600 send_up:
5601 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5602 dev_kfree_skb_irq(skb);
5603 goto next_desc;
5606 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5607 igb_rx_hwtstamp(q_vector, staterr, skb);
5608 total_bytes += skb->len;
5609 total_packets++;
5611 igb_rx_checksum_adv(rx_ring, staterr, skb);
5613 skb->protocol = eth_type_trans(skb, netdev);
5614 skb_record_rx_queue(skb, rx_ring->queue_index);
5616 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5617 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5619 igb_receive_skb(q_vector, skb, vlan_tag);
5621 next_desc:
5622 rx_desc->wb.upper.status_error = 0;
5624 /* return some buffers to hardware, one at a time is too slow */
5625 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5626 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5627 cleaned_count = 0;
5630 /* use prefetched values */
5631 rx_desc = next_rxd;
5632 buffer_info = next_buffer;
5633 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5636 rx_ring->next_to_clean = i;
5637 cleaned_count = igb_desc_unused(rx_ring);
5639 if (cleaned_count)
5640 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5642 rx_ring->total_packets += total_packets;
5643 rx_ring->total_bytes += total_bytes;
5644 rx_ring->rx_stats.packets += total_packets;
5645 rx_ring->rx_stats.bytes += total_bytes;
5646 return cleaned;
5650 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5651 * @adapter: address of board private structure
5653 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5655 struct net_device *netdev = rx_ring->netdev;
5656 union e1000_adv_rx_desc *rx_desc;
5657 struct igb_buffer *buffer_info;
5658 struct sk_buff *skb;
5659 unsigned int i;
5660 int bufsz;
5662 i = rx_ring->next_to_use;
5663 buffer_info = &rx_ring->buffer_info[i];
5665 bufsz = rx_ring->rx_buffer_len;
5667 while (cleaned_count--) {
5668 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5670 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5671 if (!buffer_info->page) {
5672 buffer_info->page = netdev_alloc_page(netdev);
5673 if (!buffer_info->page) {
5674 rx_ring->rx_stats.alloc_failed++;
5675 goto no_buffers;
5677 buffer_info->page_offset = 0;
5678 } else {
5679 buffer_info->page_offset ^= PAGE_SIZE / 2;
5681 buffer_info->page_dma =
5682 dma_map_page(rx_ring->dev, buffer_info->page,
5683 buffer_info->page_offset,
5684 PAGE_SIZE / 2,
5685 DMA_FROM_DEVICE);
5686 if (dma_mapping_error(rx_ring->dev,
5687 buffer_info->page_dma)) {
5688 buffer_info->page_dma = 0;
5689 rx_ring->rx_stats.alloc_failed++;
5690 goto no_buffers;
5694 skb = buffer_info->skb;
5695 if (!skb) {
5696 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5697 if (!skb) {
5698 rx_ring->rx_stats.alloc_failed++;
5699 goto no_buffers;
5702 buffer_info->skb = skb;
5704 if (!buffer_info->dma) {
5705 buffer_info->dma = dma_map_single(rx_ring->dev,
5706 skb->data,
5707 bufsz,
5708 DMA_FROM_DEVICE);
5709 if (dma_mapping_error(rx_ring->dev,
5710 buffer_info->dma)) {
5711 buffer_info->dma = 0;
5712 rx_ring->rx_stats.alloc_failed++;
5713 goto no_buffers;
5716 /* Refresh the desc even if buffer_addrs didn't change because
5717 * each write-back erases this info. */
5718 if (bufsz < IGB_RXBUFFER_1024) {
5719 rx_desc->read.pkt_addr =
5720 cpu_to_le64(buffer_info->page_dma);
5721 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5722 } else {
5723 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5724 rx_desc->read.hdr_addr = 0;
5727 i++;
5728 if (i == rx_ring->count)
5729 i = 0;
5730 buffer_info = &rx_ring->buffer_info[i];
5733 no_buffers:
5734 if (rx_ring->next_to_use != i) {
5735 rx_ring->next_to_use = i;
5736 if (i == 0)
5737 i = (rx_ring->count - 1);
5738 else
5739 i--;
5741 /* Force memory writes to complete before letting h/w
5742 * know there are new descriptors to fetch. (Only
5743 * applicable for weak-ordered memory model archs,
5744 * such as IA-64). */
5745 wmb();
5746 writel(i, rx_ring->tail);
5751 * igb_mii_ioctl -
5752 * @netdev:
5753 * @ifreq:
5754 * @cmd:
5756 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5758 struct igb_adapter *adapter = netdev_priv(netdev);
5759 struct mii_ioctl_data *data = if_mii(ifr);
5761 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5762 return -EOPNOTSUPP;
5764 switch (cmd) {
5765 case SIOCGMIIPHY:
5766 data->phy_id = adapter->hw.phy.addr;
5767 break;
5768 case SIOCGMIIREG:
5769 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5770 &data->val_out))
5771 return -EIO;
5772 break;
5773 case SIOCSMIIREG:
5774 default:
5775 return -EOPNOTSUPP;
5777 return 0;
5781 * igb_hwtstamp_ioctl - control hardware time stamping
5782 * @netdev:
5783 * @ifreq:
5784 * @cmd:
5786 * Outgoing time stamping can be enabled and disabled. Play nice and
5787 * disable it when requested, although it shouldn't case any overhead
5788 * when no packet needs it. At most one packet in the queue may be
5789 * marked for time stamping, otherwise it would be impossible to tell
5790 * for sure to which packet the hardware time stamp belongs.
5792 * Incoming time stamping has to be configured via the hardware
5793 * filters. Not all combinations are supported, in particular event
5794 * type has to be specified. Matching the kind of event packet is
5795 * not supported, with the exception of "all V2 events regardless of
5796 * level 2 or 4".
5799 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5800 struct ifreq *ifr, int cmd)
5802 struct igb_adapter *adapter = netdev_priv(netdev);
5803 struct e1000_hw *hw = &adapter->hw;
5804 struct hwtstamp_config config;
5805 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5806 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5807 u32 tsync_rx_cfg = 0;
5808 bool is_l4 = false;
5809 bool is_l2 = false;
5810 u32 regval;
5812 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5813 return -EFAULT;
5815 /* reserved for future extensions */
5816 if (config.flags)
5817 return -EINVAL;
5819 switch (config.tx_type) {
5820 case HWTSTAMP_TX_OFF:
5821 tsync_tx_ctl = 0;
5822 case HWTSTAMP_TX_ON:
5823 break;
5824 default:
5825 return -ERANGE;
5828 switch (config.rx_filter) {
5829 case HWTSTAMP_FILTER_NONE:
5830 tsync_rx_ctl = 0;
5831 break;
5832 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5833 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5834 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5835 case HWTSTAMP_FILTER_ALL:
5837 * register TSYNCRXCFG must be set, therefore it is not
5838 * possible to time stamp both Sync and Delay_Req messages
5839 * => fall back to time stamping all packets
5841 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5842 config.rx_filter = HWTSTAMP_FILTER_ALL;
5843 break;
5844 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5845 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5846 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5847 is_l4 = true;
5848 break;
5849 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5850 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5851 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5852 is_l4 = true;
5853 break;
5854 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5855 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5856 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5857 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5858 is_l2 = true;
5859 is_l4 = true;
5860 config.rx_filter = HWTSTAMP_FILTER_SOME;
5861 break;
5862 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5863 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5864 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5865 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5866 is_l2 = true;
5867 is_l4 = true;
5868 config.rx_filter = HWTSTAMP_FILTER_SOME;
5869 break;
5870 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5871 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5872 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5873 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5874 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5875 is_l2 = true;
5876 break;
5877 default:
5878 return -ERANGE;
5881 if (hw->mac.type == e1000_82575) {
5882 if (tsync_rx_ctl | tsync_tx_ctl)
5883 return -EINVAL;
5884 return 0;
5888 * Per-packet timestamping only works if all packets are
5889 * timestamped, so enable timestamping in all packets as
5890 * long as one rx filter was configured.
5892 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5893 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5894 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5897 /* enable/disable TX */
5898 regval = rd32(E1000_TSYNCTXCTL);
5899 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5900 regval |= tsync_tx_ctl;
5901 wr32(E1000_TSYNCTXCTL, regval);
5903 /* enable/disable RX */
5904 regval = rd32(E1000_TSYNCRXCTL);
5905 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5906 regval |= tsync_rx_ctl;
5907 wr32(E1000_TSYNCRXCTL, regval);
5909 /* define which PTP packets are time stamped */
5910 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5912 /* define ethertype filter for timestamped packets */
5913 if (is_l2)
5914 wr32(E1000_ETQF(3),
5915 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5916 E1000_ETQF_1588 | /* enable timestamping */
5917 ETH_P_1588)); /* 1588 eth protocol type */
5918 else
5919 wr32(E1000_ETQF(3), 0);
5921 #define PTP_PORT 319
5922 /* L4 Queue Filter[3]: filter by destination port and protocol */
5923 if (is_l4) {
5924 u32 ftqf = (IPPROTO_UDP /* UDP */
5925 | E1000_FTQF_VF_BP /* VF not compared */
5926 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5927 | E1000_FTQF_MASK); /* mask all inputs */
5928 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5930 wr32(E1000_IMIR(3), htons(PTP_PORT));
5931 wr32(E1000_IMIREXT(3),
5932 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5933 if (hw->mac.type == e1000_82576) {
5934 /* enable source port check */
5935 wr32(E1000_SPQF(3), htons(PTP_PORT));
5936 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5938 wr32(E1000_FTQF(3), ftqf);
5939 } else {
5940 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5942 wrfl();
5944 adapter->hwtstamp_config = config;
5946 /* clear TX/RX time stamp registers, just to be sure */
5947 regval = rd32(E1000_TXSTMPH);
5948 regval = rd32(E1000_RXSTMPH);
5950 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5951 -EFAULT : 0;
5955 * igb_ioctl -
5956 * @netdev:
5957 * @ifreq:
5958 * @cmd:
5960 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5962 switch (cmd) {
5963 case SIOCGMIIPHY:
5964 case SIOCGMIIREG:
5965 case SIOCSMIIREG:
5966 return igb_mii_ioctl(netdev, ifr, cmd);
5967 case SIOCSHWTSTAMP:
5968 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5969 default:
5970 return -EOPNOTSUPP;
5974 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5976 struct igb_adapter *adapter = hw->back;
5977 u16 cap_offset;
5979 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5980 if (!cap_offset)
5981 return -E1000_ERR_CONFIG;
5983 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5985 return 0;
5988 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5990 struct igb_adapter *adapter = hw->back;
5991 u16 cap_offset;
5993 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5994 if (!cap_offset)
5995 return -E1000_ERR_CONFIG;
5997 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5999 return 0;
6002 static void igb_vlan_rx_register(struct net_device *netdev,
6003 struct vlan_group *grp)
6005 struct igb_adapter *adapter = netdev_priv(netdev);
6006 struct e1000_hw *hw = &adapter->hw;
6007 u32 ctrl, rctl;
6009 igb_irq_disable(adapter);
6010 adapter->vlgrp = grp;
6012 if (grp) {
6013 /* enable VLAN tag insert/strip */
6014 ctrl = rd32(E1000_CTRL);
6015 ctrl |= E1000_CTRL_VME;
6016 wr32(E1000_CTRL, ctrl);
6018 /* Disable CFI check */
6019 rctl = rd32(E1000_RCTL);
6020 rctl &= ~E1000_RCTL_CFIEN;
6021 wr32(E1000_RCTL, rctl);
6022 } else {
6023 /* disable VLAN tag insert/strip */
6024 ctrl = rd32(E1000_CTRL);
6025 ctrl &= ~E1000_CTRL_VME;
6026 wr32(E1000_CTRL, ctrl);
6029 igb_rlpml_set(adapter);
6031 if (!test_bit(__IGB_DOWN, &adapter->state))
6032 igb_irq_enable(adapter);
6035 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6037 struct igb_adapter *adapter = netdev_priv(netdev);
6038 struct e1000_hw *hw = &adapter->hw;
6039 int pf_id = adapter->vfs_allocated_count;
6041 /* attempt to add filter to vlvf array */
6042 igb_vlvf_set(adapter, vid, true, pf_id);
6044 /* add the filter since PF can receive vlans w/o entry in vlvf */
6045 igb_vfta_set(hw, vid, true);
6048 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6050 struct igb_adapter *adapter = netdev_priv(netdev);
6051 struct e1000_hw *hw = &adapter->hw;
6052 int pf_id = adapter->vfs_allocated_count;
6053 s32 err;
6055 igb_irq_disable(adapter);
6056 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6058 if (!test_bit(__IGB_DOWN, &adapter->state))
6059 igb_irq_enable(adapter);
6061 /* remove vlan from VLVF table array */
6062 err = igb_vlvf_set(adapter, vid, false, pf_id);
6064 /* if vid was not present in VLVF just remove it from table */
6065 if (err)
6066 igb_vfta_set(hw, vid, false);
6069 static void igb_restore_vlan(struct igb_adapter *adapter)
6071 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6073 if (adapter->vlgrp) {
6074 u16 vid;
6075 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
6076 if (!vlan_group_get_device(adapter->vlgrp, vid))
6077 continue;
6078 igb_vlan_rx_add_vid(adapter->netdev, vid);
6083 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6085 struct pci_dev *pdev = adapter->pdev;
6086 struct e1000_mac_info *mac = &adapter->hw.mac;
6088 mac->autoneg = 0;
6090 switch (spddplx) {
6091 case SPEED_10 + DUPLEX_HALF:
6092 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6093 break;
6094 case SPEED_10 + DUPLEX_FULL:
6095 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6096 break;
6097 case SPEED_100 + DUPLEX_HALF:
6098 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6099 break;
6100 case SPEED_100 + DUPLEX_FULL:
6101 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6102 break;
6103 case SPEED_1000 + DUPLEX_FULL:
6104 mac->autoneg = 1;
6105 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6106 break;
6107 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6108 default:
6109 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6110 return -EINVAL;
6112 return 0;
6115 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6117 struct net_device *netdev = pci_get_drvdata(pdev);
6118 struct igb_adapter *adapter = netdev_priv(netdev);
6119 struct e1000_hw *hw = &adapter->hw;
6120 u32 ctrl, rctl, status;
6121 u32 wufc = adapter->wol;
6122 #ifdef CONFIG_PM
6123 int retval = 0;
6124 #endif
6126 netif_device_detach(netdev);
6128 if (netif_running(netdev))
6129 igb_close(netdev);
6131 igb_clear_interrupt_scheme(adapter);
6133 #ifdef CONFIG_PM
6134 retval = pci_save_state(pdev);
6135 if (retval)
6136 return retval;
6137 #endif
6139 status = rd32(E1000_STATUS);
6140 if (status & E1000_STATUS_LU)
6141 wufc &= ~E1000_WUFC_LNKC;
6143 if (wufc) {
6144 igb_setup_rctl(adapter);
6145 igb_set_rx_mode(netdev);
6147 /* turn on all-multi mode if wake on multicast is enabled */
6148 if (wufc & E1000_WUFC_MC) {
6149 rctl = rd32(E1000_RCTL);
6150 rctl |= E1000_RCTL_MPE;
6151 wr32(E1000_RCTL, rctl);
6154 ctrl = rd32(E1000_CTRL);
6155 /* advertise wake from D3Cold */
6156 #define E1000_CTRL_ADVD3WUC 0x00100000
6157 /* phy power management enable */
6158 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6159 ctrl |= E1000_CTRL_ADVD3WUC;
6160 wr32(E1000_CTRL, ctrl);
6162 /* Allow time for pending master requests to run */
6163 igb_disable_pcie_master(hw);
6165 wr32(E1000_WUC, E1000_WUC_PME_EN);
6166 wr32(E1000_WUFC, wufc);
6167 } else {
6168 wr32(E1000_WUC, 0);
6169 wr32(E1000_WUFC, 0);
6172 *enable_wake = wufc || adapter->en_mng_pt;
6173 if (!*enable_wake)
6174 igb_power_down_link(adapter);
6175 else
6176 igb_power_up_link(adapter);
6178 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6179 * would have already happened in close and is redundant. */
6180 igb_release_hw_control(adapter);
6182 pci_disable_device(pdev);
6184 return 0;
6187 #ifdef CONFIG_PM
6188 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6190 int retval;
6191 bool wake;
6193 retval = __igb_shutdown(pdev, &wake);
6194 if (retval)
6195 return retval;
6197 if (wake) {
6198 pci_prepare_to_sleep(pdev);
6199 } else {
6200 pci_wake_from_d3(pdev, false);
6201 pci_set_power_state(pdev, PCI_D3hot);
6204 return 0;
6207 static int igb_resume(struct pci_dev *pdev)
6209 struct net_device *netdev = pci_get_drvdata(pdev);
6210 struct igb_adapter *adapter = netdev_priv(netdev);
6211 struct e1000_hw *hw = &adapter->hw;
6212 u32 err;
6214 pci_set_power_state(pdev, PCI_D0);
6215 pci_restore_state(pdev);
6216 pci_save_state(pdev);
6218 err = pci_enable_device_mem(pdev);
6219 if (err) {
6220 dev_err(&pdev->dev,
6221 "igb: Cannot enable PCI device from suspend\n");
6222 return err;
6224 pci_set_master(pdev);
6226 pci_enable_wake(pdev, PCI_D3hot, 0);
6227 pci_enable_wake(pdev, PCI_D3cold, 0);
6229 if (igb_init_interrupt_scheme(adapter)) {
6230 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6231 return -ENOMEM;
6234 igb_reset(adapter);
6236 /* let the f/w know that the h/w is now under the control of the
6237 * driver. */
6238 igb_get_hw_control(adapter);
6240 wr32(E1000_WUS, ~0);
6242 if (netif_running(netdev)) {
6243 err = igb_open(netdev);
6244 if (err)
6245 return err;
6248 netif_device_attach(netdev);
6250 return 0;
6252 #endif
6254 static void igb_shutdown(struct pci_dev *pdev)
6256 bool wake;
6258 __igb_shutdown(pdev, &wake);
6260 if (system_state == SYSTEM_POWER_OFF) {
6261 pci_wake_from_d3(pdev, wake);
6262 pci_set_power_state(pdev, PCI_D3hot);
6266 #ifdef CONFIG_NET_POLL_CONTROLLER
6268 * Polling 'interrupt' - used by things like netconsole to send skbs
6269 * without having to re-enable interrupts. It's not called while
6270 * the interrupt routine is executing.
6272 static void igb_netpoll(struct net_device *netdev)
6274 struct igb_adapter *adapter = netdev_priv(netdev);
6275 struct e1000_hw *hw = &adapter->hw;
6276 int i;
6278 if (!adapter->msix_entries) {
6279 struct igb_q_vector *q_vector = adapter->q_vector[0];
6280 igb_irq_disable(adapter);
6281 napi_schedule(&q_vector->napi);
6282 return;
6285 for (i = 0; i < adapter->num_q_vectors; i++) {
6286 struct igb_q_vector *q_vector = adapter->q_vector[i];
6287 wr32(E1000_EIMC, q_vector->eims_value);
6288 napi_schedule(&q_vector->napi);
6291 #endif /* CONFIG_NET_POLL_CONTROLLER */
6294 * igb_io_error_detected - called when PCI error is detected
6295 * @pdev: Pointer to PCI device
6296 * @state: The current pci connection state
6298 * This function is called after a PCI bus error affecting
6299 * this device has been detected.
6301 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6302 pci_channel_state_t state)
6304 struct net_device *netdev = pci_get_drvdata(pdev);
6305 struct igb_adapter *adapter = netdev_priv(netdev);
6307 netif_device_detach(netdev);
6309 if (state == pci_channel_io_perm_failure)
6310 return PCI_ERS_RESULT_DISCONNECT;
6312 if (netif_running(netdev))
6313 igb_down(adapter);
6314 pci_disable_device(pdev);
6316 /* Request a slot slot reset. */
6317 return PCI_ERS_RESULT_NEED_RESET;
6321 * igb_io_slot_reset - called after the pci bus has been reset.
6322 * @pdev: Pointer to PCI device
6324 * Restart the card from scratch, as if from a cold-boot. Implementation
6325 * resembles the first-half of the igb_resume routine.
6327 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6329 struct net_device *netdev = pci_get_drvdata(pdev);
6330 struct igb_adapter *adapter = netdev_priv(netdev);
6331 struct e1000_hw *hw = &adapter->hw;
6332 pci_ers_result_t result;
6333 int err;
6335 if (pci_enable_device_mem(pdev)) {
6336 dev_err(&pdev->dev,
6337 "Cannot re-enable PCI device after reset.\n");
6338 result = PCI_ERS_RESULT_DISCONNECT;
6339 } else {
6340 pci_set_master(pdev);
6341 pci_restore_state(pdev);
6342 pci_save_state(pdev);
6344 pci_enable_wake(pdev, PCI_D3hot, 0);
6345 pci_enable_wake(pdev, PCI_D3cold, 0);
6347 igb_reset(adapter);
6348 wr32(E1000_WUS, ~0);
6349 result = PCI_ERS_RESULT_RECOVERED;
6352 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6353 if (err) {
6354 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6355 "failed 0x%0x\n", err);
6356 /* non-fatal, continue */
6359 return result;
6363 * igb_io_resume - called when traffic can start flowing again.
6364 * @pdev: Pointer to PCI device
6366 * This callback is called when the error recovery driver tells us that
6367 * its OK to resume normal operation. Implementation resembles the
6368 * second-half of the igb_resume routine.
6370 static void igb_io_resume(struct pci_dev *pdev)
6372 struct net_device *netdev = pci_get_drvdata(pdev);
6373 struct igb_adapter *adapter = netdev_priv(netdev);
6375 if (netif_running(netdev)) {
6376 if (igb_up(adapter)) {
6377 dev_err(&pdev->dev, "igb_up failed after reset\n");
6378 return;
6382 netif_device_attach(netdev);
6384 /* let the f/w know that the h/w is now under the control of the
6385 * driver. */
6386 igb_get_hw_control(adapter);
6389 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6390 u8 qsel)
6392 u32 rar_low, rar_high;
6393 struct e1000_hw *hw = &adapter->hw;
6395 /* HW expects these in little endian so we reverse the byte order
6396 * from network order (big endian) to little endian
6398 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6399 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6400 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6402 /* Indicate to hardware the Address is Valid. */
6403 rar_high |= E1000_RAH_AV;
6405 if (hw->mac.type == e1000_82575)
6406 rar_high |= E1000_RAH_POOL_1 * qsel;
6407 else
6408 rar_high |= E1000_RAH_POOL_1 << qsel;
6410 wr32(E1000_RAL(index), rar_low);
6411 wrfl();
6412 wr32(E1000_RAH(index), rar_high);
6413 wrfl();
6416 static int igb_set_vf_mac(struct igb_adapter *adapter,
6417 int vf, unsigned char *mac_addr)
6419 struct e1000_hw *hw = &adapter->hw;
6420 /* VF MAC addresses start at end of receive addresses and moves
6421 * torwards the first, as a result a collision should not be possible */
6422 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6424 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6426 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6428 return 0;
6431 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6433 struct igb_adapter *adapter = netdev_priv(netdev);
6434 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6435 return -EINVAL;
6436 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6437 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6438 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6439 " change effective.");
6440 if (test_bit(__IGB_DOWN, &adapter->state)) {
6441 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6442 " but the PF device is not up.\n");
6443 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6444 " attempting to use the VF device.\n");
6446 return igb_set_vf_mac(adapter, vf, mac);
6449 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6451 return -EOPNOTSUPP;
6454 static int igb_ndo_get_vf_config(struct net_device *netdev,
6455 int vf, struct ifla_vf_info *ivi)
6457 struct igb_adapter *adapter = netdev_priv(netdev);
6458 if (vf >= adapter->vfs_allocated_count)
6459 return -EINVAL;
6460 ivi->vf = vf;
6461 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6462 ivi->tx_rate = 0;
6463 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6464 ivi->qos = adapter->vf_data[vf].pf_qos;
6465 return 0;
6468 static void igb_vmm_control(struct igb_adapter *adapter)
6470 struct e1000_hw *hw = &adapter->hw;
6471 u32 reg;
6473 switch (hw->mac.type) {
6474 case e1000_82575:
6475 default:
6476 /* replication is not supported for 82575 */
6477 return;
6478 case e1000_82576:
6479 /* notify HW that the MAC is adding vlan tags */
6480 reg = rd32(E1000_DTXCTL);
6481 reg |= E1000_DTXCTL_VLAN_ADDED;
6482 wr32(E1000_DTXCTL, reg);
6483 case e1000_82580:
6484 /* enable replication vlan tag stripping */
6485 reg = rd32(E1000_RPLOLR);
6486 reg |= E1000_RPLOLR_STRVLAN;
6487 wr32(E1000_RPLOLR, reg);
6488 case e1000_i350:
6489 /* none of the above registers are supported by i350 */
6490 break;
6493 if (adapter->vfs_allocated_count) {
6494 igb_vmdq_set_loopback_pf(hw, true);
6495 igb_vmdq_set_replication_pf(hw, true);
6496 } else {
6497 igb_vmdq_set_loopback_pf(hw, false);
6498 igb_vmdq_set_replication_pf(hw, false);
6502 /* igb_main.c */