powerpc, memblock: Fix memblock API change fallout
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob768ea486df58e278f4d970acf2f7df11d351b76a
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
78 * Array of node states.
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 [N_CPU] = { { [0] = 1UL } },
89 #endif /* NUMA */
91 EXPORT_SYMBOL(node_states);
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
107 void set_gfp_allowed_mask(gfp_t mask)
109 WARN_ON(!mutex_is_locked(&pm_mutex));
110 gfp_allowed_mask = mask;
113 gfp_t clear_gfp_allowed_mask(gfp_t mask)
115 gfp_t ret = gfp_allowed_mask;
117 WARN_ON(!mutex_is_locked(&pm_mutex));
118 gfp_allowed_mask &= ~mask;
119 return ret;
121 #endif /* CONFIG_PM_SLEEP */
123 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
124 int pageblock_order __read_mostly;
125 #endif
127 static void __free_pages_ok(struct page *page, unsigned int order);
130 * results with 256, 32 in the lowmem_reserve sysctl:
131 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
132 * 1G machine -> (16M dma, 784M normal, 224M high)
133 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
134 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
135 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
137 * TBD: should special case ZONE_DMA32 machines here - in those we normally
138 * don't need any ZONE_NORMAL reservation
140 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
141 #ifdef CONFIG_ZONE_DMA
142 256,
143 #endif
144 #ifdef CONFIG_ZONE_DMA32
145 256,
146 #endif
147 #ifdef CONFIG_HIGHMEM
149 #endif
153 EXPORT_SYMBOL(totalram_pages);
155 static char * const zone_names[MAX_NR_ZONES] = {
156 #ifdef CONFIG_ZONE_DMA
157 "DMA",
158 #endif
159 #ifdef CONFIG_ZONE_DMA32
160 "DMA32",
161 #endif
162 "Normal",
163 #ifdef CONFIG_HIGHMEM
164 "HighMem",
165 #endif
166 "Movable",
169 int min_free_kbytes = 1024;
171 static unsigned long __meminitdata nr_kernel_pages;
172 static unsigned long __meminitdata nr_all_pages;
173 static unsigned long __meminitdata dma_reserve;
175 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
177 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
178 * ranges of memory (RAM) that may be registered with add_active_range().
179 * Ranges passed to add_active_range() will be merged if possible
180 * so the number of times add_active_range() can be called is
181 * related to the number of nodes and the number of holes
183 #ifdef CONFIG_MAX_ACTIVE_REGIONS
184 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
185 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
186 #else
187 #if MAX_NUMNODES >= 32
188 /* If there can be many nodes, allow up to 50 holes per node */
189 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
190 #else
191 /* By default, allow up to 256 distinct regions */
192 #define MAX_ACTIVE_REGIONS 256
193 #endif
194 #endif
196 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
197 static int __meminitdata nr_nodemap_entries;
198 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
199 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
200 static unsigned long __initdata required_kernelcore;
201 static unsigned long __initdata required_movablecore;
202 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
204 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
205 int movable_zone;
206 EXPORT_SYMBOL(movable_zone);
207 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
209 #if MAX_NUMNODES > 1
210 int nr_node_ids __read_mostly = MAX_NUMNODES;
211 int nr_online_nodes __read_mostly = 1;
212 EXPORT_SYMBOL(nr_node_ids);
213 EXPORT_SYMBOL(nr_online_nodes);
214 #endif
216 int page_group_by_mobility_disabled __read_mostly;
218 static void set_pageblock_migratetype(struct page *page, int migratetype)
221 if (unlikely(page_group_by_mobility_disabled))
222 migratetype = MIGRATE_UNMOVABLE;
224 set_pageblock_flags_group(page, (unsigned long)migratetype,
225 PB_migrate, PB_migrate_end);
228 bool oom_killer_disabled __read_mostly;
230 #ifdef CONFIG_DEBUG_VM
231 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
233 int ret = 0;
234 unsigned seq;
235 unsigned long pfn = page_to_pfn(page);
237 do {
238 seq = zone_span_seqbegin(zone);
239 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
240 ret = 1;
241 else if (pfn < zone->zone_start_pfn)
242 ret = 1;
243 } while (zone_span_seqretry(zone, seq));
245 return ret;
248 static int page_is_consistent(struct zone *zone, struct page *page)
250 if (!pfn_valid_within(page_to_pfn(page)))
251 return 0;
252 if (zone != page_zone(page))
253 return 0;
255 return 1;
258 * Temporary debugging check for pages not lying within a given zone.
260 static int bad_range(struct zone *zone, struct page *page)
262 if (page_outside_zone_boundaries(zone, page))
263 return 1;
264 if (!page_is_consistent(zone, page))
265 return 1;
267 return 0;
269 #else
270 static inline int bad_range(struct zone *zone, struct page *page)
272 return 0;
274 #endif
276 static void bad_page(struct page *page)
278 static unsigned long resume;
279 static unsigned long nr_shown;
280 static unsigned long nr_unshown;
282 /* Don't complain about poisoned pages */
283 if (PageHWPoison(page)) {
284 __ClearPageBuddy(page);
285 return;
289 * Allow a burst of 60 reports, then keep quiet for that minute;
290 * or allow a steady drip of one report per second.
292 if (nr_shown == 60) {
293 if (time_before(jiffies, resume)) {
294 nr_unshown++;
295 goto out;
297 if (nr_unshown) {
298 printk(KERN_ALERT
299 "BUG: Bad page state: %lu messages suppressed\n",
300 nr_unshown);
301 nr_unshown = 0;
303 nr_shown = 0;
305 if (nr_shown++ == 0)
306 resume = jiffies + 60 * HZ;
308 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
309 current->comm, page_to_pfn(page));
310 dump_page(page);
312 dump_stack();
313 out:
314 /* Leave bad fields for debug, except PageBuddy could make trouble */
315 __ClearPageBuddy(page);
316 add_taint(TAINT_BAD_PAGE);
320 * Higher-order pages are called "compound pages". They are structured thusly:
322 * The first PAGE_SIZE page is called the "head page".
324 * The remaining PAGE_SIZE pages are called "tail pages".
326 * All pages have PG_compound set. All pages have their ->private pointing at
327 * the head page (even the head page has this).
329 * The first tail page's ->lru.next holds the address of the compound page's
330 * put_page() function. Its ->lru.prev holds the order of allocation.
331 * This usage means that zero-order pages may not be compound.
334 static void free_compound_page(struct page *page)
336 __free_pages_ok(page, compound_order(page));
339 void prep_compound_page(struct page *page, unsigned long order)
341 int i;
342 int nr_pages = 1 << order;
344 set_compound_page_dtor(page, free_compound_page);
345 set_compound_order(page, order);
346 __SetPageHead(page);
347 for (i = 1; i < nr_pages; i++) {
348 struct page *p = page + i;
350 __SetPageTail(p);
351 p->first_page = page;
355 static int destroy_compound_page(struct page *page, unsigned long order)
357 int i;
358 int nr_pages = 1 << order;
359 int bad = 0;
361 if (unlikely(compound_order(page) != order) ||
362 unlikely(!PageHead(page))) {
363 bad_page(page);
364 bad++;
367 __ClearPageHead(page);
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
372 if (unlikely(!PageTail(p) || (p->first_page != page))) {
373 bad_page(page);
374 bad++;
376 __ClearPageTail(p);
379 return bad;
382 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
384 int i;
387 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
388 * and __GFP_HIGHMEM from hard or soft interrupt context.
390 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
391 for (i = 0; i < (1 << order); i++)
392 clear_highpage(page + i);
395 static inline void set_page_order(struct page *page, int order)
397 set_page_private(page, order);
398 __SetPageBuddy(page);
401 static inline void rmv_page_order(struct page *page)
403 __ClearPageBuddy(page);
404 set_page_private(page, 0);
408 * Locate the struct page for both the matching buddy in our
409 * pair (buddy1) and the combined O(n+1) page they form (page).
411 * 1) Any buddy B1 will have an order O twin B2 which satisfies
412 * the following equation:
413 * B2 = B1 ^ (1 << O)
414 * For example, if the starting buddy (buddy2) is #8 its order
415 * 1 buddy is #10:
416 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
418 * 2) Any buddy B will have an order O+1 parent P which
419 * satisfies the following equation:
420 * P = B & ~(1 << O)
422 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
424 static inline struct page *
425 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
427 unsigned long buddy_idx = page_idx ^ (1 << order);
429 return page + (buddy_idx - page_idx);
432 static inline unsigned long
433 __find_combined_index(unsigned long page_idx, unsigned int order)
435 return (page_idx & ~(1 << order));
439 * This function checks whether a page is free && is the buddy
440 * we can do coalesce a page and its buddy if
441 * (a) the buddy is not in a hole &&
442 * (b) the buddy is in the buddy system &&
443 * (c) a page and its buddy have the same order &&
444 * (d) a page and its buddy are in the same zone.
446 * For recording whether a page is in the buddy system, we use PG_buddy.
447 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
449 * For recording page's order, we use page_private(page).
451 static inline int page_is_buddy(struct page *page, struct page *buddy,
452 int order)
454 if (!pfn_valid_within(page_to_pfn(buddy)))
455 return 0;
457 if (page_zone_id(page) != page_zone_id(buddy))
458 return 0;
460 if (PageBuddy(buddy) && page_order(buddy) == order) {
461 VM_BUG_ON(page_count(buddy) != 0);
462 return 1;
464 return 0;
468 * Freeing function for a buddy system allocator.
470 * The concept of a buddy system is to maintain direct-mapped table
471 * (containing bit values) for memory blocks of various "orders".
472 * The bottom level table contains the map for the smallest allocatable
473 * units of memory (here, pages), and each level above it describes
474 * pairs of units from the levels below, hence, "buddies".
475 * At a high level, all that happens here is marking the table entry
476 * at the bottom level available, and propagating the changes upward
477 * as necessary, plus some accounting needed to play nicely with other
478 * parts of the VM system.
479 * At each level, we keep a list of pages, which are heads of continuous
480 * free pages of length of (1 << order) and marked with PG_buddy. Page's
481 * order is recorded in page_private(page) field.
482 * So when we are allocating or freeing one, we can derive the state of the
483 * other. That is, if we allocate a small block, and both were
484 * free, the remainder of the region must be split into blocks.
485 * If a block is freed, and its buddy is also free, then this
486 * triggers coalescing into a block of larger size.
488 * -- wli
491 static inline void __free_one_page(struct page *page,
492 struct zone *zone, unsigned int order,
493 int migratetype)
495 unsigned long page_idx;
496 unsigned long combined_idx;
497 struct page *buddy;
499 if (unlikely(PageCompound(page)))
500 if (unlikely(destroy_compound_page(page, order)))
501 return;
503 VM_BUG_ON(migratetype == -1);
505 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
507 VM_BUG_ON(page_idx & ((1 << order) - 1));
508 VM_BUG_ON(bad_range(zone, page));
510 while (order < MAX_ORDER-1) {
511 buddy = __page_find_buddy(page, page_idx, order);
512 if (!page_is_buddy(page, buddy, order))
513 break;
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy->lru);
517 zone->free_area[order].nr_free--;
518 rmv_page_order(buddy);
519 combined_idx = __find_combined_index(page_idx, order);
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
524 set_page_order(page, order);
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
534 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
535 struct page *higher_page, *higher_buddy;
536 combined_idx = __find_combined_index(page_idx, order);
537 higher_page = page + combined_idx - page_idx;
538 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
539 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
540 list_add_tail(&page->lru,
541 &zone->free_area[order].free_list[migratetype]);
542 goto out;
546 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
547 out:
548 zone->free_area[order].nr_free++;
552 * free_page_mlock() -- clean up attempts to free and mlocked() page.
553 * Page should not be on lru, so no need to fix that up.
554 * free_pages_check() will verify...
556 static inline void free_page_mlock(struct page *page)
558 __dec_zone_page_state(page, NR_MLOCK);
559 __count_vm_event(UNEVICTABLE_MLOCKFREED);
562 static inline int free_pages_check(struct page *page)
564 if (unlikely(page_mapcount(page) |
565 (page->mapping != NULL) |
566 (atomic_read(&page->_count) != 0) |
567 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
568 bad_page(page);
569 return 1;
571 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
572 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
573 return 0;
577 * Frees a number of pages from the PCP lists
578 * Assumes all pages on list are in same zone, and of same order.
579 * count is the number of pages to free.
581 * If the zone was previously in an "all pages pinned" state then look to
582 * see if this freeing clears that state.
584 * And clear the zone's pages_scanned counter, to hold off the "all pages are
585 * pinned" detection logic.
587 static void free_pcppages_bulk(struct zone *zone, int count,
588 struct per_cpu_pages *pcp)
590 int migratetype = 0;
591 int batch_free = 0;
593 spin_lock(&zone->lock);
594 zone->all_unreclaimable = 0;
595 zone->pages_scanned = 0;
597 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
598 while (count) {
599 struct page *page;
600 struct list_head *list;
603 * Remove pages from lists in a round-robin fashion. A
604 * batch_free count is maintained that is incremented when an
605 * empty list is encountered. This is so more pages are freed
606 * off fuller lists instead of spinning excessively around empty
607 * lists
609 do {
610 batch_free++;
611 if (++migratetype == MIGRATE_PCPTYPES)
612 migratetype = 0;
613 list = &pcp->lists[migratetype];
614 } while (list_empty(list));
616 do {
617 page = list_entry(list->prev, struct page, lru);
618 /* must delete as __free_one_page list manipulates */
619 list_del(&page->lru);
620 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
621 __free_one_page(page, zone, 0, page_private(page));
622 trace_mm_page_pcpu_drain(page, 0, page_private(page));
623 } while (--count && --batch_free && !list_empty(list));
625 spin_unlock(&zone->lock);
628 static void free_one_page(struct zone *zone, struct page *page, int order,
629 int migratetype)
631 spin_lock(&zone->lock);
632 zone->all_unreclaimable = 0;
633 zone->pages_scanned = 0;
635 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
636 __free_one_page(page, zone, order, migratetype);
637 spin_unlock(&zone->lock);
640 static bool free_pages_prepare(struct page *page, unsigned int order)
642 int i;
643 int bad = 0;
645 trace_mm_page_free_direct(page, order);
646 kmemcheck_free_shadow(page, order);
648 for (i = 0; i < (1 << order); i++) {
649 struct page *pg = page + i;
651 if (PageAnon(pg))
652 pg->mapping = NULL;
653 bad += free_pages_check(pg);
655 if (bad)
656 return false;
658 if (!PageHighMem(page)) {
659 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
660 debug_check_no_obj_freed(page_address(page),
661 PAGE_SIZE << order);
663 arch_free_page(page, order);
664 kernel_map_pages(page, 1 << order, 0);
666 return true;
669 static void __free_pages_ok(struct page *page, unsigned int order)
671 unsigned long flags;
672 int wasMlocked = __TestClearPageMlocked(page);
674 if (!free_pages_prepare(page, order))
675 return;
677 local_irq_save(flags);
678 if (unlikely(wasMlocked))
679 free_page_mlock(page);
680 __count_vm_events(PGFREE, 1 << order);
681 free_one_page(page_zone(page), page, order,
682 get_pageblock_migratetype(page));
683 local_irq_restore(flags);
687 * permit the bootmem allocator to evade page validation on high-order frees
689 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
691 if (order == 0) {
692 __ClearPageReserved(page);
693 set_page_count(page, 0);
694 set_page_refcounted(page);
695 __free_page(page);
696 } else {
697 int loop;
699 prefetchw(page);
700 for (loop = 0; loop < BITS_PER_LONG; loop++) {
701 struct page *p = &page[loop];
703 if (loop + 1 < BITS_PER_LONG)
704 prefetchw(p + 1);
705 __ClearPageReserved(p);
706 set_page_count(p, 0);
709 set_page_refcounted(page);
710 __free_pages(page, order);
716 * The order of subdivision here is critical for the IO subsystem.
717 * Please do not alter this order without good reasons and regression
718 * testing. Specifically, as large blocks of memory are subdivided,
719 * the order in which smaller blocks are delivered depends on the order
720 * they're subdivided in this function. This is the primary factor
721 * influencing the order in which pages are delivered to the IO
722 * subsystem according to empirical testing, and this is also justified
723 * by considering the behavior of a buddy system containing a single
724 * large block of memory acted on by a series of small allocations.
725 * This behavior is a critical factor in sglist merging's success.
727 * -- wli
729 static inline void expand(struct zone *zone, struct page *page,
730 int low, int high, struct free_area *area,
731 int migratetype)
733 unsigned long size = 1 << high;
735 while (high > low) {
736 area--;
737 high--;
738 size >>= 1;
739 VM_BUG_ON(bad_range(zone, &page[size]));
740 list_add(&page[size].lru, &area->free_list[migratetype]);
741 area->nr_free++;
742 set_page_order(&page[size], high);
747 * This page is about to be returned from the page allocator
749 static inline int check_new_page(struct page *page)
751 if (unlikely(page_mapcount(page) |
752 (page->mapping != NULL) |
753 (atomic_read(&page->_count) != 0) |
754 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
755 bad_page(page);
756 return 1;
758 return 0;
761 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
763 int i;
765 for (i = 0; i < (1 << order); i++) {
766 struct page *p = page + i;
767 if (unlikely(check_new_page(p)))
768 return 1;
771 set_page_private(page, 0);
772 set_page_refcounted(page);
774 arch_alloc_page(page, order);
775 kernel_map_pages(page, 1 << order, 1);
777 if (gfp_flags & __GFP_ZERO)
778 prep_zero_page(page, order, gfp_flags);
780 if (order && (gfp_flags & __GFP_COMP))
781 prep_compound_page(page, order);
783 return 0;
787 * Go through the free lists for the given migratetype and remove
788 * the smallest available page from the freelists
790 static inline
791 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
792 int migratetype)
794 unsigned int current_order;
795 struct free_area * area;
796 struct page *page;
798 /* Find a page of the appropriate size in the preferred list */
799 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
800 area = &(zone->free_area[current_order]);
801 if (list_empty(&area->free_list[migratetype]))
802 continue;
804 page = list_entry(area->free_list[migratetype].next,
805 struct page, lru);
806 list_del(&page->lru);
807 rmv_page_order(page);
808 area->nr_free--;
809 expand(zone, page, order, current_order, area, migratetype);
810 return page;
813 return NULL;
818 * This array describes the order lists are fallen back to when
819 * the free lists for the desirable migrate type are depleted
821 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
822 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
825 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
829 * Move the free pages in a range to the free lists of the requested type.
830 * Note that start_page and end_pages are not aligned on a pageblock
831 * boundary. If alignment is required, use move_freepages_block()
833 static int move_freepages(struct zone *zone,
834 struct page *start_page, struct page *end_page,
835 int migratetype)
837 struct page *page;
838 unsigned long order;
839 int pages_moved = 0;
841 #ifndef CONFIG_HOLES_IN_ZONE
843 * page_zone is not safe to call in this context when
844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
845 * anyway as we check zone boundaries in move_freepages_block().
846 * Remove at a later date when no bug reports exist related to
847 * grouping pages by mobility
849 BUG_ON(page_zone(start_page) != page_zone(end_page));
850 #endif
852 for (page = start_page; page <= end_page;) {
853 /* Make sure we are not inadvertently changing nodes */
854 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
856 if (!pfn_valid_within(page_to_pfn(page))) {
857 page++;
858 continue;
861 if (!PageBuddy(page)) {
862 page++;
863 continue;
866 order = page_order(page);
867 list_del(&page->lru);
868 list_add(&page->lru,
869 &zone->free_area[order].free_list[migratetype]);
870 page += 1 << order;
871 pages_moved += 1 << order;
874 return pages_moved;
877 static int move_freepages_block(struct zone *zone, struct page *page,
878 int migratetype)
880 unsigned long start_pfn, end_pfn;
881 struct page *start_page, *end_page;
883 start_pfn = page_to_pfn(page);
884 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
885 start_page = pfn_to_page(start_pfn);
886 end_page = start_page + pageblock_nr_pages - 1;
887 end_pfn = start_pfn + pageblock_nr_pages - 1;
889 /* Do not cross zone boundaries */
890 if (start_pfn < zone->zone_start_pfn)
891 start_page = page;
892 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
893 return 0;
895 return move_freepages(zone, start_page, end_page, migratetype);
898 static void change_pageblock_range(struct page *pageblock_page,
899 int start_order, int migratetype)
901 int nr_pageblocks = 1 << (start_order - pageblock_order);
903 while (nr_pageblocks--) {
904 set_pageblock_migratetype(pageblock_page, migratetype);
905 pageblock_page += pageblock_nr_pages;
909 /* Remove an element from the buddy allocator from the fallback list */
910 static inline struct page *
911 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
913 struct free_area * area;
914 int current_order;
915 struct page *page;
916 int migratetype, i;
918 /* Find the largest possible block of pages in the other list */
919 for (current_order = MAX_ORDER-1; current_order >= order;
920 --current_order) {
921 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
922 migratetype = fallbacks[start_migratetype][i];
924 /* MIGRATE_RESERVE handled later if necessary */
925 if (migratetype == MIGRATE_RESERVE)
926 continue;
928 area = &(zone->free_area[current_order]);
929 if (list_empty(&area->free_list[migratetype]))
930 continue;
932 page = list_entry(area->free_list[migratetype].next,
933 struct page, lru);
934 area->nr_free--;
937 * If breaking a large block of pages, move all free
938 * pages to the preferred allocation list. If falling
939 * back for a reclaimable kernel allocation, be more
940 * agressive about taking ownership of free pages
942 if (unlikely(current_order >= (pageblock_order >> 1)) ||
943 start_migratetype == MIGRATE_RECLAIMABLE ||
944 page_group_by_mobility_disabled) {
945 unsigned long pages;
946 pages = move_freepages_block(zone, page,
947 start_migratetype);
949 /* Claim the whole block if over half of it is free */
950 if (pages >= (1 << (pageblock_order-1)) ||
951 page_group_by_mobility_disabled)
952 set_pageblock_migratetype(page,
953 start_migratetype);
955 migratetype = start_migratetype;
958 /* Remove the page from the freelists */
959 list_del(&page->lru);
960 rmv_page_order(page);
962 /* Take ownership for orders >= pageblock_order */
963 if (current_order >= pageblock_order)
964 change_pageblock_range(page, current_order,
965 start_migratetype);
967 expand(zone, page, order, current_order, area, migratetype);
969 trace_mm_page_alloc_extfrag(page, order, current_order,
970 start_migratetype, migratetype);
972 return page;
976 return NULL;
980 * Do the hard work of removing an element from the buddy allocator.
981 * Call me with the zone->lock already held.
983 static struct page *__rmqueue(struct zone *zone, unsigned int order,
984 int migratetype)
986 struct page *page;
988 retry_reserve:
989 page = __rmqueue_smallest(zone, order, migratetype);
991 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
992 page = __rmqueue_fallback(zone, order, migratetype);
995 * Use MIGRATE_RESERVE rather than fail an allocation. goto
996 * is used because __rmqueue_smallest is an inline function
997 * and we want just one call site
999 if (!page) {
1000 migratetype = MIGRATE_RESERVE;
1001 goto retry_reserve;
1005 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1006 return page;
1010 * Obtain a specified number of elements from the buddy allocator, all under
1011 * a single hold of the lock, for efficiency. Add them to the supplied list.
1012 * Returns the number of new pages which were placed at *list.
1014 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1015 unsigned long count, struct list_head *list,
1016 int migratetype, int cold)
1018 int i;
1020 spin_lock(&zone->lock);
1021 for (i = 0; i < count; ++i) {
1022 struct page *page = __rmqueue(zone, order, migratetype);
1023 if (unlikely(page == NULL))
1024 break;
1027 * Split buddy pages returned by expand() are received here
1028 * in physical page order. The page is added to the callers and
1029 * list and the list head then moves forward. From the callers
1030 * perspective, the linked list is ordered by page number in
1031 * some conditions. This is useful for IO devices that can
1032 * merge IO requests if the physical pages are ordered
1033 * properly.
1035 if (likely(cold == 0))
1036 list_add(&page->lru, list);
1037 else
1038 list_add_tail(&page->lru, list);
1039 set_page_private(page, migratetype);
1040 list = &page->lru;
1042 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1043 spin_unlock(&zone->lock);
1044 return i;
1047 #ifdef CONFIG_NUMA
1049 * Called from the vmstat counter updater to drain pagesets of this
1050 * currently executing processor on remote nodes after they have
1051 * expired.
1053 * Note that this function must be called with the thread pinned to
1054 * a single processor.
1056 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1058 unsigned long flags;
1059 int to_drain;
1061 local_irq_save(flags);
1062 if (pcp->count >= pcp->batch)
1063 to_drain = pcp->batch;
1064 else
1065 to_drain = pcp->count;
1066 free_pcppages_bulk(zone, to_drain, pcp);
1067 pcp->count -= to_drain;
1068 local_irq_restore(flags);
1070 #endif
1073 * Drain pages of the indicated processor.
1075 * The processor must either be the current processor and the
1076 * thread pinned to the current processor or a processor that
1077 * is not online.
1079 static void drain_pages(unsigned int cpu)
1081 unsigned long flags;
1082 struct zone *zone;
1084 for_each_populated_zone(zone) {
1085 struct per_cpu_pageset *pset;
1086 struct per_cpu_pages *pcp;
1088 local_irq_save(flags);
1089 pset = per_cpu_ptr(zone->pageset, cpu);
1091 pcp = &pset->pcp;
1092 free_pcppages_bulk(zone, pcp->count, pcp);
1093 pcp->count = 0;
1094 local_irq_restore(flags);
1099 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1101 void drain_local_pages(void *arg)
1103 drain_pages(smp_processor_id());
1107 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1109 void drain_all_pages(void)
1111 on_each_cpu(drain_local_pages, NULL, 1);
1114 #ifdef CONFIG_HIBERNATION
1116 void mark_free_pages(struct zone *zone)
1118 unsigned long pfn, max_zone_pfn;
1119 unsigned long flags;
1120 int order, t;
1121 struct list_head *curr;
1123 if (!zone->spanned_pages)
1124 return;
1126 spin_lock_irqsave(&zone->lock, flags);
1128 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1129 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1130 if (pfn_valid(pfn)) {
1131 struct page *page = pfn_to_page(pfn);
1133 if (!swsusp_page_is_forbidden(page))
1134 swsusp_unset_page_free(page);
1137 for_each_migratetype_order(order, t) {
1138 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1139 unsigned long i;
1141 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1142 for (i = 0; i < (1UL << order); i++)
1143 swsusp_set_page_free(pfn_to_page(pfn + i));
1146 spin_unlock_irqrestore(&zone->lock, flags);
1148 #endif /* CONFIG_PM */
1151 * Free a 0-order page
1152 * cold == 1 ? free a cold page : free a hot page
1154 void free_hot_cold_page(struct page *page, int cold)
1156 struct zone *zone = page_zone(page);
1157 struct per_cpu_pages *pcp;
1158 unsigned long flags;
1159 int migratetype;
1160 int wasMlocked = __TestClearPageMlocked(page);
1162 if (!free_pages_prepare(page, 0))
1163 return;
1165 migratetype = get_pageblock_migratetype(page);
1166 set_page_private(page, migratetype);
1167 local_irq_save(flags);
1168 if (unlikely(wasMlocked))
1169 free_page_mlock(page);
1170 __count_vm_event(PGFREE);
1173 * We only track unmovable, reclaimable and movable on pcp lists.
1174 * Free ISOLATE pages back to the allocator because they are being
1175 * offlined but treat RESERVE as movable pages so we can get those
1176 * areas back if necessary. Otherwise, we may have to free
1177 * excessively into the page allocator
1179 if (migratetype >= MIGRATE_PCPTYPES) {
1180 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1181 free_one_page(zone, page, 0, migratetype);
1182 goto out;
1184 migratetype = MIGRATE_MOVABLE;
1187 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1188 if (cold)
1189 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1190 else
1191 list_add(&page->lru, &pcp->lists[migratetype]);
1192 pcp->count++;
1193 if (pcp->count >= pcp->high) {
1194 free_pcppages_bulk(zone, pcp->batch, pcp);
1195 pcp->count -= pcp->batch;
1198 out:
1199 local_irq_restore(flags);
1203 * split_page takes a non-compound higher-order page, and splits it into
1204 * n (1<<order) sub-pages: page[0..n]
1205 * Each sub-page must be freed individually.
1207 * Note: this is probably too low level an operation for use in drivers.
1208 * Please consult with lkml before using this in your driver.
1210 void split_page(struct page *page, unsigned int order)
1212 int i;
1214 VM_BUG_ON(PageCompound(page));
1215 VM_BUG_ON(!page_count(page));
1217 #ifdef CONFIG_KMEMCHECK
1219 * Split shadow pages too, because free(page[0]) would
1220 * otherwise free the whole shadow.
1222 if (kmemcheck_page_is_tracked(page))
1223 split_page(virt_to_page(page[0].shadow), order);
1224 #endif
1226 for (i = 1; i < (1 << order); i++)
1227 set_page_refcounted(page + i);
1231 * Similar to split_page except the page is already free. As this is only
1232 * being used for migration, the migratetype of the block also changes.
1233 * As this is called with interrupts disabled, the caller is responsible
1234 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1235 * are enabled.
1237 * Note: this is probably too low level an operation for use in drivers.
1238 * Please consult with lkml before using this in your driver.
1240 int split_free_page(struct page *page)
1242 unsigned int order;
1243 unsigned long watermark;
1244 struct zone *zone;
1246 BUG_ON(!PageBuddy(page));
1248 zone = page_zone(page);
1249 order = page_order(page);
1251 /* Obey watermarks as if the page was being allocated */
1252 watermark = low_wmark_pages(zone) + (1 << order);
1253 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1254 return 0;
1256 /* Remove page from free list */
1257 list_del(&page->lru);
1258 zone->free_area[order].nr_free--;
1259 rmv_page_order(page);
1260 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1262 /* Split into individual pages */
1263 set_page_refcounted(page);
1264 split_page(page, order);
1266 if (order >= pageblock_order - 1) {
1267 struct page *endpage = page + (1 << order) - 1;
1268 for (; page < endpage; page += pageblock_nr_pages)
1269 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1272 return 1 << order;
1276 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1277 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1278 * or two.
1280 static inline
1281 struct page *buffered_rmqueue(struct zone *preferred_zone,
1282 struct zone *zone, int order, gfp_t gfp_flags,
1283 int migratetype)
1285 unsigned long flags;
1286 struct page *page;
1287 int cold = !!(gfp_flags & __GFP_COLD);
1289 again:
1290 if (likely(order == 0)) {
1291 struct per_cpu_pages *pcp;
1292 struct list_head *list;
1294 local_irq_save(flags);
1295 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1296 list = &pcp->lists[migratetype];
1297 if (list_empty(list)) {
1298 pcp->count += rmqueue_bulk(zone, 0,
1299 pcp->batch, list,
1300 migratetype, cold);
1301 if (unlikely(list_empty(list)))
1302 goto failed;
1305 if (cold)
1306 page = list_entry(list->prev, struct page, lru);
1307 else
1308 page = list_entry(list->next, struct page, lru);
1310 list_del(&page->lru);
1311 pcp->count--;
1312 } else {
1313 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1315 * __GFP_NOFAIL is not to be used in new code.
1317 * All __GFP_NOFAIL callers should be fixed so that they
1318 * properly detect and handle allocation failures.
1320 * We most definitely don't want callers attempting to
1321 * allocate greater than order-1 page units with
1322 * __GFP_NOFAIL.
1324 WARN_ON_ONCE(order > 1);
1326 spin_lock_irqsave(&zone->lock, flags);
1327 page = __rmqueue(zone, order, migratetype);
1328 spin_unlock(&zone->lock);
1329 if (!page)
1330 goto failed;
1331 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1334 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1335 zone_statistics(preferred_zone, zone);
1336 local_irq_restore(flags);
1338 VM_BUG_ON(bad_range(zone, page));
1339 if (prep_new_page(page, order, gfp_flags))
1340 goto again;
1341 return page;
1343 failed:
1344 local_irq_restore(flags);
1345 return NULL;
1348 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1349 #define ALLOC_WMARK_MIN WMARK_MIN
1350 #define ALLOC_WMARK_LOW WMARK_LOW
1351 #define ALLOC_WMARK_HIGH WMARK_HIGH
1352 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1354 /* Mask to get the watermark bits */
1355 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1357 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1358 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1359 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1361 #ifdef CONFIG_FAIL_PAGE_ALLOC
1363 static struct fail_page_alloc_attr {
1364 struct fault_attr attr;
1366 u32 ignore_gfp_highmem;
1367 u32 ignore_gfp_wait;
1368 u32 min_order;
1370 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1372 struct dentry *ignore_gfp_highmem_file;
1373 struct dentry *ignore_gfp_wait_file;
1374 struct dentry *min_order_file;
1376 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1378 } fail_page_alloc = {
1379 .attr = FAULT_ATTR_INITIALIZER,
1380 .ignore_gfp_wait = 1,
1381 .ignore_gfp_highmem = 1,
1382 .min_order = 1,
1385 static int __init setup_fail_page_alloc(char *str)
1387 return setup_fault_attr(&fail_page_alloc.attr, str);
1389 __setup("fail_page_alloc=", setup_fail_page_alloc);
1391 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393 if (order < fail_page_alloc.min_order)
1394 return 0;
1395 if (gfp_mask & __GFP_NOFAIL)
1396 return 0;
1397 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1398 return 0;
1399 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1400 return 0;
1402 return should_fail(&fail_page_alloc.attr, 1 << order);
1405 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407 static int __init fail_page_alloc_debugfs(void)
1409 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1410 struct dentry *dir;
1411 int err;
1413 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1414 "fail_page_alloc");
1415 if (err)
1416 return err;
1417 dir = fail_page_alloc.attr.dentries.dir;
1419 fail_page_alloc.ignore_gfp_wait_file =
1420 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1421 &fail_page_alloc.ignore_gfp_wait);
1423 fail_page_alloc.ignore_gfp_highmem_file =
1424 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1425 &fail_page_alloc.ignore_gfp_highmem);
1426 fail_page_alloc.min_order_file =
1427 debugfs_create_u32("min-order", mode, dir,
1428 &fail_page_alloc.min_order);
1430 if (!fail_page_alloc.ignore_gfp_wait_file ||
1431 !fail_page_alloc.ignore_gfp_highmem_file ||
1432 !fail_page_alloc.min_order_file) {
1433 err = -ENOMEM;
1434 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1435 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1436 debugfs_remove(fail_page_alloc.min_order_file);
1437 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1440 return err;
1443 late_initcall(fail_page_alloc_debugfs);
1445 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1447 #else /* CONFIG_FAIL_PAGE_ALLOC */
1449 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1451 return 0;
1454 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1457 * Return 1 if free pages are above 'mark'. This takes into account the order
1458 * of the allocation.
1460 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1461 int classzone_idx, int alloc_flags)
1463 /* free_pages my go negative - that's OK */
1464 long min = mark;
1465 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1466 int o;
1468 if (alloc_flags & ALLOC_HIGH)
1469 min -= min / 2;
1470 if (alloc_flags & ALLOC_HARDER)
1471 min -= min / 4;
1473 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1474 return 0;
1475 for (o = 0; o < order; o++) {
1476 /* At the next order, this order's pages become unavailable */
1477 free_pages -= z->free_area[o].nr_free << o;
1479 /* Require fewer higher order pages to be free */
1480 min >>= 1;
1482 if (free_pages <= min)
1483 return 0;
1485 return 1;
1488 #ifdef CONFIG_NUMA
1490 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1491 * skip over zones that are not allowed by the cpuset, or that have
1492 * been recently (in last second) found to be nearly full. See further
1493 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1494 * that have to skip over a lot of full or unallowed zones.
1496 * If the zonelist cache is present in the passed in zonelist, then
1497 * returns a pointer to the allowed node mask (either the current
1498 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1500 * If the zonelist cache is not available for this zonelist, does
1501 * nothing and returns NULL.
1503 * If the fullzones BITMAP in the zonelist cache is stale (more than
1504 * a second since last zap'd) then we zap it out (clear its bits.)
1506 * We hold off even calling zlc_setup, until after we've checked the
1507 * first zone in the zonelist, on the theory that most allocations will
1508 * be satisfied from that first zone, so best to examine that zone as
1509 * quickly as we can.
1511 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1513 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1514 nodemask_t *allowednodes; /* zonelist_cache approximation */
1516 zlc = zonelist->zlcache_ptr;
1517 if (!zlc)
1518 return NULL;
1520 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1521 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1522 zlc->last_full_zap = jiffies;
1525 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1526 &cpuset_current_mems_allowed :
1527 &node_states[N_HIGH_MEMORY];
1528 return allowednodes;
1532 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1533 * if it is worth looking at further for free memory:
1534 * 1) Check that the zone isn't thought to be full (doesn't have its
1535 * bit set in the zonelist_cache fullzones BITMAP).
1536 * 2) Check that the zones node (obtained from the zonelist_cache
1537 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1538 * Return true (non-zero) if zone is worth looking at further, or
1539 * else return false (zero) if it is not.
1541 * This check -ignores- the distinction between various watermarks,
1542 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1543 * found to be full for any variation of these watermarks, it will
1544 * be considered full for up to one second by all requests, unless
1545 * we are so low on memory on all allowed nodes that we are forced
1546 * into the second scan of the zonelist.
1548 * In the second scan we ignore this zonelist cache and exactly
1549 * apply the watermarks to all zones, even it is slower to do so.
1550 * We are low on memory in the second scan, and should leave no stone
1551 * unturned looking for a free page.
1553 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1554 nodemask_t *allowednodes)
1556 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1557 int i; /* index of *z in zonelist zones */
1558 int n; /* node that zone *z is on */
1560 zlc = zonelist->zlcache_ptr;
1561 if (!zlc)
1562 return 1;
1564 i = z - zonelist->_zonerefs;
1565 n = zlc->z_to_n[i];
1567 /* This zone is worth trying if it is allowed but not full */
1568 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1572 * Given 'z' scanning a zonelist, set the corresponding bit in
1573 * zlc->fullzones, so that subsequent attempts to allocate a page
1574 * from that zone don't waste time re-examining it.
1576 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1578 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1579 int i; /* index of *z in zonelist zones */
1581 zlc = zonelist->zlcache_ptr;
1582 if (!zlc)
1583 return;
1585 i = z - zonelist->_zonerefs;
1587 set_bit(i, zlc->fullzones);
1590 #else /* CONFIG_NUMA */
1592 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1594 return NULL;
1597 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1598 nodemask_t *allowednodes)
1600 return 1;
1603 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1606 #endif /* CONFIG_NUMA */
1609 * get_page_from_freelist goes through the zonelist trying to allocate
1610 * a page.
1612 static struct page *
1613 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1614 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1615 struct zone *preferred_zone, int migratetype)
1617 struct zoneref *z;
1618 struct page *page = NULL;
1619 int classzone_idx;
1620 struct zone *zone;
1621 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1622 int zlc_active = 0; /* set if using zonelist_cache */
1623 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1625 classzone_idx = zone_idx(preferred_zone);
1626 zonelist_scan:
1628 * Scan zonelist, looking for a zone with enough free.
1629 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1631 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1632 high_zoneidx, nodemask) {
1633 if (NUMA_BUILD && zlc_active &&
1634 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1635 continue;
1636 if ((alloc_flags & ALLOC_CPUSET) &&
1637 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1638 goto try_next_zone;
1640 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1641 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1642 unsigned long mark;
1643 int ret;
1645 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1646 if (zone_watermark_ok(zone, order, mark,
1647 classzone_idx, alloc_flags))
1648 goto try_this_zone;
1650 if (zone_reclaim_mode == 0)
1651 goto this_zone_full;
1653 ret = zone_reclaim(zone, gfp_mask, order);
1654 switch (ret) {
1655 case ZONE_RECLAIM_NOSCAN:
1656 /* did not scan */
1657 goto try_next_zone;
1658 case ZONE_RECLAIM_FULL:
1659 /* scanned but unreclaimable */
1660 goto this_zone_full;
1661 default:
1662 /* did we reclaim enough */
1663 if (!zone_watermark_ok(zone, order, mark,
1664 classzone_idx, alloc_flags))
1665 goto this_zone_full;
1669 try_this_zone:
1670 page = buffered_rmqueue(preferred_zone, zone, order,
1671 gfp_mask, migratetype);
1672 if (page)
1673 break;
1674 this_zone_full:
1675 if (NUMA_BUILD)
1676 zlc_mark_zone_full(zonelist, z);
1677 try_next_zone:
1678 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1680 * we do zlc_setup after the first zone is tried but only
1681 * if there are multiple nodes make it worthwhile
1683 allowednodes = zlc_setup(zonelist, alloc_flags);
1684 zlc_active = 1;
1685 did_zlc_setup = 1;
1689 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1690 /* Disable zlc cache for second zonelist scan */
1691 zlc_active = 0;
1692 goto zonelist_scan;
1694 return page;
1697 static inline int
1698 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1699 unsigned long pages_reclaimed)
1701 /* Do not loop if specifically requested */
1702 if (gfp_mask & __GFP_NORETRY)
1703 return 0;
1706 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1707 * means __GFP_NOFAIL, but that may not be true in other
1708 * implementations.
1710 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1711 return 1;
1714 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1715 * specified, then we retry until we no longer reclaim any pages
1716 * (above), or we've reclaimed an order of pages at least as
1717 * large as the allocation's order. In both cases, if the
1718 * allocation still fails, we stop retrying.
1720 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1721 return 1;
1724 * Don't let big-order allocations loop unless the caller
1725 * explicitly requests that.
1727 if (gfp_mask & __GFP_NOFAIL)
1728 return 1;
1730 return 0;
1733 static inline struct page *
1734 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1735 struct zonelist *zonelist, enum zone_type high_zoneidx,
1736 nodemask_t *nodemask, struct zone *preferred_zone,
1737 int migratetype)
1739 struct page *page;
1741 /* Acquire the OOM killer lock for the zones in zonelist */
1742 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1743 schedule_timeout_uninterruptible(1);
1744 return NULL;
1748 * Go through the zonelist yet one more time, keep very high watermark
1749 * here, this is only to catch a parallel oom killing, we must fail if
1750 * we're still under heavy pressure.
1752 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1753 order, zonelist, high_zoneidx,
1754 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1755 preferred_zone, migratetype);
1756 if (page)
1757 goto out;
1759 if (!(gfp_mask & __GFP_NOFAIL)) {
1760 /* The OOM killer will not help higher order allocs */
1761 if (order > PAGE_ALLOC_COSTLY_ORDER)
1762 goto out;
1763 /* The OOM killer does not needlessly kill tasks for lowmem */
1764 if (high_zoneidx < ZONE_NORMAL)
1765 goto out;
1767 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1768 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1769 * The caller should handle page allocation failure by itself if
1770 * it specifies __GFP_THISNODE.
1771 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1773 if (gfp_mask & __GFP_THISNODE)
1774 goto out;
1776 /* Exhausted what can be done so it's blamo time */
1777 out_of_memory(zonelist, gfp_mask, order, nodemask);
1779 out:
1780 clear_zonelist_oom(zonelist, gfp_mask);
1781 return page;
1784 #ifdef CONFIG_COMPACTION
1785 /* Try memory compaction for high-order allocations before reclaim */
1786 static struct page *
1787 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1788 struct zonelist *zonelist, enum zone_type high_zoneidx,
1789 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1790 int migratetype, unsigned long *did_some_progress)
1792 struct page *page;
1794 if (!order || compaction_deferred(preferred_zone))
1795 return NULL;
1797 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1798 nodemask);
1799 if (*did_some_progress != COMPACT_SKIPPED) {
1801 /* Page migration frees to the PCP lists but we want merging */
1802 drain_pages(get_cpu());
1803 put_cpu();
1805 page = get_page_from_freelist(gfp_mask, nodemask,
1806 order, zonelist, high_zoneidx,
1807 alloc_flags, preferred_zone,
1808 migratetype);
1809 if (page) {
1810 preferred_zone->compact_considered = 0;
1811 preferred_zone->compact_defer_shift = 0;
1812 count_vm_event(COMPACTSUCCESS);
1813 return page;
1817 * It's bad if compaction run occurs and fails.
1818 * The most likely reason is that pages exist,
1819 * but not enough to satisfy watermarks.
1821 count_vm_event(COMPACTFAIL);
1822 defer_compaction(preferred_zone);
1824 cond_resched();
1827 return NULL;
1829 #else
1830 static inline struct page *
1831 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1832 struct zonelist *zonelist, enum zone_type high_zoneidx,
1833 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1834 int migratetype, unsigned long *did_some_progress)
1836 return NULL;
1838 #endif /* CONFIG_COMPACTION */
1840 /* The really slow allocator path where we enter direct reclaim */
1841 static inline struct page *
1842 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1843 struct zonelist *zonelist, enum zone_type high_zoneidx,
1844 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1845 int migratetype, unsigned long *did_some_progress)
1847 struct page *page = NULL;
1848 struct reclaim_state reclaim_state;
1849 struct task_struct *p = current;
1851 cond_resched();
1853 /* We now go into synchronous reclaim */
1854 cpuset_memory_pressure_bump();
1855 p->flags |= PF_MEMALLOC;
1856 lockdep_set_current_reclaim_state(gfp_mask);
1857 reclaim_state.reclaimed_slab = 0;
1858 p->reclaim_state = &reclaim_state;
1860 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1862 p->reclaim_state = NULL;
1863 lockdep_clear_current_reclaim_state();
1864 p->flags &= ~PF_MEMALLOC;
1866 cond_resched();
1868 if (order != 0)
1869 drain_all_pages();
1871 if (likely(*did_some_progress))
1872 page = get_page_from_freelist(gfp_mask, nodemask, order,
1873 zonelist, high_zoneidx,
1874 alloc_flags, preferred_zone,
1875 migratetype);
1876 return page;
1880 * This is called in the allocator slow-path if the allocation request is of
1881 * sufficient urgency to ignore watermarks and take other desperate measures
1883 static inline struct page *
1884 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1885 struct zonelist *zonelist, enum zone_type high_zoneidx,
1886 nodemask_t *nodemask, struct zone *preferred_zone,
1887 int migratetype)
1889 struct page *page;
1891 do {
1892 page = get_page_from_freelist(gfp_mask, nodemask, order,
1893 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1894 preferred_zone, migratetype);
1896 if (!page && gfp_mask & __GFP_NOFAIL)
1897 congestion_wait(BLK_RW_ASYNC, HZ/50);
1898 } while (!page && (gfp_mask & __GFP_NOFAIL));
1900 return page;
1903 static inline
1904 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1905 enum zone_type high_zoneidx)
1907 struct zoneref *z;
1908 struct zone *zone;
1910 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1911 wakeup_kswapd(zone, order);
1914 static inline int
1915 gfp_to_alloc_flags(gfp_t gfp_mask)
1917 struct task_struct *p = current;
1918 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1919 const gfp_t wait = gfp_mask & __GFP_WAIT;
1921 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1922 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1925 * The caller may dip into page reserves a bit more if the caller
1926 * cannot run direct reclaim, or if the caller has realtime scheduling
1927 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1928 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1930 alloc_flags |= (gfp_mask & __GFP_HIGH);
1932 if (!wait) {
1933 alloc_flags |= ALLOC_HARDER;
1935 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1936 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1938 alloc_flags &= ~ALLOC_CPUSET;
1939 } else if (unlikely(rt_task(p)) && !in_interrupt())
1940 alloc_flags |= ALLOC_HARDER;
1942 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1943 if (!in_interrupt() &&
1944 ((p->flags & PF_MEMALLOC) ||
1945 unlikely(test_thread_flag(TIF_MEMDIE))))
1946 alloc_flags |= ALLOC_NO_WATERMARKS;
1949 return alloc_flags;
1952 static inline struct page *
1953 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1954 struct zonelist *zonelist, enum zone_type high_zoneidx,
1955 nodemask_t *nodemask, struct zone *preferred_zone,
1956 int migratetype)
1958 const gfp_t wait = gfp_mask & __GFP_WAIT;
1959 struct page *page = NULL;
1960 int alloc_flags;
1961 unsigned long pages_reclaimed = 0;
1962 unsigned long did_some_progress;
1963 struct task_struct *p = current;
1966 * In the slowpath, we sanity check order to avoid ever trying to
1967 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1968 * be using allocators in order of preference for an area that is
1969 * too large.
1971 if (order >= MAX_ORDER) {
1972 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1973 return NULL;
1977 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1978 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1979 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1980 * using a larger set of nodes after it has established that the
1981 * allowed per node queues are empty and that nodes are
1982 * over allocated.
1984 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1985 goto nopage;
1987 restart:
1988 wake_all_kswapd(order, zonelist, high_zoneidx);
1991 * OK, we're below the kswapd watermark and have kicked background
1992 * reclaim. Now things get more complex, so set up alloc_flags according
1993 * to how we want to proceed.
1995 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1997 /* This is the last chance, in general, before the goto nopage. */
1998 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1999 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2000 preferred_zone, migratetype);
2001 if (page)
2002 goto got_pg;
2004 rebalance:
2005 /* Allocate without watermarks if the context allows */
2006 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2007 page = __alloc_pages_high_priority(gfp_mask, order,
2008 zonelist, high_zoneidx, nodemask,
2009 preferred_zone, migratetype);
2010 if (page)
2011 goto got_pg;
2014 /* Atomic allocations - we can't balance anything */
2015 if (!wait)
2016 goto nopage;
2018 /* Avoid recursion of direct reclaim */
2019 if (p->flags & PF_MEMALLOC)
2020 goto nopage;
2022 /* Avoid allocations with no watermarks from looping endlessly */
2023 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2024 goto nopage;
2026 /* Try direct compaction */
2027 page = __alloc_pages_direct_compact(gfp_mask, order,
2028 zonelist, high_zoneidx,
2029 nodemask,
2030 alloc_flags, preferred_zone,
2031 migratetype, &did_some_progress);
2032 if (page)
2033 goto got_pg;
2035 /* Try direct reclaim and then allocating */
2036 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2037 zonelist, high_zoneidx,
2038 nodemask,
2039 alloc_flags, preferred_zone,
2040 migratetype, &did_some_progress);
2041 if (page)
2042 goto got_pg;
2045 * If we failed to make any progress reclaiming, then we are
2046 * running out of options and have to consider going OOM
2048 if (!did_some_progress) {
2049 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2050 if (oom_killer_disabled)
2051 goto nopage;
2052 page = __alloc_pages_may_oom(gfp_mask, order,
2053 zonelist, high_zoneidx,
2054 nodemask, preferred_zone,
2055 migratetype);
2056 if (page)
2057 goto got_pg;
2059 if (!(gfp_mask & __GFP_NOFAIL)) {
2061 * The oom killer is not called for high-order
2062 * allocations that may fail, so if no progress
2063 * is being made, there are no other options and
2064 * retrying is unlikely to help.
2066 if (order > PAGE_ALLOC_COSTLY_ORDER)
2067 goto nopage;
2069 * The oom killer is not called for lowmem
2070 * allocations to prevent needlessly killing
2071 * innocent tasks.
2073 if (high_zoneidx < ZONE_NORMAL)
2074 goto nopage;
2077 goto restart;
2081 /* Check if we should retry the allocation */
2082 pages_reclaimed += did_some_progress;
2083 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2084 /* Wait for some write requests to complete then retry */
2085 congestion_wait(BLK_RW_ASYNC, HZ/50);
2086 goto rebalance;
2089 nopage:
2090 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2091 printk(KERN_WARNING "%s: page allocation failure."
2092 " order:%d, mode:0x%x\n",
2093 p->comm, order, gfp_mask);
2094 dump_stack();
2095 show_mem();
2097 return page;
2098 got_pg:
2099 if (kmemcheck_enabled)
2100 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2101 return page;
2106 * This is the 'heart' of the zoned buddy allocator.
2108 struct page *
2109 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2110 struct zonelist *zonelist, nodemask_t *nodemask)
2112 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2113 struct zone *preferred_zone;
2114 struct page *page;
2115 int migratetype = allocflags_to_migratetype(gfp_mask);
2117 gfp_mask &= gfp_allowed_mask;
2119 lockdep_trace_alloc(gfp_mask);
2121 might_sleep_if(gfp_mask & __GFP_WAIT);
2123 if (should_fail_alloc_page(gfp_mask, order))
2124 return NULL;
2127 * Check the zones suitable for the gfp_mask contain at least one
2128 * valid zone. It's possible to have an empty zonelist as a result
2129 * of GFP_THISNODE and a memoryless node
2131 if (unlikely(!zonelist->_zonerefs->zone))
2132 return NULL;
2134 get_mems_allowed();
2135 /* The preferred zone is used for statistics later */
2136 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2137 if (!preferred_zone) {
2138 put_mems_allowed();
2139 return NULL;
2142 /* First allocation attempt */
2143 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2144 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2145 preferred_zone, migratetype);
2146 if (unlikely(!page))
2147 page = __alloc_pages_slowpath(gfp_mask, order,
2148 zonelist, high_zoneidx, nodemask,
2149 preferred_zone, migratetype);
2150 put_mems_allowed();
2152 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2153 return page;
2155 EXPORT_SYMBOL(__alloc_pages_nodemask);
2158 * Common helper functions.
2160 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2162 struct page *page;
2165 * __get_free_pages() returns a 32-bit address, which cannot represent
2166 * a highmem page
2168 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2170 page = alloc_pages(gfp_mask, order);
2171 if (!page)
2172 return 0;
2173 return (unsigned long) page_address(page);
2175 EXPORT_SYMBOL(__get_free_pages);
2177 unsigned long get_zeroed_page(gfp_t gfp_mask)
2179 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2181 EXPORT_SYMBOL(get_zeroed_page);
2183 void __pagevec_free(struct pagevec *pvec)
2185 int i = pagevec_count(pvec);
2187 while (--i >= 0) {
2188 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2189 free_hot_cold_page(pvec->pages[i], pvec->cold);
2193 void __free_pages(struct page *page, unsigned int order)
2195 if (put_page_testzero(page)) {
2196 if (order == 0)
2197 free_hot_cold_page(page, 0);
2198 else
2199 __free_pages_ok(page, order);
2203 EXPORT_SYMBOL(__free_pages);
2205 void free_pages(unsigned long addr, unsigned int order)
2207 if (addr != 0) {
2208 VM_BUG_ON(!virt_addr_valid((void *)addr));
2209 __free_pages(virt_to_page((void *)addr), order);
2213 EXPORT_SYMBOL(free_pages);
2216 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2217 * @size: the number of bytes to allocate
2218 * @gfp_mask: GFP flags for the allocation
2220 * This function is similar to alloc_pages(), except that it allocates the
2221 * minimum number of pages to satisfy the request. alloc_pages() can only
2222 * allocate memory in power-of-two pages.
2224 * This function is also limited by MAX_ORDER.
2226 * Memory allocated by this function must be released by free_pages_exact().
2228 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2230 unsigned int order = get_order(size);
2231 unsigned long addr;
2233 addr = __get_free_pages(gfp_mask, order);
2234 if (addr) {
2235 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2236 unsigned long used = addr + PAGE_ALIGN(size);
2238 split_page(virt_to_page((void *)addr), order);
2239 while (used < alloc_end) {
2240 free_page(used);
2241 used += PAGE_SIZE;
2245 return (void *)addr;
2247 EXPORT_SYMBOL(alloc_pages_exact);
2250 * free_pages_exact - release memory allocated via alloc_pages_exact()
2251 * @virt: the value returned by alloc_pages_exact.
2252 * @size: size of allocation, same value as passed to alloc_pages_exact().
2254 * Release the memory allocated by a previous call to alloc_pages_exact.
2256 void free_pages_exact(void *virt, size_t size)
2258 unsigned long addr = (unsigned long)virt;
2259 unsigned long end = addr + PAGE_ALIGN(size);
2261 while (addr < end) {
2262 free_page(addr);
2263 addr += PAGE_SIZE;
2266 EXPORT_SYMBOL(free_pages_exact);
2268 static unsigned int nr_free_zone_pages(int offset)
2270 struct zoneref *z;
2271 struct zone *zone;
2273 /* Just pick one node, since fallback list is circular */
2274 unsigned int sum = 0;
2276 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2278 for_each_zone_zonelist(zone, z, zonelist, offset) {
2279 unsigned long size = zone->present_pages;
2280 unsigned long high = high_wmark_pages(zone);
2281 if (size > high)
2282 sum += size - high;
2285 return sum;
2289 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2291 unsigned int nr_free_buffer_pages(void)
2293 return nr_free_zone_pages(gfp_zone(GFP_USER));
2295 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2298 * Amount of free RAM allocatable within all zones
2300 unsigned int nr_free_pagecache_pages(void)
2302 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2305 static inline void show_node(struct zone *zone)
2307 if (NUMA_BUILD)
2308 printk("Node %d ", zone_to_nid(zone));
2311 void si_meminfo(struct sysinfo *val)
2313 val->totalram = totalram_pages;
2314 val->sharedram = 0;
2315 val->freeram = global_page_state(NR_FREE_PAGES);
2316 val->bufferram = nr_blockdev_pages();
2317 val->totalhigh = totalhigh_pages;
2318 val->freehigh = nr_free_highpages();
2319 val->mem_unit = PAGE_SIZE;
2322 EXPORT_SYMBOL(si_meminfo);
2324 #ifdef CONFIG_NUMA
2325 void si_meminfo_node(struct sysinfo *val, int nid)
2327 pg_data_t *pgdat = NODE_DATA(nid);
2329 val->totalram = pgdat->node_present_pages;
2330 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2331 #ifdef CONFIG_HIGHMEM
2332 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2333 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2334 NR_FREE_PAGES);
2335 #else
2336 val->totalhigh = 0;
2337 val->freehigh = 0;
2338 #endif
2339 val->mem_unit = PAGE_SIZE;
2341 #endif
2343 #define K(x) ((x) << (PAGE_SHIFT-10))
2346 * Show free area list (used inside shift_scroll-lock stuff)
2347 * We also calculate the percentage fragmentation. We do this by counting the
2348 * memory on each free list with the exception of the first item on the list.
2350 void show_free_areas(void)
2352 int cpu;
2353 struct zone *zone;
2355 for_each_populated_zone(zone) {
2356 show_node(zone);
2357 printk("%s per-cpu:\n", zone->name);
2359 for_each_online_cpu(cpu) {
2360 struct per_cpu_pageset *pageset;
2362 pageset = per_cpu_ptr(zone->pageset, cpu);
2364 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2365 cpu, pageset->pcp.high,
2366 pageset->pcp.batch, pageset->pcp.count);
2370 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2371 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2372 " unevictable:%lu"
2373 " dirty:%lu writeback:%lu unstable:%lu\n"
2374 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2375 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2376 global_page_state(NR_ACTIVE_ANON),
2377 global_page_state(NR_INACTIVE_ANON),
2378 global_page_state(NR_ISOLATED_ANON),
2379 global_page_state(NR_ACTIVE_FILE),
2380 global_page_state(NR_INACTIVE_FILE),
2381 global_page_state(NR_ISOLATED_FILE),
2382 global_page_state(NR_UNEVICTABLE),
2383 global_page_state(NR_FILE_DIRTY),
2384 global_page_state(NR_WRITEBACK),
2385 global_page_state(NR_UNSTABLE_NFS),
2386 global_page_state(NR_FREE_PAGES),
2387 global_page_state(NR_SLAB_RECLAIMABLE),
2388 global_page_state(NR_SLAB_UNRECLAIMABLE),
2389 global_page_state(NR_FILE_MAPPED),
2390 global_page_state(NR_SHMEM),
2391 global_page_state(NR_PAGETABLE),
2392 global_page_state(NR_BOUNCE));
2394 for_each_populated_zone(zone) {
2395 int i;
2397 show_node(zone);
2398 printk("%s"
2399 " free:%lukB"
2400 " min:%lukB"
2401 " low:%lukB"
2402 " high:%lukB"
2403 " active_anon:%lukB"
2404 " inactive_anon:%lukB"
2405 " active_file:%lukB"
2406 " inactive_file:%lukB"
2407 " unevictable:%lukB"
2408 " isolated(anon):%lukB"
2409 " isolated(file):%lukB"
2410 " present:%lukB"
2411 " mlocked:%lukB"
2412 " dirty:%lukB"
2413 " writeback:%lukB"
2414 " mapped:%lukB"
2415 " shmem:%lukB"
2416 " slab_reclaimable:%lukB"
2417 " slab_unreclaimable:%lukB"
2418 " kernel_stack:%lukB"
2419 " pagetables:%lukB"
2420 " unstable:%lukB"
2421 " bounce:%lukB"
2422 " writeback_tmp:%lukB"
2423 " pages_scanned:%lu"
2424 " all_unreclaimable? %s"
2425 "\n",
2426 zone->name,
2427 K(zone_page_state(zone, NR_FREE_PAGES)),
2428 K(min_wmark_pages(zone)),
2429 K(low_wmark_pages(zone)),
2430 K(high_wmark_pages(zone)),
2431 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2432 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2433 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2434 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2435 K(zone_page_state(zone, NR_UNEVICTABLE)),
2436 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2437 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2438 K(zone->present_pages),
2439 K(zone_page_state(zone, NR_MLOCK)),
2440 K(zone_page_state(zone, NR_FILE_DIRTY)),
2441 K(zone_page_state(zone, NR_WRITEBACK)),
2442 K(zone_page_state(zone, NR_FILE_MAPPED)),
2443 K(zone_page_state(zone, NR_SHMEM)),
2444 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2445 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2446 zone_page_state(zone, NR_KERNEL_STACK) *
2447 THREAD_SIZE / 1024,
2448 K(zone_page_state(zone, NR_PAGETABLE)),
2449 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2450 K(zone_page_state(zone, NR_BOUNCE)),
2451 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2452 zone->pages_scanned,
2453 (zone->all_unreclaimable ? "yes" : "no")
2455 printk("lowmem_reserve[]:");
2456 for (i = 0; i < MAX_NR_ZONES; i++)
2457 printk(" %lu", zone->lowmem_reserve[i]);
2458 printk("\n");
2461 for_each_populated_zone(zone) {
2462 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2464 show_node(zone);
2465 printk("%s: ", zone->name);
2467 spin_lock_irqsave(&zone->lock, flags);
2468 for (order = 0; order < MAX_ORDER; order++) {
2469 nr[order] = zone->free_area[order].nr_free;
2470 total += nr[order] << order;
2472 spin_unlock_irqrestore(&zone->lock, flags);
2473 for (order = 0; order < MAX_ORDER; order++)
2474 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2475 printk("= %lukB\n", K(total));
2478 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2480 show_swap_cache_info();
2483 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2485 zoneref->zone = zone;
2486 zoneref->zone_idx = zone_idx(zone);
2490 * Builds allocation fallback zone lists.
2492 * Add all populated zones of a node to the zonelist.
2494 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2495 int nr_zones, enum zone_type zone_type)
2497 struct zone *zone;
2499 BUG_ON(zone_type >= MAX_NR_ZONES);
2500 zone_type++;
2502 do {
2503 zone_type--;
2504 zone = pgdat->node_zones + zone_type;
2505 if (populated_zone(zone)) {
2506 zoneref_set_zone(zone,
2507 &zonelist->_zonerefs[nr_zones++]);
2508 check_highest_zone(zone_type);
2511 } while (zone_type);
2512 return nr_zones;
2517 * zonelist_order:
2518 * 0 = automatic detection of better ordering.
2519 * 1 = order by ([node] distance, -zonetype)
2520 * 2 = order by (-zonetype, [node] distance)
2522 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2523 * the same zonelist. So only NUMA can configure this param.
2525 #define ZONELIST_ORDER_DEFAULT 0
2526 #define ZONELIST_ORDER_NODE 1
2527 #define ZONELIST_ORDER_ZONE 2
2529 /* zonelist order in the kernel.
2530 * set_zonelist_order() will set this to NODE or ZONE.
2532 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2533 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2536 #ifdef CONFIG_NUMA
2537 /* The value user specified ....changed by config */
2538 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2539 /* string for sysctl */
2540 #define NUMA_ZONELIST_ORDER_LEN 16
2541 char numa_zonelist_order[16] = "default";
2544 * interface for configure zonelist ordering.
2545 * command line option "numa_zonelist_order"
2546 * = "[dD]efault - default, automatic configuration.
2547 * = "[nN]ode - order by node locality, then by zone within node
2548 * = "[zZ]one - order by zone, then by locality within zone
2551 static int __parse_numa_zonelist_order(char *s)
2553 if (*s == 'd' || *s == 'D') {
2554 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2555 } else if (*s == 'n' || *s == 'N') {
2556 user_zonelist_order = ZONELIST_ORDER_NODE;
2557 } else if (*s == 'z' || *s == 'Z') {
2558 user_zonelist_order = ZONELIST_ORDER_ZONE;
2559 } else {
2560 printk(KERN_WARNING
2561 "Ignoring invalid numa_zonelist_order value: "
2562 "%s\n", s);
2563 return -EINVAL;
2565 return 0;
2568 static __init int setup_numa_zonelist_order(char *s)
2570 if (s)
2571 return __parse_numa_zonelist_order(s);
2572 return 0;
2574 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2577 * sysctl handler for numa_zonelist_order
2579 int numa_zonelist_order_handler(ctl_table *table, int write,
2580 void __user *buffer, size_t *length,
2581 loff_t *ppos)
2583 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2584 int ret;
2585 static DEFINE_MUTEX(zl_order_mutex);
2587 mutex_lock(&zl_order_mutex);
2588 if (write)
2589 strcpy(saved_string, (char*)table->data);
2590 ret = proc_dostring(table, write, buffer, length, ppos);
2591 if (ret)
2592 goto out;
2593 if (write) {
2594 int oldval = user_zonelist_order;
2595 if (__parse_numa_zonelist_order((char*)table->data)) {
2597 * bogus value. restore saved string
2599 strncpy((char*)table->data, saved_string,
2600 NUMA_ZONELIST_ORDER_LEN);
2601 user_zonelist_order = oldval;
2602 } else if (oldval != user_zonelist_order) {
2603 mutex_lock(&zonelists_mutex);
2604 build_all_zonelists(NULL);
2605 mutex_unlock(&zonelists_mutex);
2608 out:
2609 mutex_unlock(&zl_order_mutex);
2610 return ret;
2614 #define MAX_NODE_LOAD (nr_online_nodes)
2615 static int node_load[MAX_NUMNODES];
2618 * find_next_best_node - find the next node that should appear in a given node's fallback list
2619 * @node: node whose fallback list we're appending
2620 * @used_node_mask: nodemask_t of already used nodes
2622 * We use a number of factors to determine which is the next node that should
2623 * appear on a given node's fallback list. The node should not have appeared
2624 * already in @node's fallback list, and it should be the next closest node
2625 * according to the distance array (which contains arbitrary distance values
2626 * from each node to each node in the system), and should also prefer nodes
2627 * with no CPUs, since presumably they'll have very little allocation pressure
2628 * on them otherwise.
2629 * It returns -1 if no node is found.
2631 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2633 int n, val;
2634 int min_val = INT_MAX;
2635 int best_node = -1;
2636 const struct cpumask *tmp = cpumask_of_node(0);
2638 /* Use the local node if we haven't already */
2639 if (!node_isset(node, *used_node_mask)) {
2640 node_set(node, *used_node_mask);
2641 return node;
2644 for_each_node_state(n, N_HIGH_MEMORY) {
2646 /* Don't want a node to appear more than once */
2647 if (node_isset(n, *used_node_mask))
2648 continue;
2650 /* Use the distance array to find the distance */
2651 val = node_distance(node, n);
2653 /* Penalize nodes under us ("prefer the next node") */
2654 val += (n < node);
2656 /* Give preference to headless and unused nodes */
2657 tmp = cpumask_of_node(n);
2658 if (!cpumask_empty(tmp))
2659 val += PENALTY_FOR_NODE_WITH_CPUS;
2661 /* Slight preference for less loaded node */
2662 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2663 val += node_load[n];
2665 if (val < min_val) {
2666 min_val = val;
2667 best_node = n;
2671 if (best_node >= 0)
2672 node_set(best_node, *used_node_mask);
2674 return best_node;
2679 * Build zonelists ordered by node and zones within node.
2680 * This results in maximum locality--normal zone overflows into local
2681 * DMA zone, if any--but risks exhausting DMA zone.
2683 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2685 int j;
2686 struct zonelist *zonelist;
2688 zonelist = &pgdat->node_zonelists[0];
2689 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2691 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2692 MAX_NR_ZONES - 1);
2693 zonelist->_zonerefs[j].zone = NULL;
2694 zonelist->_zonerefs[j].zone_idx = 0;
2698 * Build gfp_thisnode zonelists
2700 static void build_thisnode_zonelists(pg_data_t *pgdat)
2702 int j;
2703 struct zonelist *zonelist;
2705 zonelist = &pgdat->node_zonelists[1];
2706 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2707 zonelist->_zonerefs[j].zone = NULL;
2708 zonelist->_zonerefs[j].zone_idx = 0;
2712 * Build zonelists ordered by zone and nodes within zones.
2713 * This results in conserving DMA zone[s] until all Normal memory is
2714 * exhausted, but results in overflowing to remote node while memory
2715 * may still exist in local DMA zone.
2717 static int node_order[MAX_NUMNODES];
2719 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2721 int pos, j, node;
2722 int zone_type; /* needs to be signed */
2723 struct zone *z;
2724 struct zonelist *zonelist;
2726 zonelist = &pgdat->node_zonelists[0];
2727 pos = 0;
2728 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2729 for (j = 0; j < nr_nodes; j++) {
2730 node = node_order[j];
2731 z = &NODE_DATA(node)->node_zones[zone_type];
2732 if (populated_zone(z)) {
2733 zoneref_set_zone(z,
2734 &zonelist->_zonerefs[pos++]);
2735 check_highest_zone(zone_type);
2739 zonelist->_zonerefs[pos].zone = NULL;
2740 zonelist->_zonerefs[pos].zone_idx = 0;
2743 static int default_zonelist_order(void)
2745 int nid, zone_type;
2746 unsigned long low_kmem_size,total_size;
2747 struct zone *z;
2748 int average_size;
2750 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2751 * If they are really small and used heavily, the system can fall
2752 * into OOM very easily.
2753 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2755 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2756 low_kmem_size = 0;
2757 total_size = 0;
2758 for_each_online_node(nid) {
2759 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2760 z = &NODE_DATA(nid)->node_zones[zone_type];
2761 if (populated_zone(z)) {
2762 if (zone_type < ZONE_NORMAL)
2763 low_kmem_size += z->present_pages;
2764 total_size += z->present_pages;
2765 } else if (zone_type == ZONE_NORMAL) {
2767 * If any node has only lowmem, then node order
2768 * is preferred to allow kernel allocations
2769 * locally; otherwise, they can easily infringe
2770 * on other nodes when there is an abundance of
2771 * lowmem available to allocate from.
2773 return ZONELIST_ORDER_NODE;
2777 if (!low_kmem_size || /* there are no DMA area. */
2778 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2779 return ZONELIST_ORDER_NODE;
2781 * look into each node's config.
2782 * If there is a node whose DMA/DMA32 memory is very big area on
2783 * local memory, NODE_ORDER may be suitable.
2785 average_size = total_size /
2786 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2787 for_each_online_node(nid) {
2788 low_kmem_size = 0;
2789 total_size = 0;
2790 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2791 z = &NODE_DATA(nid)->node_zones[zone_type];
2792 if (populated_zone(z)) {
2793 if (zone_type < ZONE_NORMAL)
2794 low_kmem_size += z->present_pages;
2795 total_size += z->present_pages;
2798 if (low_kmem_size &&
2799 total_size > average_size && /* ignore small node */
2800 low_kmem_size > total_size * 70/100)
2801 return ZONELIST_ORDER_NODE;
2803 return ZONELIST_ORDER_ZONE;
2806 static void set_zonelist_order(void)
2808 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2809 current_zonelist_order = default_zonelist_order();
2810 else
2811 current_zonelist_order = user_zonelist_order;
2814 static void build_zonelists(pg_data_t *pgdat)
2816 int j, node, load;
2817 enum zone_type i;
2818 nodemask_t used_mask;
2819 int local_node, prev_node;
2820 struct zonelist *zonelist;
2821 int order = current_zonelist_order;
2823 /* initialize zonelists */
2824 for (i = 0; i < MAX_ZONELISTS; i++) {
2825 zonelist = pgdat->node_zonelists + i;
2826 zonelist->_zonerefs[0].zone = NULL;
2827 zonelist->_zonerefs[0].zone_idx = 0;
2830 /* NUMA-aware ordering of nodes */
2831 local_node = pgdat->node_id;
2832 load = nr_online_nodes;
2833 prev_node = local_node;
2834 nodes_clear(used_mask);
2836 memset(node_order, 0, sizeof(node_order));
2837 j = 0;
2839 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2840 int distance = node_distance(local_node, node);
2843 * If another node is sufficiently far away then it is better
2844 * to reclaim pages in a zone before going off node.
2846 if (distance > RECLAIM_DISTANCE)
2847 zone_reclaim_mode = 1;
2850 * We don't want to pressure a particular node.
2851 * So adding penalty to the first node in same
2852 * distance group to make it round-robin.
2854 if (distance != node_distance(local_node, prev_node))
2855 node_load[node] = load;
2857 prev_node = node;
2858 load--;
2859 if (order == ZONELIST_ORDER_NODE)
2860 build_zonelists_in_node_order(pgdat, node);
2861 else
2862 node_order[j++] = node; /* remember order */
2865 if (order == ZONELIST_ORDER_ZONE) {
2866 /* calculate node order -- i.e., DMA last! */
2867 build_zonelists_in_zone_order(pgdat, j);
2870 build_thisnode_zonelists(pgdat);
2873 /* Construct the zonelist performance cache - see further mmzone.h */
2874 static void build_zonelist_cache(pg_data_t *pgdat)
2876 struct zonelist *zonelist;
2877 struct zonelist_cache *zlc;
2878 struct zoneref *z;
2880 zonelist = &pgdat->node_zonelists[0];
2881 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2882 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2883 for (z = zonelist->_zonerefs; z->zone; z++)
2884 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2887 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2889 * Return node id of node used for "local" allocations.
2890 * I.e., first node id of first zone in arg node's generic zonelist.
2891 * Used for initializing percpu 'numa_mem', which is used primarily
2892 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2894 int local_memory_node(int node)
2896 struct zone *zone;
2898 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2899 gfp_zone(GFP_KERNEL),
2900 NULL,
2901 &zone);
2902 return zone->node;
2904 #endif
2906 #else /* CONFIG_NUMA */
2908 static void set_zonelist_order(void)
2910 current_zonelist_order = ZONELIST_ORDER_ZONE;
2913 static void build_zonelists(pg_data_t *pgdat)
2915 int node, local_node;
2916 enum zone_type j;
2917 struct zonelist *zonelist;
2919 local_node = pgdat->node_id;
2921 zonelist = &pgdat->node_zonelists[0];
2922 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2925 * Now we build the zonelist so that it contains the zones
2926 * of all the other nodes.
2927 * We don't want to pressure a particular node, so when
2928 * building the zones for node N, we make sure that the
2929 * zones coming right after the local ones are those from
2930 * node N+1 (modulo N)
2932 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2933 if (!node_online(node))
2934 continue;
2935 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2936 MAX_NR_ZONES - 1);
2938 for (node = 0; node < local_node; node++) {
2939 if (!node_online(node))
2940 continue;
2941 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2942 MAX_NR_ZONES - 1);
2945 zonelist->_zonerefs[j].zone = NULL;
2946 zonelist->_zonerefs[j].zone_idx = 0;
2949 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2950 static void build_zonelist_cache(pg_data_t *pgdat)
2952 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2955 #endif /* CONFIG_NUMA */
2958 * Boot pageset table. One per cpu which is going to be used for all
2959 * zones and all nodes. The parameters will be set in such a way
2960 * that an item put on a list will immediately be handed over to
2961 * the buddy list. This is safe since pageset manipulation is done
2962 * with interrupts disabled.
2964 * The boot_pagesets must be kept even after bootup is complete for
2965 * unused processors and/or zones. They do play a role for bootstrapping
2966 * hotplugged processors.
2968 * zoneinfo_show() and maybe other functions do
2969 * not check if the processor is online before following the pageset pointer.
2970 * Other parts of the kernel may not check if the zone is available.
2972 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2973 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2974 static void setup_zone_pageset(struct zone *zone);
2977 * Global mutex to protect against size modification of zonelists
2978 * as well as to serialize pageset setup for the new populated zone.
2980 DEFINE_MUTEX(zonelists_mutex);
2982 /* return values int ....just for stop_machine() */
2983 static __init_refok int __build_all_zonelists(void *data)
2985 int nid;
2986 int cpu;
2988 #ifdef CONFIG_NUMA
2989 memset(node_load, 0, sizeof(node_load));
2990 #endif
2991 for_each_online_node(nid) {
2992 pg_data_t *pgdat = NODE_DATA(nid);
2994 build_zonelists(pgdat);
2995 build_zonelist_cache(pgdat);
2998 #ifdef CONFIG_MEMORY_HOTPLUG
2999 /* Setup real pagesets for the new zone */
3000 if (data) {
3001 struct zone *zone = data;
3002 setup_zone_pageset(zone);
3004 #endif
3007 * Initialize the boot_pagesets that are going to be used
3008 * for bootstrapping processors. The real pagesets for
3009 * each zone will be allocated later when the per cpu
3010 * allocator is available.
3012 * boot_pagesets are used also for bootstrapping offline
3013 * cpus if the system is already booted because the pagesets
3014 * are needed to initialize allocators on a specific cpu too.
3015 * F.e. the percpu allocator needs the page allocator which
3016 * needs the percpu allocator in order to allocate its pagesets
3017 * (a chicken-egg dilemma).
3019 for_each_possible_cpu(cpu) {
3020 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3022 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3024 * We now know the "local memory node" for each node--
3025 * i.e., the node of the first zone in the generic zonelist.
3026 * Set up numa_mem percpu variable for on-line cpus. During
3027 * boot, only the boot cpu should be on-line; we'll init the
3028 * secondary cpus' numa_mem as they come on-line. During
3029 * node/memory hotplug, we'll fixup all on-line cpus.
3031 if (cpu_online(cpu))
3032 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3033 #endif
3036 return 0;
3040 * Called with zonelists_mutex held always
3041 * unless system_state == SYSTEM_BOOTING.
3043 void build_all_zonelists(void *data)
3045 set_zonelist_order();
3047 if (system_state == SYSTEM_BOOTING) {
3048 __build_all_zonelists(NULL);
3049 mminit_verify_zonelist();
3050 cpuset_init_current_mems_allowed();
3051 } else {
3052 /* we have to stop all cpus to guarantee there is no user
3053 of zonelist */
3054 stop_machine(__build_all_zonelists, data, NULL);
3055 /* cpuset refresh routine should be here */
3057 vm_total_pages = nr_free_pagecache_pages();
3059 * Disable grouping by mobility if the number of pages in the
3060 * system is too low to allow the mechanism to work. It would be
3061 * more accurate, but expensive to check per-zone. This check is
3062 * made on memory-hotadd so a system can start with mobility
3063 * disabled and enable it later
3065 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3066 page_group_by_mobility_disabled = 1;
3067 else
3068 page_group_by_mobility_disabled = 0;
3070 printk("Built %i zonelists in %s order, mobility grouping %s. "
3071 "Total pages: %ld\n",
3072 nr_online_nodes,
3073 zonelist_order_name[current_zonelist_order],
3074 page_group_by_mobility_disabled ? "off" : "on",
3075 vm_total_pages);
3076 #ifdef CONFIG_NUMA
3077 printk("Policy zone: %s\n", zone_names[policy_zone]);
3078 #endif
3082 * Helper functions to size the waitqueue hash table.
3083 * Essentially these want to choose hash table sizes sufficiently
3084 * large so that collisions trying to wait on pages are rare.
3085 * But in fact, the number of active page waitqueues on typical
3086 * systems is ridiculously low, less than 200. So this is even
3087 * conservative, even though it seems large.
3089 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3090 * waitqueues, i.e. the size of the waitq table given the number of pages.
3092 #define PAGES_PER_WAITQUEUE 256
3094 #ifndef CONFIG_MEMORY_HOTPLUG
3095 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3097 unsigned long size = 1;
3099 pages /= PAGES_PER_WAITQUEUE;
3101 while (size < pages)
3102 size <<= 1;
3105 * Once we have dozens or even hundreds of threads sleeping
3106 * on IO we've got bigger problems than wait queue collision.
3107 * Limit the size of the wait table to a reasonable size.
3109 size = min(size, 4096UL);
3111 return max(size, 4UL);
3113 #else
3115 * A zone's size might be changed by hot-add, so it is not possible to determine
3116 * a suitable size for its wait_table. So we use the maximum size now.
3118 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3120 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3121 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3122 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3124 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3125 * or more by the traditional way. (See above). It equals:
3127 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3128 * ia64(16K page size) : = ( 8G + 4M)byte.
3129 * powerpc (64K page size) : = (32G +16M)byte.
3131 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3133 return 4096UL;
3135 #endif
3138 * This is an integer logarithm so that shifts can be used later
3139 * to extract the more random high bits from the multiplicative
3140 * hash function before the remainder is taken.
3142 static inline unsigned long wait_table_bits(unsigned long size)
3144 return ffz(~size);
3147 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3150 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3151 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3152 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3153 * higher will lead to a bigger reserve which will get freed as contiguous
3154 * blocks as reclaim kicks in
3156 static void setup_zone_migrate_reserve(struct zone *zone)
3158 unsigned long start_pfn, pfn, end_pfn;
3159 struct page *page;
3160 unsigned long block_migratetype;
3161 int reserve;
3163 /* Get the start pfn, end pfn and the number of blocks to reserve */
3164 start_pfn = zone->zone_start_pfn;
3165 end_pfn = start_pfn + zone->spanned_pages;
3166 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3167 pageblock_order;
3170 * Reserve blocks are generally in place to help high-order atomic
3171 * allocations that are short-lived. A min_free_kbytes value that
3172 * would result in more than 2 reserve blocks for atomic allocations
3173 * is assumed to be in place to help anti-fragmentation for the
3174 * future allocation of hugepages at runtime.
3176 reserve = min(2, reserve);
3178 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3179 if (!pfn_valid(pfn))
3180 continue;
3181 page = pfn_to_page(pfn);
3183 /* Watch out for overlapping nodes */
3184 if (page_to_nid(page) != zone_to_nid(zone))
3185 continue;
3187 /* Blocks with reserved pages will never free, skip them. */
3188 if (PageReserved(page))
3189 continue;
3191 block_migratetype = get_pageblock_migratetype(page);
3193 /* If this block is reserved, account for it */
3194 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3195 reserve--;
3196 continue;
3199 /* Suitable for reserving if this block is movable */
3200 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3201 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3202 move_freepages_block(zone, page, MIGRATE_RESERVE);
3203 reserve--;
3204 continue;
3208 * If the reserve is met and this is a previous reserved block,
3209 * take it back
3211 if (block_migratetype == MIGRATE_RESERVE) {
3212 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3213 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3219 * Initially all pages are reserved - free ones are freed
3220 * up by free_all_bootmem() once the early boot process is
3221 * done. Non-atomic initialization, single-pass.
3223 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3224 unsigned long start_pfn, enum memmap_context context)
3226 struct page *page;
3227 unsigned long end_pfn = start_pfn + size;
3228 unsigned long pfn;
3229 struct zone *z;
3231 if (highest_memmap_pfn < end_pfn - 1)
3232 highest_memmap_pfn = end_pfn - 1;
3234 z = &NODE_DATA(nid)->node_zones[zone];
3235 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3237 * There can be holes in boot-time mem_map[]s
3238 * handed to this function. They do not
3239 * exist on hotplugged memory.
3241 if (context == MEMMAP_EARLY) {
3242 if (!early_pfn_valid(pfn))
3243 continue;
3244 if (!early_pfn_in_nid(pfn, nid))
3245 continue;
3247 page = pfn_to_page(pfn);
3248 set_page_links(page, zone, nid, pfn);
3249 mminit_verify_page_links(page, zone, nid, pfn);
3250 init_page_count(page);
3251 reset_page_mapcount(page);
3252 SetPageReserved(page);
3254 * Mark the block movable so that blocks are reserved for
3255 * movable at startup. This will force kernel allocations
3256 * to reserve their blocks rather than leaking throughout
3257 * the address space during boot when many long-lived
3258 * kernel allocations are made. Later some blocks near
3259 * the start are marked MIGRATE_RESERVE by
3260 * setup_zone_migrate_reserve()
3262 * bitmap is created for zone's valid pfn range. but memmap
3263 * can be created for invalid pages (for alignment)
3264 * check here not to call set_pageblock_migratetype() against
3265 * pfn out of zone.
3267 if ((z->zone_start_pfn <= pfn)
3268 && (pfn < z->zone_start_pfn + z->spanned_pages)
3269 && !(pfn & (pageblock_nr_pages - 1)))
3270 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3272 INIT_LIST_HEAD(&page->lru);
3273 #ifdef WANT_PAGE_VIRTUAL
3274 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3275 if (!is_highmem_idx(zone))
3276 set_page_address(page, __va(pfn << PAGE_SHIFT));
3277 #endif
3281 static void __meminit zone_init_free_lists(struct zone *zone)
3283 int order, t;
3284 for_each_migratetype_order(order, t) {
3285 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3286 zone->free_area[order].nr_free = 0;
3290 #ifndef __HAVE_ARCH_MEMMAP_INIT
3291 #define memmap_init(size, nid, zone, start_pfn) \
3292 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3293 #endif
3295 static int zone_batchsize(struct zone *zone)
3297 #ifdef CONFIG_MMU
3298 int batch;
3301 * The per-cpu-pages pools are set to around 1000th of the
3302 * size of the zone. But no more than 1/2 of a meg.
3304 * OK, so we don't know how big the cache is. So guess.
3306 batch = zone->present_pages / 1024;
3307 if (batch * PAGE_SIZE > 512 * 1024)
3308 batch = (512 * 1024) / PAGE_SIZE;
3309 batch /= 4; /* We effectively *= 4 below */
3310 if (batch < 1)
3311 batch = 1;
3314 * Clamp the batch to a 2^n - 1 value. Having a power
3315 * of 2 value was found to be more likely to have
3316 * suboptimal cache aliasing properties in some cases.
3318 * For example if 2 tasks are alternately allocating
3319 * batches of pages, one task can end up with a lot
3320 * of pages of one half of the possible page colors
3321 * and the other with pages of the other colors.
3323 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3325 return batch;
3327 #else
3328 /* The deferral and batching of frees should be suppressed under NOMMU
3329 * conditions.
3331 * The problem is that NOMMU needs to be able to allocate large chunks
3332 * of contiguous memory as there's no hardware page translation to
3333 * assemble apparent contiguous memory from discontiguous pages.
3335 * Queueing large contiguous runs of pages for batching, however,
3336 * causes the pages to actually be freed in smaller chunks. As there
3337 * can be a significant delay between the individual batches being
3338 * recycled, this leads to the once large chunks of space being
3339 * fragmented and becoming unavailable for high-order allocations.
3341 return 0;
3342 #endif
3345 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3347 struct per_cpu_pages *pcp;
3348 int migratetype;
3350 memset(p, 0, sizeof(*p));
3352 pcp = &p->pcp;
3353 pcp->count = 0;
3354 pcp->high = 6 * batch;
3355 pcp->batch = max(1UL, 1 * batch);
3356 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3357 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3361 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3362 * to the value high for the pageset p.
3365 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3366 unsigned long high)
3368 struct per_cpu_pages *pcp;
3370 pcp = &p->pcp;
3371 pcp->high = high;
3372 pcp->batch = max(1UL, high/4);
3373 if ((high/4) > (PAGE_SHIFT * 8))
3374 pcp->batch = PAGE_SHIFT * 8;
3377 static __meminit void setup_zone_pageset(struct zone *zone)
3379 int cpu;
3381 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3383 for_each_possible_cpu(cpu) {
3384 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3386 setup_pageset(pcp, zone_batchsize(zone));
3388 if (percpu_pagelist_fraction)
3389 setup_pagelist_highmark(pcp,
3390 (zone->present_pages /
3391 percpu_pagelist_fraction));
3396 * Allocate per cpu pagesets and initialize them.
3397 * Before this call only boot pagesets were available.
3399 void __init setup_per_cpu_pageset(void)
3401 struct zone *zone;
3403 for_each_populated_zone(zone)
3404 setup_zone_pageset(zone);
3407 static noinline __init_refok
3408 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3410 int i;
3411 struct pglist_data *pgdat = zone->zone_pgdat;
3412 size_t alloc_size;
3415 * The per-page waitqueue mechanism uses hashed waitqueues
3416 * per zone.
3418 zone->wait_table_hash_nr_entries =
3419 wait_table_hash_nr_entries(zone_size_pages);
3420 zone->wait_table_bits =
3421 wait_table_bits(zone->wait_table_hash_nr_entries);
3422 alloc_size = zone->wait_table_hash_nr_entries
3423 * sizeof(wait_queue_head_t);
3425 if (!slab_is_available()) {
3426 zone->wait_table = (wait_queue_head_t *)
3427 alloc_bootmem_node(pgdat, alloc_size);
3428 } else {
3430 * This case means that a zone whose size was 0 gets new memory
3431 * via memory hot-add.
3432 * But it may be the case that a new node was hot-added. In
3433 * this case vmalloc() will not be able to use this new node's
3434 * memory - this wait_table must be initialized to use this new
3435 * node itself as well.
3436 * To use this new node's memory, further consideration will be
3437 * necessary.
3439 zone->wait_table = vmalloc(alloc_size);
3441 if (!zone->wait_table)
3442 return -ENOMEM;
3444 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3445 init_waitqueue_head(zone->wait_table + i);
3447 return 0;
3450 static int __zone_pcp_update(void *data)
3452 struct zone *zone = data;
3453 int cpu;
3454 unsigned long batch = zone_batchsize(zone), flags;
3456 for_each_possible_cpu(cpu) {
3457 struct per_cpu_pageset *pset;
3458 struct per_cpu_pages *pcp;
3460 pset = per_cpu_ptr(zone->pageset, cpu);
3461 pcp = &pset->pcp;
3463 local_irq_save(flags);
3464 free_pcppages_bulk(zone, pcp->count, pcp);
3465 setup_pageset(pset, batch);
3466 local_irq_restore(flags);
3468 return 0;
3471 void zone_pcp_update(struct zone *zone)
3473 stop_machine(__zone_pcp_update, zone, NULL);
3476 static __meminit void zone_pcp_init(struct zone *zone)
3479 * per cpu subsystem is not up at this point. The following code
3480 * relies on the ability of the linker to provide the
3481 * offset of a (static) per cpu variable into the per cpu area.
3483 zone->pageset = &boot_pageset;
3485 if (zone->present_pages)
3486 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3487 zone->name, zone->present_pages,
3488 zone_batchsize(zone));
3491 __meminit int init_currently_empty_zone(struct zone *zone,
3492 unsigned long zone_start_pfn,
3493 unsigned long size,
3494 enum memmap_context context)
3496 struct pglist_data *pgdat = zone->zone_pgdat;
3497 int ret;
3498 ret = zone_wait_table_init(zone, size);
3499 if (ret)
3500 return ret;
3501 pgdat->nr_zones = zone_idx(zone) + 1;
3503 zone->zone_start_pfn = zone_start_pfn;
3505 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3506 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3507 pgdat->node_id,
3508 (unsigned long)zone_idx(zone),
3509 zone_start_pfn, (zone_start_pfn + size));
3511 zone_init_free_lists(zone);
3513 return 0;
3516 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3518 * Basic iterator support. Return the first range of PFNs for a node
3519 * Note: nid == MAX_NUMNODES returns first region regardless of node
3521 static int __meminit first_active_region_index_in_nid(int nid)
3523 int i;
3525 for (i = 0; i < nr_nodemap_entries; i++)
3526 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3527 return i;
3529 return -1;
3533 * Basic iterator support. Return the next active range of PFNs for a node
3534 * Note: nid == MAX_NUMNODES returns next region regardless of node
3536 static int __meminit next_active_region_index_in_nid(int index, int nid)
3538 for (index = index + 1; index < nr_nodemap_entries; index++)
3539 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3540 return index;
3542 return -1;
3545 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3547 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3548 * Architectures may implement their own version but if add_active_range()
3549 * was used and there are no special requirements, this is a convenient
3550 * alternative
3552 int __meminit __early_pfn_to_nid(unsigned long pfn)
3554 int i;
3556 for (i = 0; i < nr_nodemap_entries; i++) {
3557 unsigned long start_pfn = early_node_map[i].start_pfn;
3558 unsigned long end_pfn = early_node_map[i].end_pfn;
3560 if (start_pfn <= pfn && pfn < end_pfn)
3561 return early_node_map[i].nid;
3563 /* This is a memory hole */
3564 return -1;
3566 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3568 int __meminit early_pfn_to_nid(unsigned long pfn)
3570 int nid;
3572 nid = __early_pfn_to_nid(pfn);
3573 if (nid >= 0)
3574 return nid;
3575 /* just returns 0 */
3576 return 0;
3579 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3580 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3582 int nid;
3584 nid = __early_pfn_to_nid(pfn);
3585 if (nid >= 0 && nid != node)
3586 return false;
3587 return true;
3589 #endif
3591 /* Basic iterator support to walk early_node_map[] */
3592 #define for_each_active_range_index_in_nid(i, nid) \
3593 for (i = first_active_region_index_in_nid(nid); i != -1; \
3594 i = next_active_region_index_in_nid(i, nid))
3597 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3598 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3599 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3601 * If an architecture guarantees that all ranges registered with
3602 * add_active_ranges() contain no holes and may be freed, this
3603 * this function may be used instead of calling free_bootmem() manually.
3605 void __init free_bootmem_with_active_regions(int nid,
3606 unsigned long max_low_pfn)
3608 int i;
3610 for_each_active_range_index_in_nid(i, nid) {
3611 unsigned long size_pages = 0;
3612 unsigned long end_pfn = early_node_map[i].end_pfn;
3614 if (early_node_map[i].start_pfn >= max_low_pfn)
3615 continue;
3617 if (end_pfn > max_low_pfn)
3618 end_pfn = max_low_pfn;
3620 size_pages = end_pfn - early_node_map[i].start_pfn;
3621 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3622 PFN_PHYS(early_node_map[i].start_pfn),
3623 size_pages << PAGE_SHIFT);
3627 #ifdef CONFIG_HAVE_MEMBLOCK
3628 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3629 u64 goal, u64 limit)
3631 int i;
3633 /* Need to go over early_node_map to find out good range for node */
3634 for_each_active_range_index_in_nid(i, nid) {
3635 u64 addr;
3636 u64 ei_start, ei_last;
3637 u64 final_start, final_end;
3639 ei_last = early_node_map[i].end_pfn;
3640 ei_last <<= PAGE_SHIFT;
3641 ei_start = early_node_map[i].start_pfn;
3642 ei_start <<= PAGE_SHIFT;
3644 final_start = max(ei_start, goal);
3645 final_end = min(ei_last, limit);
3647 if (final_start >= final_end)
3648 continue;
3650 addr = memblock_find_in_range(final_start, final_end, size, align);
3652 if (addr == MEMBLOCK_ERROR)
3653 continue;
3655 return addr;
3658 return MEMBLOCK_ERROR;
3660 #endif
3662 int __init add_from_early_node_map(struct range *range, int az,
3663 int nr_range, int nid)
3665 int i;
3666 u64 start, end;
3668 /* need to go over early_node_map to find out good range for node */
3669 for_each_active_range_index_in_nid(i, nid) {
3670 start = early_node_map[i].start_pfn;
3671 end = early_node_map[i].end_pfn;
3672 nr_range = add_range(range, az, nr_range, start, end);
3674 return nr_range;
3677 #ifdef CONFIG_NO_BOOTMEM
3678 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3679 u64 goal, u64 limit)
3681 void *ptr;
3682 u64 addr;
3684 if (limit > memblock.current_limit)
3685 limit = memblock.current_limit;
3687 addr = find_memory_core_early(nid, size, align, goal, limit);
3689 if (addr == MEMBLOCK_ERROR)
3690 return NULL;
3692 ptr = phys_to_virt(addr);
3693 memset(ptr, 0, size);
3694 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3696 * The min_count is set to 0 so that bootmem allocated blocks
3697 * are never reported as leaks.
3699 kmemleak_alloc(ptr, size, 0, 0);
3700 return ptr;
3702 #endif
3705 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3707 int i;
3708 int ret;
3710 for_each_active_range_index_in_nid(i, nid) {
3711 ret = work_fn(early_node_map[i].start_pfn,
3712 early_node_map[i].end_pfn, data);
3713 if (ret)
3714 break;
3718 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3719 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3721 * If an architecture guarantees that all ranges registered with
3722 * add_active_ranges() contain no holes and may be freed, this
3723 * function may be used instead of calling memory_present() manually.
3725 void __init sparse_memory_present_with_active_regions(int nid)
3727 int i;
3729 for_each_active_range_index_in_nid(i, nid)
3730 memory_present(early_node_map[i].nid,
3731 early_node_map[i].start_pfn,
3732 early_node_map[i].end_pfn);
3736 * get_pfn_range_for_nid - Return the start and end page frames for a node
3737 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3738 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3739 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3741 * It returns the start and end page frame of a node based on information
3742 * provided by an arch calling add_active_range(). If called for a node
3743 * with no available memory, a warning is printed and the start and end
3744 * PFNs will be 0.
3746 void __meminit get_pfn_range_for_nid(unsigned int nid,
3747 unsigned long *start_pfn, unsigned long *end_pfn)
3749 int i;
3750 *start_pfn = -1UL;
3751 *end_pfn = 0;
3753 for_each_active_range_index_in_nid(i, nid) {
3754 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3755 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3758 if (*start_pfn == -1UL)
3759 *start_pfn = 0;
3763 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3764 * assumption is made that zones within a node are ordered in monotonic
3765 * increasing memory addresses so that the "highest" populated zone is used
3767 static void __init find_usable_zone_for_movable(void)
3769 int zone_index;
3770 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3771 if (zone_index == ZONE_MOVABLE)
3772 continue;
3774 if (arch_zone_highest_possible_pfn[zone_index] >
3775 arch_zone_lowest_possible_pfn[zone_index])
3776 break;
3779 VM_BUG_ON(zone_index == -1);
3780 movable_zone = zone_index;
3784 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3785 * because it is sized independant of architecture. Unlike the other zones,
3786 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3787 * in each node depending on the size of each node and how evenly kernelcore
3788 * is distributed. This helper function adjusts the zone ranges
3789 * provided by the architecture for a given node by using the end of the
3790 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3791 * zones within a node are in order of monotonic increases memory addresses
3793 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3794 unsigned long zone_type,
3795 unsigned long node_start_pfn,
3796 unsigned long node_end_pfn,
3797 unsigned long *zone_start_pfn,
3798 unsigned long *zone_end_pfn)
3800 /* Only adjust if ZONE_MOVABLE is on this node */
3801 if (zone_movable_pfn[nid]) {
3802 /* Size ZONE_MOVABLE */
3803 if (zone_type == ZONE_MOVABLE) {
3804 *zone_start_pfn = zone_movable_pfn[nid];
3805 *zone_end_pfn = min(node_end_pfn,
3806 arch_zone_highest_possible_pfn[movable_zone]);
3808 /* Adjust for ZONE_MOVABLE starting within this range */
3809 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3810 *zone_end_pfn > zone_movable_pfn[nid]) {
3811 *zone_end_pfn = zone_movable_pfn[nid];
3813 /* Check if this whole range is within ZONE_MOVABLE */
3814 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3815 *zone_start_pfn = *zone_end_pfn;
3820 * Return the number of pages a zone spans in a node, including holes
3821 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3823 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3824 unsigned long zone_type,
3825 unsigned long *ignored)
3827 unsigned long node_start_pfn, node_end_pfn;
3828 unsigned long zone_start_pfn, zone_end_pfn;
3830 /* Get the start and end of the node and zone */
3831 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3832 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3833 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3834 adjust_zone_range_for_zone_movable(nid, zone_type,
3835 node_start_pfn, node_end_pfn,
3836 &zone_start_pfn, &zone_end_pfn);
3838 /* Check that this node has pages within the zone's required range */
3839 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3840 return 0;
3842 /* Move the zone boundaries inside the node if necessary */
3843 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3844 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3846 /* Return the spanned pages */
3847 return zone_end_pfn - zone_start_pfn;
3851 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3852 * then all holes in the requested range will be accounted for.
3854 unsigned long __meminit __absent_pages_in_range(int nid,
3855 unsigned long range_start_pfn,
3856 unsigned long range_end_pfn)
3858 int i = 0;
3859 unsigned long prev_end_pfn = 0, hole_pages = 0;
3860 unsigned long start_pfn;
3862 /* Find the end_pfn of the first active range of pfns in the node */
3863 i = first_active_region_index_in_nid(nid);
3864 if (i == -1)
3865 return 0;
3867 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3869 /* Account for ranges before physical memory on this node */
3870 if (early_node_map[i].start_pfn > range_start_pfn)
3871 hole_pages = prev_end_pfn - range_start_pfn;
3873 /* Find all holes for the zone within the node */
3874 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3876 /* No need to continue if prev_end_pfn is outside the zone */
3877 if (prev_end_pfn >= range_end_pfn)
3878 break;
3880 /* Make sure the end of the zone is not within the hole */
3881 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3882 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3884 /* Update the hole size cound and move on */
3885 if (start_pfn > range_start_pfn) {
3886 BUG_ON(prev_end_pfn > start_pfn);
3887 hole_pages += start_pfn - prev_end_pfn;
3889 prev_end_pfn = early_node_map[i].end_pfn;
3892 /* Account for ranges past physical memory on this node */
3893 if (range_end_pfn > prev_end_pfn)
3894 hole_pages += range_end_pfn -
3895 max(range_start_pfn, prev_end_pfn);
3897 return hole_pages;
3901 * absent_pages_in_range - Return number of page frames in holes within a range
3902 * @start_pfn: The start PFN to start searching for holes
3903 * @end_pfn: The end PFN to stop searching for holes
3905 * It returns the number of pages frames in memory holes within a range.
3907 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3908 unsigned long end_pfn)
3910 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3913 /* Return the number of page frames in holes in a zone on a node */
3914 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3915 unsigned long zone_type,
3916 unsigned long *ignored)
3918 unsigned long node_start_pfn, node_end_pfn;
3919 unsigned long zone_start_pfn, zone_end_pfn;
3921 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3922 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3923 node_start_pfn);
3924 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3925 node_end_pfn);
3927 adjust_zone_range_for_zone_movable(nid, zone_type,
3928 node_start_pfn, node_end_pfn,
3929 &zone_start_pfn, &zone_end_pfn);
3930 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3933 #else
3934 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3935 unsigned long zone_type,
3936 unsigned long *zones_size)
3938 return zones_size[zone_type];
3941 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3942 unsigned long zone_type,
3943 unsigned long *zholes_size)
3945 if (!zholes_size)
3946 return 0;
3948 return zholes_size[zone_type];
3951 #endif
3953 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3954 unsigned long *zones_size, unsigned long *zholes_size)
3956 unsigned long realtotalpages, totalpages = 0;
3957 enum zone_type i;
3959 for (i = 0; i < MAX_NR_ZONES; i++)
3960 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3961 zones_size);
3962 pgdat->node_spanned_pages = totalpages;
3964 realtotalpages = totalpages;
3965 for (i = 0; i < MAX_NR_ZONES; i++)
3966 realtotalpages -=
3967 zone_absent_pages_in_node(pgdat->node_id, i,
3968 zholes_size);
3969 pgdat->node_present_pages = realtotalpages;
3970 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3971 realtotalpages);
3974 #ifndef CONFIG_SPARSEMEM
3976 * Calculate the size of the zone->blockflags rounded to an unsigned long
3977 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3978 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3979 * round what is now in bits to nearest long in bits, then return it in
3980 * bytes.
3982 static unsigned long __init usemap_size(unsigned long zonesize)
3984 unsigned long usemapsize;
3986 usemapsize = roundup(zonesize, pageblock_nr_pages);
3987 usemapsize = usemapsize >> pageblock_order;
3988 usemapsize *= NR_PAGEBLOCK_BITS;
3989 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3991 return usemapsize / 8;
3994 static void __init setup_usemap(struct pglist_data *pgdat,
3995 struct zone *zone, unsigned long zonesize)
3997 unsigned long usemapsize = usemap_size(zonesize);
3998 zone->pageblock_flags = NULL;
3999 if (usemapsize)
4000 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4002 #else
4003 static void inline setup_usemap(struct pglist_data *pgdat,
4004 struct zone *zone, unsigned long zonesize) {}
4005 #endif /* CONFIG_SPARSEMEM */
4007 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4009 /* Return a sensible default order for the pageblock size. */
4010 static inline int pageblock_default_order(void)
4012 if (HPAGE_SHIFT > PAGE_SHIFT)
4013 return HUGETLB_PAGE_ORDER;
4015 return MAX_ORDER-1;
4018 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4019 static inline void __init set_pageblock_order(unsigned int order)
4021 /* Check that pageblock_nr_pages has not already been setup */
4022 if (pageblock_order)
4023 return;
4026 * Assume the largest contiguous order of interest is a huge page.
4027 * This value may be variable depending on boot parameters on IA64
4029 pageblock_order = order;
4031 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4034 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4035 * and pageblock_default_order() are unused as pageblock_order is set
4036 * at compile-time. See include/linux/pageblock-flags.h for the values of
4037 * pageblock_order based on the kernel config
4039 static inline int pageblock_default_order(unsigned int order)
4041 return MAX_ORDER-1;
4043 #define set_pageblock_order(x) do {} while (0)
4045 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4048 * Set up the zone data structures:
4049 * - mark all pages reserved
4050 * - mark all memory queues empty
4051 * - clear the memory bitmaps
4053 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4054 unsigned long *zones_size, unsigned long *zholes_size)
4056 enum zone_type j;
4057 int nid = pgdat->node_id;
4058 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4059 int ret;
4061 pgdat_resize_init(pgdat);
4062 pgdat->nr_zones = 0;
4063 init_waitqueue_head(&pgdat->kswapd_wait);
4064 pgdat->kswapd_max_order = 0;
4065 pgdat_page_cgroup_init(pgdat);
4067 for (j = 0; j < MAX_NR_ZONES; j++) {
4068 struct zone *zone = pgdat->node_zones + j;
4069 unsigned long size, realsize, memmap_pages;
4070 enum lru_list l;
4072 size = zone_spanned_pages_in_node(nid, j, zones_size);
4073 realsize = size - zone_absent_pages_in_node(nid, j,
4074 zholes_size);
4077 * Adjust realsize so that it accounts for how much memory
4078 * is used by this zone for memmap. This affects the watermark
4079 * and per-cpu initialisations
4081 memmap_pages =
4082 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4083 if (realsize >= memmap_pages) {
4084 realsize -= memmap_pages;
4085 if (memmap_pages)
4086 printk(KERN_DEBUG
4087 " %s zone: %lu pages used for memmap\n",
4088 zone_names[j], memmap_pages);
4089 } else
4090 printk(KERN_WARNING
4091 " %s zone: %lu pages exceeds realsize %lu\n",
4092 zone_names[j], memmap_pages, realsize);
4094 /* Account for reserved pages */
4095 if (j == 0 && realsize > dma_reserve) {
4096 realsize -= dma_reserve;
4097 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4098 zone_names[0], dma_reserve);
4101 if (!is_highmem_idx(j))
4102 nr_kernel_pages += realsize;
4103 nr_all_pages += realsize;
4105 zone->spanned_pages = size;
4106 zone->present_pages = realsize;
4107 #ifdef CONFIG_NUMA
4108 zone->node = nid;
4109 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4110 / 100;
4111 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4112 #endif
4113 zone->name = zone_names[j];
4114 spin_lock_init(&zone->lock);
4115 spin_lock_init(&zone->lru_lock);
4116 zone_seqlock_init(zone);
4117 zone->zone_pgdat = pgdat;
4119 zone_pcp_init(zone);
4120 for_each_lru(l) {
4121 INIT_LIST_HEAD(&zone->lru[l].list);
4122 zone->reclaim_stat.nr_saved_scan[l] = 0;
4124 zone->reclaim_stat.recent_rotated[0] = 0;
4125 zone->reclaim_stat.recent_rotated[1] = 0;
4126 zone->reclaim_stat.recent_scanned[0] = 0;
4127 zone->reclaim_stat.recent_scanned[1] = 0;
4128 zap_zone_vm_stats(zone);
4129 zone->flags = 0;
4130 if (!size)
4131 continue;
4133 set_pageblock_order(pageblock_default_order());
4134 setup_usemap(pgdat, zone, size);
4135 ret = init_currently_empty_zone(zone, zone_start_pfn,
4136 size, MEMMAP_EARLY);
4137 BUG_ON(ret);
4138 memmap_init(size, nid, j, zone_start_pfn);
4139 zone_start_pfn += size;
4143 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4145 /* Skip empty nodes */
4146 if (!pgdat->node_spanned_pages)
4147 return;
4149 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4150 /* ia64 gets its own node_mem_map, before this, without bootmem */
4151 if (!pgdat->node_mem_map) {
4152 unsigned long size, start, end;
4153 struct page *map;
4156 * The zone's endpoints aren't required to be MAX_ORDER
4157 * aligned but the node_mem_map endpoints must be in order
4158 * for the buddy allocator to function correctly.
4160 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4161 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4162 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4163 size = (end - start) * sizeof(struct page);
4164 map = alloc_remap(pgdat->node_id, size);
4165 if (!map)
4166 map = alloc_bootmem_node(pgdat, size);
4167 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4169 #ifndef CONFIG_NEED_MULTIPLE_NODES
4171 * With no DISCONTIG, the global mem_map is just set as node 0's
4173 if (pgdat == NODE_DATA(0)) {
4174 mem_map = NODE_DATA(0)->node_mem_map;
4175 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4176 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4177 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4178 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4180 #endif
4181 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4184 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4185 unsigned long node_start_pfn, unsigned long *zholes_size)
4187 pg_data_t *pgdat = NODE_DATA(nid);
4189 pgdat->node_id = nid;
4190 pgdat->node_start_pfn = node_start_pfn;
4191 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4193 alloc_node_mem_map(pgdat);
4194 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4195 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4196 nid, (unsigned long)pgdat,
4197 (unsigned long)pgdat->node_mem_map);
4198 #endif
4200 free_area_init_core(pgdat, zones_size, zholes_size);
4203 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4205 #if MAX_NUMNODES > 1
4207 * Figure out the number of possible node ids.
4209 static void __init setup_nr_node_ids(void)
4211 unsigned int node;
4212 unsigned int highest = 0;
4214 for_each_node_mask(node, node_possible_map)
4215 highest = node;
4216 nr_node_ids = highest + 1;
4218 #else
4219 static inline void setup_nr_node_ids(void)
4222 #endif
4225 * add_active_range - Register a range of PFNs backed by physical memory
4226 * @nid: The node ID the range resides on
4227 * @start_pfn: The start PFN of the available physical memory
4228 * @end_pfn: The end PFN of the available physical memory
4230 * These ranges are stored in an early_node_map[] and later used by
4231 * free_area_init_nodes() to calculate zone sizes and holes. If the
4232 * range spans a memory hole, it is up to the architecture to ensure
4233 * the memory is not freed by the bootmem allocator. If possible
4234 * the range being registered will be merged with existing ranges.
4236 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4237 unsigned long end_pfn)
4239 int i;
4241 mminit_dprintk(MMINIT_TRACE, "memory_register",
4242 "Entering add_active_range(%d, %#lx, %#lx) "
4243 "%d entries of %d used\n",
4244 nid, start_pfn, end_pfn,
4245 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4247 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4249 /* Merge with existing active regions if possible */
4250 for (i = 0; i < nr_nodemap_entries; i++) {
4251 if (early_node_map[i].nid != nid)
4252 continue;
4254 /* Skip if an existing region covers this new one */
4255 if (start_pfn >= early_node_map[i].start_pfn &&
4256 end_pfn <= early_node_map[i].end_pfn)
4257 return;
4259 /* Merge forward if suitable */
4260 if (start_pfn <= early_node_map[i].end_pfn &&
4261 end_pfn > early_node_map[i].end_pfn) {
4262 early_node_map[i].end_pfn = end_pfn;
4263 return;
4266 /* Merge backward if suitable */
4267 if (start_pfn < early_node_map[i].start_pfn &&
4268 end_pfn >= early_node_map[i].start_pfn) {
4269 early_node_map[i].start_pfn = start_pfn;
4270 return;
4274 /* Check that early_node_map is large enough */
4275 if (i >= MAX_ACTIVE_REGIONS) {
4276 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4277 MAX_ACTIVE_REGIONS);
4278 return;
4281 early_node_map[i].nid = nid;
4282 early_node_map[i].start_pfn = start_pfn;
4283 early_node_map[i].end_pfn = end_pfn;
4284 nr_nodemap_entries = i + 1;
4288 * remove_active_range - Shrink an existing registered range of PFNs
4289 * @nid: The node id the range is on that should be shrunk
4290 * @start_pfn: The new PFN of the range
4291 * @end_pfn: The new PFN of the range
4293 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4294 * The map is kept near the end physical page range that has already been
4295 * registered. This function allows an arch to shrink an existing registered
4296 * range.
4298 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4299 unsigned long end_pfn)
4301 int i, j;
4302 int removed = 0;
4304 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4305 nid, start_pfn, end_pfn);
4307 /* Find the old active region end and shrink */
4308 for_each_active_range_index_in_nid(i, nid) {
4309 if (early_node_map[i].start_pfn >= start_pfn &&
4310 early_node_map[i].end_pfn <= end_pfn) {
4311 /* clear it */
4312 early_node_map[i].start_pfn = 0;
4313 early_node_map[i].end_pfn = 0;
4314 removed = 1;
4315 continue;
4317 if (early_node_map[i].start_pfn < start_pfn &&
4318 early_node_map[i].end_pfn > start_pfn) {
4319 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4320 early_node_map[i].end_pfn = start_pfn;
4321 if (temp_end_pfn > end_pfn)
4322 add_active_range(nid, end_pfn, temp_end_pfn);
4323 continue;
4325 if (early_node_map[i].start_pfn >= start_pfn &&
4326 early_node_map[i].end_pfn > end_pfn &&
4327 early_node_map[i].start_pfn < end_pfn) {
4328 early_node_map[i].start_pfn = end_pfn;
4329 continue;
4333 if (!removed)
4334 return;
4336 /* remove the blank ones */
4337 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4338 if (early_node_map[i].nid != nid)
4339 continue;
4340 if (early_node_map[i].end_pfn)
4341 continue;
4342 /* we found it, get rid of it */
4343 for (j = i; j < nr_nodemap_entries - 1; j++)
4344 memcpy(&early_node_map[j], &early_node_map[j+1],
4345 sizeof(early_node_map[j]));
4346 j = nr_nodemap_entries - 1;
4347 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4348 nr_nodemap_entries--;
4353 * remove_all_active_ranges - Remove all currently registered regions
4355 * During discovery, it may be found that a table like SRAT is invalid
4356 * and an alternative discovery method must be used. This function removes
4357 * all currently registered regions.
4359 void __init remove_all_active_ranges(void)
4361 memset(early_node_map, 0, sizeof(early_node_map));
4362 nr_nodemap_entries = 0;
4365 /* Compare two active node_active_regions */
4366 static int __init cmp_node_active_region(const void *a, const void *b)
4368 struct node_active_region *arange = (struct node_active_region *)a;
4369 struct node_active_region *brange = (struct node_active_region *)b;
4371 /* Done this way to avoid overflows */
4372 if (arange->start_pfn > brange->start_pfn)
4373 return 1;
4374 if (arange->start_pfn < brange->start_pfn)
4375 return -1;
4377 return 0;
4380 /* sort the node_map by start_pfn */
4381 void __init sort_node_map(void)
4383 sort(early_node_map, (size_t)nr_nodemap_entries,
4384 sizeof(struct node_active_region),
4385 cmp_node_active_region, NULL);
4388 /* Find the lowest pfn for a node */
4389 static unsigned long __init find_min_pfn_for_node(int nid)
4391 int i;
4392 unsigned long min_pfn = ULONG_MAX;
4394 /* Assuming a sorted map, the first range found has the starting pfn */
4395 for_each_active_range_index_in_nid(i, nid)
4396 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4398 if (min_pfn == ULONG_MAX) {
4399 printk(KERN_WARNING
4400 "Could not find start_pfn for node %d\n", nid);
4401 return 0;
4404 return min_pfn;
4408 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4410 * It returns the minimum PFN based on information provided via
4411 * add_active_range().
4413 unsigned long __init find_min_pfn_with_active_regions(void)
4415 return find_min_pfn_for_node(MAX_NUMNODES);
4419 * early_calculate_totalpages()
4420 * Sum pages in active regions for movable zone.
4421 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4423 static unsigned long __init early_calculate_totalpages(void)
4425 int i;
4426 unsigned long totalpages = 0;
4428 for (i = 0; i < nr_nodemap_entries; i++) {
4429 unsigned long pages = early_node_map[i].end_pfn -
4430 early_node_map[i].start_pfn;
4431 totalpages += pages;
4432 if (pages)
4433 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4435 return totalpages;
4439 * Find the PFN the Movable zone begins in each node. Kernel memory
4440 * is spread evenly between nodes as long as the nodes have enough
4441 * memory. When they don't, some nodes will have more kernelcore than
4442 * others
4444 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4446 int i, nid;
4447 unsigned long usable_startpfn;
4448 unsigned long kernelcore_node, kernelcore_remaining;
4449 /* save the state before borrow the nodemask */
4450 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4451 unsigned long totalpages = early_calculate_totalpages();
4452 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4455 * If movablecore was specified, calculate what size of
4456 * kernelcore that corresponds so that memory usable for
4457 * any allocation type is evenly spread. If both kernelcore
4458 * and movablecore are specified, then the value of kernelcore
4459 * will be used for required_kernelcore if it's greater than
4460 * what movablecore would have allowed.
4462 if (required_movablecore) {
4463 unsigned long corepages;
4466 * Round-up so that ZONE_MOVABLE is at least as large as what
4467 * was requested by the user
4469 required_movablecore =
4470 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4471 corepages = totalpages - required_movablecore;
4473 required_kernelcore = max(required_kernelcore, corepages);
4476 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4477 if (!required_kernelcore)
4478 goto out;
4480 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4481 find_usable_zone_for_movable();
4482 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4484 restart:
4485 /* Spread kernelcore memory as evenly as possible throughout nodes */
4486 kernelcore_node = required_kernelcore / usable_nodes;
4487 for_each_node_state(nid, N_HIGH_MEMORY) {
4489 * Recalculate kernelcore_node if the division per node
4490 * now exceeds what is necessary to satisfy the requested
4491 * amount of memory for the kernel
4493 if (required_kernelcore < kernelcore_node)
4494 kernelcore_node = required_kernelcore / usable_nodes;
4497 * As the map is walked, we track how much memory is usable
4498 * by the kernel using kernelcore_remaining. When it is
4499 * 0, the rest of the node is usable by ZONE_MOVABLE
4501 kernelcore_remaining = kernelcore_node;
4503 /* Go through each range of PFNs within this node */
4504 for_each_active_range_index_in_nid(i, nid) {
4505 unsigned long start_pfn, end_pfn;
4506 unsigned long size_pages;
4508 start_pfn = max(early_node_map[i].start_pfn,
4509 zone_movable_pfn[nid]);
4510 end_pfn = early_node_map[i].end_pfn;
4511 if (start_pfn >= end_pfn)
4512 continue;
4514 /* Account for what is only usable for kernelcore */
4515 if (start_pfn < usable_startpfn) {
4516 unsigned long kernel_pages;
4517 kernel_pages = min(end_pfn, usable_startpfn)
4518 - start_pfn;
4520 kernelcore_remaining -= min(kernel_pages,
4521 kernelcore_remaining);
4522 required_kernelcore -= min(kernel_pages,
4523 required_kernelcore);
4525 /* Continue if range is now fully accounted */
4526 if (end_pfn <= usable_startpfn) {
4529 * Push zone_movable_pfn to the end so
4530 * that if we have to rebalance
4531 * kernelcore across nodes, we will
4532 * not double account here
4534 zone_movable_pfn[nid] = end_pfn;
4535 continue;
4537 start_pfn = usable_startpfn;
4541 * The usable PFN range for ZONE_MOVABLE is from
4542 * start_pfn->end_pfn. Calculate size_pages as the
4543 * number of pages used as kernelcore
4545 size_pages = end_pfn - start_pfn;
4546 if (size_pages > kernelcore_remaining)
4547 size_pages = kernelcore_remaining;
4548 zone_movable_pfn[nid] = start_pfn + size_pages;
4551 * Some kernelcore has been met, update counts and
4552 * break if the kernelcore for this node has been
4553 * satisified
4555 required_kernelcore -= min(required_kernelcore,
4556 size_pages);
4557 kernelcore_remaining -= size_pages;
4558 if (!kernelcore_remaining)
4559 break;
4564 * If there is still required_kernelcore, we do another pass with one
4565 * less node in the count. This will push zone_movable_pfn[nid] further
4566 * along on the nodes that still have memory until kernelcore is
4567 * satisified
4569 usable_nodes--;
4570 if (usable_nodes && required_kernelcore > usable_nodes)
4571 goto restart;
4573 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4574 for (nid = 0; nid < MAX_NUMNODES; nid++)
4575 zone_movable_pfn[nid] =
4576 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4578 out:
4579 /* restore the node_state */
4580 node_states[N_HIGH_MEMORY] = saved_node_state;
4583 /* Any regular memory on that node ? */
4584 static void check_for_regular_memory(pg_data_t *pgdat)
4586 #ifdef CONFIG_HIGHMEM
4587 enum zone_type zone_type;
4589 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4590 struct zone *zone = &pgdat->node_zones[zone_type];
4591 if (zone->present_pages)
4592 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4594 #endif
4598 * free_area_init_nodes - Initialise all pg_data_t and zone data
4599 * @max_zone_pfn: an array of max PFNs for each zone
4601 * This will call free_area_init_node() for each active node in the system.
4602 * Using the page ranges provided by add_active_range(), the size of each
4603 * zone in each node and their holes is calculated. If the maximum PFN
4604 * between two adjacent zones match, it is assumed that the zone is empty.
4605 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4606 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4607 * starts where the previous one ended. For example, ZONE_DMA32 starts
4608 * at arch_max_dma_pfn.
4610 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4612 unsigned long nid;
4613 int i;
4615 /* Sort early_node_map as initialisation assumes it is sorted */
4616 sort_node_map();
4618 /* Record where the zone boundaries are */
4619 memset(arch_zone_lowest_possible_pfn, 0,
4620 sizeof(arch_zone_lowest_possible_pfn));
4621 memset(arch_zone_highest_possible_pfn, 0,
4622 sizeof(arch_zone_highest_possible_pfn));
4623 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4624 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4625 for (i = 1; i < MAX_NR_ZONES; i++) {
4626 if (i == ZONE_MOVABLE)
4627 continue;
4628 arch_zone_lowest_possible_pfn[i] =
4629 arch_zone_highest_possible_pfn[i-1];
4630 arch_zone_highest_possible_pfn[i] =
4631 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4633 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4634 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4636 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4637 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4638 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4640 /* Print out the zone ranges */
4641 printk("Zone PFN ranges:\n");
4642 for (i = 0; i < MAX_NR_ZONES; i++) {
4643 if (i == ZONE_MOVABLE)
4644 continue;
4645 printk(" %-8s ", zone_names[i]);
4646 if (arch_zone_lowest_possible_pfn[i] ==
4647 arch_zone_highest_possible_pfn[i])
4648 printk("empty\n");
4649 else
4650 printk("%0#10lx -> %0#10lx\n",
4651 arch_zone_lowest_possible_pfn[i],
4652 arch_zone_highest_possible_pfn[i]);
4655 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4656 printk("Movable zone start PFN for each node\n");
4657 for (i = 0; i < MAX_NUMNODES; i++) {
4658 if (zone_movable_pfn[i])
4659 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4662 /* Print out the early_node_map[] */
4663 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4664 for (i = 0; i < nr_nodemap_entries; i++)
4665 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4666 early_node_map[i].start_pfn,
4667 early_node_map[i].end_pfn);
4669 /* Initialise every node */
4670 mminit_verify_pageflags_layout();
4671 setup_nr_node_ids();
4672 for_each_online_node(nid) {
4673 pg_data_t *pgdat = NODE_DATA(nid);
4674 free_area_init_node(nid, NULL,
4675 find_min_pfn_for_node(nid), NULL);
4677 /* Any memory on that node */
4678 if (pgdat->node_present_pages)
4679 node_set_state(nid, N_HIGH_MEMORY);
4680 check_for_regular_memory(pgdat);
4684 static int __init cmdline_parse_core(char *p, unsigned long *core)
4686 unsigned long long coremem;
4687 if (!p)
4688 return -EINVAL;
4690 coremem = memparse(p, &p);
4691 *core = coremem >> PAGE_SHIFT;
4693 /* Paranoid check that UL is enough for the coremem value */
4694 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4696 return 0;
4700 * kernelcore=size sets the amount of memory for use for allocations that
4701 * cannot be reclaimed or migrated.
4703 static int __init cmdline_parse_kernelcore(char *p)
4705 return cmdline_parse_core(p, &required_kernelcore);
4709 * movablecore=size sets the amount of memory for use for allocations that
4710 * can be reclaimed or migrated.
4712 static int __init cmdline_parse_movablecore(char *p)
4714 return cmdline_parse_core(p, &required_movablecore);
4717 early_param("kernelcore", cmdline_parse_kernelcore);
4718 early_param("movablecore", cmdline_parse_movablecore);
4720 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4723 * set_dma_reserve - set the specified number of pages reserved in the first zone
4724 * @new_dma_reserve: The number of pages to mark reserved
4726 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4727 * In the DMA zone, a significant percentage may be consumed by kernel image
4728 * and other unfreeable allocations which can skew the watermarks badly. This
4729 * function may optionally be used to account for unfreeable pages in the
4730 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4731 * smaller per-cpu batchsize.
4733 void __init set_dma_reserve(unsigned long new_dma_reserve)
4735 dma_reserve = new_dma_reserve;
4738 #ifndef CONFIG_NEED_MULTIPLE_NODES
4739 struct pglist_data __refdata contig_page_data = {
4740 #ifndef CONFIG_NO_BOOTMEM
4741 .bdata = &bootmem_node_data[0]
4742 #endif
4744 EXPORT_SYMBOL(contig_page_data);
4745 #endif
4747 void __init free_area_init(unsigned long *zones_size)
4749 free_area_init_node(0, zones_size,
4750 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4753 static int page_alloc_cpu_notify(struct notifier_block *self,
4754 unsigned long action, void *hcpu)
4756 int cpu = (unsigned long)hcpu;
4758 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4759 drain_pages(cpu);
4762 * Spill the event counters of the dead processor
4763 * into the current processors event counters.
4764 * This artificially elevates the count of the current
4765 * processor.
4767 vm_events_fold_cpu(cpu);
4770 * Zero the differential counters of the dead processor
4771 * so that the vm statistics are consistent.
4773 * This is only okay since the processor is dead and cannot
4774 * race with what we are doing.
4776 refresh_cpu_vm_stats(cpu);
4778 return NOTIFY_OK;
4781 void __init page_alloc_init(void)
4783 hotcpu_notifier(page_alloc_cpu_notify, 0);
4787 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4788 * or min_free_kbytes changes.
4790 static void calculate_totalreserve_pages(void)
4792 struct pglist_data *pgdat;
4793 unsigned long reserve_pages = 0;
4794 enum zone_type i, j;
4796 for_each_online_pgdat(pgdat) {
4797 for (i = 0; i < MAX_NR_ZONES; i++) {
4798 struct zone *zone = pgdat->node_zones + i;
4799 unsigned long max = 0;
4801 /* Find valid and maximum lowmem_reserve in the zone */
4802 for (j = i; j < MAX_NR_ZONES; j++) {
4803 if (zone->lowmem_reserve[j] > max)
4804 max = zone->lowmem_reserve[j];
4807 /* we treat the high watermark as reserved pages. */
4808 max += high_wmark_pages(zone);
4810 if (max > zone->present_pages)
4811 max = zone->present_pages;
4812 reserve_pages += max;
4815 totalreserve_pages = reserve_pages;
4819 * setup_per_zone_lowmem_reserve - called whenever
4820 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4821 * has a correct pages reserved value, so an adequate number of
4822 * pages are left in the zone after a successful __alloc_pages().
4824 static void setup_per_zone_lowmem_reserve(void)
4826 struct pglist_data *pgdat;
4827 enum zone_type j, idx;
4829 for_each_online_pgdat(pgdat) {
4830 for (j = 0; j < MAX_NR_ZONES; j++) {
4831 struct zone *zone = pgdat->node_zones + j;
4832 unsigned long present_pages = zone->present_pages;
4834 zone->lowmem_reserve[j] = 0;
4836 idx = j;
4837 while (idx) {
4838 struct zone *lower_zone;
4840 idx--;
4842 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4843 sysctl_lowmem_reserve_ratio[idx] = 1;
4845 lower_zone = pgdat->node_zones + idx;
4846 lower_zone->lowmem_reserve[j] = present_pages /
4847 sysctl_lowmem_reserve_ratio[idx];
4848 present_pages += lower_zone->present_pages;
4853 /* update totalreserve_pages */
4854 calculate_totalreserve_pages();
4858 * setup_per_zone_wmarks - called when min_free_kbytes changes
4859 * or when memory is hot-{added|removed}
4861 * Ensures that the watermark[min,low,high] values for each zone are set
4862 * correctly with respect to min_free_kbytes.
4864 void setup_per_zone_wmarks(void)
4866 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4867 unsigned long lowmem_pages = 0;
4868 struct zone *zone;
4869 unsigned long flags;
4871 /* Calculate total number of !ZONE_HIGHMEM pages */
4872 for_each_zone(zone) {
4873 if (!is_highmem(zone))
4874 lowmem_pages += zone->present_pages;
4877 for_each_zone(zone) {
4878 u64 tmp;
4880 spin_lock_irqsave(&zone->lock, flags);
4881 tmp = (u64)pages_min * zone->present_pages;
4882 do_div(tmp, lowmem_pages);
4883 if (is_highmem(zone)) {
4885 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4886 * need highmem pages, so cap pages_min to a small
4887 * value here.
4889 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4890 * deltas controls asynch page reclaim, and so should
4891 * not be capped for highmem.
4893 int min_pages;
4895 min_pages = zone->present_pages / 1024;
4896 if (min_pages < SWAP_CLUSTER_MAX)
4897 min_pages = SWAP_CLUSTER_MAX;
4898 if (min_pages > 128)
4899 min_pages = 128;
4900 zone->watermark[WMARK_MIN] = min_pages;
4901 } else {
4903 * If it's a lowmem zone, reserve a number of pages
4904 * proportionate to the zone's size.
4906 zone->watermark[WMARK_MIN] = tmp;
4909 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4910 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4911 setup_zone_migrate_reserve(zone);
4912 spin_unlock_irqrestore(&zone->lock, flags);
4915 /* update totalreserve_pages */
4916 calculate_totalreserve_pages();
4920 * The inactive anon list should be small enough that the VM never has to
4921 * do too much work, but large enough that each inactive page has a chance
4922 * to be referenced again before it is swapped out.
4924 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4925 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4926 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4927 * the anonymous pages are kept on the inactive list.
4929 * total target max
4930 * memory ratio inactive anon
4931 * -------------------------------------
4932 * 10MB 1 5MB
4933 * 100MB 1 50MB
4934 * 1GB 3 250MB
4935 * 10GB 10 0.9GB
4936 * 100GB 31 3GB
4937 * 1TB 101 10GB
4938 * 10TB 320 32GB
4940 void calculate_zone_inactive_ratio(struct zone *zone)
4942 unsigned int gb, ratio;
4944 /* Zone size in gigabytes */
4945 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4946 if (gb)
4947 ratio = int_sqrt(10 * gb);
4948 else
4949 ratio = 1;
4951 zone->inactive_ratio = ratio;
4954 static void __init setup_per_zone_inactive_ratio(void)
4956 struct zone *zone;
4958 for_each_zone(zone)
4959 calculate_zone_inactive_ratio(zone);
4963 * Initialise min_free_kbytes.
4965 * For small machines we want it small (128k min). For large machines
4966 * we want it large (64MB max). But it is not linear, because network
4967 * bandwidth does not increase linearly with machine size. We use
4969 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4970 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4972 * which yields
4974 * 16MB: 512k
4975 * 32MB: 724k
4976 * 64MB: 1024k
4977 * 128MB: 1448k
4978 * 256MB: 2048k
4979 * 512MB: 2896k
4980 * 1024MB: 4096k
4981 * 2048MB: 5792k
4982 * 4096MB: 8192k
4983 * 8192MB: 11584k
4984 * 16384MB: 16384k
4986 static int __init init_per_zone_wmark_min(void)
4988 unsigned long lowmem_kbytes;
4990 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4992 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4993 if (min_free_kbytes < 128)
4994 min_free_kbytes = 128;
4995 if (min_free_kbytes > 65536)
4996 min_free_kbytes = 65536;
4997 setup_per_zone_wmarks();
4998 setup_per_zone_lowmem_reserve();
4999 setup_per_zone_inactive_ratio();
5000 return 0;
5002 module_init(init_per_zone_wmark_min)
5005 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5006 * that we can call two helper functions whenever min_free_kbytes
5007 * changes.
5009 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5010 void __user *buffer, size_t *length, loff_t *ppos)
5012 proc_dointvec(table, write, buffer, length, ppos);
5013 if (write)
5014 setup_per_zone_wmarks();
5015 return 0;
5018 #ifdef CONFIG_NUMA
5019 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5020 void __user *buffer, size_t *length, loff_t *ppos)
5022 struct zone *zone;
5023 int rc;
5025 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5026 if (rc)
5027 return rc;
5029 for_each_zone(zone)
5030 zone->min_unmapped_pages = (zone->present_pages *
5031 sysctl_min_unmapped_ratio) / 100;
5032 return 0;
5035 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5036 void __user *buffer, size_t *length, loff_t *ppos)
5038 struct zone *zone;
5039 int rc;
5041 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5042 if (rc)
5043 return rc;
5045 for_each_zone(zone)
5046 zone->min_slab_pages = (zone->present_pages *
5047 sysctl_min_slab_ratio) / 100;
5048 return 0;
5050 #endif
5053 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5054 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5055 * whenever sysctl_lowmem_reserve_ratio changes.
5057 * The reserve ratio obviously has absolutely no relation with the
5058 * minimum watermarks. The lowmem reserve ratio can only make sense
5059 * if in function of the boot time zone sizes.
5061 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5062 void __user *buffer, size_t *length, loff_t *ppos)
5064 proc_dointvec_minmax(table, write, buffer, length, ppos);
5065 setup_per_zone_lowmem_reserve();
5066 return 0;
5070 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5071 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5072 * can have before it gets flushed back to buddy allocator.
5075 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5076 void __user *buffer, size_t *length, loff_t *ppos)
5078 struct zone *zone;
5079 unsigned int cpu;
5080 int ret;
5082 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5083 if (!write || (ret == -EINVAL))
5084 return ret;
5085 for_each_populated_zone(zone) {
5086 for_each_possible_cpu(cpu) {
5087 unsigned long high;
5088 high = zone->present_pages / percpu_pagelist_fraction;
5089 setup_pagelist_highmark(
5090 per_cpu_ptr(zone->pageset, cpu), high);
5093 return 0;
5096 int hashdist = HASHDIST_DEFAULT;
5098 #ifdef CONFIG_NUMA
5099 static int __init set_hashdist(char *str)
5101 if (!str)
5102 return 0;
5103 hashdist = simple_strtoul(str, &str, 0);
5104 return 1;
5106 __setup("hashdist=", set_hashdist);
5107 #endif
5110 * allocate a large system hash table from bootmem
5111 * - it is assumed that the hash table must contain an exact power-of-2
5112 * quantity of entries
5113 * - limit is the number of hash buckets, not the total allocation size
5115 void *__init alloc_large_system_hash(const char *tablename,
5116 unsigned long bucketsize,
5117 unsigned long numentries,
5118 int scale,
5119 int flags,
5120 unsigned int *_hash_shift,
5121 unsigned int *_hash_mask,
5122 unsigned long limit)
5124 unsigned long long max = limit;
5125 unsigned long log2qty, size;
5126 void *table = NULL;
5128 /* allow the kernel cmdline to have a say */
5129 if (!numentries) {
5130 /* round applicable memory size up to nearest megabyte */
5131 numentries = nr_kernel_pages;
5132 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5133 numentries >>= 20 - PAGE_SHIFT;
5134 numentries <<= 20 - PAGE_SHIFT;
5136 /* limit to 1 bucket per 2^scale bytes of low memory */
5137 if (scale > PAGE_SHIFT)
5138 numentries >>= (scale - PAGE_SHIFT);
5139 else
5140 numentries <<= (PAGE_SHIFT - scale);
5142 /* Make sure we've got at least a 0-order allocation.. */
5143 if (unlikely(flags & HASH_SMALL)) {
5144 /* Makes no sense without HASH_EARLY */
5145 WARN_ON(!(flags & HASH_EARLY));
5146 if (!(numentries >> *_hash_shift)) {
5147 numentries = 1UL << *_hash_shift;
5148 BUG_ON(!numentries);
5150 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5151 numentries = PAGE_SIZE / bucketsize;
5153 numentries = roundup_pow_of_two(numentries);
5155 /* limit allocation size to 1/16 total memory by default */
5156 if (max == 0) {
5157 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5158 do_div(max, bucketsize);
5161 if (numentries > max)
5162 numentries = max;
5164 log2qty = ilog2(numentries);
5166 do {
5167 size = bucketsize << log2qty;
5168 if (flags & HASH_EARLY)
5169 table = alloc_bootmem_nopanic(size);
5170 else if (hashdist)
5171 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5172 else {
5174 * If bucketsize is not a power-of-two, we may free
5175 * some pages at the end of hash table which
5176 * alloc_pages_exact() automatically does
5178 if (get_order(size) < MAX_ORDER) {
5179 table = alloc_pages_exact(size, GFP_ATOMIC);
5180 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5183 } while (!table && size > PAGE_SIZE && --log2qty);
5185 if (!table)
5186 panic("Failed to allocate %s hash table\n", tablename);
5188 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5189 tablename,
5190 (1U << log2qty),
5191 ilog2(size) - PAGE_SHIFT,
5192 size);
5194 if (_hash_shift)
5195 *_hash_shift = log2qty;
5196 if (_hash_mask)
5197 *_hash_mask = (1 << log2qty) - 1;
5199 return table;
5202 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5203 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5204 unsigned long pfn)
5206 #ifdef CONFIG_SPARSEMEM
5207 return __pfn_to_section(pfn)->pageblock_flags;
5208 #else
5209 return zone->pageblock_flags;
5210 #endif /* CONFIG_SPARSEMEM */
5213 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5215 #ifdef CONFIG_SPARSEMEM
5216 pfn &= (PAGES_PER_SECTION-1);
5217 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5218 #else
5219 pfn = pfn - zone->zone_start_pfn;
5220 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5221 #endif /* CONFIG_SPARSEMEM */
5225 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5226 * @page: The page within the block of interest
5227 * @start_bitidx: The first bit of interest to retrieve
5228 * @end_bitidx: The last bit of interest
5229 * returns pageblock_bits flags
5231 unsigned long get_pageblock_flags_group(struct page *page,
5232 int start_bitidx, int end_bitidx)
5234 struct zone *zone;
5235 unsigned long *bitmap;
5236 unsigned long pfn, bitidx;
5237 unsigned long flags = 0;
5238 unsigned long value = 1;
5240 zone = page_zone(page);
5241 pfn = page_to_pfn(page);
5242 bitmap = get_pageblock_bitmap(zone, pfn);
5243 bitidx = pfn_to_bitidx(zone, pfn);
5245 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5246 if (test_bit(bitidx + start_bitidx, bitmap))
5247 flags |= value;
5249 return flags;
5253 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5254 * @page: The page within the block of interest
5255 * @start_bitidx: The first bit of interest
5256 * @end_bitidx: The last bit of interest
5257 * @flags: The flags to set
5259 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5260 int start_bitidx, int end_bitidx)
5262 struct zone *zone;
5263 unsigned long *bitmap;
5264 unsigned long pfn, bitidx;
5265 unsigned long value = 1;
5267 zone = page_zone(page);
5268 pfn = page_to_pfn(page);
5269 bitmap = get_pageblock_bitmap(zone, pfn);
5270 bitidx = pfn_to_bitidx(zone, pfn);
5271 VM_BUG_ON(pfn < zone->zone_start_pfn);
5272 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5274 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5275 if (flags & value)
5276 __set_bit(bitidx + start_bitidx, bitmap);
5277 else
5278 __clear_bit(bitidx + start_bitidx, bitmap);
5282 * This is designed as sub function...plz see page_isolation.c also.
5283 * set/clear page block's type to be ISOLATE.
5284 * page allocater never alloc memory from ISOLATE block.
5287 int set_migratetype_isolate(struct page *page)
5289 struct zone *zone;
5290 struct page *curr_page;
5291 unsigned long flags, pfn, iter;
5292 unsigned long immobile = 0;
5293 struct memory_isolate_notify arg;
5294 int notifier_ret;
5295 int ret = -EBUSY;
5296 int zone_idx;
5298 zone = page_zone(page);
5299 zone_idx = zone_idx(zone);
5301 spin_lock_irqsave(&zone->lock, flags);
5302 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5303 zone_idx == ZONE_MOVABLE) {
5304 ret = 0;
5305 goto out;
5308 pfn = page_to_pfn(page);
5309 arg.start_pfn = pfn;
5310 arg.nr_pages = pageblock_nr_pages;
5311 arg.pages_found = 0;
5314 * It may be possible to isolate a pageblock even if the
5315 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5316 * notifier chain is used by balloon drivers to return the
5317 * number of pages in a range that are held by the balloon
5318 * driver to shrink memory. If all the pages are accounted for
5319 * by balloons, are free, or on the LRU, isolation can continue.
5320 * Later, for example, when memory hotplug notifier runs, these
5321 * pages reported as "can be isolated" should be isolated(freed)
5322 * by the balloon driver through the memory notifier chain.
5324 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5325 notifier_ret = notifier_to_errno(notifier_ret);
5326 if (notifier_ret || !arg.pages_found)
5327 goto out;
5329 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5330 if (!pfn_valid_within(pfn))
5331 continue;
5333 curr_page = pfn_to_page(iter);
5334 if (!page_count(curr_page) || PageLRU(curr_page))
5335 continue;
5337 immobile++;
5340 if (arg.pages_found == immobile)
5341 ret = 0;
5343 out:
5344 if (!ret) {
5345 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5346 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5349 spin_unlock_irqrestore(&zone->lock, flags);
5350 if (!ret)
5351 drain_all_pages();
5352 return ret;
5355 void unset_migratetype_isolate(struct page *page)
5357 struct zone *zone;
5358 unsigned long flags;
5359 zone = page_zone(page);
5360 spin_lock_irqsave(&zone->lock, flags);
5361 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5362 goto out;
5363 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5364 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5365 out:
5366 spin_unlock_irqrestore(&zone->lock, flags);
5369 #ifdef CONFIG_MEMORY_HOTREMOVE
5371 * All pages in the range must be isolated before calling this.
5373 void
5374 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5376 struct page *page;
5377 struct zone *zone;
5378 int order, i;
5379 unsigned long pfn;
5380 unsigned long flags;
5381 /* find the first valid pfn */
5382 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5383 if (pfn_valid(pfn))
5384 break;
5385 if (pfn == end_pfn)
5386 return;
5387 zone = page_zone(pfn_to_page(pfn));
5388 spin_lock_irqsave(&zone->lock, flags);
5389 pfn = start_pfn;
5390 while (pfn < end_pfn) {
5391 if (!pfn_valid(pfn)) {
5392 pfn++;
5393 continue;
5395 page = pfn_to_page(pfn);
5396 BUG_ON(page_count(page));
5397 BUG_ON(!PageBuddy(page));
5398 order = page_order(page);
5399 #ifdef CONFIG_DEBUG_VM
5400 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5401 pfn, 1 << order, end_pfn);
5402 #endif
5403 list_del(&page->lru);
5404 rmv_page_order(page);
5405 zone->free_area[order].nr_free--;
5406 __mod_zone_page_state(zone, NR_FREE_PAGES,
5407 - (1UL << order));
5408 for (i = 0; i < (1 << order); i++)
5409 SetPageReserved((page+i));
5410 pfn += (1 << order);
5412 spin_unlock_irqrestore(&zone->lock, flags);
5414 #endif
5416 #ifdef CONFIG_MEMORY_FAILURE
5417 bool is_free_buddy_page(struct page *page)
5419 struct zone *zone = page_zone(page);
5420 unsigned long pfn = page_to_pfn(page);
5421 unsigned long flags;
5422 int order;
5424 spin_lock_irqsave(&zone->lock, flags);
5425 for (order = 0; order < MAX_ORDER; order++) {
5426 struct page *page_head = page - (pfn & ((1 << order) - 1));
5428 if (PageBuddy(page_head) && page_order(page_head) >= order)
5429 break;
5431 spin_unlock_irqrestore(&zone->lock, flags);
5433 return order < MAX_ORDER;
5435 #endif
5437 static struct trace_print_flags pageflag_names[] = {
5438 {1UL << PG_locked, "locked" },
5439 {1UL << PG_error, "error" },
5440 {1UL << PG_referenced, "referenced" },
5441 {1UL << PG_uptodate, "uptodate" },
5442 {1UL << PG_dirty, "dirty" },
5443 {1UL << PG_lru, "lru" },
5444 {1UL << PG_active, "active" },
5445 {1UL << PG_slab, "slab" },
5446 {1UL << PG_owner_priv_1, "owner_priv_1" },
5447 {1UL << PG_arch_1, "arch_1" },
5448 {1UL << PG_reserved, "reserved" },
5449 {1UL << PG_private, "private" },
5450 {1UL << PG_private_2, "private_2" },
5451 {1UL << PG_writeback, "writeback" },
5452 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5453 {1UL << PG_head, "head" },
5454 {1UL << PG_tail, "tail" },
5455 #else
5456 {1UL << PG_compound, "compound" },
5457 #endif
5458 {1UL << PG_swapcache, "swapcache" },
5459 {1UL << PG_mappedtodisk, "mappedtodisk" },
5460 {1UL << PG_reclaim, "reclaim" },
5461 {1UL << PG_buddy, "buddy" },
5462 {1UL << PG_swapbacked, "swapbacked" },
5463 {1UL << PG_unevictable, "unevictable" },
5464 #ifdef CONFIG_MMU
5465 {1UL << PG_mlocked, "mlocked" },
5466 #endif
5467 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5468 {1UL << PG_uncached, "uncached" },
5469 #endif
5470 #ifdef CONFIG_MEMORY_FAILURE
5471 {1UL << PG_hwpoison, "hwpoison" },
5472 #endif
5473 {-1UL, NULL },
5476 static void dump_page_flags(unsigned long flags)
5478 const char *delim = "";
5479 unsigned long mask;
5480 int i;
5482 printk(KERN_ALERT "page flags: %#lx(", flags);
5484 /* remove zone id */
5485 flags &= (1UL << NR_PAGEFLAGS) - 1;
5487 for (i = 0; pageflag_names[i].name && flags; i++) {
5489 mask = pageflag_names[i].mask;
5490 if ((flags & mask) != mask)
5491 continue;
5493 flags &= ~mask;
5494 printk("%s%s", delim, pageflag_names[i].name);
5495 delim = "|";
5498 /* check for left over flags */
5499 if (flags)
5500 printk("%s%#lx", delim, flags);
5502 printk(")\n");
5505 void dump_page(struct page *page)
5507 printk(KERN_ALERT
5508 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5509 page, page_count(page), page_mapcount(page),
5510 page->mapping, page->index);
5511 dump_page_flags(page->flags);