sched: fix defined-but-unused warning
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobf3faec52c5abab78f6ccf62a2d63f4aa86b67099
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
77 #include "sched_cpupri.h"
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98 * Helpers for converting nanosecond timing to jiffy resolution
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
114 * single value that denotes runtime == period, ie unlimited time.
116 #define RUNTIME_INF ((u64)~0ULL)
118 #ifdef CONFIG_SMP
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 #endif
139 static inline int rt_policy(int policy)
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 return 1;
143 return 0;
146 static inline int task_has_rt_policy(struct task_struct *p)
148 return rt_policy(p->policy);
152 * This is the priority-queue data structure of the RT scheduling class:
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
157 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
168 static struct rt_bandwidth def_rt_bandwidth;
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
184 if (!overrun)
185 break;
187 idle = do_sched_rt_period_timer(rt_b, overrun);
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
199 spin_lock_init(&rt_b->rt_runtime_lock);
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
209 ktime_t now;
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
228 spin_unlock(&rt_b->rt_runtime_lock);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 hrtimer_cancel(&rt_b->rt_period_timer);
236 #endif
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
248 struct cfs_rq;
250 static LIST_HEAD(task_groups);
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
270 struct rt_bandwidth rt_bandwidth;
271 #endif
273 struct rcu_head rcu;
274 struct list_head list;
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
281 #ifdef CONFIG_USER_SCHED
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif
301 #else
302 #define root_task_group init_task_group
303 #endif
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif
318 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
322 #define MIN_SHARES 2
323 #define MAX_SHARES (ULONG_MAX - 1)
325 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326 #endif
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group init_task_group;
333 /* return group to which a task belongs */
334 static inline struct task_group *task_group(struct task_struct *p)
336 struct task_group *tg;
338 #ifdef CONFIG_USER_SCHED
339 tg = p->user->tg;
340 #elif defined(CONFIG_CGROUP_SCHED)
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
343 #else
344 tg = &init_task_group;
345 #endif
346 return tg;
349 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
350 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
352 #ifdef CONFIG_FAIR_GROUP_SCHED
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
355 #endif
357 #ifdef CONFIG_RT_GROUP_SCHED
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
360 #endif
363 #else
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
367 #endif /* CONFIG_GROUP_SCHED */
369 /* CFS-related fields in a runqueue */
370 struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
374 u64 exec_clock;
375 u64 min_vruntime;
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
380 struct list_head tasks;
381 struct list_head *balance_iterator;
384 * 'curr' points to currently running entity on this cfs_rq.
385 * It is set to NULL otherwise (i.e when none are currently running).
387 struct sched_entity *curr, *next;
389 unsigned long nr_spread_over;
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
404 #endif
407 /* Real-Time classes' related field in a runqueue: */
408 struct rt_rq {
409 struct rt_prio_array active;
410 unsigned long rt_nr_running;
411 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
412 int highest_prio; /* highest queued rt task prio */
413 #endif
414 #ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 int overloaded;
417 #endif
418 int rt_throttled;
419 u64 rt_time;
420 u64 rt_runtime;
421 /* Nests inside the rq lock: */
422 spinlock_t rt_runtime_lock;
424 #ifdef CONFIG_RT_GROUP_SCHED
425 unsigned long rt_nr_boosted;
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431 #endif
434 #ifdef CONFIG_SMP
437 * We add the notion of a root-domain which will be used to define per-domain
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
444 struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
453 cpumask_t rto_mask;
454 atomic_t rto_count;
455 #ifdef CONFIG_SMP
456 struct cpupri cpupri;
457 #endif
461 * By default the system creates a single root-domain with all cpus as
462 * members (mimicking the global state we have today).
464 static struct root_domain def_root_domain;
466 #endif
469 * This is the main, per-CPU runqueue data structure.
471 * Locking rule: those places that want to lock multiple runqueues
472 * (such as the load balancing or the thread migration code), lock
473 * acquire operations must be ordered by ascending &runqueue.
475 struct rq {
476 /* runqueue lock: */
477 spinlock_t lock;
480 * nr_running and cpu_load should be in the same cacheline because
481 * remote CPUs use both these fields when doing load calculation.
483 unsigned long nr_running;
484 #define CPU_LOAD_IDX_MAX 5
485 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
486 unsigned char idle_at_tick;
487 #ifdef CONFIG_NO_HZ
488 unsigned long last_tick_seen;
489 unsigned char in_nohz_recently;
490 #endif
491 /* capture load from *all* tasks on this cpu: */
492 struct load_weight load;
493 unsigned long nr_load_updates;
494 u64 nr_switches;
496 struct cfs_rq cfs;
497 struct rt_rq rt;
499 #ifdef CONFIG_FAIR_GROUP_SCHED
500 /* list of leaf cfs_rq on this cpu: */
501 struct list_head leaf_cfs_rq_list;
502 #endif
503 #ifdef CONFIG_RT_GROUP_SCHED
504 struct list_head leaf_rt_rq_list;
505 #endif
508 * This is part of a global counter where only the total sum
509 * over all CPUs matters. A task can increase this counter on
510 * one CPU and if it got migrated afterwards it may decrease
511 * it on another CPU. Always updated under the runqueue lock:
513 unsigned long nr_uninterruptible;
515 struct task_struct *curr, *idle;
516 unsigned long next_balance;
517 struct mm_struct *prev_mm;
519 u64 clock;
521 atomic_t nr_iowait;
523 #ifdef CONFIG_SMP
524 struct root_domain *rd;
525 struct sched_domain *sd;
527 /* For active balancing */
528 int active_balance;
529 int push_cpu;
530 /* cpu of this runqueue: */
531 int cpu;
533 struct task_struct *migration_thread;
534 struct list_head migration_queue;
535 #endif
537 #ifdef CONFIG_SCHED_HRTICK
538 unsigned long hrtick_flags;
539 ktime_t hrtick_expire;
540 struct hrtimer hrtick_timer;
541 #endif
543 #ifdef CONFIG_SCHEDSTATS
544 /* latency stats */
545 struct sched_info rq_sched_info;
547 /* sys_sched_yield() stats */
548 unsigned int yld_exp_empty;
549 unsigned int yld_act_empty;
550 unsigned int yld_both_empty;
551 unsigned int yld_count;
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
562 /* BKL stats */
563 unsigned int bkl_count;
564 #endif
565 struct lock_class_key rq_lock_key;
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
570 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
572 rq->curr->sched_class->check_preempt_curr(rq, p);
575 static inline int cpu_of(struct rq *rq)
577 #ifdef CONFIG_SMP
578 return rq->cpu;
579 #else
580 return 0;
581 #endif
585 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
586 * See detach_destroy_domains: synchronize_sched for details.
588 * The domain tree of any CPU may only be accessed from within
589 * preempt-disabled sections.
591 #define for_each_domain(cpu, __sd) \
592 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
594 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
595 #define this_rq() (&__get_cpu_var(runqueues))
596 #define task_rq(p) cpu_rq(task_cpu(p))
597 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 static inline void update_rq_clock(struct rq *rq)
601 rq->clock = sched_clock_cpu(cpu_of(rq));
605 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
607 #ifdef CONFIG_SCHED_DEBUG
608 # define const_debug __read_mostly
609 #else
610 # define const_debug static const
611 #endif
614 * Debugging: various feature bits
617 #define SCHED_FEAT(name, enabled) \
618 __SCHED_FEAT_##name ,
620 enum {
621 #include "sched_features.h"
624 #undef SCHED_FEAT
626 #define SCHED_FEAT(name, enabled) \
627 (1UL << __SCHED_FEAT_##name) * enabled |
629 const_debug unsigned int sysctl_sched_features =
630 #include "sched_features.h"
633 #undef SCHED_FEAT
635 #ifdef CONFIG_SCHED_DEBUG
636 #define SCHED_FEAT(name, enabled) \
637 #name ,
639 static __read_mostly char *sched_feat_names[] = {
640 #include "sched_features.h"
641 NULL
644 #undef SCHED_FEAT
646 static int sched_feat_open(struct inode *inode, struct file *filp)
648 filp->private_data = inode->i_private;
649 return 0;
652 static ssize_t
653 sched_feat_read(struct file *filp, char __user *ubuf,
654 size_t cnt, loff_t *ppos)
656 char *buf;
657 int r = 0;
658 int len = 0;
659 int i;
661 for (i = 0; sched_feat_names[i]; i++) {
662 len += strlen(sched_feat_names[i]);
663 len += 4;
666 buf = kmalloc(len + 2, GFP_KERNEL);
667 if (!buf)
668 return -ENOMEM;
670 for (i = 0; sched_feat_names[i]; i++) {
671 if (sysctl_sched_features & (1UL << i))
672 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
673 else
674 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
677 r += sprintf(buf + r, "\n");
678 WARN_ON(r >= len + 2);
680 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
682 kfree(buf);
684 return r;
687 static ssize_t
688 sched_feat_write(struct file *filp, const char __user *ubuf,
689 size_t cnt, loff_t *ppos)
691 char buf[64];
692 char *cmp = buf;
693 int neg = 0;
694 int i;
696 if (cnt > 63)
697 cnt = 63;
699 if (copy_from_user(&buf, ubuf, cnt))
700 return -EFAULT;
702 buf[cnt] = 0;
704 if (strncmp(buf, "NO_", 3) == 0) {
705 neg = 1;
706 cmp += 3;
709 for (i = 0; sched_feat_names[i]; i++) {
710 int len = strlen(sched_feat_names[i]);
712 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
713 if (neg)
714 sysctl_sched_features &= ~(1UL << i);
715 else
716 sysctl_sched_features |= (1UL << i);
717 break;
721 if (!sched_feat_names[i])
722 return -EINVAL;
724 filp->f_pos += cnt;
726 return cnt;
729 static struct file_operations sched_feat_fops = {
730 .open = sched_feat_open,
731 .read = sched_feat_read,
732 .write = sched_feat_write,
735 static __init int sched_init_debug(void)
737 debugfs_create_file("sched_features", 0644, NULL, NULL,
738 &sched_feat_fops);
740 return 0;
742 late_initcall(sched_init_debug);
744 #endif
746 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
749 * Number of tasks to iterate in a single balance run.
750 * Limited because this is done with IRQs disabled.
752 const_debug unsigned int sysctl_sched_nr_migrate = 32;
755 * period over which we measure -rt task cpu usage in us.
756 * default: 1s
758 unsigned int sysctl_sched_rt_period = 1000000;
760 static __read_mostly int scheduler_running;
763 * part of the period that we allow rt tasks to run in us.
764 * default: 0.95s
766 int sysctl_sched_rt_runtime = 950000;
768 static inline u64 global_rt_period(void)
770 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
773 static inline u64 global_rt_runtime(void)
775 if (sysctl_sched_rt_period < 0)
776 return RUNTIME_INF;
778 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
781 unsigned long long time_sync_thresh = 100000;
783 static DEFINE_PER_CPU(unsigned long long, time_offset);
784 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
787 * Global lock which we take every now and then to synchronize
788 * the CPUs time. This method is not warp-safe, but it's good
789 * enough to synchronize slowly diverging time sources and thus
790 * it's good enough for tracing:
792 static DEFINE_SPINLOCK(time_sync_lock);
793 static unsigned long long prev_global_time;
795 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
798 * We want this inlined, to not get tracer function calls
799 * in this critical section:
801 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
802 __raw_spin_lock(&time_sync_lock.raw_lock);
804 if (time < prev_global_time) {
805 per_cpu(time_offset, cpu) += prev_global_time - time;
806 time = prev_global_time;
807 } else {
808 prev_global_time = time;
811 __raw_spin_unlock(&time_sync_lock.raw_lock);
812 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
814 return time;
817 static unsigned long long __cpu_clock(int cpu)
819 unsigned long long now;
822 * Only call sched_clock() if the scheduler has already been
823 * initialized (some code might call cpu_clock() very early):
825 if (unlikely(!scheduler_running))
826 return 0;
828 now = sched_clock_cpu(cpu);
830 return now;
834 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
835 * clock constructed from sched_clock():
837 unsigned long long cpu_clock(int cpu)
839 unsigned long long prev_cpu_time, time, delta_time;
840 unsigned long flags;
842 local_irq_save(flags);
843 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
844 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
845 delta_time = time-prev_cpu_time;
847 if (unlikely(delta_time > time_sync_thresh)) {
848 time = __sync_cpu_clock(time, cpu);
849 per_cpu(prev_cpu_time, cpu) = time;
851 local_irq_restore(flags);
853 return time;
855 EXPORT_SYMBOL_GPL(cpu_clock);
857 #ifndef prepare_arch_switch
858 # define prepare_arch_switch(next) do { } while (0)
859 #endif
860 #ifndef finish_arch_switch
861 # define finish_arch_switch(prev) do { } while (0)
862 #endif
864 static inline int task_current(struct rq *rq, struct task_struct *p)
866 return rq->curr == p;
869 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
870 static inline int task_running(struct rq *rq, struct task_struct *p)
872 return task_current(rq, p);
875 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881 #ifdef CONFIG_DEBUG_SPINLOCK
882 /* this is a valid case when another task releases the spinlock */
883 rq->lock.owner = current;
884 #endif
886 * If we are tracking spinlock dependencies then we have to
887 * fix up the runqueue lock - which gets 'carried over' from
888 * prev into current:
890 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892 spin_unlock_irq(&rq->lock);
895 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
896 static inline int task_running(struct rq *rq, struct task_struct *p)
898 #ifdef CONFIG_SMP
899 return p->oncpu;
900 #else
901 return task_current(rq, p);
902 #endif
905 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 #ifdef CONFIG_SMP
909 * We can optimise this out completely for !SMP, because the
910 * SMP rebalancing from interrupt is the only thing that cares
911 * here.
913 next->oncpu = 1;
914 #endif
915 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
916 spin_unlock_irq(&rq->lock);
917 #else
918 spin_unlock(&rq->lock);
919 #endif
922 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 #ifdef CONFIG_SMP
926 * After ->oncpu is cleared, the task can be moved to a different CPU.
927 * We must ensure this doesn't happen until the switch is completely
928 * finished.
930 smp_wmb();
931 prev->oncpu = 0;
932 #endif
933 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
934 local_irq_enable();
935 #endif
937 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
943 static inline struct rq *__task_rq_lock(struct task_struct *p)
944 __acquires(rq->lock)
946 for (;;) {
947 struct rq *rq = task_rq(p);
948 spin_lock(&rq->lock);
949 if (likely(rq == task_rq(p)))
950 return rq;
951 spin_unlock(&rq->lock);
956 * task_rq_lock - lock the runqueue a given task resides on and disable
957 * interrupts. Note the ordering: we can safely lookup the task_rq without
958 * explicitly disabling preemption.
960 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
961 __acquires(rq->lock)
963 struct rq *rq;
965 for (;;) {
966 local_irq_save(*flags);
967 rq = task_rq(p);
968 spin_lock(&rq->lock);
969 if (likely(rq == task_rq(p)))
970 return rq;
971 spin_unlock_irqrestore(&rq->lock, *flags);
975 static void __task_rq_unlock(struct rq *rq)
976 __releases(rq->lock)
978 spin_unlock(&rq->lock);
981 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
982 __releases(rq->lock)
984 spin_unlock_irqrestore(&rq->lock, *flags);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq *this_rq_lock(void)
991 __acquires(rq->lock)
993 struct rq *rq;
995 local_irq_disable();
996 rq = this_rq();
997 spin_lock(&rq->lock);
999 return rq;
1002 static void __resched_task(struct task_struct *p, int tif_bit);
1004 static inline void resched_task(struct task_struct *p)
1006 __resched_task(p, TIF_NEED_RESCHED);
1009 #ifdef CONFIG_SCHED_HRTICK
1011 * Use HR-timers to deliver accurate preemption points.
1013 * Its all a bit involved since we cannot program an hrt while holding the
1014 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * reschedule event.
1017 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * rq->lock.
1020 static inline void resched_hrt(struct task_struct *p)
1022 __resched_task(p, TIF_HRTICK_RESCHED);
1025 static inline void resched_rq(struct rq *rq)
1027 unsigned long flags;
1029 spin_lock_irqsave(&rq->lock, flags);
1030 resched_task(rq->curr);
1031 spin_unlock_irqrestore(&rq->lock, flags);
1034 enum {
1035 HRTICK_SET, /* re-programm hrtick_timer */
1036 HRTICK_RESET, /* not a new slice */
1037 HRTICK_BLOCK, /* stop hrtick operations */
1041 * Use hrtick when:
1042 * - enabled by features
1043 * - hrtimer is actually high res
1045 static inline int hrtick_enabled(struct rq *rq)
1047 if (!sched_feat(HRTICK))
1048 return 0;
1049 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1050 return 0;
1051 return hrtimer_is_hres_active(&rq->hrtick_timer);
1055 * Called to set the hrtick timer state.
1057 * called with rq->lock held and irqs disabled
1059 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1061 assert_spin_locked(&rq->lock);
1064 * preempt at: now + delay
1066 rq->hrtick_expire =
1067 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1069 * indicate we need to program the timer
1071 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1072 if (reset)
1073 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1076 * New slices are called from the schedule path and don't need a
1077 * forced reschedule.
1079 if (reset)
1080 resched_hrt(rq->curr);
1083 static void hrtick_clear(struct rq *rq)
1085 if (hrtimer_active(&rq->hrtick_timer))
1086 hrtimer_cancel(&rq->hrtick_timer);
1090 * Update the timer from the possible pending state.
1092 static void hrtick_set(struct rq *rq)
1094 ktime_t time;
1095 int set, reset;
1096 unsigned long flags;
1098 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1100 spin_lock_irqsave(&rq->lock, flags);
1101 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1102 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1103 time = rq->hrtick_expire;
1104 clear_thread_flag(TIF_HRTICK_RESCHED);
1105 spin_unlock_irqrestore(&rq->lock, flags);
1107 if (set) {
1108 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1109 if (reset && !hrtimer_active(&rq->hrtick_timer))
1110 resched_rq(rq);
1111 } else
1112 hrtick_clear(rq);
1116 * High-resolution timer tick.
1117 * Runs from hardirq context with interrupts disabled.
1119 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1121 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1123 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1125 spin_lock(&rq->lock);
1126 update_rq_clock(rq);
1127 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1128 spin_unlock(&rq->lock);
1130 return HRTIMER_NORESTART;
1133 #ifdef CONFIG_SMP
1134 static void hotplug_hrtick_disable(int cpu)
1136 struct rq *rq = cpu_rq(cpu);
1137 unsigned long flags;
1139 spin_lock_irqsave(&rq->lock, flags);
1140 rq->hrtick_flags = 0;
1141 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1142 spin_unlock_irqrestore(&rq->lock, flags);
1144 hrtick_clear(rq);
1147 static void hotplug_hrtick_enable(int cpu)
1149 struct rq *rq = cpu_rq(cpu);
1150 unsigned long flags;
1152 spin_lock_irqsave(&rq->lock, flags);
1153 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1154 spin_unlock_irqrestore(&rq->lock, flags);
1157 static int
1158 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1160 int cpu = (int)(long)hcpu;
1162 switch (action) {
1163 case CPU_UP_CANCELED:
1164 case CPU_UP_CANCELED_FROZEN:
1165 case CPU_DOWN_PREPARE:
1166 case CPU_DOWN_PREPARE_FROZEN:
1167 case CPU_DEAD:
1168 case CPU_DEAD_FROZEN:
1169 hotplug_hrtick_disable(cpu);
1170 return NOTIFY_OK;
1172 case CPU_UP_PREPARE:
1173 case CPU_UP_PREPARE_FROZEN:
1174 case CPU_DOWN_FAILED:
1175 case CPU_DOWN_FAILED_FROZEN:
1176 case CPU_ONLINE:
1177 case CPU_ONLINE_FROZEN:
1178 hotplug_hrtick_enable(cpu);
1179 return NOTIFY_OK;
1182 return NOTIFY_DONE;
1185 static void init_hrtick(void)
1187 hotcpu_notifier(hotplug_hrtick, 0);
1189 #endif /* CONFIG_SMP */
1191 static void init_rq_hrtick(struct rq *rq)
1193 rq->hrtick_flags = 0;
1194 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1195 rq->hrtick_timer.function = hrtick;
1196 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1199 void hrtick_resched(void)
1201 struct rq *rq;
1202 unsigned long flags;
1204 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1205 return;
1207 local_irq_save(flags);
1208 rq = cpu_rq(smp_processor_id());
1209 hrtick_set(rq);
1210 local_irq_restore(flags);
1212 #else
1213 static inline void hrtick_clear(struct rq *rq)
1217 static inline void hrtick_set(struct rq *rq)
1221 static inline void init_rq_hrtick(struct rq *rq)
1225 void hrtick_resched(void)
1229 static inline void init_hrtick(void)
1232 #endif
1235 * resched_task - mark a task 'to be rescheduled now'.
1237 * On UP this means the setting of the need_resched flag, on SMP it
1238 * might also involve a cross-CPU call to trigger the scheduler on
1239 * the target CPU.
1241 #ifdef CONFIG_SMP
1243 #ifndef tsk_is_polling
1244 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1245 #endif
1247 static void __resched_task(struct task_struct *p, int tif_bit)
1249 int cpu;
1251 assert_spin_locked(&task_rq(p)->lock);
1253 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1254 return;
1256 set_tsk_thread_flag(p, tif_bit);
1258 cpu = task_cpu(p);
1259 if (cpu == smp_processor_id())
1260 return;
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(p))
1265 smp_send_reschedule(cpu);
1268 static void resched_cpu(int cpu)
1270 struct rq *rq = cpu_rq(cpu);
1271 unsigned long flags;
1273 if (!spin_trylock_irqsave(&rq->lock, flags))
1274 return;
1275 resched_task(cpu_curr(cpu));
1276 spin_unlock_irqrestore(&rq->lock, flags);
1279 #ifdef CONFIG_NO_HZ
1281 * When add_timer_on() enqueues a timer into the timer wheel of an
1282 * idle CPU then this timer might expire before the next timer event
1283 * which is scheduled to wake up that CPU. In case of a completely
1284 * idle system the next event might even be infinite time into the
1285 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1286 * leaves the inner idle loop so the newly added timer is taken into
1287 * account when the CPU goes back to idle and evaluates the timer
1288 * wheel for the next timer event.
1290 void wake_up_idle_cpu(int cpu)
1292 struct rq *rq = cpu_rq(cpu);
1294 if (cpu == smp_processor_id())
1295 return;
1298 * This is safe, as this function is called with the timer
1299 * wheel base lock of (cpu) held. When the CPU is on the way
1300 * to idle and has not yet set rq->curr to idle then it will
1301 * be serialized on the timer wheel base lock and take the new
1302 * timer into account automatically.
1304 if (rq->curr != rq->idle)
1305 return;
1308 * We can set TIF_RESCHED on the idle task of the other CPU
1309 * lockless. The worst case is that the other CPU runs the
1310 * idle task through an additional NOOP schedule()
1312 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1314 /* NEED_RESCHED must be visible before we test polling */
1315 smp_mb();
1316 if (!tsk_is_polling(rq->idle))
1317 smp_send_reschedule(cpu);
1319 #endif
1321 #else
1322 static void __resched_task(struct task_struct *p, int tif_bit)
1324 assert_spin_locked(&task_rq(p)->lock);
1325 set_tsk_thread_flag(p, tif_bit);
1327 #endif
1329 #if BITS_PER_LONG == 32
1330 # define WMULT_CONST (~0UL)
1331 #else
1332 # define WMULT_CONST (1UL << 32)
1333 #endif
1335 #define WMULT_SHIFT 32
1338 * Shift right and round:
1340 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1342 static unsigned long
1343 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1344 struct load_weight *lw)
1346 u64 tmp;
1348 if (!lw->inv_weight)
1349 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1351 tmp = (u64)delta_exec * weight;
1353 * Check whether we'd overflow the 64-bit multiplication:
1355 if (unlikely(tmp > WMULT_CONST))
1356 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1357 WMULT_SHIFT/2);
1358 else
1359 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1361 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1364 static inline unsigned long
1365 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1367 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1370 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1372 lw->weight += inc;
1373 lw->inv_weight = 0;
1376 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1378 lw->weight -= dec;
1379 lw->inv_weight = 0;
1383 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1384 * of tasks with abnormal "nice" values across CPUs the contribution that
1385 * each task makes to its run queue's load is weighted according to its
1386 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1387 * scaled version of the new time slice allocation that they receive on time
1388 * slice expiry etc.
1391 #define WEIGHT_IDLEPRIO 2
1392 #define WMULT_IDLEPRIO (1 << 31)
1395 * Nice levels are multiplicative, with a gentle 10% change for every
1396 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1397 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1398 * that remained on nice 0.
1400 * The "10% effect" is relative and cumulative: from _any_ nice level,
1401 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1402 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1403 * If a task goes up by ~10% and another task goes down by ~10% then
1404 * the relative distance between them is ~25%.)
1406 static const int prio_to_weight[40] = {
1407 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1408 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1409 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1410 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1411 /* 0 */ 1024, 820, 655, 526, 423,
1412 /* 5 */ 335, 272, 215, 172, 137,
1413 /* 10 */ 110, 87, 70, 56, 45,
1414 /* 15 */ 36, 29, 23, 18, 15,
1418 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1420 * In cases where the weight does not change often, we can use the
1421 * precalculated inverse to speed up arithmetics by turning divisions
1422 * into multiplications:
1424 static const u32 prio_to_wmult[40] = {
1425 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1426 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1427 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1428 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1429 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1430 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1431 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1432 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1435 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1438 * runqueue iterator, to support SMP load-balancing between different
1439 * scheduling classes, without having to expose their internal data
1440 * structures to the load-balancing proper:
1442 struct rq_iterator {
1443 void *arg;
1444 struct task_struct *(*start)(void *);
1445 struct task_struct *(*next)(void *);
1448 #ifdef CONFIG_SMP
1449 static unsigned long
1450 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1451 unsigned long max_load_move, struct sched_domain *sd,
1452 enum cpu_idle_type idle, int *all_pinned,
1453 int *this_best_prio, struct rq_iterator *iterator);
1455 static int
1456 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1457 struct sched_domain *sd, enum cpu_idle_type idle,
1458 struct rq_iterator *iterator);
1459 #endif
1461 #ifdef CONFIG_CGROUP_CPUACCT
1462 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1463 #else
1464 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1465 #endif
1467 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1469 update_load_add(&rq->load, load);
1472 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1474 update_load_sub(&rq->load, load);
1477 #ifdef CONFIG_SMP
1478 static unsigned long source_load(int cpu, int type);
1479 static unsigned long target_load(int cpu, int type);
1480 static unsigned long cpu_avg_load_per_task(int cpu);
1481 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1482 #else /* CONFIG_SMP */
1484 #ifdef CONFIG_FAIR_GROUP_SCHED
1485 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1488 #endif
1490 #endif /* CONFIG_SMP */
1492 #include "sched_stats.h"
1493 #include "sched_idletask.c"
1494 #include "sched_fair.c"
1495 #include "sched_rt.c"
1496 #ifdef CONFIG_SCHED_DEBUG
1497 # include "sched_debug.c"
1498 #endif
1500 #define sched_class_highest (&rt_sched_class)
1502 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1504 update_load_add(&rq->load, p->se.load.weight);
1507 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1509 update_load_sub(&rq->load, p->se.load.weight);
1512 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1514 rq->nr_running++;
1515 inc_load(rq, p);
1518 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1520 rq->nr_running--;
1521 dec_load(rq, p);
1524 static void set_load_weight(struct task_struct *p)
1526 if (task_has_rt_policy(p)) {
1527 p->se.load.weight = prio_to_weight[0] * 2;
1528 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1529 return;
1533 * SCHED_IDLE tasks get minimal weight:
1535 if (p->policy == SCHED_IDLE) {
1536 p->se.load.weight = WEIGHT_IDLEPRIO;
1537 p->se.load.inv_weight = WMULT_IDLEPRIO;
1538 return;
1541 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1542 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1545 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1547 sched_info_queued(p);
1548 p->sched_class->enqueue_task(rq, p, wakeup);
1549 p->se.on_rq = 1;
1552 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1554 p->sched_class->dequeue_task(rq, p, sleep);
1555 p->se.on_rq = 0;
1559 * __normal_prio - return the priority that is based on the static prio
1561 static inline int __normal_prio(struct task_struct *p)
1563 return p->static_prio;
1567 * Calculate the expected normal priority: i.e. priority
1568 * without taking RT-inheritance into account. Might be
1569 * boosted by interactivity modifiers. Changes upon fork,
1570 * setprio syscalls, and whenever the interactivity
1571 * estimator recalculates.
1573 static inline int normal_prio(struct task_struct *p)
1575 int prio;
1577 if (task_has_rt_policy(p))
1578 prio = MAX_RT_PRIO-1 - p->rt_priority;
1579 else
1580 prio = __normal_prio(p);
1581 return prio;
1585 * Calculate the current priority, i.e. the priority
1586 * taken into account by the scheduler. This value might
1587 * be boosted by RT tasks, or might be boosted by
1588 * interactivity modifiers. Will be RT if the task got
1589 * RT-boosted. If not then it returns p->normal_prio.
1591 static int effective_prio(struct task_struct *p)
1593 p->normal_prio = normal_prio(p);
1595 * If we are RT tasks or we were boosted to RT priority,
1596 * keep the priority unchanged. Otherwise, update priority
1597 * to the normal priority:
1599 if (!rt_prio(p->prio))
1600 return p->normal_prio;
1601 return p->prio;
1605 * activate_task - move a task to the runqueue.
1607 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1609 if (task_contributes_to_load(p))
1610 rq->nr_uninterruptible--;
1612 enqueue_task(rq, p, wakeup);
1613 inc_nr_running(p, rq);
1617 * deactivate_task - remove a task from the runqueue.
1619 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1621 if (task_contributes_to_load(p))
1622 rq->nr_uninterruptible++;
1624 dequeue_task(rq, p, sleep);
1625 dec_nr_running(p, rq);
1629 * task_curr - is this task currently executing on a CPU?
1630 * @p: the task in question.
1632 inline int task_curr(const struct task_struct *p)
1634 return cpu_curr(task_cpu(p)) == p;
1637 /* Used instead of source_load when we know the type == 0 */
1638 static unsigned long weighted_cpuload(const int cpu)
1640 return cpu_rq(cpu)->load.weight;
1643 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1645 set_task_rq(p, cpu);
1646 #ifdef CONFIG_SMP
1648 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1649 * successfuly executed on another CPU. We must ensure that updates of
1650 * per-task data have been completed by this moment.
1652 smp_wmb();
1653 task_thread_info(p)->cpu = cpu;
1654 #endif
1657 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1658 const struct sched_class *prev_class,
1659 int oldprio, int running)
1661 if (prev_class != p->sched_class) {
1662 if (prev_class->switched_from)
1663 prev_class->switched_from(rq, p, running);
1664 p->sched_class->switched_to(rq, p, running);
1665 } else
1666 p->sched_class->prio_changed(rq, p, oldprio, running);
1669 #ifdef CONFIG_SMP
1672 * Is this task likely cache-hot:
1674 static int
1675 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1677 s64 delta;
1680 * Buddy candidates are cache hot:
1682 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1683 return 1;
1685 if (p->sched_class != &fair_sched_class)
1686 return 0;
1688 if (sysctl_sched_migration_cost == -1)
1689 return 1;
1690 if (sysctl_sched_migration_cost == 0)
1691 return 0;
1693 delta = now - p->se.exec_start;
1695 return delta < (s64)sysctl_sched_migration_cost;
1699 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1701 int old_cpu = task_cpu(p);
1702 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1703 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1704 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1705 u64 clock_offset;
1707 clock_offset = old_rq->clock - new_rq->clock;
1709 #ifdef CONFIG_SCHEDSTATS
1710 if (p->se.wait_start)
1711 p->se.wait_start -= clock_offset;
1712 if (p->se.sleep_start)
1713 p->se.sleep_start -= clock_offset;
1714 if (p->se.block_start)
1715 p->se.block_start -= clock_offset;
1716 if (old_cpu != new_cpu) {
1717 schedstat_inc(p, se.nr_migrations);
1718 if (task_hot(p, old_rq->clock, NULL))
1719 schedstat_inc(p, se.nr_forced2_migrations);
1721 #endif
1722 p->se.vruntime -= old_cfsrq->min_vruntime -
1723 new_cfsrq->min_vruntime;
1725 __set_task_cpu(p, new_cpu);
1728 struct migration_req {
1729 struct list_head list;
1731 struct task_struct *task;
1732 int dest_cpu;
1734 struct completion done;
1738 * The task's runqueue lock must be held.
1739 * Returns true if you have to wait for migration thread.
1741 static int
1742 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1744 struct rq *rq = task_rq(p);
1747 * If the task is not on a runqueue (and not running), then
1748 * it is sufficient to simply update the task's cpu field.
1750 if (!p->se.on_rq && !task_running(rq, p)) {
1751 set_task_cpu(p, dest_cpu);
1752 return 0;
1755 init_completion(&req->done);
1756 req->task = p;
1757 req->dest_cpu = dest_cpu;
1758 list_add(&req->list, &rq->migration_queue);
1760 return 1;
1764 * wait_task_inactive - wait for a thread to unschedule.
1766 * The caller must ensure that the task *will* unschedule sometime soon,
1767 * else this function might spin for a *long* time. This function can't
1768 * be called with interrupts off, or it may introduce deadlock with
1769 * smp_call_function() if an IPI is sent by the same process we are
1770 * waiting to become inactive.
1772 void wait_task_inactive(struct task_struct *p)
1774 unsigned long flags;
1775 int running, on_rq;
1776 struct rq *rq;
1778 for (;;) {
1780 * We do the initial early heuristics without holding
1781 * any task-queue locks at all. We'll only try to get
1782 * the runqueue lock when things look like they will
1783 * work out!
1785 rq = task_rq(p);
1788 * If the task is actively running on another CPU
1789 * still, just relax and busy-wait without holding
1790 * any locks.
1792 * NOTE! Since we don't hold any locks, it's not
1793 * even sure that "rq" stays as the right runqueue!
1794 * But we don't care, since "task_running()" will
1795 * return false if the runqueue has changed and p
1796 * is actually now running somewhere else!
1798 while (task_running(rq, p))
1799 cpu_relax();
1802 * Ok, time to look more closely! We need the rq
1803 * lock now, to be *sure*. If we're wrong, we'll
1804 * just go back and repeat.
1806 rq = task_rq_lock(p, &flags);
1807 running = task_running(rq, p);
1808 on_rq = p->se.on_rq;
1809 task_rq_unlock(rq, &flags);
1812 * Was it really running after all now that we
1813 * checked with the proper locks actually held?
1815 * Oops. Go back and try again..
1817 if (unlikely(running)) {
1818 cpu_relax();
1819 continue;
1823 * It's not enough that it's not actively running,
1824 * it must be off the runqueue _entirely_, and not
1825 * preempted!
1827 * So if it wa still runnable (but just not actively
1828 * running right now), it's preempted, and we should
1829 * yield - it could be a while.
1831 if (unlikely(on_rq)) {
1832 schedule_timeout_uninterruptible(1);
1833 continue;
1837 * Ahh, all good. It wasn't running, and it wasn't
1838 * runnable, which means that it will never become
1839 * running in the future either. We're all done!
1841 break;
1845 /***
1846 * kick_process - kick a running thread to enter/exit the kernel
1847 * @p: the to-be-kicked thread
1849 * Cause a process which is running on another CPU to enter
1850 * kernel-mode, without any delay. (to get signals handled.)
1852 * NOTE: this function doesnt have to take the runqueue lock,
1853 * because all it wants to ensure is that the remote task enters
1854 * the kernel. If the IPI races and the task has been migrated
1855 * to another CPU then no harm is done and the purpose has been
1856 * achieved as well.
1858 void kick_process(struct task_struct *p)
1860 int cpu;
1862 preempt_disable();
1863 cpu = task_cpu(p);
1864 if ((cpu != smp_processor_id()) && task_curr(p))
1865 smp_send_reschedule(cpu);
1866 preempt_enable();
1870 * Return a low guess at the load of a migration-source cpu weighted
1871 * according to the scheduling class and "nice" value.
1873 * We want to under-estimate the load of migration sources, to
1874 * balance conservatively.
1876 static unsigned long source_load(int cpu, int type)
1878 struct rq *rq = cpu_rq(cpu);
1879 unsigned long total = weighted_cpuload(cpu);
1881 if (type == 0)
1882 return total;
1884 return min(rq->cpu_load[type-1], total);
1888 * Return a high guess at the load of a migration-target cpu weighted
1889 * according to the scheduling class and "nice" value.
1891 static unsigned long target_load(int cpu, int type)
1893 struct rq *rq = cpu_rq(cpu);
1894 unsigned long total = weighted_cpuload(cpu);
1896 if (type == 0)
1897 return total;
1899 return max(rq->cpu_load[type-1], total);
1903 * Return the average load per task on the cpu's run queue
1905 static unsigned long cpu_avg_load_per_task(int cpu)
1907 struct rq *rq = cpu_rq(cpu);
1908 unsigned long total = weighted_cpuload(cpu);
1909 unsigned long n = rq->nr_running;
1911 return n ? total / n : SCHED_LOAD_SCALE;
1915 * find_idlest_group finds and returns the least busy CPU group within the
1916 * domain.
1918 static struct sched_group *
1919 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1921 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1922 unsigned long min_load = ULONG_MAX, this_load = 0;
1923 int load_idx = sd->forkexec_idx;
1924 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1926 do {
1927 unsigned long load, avg_load;
1928 int local_group;
1929 int i;
1931 /* Skip over this group if it has no CPUs allowed */
1932 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1933 continue;
1935 local_group = cpu_isset(this_cpu, group->cpumask);
1937 /* Tally up the load of all CPUs in the group */
1938 avg_load = 0;
1940 for_each_cpu_mask(i, group->cpumask) {
1941 /* Bias balancing toward cpus of our domain */
1942 if (local_group)
1943 load = source_load(i, load_idx);
1944 else
1945 load = target_load(i, load_idx);
1947 avg_load += load;
1950 /* Adjust by relative CPU power of the group */
1951 avg_load = sg_div_cpu_power(group,
1952 avg_load * SCHED_LOAD_SCALE);
1954 if (local_group) {
1955 this_load = avg_load;
1956 this = group;
1957 } else if (avg_load < min_load) {
1958 min_load = avg_load;
1959 idlest = group;
1961 } while (group = group->next, group != sd->groups);
1963 if (!idlest || 100*this_load < imbalance*min_load)
1964 return NULL;
1965 return idlest;
1969 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1971 static int
1972 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1973 cpumask_t *tmp)
1975 unsigned long load, min_load = ULONG_MAX;
1976 int idlest = -1;
1977 int i;
1979 /* Traverse only the allowed CPUs */
1980 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1982 for_each_cpu_mask(i, *tmp) {
1983 load = weighted_cpuload(i);
1985 if (load < min_load || (load == min_load && i == this_cpu)) {
1986 min_load = load;
1987 idlest = i;
1991 return idlest;
1995 * sched_balance_self: balance the current task (running on cpu) in domains
1996 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1997 * SD_BALANCE_EXEC.
1999 * Balance, ie. select the least loaded group.
2001 * Returns the target CPU number, or the same CPU if no balancing is needed.
2003 * preempt must be disabled.
2005 static int sched_balance_self(int cpu, int flag)
2007 struct task_struct *t = current;
2008 struct sched_domain *tmp, *sd = NULL;
2010 for_each_domain(cpu, tmp) {
2012 * If power savings logic is enabled for a domain, stop there.
2014 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2015 break;
2016 if (tmp->flags & flag)
2017 sd = tmp;
2020 while (sd) {
2021 cpumask_t span, tmpmask;
2022 struct sched_group *group;
2023 int new_cpu, weight;
2025 if (!(sd->flags & flag)) {
2026 sd = sd->child;
2027 continue;
2030 span = sd->span;
2031 group = find_idlest_group(sd, t, cpu);
2032 if (!group) {
2033 sd = sd->child;
2034 continue;
2037 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2038 if (new_cpu == -1 || new_cpu == cpu) {
2039 /* Now try balancing at a lower domain level of cpu */
2040 sd = sd->child;
2041 continue;
2044 /* Now try balancing at a lower domain level of new_cpu */
2045 cpu = new_cpu;
2046 sd = NULL;
2047 weight = cpus_weight(span);
2048 for_each_domain(cpu, tmp) {
2049 if (weight <= cpus_weight(tmp->span))
2050 break;
2051 if (tmp->flags & flag)
2052 sd = tmp;
2054 /* while loop will break here if sd == NULL */
2057 return cpu;
2060 #endif /* CONFIG_SMP */
2062 /***
2063 * try_to_wake_up - wake up a thread
2064 * @p: the to-be-woken-up thread
2065 * @state: the mask of task states that can be woken
2066 * @sync: do a synchronous wakeup?
2068 * Put it on the run-queue if it's not already there. The "current"
2069 * thread is always on the run-queue (except when the actual
2070 * re-schedule is in progress), and as such you're allowed to do
2071 * the simpler "current->state = TASK_RUNNING" to mark yourself
2072 * runnable without the overhead of this.
2074 * returns failure only if the task is already active.
2076 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2078 int cpu, orig_cpu, this_cpu, success = 0;
2079 unsigned long flags;
2080 long old_state;
2081 struct rq *rq;
2083 if (!sched_feat(SYNC_WAKEUPS))
2084 sync = 0;
2086 smp_wmb();
2087 rq = task_rq_lock(p, &flags);
2088 old_state = p->state;
2089 if (!(old_state & state))
2090 goto out;
2092 if (p->se.on_rq)
2093 goto out_running;
2095 cpu = task_cpu(p);
2096 orig_cpu = cpu;
2097 this_cpu = smp_processor_id();
2099 #ifdef CONFIG_SMP
2100 if (unlikely(task_running(rq, p)))
2101 goto out_activate;
2103 cpu = p->sched_class->select_task_rq(p, sync);
2104 if (cpu != orig_cpu) {
2105 set_task_cpu(p, cpu);
2106 task_rq_unlock(rq, &flags);
2107 /* might preempt at this point */
2108 rq = task_rq_lock(p, &flags);
2109 old_state = p->state;
2110 if (!(old_state & state))
2111 goto out;
2112 if (p->se.on_rq)
2113 goto out_running;
2115 this_cpu = smp_processor_id();
2116 cpu = task_cpu(p);
2119 #ifdef CONFIG_SCHEDSTATS
2120 schedstat_inc(rq, ttwu_count);
2121 if (cpu == this_cpu)
2122 schedstat_inc(rq, ttwu_local);
2123 else {
2124 struct sched_domain *sd;
2125 for_each_domain(this_cpu, sd) {
2126 if (cpu_isset(cpu, sd->span)) {
2127 schedstat_inc(sd, ttwu_wake_remote);
2128 break;
2132 #endif
2134 out_activate:
2135 #endif /* CONFIG_SMP */
2136 schedstat_inc(p, se.nr_wakeups);
2137 if (sync)
2138 schedstat_inc(p, se.nr_wakeups_sync);
2139 if (orig_cpu != cpu)
2140 schedstat_inc(p, se.nr_wakeups_migrate);
2141 if (cpu == this_cpu)
2142 schedstat_inc(p, se.nr_wakeups_local);
2143 else
2144 schedstat_inc(p, se.nr_wakeups_remote);
2145 update_rq_clock(rq);
2146 activate_task(rq, p, 1);
2147 success = 1;
2149 out_running:
2150 check_preempt_curr(rq, p);
2152 p->state = TASK_RUNNING;
2153 #ifdef CONFIG_SMP
2154 if (p->sched_class->task_wake_up)
2155 p->sched_class->task_wake_up(rq, p);
2156 #endif
2157 out:
2158 task_rq_unlock(rq, &flags);
2160 return success;
2163 int wake_up_process(struct task_struct *p)
2165 return try_to_wake_up(p, TASK_ALL, 0);
2167 EXPORT_SYMBOL(wake_up_process);
2169 int wake_up_state(struct task_struct *p, unsigned int state)
2171 return try_to_wake_up(p, state, 0);
2175 * Perform scheduler related setup for a newly forked process p.
2176 * p is forked by current.
2178 * __sched_fork() is basic setup used by init_idle() too:
2180 static void __sched_fork(struct task_struct *p)
2182 p->se.exec_start = 0;
2183 p->se.sum_exec_runtime = 0;
2184 p->se.prev_sum_exec_runtime = 0;
2185 p->se.last_wakeup = 0;
2186 p->se.avg_overlap = 0;
2188 #ifdef CONFIG_SCHEDSTATS
2189 p->se.wait_start = 0;
2190 p->se.sum_sleep_runtime = 0;
2191 p->se.sleep_start = 0;
2192 p->se.block_start = 0;
2193 p->se.sleep_max = 0;
2194 p->se.block_max = 0;
2195 p->se.exec_max = 0;
2196 p->se.slice_max = 0;
2197 p->se.wait_max = 0;
2198 #endif
2200 INIT_LIST_HEAD(&p->rt.run_list);
2201 p->se.on_rq = 0;
2202 INIT_LIST_HEAD(&p->se.group_node);
2204 #ifdef CONFIG_PREEMPT_NOTIFIERS
2205 INIT_HLIST_HEAD(&p->preempt_notifiers);
2206 #endif
2209 * We mark the process as running here, but have not actually
2210 * inserted it onto the runqueue yet. This guarantees that
2211 * nobody will actually run it, and a signal or other external
2212 * event cannot wake it up and insert it on the runqueue either.
2214 p->state = TASK_RUNNING;
2218 * fork()/clone()-time setup:
2220 void sched_fork(struct task_struct *p, int clone_flags)
2222 int cpu = get_cpu();
2224 __sched_fork(p);
2226 #ifdef CONFIG_SMP
2227 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2228 #endif
2229 set_task_cpu(p, cpu);
2232 * Make sure we do not leak PI boosting priority to the child:
2234 p->prio = current->normal_prio;
2235 if (!rt_prio(p->prio))
2236 p->sched_class = &fair_sched_class;
2238 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2239 if (likely(sched_info_on()))
2240 memset(&p->sched_info, 0, sizeof(p->sched_info));
2241 #endif
2242 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2243 p->oncpu = 0;
2244 #endif
2245 #ifdef CONFIG_PREEMPT
2246 /* Want to start with kernel preemption disabled. */
2247 task_thread_info(p)->preempt_count = 1;
2248 #endif
2249 put_cpu();
2253 * wake_up_new_task - wake up a newly created task for the first time.
2255 * This function will do some initial scheduler statistics housekeeping
2256 * that must be done for every newly created context, then puts the task
2257 * on the runqueue and wakes it.
2259 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2261 unsigned long flags;
2262 struct rq *rq;
2264 rq = task_rq_lock(p, &flags);
2265 BUG_ON(p->state != TASK_RUNNING);
2266 update_rq_clock(rq);
2268 p->prio = effective_prio(p);
2270 if (!p->sched_class->task_new || !current->se.on_rq) {
2271 activate_task(rq, p, 0);
2272 } else {
2274 * Let the scheduling class do new task startup
2275 * management (if any):
2277 p->sched_class->task_new(rq, p);
2278 inc_nr_running(p, rq);
2280 check_preempt_curr(rq, p);
2281 #ifdef CONFIG_SMP
2282 if (p->sched_class->task_wake_up)
2283 p->sched_class->task_wake_up(rq, p);
2284 #endif
2285 task_rq_unlock(rq, &flags);
2288 #ifdef CONFIG_PREEMPT_NOTIFIERS
2291 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2292 * @notifier: notifier struct to register
2294 void preempt_notifier_register(struct preempt_notifier *notifier)
2296 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2298 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2301 * preempt_notifier_unregister - no longer interested in preemption notifications
2302 * @notifier: notifier struct to unregister
2304 * This is safe to call from within a preemption notifier.
2306 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2308 hlist_del(&notifier->link);
2310 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2312 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2314 struct preempt_notifier *notifier;
2315 struct hlist_node *node;
2317 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2318 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2321 static void
2322 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2323 struct task_struct *next)
2325 struct preempt_notifier *notifier;
2326 struct hlist_node *node;
2328 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2329 notifier->ops->sched_out(notifier, next);
2332 #else
2334 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2338 static void
2339 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2340 struct task_struct *next)
2344 #endif
2347 * prepare_task_switch - prepare to switch tasks
2348 * @rq: the runqueue preparing to switch
2349 * @prev: the current task that is being switched out
2350 * @next: the task we are going to switch to.
2352 * This is called with the rq lock held and interrupts off. It must
2353 * be paired with a subsequent finish_task_switch after the context
2354 * switch.
2356 * prepare_task_switch sets up locking and calls architecture specific
2357 * hooks.
2359 static inline void
2360 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2361 struct task_struct *next)
2363 fire_sched_out_preempt_notifiers(prev, next);
2364 prepare_lock_switch(rq, next);
2365 prepare_arch_switch(next);
2369 * finish_task_switch - clean up after a task-switch
2370 * @rq: runqueue associated with task-switch
2371 * @prev: the thread we just switched away from.
2373 * finish_task_switch must be called after the context switch, paired
2374 * with a prepare_task_switch call before the context switch.
2375 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2376 * and do any other architecture-specific cleanup actions.
2378 * Note that we may have delayed dropping an mm in context_switch(). If
2379 * so, we finish that here outside of the runqueue lock. (Doing it
2380 * with the lock held can cause deadlocks; see schedule() for
2381 * details.)
2383 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2384 __releases(rq->lock)
2386 struct mm_struct *mm = rq->prev_mm;
2387 long prev_state;
2389 rq->prev_mm = NULL;
2392 * A task struct has one reference for the use as "current".
2393 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2394 * schedule one last time. The schedule call will never return, and
2395 * the scheduled task must drop that reference.
2396 * The test for TASK_DEAD must occur while the runqueue locks are
2397 * still held, otherwise prev could be scheduled on another cpu, die
2398 * there before we look at prev->state, and then the reference would
2399 * be dropped twice.
2400 * Manfred Spraul <manfred@colorfullife.com>
2402 prev_state = prev->state;
2403 finish_arch_switch(prev);
2404 finish_lock_switch(rq, prev);
2405 #ifdef CONFIG_SMP
2406 if (current->sched_class->post_schedule)
2407 current->sched_class->post_schedule(rq);
2408 #endif
2410 fire_sched_in_preempt_notifiers(current);
2411 if (mm)
2412 mmdrop(mm);
2413 if (unlikely(prev_state == TASK_DEAD)) {
2415 * Remove function-return probe instances associated with this
2416 * task and put them back on the free list.
2418 kprobe_flush_task(prev);
2419 put_task_struct(prev);
2424 * schedule_tail - first thing a freshly forked thread must call.
2425 * @prev: the thread we just switched away from.
2427 asmlinkage void schedule_tail(struct task_struct *prev)
2428 __releases(rq->lock)
2430 struct rq *rq = this_rq();
2432 finish_task_switch(rq, prev);
2433 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2434 /* In this case, finish_task_switch does not reenable preemption */
2435 preempt_enable();
2436 #endif
2437 if (current->set_child_tid)
2438 put_user(task_pid_vnr(current), current->set_child_tid);
2442 * context_switch - switch to the new MM and the new
2443 * thread's register state.
2445 static inline void
2446 context_switch(struct rq *rq, struct task_struct *prev,
2447 struct task_struct *next)
2449 struct mm_struct *mm, *oldmm;
2451 prepare_task_switch(rq, prev, next);
2452 mm = next->mm;
2453 oldmm = prev->active_mm;
2455 * For paravirt, this is coupled with an exit in switch_to to
2456 * combine the page table reload and the switch backend into
2457 * one hypercall.
2459 arch_enter_lazy_cpu_mode();
2461 if (unlikely(!mm)) {
2462 next->active_mm = oldmm;
2463 atomic_inc(&oldmm->mm_count);
2464 enter_lazy_tlb(oldmm, next);
2465 } else
2466 switch_mm(oldmm, mm, next);
2468 if (unlikely(!prev->mm)) {
2469 prev->active_mm = NULL;
2470 rq->prev_mm = oldmm;
2473 * Since the runqueue lock will be released by the next
2474 * task (which is an invalid locking op but in the case
2475 * of the scheduler it's an obvious special-case), so we
2476 * do an early lockdep release here:
2478 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2479 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2480 #endif
2482 /* Here we just switch the register state and the stack. */
2483 switch_to(prev, next, prev);
2485 barrier();
2487 * this_rq must be evaluated again because prev may have moved
2488 * CPUs since it called schedule(), thus the 'rq' on its stack
2489 * frame will be invalid.
2491 finish_task_switch(this_rq(), prev);
2495 * nr_running, nr_uninterruptible and nr_context_switches:
2497 * externally visible scheduler statistics: current number of runnable
2498 * threads, current number of uninterruptible-sleeping threads, total
2499 * number of context switches performed since bootup.
2501 unsigned long nr_running(void)
2503 unsigned long i, sum = 0;
2505 for_each_online_cpu(i)
2506 sum += cpu_rq(i)->nr_running;
2508 return sum;
2511 unsigned long nr_uninterruptible(void)
2513 unsigned long i, sum = 0;
2515 for_each_possible_cpu(i)
2516 sum += cpu_rq(i)->nr_uninterruptible;
2519 * Since we read the counters lockless, it might be slightly
2520 * inaccurate. Do not allow it to go below zero though:
2522 if (unlikely((long)sum < 0))
2523 sum = 0;
2525 return sum;
2528 unsigned long long nr_context_switches(void)
2530 int i;
2531 unsigned long long sum = 0;
2533 for_each_possible_cpu(i)
2534 sum += cpu_rq(i)->nr_switches;
2536 return sum;
2539 unsigned long nr_iowait(void)
2541 unsigned long i, sum = 0;
2543 for_each_possible_cpu(i)
2544 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2546 return sum;
2549 unsigned long nr_active(void)
2551 unsigned long i, running = 0, uninterruptible = 0;
2553 for_each_online_cpu(i) {
2554 running += cpu_rq(i)->nr_running;
2555 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2558 if (unlikely((long)uninterruptible < 0))
2559 uninterruptible = 0;
2561 return running + uninterruptible;
2565 * Update rq->cpu_load[] statistics. This function is usually called every
2566 * scheduler tick (TICK_NSEC).
2568 static void update_cpu_load(struct rq *this_rq)
2570 unsigned long this_load = this_rq->load.weight;
2571 int i, scale;
2573 this_rq->nr_load_updates++;
2575 /* Update our load: */
2576 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2577 unsigned long old_load, new_load;
2579 /* scale is effectively 1 << i now, and >> i divides by scale */
2581 old_load = this_rq->cpu_load[i];
2582 new_load = this_load;
2584 * Round up the averaging division if load is increasing. This
2585 * prevents us from getting stuck on 9 if the load is 10, for
2586 * example.
2588 if (new_load > old_load)
2589 new_load += scale-1;
2590 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2594 #ifdef CONFIG_SMP
2597 * double_rq_lock - safely lock two runqueues
2599 * Note this does not disable interrupts like task_rq_lock,
2600 * you need to do so manually before calling.
2602 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2603 __acquires(rq1->lock)
2604 __acquires(rq2->lock)
2606 BUG_ON(!irqs_disabled());
2607 if (rq1 == rq2) {
2608 spin_lock(&rq1->lock);
2609 __acquire(rq2->lock); /* Fake it out ;) */
2610 } else {
2611 if (rq1 < rq2) {
2612 spin_lock(&rq1->lock);
2613 spin_lock(&rq2->lock);
2614 } else {
2615 spin_lock(&rq2->lock);
2616 spin_lock(&rq1->lock);
2619 update_rq_clock(rq1);
2620 update_rq_clock(rq2);
2624 * double_rq_unlock - safely unlock two runqueues
2626 * Note this does not restore interrupts like task_rq_unlock,
2627 * you need to do so manually after calling.
2629 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2630 __releases(rq1->lock)
2631 __releases(rq2->lock)
2633 spin_unlock(&rq1->lock);
2634 if (rq1 != rq2)
2635 spin_unlock(&rq2->lock);
2636 else
2637 __release(rq2->lock);
2641 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2643 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2644 __releases(this_rq->lock)
2645 __acquires(busiest->lock)
2646 __acquires(this_rq->lock)
2648 int ret = 0;
2650 if (unlikely(!irqs_disabled())) {
2651 /* printk() doesn't work good under rq->lock */
2652 spin_unlock(&this_rq->lock);
2653 BUG_ON(1);
2655 if (unlikely(!spin_trylock(&busiest->lock))) {
2656 if (busiest < this_rq) {
2657 spin_unlock(&this_rq->lock);
2658 spin_lock(&busiest->lock);
2659 spin_lock(&this_rq->lock);
2660 ret = 1;
2661 } else
2662 spin_lock(&busiest->lock);
2664 return ret;
2668 * If dest_cpu is allowed for this process, migrate the task to it.
2669 * This is accomplished by forcing the cpu_allowed mask to only
2670 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2671 * the cpu_allowed mask is restored.
2673 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2675 struct migration_req req;
2676 unsigned long flags;
2677 struct rq *rq;
2679 rq = task_rq_lock(p, &flags);
2680 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2681 || unlikely(cpu_is_offline(dest_cpu)))
2682 goto out;
2684 /* force the process onto the specified CPU */
2685 if (migrate_task(p, dest_cpu, &req)) {
2686 /* Need to wait for migration thread (might exit: take ref). */
2687 struct task_struct *mt = rq->migration_thread;
2689 get_task_struct(mt);
2690 task_rq_unlock(rq, &flags);
2691 wake_up_process(mt);
2692 put_task_struct(mt);
2693 wait_for_completion(&req.done);
2695 return;
2697 out:
2698 task_rq_unlock(rq, &flags);
2702 * sched_exec - execve() is a valuable balancing opportunity, because at
2703 * this point the task has the smallest effective memory and cache footprint.
2705 void sched_exec(void)
2707 int new_cpu, this_cpu = get_cpu();
2708 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2709 put_cpu();
2710 if (new_cpu != this_cpu)
2711 sched_migrate_task(current, new_cpu);
2715 * pull_task - move a task from a remote runqueue to the local runqueue.
2716 * Both runqueues must be locked.
2718 static void pull_task(struct rq *src_rq, struct task_struct *p,
2719 struct rq *this_rq, int this_cpu)
2721 deactivate_task(src_rq, p, 0);
2722 set_task_cpu(p, this_cpu);
2723 activate_task(this_rq, p, 0);
2725 * Note that idle threads have a prio of MAX_PRIO, for this test
2726 * to be always true for them.
2728 check_preempt_curr(this_rq, p);
2732 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2734 static
2735 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2736 struct sched_domain *sd, enum cpu_idle_type idle,
2737 int *all_pinned)
2740 * We do not migrate tasks that are:
2741 * 1) running (obviously), or
2742 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2743 * 3) are cache-hot on their current CPU.
2745 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2746 schedstat_inc(p, se.nr_failed_migrations_affine);
2747 return 0;
2749 *all_pinned = 0;
2751 if (task_running(rq, p)) {
2752 schedstat_inc(p, se.nr_failed_migrations_running);
2753 return 0;
2757 * Aggressive migration if:
2758 * 1) task is cache cold, or
2759 * 2) too many balance attempts have failed.
2762 if (!task_hot(p, rq->clock, sd) ||
2763 sd->nr_balance_failed > sd->cache_nice_tries) {
2764 #ifdef CONFIG_SCHEDSTATS
2765 if (task_hot(p, rq->clock, sd)) {
2766 schedstat_inc(sd, lb_hot_gained[idle]);
2767 schedstat_inc(p, se.nr_forced_migrations);
2769 #endif
2770 return 1;
2773 if (task_hot(p, rq->clock, sd)) {
2774 schedstat_inc(p, se.nr_failed_migrations_hot);
2775 return 0;
2777 return 1;
2780 static unsigned long
2781 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2782 unsigned long max_load_move, struct sched_domain *sd,
2783 enum cpu_idle_type idle, int *all_pinned,
2784 int *this_best_prio, struct rq_iterator *iterator)
2786 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2787 struct task_struct *p;
2788 long rem_load_move = max_load_move;
2790 if (max_load_move == 0)
2791 goto out;
2793 pinned = 1;
2796 * Start the load-balancing iterator:
2798 p = iterator->start(iterator->arg);
2799 next:
2800 if (!p || loops++ > sysctl_sched_nr_migrate)
2801 goto out;
2803 * To help distribute high priority tasks across CPUs we don't
2804 * skip a task if it will be the highest priority task (i.e. smallest
2805 * prio value) on its new queue regardless of its load weight
2807 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2808 SCHED_LOAD_SCALE_FUZZ;
2809 if ((skip_for_load && p->prio >= *this_best_prio) ||
2810 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2811 p = iterator->next(iterator->arg);
2812 goto next;
2815 pull_task(busiest, p, this_rq, this_cpu);
2816 pulled++;
2817 rem_load_move -= p->se.load.weight;
2820 * We only want to steal up to the prescribed amount of weighted load.
2822 if (rem_load_move > 0) {
2823 if (p->prio < *this_best_prio)
2824 *this_best_prio = p->prio;
2825 p = iterator->next(iterator->arg);
2826 goto next;
2828 out:
2830 * Right now, this is one of only two places pull_task() is called,
2831 * so we can safely collect pull_task() stats here rather than
2832 * inside pull_task().
2834 schedstat_add(sd, lb_gained[idle], pulled);
2836 if (all_pinned)
2837 *all_pinned = pinned;
2839 return max_load_move - rem_load_move;
2843 * move_tasks tries to move up to max_load_move weighted load from busiest to
2844 * this_rq, as part of a balancing operation within domain "sd".
2845 * Returns 1 if successful and 0 otherwise.
2847 * Called with both runqueues locked.
2849 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2850 unsigned long max_load_move,
2851 struct sched_domain *sd, enum cpu_idle_type idle,
2852 int *all_pinned)
2854 const struct sched_class *class = sched_class_highest;
2855 unsigned long total_load_moved = 0;
2856 int this_best_prio = this_rq->curr->prio;
2858 do {
2859 total_load_moved +=
2860 class->load_balance(this_rq, this_cpu, busiest,
2861 max_load_move - total_load_moved,
2862 sd, idle, all_pinned, &this_best_prio);
2863 class = class->next;
2864 } while (class && max_load_move > total_load_moved);
2866 return total_load_moved > 0;
2869 static int
2870 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2871 struct sched_domain *sd, enum cpu_idle_type idle,
2872 struct rq_iterator *iterator)
2874 struct task_struct *p = iterator->start(iterator->arg);
2875 int pinned = 0;
2877 while (p) {
2878 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2879 pull_task(busiest, p, this_rq, this_cpu);
2881 * Right now, this is only the second place pull_task()
2882 * is called, so we can safely collect pull_task()
2883 * stats here rather than inside pull_task().
2885 schedstat_inc(sd, lb_gained[idle]);
2887 return 1;
2889 p = iterator->next(iterator->arg);
2892 return 0;
2896 * move_one_task tries to move exactly one task from busiest to this_rq, as
2897 * part of active balancing operations within "domain".
2898 * Returns 1 if successful and 0 otherwise.
2900 * Called with both runqueues locked.
2902 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2903 struct sched_domain *sd, enum cpu_idle_type idle)
2905 const struct sched_class *class;
2907 for (class = sched_class_highest; class; class = class->next)
2908 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2909 return 1;
2911 return 0;
2915 * find_busiest_group finds and returns the busiest CPU group within the
2916 * domain. It calculates and returns the amount of weighted load which
2917 * should be moved to restore balance via the imbalance parameter.
2919 static struct sched_group *
2920 find_busiest_group(struct sched_domain *sd, int this_cpu,
2921 unsigned long *imbalance, enum cpu_idle_type idle,
2922 int *sd_idle, const cpumask_t *cpus, int *balance)
2924 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2925 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2926 unsigned long max_pull;
2927 unsigned long busiest_load_per_task, busiest_nr_running;
2928 unsigned long this_load_per_task, this_nr_running;
2929 int load_idx, group_imb = 0;
2930 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2931 int power_savings_balance = 1;
2932 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2933 unsigned long min_nr_running = ULONG_MAX;
2934 struct sched_group *group_min = NULL, *group_leader = NULL;
2935 #endif
2937 max_load = this_load = total_load = total_pwr = 0;
2938 busiest_load_per_task = busiest_nr_running = 0;
2939 this_load_per_task = this_nr_running = 0;
2940 if (idle == CPU_NOT_IDLE)
2941 load_idx = sd->busy_idx;
2942 else if (idle == CPU_NEWLY_IDLE)
2943 load_idx = sd->newidle_idx;
2944 else
2945 load_idx = sd->idle_idx;
2947 do {
2948 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2949 int local_group;
2950 int i;
2951 int __group_imb = 0;
2952 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2953 unsigned long sum_nr_running, sum_weighted_load;
2955 local_group = cpu_isset(this_cpu, group->cpumask);
2957 if (local_group)
2958 balance_cpu = first_cpu(group->cpumask);
2960 /* Tally up the load of all CPUs in the group */
2961 sum_weighted_load = sum_nr_running = avg_load = 0;
2962 max_cpu_load = 0;
2963 min_cpu_load = ~0UL;
2965 for_each_cpu_mask(i, group->cpumask) {
2966 struct rq *rq;
2968 if (!cpu_isset(i, *cpus))
2969 continue;
2971 rq = cpu_rq(i);
2973 if (*sd_idle && rq->nr_running)
2974 *sd_idle = 0;
2976 /* Bias balancing toward cpus of our domain */
2977 if (local_group) {
2978 if (idle_cpu(i) && !first_idle_cpu) {
2979 first_idle_cpu = 1;
2980 balance_cpu = i;
2983 load = target_load(i, load_idx);
2984 } else {
2985 load = source_load(i, load_idx);
2986 if (load > max_cpu_load)
2987 max_cpu_load = load;
2988 if (min_cpu_load > load)
2989 min_cpu_load = load;
2992 avg_load += load;
2993 sum_nr_running += rq->nr_running;
2994 sum_weighted_load += weighted_cpuload(i);
2998 * First idle cpu or the first cpu(busiest) in this sched group
2999 * is eligible for doing load balancing at this and above
3000 * domains. In the newly idle case, we will allow all the cpu's
3001 * to do the newly idle load balance.
3003 if (idle != CPU_NEWLY_IDLE && local_group &&
3004 balance_cpu != this_cpu && balance) {
3005 *balance = 0;
3006 goto ret;
3009 total_load += avg_load;
3010 total_pwr += group->__cpu_power;
3012 /* Adjust by relative CPU power of the group */
3013 avg_load = sg_div_cpu_power(group,
3014 avg_load * SCHED_LOAD_SCALE);
3016 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3017 __group_imb = 1;
3019 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3021 if (local_group) {
3022 this_load = avg_load;
3023 this = group;
3024 this_nr_running = sum_nr_running;
3025 this_load_per_task = sum_weighted_load;
3026 } else if (avg_load > max_load &&
3027 (sum_nr_running > group_capacity || __group_imb)) {
3028 max_load = avg_load;
3029 busiest = group;
3030 busiest_nr_running = sum_nr_running;
3031 busiest_load_per_task = sum_weighted_load;
3032 group_imb = __group_imb;
3035 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3037 * Busy processors will not participate in power savings
3038 * balance.
3040 if (idle == CPU_NOT_IDLE ||
3041 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3042 goto group_next;
3045 * If the local group is idle or completely loaded
3046 * no need to do power savings balance at this domain
3048 if (local_group && (this_nr_running >= group_capacity ||
3049 !this_nr_running))
3050 power_savings_balance = 0;
3053 * If a group is already running at full capacity or idle,
3054 * don't include that group in power savings calculations
3056 if (!power_savings_balance || sum_nr_running >= group_capacity
3057 || !sum_nr_running)
3058 goto group_next;
3061 * Calculate the group which has the least non-idle load.
3062 * This is the group from where we need to pick up the load
3063 * for saving power
3065 if ((sum_nr_running < min_nr_running) ||
3066 (sum_nr_running == min_nr_running &&
3067 first_cpu(group->cpumask) <
3068 first_cpu(group_min->cpumask))) {
3069 group_min = group;
3070 min_nr_running = sum_nr_running;
3071 min_load_per_task = sum_weighted_load /
3072 sum_nr_running;
3076 * Calculate the group which is almost near its
3077 * capacity but still has some space to pick up some load
3078 * from other group and save more power
3080 if (sum_nr_running <= group_capacity - 1) {
3081 if (sum_nr_running > leader_nr_running ||
3082 (sum_nr_running == leader_nr_running &&
3083 first_cpu(group->cpumask) >
3084 first_cpu(group_leader->cpumask))) {
3085 group_leader = group;
3086 leader_nr_running = sum_nr_running;
3089 group_next:
3090 #endif
3091 group = group->next;
3092 } while (group != sd->groups);
3094 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3095 goto out_balanced;
3097 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3099 if (this_load >= avg_load ||
3100 100*max_load <= sd->imbalance_pct*this_load)
3101 goto out_balanced;
3103 busiest_load_per_task /= busiest_nr_running;
3104 if (group_imb)
3105 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3108 * We're trying to get all the cpus to the average_load, so we don't
3109 * want to push ourselves above the average load, nor do we wish to
3110 * reduce the max loaded cpu below the average load, as either of these
3111 * actions would just result in more rebalancing later, and ping-pong
3112 * tasks around. Thus we look for the minimum possible imbalance.
3113 * Negative imbalances (*we* are more loaded than anyone else) will
3114 * be counted as no imbalance for these purposes -- we can't fix that
3115 * by pulling tasks to us. Be careful of negative numbers as they'll
3116 * appear as very large values with unsigned longs.
3118 if (max_load <= busiest_load_per_task)
3119 goto out_balanced;
3122 * In the presence of smp nice balancing, certain scenarios can have
3123 * max load less than avg load(as we skip the groups at or below
3124 * its cpu_power, while calculating max_load..)
3126 if (max_load < avg_load) {
3127 *imbalance = 0;
3128 goto small_imbalance;
3131 /* Don't want to pull so many tasks that a group would go idle */
3132 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3134 /* How much load to actually move to equalise the imbalance */
3135 *imbalance = min(max_pull * busiest->__cpu_power,
3136 (avg_load - this_load) * this->__cpu_power)
3137 / SCHED_LOAD_SCALE;
3140 * if *imbalance is less than the average load per runnable task
3141 * there is no gaurantee that any tasks will be moved so we'll have
3142 * a think about bumping its value to force at least one task to be
3143 * moved
3145 if (*imbalance < busiest_load_per_task) {
3146 unsigned long tmp, pwr_now, pwr_move;
3147 unsigned int imbn;
3149 small_imbalance:
3150 pwr_move = pwr_now = 0;
3151 imbn = 2;
3152 if (this_nr_running) {
3153 this_load_per_task /= this_nr_running;
3154 if (busiest_load_per_task > this_load_per_task)
3155 imbn = 1;
3156 } else
3157 this_load_per_task = SCHED_LOAD_SCALE;
3159 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3160 busiest_load_per_task * imbn) {
3161 *imbalance = busiest_load_per_task;
3162 return busiest;
3166 * OK, we don't have enough imbalance to justify moving tasks,
3167 * however we may be able to increase total CPU power used by
3168 * moving them.
3171 pwr_now += busiest->__cpu_power *
3172 min(busiest_load_per_task, max_load);
3173 pwr_now += this->__cpu_power *
3174 min(this_load_per_task, this_load);
3175 pwr_now /= SCHED_LOAD_SCALE;
3177 /* Amount of load we'd subtract */
3178 tmp = sg_div_cpu_power(busiest,
3179 busiest_load_per_task * SCHED_LOAD_SCALE);
3180 if (max_load > tmp)
3181 pwr_move += busiest->__cpu_power *
3182 min(busiest_load_per_task, max_load - tmp);
3184 /* Amount of load we'd add */
3185 if (max_load * busiest->__cpu_power <
3186 busiest_load_per_task * SCHED_LOAD_SCALE)
3187 tmp = sg_div_cpu_power(this,
3188 max_load * busiest->__cpu_power);
3189 else
3190 tmp = sg_div_cpu_power(this,
3191 busiest_load_per_task * SCHED_LOAD_SCALE);
3192 pwr_move += this->__cpu_power *
3193 min(this_load_per_task, this_load + tmp);
3194 pwr_move /= SCHED_LOAD_SCALE;
3196 /* Move if we gain throughput */
3197 if (pwr_move > pwr_now)
3198 *imbalance = busiest_load_per_task;
3201 return busiest;
3203 out_balanced:
3204 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3205 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3206 goto ret;
3208 if (this == group_leader && group_leader != group_min) {
3209 *imbalance = min_load_per_task;
3210 return group_min;
3212 #endif
3213 ret:
3214 *imbalance = 0;
3215 return NULL;
3219 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3221 static struct rq *
3222 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3223 unsigned long imbalance, const cpumask_t *cpus)
3225 struct rq *busiest = NULL, *rq;
3226 unsigned long max_load = 0;
3227 int i;
3229 for_each_cpu_mask(i, group->cpumask) {
3230 unsigned long wl;
3232 if (!cpu_isset(i, *cpus))
3233 continue;
3235 rq = cpu_rq(i);
3236 wl = weighted_cpuload(i);
3238 if (rq->nr_running == 1 && wl > imbalance)
3239 continue;
3241 if (wl > max_load) {
3242 max_load = wl;
3243 busiest = rq;
3247 return busiest;
3251 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3252 * so long as it is large enough.
3254 #define MAX_PINNED_INTERVAL 512
3257 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3258 * tasks if there is an imbalance.
3260 static int load_balance(int this_cpu, struct rq *this_rq,
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *balance, cpumask_t *cpus)
3264 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3265 struct sched_group *group;
3266 unsigned long imbalance;
3267 struct rq *busiest;
3268 unsigned long flags;
3270 cpus_setall(*cpus);
3273 * When power savings policy is enabled for the parent domain, idle
3274 * sibling can pick up load irrespective of busy siblings. In this case,
3275 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3276 * portraying it as CPU_NOT_IDLE.
3278 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3279 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3280 sd_idle = 1;
3282 schedstat_inc(sd, lb_count[idle]);
3284 redo:
3285 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3286 cpus, balance);
3288 if (*balance == 0)
3289 goto out_balanced;
3291 if (!group) {
3292 schedstat_inc(sd, lb_nobusyg[idle]);
3293 goto out_balanced;
3296 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3297 if (!busiest) {
3298 schedstat_inc(sd, lb_nobusyq[idle]);
3299 goto out_balanced;
3302 BUG_ON(busiest == this_rq);
3304 schedstat_add(sd, lb_imbalance[idle], imbalance);
3306 ld_moved = 0;
3307 if (busiest->nr_running > 1) {
3309 * Attempt to move tasks. If find_busiest_group has found
3310 * an imbalance but busiest->nr_running <= 1, the group is
3311 * still unbalanced. ld_moved simply stays zero, so it is
3312 * correctly treated as an imbalance.
3314 local_irq_save(flags);
3315 double_rq_lock(this_rq, busiest);
3316 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3317 imbalance, sd, idle, &all_pinned);
3318 double_rq_unlock(this_rq, busiest);
3319 local_irq_restore(flags);
3322 * some other cpu did the load balance for us.
3324 if (ld_moved && this_cpu != smp_processor_id())
3325 resched_cpu(this_cpu);
3327 /* All tasks on this runqueue were pinned by CPU affinity */
3328 if (unlikely(all_pinned)) {
3329 cpu_clear(cpu_of(busiest), *cpus);
3330 if (!cpus_empty(*cpus))
3331 goto redo;
3332 goto out_balanced;
3336 if (!ld_moved) {
3337 schedstat_inc(sd, lb_failed[idle]);
3338 sd->nr_balance_failed++;
3340 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3342 spin_lock_irqsave(&busiest->lock, flags);
3344 /* don't kick the migration_thread, if the curr
3345 * task on busiest cpu can't be moved to this_cpu
3347 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3348 spin_unlock_irqrestore(&busiest->lock, flags);
3349 all_pinned = 1;
3350 goto out_one_pinned;
3353 if (!busiest->active_balance) {
3354 busiest->active_balance = 1;
3355 busiest->push_cpu = this_cpu;
3356 active_balance = 1;
3358 spin_unlock_irqrestore(&busiest->lock, flags);
3359 if (active_balance)
3360 wake_up_process(busiest->migration_thread);
3363 * We've kicked active balancing, reset the failure
3364 * counter.
3366 sd->nr_balance_failed = sd->cache_nice_tries+1;
3368 } else
3369 sd->nr_balance_failed = 0;
3371 if (likely(!active_balance)) {
3372 /* We were unbalanced, so reset the balancing interval */
3373 sd->balance_interval = sd->min_interval;
3374 } else {
3376 * If we've begun active balancing, start to back off. This
3377 * case may not be covered by the all_pinned logic if there
3378 * is only 1 task on the busy runqueue (because we don't call
3379 * move_tasks).
3381 if (sd->balance_interval < sd->max_interval)
3382 sd->balance_interval *= 2;
3385 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3386 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3387 return -1;
3388 return ld_moved;
3390 out_balanced:
3391 schedstat_inc(sd, lb_balanced[idle]);
3393 sd->nr_balance_failed = 0;
3395 out_one_pinned:
3396 /* tune up the balancing interval */
3397 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3398 (sd->balance_interval < sd->max_interval))
3399 sd->balance_interval *= 2;
3401 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3402 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3403 return -1;
3404 return 0;
3408 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3409 * tasks if there is an imbalance.
3411 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3412 * this_rq is locked.
3414 static int
3415 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3416 cpumask_t *cpus)
3418 struct sched_group *group;
3419 struct rq *busiest = NULL;
3420 unsigned long imbalance;
3421 int ld_moved = 0;
3422 int sd_idle = 0;
3423 int all_pinned = 0;
3425 cpus_setall(*cpus);
3428 * When power savings policy is enabled for the parent domain, idle
3429 * sibling can pick up load irrespective of busy siblings. In this case,
3430 * let the state of idle sibling percolate up as IDLE, instead of
3431 * portraying it as CPU_NOT_IDLE.
3433 if (sd->flags & SD_SHARE_CPUPOWER &&
3434 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3435 sd_idle = 1;
3437 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3438 redo:
3439 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3440 &sd_idle, cpus, NULL);
3441 if (!group) {
3442 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3443 goto out_balanced;
3446 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3447 if (!busiest) {
3448 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3449 goto out_balanced;
3452 BUG_ON(busiest == this_rq);
3454 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3456 ld_moved = 0;
3457 if (busiest->nr_running > 1) {
3458 /* Attempt to move tasks */
3459 double_lock_balance(this_rq, busiest);
3460 /* this_rq->clock is already updated */
3461 update_rq_clock(busiest);
3462 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3463 imbalance, sd, CPU_NEWLY_IDLE,
3464 &all_pinned);
3465 spin_unlock(&busiest->lock);
3467 if (unlikely(all_pinned)) {
3468 cpu_clear(cpu_of(busiest), *cpus);
3469 if (!cpus_empty(*cpus))
3470 goto redo;
3474 if (!ld_moved) {
3475 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3476 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3477 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3478 return -1;
3479 } else
3480 sd->nr_balance_failed = 0;
3482 return ld_moved;
3484 out_balanced:
3485 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3486 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3487 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3488 return -1;
3489 sd->nr_balance_failed = 0;
3491 return 0;
3495 * idle_balance is called by schedule() if this_cpu is about to become
3496 * idle. Attempts to pull tasks from other CPUs.
3498 static void idle_balance(int this_cpu, struct rq *this_rq)
3500 struct sched_domain *sd;
3501 int pulled_task = -1;
3502 unsigned long next_balance = jiffies + HZ;
3503 cpumask_t tmpmask;
3505 for_each_domain(this_cpu, sd) {
3506 unsigned long interval;
3508 if (!(sd->flags & SD_LOAD_BALANCE))
3509 continue;
3511 if (sd->flags & SD_BALANCE_NEWIDLE)
3512 /* If we've pulled tasks over stop searching: */
3513 pulled_task = load_balance_newidle(this_cpu, this_rq,
3514 sd, &tmpmask);
3516 interval = msecs_to_jiffies(sd->balance_interval);
3517 if (time_after(next_balance, sd->last_balance + interval))
3518 next_balance = sd->last_balance + interval;
3519 if (pulled_task)
3520 break;
3522 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3524 * We are going idle. next_balance may be set based on
3525 * a busy processor. So reset next_balance.
3527 this_rq->next_balance = next_balance;
3532 * active_load_balance is run by migration threads. It pushes running tasks
3533 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3534 * running on each physical CPU where possible, and avoids physical /
3535 * logical imbalances.
3537 * Called with busiest_rq locked.
3539 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3541 int target_cpu = busiest_rq->push_cpu;
3542 struct sched_domain *sd;
3543 struct rq *target_rq;
3545 /* Is there any task to move? */
3546 if (busiest_rq->nr_running <= 1)
3547 return;
3549 target_rq = cpu_rq(target_cpu);
3552 * This condition is "impossible", if it occurs
3553 * we need to fix it. Originally reported by
3554 * Bjorn Helgaas on a 128-cpu setup.
3556 BUG_ON(busiest_rq == target_rq);
3558 /* move a task from busiest_rq to target_rq */
3559 double_lock_balance(busiest_rq, target_rq);
3560 update_rq_clock(busiest_rq);
3561 update_rq_clock(target_rq);
3563 /* Search for an sd spanning us and the target CPU. */
3564 for_each_domain(target_cpu, sd) {
3565 if ((sd->flags & SD_LOAD_BALANCE) &&
3566 cpu_isset(busiest_cpu, sd->span))
3567 break;
3570 if (likely(sd)) {
3571 schedstat_inc(sd, alb_count);
3573 if (move_one_task(target_rq, target_cpu, busiest_rq,
3574 sd, CPU_IDLE))
3575 schedstat_inc(sd, alb_pushed);
3576 else
3577 schedstat_inc(sd, alb_failed);
3579 spin_unlock(&target_rq->lock);
3582 #ifdef CONFIG_NO_HZ
3583 static struct {
3584 atomic_t load_balancer;
3585 cpumask_t cpu_mask;
3586 } nohz ____cacheline_aligned = {
3587 .load_balancer = ATOMIC_INIT(-1),
3588 .cpu_mask = CPU_MASK_NONE,
3592 * This routine will try to nominate the ilb (idle load balancing)
3593 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3594 * load balancing on behalf of all those cpus. If all the cpus in the system
3595 * go into this tickless mode, then there will be no ilb owner (as there is
3596 * no need for one) and all the cpus will sleep till the next wakeup event
3597 * arrives...
3599 * For the ilb owner, tick is not stopped. And this tick will be used
3600 * for idle load balancing. ilb owner will still be part of
3601 * nohz.cpu_mask..
3603 * While stopping the tick, this cpu will become the ilb owner if there
3604 * is no other owner. And will be the owner till that cpu becomes busy
3605 * or if all cpus in the system stop their ticks at which point
3606 * there is no need for ilb owner.
3608 * When the ilb owner becomes busy, it nominates another owner, during the
3609 * next busy scheduler_tick()
3611 int select_nohz_load_balancer(int stop_tick)
3613 int cpu = smp_processor_id();
3615 if (stop_tick) {
3616 cpu_set(cpu, nohz.cpu_mask);
3617 cpu_rq(cpu)->in_nohz_recently = 1;
3620 * If we are going offline and still the leader, give up!
3622 if (cpu_is_offline(cpu) &&
3623 atomic_read(&nohz.load_balancer) == cpu) {
3624 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3625 BUG();
3626 return 0;
3629 /* time for ilb owner also to sleep */
3630 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3631 if (atomic_read(&nohz.load_balancer) == cpu)
3632 atomic_set(&nohz.load_balancer, -1);
3633 return 0;
3636 if (atomic_read(&nohz.load_balancer) == -1) {
3637 /* make me the ilb owner */
3638 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3639 return 1;
3640 } else if (atomic_read(&nohz.load_balancer) == cpu)
3641 return 1;
3642 } else {
3643 if (!cpu_isset(cpu, nohz.cpu_mask))
3644 return 0;
3646 cpu_clear(cpu, nohz.cpu_mask);
3648 if (atomic_read(&nohz.load_balancer) == cpu)
3649 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3650 BUG();
3652 return 0;
3654 #endif
3656 static DEFINE_SPINLOCK(balancing);
3659 * It checks each scheduling domain to see if it is due to be balanced,
3660 * and initiates a balancing operation if so.
3662 * Balancing parameters are set up in arch_init_sched_domains.
3664 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3666 int balance = 1;
3667 struct rq *rq = cpu_rq(cpu);
3668 unsigned long interval;
3669 struct sched_domain *sd;
3670 /* Earliest time when we have to do rebalance again */
3671 unsigned long next_balance = jiffies + 60*HZ;
3672 int update_next_balance = 0;
3673 int need_serialize;
3674 cpumask_t tmp;
3676 for_each_domain(cpu, sd) {
3677 if (!(sd->flags & SD_LOAD_BALANCE))
3678 continue;
3680 interval = sd->balance_interval;
3681 if (idle != CPU_IDLE)
3682 interval *= sd->busy_factor;
3684 /* scale ms to jiffies */
3685 interval = msecs_to_jiffies(interval);
3686 if (unlikely(!interval))
3687 interval = 1;
3688 if (interval > HZ*NR_CPUS/10)
3689 interval = HZ*NR_CPUS/10;
3691 need_serialize = sd->flags & SD_SERIALIZE;
3693 if (need_serialize) {
3694 if (!spin_trylock(&balancing))
3695 goto out;
3698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3699 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3701 * We've pulled tasks over so either we're no
3702 * longer idle, or one of our SMT siblings is
3703 * not idle.
3705 idle = CPU_NOT_IDLE;
3707 sd->last_balance = jiffies;
3709 if (need_serialize)
3710 spin_unlock(&balancing);
3711 out:
3712 if (time_after(next_balance, sd->last_balance + interval)) {
3713 next_balance = sd->last_balance + interval;
3714 update_next_balance = 1;
3718 * Stop the load balance at this level. There is another
3719 * CPU in our sched group which is doing load balancing more
3720 * actively.
3722 if (!balance)
3723 break;
3727 * next_balance will be updated only when there is a need.
3728 * When the cpu is attached to null domain for ex, it will not be
3729 * updated.
3731 if (likely(update_next_balance))
3732 rq->next_balance = next_balance;
3736 * run_rebalance_domains is triggered when needed from the scheduler tick.
3737 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3738 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3740 static void run_rebalance_domains(struct softirq_action *h)
3742 int this_cpu = smp_processor_id();
3743 struct rq *this_rq = cpu_rq(this_cpu);
3744 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3745 CPU_IDLE : CPU_NOT_IDLE;
3747 rebalance_domains(this_cpu, idle);
3749 #ifdef CONFIG_NO_HZ
3751 * If this cpu is the owner for idle load balancing, then do the
3752 * balancing on behalf of the other idle cpus whose ticks are
3753 * stopped.
3755 if (this_rq->idle_at_tick &&
3756 atomic_read(&nohz.load_balancer) == this_cpu) {
3757 cpumask_t cpus = nohz.cpu_mask;
3758 struct rq *rq;
3759 int balance_cpu;
3761 cpu_clear(this_cpu, cpus);
3762 for_each_cpu_mask(balance_cpu, cpus) {
3764 * If this cpu gets work to do, stop the load balancing
3765 * work being done for other cpus. Next load
3766 * balancing owner will pick it up.
3768 if (need_resched())
3769 break;
3771 rebalance_domains(balance_cpu, CPU_IDLE);
3773 rq = cpu_rq(balance_cpu);
3774 if (time_after(this_rq->next_balance, rq->next_balance))
3775 this_rq->next_balance = rq->next_balance;
3778 #endif
3782 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3784 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3785 * idle load balancing owner or decide to stop the periodic load balancing,
3786 * if the whole system is idle.
3788 static inline void trigger_load_balance(struct rq *rq, int cpu)
3790 #ifdef CONFIG_NO_HZ
3792 * If we were in the nohz mode recently and busy at the current
3793 * scheduler tick, then check if we need to nominate new idle
3794 * load balancer.
3796 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3797 rq->in_nohz_recently = 0;
3799 if (atomic_read(&nohz.load_balancer) == cpu) {
3800 cpu_clear(cpu, nohz.cpu_mask);
3801 atomic_set(&nohz.load_balancer, -1);
3804 if (atomic_read(&nohz.load_balancer) == -1) {
3806 * simple selection for now: Nominate the
3807 * first cpu in the nohz list to be the next
3808 * ilb owner.
3810 * TBD: Traverse the sched domains and nominate
3811 * the nearest cpu in the nohz.cpu_mask.
3813 int ilb = first_cpu(nohz.cpu_mask);
3815 if (ilb < nr_cpu_ids)
3816 resched_cpu(ilb);
3821 * If this cpu is idle and doing idle load balancing for all the
3822 * cpus with ticks stopped, is it time for that to stop?
3824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3825 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3826 resched_cpu(cpu);
3827 return;
3831 * If this cpu is idle and the idle load balancing is done by
3832 * someone else, then no need raise the SCHED_SOFTIRQ
3834 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3835 cpu_isset(cpu, nohz.cpu_mask))
3836 return;
3837 #endif
3838 if (time_after_eq(jiffies, rq->next_balance))
3839 raise_softirq(SCHED_SOFTIRQ);
3842 #else /* CONFIG_SMP */
3845 * on UP we do not need to balance between CPUs:
3847 static inline void idle_balance(int cpu, struct rq *rq)
3851 #endif
3853 DEFINE_PER_CPU(struct kernel_stat, kstat);
3855 EXPORT_PER_CPU_SYMBOL(kstat);
3858 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3859 * that have not yet been banked in case the task is currently running.
3861 unsigned long long task_sched_runtime(struct task_struct *p)
3863 unsigned long flags;
3864 u64 ns, delta_exec;
3865 struct rq *rq;
3867 rq = task_rq_lock(p, &flags);
3868 ns = p->se.sum_exec_runtime;
3869 if (task_current(rq, p)) {
3870 update_rq_clock(rq);
3871 delta_exec = rq->clock - p->se.exec_start;
3872 if ((s64)delta_exec > 0)
3873 ns += delta_exec;
3875 task_rq_unlock(rq, &flags);
3877 return ns;
3881 * Account user cpu time to a process.
3882 * @p: the process that the cpu time gets accounted to
3883 * @cputime: the cpu time spent in user space since the last update
3885 void account_user_time(struct task_struct *p, cputime_t cputime)
3887 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3888 cputime64_t tmp;
3890 p->utime = cputime_add(p->utime, cputime);
3892 /* Add user time to cpustat. */
3893 tmp = cputime_to_cputime64(cputime);
3894 if (TASK_NICE(p) > 0)
3895 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3896 else
3897 cpustat->user = cputime64_add(cpustat->user, tmp);
3901 * Account guest cpu time to a process.
3902 * @p: the process that the cpu time gets accounted to
3903 * @cputime: the cpu time spent in virtual machine since the last update
3905 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3907 cputime64_t tmp;
3908 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3910 tmp = cputime_to_cputime64(cputime);
3912 p->utime = cputime_add(p->utime, cputime);
3913 p->gtime = cputime_add(p->gtime, cputime);
3915 cpustat->user = cputime64_add(cpustat->user, tmp);
3916 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3920 * Account scaled user cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in user space since the last update
3924 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3926 p->utimescaled = cputime_add(p->utimescaled, cputime);
3930 * Account system cpu time to a process.
3931 * @p: the process that the cpu time gets accounted to
3932 * @hardirq_offset: the offset to subtract from hardirq_count()
3933 * @cputime: the cpu time spent in kernel space since the last update
3935 void account_system_time(struct task_struct *p, int hardirq_offset,
3936 cputime_t cputime)
3938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3939 struct rq *rq = this_rq();
3940 cputime64_t tmp;
3942 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3943 account_guest_time(p, cputime);
3944 return;
3947 p->stime = cputime_add(p->stime, cputime);
3949 /* Add system time to cpustat. */
3950 tmp = cputime_to_cputime64(cputime);
3951 if (hardirq_count() - hardirq_offset)
3952 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3953 else if (softirq_count())
3954 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3955 else if (p != rq->idle)
3956 cpustat->system = cputime64_add(cpustat->system, tmp);
3957 else if (atomic_read(&rq->nr_iowait) > 0)
3958 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3959 else
3960 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3961 /* Account for system time used */
3962 acct_update_integrals(p);
3966 * Account scaled system cpu time to a process.
3967 * @p: the process that the cpu time gets accounted to
3968 * @hardirq_offset: the offset to subtract from hardirq_count()
3969 * @cputime: the cpu time spent in kernel space since the last update
3971 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3973 p->stimescaled = cputime_add(p->stimescaled, cputime);
3977 * Account for involuntary wait time.
3978 * @p: the process from which the cpu time has been stolen
3979 * @steal: the cpu time spent in involuntary wait
3981 void account_steal_time(struct task_struct *p, cputime_t steal)
3983 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3984 cputime64_t tmp = cputime_to_cputime64(steal);
3985 struct rq *rq = this_rq();
3987 if (p == rq->idle) {
3988 p->stime = cputime_add(p->stime, steal);
3989 if (atomic_read(&rq->nr_iowait) > 0)
3990 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3991 else
3992 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3993 } else
3994 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3998 * This function gets called by the timer code, with HZ frequency.
3999 * We call it with interrupts disabled.
4001 * It also gets called by the fork code, when changing the parent's
4002 * timeslices.
4004 void scheduler_tick(void)
4006 int cpu = smp_processor_id();
4007 struct rq *rq = cpu_rq(cpu);
4008 struct task_struct *curr = rq->curr;
4010 sched_clock_tick();
4012 spin_lock(&rq->lock);
4013 update_rq_clock(rq);
4014 update_cpu_load(rq);
4015 curr->sched_class->task_tick(rq, curr, 0);
4016 spin_unlock(&rq->lock);
4018 #ifdef CONFIG_SMP
4019 rq->idle_at_tick = idle_cpu(cpu);
4020 trigger_load_balance(rq, cpu);
4021 #endif
4024 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4026 void __kprobes add_preempt_count(int val)
4029 * Underflow?
4031 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4032 return;
4033 preempt_count() += val;
4035 * Spinlock count overflowing soon?
4037 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4038 PREEMPT_MASK - 10);
4040 EXPORT_SYMBOL(add_preempt_count);
4042 void __kprobes sub_preempt_count(int val)
4045 * Underflow?
4047 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4048 return;
4050 * Is the spinlock portion underflowing?
4052 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4053 !(preempt_count() & PREEMPT_MASK)))
4054 return;
4056 preempt_count() -= val;
4058 EXPORT_SYMBOL(sub_preempt_count);
4060 #endif
4063 * Print scheduling while atomic bug:
4065 static noinline void __schedule_bug(struct task_struct *prev)
4067 struct pt_regs *regs = get_irq_regs();
4069 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4070 prev->comm, prev->pid, preempt_count());
4072 debug_show_held_locks(prev);
4073 if (irqs_disabled())
4074 print_irqtrace_events(prev);
4076 if (regs)
4077 show_regs(regs);
4078 else
4079 dump_stack();
4083 * Various schedule()-time debugging checks and statistics:
4085 static inline void schedule_debug(struct task_struct *prev)
4088 * Test if we are atomic. Since do_exit() needs to call into
4089 * schedule() atomically, we ignore that path for now.
4090 * Otherwise, whine if we are scheduling when we should not be.
4092 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4093 __schedule_bug(prev);
4095 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4097 schedstat_inc(this_rq(), sched_count);
4098 #ifdef CONFIG_SCHEDSTATS
4099 if (unlikely(prev->lock_depth >= 0)) {
4100 schedstat_inc(this_rq(), bkl_count);
4101 schedstat_inc(prev, sched_info.bkl_count);
4103 #endif
4107 * Pick up the highest-prio task:
4109 static inline struct task_struct *
4110 pick_next_task(struct rq *rq, struct task_struct *prev)
4112 const struct sched_class *class;
4113 struct task_struct *p;
4116 * Optimization: we know that if all tasks are in
4117 * the fair class we can call that function directly:
4119 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4120 p = fair_sched_class.pick_next_task(rq);
4121 if (likely(p))
4122 return p;
4125 class = sched_class_highest;
4126 for ( ; ; ) {
4127 p = class->pick_next_task(rq);
4128 if (p)
4129 return p;
4131 * Will never be NULL as the idle class always
4132 * returns a non-NULL p:
4134 class = class->next;
4139 * schedule() is the main scheduler function.
4141 asmlinkage void __sched schedule(void)
4143 struct task_struct *prev, *next;
4144 unsigned long *switch_count;
4145 struct rq *rq;
4146 int cpu, hrtick = sched_feat(HRTICK);
4148 need_resched:
4149 preempt_disable();
4150 cpu = smp_processor_id();
4151 rq = cpu_rq(cpu);
4152 rcu_qsctr_inc(cpu);
4153 prev = rq->curr;
4154 switch_count = &prev->nivcsw;
4156 release_kernel_lock(prev);
4157 need_resched_nonpreemptible:
4159 schedule_debug(prev);
4161 if (hrtick)
4162 hrtick_clear(rq);
4165 * Do the rq-clock update outside the rq lock:
4167 local_irq_disable();
4168 update_rq_clock(rq);
4169 spin_lock(&rq->lock);
4170 clear_tsk_need_resched(prev);
4172 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4173 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4174 signal_pending(prev))) {
4175 prev->state = TASK_RUNNING;
4176 } else {
4177 deactivate_task(rq, prev, 1);
4179 switch_count = &prev->nvcsw;
4182 #ifdef CONFIG_SMP
4183 if (prev->sched_class->pre_schedule)
4184 prev->sched_class->pre_schedule(rq, prev);
4185 #endif
4187 if (unlikely(!rq->nr_running))
4188 idle_balance(cpu, rq);
4190 prev->sched_class->put_prev_task(rq, prev);
4191 next = pick_next_task(rq, prev);
4193 if (likely(prev != next)) {
4194 sched_info_switch(prev, next);
4196 rq->nr_switches++;
4197 rq->curr = next;
4198 ++*switch_count;
4200 context_switch(rq, prev, next); /* unlocks the rq */
4202 * the context switch might have flipped the stack from under
4203 * us, hence refresh the local variables.
4205 cpu = smp_processor_id();
4206 rq = cpu_rq(cpu);
4207 } else
4208 spin_unlock_irq(&rq->lock);
4210 if (hrtick)
4211 hrtick_set(rq);
4213 if (unlikely(reacquire_kernel_lock(current) < 0))
4214 goto need_resched_nonpreemptible;
4216 preempt_enable_no_resched();
4217 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4218 goto need_resched;
4220 EXPORT_SYMBOL(schedule);
4222 #ifdef CONFIG_PREEMPT
4224 * this is the entry point to schedule() from in-kernel preemption
4225 * off of preempt_enable. Kernel preemptions off return from interrupt
4226 * occur there and call schedule directly.
4228 asmlinkage void __sched preempt_schedule(void)
4230 struct thread_info *ti = current_thread_info();
4233 * If there is a non-zero preempt_count or interrupts are disabled,
4234 * we do not want to preempt the current task. Just return..
4236 if (likely(ti->preempt_count || irqs_disabled()))
4237 return;
4239 do {
4240 add_preempt_count(PREEMPT_ACTIVE);
4241 schedule();
4242 sub_preempt_count(PREEMPT_ACTIVE);
4245 * Check again in case we missed a preemption opportunity
4246 * between schedule and now.
4248 barrier();
4249 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4251 EXPORT_SYMBOL(preempt_schedule);
4254 * this is the entry point to schedule() from kernel preemption
4255 * off of irq context.
4256 * Note, that this is called and return with irqs disabled. This will
4257 * protect us against recursive calling from irq.
4259 asmlinkage void __sched preempt_schedule_irq(void)
4261 struct thread_info *ti = current_thread_info();
4263 /* Catch callers which need to be fixed */
4264 BUG_ON(ti->preempt_count || !irqs_disabled());
4266 do {
4267 add_preempt_count(PREEMPT_ACTIVE);
4268 local_irq_enable();
4269 schedule();
4270 local_irq_disable();
4271 sub_preempt_count(PREEMPT_ACTIVE);
4274 * Check again in case we missed a preemption opportunity
4275 * between schedule and now.
4277 barrier();
4278 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4281 #endif /* CONFIG_PREEMPT */
4283 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4284 void *key)
4286 return try_to_wake_up(curr->private, mode, sync);
4288 EXPORT_SYMBOL(default_wake_function);
4291 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4292 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4293 * number) then we wake all the non-exclusive tasks and one exclusive task.
4295 * There are circumstances in which we can try to wake a task which has already
4296 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4297 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4299 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4300 int nr_exclusive, int sync, void *key)
4302 wait_queue_t *curr, *next;
4304 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4305 unsigned flags = curr->flags;
4307 if (curr->func(curr, mode, sync, key) &&
4308 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4309 break;
4314 * __wake_up - wake up threads blocked on a waitqueue.
4315 * @q: the waitqueue
4316 * @mode: which threads
4317 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4318 * @key: is directly passed to the wakeup function
4320 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4321 int nr_exclusive, void *key)
4323 unsigned long flags;
4325 spin_lock_irqsave(&q->lock, flags);
4326 __wake_up_common(q, mode, nr_exclusive, 0, key);
4327 spin_unlock_irqrestore(&q->lock, flags);
4329 EXPORT_SYMBOL(__wake_up);
4332 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4334 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4336 __wake_up_common(q, mode, 1, 0, NULL);
4340 * __wake_up_sync - wake up threads blocked on a waitqueue.
4341 * @q: the waitqueue
4342 * @mode: which threads
4343 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4345 * The sync wakeup differs that the waker knows that it will schedule
4346 * away soon, so while the target thread will be woken up, it will not
4347 * be migrated to another CPU - ie. the two threads are 'synchronized'
4348 * with each other. This can prevent needless bouncing between CPUs.
4350 * On UP it can prevent extra preemption.
4352 void
4353 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4355 unsigned long flags;
4356 int sync = 1;
4358 if (unlikely(!q))
4359 return;
4361 if (unlikely(!nr_exclusive))
4362 sync = 0;
4364 spin_lock_irqsave(&q->lock, flags);
4365 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4366 spin_unlock_irqrestore(&q->lock, flags);
4368 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4370 void complete(struct completion *x)
4372 unsigned long flags;
4374 spin_lock_irqsave(&x->wait.lock, flags);
4375 x->done++;
4376 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4377 spin_unlock_irqrestore(&x->wait.lock, flags);
4379 EXPORT_SYMBOL(complete);
4381 void complete_all(struct completion *x)
4383 unsigned long flags;
4385 spin_lock_irqsave(&x->wait.lock, flags);
4386 x->done += UINT_MAX/2;
4387 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4388 spin_unlock_irqrestore(&x->wait.lock, flags);
4390 EXPORT_SYMBOL(complete_all);
4392 static inline long __sched
4393 do_wait_for_common(struct completion *x, long timeout, int state)
4395 if (!x->done) {
4396 DECLARE_WAITQUEUE(wait, current);
4398 wait.flags |= WQ_FLAG_EXCLUSIVE;
4399 __add_wait_queue_tail(&x->wait, &wait);
4400 do {
4401 if ((state == TASK_INTERRUPTIBLE &&
4402 signal_pending(current)) ||
4403 (state == TASK_KILLABLE &&
4404 fatal_signal_pending(current))) {
4405 __remove_wait_queue(&x->wait, &wait);
4406 return -ERESTARTSYS;
4408 __set_current_state(state);
4409 spin_unlock_irq(&x->wait.lock);
4410 timeout = schedule_timeout(timeout);
4411 spin_lock_irq(&x->wait.lock);
4412 if (!timeout) {
4413 __remove_wait_queue(&x->wait, &wait);
4414 return timeout;
4416 } while (!x->done);
4417 __remove_wait_queue(&x->wait, &wait);
4419 x->done--;
4420 return timeout;
4423 static long __sched
4424 wait_for_common(struct completion *x, long timeout, int state)
4426 might_sleep();
4428 spin_lock_irq(&x->wait.lock);
4429 timeout = do_wait_for_common(x, timeout, state);
4430 spin_unlock_irq(&x->wait.lock);
4431 return timeout;
4434 void __sched wait_for_completion(struct completion *x)
4436 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4438 EXPORT_SYMBOL(wait_for_completion);
4440 unsigned long __sched
4441 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4443 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4445 EXPORT_SYMBOL(wait_for_completion_timeout);
4447 int __sched wait_for_completion_interruptible(struct completion *x)
4449 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4450 if (t == -ERESTARTSYS)
4451 return t;
4452 return 0;
4454 EXPORT_SYMBOL(wait_for_completion_interruptible);
4456 unsigned long __sched
4457 wait_for_completion_interruptible_timeout(struct completion *x,
4458 unsigned long timeout)
4460 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4462 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4464 int __sched wait_for_completion_killable(struct completion *x)
4466 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4467 if (t == -ERESTARTSYS)
4468 return t;
4469 return 0;
4471 EXPORT_SYMBOL(wait_for_completion_killable);
4473 static long __sched
4474 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4476 unsigned long flags;
4477 wait_queue_t wait;
4479 init_waitqueue_entry(&wait, current);
4481 __set_current_state(state);
4483 spin_lock_irqsave(&q->lock, flags);
4484 __add_wait_queue(q, &wait);
4485 spin_unlock(&q->lock);
4486 timeout = schedule_timeout(timeout);
4487 spin_lock_irq(&q->lock);
4488 __remove_wait_queue(q, &wait);
4489 spin_unlock_irqrestore(&q->lock, flags);
4491 return timeout;
4494 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4496 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4498 EXPORT_SYMBOL(interruptible_sleep_on);
4500 long __sched
4501 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4503 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4505 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4507 void __sched sleep_on(wait_queue_head_t *q)
4509 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4511 EXPORT_SYMBOL(sleep_on);
4513 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4515 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4517 EXPORT_SYMBOL(sleep_on_timeout);
4519 #ifdef CONFIG_RT_MUTEXES
4522 * rt_mutex_setprio - set the current priority of a task
4523 * @p: task
4524 * @prio: prio value (kernel-internal form)
4526 * This function changes the 'effective' priority of a task. It does
4527 * not touch ->normal_prio like __setscheduler().
4529 * Used by the rt_mutex code to implement priority inheritance logic.
4531 void rt_mutex_setprio(struct task_struct *p, int prio)
4533 unsigned long flags;
4534 int oldprio, on_rq, running;
4535 struct rq *rq;
4536 const struct sched_class *prev_class = p->sched_class;
4538 BUG_ON(prio < 0 || prio > MAX_PRIO);
4540 rq = task_rq_lock(p, &flags);
4541 update_rq_clock(rq);
4543 oldprio = p->prio;
4544 on_rq = p->se.on_rq;
4545 running = task_current(rq, p);
4546 if (on_rq)
4547 dequeue_task(rq, p, 0);
4548 if (running)
4549 p->sched_class->put_prev_task(rq, p);
4551 if (rt_prio(prio))
4552 p->sched_class = &rt_sched_class;
4553 else
4554 p->sched_class = &fair_sched_class;
4556 p->prio = prio;
4558 if (running)
4559 p->sched_class->set_curr_task(rq);
4560 if (on_rq) {
4561 enqueue_task(rq, p, 0);
4563 check_class_changed(rq, p, prev_class, oldprio, running);
4565 task_rq_unlock(rq, &flags);
4568 #endif
4570 void set_user_nice(struct task_struct *p, long nice)
4572 int old_prio, delta, on_rq;
4573 unsigned long flags;
4574 struct rq *rq;
4576 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4577 return;
4579 * We have to be careful, if called from sys_setpriority(),
4580 * the task might be in the middle of scheduling on another CPU.
4582 rq = task_rq_lock(p, &flags);
4583 update_rq_clock(rq);
4585 * The RT priorities are set via sched_setscheduler(), but we still
4586 * allow the 'normal' nice value to be set - but as expected
4587 * it wont have any effect on scheduling until the task is
4588 * SCHED_FIFO/SCHED_RR:
4590 if (task_has_rt_policy(p)) {
4591 p->static_prio = NICE_TO_PRIO(nice);
4592 goto out_unlock;
4594 on_rq = p->se.on_rq;
4595 if (on_rq) {
4596 dequeue_task(rq, p, 0);
4597 dec_load(rq, p);
4600 p->static_prio = NICE_TO_PRIO(nice);
4601 set_load_weight(p);
4602 old_prio = p->prio;
4603 p->prio = effective_prio(p);
4604 delta = p->prio - old_prio;
4606 if (on_rq) {
4607 enqueue_task(rq, p, 0);
4608 inc_load(rq, p);
4610 * If the task increased its priority or is running and
4611 * lowered its priority, then reschedule its CPU:
4613 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4614 resched_task(rq->curr);
4616 out_unlock:
4617 task_rq_unlock(rq, &flags);
4619 EXPORT_SYMBOL(set_user_nice);
4622 * can_nice - check if a task can reduce its nice value
4623 * @p: task
4624 * @nice: nice value
4626 int can_nice(const struct task_struct *p, const int nice)
4628 /* convert nice value [19,-20] to rlimit style value [1,40] */
4629 int nice_rlim = 20 - nice;
4631 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4632 capable(CAP_SYS_NICE));
4635 #ifdef __ARCH_WANT_SYS_NICE
4638 * sys_nice - change the priority of the current process.
4639 * @increment: priority increment
4641 * sys_setpriority is a more generic, but much slower function that
4642 * does similar things.
4644 asmlinkage long sys_nice(int increment)
4646 long nice, retval;
4649 * Setpriority might change our priority at the same moment.
4650 * We don't have to worry. Conceptually one call occurs first
4651 * and we have a single winner.
4653 if (increment < -40)
4654 increment = -40;
4655 if (increment > 40)
4656 increment = 40;
4658 nice = PRIO_TO_NICE(current->static_prio) + increment;
4659 if (nice < -20)
4660 nice = -20;
4661 if (nice > 19)
4662 nice = 19;
4664 if (increment < 0 && !can_nice(current, nice))
4665 return -EPERM;
4667 retval = security_task_setnice(current, nice);
4668 if (retval)
4669 return retval;
4671 set_user_nice(current, nice);
4672 return 0;
4675 #endif
4678 * task_prio - return the priority value of a given task.
4679 * @p: the task in question.
4681 * This is the priority value as seen by users in /proc.
4682 * RT tasks are offset by -200. Normal tasks are centered
4683 * around 0, value goes from -16 to +15.
4685 int task_prio(const struct task_struct *p)
4687 return p->prio - MAX_RT_PRIO;
4691 * task_nice - return the nice value of a given task.
4692 * @p: the task in question.
4694 int task_nice(const struct task_struct *p)
4696 return TASK_NICE(p);
4698 EXPORT_SYMBOL(task_nice);
4701 * idle_cpu - is a given cpu idle currently?
4702 * @cpu: the processor in question.
4704 int idle_cpu(int cpu)
4706 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4710 * idle_task - return the idle task for a given cpu.
4711 * @cpu: the processor in question.
4713 struct task_struct *idle_task(int cpu)
4715 return cpu_rq(cpu)->idle;
4719 * find_process_by_pid - find a process with a matching PID value.
4720 * @pid: the pid in question.
4722 static struct task_struct *find_process_by_pid(pid_t pid)
4724 return pid ? find_task_by_vpid(pid) : current;
4727 /* Actually do priority change: must hold rq lock. */
4728 static void
4729 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4731 BUG_ON(p->se.on_rq);
4733 p->policy = policy;
4734 switch (p->policy) {
4735 case SCHED_NORMAL:
4736 case SCHED_BATCH:
4737 case SCHED_IDLE:
4738 p->sched_class = &fair_sched_class;
4739 break;
4740 case SCHED_FIFO:
4741 case SCHED_RR:
4742 p->sched_class = &rt_sched_class;
4743 break;
4746 p->rt_priority = prio;
4747 p->normal_prio = normal_prio(p);
4748 /* we are holding p->pi_lock already */
4749 p->prio = rt_mutex_getprio(p);
4750 set_load_weight(p);
4754 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4755 * @p: the task in question.
4756 * @policy: new policy.
4757 * @param: structure containing the new RT priority.
4759 * NOTE that the task may be already dead.
4761 int sched_setscheduler(struct task_struct *p, int policy,
4762 struct sched_param *param)
4764 int retval, oldprio, oldpolicy = -1, on_rq, running;
4765 unsigned long flags;
4766 const struct sched_class *prev_class = p->sched_class;
4767 struct rq *rq;
4769 /* may grab non-irq protected spin_locks */
4770 BUG_ON(in_interrupt());
4771 recheck:
4772 /* double check policy once rq lock held */
4773 if (policy < 0)
4774 policy = oldpolicy = p->policy;
4775 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4776 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4777 policy != SCHED_IDLE)
4778 return -EINVAL;
4780 * Valid priorities for SCHED_FIFO and SCHED_RR are
4781 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4782 * SCHED_BATCH and SCHED_IDLE is 0.
4784 if (param->sched_priority < 0 ||
4785 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4786 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4787 return -EINVAL;
4788 if (rt_policy(policy) != (param->sched_priority != 0))
4789 return -EINVAL;
4792 * Allow unprivileged RT tasks to decrease priority:
4794 if (!capable(CAP_SYS_NICE)) {
4795 if (rt_policy(policy)) {
4796 unsigned long rlim_rtprio;
4798 if (!lock_task_sighand(p, &flags))
4799 return -ESRCH;
4800 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4801 unlock_task_sighand(p, &flags);
4803 /* can't set/change the rt policy */
4804 if (policy != p->policy && !rlim_rtprio)
4805 return -EPERM;
4807 /* can't increase priority */
4808 if (param->sched_priority > p->rt_priority &&
4809 param->sched_priority > rlim_rtprio)
4810 return -EPERM;
4813 * Like positive nice levels, dont allow tasks to
4814 * move out of SCHED_IDLE either:
4816 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4817 return -EPERM;
4819 /* can't change other user's priorities */
4820 if ((current->euid != p->euid) &&
4821 (current->euid != p->uid))
4822 return -EPERM;
4825 #ifdef CONFIG_RT_GROUP_SCHED
4827 * Do not allow realtime tasks into groups that have no runtime
4828 * assigned.
4830 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4831 return -EPERM;
4832 #endif
4834 retval = security_task_setscheduler(p, policy, param);
4835 if (retval)
4836 return retval;
4838 * make sure no PI-waiters arrive (or leave) while we are
4839 * changing the priority of the task:
4841 spin_lock_irqsave(&p->pi_lock, flags);
4843 * To be able to change p->policy safely, the apropriate
4844 * runqueue lock must be held.
4846 rq = __task_rq_lock(p);
4847 /* recheck policy now with rq lock held */
4848 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4849 policy = oldpolicy = -1;
4850 __task_rq_unlock(rq);
4851 spin_unlock_irqrestore(&p->pi_lock, flags);
4852 goto recheck;
4854 update_rq_clock(rq);
4855 on_rq = p->se.on_rq;
4856 running = task_current(rq, p);
4857 if (on_rq)
4858 deactivate_task(rq, p, 0);
4859 if (running)
4860 p->sched_class->put_prev_task(rq, p);
4862 oldprio = p->prio;
4863 __setscheduler(rq, p, policy, param->sched_priority);
4865 if (running)
4866 p->sched_class->set_curr_task(rq);
4867 if (on_rq) {
4868 activate_task(rq, p, 0);
4870 check_class_changed(rq, p, prev_class, oldprio, running);
4872 __task_rq_unlock(rq);
4873 spin_unlock_irqrestore(&p->pi_lock, flags);
4875 rt_mutex_adjust_pi(p);
4877 return 0;
4879 EXPORT_SYMBOL_GPL(sched_setscheduler);
4881 static int
4882 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4884 struct sched_param lparam;
4885 struct task_struct *p;
4886 int retval;
4888 if (!param || pid < 0)
4889 return -EINVAL;
4890 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4891 return -EFAULT;
4893 rcu_read_lock();
4894 retval = -ESRCH;
4895 p = find_process_by_pid(pid);
4896 if (p != NULL)
4897 retval = sched_setscheduler(p, policy, &lparam);
4898 rcu_read_unlock();
4900 return retval;
4904 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4905 * @pid: the pid in question.
4906 * @policy: new policy.
4907 * @param: structure containing the new RT priority.
4909 asmlinkage long
4910 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4912 /* negative values for policy are not valid */
4913 if (policy < 0)
4914 return -EINVAL;
4916 return do_sched_setscheduler(pid, policy, param);
4920 * sys_sched_setparam - set/change the RT priority of a thread
4921 * @pid: the pid in question.
4922 * @param: structure containing the new RT priority.
4924 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4926 return do_sched_setscheduler(pid, -1, param);
4930 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4931 * @pid: the pid in question.
4933 asmlinkage long sys_sched_getscheduler(pid_t pid)
4935 struct task_struct *p;
4936 int retval;
4938 if (pid < 0)
4939 return -EINVAL;
4941 retval = -ESRCH;
4942 read_lock(&tasklist_lock);
4943 p = find_process_by_pid(pid);
4944 if (p) {
4945 retval = security_task_getscheduler(p);
4946 if (!retval)
4947 retval = p->policy;
4949 read_unlock(&tasklist_lock);
4950 return retval;
4954 * sys_sched_getscheduler - get the RT priority of a thread
4955 * @pid: the pid in question.
4956 * @param: structure containing the RT priority.
4958 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4960 struct sched_param lp;
4961 struct task_struct *p;
4962 int retval;
4964 if (!param || pid < 0)
4965 return -EINVAL;
4967 read_lock(&tasklist_lock);
4968 p = find_process_by_pid(pid);
4969 retval = -ESRCH;
4970 if (!p)
4971 goto out_unlock;
4973 retval = security_task_getscheduler(p);
4974 if (retval)
4975 goto out_unlock;
4977 lp.sched_priority = p->rt_priority;
4978 read_unlock(&tasklist_lock);
4981 * This one might sleep, we cannot do it with a spinlock held ...
4983 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4985 return retval;
4987 out_unlock:
4988 read_unlock(&tasklist_lock);
4989 return retval;
4992 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
4994 cpumask_t cpus_allowed;
4995 cpumask_t new_mask = *in_mask;
4996 struct task_struct *p;
4997 int retval;
4999 get_online_cpus();
5000 read_lock(&tasklist_lock);
5002 p = find_process_by_pid(pid);
5003 if (!p) {
5004 read_unlock(&tasklist_lock);
5005 put_online_cpus();
5006 return -ESRCH;
5010 * It is not safe to call set_cpus_allowed with the
5011 * tasklist_lock held. We will bump the task_struct's
5012 * usage count and then drop tasklist_lock.
5014 get_task_struct(p);
5015 read_unlock(&tasklist_lock);
5017 retval = -EPERM;
5018 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5019 !capable(CAP_SYS_NICE))
5020 goto out_unlock;
5022 retval = security_task_setscheduler(p, 0, NULL);
5023 if (retval)
5024 goto out_unlock;
5026 cpuset_cpus_allowed(p, &cpus_allowed);
5027 cpus_and(new_mask, new_mask, cpus_allowed);
5028 again:
5029 retval = set_cpus_allowed_ptr(p, &new_mask);
5031 if (!retval) {
5032 cpuset_cpus_allowed(p, &cpus_allowed);
5033 if (!cpus_subset(new_mask, cpus_allowed)) {
5035 * We must have raced with a concurrent cpuset
5036 * update. Just reset the cpus_allowed to the
5037 * cpuset's cpus_allowed
5039 new_mask = cpus_allowed;
5040 goto again;
5043 out_unlock:
5044 put_task_struct(p);
5045 put_online_cpus();
5046 return retval;
5049 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5050 cpumask_t *new_mask)
5052 if (len < sizeof(cpumask_t)) {
5053 memset(new_mask, 0, sizeof(cpumask_t));
5054 } else if (len > sizeof(cpumask_t)) {
5055 len = sizeof(cpumask_t);
5057 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5061 * sys_sched_setaffinity - set the cpu affinity of a process
5062 * @pid: pid of the process
5063 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5064 * @user_mask_ptr: user-space pointer to the new cpu mask
5066 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5067 unsigned long __user *user_mask_ptr)
5069 cpumask_t new_mask;
5070 int retval;
5072 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5073 if (retval)
5074 return retval;
5076 return sched_setaffinity(pid, &new_mask);
5080 * Represents all cpu's present in the system
5081 * In systems capable of hotplug, this map could dynamically grow
5082 * as new cpu's are detected in the system via any platform specific
5083 * method, such as ACPI for e.g.
5086 cpumask_t cpu_present_map __read_mostly;
5087 EXPORT_SYMBOL(cpu_present_map);
5089 #ifndef CONFIG_SMP
5090 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5091 EXPORT_SYMBOL(cpu_online_map);
5093 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5094 EXPORT_SYMBOL(cpu_possible_map);
5095 #endif
5097 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5099 struct task_struct *p;
5100 int retval;
5102 get_online_cpus();
5103 read_lock(&tasklist_lock);
5105 retval = -ESRCH;
5106 p = find_process_by_pid(pid);
5107 if (!p)
5108 goto out_unlock;
5110 retval = security_task_getscheduler(p);
5111 if (retval)
5112 goto out_unlock;
5114 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5116 out_unlock:
5117 read_unlock(&tasklist_lock);
5118 put_online_cpus();
5120 return retval;
5124 * sys_sched_getaffinity - get the cpu affinity of a process
5125 * @pid: pid of the process
5126 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5127 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5129 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5130 unsigned long __user *user_mask_ptr)
5132 int ret;
5133 cpumask_t mask;
5135 if (len < sizeof(cpumask_t))
5136 return -EINVAL;
5138 ret = sched_getaffinity(pid, &mask);
5139 if (ret < 0)
5140 return ret;
5142 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5143 return -EFAULT;
5145 return sizeof(cpumask_t);
5149 * sys_sched_yield - yield the current processor to other threads.
5151 * This function yields the current CPU to other tasks. If there are no
5152 * other threads running on this CPU then this function will return.
5154 asmlinkage long sys_sched_yield(void)
5156 struct rq *rq = this_rq_lock();
5158 schedstat_inc(rq, yld_count);
5159 current->sched_class->yield_task(rq);
5162 * Since we are going to call schedule() anyway, there's
5163 * no need to preempt or enable interrupts:
5165 __release(rq->lock);
5166 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5167 _raw_spin_unlock(&rq->lock);
5168 preempt_enable_no_resched();
5170 schedule();
5172 return 0;
5175 static void __cond_resched(void)
5177 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5178 __might_sleep(__FILE__, __LINE__);
5179 #endif
5181 * The BKS might be reacquired before we have dropped
5182 * PREEMPT_ACTIVE, which could trigger a second
5183 * cond_resched() call.
5185 do {
5186 add_preempt_count(PREEMPT_ACTIVE);
5187 schedule();
5188 sub_preempt_count(PREEMPT_ACTIVE);
5189 } while (need_resched());
5192 int __sched _cond_resched(void)
5194 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5195 system_state == SYSTEM_RUNNING) {
5196 __cond_resched();
5197 return 1;
5199 return 0;
5201 EXPORT_SYMBOL(_cond_resched);
5204 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5205 * call schedule, and on return reacquire the lock.
5207 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5208 * operations here to prevent schedule() from being called twice (once via
5209 * spin_unlock(), once by hand).
5211 int cond_resched_lock(spinlock_t *lock)
5213 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5214 int ret = 0;
5216 if (spin_needbreak(lock) || resched) {
5217 spin_unlock(lock);
5218 if (resched && need_resched())
5219 __cond_resched();
5220 else
5221 cpu_relax();
5222 ret = 1;
5223 spin_lock(lock);
5225 return ret;
5227 EXPORT_SYMBOL(cond_resched_lock);
5229 int __sched cond_resched_softirq(void)
5231 BUG_ON(!in_softirq());
5233 if (need_resched() && system_state == SYSTEM_RUNNING) {
5234 local_bh_enable();
5235 __cond_resched();
5236 local_bh_disable();
5237 return 1;
5239 return 0;
5241 EXPORT_SYMBOL(cond_resched_softirq);
5244 * yield - yield the current processor to other threads.
5246 * This is a shortcut for kernel-space yielding - it marks the
5247 * thread runnable and calls sys_sched_yield().
5249 void __sched yield(void)
5251 set_current_state(TASK_RUNNING);
5252 sys_sched_yield();
5254 EXPORT_SYMBOL(yield);
5257 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5258 * that process accounting knows that this is a task in IO wait state.
5260 * But don't do that if it is a deliberate, throttling IO wait (this task
5261 * has set its backing_dev_info: the queue against which it should throttle)
5263 void __sched io_schedule(void)
5265 struct rq *rq = &__raw_get_cpu_var(runqueues);
5267 delayacct_blkio_start();
5268 atomic_inc(&rq->nr_iowait);
5269 schedule();
5270 atomic_dec(&rq->nr_iowait);
5271 delayacct_blkio_end();
5273 EXPORT_SYMBOL(io_schedule);
5275 long __sched io_schedule_timeout(long timeout)
5277 struct rq *rq = &__raw_get_cpu_var(runqueues);
5278 long ret;
5280 delayacct_blkio_start();
5281 atomic_inc(&rq->nr_iowait);
5282 ret = schedule_timeout(timeout);
5283 atomic_dec(&rq->nr_iowait);
5284 delayacct_blkio_end();
5285 return ret;
5289 * sys_sched_get_priority_max - return maximum RT priority.
5290 * @policy: scheduling class.
5292 * this syscall returns the maximum rt_priority that can be used
5293 * by a given scheduling class.
5295 asmlinkage long sys_sched_get_priority_max(int policy)
5297 int ret = -EINVAL;
5299 switch (policy) {
5300 case SCHED_FIFO:
5301 case SCHED_RR:
5302 ret = MAX_USER_RT_PRIO-1;
5303 break;
5304 case SCHED_NORMAL:
5305 case SCHED_BATCH:
5306 case SCHED_IDLE:
5307 ret = 0;
5308 break;
5310 return ret;
5314 * sys_sched_get_priority_min - return minimum RT priority.
5315 * @policy: scheduling class.
5317 * this syscall returns the minimum rt_priority that can be used
5318 * by a given scheduling class.
5320 asmlinkage long sys_sched_get_priority_min(int policy)
5322 int ret = -EINVAL;
5324 switch (policy) {
5325 case SCHED_FIFO:
5326 case SCHED_RR:
5327 ret = 1;
5328 break;
5329 case SCHED_NORMAL:
5330 case SCHED_BATCH:
5331 case SCHED_IDLE:
5332 ret = 0;
5334 return ret;
5338 * sys_sched_rr_get_interval - return the default timeslice of a process.
5339 * @pid: pid of the process.
5340 * @interval: userspace pointer to the timeslice value.
5342 * this syscall writes the default timeslice value of a given process
5343 * into the user-space timespec buffer. A value of '0' means infinity.
5345 asmlinkage
5346 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5348 struct task_struct *p;
5349 unsigned int time_slice;
5350 int retval;
5351 struct timespec t;
5353 if (pid < 0)
5354 return -EINVAL;
5356 retval = -ESRCH;
5357 read_lock(&tasklist_lock);
5358 p = find_process_by_pid(pid);
5359 if (!p)
5360 goto out_unlock;
5362 retval = security_task_getscheduler(p);
5363 if (retval)
5364 goto out_unlock;
5367 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5368 * tasks that are on an otherwise idle runqueue:
5370 time_slice = 0;
5371 if (p->policy == SCHED_RR) {
5372 time_slice = DEF_TIMESLICE;
5373 } else if (p->policy != SCHED_FIFO) {
5374 struct sched_entity *se = &p->se;
5375 unsigned long flags;
5376 struct rq *rq;
5378 rq = task_rq_lock(p, &flags);
5379 if (rq->cfs.load.weight)
5380 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5381 task_rq_unlock(rq, &flags);
5383 read_unlock(&tasklist_lock);
5384 jiffies_to_timespec(time_slice, &t);
5385 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5386 return retval;
5388 out_unlock:
5389 read_unlock(&tasklist_lock);
5390 return retval;
5393 static const char stat_nam[] = "RSDTtZX";
5395 void sched_show_task(struct task_struct *p)
5397 unsigned long free = 0;
5398 unsigned state;
5400 state = p->state ? __ffs(p->state) + 1 : 0;
5401 printk(KERN_INFO "%-13.13s %c", p->comm,
5402 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5403 #if BITS_PER_LONG == 32
5404 if (state == TASK_RUNNING)
5405 printk(KERN_CONT " running ");
5406 else
5407 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5408 #else
5409 if (state == TASK_RUNNING)
5410 printk(KERN_CONT " running task ");
5411 else
5412 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5413 #endif
5414 #ifdef CONFIG_DEBUG_STACK_USAGE
5416 unsigned long *n = end_of_stack(p);
5417 while (!*n)
5418 n++;
5419 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5421 #endif
5422 printk(KERN_CONT "%5lu %5d %6d\n", free,
5423 task_pid_nr(p), task_pid_nr(p->real_parent));
5425 show_stack(p, NULL);
5428 void show_state_filter(unsigned long state_filter)
5430 struct task_struct *g, *p;
5432 #if BITS_PER_LONG == 32
5433 printk(KERN_INFO
5434 " task PC stack pid father\n");
5435 #else
5436 printk(KERN_INFO
5437 " task PC stack pid father\n");
5438 #endif
5439 read_lock(&tasklist_lock);
5440 do_each_thread(g, p) {
5442 * reset the NMI-timeout, listing all files on a slow
5443 * console might take alot of time:
5445 touch_nmi_watchdog();
5446 if (!state_filter || (p->state & state_filter))
5447 sched_show_task(p);
5448 } while_each_thread(g, p);
5450 touch_all_softlockup_watchdogs();
5452 #ifdef CONFIG_SCHED_DEBUG
5453 sysrq_sched_debug_show();
5454 #endif
5455 read_unlock(&tasklist_lock);
5457 * Only show locks if all tasks are dumped:
5459 if (state_filter == -1)
5460 debug_show_all_locks();
5463 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5465 idle->sched_class = &idle_sched_class;
5469 * init_idle - set up an idle thread for a given CPU
5470 * @idle: task in question
5471 * @cpu: cpu the idle task belongs to
5473 * NOTE: this function does not set the idle thread's NEED_RESCHED
5474 * flag, to make booting more robust.
5476 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5478 struct rq *rq = cpu_rq(cpu);
5479 unsigned long flags;
5481 __sched_fork(idle);
5482 idle->se.exec_start = sched_clock();
5484 idle->prio = idle->normal_prio = MAX_PRIO;
5485 idle->cpus_allowed = cpumask_of_cpu(cpu);
5486 __set_task_cpu(idle, cpu);
5488 spin_lock_irqsave(&rq->lock, flags);
5489 rq->curr = rq->idle = idle;
5490 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5491 idle->oncpu = 1;
5492 #endif
5493 spin_unlock_irqrestore(&rq->lock, flags);
5495 /* Set the preempt count _outside_ the spinlocks! */
5496 #if defined(CONFIG_PREEMPT)
5497 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5498 #else
5499 task_thread_info(idle)->preempt_count = 0;
5500 #endif
5502 * The idle tasks have their own, simple scheduling class:
5504 idle->sched_class = &idle_sched_class;
5508 * In a system that switches off the HZ timer nohz_cpu_mask
5509 * indicates which cpus entered this state. This is used
5510 * in the rcu update to wait only for active cpus. For system
5511 * which do not switch off the HZ timer nohz_cpu_mask should
5512 * always be CPU_MASK_NONE.
5514 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5517 * Increase the granularity value when there are more CPUs,
5518 * because with more CPUs the 'effective latency' as visible
5519 * to users decreases. But the relationship is not linear,
5520 * so pick a second-best guess by going with the log2 of the
5521 * number of CPUs.
5523 * This idea comes from the SD scheduler of Con Kolivas:
5525 static inline void sched_init_granularity(void)
5527 unsigned int factor = 1 + ilog2(num_online_cpus());
5528 const unsigned long limit = 200000000;
5530 sysctl_sched_min_granularity *= factor;
5531 if (sysctl_sched_min_granularity > limit)
5532 sysctl_sched_min_granularity = limit;
5534 sysctl_sched_latency *= factor;
5535 if (sysctl_sched_latency > limit)
5536 sysctl_sched_latency = limit;
5538 sysctl_sched_wakeup_granularity *= factor;
5541 #ifdef CONFIG_SMP
5543 * This is how migration works:
5545 * 1) we queue a struct migration_req structure in the source CPU's
5546 * runqueue and wake up that CPU's migration thread.
5547 * 2) we down() the locked semaphore => thread blocks.
5548 * 3) migration thread wakes up (implicitly it forces the migrated
5549 * thread off the CPU)
5550 * 4) it gets the migration request and checks whether the migrated
5551 * task is still in the wrong runqueue.
5552 * 5) if it's in the wrong runqueue then the migration thread removes
5553 * it and puts it into the right queue.
5554 * 6) migration thread up()s the semaphore.
5555 * 7) we wake up and the migration is done.
5559 * Change a given task's CPU affinity. Migrate the thread to a
5560 * proper CPU and schedule it away if the CPU it's executing on
5561 * is removed from the allowed bitmask.
5563 * NOTE: the caller must have a valid reference to the task, the
5564 * task must not exit() & deallocate itself prematurely. The
5565 * call is not atomic; no spinlocks may be held.
5567 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5569 struct migration_req req;
5570 unsigned long flags;
5571 struct rq *rq;
5572 int ret = 0;
5574 rq = task_rq_lock(p, &flags);
5575 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5576 ret = -EINVAL;
5577 goto out;
5580 if (p->sched_class->set_cpus_allowed)
5581 p->sched_class->set_cpus_allowed(p, new_mask);
5582 else {
5583 p->cpus_allowed = *new_mask;
5584 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5587 /* Can the task run on the task's current CPU? If so, we're done */
5588 if (cpu_isset(task_cpu(p), *new_mask))
5589 goto out;
5591 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5592 /* Need help from migration thread: drop lock and wait. */
5593 task_rq_unlock(rq, &flags);
5594 wake_up_process(rq->migration_thread);
5595 wait_for_completion(&req.done);
5596 tlb_migrate_finish(p->mm);
5597 return 0;
5599 out:
5600 task_rq_unlock(rq, &flags);
5602 return ret;
5604 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5607 * Move (not current) task off this cpu, onto dest cpu. We're doing
5608 * this because either it can't run here any more (set_cpus_allowed()
5609 * away from this CPU, or CPU going down), or because we're
5610 * attempting to rebalance this task on exec (sched_exec).
5612 * So we race with normal scheduler movements, but that's OK, as long
5613 * as the task is no longer on this CPU.
5615 * Returns non-zero if task was successfully migrated.
5617 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5619 struct rq *rq_dest, *rq_src;
5620 int ret = 0, on_rq;
5622 if (unlikely(cpu_is_offline(dest_cpu)))
5623 return ret;
5625 rq_src = cpu_rq(src_cpu);
5626 rq_dest = cpu_rq(dest_cpu);
5628 double_rq_lock(rq_src, rq_dest);
5629 /* Already moved. */
5630 if (task_cpu(p) != src_cpu)
5631 goto out;
5632 /* Affinity changed (again). */
5633 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5634 goto out;
5636 on_rq = p->se.on_rq;
5637 if (on_rq)
5638 deactivate_task(rq_src, p, 0);
5640 set_task_cpu(p, dest_cpu);
5641 if (on_rq) {
5642 activate_task(rq_dest, p, 0);
5643 check_preempt_curr(rq_dest, p);
5645 ret = 1;
5646 out:
5647 double_rq_unlock(rq_src, rq_dest);
5648 return ret;
5652 * migration_thread - this is a highprio system thread that performs
5653 * thread migration by bumping thread off CPU then 'pushing' onto
5654 * another runqueue.
5656 static int migration_thread(void *data)
5658 int cpu = (long)data;
5659 struct rq *rq;
5661 rq = cpu_rq(cpu);
5662 BUG_ON(rq->migration_thread != current);
5664 set_current_state(TASK_INTERRUPTIBLE);
5665 while (!kthread_should_stop()) {
5666 struct migration_req *req;
5667 struct list_head *head;
5669 spin_lock_irq(&rq->lock);
5671 if (cpu_is_offline(cpu)) {
5672 spin_unlock_irq(&rq->lock);
5673 goto wait_to_die;
5676 if (rq->active_balance) {
5677 active_load_balance(rq, cpu);
5678 rq->active_balance = 0;
5681 head = &rq->migration_queue;
5683 if (list_empty(head)) {
5684 spin_unlock_irq(&rq->lock);
5685 schedule();
5686 set_current_state(TASK_INTERRUPTIBLE);
5687 continue;
5689 req = list_entry(head->next, struct migration_req, list);
5690 list_del_init(head->next);
5692 spin_unlock(&rq->lock);
5693 __migrate_task(req->task, cpu, req->dest_cpu);
5694 local_irq_enable();
5696 complete(&req->done);
5698 __set_current_state(TASK_RUNNING);
5699 return 0;
5701 wait_to_die:
5702 /* Wait for kthread_stop */
5703 set_current_state(TASK_INTERRUPTIBLE);
5704 while (!kthread_should_stop()) {
5705 schedule();
5706 set_current_state(TASK_INTERRUPTIBLE);
5708 __set_current_state(TASK_RUNNING);
5709 return 0;
5712 #ifdef CONFIG_HOTPLUG_CPU
5714 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5716 int ret;
5718 local_irq_disable();
5719 ret = __migrate_task(p, src_cpu, dest_cpu);
5720 local_irq_enable();
5721 return ret;
5725 * Figure out where task on dead CPU should go, use force if necessary.
5726 * NOTE: interrupts should be disabled by the caller
5728 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5730 unsigned long flags;
5731 cpumask_t mask;
5732 struct rq *rq;
5733 int dest_cpu;
5735 do {
5736 /* On same node? */
5737 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5738 cpus_and(mask, mask, p->cpus_allowed);
5739 dest_cpu = any_online_cpu(mask);
5741 /* On any allowed CPU? */
5742 if (dest_cpu >= nr_cpu_ids)
5743 dest_cpu = any_online_cpu(p->cpus_allowed);
5745 /* No more Mr. Nice Guy. */
5746 if (dest_cpu >= nr_cpu_ids) {
5747 cpumask_t cpus_allowed;
5749 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5751 * Try to stay on the same cpuset, where the
5752 * current cpuset may be a subset of all cpus.
5753 * The cpuset_cpus_allowed_locked() variant of
5754 * cpuset_cpus_allowed() will not block. It must be
5755 * called within calls to cpuset_lock/cpuset_unlock.
5757 rq = task_rq_lock(p, &flags);
5758 p->cpus_allowed = cpus_allowed;
5759 dest_cpu = any_online_cpu(p->cpus_allowed);
5760 task_rq_unlock(rq, &flags);
5763 * Don't tell them about moving exiting tasks or
5764 * kernel threads (both mm NULL), since they never
5765 * leave kernel.
5767 if (p->mm && printk_ratelimit()) {
5768 printk(KERN_INFO "process %d (%s) no "
5769 "longer affine to cpu%d\n",
5770 task_pid_nr(p), p->comm, dead_cpu);
5773 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5777 * While a dead CPU has no uninterruptible tasks queued at this point,
5778 * it might still have a nonzero ->nr_uninterruptible counter, because
5779 * for performance reasons the counter is not stricly tracking tasks to
5780 * their home CPUs. So we just add the counter to another CPU's counter,
5781 * to keep the global sum constant after CPU-down:
5783 static void migrate_nr_uninterruptible(struct rq *rq_src)
5785 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5786 unsigned long flags;
5788 local_irq_save(flags);
5789 double_rq_lock(rq_src, rq_dest);
5790 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5791 rq_src->nr_uninterruptible = 0;
5792 double_rq_unlock(rq_src, rq_dest);
5793 local_irq_restore(flags);
5796 /* Run through task list and migrate tasks from the dead cpu. */
5797 static void migrate_live_tasks(int src_cpu)
5799 struct task_struct *p, *t;
5801 read_lock(&tasklist_lock);
5803 do_each_thread(t, p) {
5804 if (p == current)
5805 continue;
5807 if (task_cpu(p) == src_cpu)
5808 move_task_off_dead_cpu(src_cpu, p);
5809 } while_each_thread(t, p);
5811 read_unlock(&tasklist_lock);
5815 * Schedules idle task to be the next runnable task on current CPU.
5816 * It does so by boosting its priority to highest possible.
5817 * Used by CPU offline code.
5819 void sched_idle_next(void)
5821 int this_cpu = smp_processor_id();
5822 struct rq *rq = cpu_rq(this_cpu);
5823 struct task_struct *p = rq->idle;
5824 unsigned long flags;
5826 /* cpu has to be offline */
5827 BUG_ON(cpu_online(this_cpu));
5830 * Strictly not necessary since rest of the CPUs are stopped by now
5831 * and interrupts disabled on the current cpu.
5833 spin_lock_irqsave(&rq->lock, flags);
5835 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5837 update_rq_clock(rq);
5838 activate_task(rq, p, 0);
5840 spin_unlock_irqrestore(&rq->lock, flags);
5844 * Ensures that the idle task is using init_mm right before its cpu goes
5845 * offline.
5847 void idle_task_exit(void)
5849 struct mm_struct *mm = current->active_mm;
5851 BUG_ON(cpu_online(smp_processor_id()));
5853 if (mm != &init_mm)
5854 switch_mm(mm, &init_mm, current);
5855 mmdrop(mm);
5858 /* called under rq->lock with disabled interrupts */
5859 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5861 struct rq *rq = cpu_rq(dead_cpu);
5863 /* Must be exiting, otherwise would be on tasklist. */
5864 BUG_ON(!p->exit_state);
5866 /* Cannot have done final schedule yet: would have vanished. */
5867 BUG_ON(p->state == TASK_DEAD);
5869 get_task_struct(p);
5872 * Drop lock around migration; if someone else moves it,
5873 * that's OK. No task can be added to this CPU, so iteration is
5874 * fine.
5876 spin_unlock_irq(&rq->lock);
5877 move_task_off_dead_cpu(dead_cpu, p);
5878 spin_lock_irq(&rq->lock);
5880 put_task_struct(p);
5883 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5884 static void migrate_dead_tasks(unsigned int dead_cpu)
5886 struct rq *rq = cpu_rq(dead_cpu);
5887 struct task_struct *next;
5889 for ( ; ; ) {
5890 if (!rq->nr_running)
5891 break;
5892 update_rq_clock(rq);
5893 next = pick_next_task(rq, rq->curr);
5894 if (!next)
5895 break;
5896 migrate_dead(dead_cpu, next);
5900 #endif /* CONFIG_HOTPLUG_CPU */
5902 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5904 static struct ctl_table sd_ctl_dir[] = {
5906 .procname = "sched_domain",
5907 .mode = 0555,
5909 {0, },
5912 static struct ctl_table sd_ctl_root[] = {
5914 .ctl_name = CTL_KERN,
5915 .procname = "kernel",
5916 .mode = 0555,
5917 .child = sd_ctl_dir,
5919 {0, },
5922 static struct ctl_table *sd_alloc_ctl_entry(int n)
5924 struct ctl_table *entry =
5925 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5927 return entry;
5930 static void sd_free_ctl_entry(struct ctl_table **tablep)
5932 struct ctl_table *entry;
5935 * In the intermediate directories, both the child directory and
5936 * procname are dynamically allocated and could fail but the mode
5937 * will always be set. In the lowest directory the names are
5938 * static strings and all have proc handlers.
5940 for (entry = *tablep; entry->mode; entry++) {
5941 if (entry->child)
5942 sd_free_ctl_entry(&entry->child);
5943 if (entry->proc_handler == NULL)
5944 kfree(entry->procname);
5947 kfree(*tablep);
5948 *tablep = NULL;
5951 static void
5952 set_table_entry(struct ctl_table *entry,
5953 const char *procname, void *data, int maxlen,
5954 mode_t mode, proc_handler *proc_handler)
5956 entry->procname = procname;
5957 entry->data = data;
5958 entry->maxlen = maxlen;
5959 entry->mode = mode;
5960 entry->proc_handler = proc_handler;
5963 static struct ctl_table *
5964 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5966 struct ctl_table *table = sd_alloc_ctl_entry(12);
5968 if (table == NULL)
5969 return NULL;
5971 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5972 sizeof(long), 0644, proc_doulongvec_minmax);
5973 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5974 sizeof(long), 0644, proc_doulongvec_minmax);
5975 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5976 sizeof(int), 0644, proc_dointvec_minmax);
5977 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5978 sizeof(int), 0644, proc_dointvec_minmax);
5979 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5980 sizeof(int), 0644, proc_dointvec_minmax);
5981 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5982 sizeof(int), 0644, proc_dointvec_minmax);
5983 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5984 sizeof(int), 0644, proc_dointvec_minmax);
5985 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5986 sizeof(int), 0644, proc_dointvec_minmax);
5987 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5988 sizeof(int), 0644, proc_dointvec_minmax);
5989 set_table_entry(&table[9], "cache_nice_tries",
5990 &sd->cache_nice_tries,
5991 sizeof(int), 0644, proc_dointvec_minmax);
5992 set_table_entry(&table[10], "flags", &sd->flags,
5993 sizeof(int), 0644, proc_dointvec_minmax);
5994 /* &table[11] is terminator */
5996 return table;
5999 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6001 struct ctl_table *entry, *table;
6002 struct sched_domain *sd;
6003 int domain_num = 0, i;
6004 char buf[32];
6006 for_each_domain(cpu, sd)
6007 domain_num++;
6008 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6009 if (table == NULL)
6010 return NULL;
6012 i = 0;
6013 for_each_domain(cpu, sd) {
6014 snprintf(buf, 32, "domain%d", i);
6015 entry->procname = kstrdup(buf, GFP_KERNEL);
6016 entry->mode = 0555;
6017 entry->child = sd_alloc_ctl_domain_table(sd);
6018 entry++;
6019 i++;
6021 return table;
6024 static struct ctl_table_header *sd_sysctl_header;
6025 static void register_sched_domain_sysctl(void)
6027 int i, cpu_num = num_online_cpus();
6028 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6029 char buf[32];
6031 WARN_ON(sd_ctl_dir[0].child);
6032 sd_ctl_dir[0].child = entry;
6034 if (entry == NULL)
6035 return;
6037 for_each_online_cpu(i) {
6038 snprintf(buf, 32, "cpu%d", i);
6039 entry->procname = kstrdup(buf, GFP_KERNEL);
6040 entry->mode = 0555;
6041 entry->child = sd_alloc_ctl_cpu_table(i);
6042 entry++;
6045 WARN_ON(sd_sysctl_header);
6046 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6049 /* may be called multiple times per register */
6050 static void unregister_sched_domain_sysctl(void)
6052 if (sd_sysctl_header)
6053 unregister_sysctl_table(sd_sysctl_header);
6054 sd_sysctl_header = NULL;
6055 if (sd_ctl_dir[0].child)
6056 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6058 #else
6059 static void register_sched_domain_sysctl(void)
6062 static void unregister_sched_domain_sysctl(void)
6065 #endif
6068 * migration_call - callback that gets triggered when a CPU is added.
6069 * Here we can start up the necessary migration thread for the new CPU.
6071 static int __cpuinit
6072 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6074 struct task_struct *p;
6075 int cpu = (long)hcpu;
6076 unsigned long flags;
6077 struct rq *rq;
6079 switch (action) {
6081 case CPU_UP_PREPARE:
6082 case CPU_UP_PREPARE_FROZEN:
6083 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6084 if (IS_ERR(p))
6085 return NOTIFY_BAD;
6086 kthread_bind(p, cpu);
6087 /* Must be high prio: stop_machine expects to yield to it. */
6088 rq = task_rq_lock(p, &flags);
6089 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6090 task_rq_unlock(rq, &flags);
6091 cpu_rq(cpu)->migration_thread = p;
6092 break;
6094 case CPU_ONLINE:
6095 case CPU_ONLINE_FROZEN:
6096 /* Strictly unnecessary, as first user will wake it. */
6097 wake_up_process(cpu_rq(cpu)->migration_thread);
6099 /* Update our root-domain */
6100 rq = cpu_rq(cpu);
6101 spin_lock_irqsave(&rq->lock, flags);
6102 if (rq->rd) {
6103 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6104 cpu_set(cpu, rq->rd->online);
6106 spin_unlock_irqrestore(&rq->lock, flags);
6107 break;
6109 #ifdef CONFIG_HOTPLUG_CPU
6110 case CPU_UP_CANCELED:
6111 case CPU_UP_CANCELED_FROZEN:
6112 if (!cpu_rq(cpu)->migration_thread)
6113 break;
6114 /* Unbind it from offline cpu so it can run. Fall thru. */
6115 kthread_bind(cpu_rq(cpu)->migration_thread,
6116 any_online_cpu(cpu_online_map));
6117 kthread_stop(cpu_rq(cpu)->migration_thread);
6118 cpu_rq(cpu)->migration_thread = NULL;
6119 break;
6121 case CPU_DEAD:
6122 case CPU_DEAD_FROZEN:
6123 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6124 migrate_live_tasks(cpu);
6125 rq = cpu_rq(cpu);
6126 kthread_stop(rq->migration_thread);
6127 rq->migration_thread = NULL;
6128 /* Idle task back to normal (off runqueue, low prio) */
6129 spin_lock_irq(&rq->lock);
6130 update_rq_clock(rq);
6131 deactivate_task(rq, rq->idle, 0);
6132 rq->idle->static_prio = MAX_PRIO;
6133 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6134 rq->idle->sched_class = &idle_sched_class;
6135 migrate_dead_tasks(cpu);
6136 spin_unlock_irq(&rq->lock);
6137 cpuset_unlock();
6138 migrate_nr_uninterruptible(rq);
6139 BUG_ON(rq->nr_running != 0);
6142 * No need to migrate the tasks: it was best-effort if
6143 * they didn't take sched_hotcpu_mutex. Just wake up
6144 * the requestors.
6146 spin_lock_irq(&rq->lock);
6147 while (!list_empty(&rq->migration_queue)) {
6148 struct migration_req *req;
6150 req = list_entry(rq->migration_queue.next,
6151 struct migration_req, list);
6152 list_del_init(&req->list);
6153 complete(&req->done);
6155 spin_unlock_irq(&rq->lock);
6156 break;
6158 case CPU_DYING:
6159 case CPU_DYING_FROZEN:
6160 /* Update our root-domain */
6161 rq = cpu_rq(cpu);
6162 spin_lock_irqsave(&rq->lock, flags);
6163 if (rq->rd) {
6164 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6165 cpu_clear(cpu, rq->rd->online);
6167 spin_unlock_irqrestore(&rq->lock, flags);
6168 break;
6169 #endif
6171 return NOTIFY_OK;
6174 /* Register at highest priority so that task migration (migrate_all_tasks)
6175 * happens before everything else.
6177 static struct notifier_block __cpuinitdata migration_notifier = {
6178 .notifier_call = migration_call,
6179 .priority = 10
6182 void __init migration_init(void)
6184 void *cpu = (void *)(long)smp_processor_id();
6185 int err;
6187 /* Start one for the boot CPU: */
6188 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6189 BUG_ON(err == NOTIFY_BAD);
6190 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6191 register_cpu_notifier(&migration_notifier);
6193 #endif
6195 #ifdef CONFIG_SMP
6197 #ifdef CONFIG_SCHED_DEBUG
6199 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6200 cpumask_t *groupmask)
6202 struct sched_group *group = sd->groups;
6203 char str[256];
6205 cpulist_scnprintf(str, sizeof(str), sd->span);
6206 cpus_clear(*groupmask);
6208 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6210 if (!(sd->flags & SD_LOAD_BALANCE)) {
6211 printk("does not load-balance\n");
6212 if (sd->parent)
6213 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6214 " has parent");
6215 return -1;
6218 printk(KERN_CONT "span %s\n", str);
6220 if (!cpu_isset(cpu, sd->span)) {
6221 printk(KERN_ERR "ERROR: domain->span does not contain "
6222 "CPU%d\n", cpu);
6224 if (!cpu_isset(cpu, group->cpumask)) {
6225 printk(KERN_ERR "ERROR: domain->groups does not contain"
6226 " CPU%d\n", cpu);
6229 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6230 do {
6231 if (!group) {
6232 printk("\n");
6233 printk(KERN_ERR "ERROR: group is NULL\n");
6234 break;
6237 if (!group->__cpu_power) {
6238 printk(KERN_CONT "\n");
6239 printk(KERN_ERR "ERROR: domain->cpu_power not "
6240 "set\n");
6241 break;
6244 if (!cpus_weight(group->cpumask)) {
6245 printk(KERN_CONT "\n");
6246 printk(KERN_ERR "ERROR: empty group\n");
6247 break;
6250 if (cpus_intersects(*groupmask, group->cpumask)) {
6251 printk(KERN_CONT "\n");
6252 printk(KERN_ERR "ERROR: repeated CPUs\n");
6253 break;
6256 cpus_or(*groupmask, *groupmask, group->cpumask);
6258 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6259 printk(KERN_CONT " %s", str);
6261 group = group->next;
6262 } while (group != sd->groups);
6263 printk(KERN_CONT "\n");
6265 if (!cpus_equal(sd->span, *groupmask))
6266 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6268 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6269 printk(KERN_ERR "ERROR: parent span is not a superset "
6270 "of domain->span\n");
6271 return 0;
6274 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6276 cpumask_t *groupmask;
6277 int level = 0;
6279 if (!sd) {
6280 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6281 return;
6284 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6286 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6287 if (!groupmask) {
6288 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6289 return;
6292 for (;;) {
6293 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6294 break;
6295 level++;
6296 sd = sd->parent;
6297 if (!sd)
6298 break;
6300 kfree(groupmask);
6302 #else
6303 # define sched_domain_debug(sd, cpu) do { } while (0)
6304 #endif
6306 static int sd_degenerate(struct sched_domain *sd)
6308 if (cpus_weight(sd->span) == 1)
6309 return 1;
6311 /* Following flags need at least 2 groups */
6312 if (sd->flags & (SD_LOAD_BALANCE |
6313 SD_BALANCE_NEWIDLE |
6314 SD_BALANCE_FORK |
6315 SD_BALANCE_EXEC |
6316 SD_SHARE_CPUPOWER |
6317 SD_SHARE_PKG_RESOURCES)) {
6318 if (sd->groups != sd->groups->next)
6319 return 0;
6322 /* Following flags don't use groups */
6323 if (sd->flags & (SD_WAKE_IDLE |
6324 SD_WAKE_AFFINE |
6325 SD_WAKE_BALANCE))
6326 return 0;
6328 return 1;
6331 static int
6332 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6334 unsigned long cflags = sd->flags, pflags = parent->flags;
6336 if (sd_degenerate(parent))
6337 return 1;
6339 if (!cpus_equal(sd->span, parent->span))
6340 return 0;
6342 /* Does parent contain flags not in child? */
6343 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6344 if (cflags & SD_WAKE_AFFINE)
6345 pflags &= ~SD_WAKE_BALANCE;
6346 /* Flags needing groups don't count if only 1 group in parent */
6347 if (parent->groups == parent->groups->next) {
6348 pflags &= ~(SD_LOAD_BALANCE |
6349 SD_BALANCE_NEWIDLE |
6350 SD_BALANCE_FORK |
6351 SD_BALANCE_EXEC |
6352 SD_SHARE_CPUPOWER |
6353 SD_SHARE_PKG_RESOURCES);
6355 if (~cflags & pflags)
6356 return 0;
6358 return 1;
6361 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6363 unsigned long flags;
6364 const struct sched_class *class;
6366 spin_lock_irqsave(&rq->lock, flags);
6368 if (rq->rd) {
6369 struct root_domain *old_rd = rq->rd;
6371 for (class = sched_class_highest; class; class = class->next) {
6372 if (class->leave_domain)
6373 class->leave_domain(rq);
6376 cpu_clear(rq->cpu, old_rd->span);
6377 cpu_clear(rq->cpu, old_rd->online);
6379 if (atomic_dec_and_test(&old_rd->refcount))
6380 kfree(old_rd);
6383 atomic_inc(&rd->refcount);
6384 rq->rd = rd;
6386 cpu_set(rq->cpu, rd->span);
6387 if (cpu_isset(rq->cpu, cpu_online_map))
6388 cpu_set(rq->cpu, rd->online);
6390 for (class = sched_class_highest; class; class = class->next) {
6391 if (class->join_domain)
6392 class->join_domain(rq);
6395 spin_unlock_irqrestore(&rq->lock, flags);
6398 static void init_rootdomain(struct root_domain *rd)
6400 memset(rd, 0, sizeof(*rd));
6402 cpus_clear(rd->span);
6403 cpus_clear(rd->online);
6405 cpupri_init(&rd->cpupri);
6408 static void init_defrootdomain(void)
6410 init_rootdomain(&def_root_domain);
6411 atomic_set(&def_root_domain.refcount, 1);
6414 static struct root_domain *alloc_rootdomain(void)
6416 struct root_domain *rd;
6418 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6419 if (!rd)
6420 return NULL;
6422 init_rootdomain(rd);
6424 return rd;
6428 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6429 * hold the hotplug lock.
6431 static void
6432 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6434 struct rq *rq = cpu_rq(cpu);
6435 struct sched_domain *tmp;
6437 /* Remove the sched domains which do not contribute to scheduling. */
6438 for (tmp = sd; tmp; tmp = tmp->parent) {
6439 struct sched_domain *parent = tmp->parent;
6440 if (!parent)
6441 break;
6442 if (sd_parent_degenerate(tmp, parent)) {
6443 tmp->parent = parent->parent;
6444 if (parent->parent)
6445 parent->parent->child = tmp;
6449 if (sd && sd_degenerate(sd)) {
6450 sd = sd->parent;
6451 if (sd)
6452 sd->child = NULL;
6455 sched_domain_debug(sd, cpu);
6457 rq_attach_root(rq, rd);
6458 rcu_assign_pointer(rq->sd, sd);
6461 /* cpus with isolated domains */
6462 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6464 /* Setup the mask of cpus configured for isolated domains */
6465 static int __init isolated_cpu_setup(char *str)
6467 int ints[NR_CPUS], i;
6469 str = get_options(str, ARRAY_SIZE(ints), ints);
6470 cpus_clear(cpu_isolated_map);
6471 for (i = 1; i <= ints[0]; i++)
6472 if (ints[i] < NR_CPUS)
6473 cpu_set(ints[i], cpu_isolated_map);
6474 return 1;
6477 __setup("isolcpus=", isolated_cpu_setup);
6480 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6481 * to a function which identifies what group(along with sched group) a CPU
6482 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6483 * (due to the fact that we keep track of groups covered with a cpumask_t).
6485 * init_sched_build_groups will build a circular linked list of the groups
6486 * covered by the given span, and will set each group's ->cpumask correctly,
6487 * and ->cpu_power to 0.
6489 static void
6490 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6491 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6492 struct sched_group **sg,
6493 cpumask_t *tmpmask),
6494 cpumask_t *covered, cpumask_t *tmpmask)
6496 struct sched_group *first = NULL, *last = NULL;
6497 int i;
6499 cpus_clear(*covered);
6501 for_each_cpu_mask(i, *span) {
6502 struct sched_group *sg;
6503 int group = group_fn(i, cpu_map, &sg, tmpmask);
6504 int j;
6506 if (cpu_isset(i, *covered))
6507 continue;
6509 cpus_clear(sg->cpumask);
6510 sg->__cpu_power = 0;
6512 for_each_cpu_mask(j, *span) {
6513 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6514 continue;
6516 cpu_set(j, *covered);
6517 cpu_set(j, sg->cpumask);
6519 if (!first)
6520 first = sg;
6521 if (last)
6522 last->next = sg;
6523 last = sg;
6525 last->next = first;
6528 #define SD_NODES_PER_DOMAIN 16
6530 #ifdef CONFIG_NUMA
6533 * find_next_best_node - find the next node to include in a sched_domain
6534 * @node: node whose sched_domain we're building
6535 * @used_nodes: nodes already in the sched_domain
6537 * Find the next node to include in a given scheduling domain. Simply
6538 * finds the closest node not already in the @used_nodes map.
6540 * Should use nodemask_t.
6542 static int find_next_best_node(int node, nodemask_t *used_nodes)
6544 int i, n, val, min_val, best_node = 0;
6546 min_val = INT_MAX;
6548 for (i = 0; i < MAX_NUMNODES; i++) {
6549 /* Start at @node */
6550 n = (node + i) % MAX_NUMNODES;
6552 if (!nr_cpus_node(n))
6553 continue;
6555 /* Skip already used nodes */
6556 if (node_isset(n, *used_nodes))
6557 continue;
6559 /* Simple min distance search */
6560 val = node_distance(node, n);
6562 if (val < min_val) {
6563 min_val = val;
6564 best_node = n;
6568 node_set(best_node, *used_nodes);
6569 return best_node;
6573 * sched_domain_node_span - get a cpumask for a node's sched_domain
6574 * @node: node whose cpumask we're constructing
6575 * @span: resulting cpumask
6577 * Given a node, construct a good cpumask for its sched_domain to span. It
6578 * should be one that prevents unnecessary balancing, but also spreads tasks
6579 * out optimally.
6581 static void sched_domain_node_span(int node, cpumask_t *span)
6583 nodemask_t used_nodes;
6584 node_to_cpumask_ptr(nodemask, node);
6585 int i;
6587 cpus_clear(*span);
6588 nodes_clear(used_nodes);
6590 cpus_or(*span, *span, *nodemask);
6591 node_set(node, used_nodes);
6593 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6594 int next_node = find_next_best_node(node, &used_nodes);
6596 node_to_cpumask_ptr_next(nodemask, next_node);
6597 cpus_or(*span, *span, *nodemask);
6600 #endif
6602 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6605 * SMT sched-domains:
6607 #ifdef CONFIG_SCHED_SMT
6608 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6609 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6611 static int
6612 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6613 cpumask_t *unused)
6615 if (sg)
6616 *sg = &per_cpu(sched_group_cpus, cpu);
6617 return cpu;
6619 #endif
6622 * multi-core sched-domains:
6624 #ifdef CONFIG_SCHED_MC
6625 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6626 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6627 #endif
6629 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6630 static int
6631 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6632 cpumask_t *mask)
6634 int group;
6636 *mask = per_cpu(cpu_sibling_map, cpu);
6637 cpus_and(*mask, *mask, *cpu_map);
6638 group = first_cpu(*mask);
6639 if (sg)
6640 *sg = &per_cpu(sched_group_core, group);
6641 return group;
6643 #elif defined(CONFIG_SCHED_MC)
6644 static int
6645 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6646 cpumask_t *unused)
6648 if (sg)
6649 *sg = &per_cpu(sched_group_core, cpu);
6650 return cpu;
6652 #endif
6654 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6655 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6657 static int
6658 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6659 cpumask_t *mask)
6661 int group;
6662 #ifdef CONFIG_SCHED_MC
6663 *mask = cpu_coregroup_map(cpu);
6664 cpus_and(*mask, *mask, *cpu_map);
6665 group = first_cpu(*mask);
6666 #elif defined(CONFIG_SCHED_SMT)
6667 *mask = per_cpu(cpu_sibling_map, cpu);
6668 cpus_and(*mask, *mask, *cpu_map);
6669 group = first_cpu(*mask);
6670 #else
6671 group = cpu;
6672 #endif
6673 if (sg)
6674 *sg = &per_cpu(sched_group_phys, group);
6675 return group;
6678 #ifdef CONFIG_NUMA
6680 * The init_sched_build_groups can't handle what we want to do with node
6681 * groups, so roll our own. Now each node has its own list of groups which
6682 * gets dynamically allocated.
6684 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6685 static struct sched_group ***sched_group_nodes_bycpu;
6687 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6688 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6690 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6691 struct sched_group **sg, cpumask_t *nodemask)
6693 int group;
6695 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6696 cpus_and(*nodemask, *nodemask, *cpu_map);
6697 group = first_cpu(*nodemask);
6699 if (sg)
6700 *sg = &per_cpu(sched_group_allnodes, group);
6701 return group;
6704 static void init_numa_sched_groups_power(struct sched_group *group_head)
6706 struct sched_group *sg = group_head;
6707 int j;
6709 if (!sg)
6710 return;
6711 do {
6712 for_each_cpu_mask(j, sg->cpumask) {
6713 struct sched_domain *sd;
6715 sd = &per_cpu(phys_domains, j);
6716 if (j != first_cpu(sd->groups->cpumask)) {
6718 * Only add "power" once for each
6719 * physical package.
6721 continue;
6724 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6726 sg = sg->next;
6727 } while (sg != group_head);
6729 #endif
6731 #ifdef CONFIG_NUMA
6732 /* Free memory allocated for various sched_group structures */
6733 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6735 int cpu, i;
6737 for_each_cpu_mask(cpu, *cpu_map) {
6738 struct sched_group **sched_group_nodes
6739 = sched_group_nodes_bycpu[cpu];
6741 if (!sched_group_nodes)
6742 continue;
6744 for (i = 0; i < MAX_NUMNODES; i++) {
6745 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6747 *nodemask = node_to_cpumask(i);
6748 cpus_and(*nodemask, *nodemask, *cpu_map);
6749 if (cpus_empty(*nodemask))
6750 continue;
6752 if (sg == NULL)
6753 continue;
6754 sg = sg->next;
6755 next_sg:
6756 oldsg = sg;
6757 sg = sg->next;
6758 kfree(oldsg);
6759 if (oldsg != sched_group_nodes[i])
6760 goto next_sg;
6762 kfree(sched_group_nodes);
6763 sched_group_nodes_bycpu[cpu] = NULL;
6766 #else
6767 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6770 #endif
6773 * Initialize sched groups cpu_power.
6775 * cpu_power indicates the capacity of sched group, which is used while
6776 * distributing the load between different sched groups in a sched domain.
6777 * Typically cpu_power for all the groups in a sched domain will be same unless
6778 * there are asymmetries in the topology. If there are asymmetries, group
6779 * having more cpu_power will pickup more load compared to the group having
6780 * less cpu_power.
6782 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6783 * the maximum number of tasks a group can handle in the presence of other idle
6784 * or lightly loaded groups in the same sched domain.
6786 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6788 struct sched_domain *child;
6789 struct sched_group *group;
6791 WARN_ON(!sd || !sd->groups);
6793 if (cpu != first_cpu(sd->groups->cpumask))
6794 return;
6796 child = sd->child;
6798 sd->groups->__cpu_power = 0;
6801 * For perf policy, if the groups in child domain share resources
6802 * (for example cores sharing some portions of the cache hierarchy
6803 * or SMT), then set this domain groups cpu_power such that each group
6804 * can handle only one task, when there are other idle groups in the
6805 * same sched domain.
6807 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6808 (child->flags &
6809 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6810 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6811 return;
6815 * add cpu_power of each child group to this groups cpu_power
6817 group = child->groups;
6818 do {
6819 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6820 group = group->next;
6821 } while (group != child->groups);
6825 * Initializers for schedule domains
6826 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6829 #define SD_INIT(sd, type) sd_init_##type(sd)
6830 #define SD_INIT_FUNC(type) \
6831 static noinline void sd_init_##type(struct sched_domain *sd) \
6833 memset(sd, 0, sizeof(*sd)); \
6834 *sd = SD_##type##_INIT; \
6835 sd->level = SD_LV_##type; \
6838 SD_INIT_FUNC(CPU)
6839 #ifdef CONFIG_NUMA
6840 SD_INIT_FUNC(ALLNODES)
6841 SD_INIT_FUNC(NODE)
6842 #endif
6843 #ifdef CONFIG_SCHED_SMT
6844 SD_INIT_FUNC(SIBLING)
6845 #endif
6846 #ifdef CONFIG_SCHED_MC
6847 SD_INIT_FUNC(MC)
6848 #endif
6851 * To minimize stack usage kmalloc room for cpumasks and share the
6852 * space as the usage in build_sched_domains() dictates. Used only
6853 * if the amount of space is significant.
6855 struct allmasks {
6856 cpumask_t tmpmask; /* make this one first */
6857 union {
6858 cpumask_t nodemask;
6859 cpumask_t this_sibling_map;
6860 cpumask_t this_core_map;
6862 cpumask_t send_covered;
6864 #ifdef CONFIG_NUMA
6865 cpumask_t domainspan;
6866 cpumask_t covered;
6867 cpumask_t notcovered;
6868 #endif
6871 #if NR_CPUS > 128
6872 #define SCHED_CPUMASK_ALLOC 1
6873 #define SCHED_CPUMASK_FREE(v) kfree(v)
6874 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6875 #else
6876 #define SCHED_CPUMASK_ALLOC 0
6877 #define SCHED_CPUMASK_FREE(v)
6878 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6879 #endif
6881 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6882 ((unsigned long)(a) + offsetof(struct allmasks, v))
6884 static int default_relax_domain_level = -1;
6886 static int __init setup_relax_domain_level(char *str)
6888 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6889 return 1;
6891 __setup("relax_domain_level=", setup_relax_domain_level);
6893 static void set_domain_attribute(struct sched_domain *sd,
6894 struct sched_domain_attr *attr)
6896 int request;
6898 if (!attr || attr->relax_domain_level < 0) {
6899 if (default_relax_domain_level < 0)
6900 return;
6901 else
6902 request = default_relax_domain_level;
6903 } else
6904 request = attr->relax_domain_level;
6905 if (request < sd->level) {
6906 /* turn off idle balance on this domain */
6907 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6908 } else {
6909 /* turn on idle balance on this domain */
6910 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6915 * Build sched domains for a given set of cpus and attach the sched domains
6916 * to the individual cpus
6918 static int __build_sched_domains(const cpumask_t *cpu_map,
6919 struct sched_domain_attr *attr)
6921 int i;
6922 struct root_domain *rd;
6923 SCHED_CPUMASK_DECLARE(allmasks);
6924 cpumask_t *tmpmask;
6925 #ifdef CONFIG_NUMA
6926 struct sched_group **sched_group_nodes = NULL;
6927 int sd_allnodes = 0;
6930 * Allocate the per-node list of sched groups
6932 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6933 GFP_KERNEL);
6934 if (!sched_group_nodes) {
6935 printk(KERN_WARNING "Can not alloc sched group node list\n");
6936 return -ENOMEM;
6938 #endif
6940 rd = alloc_rootdomain();
6941 if (!rd) {
6942 printk(KERN_WARNING "Cannot alloc root domain\n");
6943 #ifdef CONFIG_NUMA
6944 kfree(sched_group_nodes);
6945 #endif
6946 return -ENOMEM;
6949 #if SCHED_CPUMASK_ALLOC
6950 /* get space for all scratch cpumask variables */
6951 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6952 if (!allmasks) {
6953 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6954 kfree(rd);
6955 #ifdef CONFIG_NUMA
6956 kfree(sched_group_nodes);
6957 #endif
6958 return -ENOMEM;
6960 #endif
6961 tmpmask = (cpumask_t *)allmasks;
6964 #ifdef CONFIG_NUMA
6965 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6966 #endif
6969 * Set up domains for cpus specified by the cpu_map.
6971 for_each_cpu_mask(i, *cpu_map) {
6972 struct sched_domain *sd = NULL, *p;
6973 SCHED_CPUMASK_VAR(nodemask, allmasks);
6975 *nodemask = node_to_cpumask(cpu_to_node(i));
6976 cpus_and(*nodemask, *nodemask, *cpu_map);
6978 #ifdef CONFIG_NUMA
6979 if (cpus_weight(*cpu_map) >
6980 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6981 sd = &per_cpu(allnodes_domains, i);
6982 SD_INIT(sd, ALLNODES);
6983 set_domain_attribute(sd, attr);
6984 sd->span = *cpu_map;
6985 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6986 p = sd;
6987 sd_allnodes = 1;
6988 } else
6989 p = NULL;
6991 sd = &per_cpu(node_domains, i);
6992 SD_INIT(sd, NODE);
6993 set_domain_attribute(sd, attr);
6994 sched_domain_node_span(cpu_to_node(i), &sd->span);
6995 sd->parent = p;
6996 if (p)
6997 p->child = sd;
6998 cpus_and(sd->span, sd->span, *cpu_map);
6999 #endif
7001 p = sd;
7002 sd = &per_cpu(phys_domains, i);
7003 SD_INIT(sd, CPU);
7004 set_domain_attribute(sd, attr);
7005 sd->span = *nodemask;
7006 sd->parent = p;
7007 if (p)
7008 p->child = sd;
7009 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7011 #ifdef CONFIG_SCHED_MC
7012 p = sd;
7013 sd = &per_cpu(core_domains, i);
7014 SD_INIT(sd, MC);
7015 set_domain_attribute(sd, attr);
7016 sd->span = cpu_coregroup_map(i);
7017 cpus_and(sd->span, sd->span, *cpu_map);
7018 sd->parent = p;
7019 p->child = sd;
7020 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7021 #endif
7023 #ifdef CONFIG_SCHED_SMT
7024 p = sd;
7025 sd = &per_cpu(cpu_domains, i);
7026 SD_INIT(sd, SIBLING);
7027 set_domain_attribute(sd, attr);
7028 sd->span = per_cpu(cpu_sibling_map, i);
7029 cpus_and(sd->span, sd->span, *cpu_map);
7030 sd->parent = p;
7031 p->child = sd;
7032 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7033 #endif
7036 #ifdef CONFIG_SCHED_SMT
7037 /* Set up CPU (sibling) groups */
7038 for_each_cpu_mask(i, *cpu_map) {
7039 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7040 SCHED_CPUMASK_VAR(send_covered, allmasks);
7042 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7043 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7044 if (i != first_cpu(*this_sibling_map))
7045 continue;
7047 init_sched_build_groups(this_sibling_map, cpu_map,
7048 &cpu_to_cpu_group,
7049 send_covered, tmpmask);
7051 #endif
7053 #ifdef CONFIG_SCHED_MC
7054 /* Set up multi-core groups */
7055 for_each_cpu_mask(i, *cpu_map) {
7056 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7057 SCHED_CPUMASK_VAR(send_covered, allmasks);
7059 *this_core_map = cpu_coregroup_map(i);
7060 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7061 if (i != first_cpu(*this_core_map))
7062 continue;
7064 init_sched_build_groups(this_core_map, cpu_map,
7065 &cpu_to_core_group,
7066 send_covered, tmpmask);
7068 #endif
7070 /* Set up physical groups */
7071 for (i = 0; i < MAX_NUMNODES; i++) {
7072 SCHED_CPUMASK_VAR(nodemask, allmasks);
7073 SCHED_CPUMASK_VAR(send_covered, allmasks);
7075 *nodemask = node_to_cpumask(i);
7076 cpus_and(*nodemask, *nodemask, *cpu_map);
7077 if (cpus_empty(*nodemask))
7078 continue;
7080 init_sched_build_groups(nodemask, cpu_map,
7081 &cpu_to_phys_group,
7082 send_covered, tmpmask);
7085 #ifdef CONFIG_NUMA
7086 /* Set up node groups */
7087 if (sd_allnodes) {
7088 SCHED_CPUMASK_VAR(send_covered, allmasks);
7090 init_sched_build_groups(cpu_map, cpu_map,
7091 &cpu_to_allnodes_group,
7092 send_covered, tmpmask);
7095 for (i = 0; i < MAX_NUMNODES; i++) {
7096 /* Set up node groups */
7097 struct sched_group *sg, *prev;
7098 SCHED_CPUMASK_VAR(nodemask, allmasks);
7099 SCHED_CPUMASK_VAR(domainspan, allmasks);
7100 SCHED_CPUMASK_VAR(covered, allmasks);
7101 int j;
7103 *nodemask = node_to_cpumask(i);
7104 cpus_clear(*covered);
7106 cpus_and(*nodemask, *nodemask, *cpu_map);
7107 if (cpus_empty(*nodemask)) {
7108 sched_group_nodes[i] = NULL;
7109 continue;
7112 sched_domain_node_span(i, domainspan);
7113 cpus_and(*domainspan, *domainspan, *cpu_map);
7115 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7116 if (!sg) {
7117 printk(KERN_WARNING "Can not alloc domain group for "
7118 "node %d\n", i);
7119 goto error;
7121 sched_group_nodes[i] = sg;
7122 for_each_cpu_mask(j, *nodemask) {
7123 struct sched_domain *sd;
7125 sd = &per_cpu(node_domains, j);
7126 sd->groups = sg;
7128 sg->__cpu_power = 0;
7129 sg->cpumask = *nodemask;
7130 sg->next = sg;
7131 cpus_or(*covered, *covered, *nodemask);
7132 prev = sg;
7134 for (j = 0; j < MAX_NUMNODES; j++) {
7135 SCHED_CPUMASK_VAR(notcovered, allmasks);
7136 int n = (i + j) % MAX_NUMNODES;
7137 node_to_cpumask_ptr(pnodemask, n);
7139 cpus_complement(*notcovered, *covered);
7140 cpus_and(*tmpmask, *notcovered, *cpu_map);
7141 cpus_and(*tmpmask, *tmpmask, *domainspan);
7142 if (cpus_empty(*tmpmask))
7143 break;
7145 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7146 if (cpus_empty(*tmpmask))
7147 continue;
7149 sg = kmalloc_node(sizeof(struct sched_group),
7150 GFP_KERNEL, i);
7151 if (!sg) {
7152 printk(KERN_WARNING
7153 "Can not alloc domain group for node %d\n", j);
7154 goto error;
7156 sg->__cpu_power = 0;
7157 sg->cpumask = *tmpmask;
7158 sg->next = prev->next;
7159 cpus_or(*covered, *covered, *tmpmask);
7160 prev->next = sg;
7161 prev = sg;
7164 #endif
7166 /* Calculate CPU power for physical packages and nodes */
7167 #ifdef CONFIG_SCHED_SMT
7168 for_each_cpu_mask(i, *cpu_map) {
7169 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7171 init_sched_groups_power(i, sd);
7173 #endif
7174 #ifdef CONFIG_SCHED_MC
7175 for_each_cpu_mask(i, *cpu_map) {
7176 struct sched_domain *sd = &per_cpu(core_domains, i);
7178 init_sched_groups_power(i, sd);
7180 #endif
7182 for_each_cpu_mask(i, *cpu_map) {
7183 struct sched_domain *sd = &per_cpu(phys_domains, i);
7185 init_sched_groups_power(i, sd);
7188 #ifdef CONFIG_NUMA
7189 for (i = 0; i < MAX_NUMNODES; i++)
7190 init_numa_sched_groups_power(sched_group_nodes[i]);
7192 if (sd_allnodes) {
7193 struct sched_group *sg;
7195 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7196 tmpmask);
7197 init_numa_sched_groups_power(sg);
7199 #endif
7201 /* Attach the domains */
7202 for_each_cpu_mask(i, *cpu_map) {
7203 struct sched_domain *sd;
7204 #ifdef CONFIG_SCHED_SMT
7205 sd = &per_cpu(cpu_domains, i);
7206 #elif defined(CONFIG_SCHED_MC)
7207 sd = &per_cpu(core_domains, i);
7208 #else
7209 sd = &per_cpu(phys_domains, i);
7210 #endif
7211 cpu_attach_domain(sd, rd, i);
7214 SCHED_CPUMASK_FREE((void *)allmasks);
7215 return 0;
7217 #ifdef CONFIG_NUMA
7218 error:
7219 free_sched_groups(cpu_map, tmpmask);
7220 SCHED_CPUMASK_FREE((void *)allmasks);
7221 return -ENOMEM;
7222 #endif
7225 static int build_sched_domains(const cpumask_t *cpu_map)
7227 return __build_sched_domains(cpu_map, NULL);
7230 static cpumask_t *doms_cur; /* current sched domains */
7231 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7232 static struct sched_domain_attr *dattr_cur;
7233 /* attribues of custom domains in 'doms_cur' */
7236 * Special case: If a kmalloc of a doms_cur partition (array of
7237 * cpumask_t) fails, then fallback to a single sched domain,
7238 * as determined by the single cpumask_t fallback_doms.
7240 static cpumask_t fallback_doms;
7242 void __attribute__((weak)) arch_update_cpu_topology(void)
7247 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7248 * For now this just excludes isolated cpus, but could be used to
7249 * exclude other special cases in the future.
7251 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7253 int err;
7255 arch_update_cpu_topology();
7256 ndoms_cur = 1;
7257 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7258 if (!doms_cur)
7259 doms_cur = &fallback_doms;
7260 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7261 dattr_cur = NULL;
7262 err = build_sched_domains(doms_cur);
7263 register_sched_domain_sysctl();
7265 return err;
7268 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7269 cpumask_t *tmpmask)
7271 free_sched_groups(cpu_map, tmpmask);
7275 * Detach sched domains from a group of cpus specified in cpu_map
7276 * These cpus will now be attached to the NULL domain
7278 static void detach_destroy_domains(const cpumask_t *cpu_map)
7280 cpumask_t tmpmask;
7281 int i;
7283 unregister_sched_domain_sysctl();
7285 for_each_cpu_mask(i, *cpu_map)
7286 cpu_attach_domain(NULL, &def_root_domain, i);
7287 synchronize_sched();
7288 arch_destroy_sched_domains(cpu_map, &tmpmask);
7291 /* handle null as "default" */
7292 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7293 struct sched_domain_attr *new, int idx_new)
7295 struct sched_domain_attr tmp;
7297 /* fast path */
7298 if (!new && !cur)
7299 return 1;
7301 tmp = SD_ATTR_INIT;
7302 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7303 new ? (new + idx_new) : &tmp,
7304 sizeof(struct sched_domain_attr));
7308 * Partition sched domains as specified by the 'ndoms_new'
7309 * cpumasks in the array doms_new[] of cpumasks. This compares
7310 * doms_new[] to the current sched domain partitioning, doms_cur[].
7311 * It destroys each deleted domain and builds each new domain.
7313 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7314 * The masks don't intersect (don't overlap.) We should setup one
7315 * sched domain for each mask. CPUs not in any of the cpumasks will
7316 * not be load balanced. If the same cpumask appears both in the
7317 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7318 * it as it is.
7320 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7321 * ownership of it and will kfree it when done with it. If the caller
7322 * failed the kmalloc call, then it can pass in doms_new == NULL,
7323 * and partition_sched_domains() will fallback to the single partition
7324 * 'fallback_doms'.
7326 * Call with hotplug lock held
7328 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7329 struct sched_domain_attr *dattr_new)
7331 int i, j;
7333 mutex_lock(&sched_domains_mutex);
7335 /* always unregister in case we don't destroy any domains */
7336 unregister_sched_domain_sysctl();
7338 if (doms_new == NULL) {
7339 ndoms_new = 1;
7340 doms_new = &fallback_doms;
7341 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7342 dattr_new = NULL;
7345 /* Destroy deleted domains */
7346 for (i = 0; i < ndoms_cur; i++) {
7347 for (j = 0; j < ndoms_new; j++) {
7348 if (cpus_equal(doms_cur[i], doms_new[j])
7349 && dattrs_equal(dattr_cur, i, dattr_new, j))
7350 goto match1;
7352 /* no match - a current sched domain not in new doms_new[] */
7353 detach_destroy_domains(doms_cur + i);
7354 match1:
7358 /* Build new domains */
7359 for (i = 0; i < ndoms_new; i++) {
7360 for (j = 0; j < ndoms_cur; j++) {
7361 if (cpus_equal(doms_new[i], doms_cur[j])
7362 && dattrs_equal(dattr_new, i, dattr_cur, j))
7363 goto match2;
7365 /* no match - add a new doms_new */
7366 __build_sched_domains(doms_new + i,
7367 dattr_new ? dattr_new + i : NULL);
7368 match2:
7372 /* Remember the new sched domains */
7373 if (doms_cur != &fallback_doms)
7374 kfree(doms_cur);
7375 kfree(dattr_cur); /* kfree(NULL) is safe */
7376 doms_cur = doms_new;
7377 dattr_cur = dattr_new;
7378 ndoms_cur = ndoms_new;
7380 register_sched_domain_sysctl();
7382 mutex_unlock(&sched_domains_mutex);
7385 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7386 int arch_reinit_sched_domains(void)
7388 int err;
7390 get_online_cpus();
7391 mutex_lock(&sched_domains_mutex);
7392 detach_destroy_domains(&cpu_online_map);
7393 err = arch_init_sched_domains(&cpu_online_map);
7394 mutex_unlock(&sched_domains_mutex);
7395 put_online_cpus();
7397 return err;
7400 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7402 int ret;
7404 if (buf[0] != '0' && buf[0] != '1')
7405 return -EINVAL;
7407 if (smt)
7408 sched_smt_power_savings = (buf[0] == '1');
7409 else
7410 sched_mc_power_savings = (buf[0] == '1');
7412 ret = arch_reinit_sched_domains();
7414 return ret ? ret : count;
7417 #ifdef CONFIG_SCHED_MC
7418 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7420 return sprintf(page, "%u\n", sched_mc_power_savings);
7422 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7423 const char *buf, size_t count)
7425 return sched_power_savings_store(buf, count, 0);
7427 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7428 sched_mc_power_savings_store);
7429 #endif
7431 #ifdef CONFIG_SCHED_SMT
7432 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7434 return sprintf(page, "%u\n", sched_smt_power_savings);
7436 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7437 const char *buf, size_t count)
7439 return sched_power_savings_store(buf, count, 1);
7441 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7442 sched_smt_power_savings_store);
7443 #endif
7445 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7447 int err = 0;
7449 #ifdef CONFIG_SCHED_SMT
7450 if (smt_capable())
7451 err = sysfs_create_file(&cls->kset.kobj,
7452 &attr_sched_smt_power_savings.attr);
7453 #endif
7454 #ifdef CONFIG_SCHED_MC
7455 if (!err && mc_capable())
7456 err = sysfs_create_file(&cls->kset.kobj,
7457 &attr_sched_mc_power_savings.attr);
7458 #endif
7459 return err;
7461 #endif
7464 * Force a reinitialization of the sched domains hierarchy. The domains
7465 * and groups cannot be updated in place without racing with the balancing
7466 * code, so we temporarily attach all running cpus to the NULL domain
7467 * which will prevent rebalancing while the sched domains are recalculated.
7469 static int update_sched_domains(struct notifier_block *nfb,
7470 unsigned long action, void *hcpu)
7472 switch (action) {
7473 case CPU_UP_PREPARE:
7474 case CPU_UP_PREPARE_FROZEN:
7475 case CPU_DOWN_PREPARE:
7476 case CPU_DOWN_PREPARE_FROZEN:
7477 detach_destroy_domains(&cpu_online_map);
7478 return NOTIFY_OK;
7480 case CPU_UP_CANCELED:
7481 case CPU_UP_CANCELED_FROZEN:
7482 case CPU_DOWN_FAILED:
7483 case CPU_DOWN_FAILED_FROZEN:
7484 case CPU_ONLINE:
7485 case CPU_ONLINE_FROZEN:
7486 case CPU_DEAD:
7487 case CPU_DEAD_FROZEN:
7489 * Fall through and re-initialise the domains.
7491 break;
7492 default:
7493 return NOTIFY_DONE;
7496 /* The hotplug lock is already held by cpu_up/cpu_down */
7497 arch_init_sched_domains(&cpu_online_map);
7499 return NOTIFY_OK;
7502 void __init sched_init_smp(void)
7504 cpumask_t non_isolated_cpus;
7506 #if defined(CONFIG_NUMA)
7507 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7508 GFP_KERNEL);
7509 BUG_ON(sched_group_nodes_bycpu == NULL);
7510 #endif
7511 get_online_cpus();
7512 mutex_lock(&sched_domains_mutex);
7513 arch_init_sched_domains(&cpu_online_map);
7514 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7515 if (cpus_empty(non_isolated_cpus))
7516 cpu_set(smp_processor_id(), non_isolated_cpus);
7517 mutex_unlock(&sched_domains_mutex);
7518 put_online_cpus();
7519 /* XXX: Theoretical race here - CPU may be hotplugged now */
7520 hotcpu_notifier(update_sched_domains, 0);
7521 init_hrtick();
7523 /* Move init over to a non-isolated CPU */
7524 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7525 BUG();
7526 sched_init_granularity();
7528 #else
7529 void __init sched_init_smp(void)
7531 sched_init_granularity();
7533 #endif /* CONFIG_SMP */
7535 int in_sched_functions(unsigned long addr)
7537 return in_lock_functions(addr) ||
7538 (addr >= (unsigned long)__sched_text_start
7539 && addr < (unsigned long)__sched_text_end);
7542 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7544 cfs_rq->tasks_timeline = RB_ROOT;
7545 INIT_LIST_HEAD(&cfs_rq->tasks);
7546 #ifdef CONFIG_FAIR_GROUP_SCHED
7547 cfs_rq->rq = rq;
7548 #endif
7549 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7552 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7554 struct rt_prio_array *array;
7555 int i;
7557 array = &rt_rq->active;
7558 for (i = 0; i < MAX_RT_PRIO; i++) {
7559 INIT_LIST_HEAD(array->xqueue + i);
7560 INIT_LIST_HEAD(array->squeue + i);
7561 __clear_bit(i, array->bitmap);
7563 /* delimiter for bitsearch: */
7564 __set_bit(MAX_RT_PRIO, array->bitmap);
7566 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7567 rt_rq->highest_prio = MAX_RT_PRIO;
7568 #endif
7569 #ifdef CONFIG_SMP
7570 rt_rq->rt_nr_migratory = 0;
7571 rt_rq->overloaded = 0;
7572 #endif
7574 rt_rq->rt_time = 0;
7575 rt_rq->rt_throttled = 0;
7576 rt_rq->rt_runtime = 0;
7577 spin_lock_init(&rt_rq->rt_runtime_lock);
7579 #ifdef CONFIG_RT_GROUP_SCHED
7580 rt_rq->rt_nr_boosted = 0;
7581 rt_rq->rq = rq;
7582 #endif
7585 #ifdef CONFIG_FAIR_GROUP_SCHED
7586 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7587 struct sched_entity *se, int cpu, int add,
7588 struct sched_entity *parent)
7590 struct rq *rq = cpu_rq(cpu);
7591 tg->cfs_rq[cpu] = cfs_rq;
7592 init_cfs_rq(cfs_rq, rq);
7593 cfs_rq->tg = tg;
7594 if (add)
7595 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7597 tg->se[cpu] = se;
7598 /* se could be NULL for init_task_group */
7599 if (!se)
7600 return;
7602 if (!parent)
7603 se->cfs_rq = &rq->cfs;
7604 else
7605 se->cfs_rq = parent->my_q;
7607 se->my_q = cfs_rq;
7608 se->load.weight = tg->shares;
7609 se->load.inv_weight = 0;
7610 se->parent = parent;
7612 #endif
7614 #ifdef CONFIG_RT_GROUP_SCHED
7615 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7616 struct sched_rt_entity *rt_se, int cpu, int add,
7617 struct sched_rt_entity *parent)
7619 struct rq *rq = cpu_rq(cpu);
7621 tg->rt_rq[cpu] = rt_rq;
7622 init_rt_rq(rt_rq, rq);
7623 rt_rq->tg = tg;
7624 rt_rq->rt_se = rt_se;
7625 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7626 if (add)
7627 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7629 tg->rt_se[cpu] = rt_se;
7630 if (!rt_se)
7631 return;
7633 if (!parent)
7634 rt_se->rt_rq = &rq->rt;
7635 else
7636 rt_se->rt_rq = parent->my_q;
7638 rt_se->rt_rq = &rq->rt;
7639 rt_se->my_q = rt_rq;
7640 rt_se->parent = parent;
7641 INIT_LIST_HEAD(&rt_se->run_list);
7643 #endif
7645 void __init sched_init(void)
7647 int i, j;
7648 unsigned long alloc_size = 0, ptr;
7650 #ifdef CONFIG_FAIR_GROUP_SCHED
7651 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7652 #endif
7653 #ifdef CONFIG_RT_GROUP_SCHED
7654 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7655 #endif
7656 #ifdef CONFIG_USER_SCHED
7657 alloc_size *= 2;
7658 #endif
7660 * As sched_init() is called before page_alloc is setup,
7661 * we use alloc_bootmem().
7663 if (alloc_size) {
7664 ptr = (unsigned long)alloc_bootmem(alloc_size);
7666 #ifdef CONFIG_FAIR_GROUP_SCHED
7667 init_task_group.se = (struct sched_entity **)ptr;
7668 ptr += nr_cpu_ids * sizeof(void **);
7670 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7671 ptr += nr_cpu_ids * sizeof(void **);
7673 #ifdef CONFIG_USER_SCHED
7674 root_task_group.se = (struct sched_entity **)ptr;
7675 ptr += nr_cpu_ids * sizeof(void **);
7677 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7678 ptr += nr_cpu_ids * sizeof(void **);
7679 #endif
7680 #endif
7681 #ifdef CONFIG_RT_GROUP_SCHED
7682 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7683 ptr += nr_cpu_ids * sizeof(void **);
7685 init_task_group.rt_rq = (struct rt_rq **)ptr;
7686 ptr += nr_cpu_ids * sizeof(void **);
7688 #ifdef CONFIG_USER_SCHED
7689 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7690 ptr += nr_cpu_ids * sizeof(void **);
7692 root_task_group.rt_rq = (struct rt_rq **)ptr;
7693 ptr += nr_cpu_ids * sizeof(void **);
7694 #endif
7695 #endif
7698 #ifdef CONFIG_SMP
7699 init_defrootdomain();
7700 #endif
7702 init_rt_bandwidth(&def_rt_bandwidth,
7703 global_rt_period(), global_rt_runtime());
7705 #ifdef CONFIG_RT_GROUP_SCHED
7706 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7707 global_rt_period(), global_rt_runtime());
7708 #ifdef CONFIG_USER_SCHED
7709 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7710 global_rt_period(), RUNTIME_INF);
7711 #endif
7712 #endif
7714 #ifdef CONFIG_GROUP_SCHED
7715 list_add(&init_task_group.list, &task_groups);
7716 INIT_LIST_HEAD(&init_task_group.children);
7718 #ifdef CONFIG_USER_SCHED
7719 INIT_LIST_HEAD(&root_task_group.children);
7720 init_task_group.parent = &root_task_group;
7721 list_add(&init_task_group.siblings, &root_task_group.children);
7722 #endif
7723 #endif
7725 for_each_possible_cpu(i) {
7726 struct rq *rq;
7728 rq = cpu_rq(i);
7729 spin_lock_init(&rq->lock);
7730 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7731 rq->nr_running = 0;
7732 init_cfs_rq(&rq->cfs, rq);
7733 init_rt_rq(&rq->rt, rq);
7734 #ifdef CONFIG_FAIR_GROUP_SCHED
7735 init_task_group.shares = init_task_group_load;
7736 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7737 #ifdef CONFIG_CGROUP_SCHED
7739 * How much cpu bandwidth does init_task_group get?
7741 * In case of task-groups formed thr' the cgroup filesystem, it
7742 * gets 100% of the cpu resources in the system. This overall
7743 * system cpu resource is divided among the tasks of
7744 * init_task_group and its child task-groups in a fair manner,
7745 * based on each entity's (task or task-group's) weight
7746 * (se->load.weight).
7748 * In other words, if init_task_group has 10 tasks of weight
7749 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7750 * then A0's share of the cpu resource is:
7752 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7754 * We achieve this by letting init_task_group's tasks sit
7755 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7757 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7758 #elif defined CONFIG_USER_SCHED
7759 root_task_group.shares = NICE_0_LOAD;
7760 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7762 * In case of task-groups formed thr' the user id of tasks,
7763 * init_task_group represents tasks belonging to root user.
7764 * Hence it forms a sibling of all subsequent groups formed.
7765 * In this case, init_task_group gets only a fraction of overall
7766 * system cpu resource, based on the weight assigned to root
7767 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7768 * by letting tasks of init_task_group sit in a separate cfs_rq
7769 * (init_cfs_rq) and having one entity represent this group of
7770 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7772 init_tg_cfs_entry(&init_task_group,
7773 &per_cpu(init_cfs_rq, i),
7774 &per_cpu(init_sched_entity, i), i, 1,
7775 root_task_group.se[i]);
7777 #endif
7778 #endif /* CONFIG_FAIR_GROUP_SCHED */
7780 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7781 #ifdef CONFIG_RT_GROUP_SCHED
7782 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7783 #ifdef CONFIG_CGROUP_SCHED
7784 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7785 #elif defined CONFIG_USER_SCHED
7786 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7787 init_tg_rt_entry(&init_task_group,
7788 &per_cpu(init_rt_rq, i),
7789 &per_cpu(init_sched_rt_entity, i), i, 1,
7790 root_task_group.rt_se[i]);
7791 #endif
7792 #endif
7794 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7795 rq->cpu_load[j] = 0;
7796 #ifdef CONFIG_SMP
7797 rq->sd = NULL;
7798 rq->rd = NULL;
7799 rq->active_balance = 0;
7800 rq->next_balance = jiffies;
7801 rq->push_cpu = 0;
7802 rq->cpu = i;
7803 rq->migration_thread = NULL;
7804 INIT_LIST_HEAD(&rq->migration_queue);
7805 rq_attach_root(rq, &def_root_domain);
7806 #endif
7807 init_rq_hrtick(rq);
7808 atomic_set(&rq->nr_iowait, 0);
7811 set_load_weight(&init_task);
7813 #ifdef CONFIG_PREEMPT_NOTIFIERS
7814 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7815 #endif
7817 #ifdef CONFIG_SMP
7818 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7819 #endif
7821 #ifdef CONFIG_RT_MUTEXES
7822 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7823 #endif
7826 * The boot idle thread does lazy MMU switching as well:
7828 atomic_inc(&init_mm.mm_count);
7829 enter_lazy_tlb(&init_mm, current);
7832 * Make us the idle thread. Technically, schedule() should not be
7833 * called from this thread, however somewhere below it might be,
7834 * but because we are the idle thread, we just pick up running again
7835 * when this runqueue becomes "idle".
7837 init_idle(current, smp_processor_id());
7839 * During early bootup we pretend to be a normal task:
7841 current->sched_class = &fair_sched_class;
7843 scheduler_running = 1;
7846 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7847 void __might_sleep(char *file, int line)
7849 #ifdef in_atomic
7850 static unsigned long prev_jiffy; /* ratelimiting */
7852 if ((in_atomic() || irqs_disabled()) &&
7853 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7854 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7855 return;
7856 prev_jiffy = jiffies;
7857 printk(KERN_ERR "BUG: sleeping function called from invalid"
7858 " context at %s:%d\n", file, line);
7859 printk("in_atomic():%d, irqs_disabled():%d\n",
7860 in_atomic(), irqs_disabled());
7861 debug_show_held_locks(current);
7862 if (irqs_disabled())
7863 print_irqtrace_events(current);
7864 dump_stack();
7866 #endif
7868 EXPORT_SYMBOL(__might_sleep);
7869 #endif
7871 #ifdef CONFIG_MAGIC_SYSRQ
7872 static void normalize_task(struct rq *rq, struct task_struct *p)
7874 int on_rq;
7876 update_rq_clock(rq);
7877 on_rq = p->se.on_rq;
7878 if (on_rq)
7879 deactivate_task(rq, p, 0);
7880 __setscheduler(rq, p, SCHED_NORMAL, 0);
7881 if (on_rq) {
7882 activate_task(rq, p, 0);
7883 resched_task(rq->curr);
7887 void normalize_rt_tasks(void)
7889 struct task_struct *g, *p;
7890 unsigned long flags;
7891 struct rq *rq;
7893 read_lock_irqsave(&tasklist_lock, flags);
7894 do_each_thread(g, p) {
7896 * Only normalize user tasks:
7898 if (!p->mm)
7899 continue;
7901 p->se.exec_start = 0;
7902 #ifdef CONFIG_SCHEDSTATS
7903 p->se.wait_start = 0;
7904 p->se.sleep_start = 0;
7905 p->se.block_start = 0;
7906 #endif
7908 if (!rt_task(p)) {
7910 * Renice negative nice level userspace
7911 * tasks back to 0:
7913 if (TASK_NICE(p) < 0 && p->mm)
7914 set_user_nice(p, 0);
7915 continue;
7918 spin_lock(&p->pi_lock);
7919 rq = __task_rq_lock(p);
7921 normalize_task(rq, p);
7923 __task_rq_unlock(rq);
7924 spin_unlock(&p->pi_lock);
7925 } while_each_thread(g, p);
7927 read_unlock_irqrestore(&tasklist_lock, flags);
7930 #endif /* CONFIG_MAGIC_SYSRQ */
7932 #ifdef CONFIG_IA64
7934 * These functions are only useful for the IA64 MCA handling.
7936 * They can only be called when the whole system has been
7937 * stopped - every CPU needs to be quiescent, and no scheduling
7938 * activity can take place. Using them for anything else would
7939 * be a serious bug, and as a result, they aren't even visible
7940 * under any other configuration.
7944 * curr_task - return the current task for a given cpu.
7945 * @cpu: the processor in question.
7947 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7949 struct task_struct *curr_task(int cpu)
7951 return cpu_curr(cpu);
7955 * set_curr_task - set the current task for a given cpu.
7956 * @cpu: the processor in question.
7957 * @p: the task pointer to set.
7959 * Description: This function must only be used when non-maskable interrupts
7960 * are serviced on a separate stack. It allows the architecture to switch the
7961 * notion of the current task on a cpu in a non-blocking manner. This function
7962 * must be called with all CPU's synchronized, and interrupts disabled, the
7963 * and caller must save the original value of the current task (see
7964 * curr_task() above) and restore that value before reenabling interrupts and
7965 * re-starting the system.
7967 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7969 void set_curr_task(int cpu, struct task_struct *p)
7971 cpu_curr(cpu) = p;
7974 #endif
7976 #ifdef CONFIG_FAIR_GROUP_SCHED
7977 static void free_fair_sched_group(struct task_group *tg)
7979 int i;
7981 for_each_possible_cpu(i) {
7982 if (tg->cfs_rq)
7983 kfree(tg->cfs_rq[i]);
7984 if (tg->se)
7985 kfree(tg->se[i]);
7988 kfree(tg->cfs_rq);
7989 kfree(tg->se);
7992 static
7993 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7995 struct cfs_rq *cfs_rq;
7996 struct sched_entity *se, *parent_se;
7997 struct rq *rq;
7998 int i;
8000 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8001 if (!tg->cfs_rq)
8002 goto err;
8003 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8004 if (!tg->se)
8005 goto err;
8007 tg->shares = NICE_0_LOAD;
8009 for_each_possible_cpu(i) {
8010 rq = cpu_rq(i);
8012 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8013 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8014 if (!cfs_rq)
8015 goto err;
8017 se = kmalloc_node(sizeof(struct sched_entity),
8018 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8019 if (!se)
8020 goto err;
8022 parent_se = parent ? parent->se[i] : NULL;
8023 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8026 return 1;
8028 err:
8029 return 0;
8032 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8034 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8035 &cpu_rq(cpu)->leaf_cfs_rq_list);
8038 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8040 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8042 #else
8043 static inline void free_fair_sched_group(struct task_group *tg)
8047 static inline
8048 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8050 return 1;
8053 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8057 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8060 #endif
8062 #ifdef CONFIG_RT_GROUP_SCHED
8063 static void free_rt_sched_group(struct task_group *tg)
8065 int i;
8067 destroy_rt_bandwidth(&tg->rt_bandwidth);
8069 for_each_possible_cpu(i) {
8070 if (tg->rt_rq)
8071 kfree(tg->rt_rq[i]);
8072 if (tg->rt_se)
8073 kfree(tg->rt_se[i]);
8076 kfree(tg->rt_rq);
8077 kfree(tg->rt_se);
8080 static
8081 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8083 struct rt_rq *rt_rq;
8084 struct sched_rt_entity *rt_se, *parent_se;
8085 struct rq *rq;
8086 int i;
8088 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8089 if (!tg->rt_rq)
8090 goto err;
8091 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8092 if (!tg->rt_se)
8093 goto err;
8095 init_rt_bandwidth(&tg->rt_bandwidth,
8096 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8098 for_each_possible_cpu(i) {
8099 rq = cpu_rq(i);
8101 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8102 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8103 if (!rt_rq)
8104 goto err;
8106 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8107 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8108 if (!rt_se)
8109 goto err;
8111 parent_se = parent ? parent->rt_se[i] : NULL;
8112 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8115 return 1;
8117 err:
8118 return 0;
8121 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8123 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8124 &cpu_rq(cpu)->leaf_rt_rq_list);
8127 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8129 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8131 #else
8132 static inline void free_rt_sched_group(struct task_group *tg)
8136 static inline
8137 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8139 return 1;
8142 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8146 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8149 #endif
8151 #ifdef CONFIG_GROUP_SCHED
8152 static void free_sched_group(struct task_group *tg)
8154 free_fair_sched_group(tg);
8155 free_rt_sched_group(tg);
8156 kfree(tg);
8159 /* allocate runqueue etc for a new task group */
8160 struct task_group *sched_create_group(struct task_group *parent)
8162 struct task_group *tg;
8163 unsigned long flags;
8164 int i;
8166 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8167 if (!tg)
8168 return ERR_PTR(-ENOMEM);
8170 if (!alloc_fair_sched_group(tg, parent))
8171 goto err;
8173 if (!alloc_rt_sched_group(tg, parent))
8174 goto err;
8176 spin_lock_irqsave(&task_group_lock, flags);
8177 for_each_possible_cpu(i) {
8178 register_fair_sched_group(tg, i);
8179 register_rt_sched_group(tg, i);
8181 list_add_rcu(&tg->list, &task_groups);
8183 WARN_ON(!parent); /* root should already exist */
8185 tg->parent = parent;
8186 list_add_rcu(&tg->siblings, &parent->children);
8187 INIT_LIST_HEAD(&tg->children);
8188 spin_unlock_irqrestore(&task_group_lock, flags);
8190 return tg;
8192 err:
8193 free_sched_group(tg);
8194 return ERR_PTR(-ENOMEM);
8197 /* rcu callback to free various structures associated with a task group */
8198 static void free_sched_group_rcu(struct rcu_head *rhp)
8200 /* now it should be safe to free those cfs_rqs */
8201 free_sched_group(container_of(rhp, struct task_group, rcu));
8204 /* Destroy runqueue etc associated with a task group */
8205 void sched_destroy_group(struct task_group *tg)
8207 unsigned long flags;
8208 int i;
8210 spin_lock_irqsave(&task_group_lock, flags);
8211 for_each_possible_cpu(i) {
8212 unregister_fair_sched_group(tg, i);
8213 unregister_rt_sched_group(tg, i);
8215 list_del_rcu(&tg->list);
8216 list_del_rcu(&tg->siblings);
8217 spin_unlock_irqrestore(&task_group_lock, flags);
8219 /* wait for possible concurrent references to cfs_rqs complete */
8220 call_rcu(&tg->rcu, free_sched_group_rcu);
8223 /* change task's runqueue when it moves between groups.
8224 * The caller of this function should have put the task in its new group
8225 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8226 * reflect its new group.
8228 void sched_move_task(struct task_struct *tsk)
8230 int on_rq, running;
8231 unsigned long flags;
8232 struct rq *rq;
8234 rq = task_rq_lock(tsk, &flags);
8236 update_rq_clock(rq);
8238 running = task_current(rq, tsk);
8239 on_rq = tsk->se.on_rq;
8241 if (on_rq)
8242 dequeue_task(rq, tsk, 0);
8243 if (unlikely(running))
8244 tsk->sched_class->put_prev_task(rq, tsk);
8246 set_task_rq(tsk, task_cpu(tsk));
8248 #ifdef CONFIG_FAIR_GROUP_SCHED
8249 if (tsk->sched_class->moved_group)
8250 tsk->sched_class->moved_group(tsk);
8251 #endif
8253 if (unlikely(running))
8254 tsk->sched_class->set_curr_task(rq);
8255 if (on_rq)
8256 enqueue_task(rq, tsk, 0);
8258 task_rq_unlock(rq, &flags);
8260 #endif
8262 #ifdef CONFIG_FAIR_GROUP_SCHED
8263 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8265 struct cfs_rq *cfs_rq = se->cfs_rq;
8266 struct rq *rq = cfs_rq->rq;
8267 int on_rq;
8269 spin_lock_irq(&rq->lock);
8271 on_rq = se->on_rq;
8272 if (on_rq)
8273 dequeue_entity(cfs_rq, se, 0);
8275 se->load.weight = shares;
8276 se->load.inv_weight = 0;
8278 if (on_rq)
8279 enqueue_entity(cfs_rq, se, 0);
8281 spin_unlock_irq(&rq->lock);
8284 static DEFINE_MUTEX(shares_mutex);
8286 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8288 int i;
8289 unsigned long flags;
8292 * We can't change the weight of the root cgroup.
8294 if (!tg->se[0])
8295 return -EINVAL;
8297 if (shares < MIN_SHARES)
8298 shares = MIN_SHARES;
8299 else if (shares > MAX_SHARES)
8300 shares = MAX_SHARES;
8302 mutex_lock(&shares_mutex);
8303 if (tg->shares == shares)
8304 goto done;
8306 spin_lock_irqsave(&task_group_lock, flags);
8307 for_each_possible_cpu(i)
8308 unregister_fair_sched_group(tg, i);
8309 list_del_rcu(&tg->siblings);
8310 spin_unlock_irqrestore(&task_group_lock, flags);
8312 /* wait for any ongoing reference to this group to finish */
8313 synchronize_sched();
8316 * Now we are free to modify the group's share on each cpu
8317 * w/o tripping rebalance_share or load_balance_fair.
8319 tg->shares = shares;
8320 for_each_possible_cpu(i)
8321 set_se_shares(tg->se[i], shares);
8324 * Enable load balance activity on this group, by inserting it back on
8325 * each cpu's rq->leaf_cfs_rq_list.
8327 spin_lock_irqsave(&task_group_lock, flags);
8328 for_each_possible_cpu(i)
8329 register_fair_sched_group(tg, i);
8330 list_add_rcu(&tg->siblings, &tg->parent->children);
8331 spin_unlock_irqrestore(&task_group_lock, flags);
8332 done:
8333 mutex_unlock(&shares_mutex);
8334 return 0;
8337 unsigned long sched_group_shares(struct task_group *tg)
8339 return tg->shares;
8341 #endif
8343 #ifdef CONFIG_RT_GROUP_SCHED
8345 * Ensure that the real time constraints are schedulable.
8347 static DEFINE_MUTEX(rt_constraints_mutex);
8349 static unsigned long to_ratio(u64 period, u64 runtime)
8351 if (runtime == RUNTIME_INF)
8352 return 1ULL << 16;
8354 return div64_u64(runtime << 16, period);
8357 #ifdef CONFIG_CGROUP_SCHED
8358 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8360 struct task_group *tgi, *parent = tg->parent;
8361 unsigned long total = 0;
8363 if (!parent) {
8364 if (global_rt_period() < period)
8365 return 0;
8367 return to_ratio(period, runtime) <
8368 to_ratio(global_rt_period(), global_rt_runtime());
8371 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8372 return 0;
8374 rcu_read_lock();
8375 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8376 if (tgi == tg)
8377 continue;
8379 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8380 tgi->rt_bandwidth.rt_runtime);
8382 rcu_read_unlock();
8384 return total + to_ratio(period, runtime) <
8385 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8386 parent->rt_bandwidth.rt_runtime);
8388 #elif defined CONFIG_USER_SCHED
8389 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8391 struct task_group *tgi;
8392 unsigned long total = 0;
8393 unsigned long global_ratio =
8394 to_ratio(global_rt_period(), global_rt_runtime());
8396 rcu_read_lock();
8397 list_for_each_entry_rcu(tgi, &task_groups, list) {
8398 if (tgi == tg)
8399 continue;
8401 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8402 tgi->rt_bandwidth.rt_runtime);
8404 rcu_read_unlock();
8406 return total + to_ratio(period, runtime) < global_ratio;
8408 #endif
8410 /* Must be called with tasklist_lock held */
8411 static inline int tg_has_rt_tasks(struct task_group *tg)
8413 struct task_struct *g, *p;
8414 do_each_thread(g, p) {
8415 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8416 return 1;
8417 } while_each_thread(g, p);
8418 return 0;
8421 static int tg_set_bandwidth(struct task_group *tg,
8422 u64 rt_period, u64 rt_runtime)
8424 int i, err = 0;
8426 mutex_lock(&rt_constraints_mutex);
8427 read_lock(&tasklist_lock);
8428 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8429 err = -EBUSY;
8430 goto unlock;
8432 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8433 err = -EINVAL;
8434 goto unlock;
8437 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8438 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8439 tg->rt_bandwidth.rt_runtime = rt_runtime;
8441 for_each_possible_cpu(i) {
8442 struct rt_rq *rt_rq = tg->rt_rq[i];
8444 spin_lock(&rt_rq->rt_runtime_lock);
8445 rt_rq->rt_runtime = rt_runtime;
8446 spin_unlock(&rt_rq->rt_runtime_lock);
8448 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8449 unlock:
8450 read_unlock(&tasklist_lock);
8451 mutex_unlock(&rt_constraints_mutex);
8453 return err;
8456 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8458 u64 rt_runtime, rt_period;
8460 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8461 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8462 if (rt_runtime_us < 0)
8463 rt_runtime = RUNTIME_INF;
8465 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8468 long sched_group_rt_runtime(struct task_group *tg)
8470 u64 rt_runtime_us;
8472 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8473 return -1;
8475 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8476 do_div(rt_runtime_us, NSEC_PER_USEC);
8477 return rt_runtime_us;
8480 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8482 u64 rt_runtime, rt_period;
8484 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8485 rt_runtime = tg->rt_bandwidth.rt_runtime;
8487 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8490 long sched_group_rt_period(struct task_group *tg)
8492 u64 rt_period_us;
8494 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8495 do_div(rt_period_us, NSEC_PER_USEC);
8496 return rt_period_us;
8499 static int sched_rt_global_constraints(void)
8501 int ret = 0;
8503 mutex_lock(&rt_constraints_mutex);
8504 if (!__rt_schedulable(NULL, 1, 0))
8505 ret = -EINVAL;
8506 mutex_unlock(&rt_constraints_mutex);
8508 return ret;
8510 #else
8511 static int sched_rt_global_constraints(void)
8513 unsigned long flags;
8514 int i;
8516 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8517 for_each_possible_cpu(i) {
8518 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8520 spin_lock(&rt_rq->rt_runtime_lock);
8521 rt_rq->rt_runtime = global_rt_runtime();
8522 spin_unlock(&rt_rq->rt_runtime_lock);
8524 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8526 return 0;
8528 #endif
8530 int sched_rt_handler(struct ctl_table *table, int write,
8531 struct file *filp, void __user *buffer, size_t *lenp,
8532 loff_t *ppos)
8534 int ret;
8535 int old_period, old_runtime;
8536 static DEFINE_MUTEX(mutex);
8538 mutex_lock(&mutex);
8539 old_period = sysctl_sched_rt_period;
8540 old_runtime = sysctl_sched_rt_runtime;
8542 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8544 if (!ret && write) {
8545 ret = sched_rt_global_constraints();
8546 if (ret) {
8547 sysctl_sched_rt_period = old_period;
8548 sysctl_sched_rt_runtime = old_runtime;
8549 } else {
8550 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8551 def_rt_bandwidth.rt_period =
8552 ns_to_ktime(global_rt_period());
8555 mutex_unlock(&mutex);
8557 return ret;
8560 #ifdef CONFIG_CGROUP_SCHED
8562 /* return corresponding task_group object of a cgroup */
8563 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8565 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8566 struct task_group, css);
8569 static struct cgroup_subsys_state *
8570 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8572 struct task_group *tg, *parent;
8574 if (!cgrp->parent) {
8575 /* This is early initialization for the top cgroup */
8576 init_task_group.css.cgroup = cgrp;
8577 return &init_task_group.css;
8580 parent = cgroup_tg(cgrp->parent);
8581 tg = sched_create_group(parent);
8582 if (IS_ERR(tg))
8583 return ERR_PTR(-ENOMEM);
8585 /* Bind the cgroup to task_group object we just created */
8586 tg->css.cgroup = cgrp;
8588 return &tg->css;
8591 static void
8592 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8594 struct task_group *tg = cgroup_tg(cgrp);
8596 sched_destroy_group(tg);
8599 static int
8600 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8601 struct task_struct *tsk)
8603 #ifdef CONFIG_RT_GROUP_SCHED
8604 /* Don't accept realtime tasks when there is no way for them to run */
8605 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8606 return -EINVAL;
8607 #else
8608 /* We don't support RT-tasks being in separate groups */
8609 if (tsk->sched_class != &fair_sched_class)
8610 return -EINVAL;
8611 #endif
8613 return 0;
8616 static void
8617 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8618 struct cgroup *old_cont, struct task_struct *tsk)
8620 sched_move_task(tsk);
8623 #ifdef CONFIG_FAIR_GROUP_SCHED
8624 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8625 u64 shareval)
8627 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8630 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8632 struct task_group *tg = cgroup_tg(cgrp);
8634 return (u64) tg->shares;
8636 #endif
8638 #ifdef CONFIG_RT_GROUP_SCHED
8639 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8640 s64 val)
8642 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8645 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8647 return sched_group_rt_runtime(cgroup_tg(cgrp));
8650 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8651 u64 rt_period_us)
8653 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8656 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8658 return sched_group_rt_period(cgroup_tg(cgrp));
8660 #endif
8662 static struct cftype cpu_files[] = {
8663 #ifdef CONFIG_FAIR_GROUP_SCHED
8665 .name = "shares",
8666 .read_u64 = cpu_shares_read_u64,
8667 .write_u64 = cpu_shares_write_u64,
8669 #endif
8670 #ifdef CONFIG_RT_GROUP_SCHED
8672 .name = "rt_runtime_us",
8673 .read_s64 = cpu_rt_runtime_read,
8674 .write_s64 = cpu_rt_runtime_write,
8677 .name = "rt_period_us",
8678 .read_u64 = cpu_rt_period_read_uint,
8679 .write_u64 = cpu_rt_period_write_uint,
8681 #endif
8684 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8686 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8689 struct cgroup_subsys cpu_cgroup_subsys = {
8690 .name = "cpu",
8691 .create = cpu_cgroup_create,
8692 .destroy = cpu_cgroup_destroy,
8693 .can_attach = cpu_cgroup_can_attach,
8694 .attach = cpu_cgroup_attach,
8695 .populate = cpu_cgroup_populate,
8696 .subsys_id = cpu_cgroup_subsys_id,
8697 .early_init = 1,
8700 #endif /* CONFIG_CGROUP_SCHED */
8702 #ifdef CONFIG_CGROUP_CPUACCT
8705 * CPU accounting code for task groups.
8707 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8708 * (balbir@in.ibm.com).
8711 /* track cpu usage of a group of tasks */
8712 struct cpuacct {
8713 struct cgroup_subsys_state css;
8714 /* cpuusage holds pointer to a u64-type object on every cpu */
8715 u64 *cpuusage;
8718 struct cgroup_subsys cpuacct_subsys;
8720 /* return cpu accounting group corresponding to this container */
8721 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8723 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8724 struct cpuacct, css);
8727 /* return cpu accounting group to which this task belongs */
8728 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8730 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8731 struct cpuacct, css);
8734 /* create a new cpu accounting group */
8735 static struct cgroup_subsys_state *cpuacct_create(
8736 struct cgroup_subsys *ss, struct cgroup *cgrp)
8738 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8740 if (!ca)
8741 return ERR_PTR(-ENOMEM);
8743 ca->cpuusage = alloc_percpu(u64);
8744 if (!ca->cpuusage) {
8745 kfree(ca);
8746 return ERR_PTR(-ENOMEM);
8749 return &ca->css;
8752 /* destroy an existing cpu accounting group */
8753 static void
8754 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8756 struct cpuacct *ca = cgroup_ca(cgrp);
8758 free_percpu(ca->cpuusage);
8759 kfree(ca);
8762 /* return total cpu usage (in nanoseconds) of a group */
8763 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8765 struct cpuacct *ca = cgroup_ca(cgrp);
8766 u64 totalcpuusage = 0;
8767 int i;
8769 for_each_possible_cpu(i) {
8770 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8773 * Take rq->lock to make 64-bit addition safe on 32-bit
8774 * platforms.
8776 spin_lock_irq(&cpu_rq(i)->lock);
8777 totalcpuusage += *cpuusage;
8778 spin_unlock_irq(&cpu_rq(i)->lock);
8781 return totalcpuusage;
8784 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8785 u64 reset)
8787 struct cpuacct *ca = cgroup_ca(cgrp);
8788 int err = 0;
8789 int i;
8791 if (reset) {
8792 err = -EINVAL;
8793 goto out;
8796 for_each_possible_cpu(i) {
8797 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8799 spin_lock_irq(&cpu_rq(i)->lock);
8800 *cpuusage = 0;
8801 spin_unlock_irq(&cpu_rq(i)->lock);
8803 out:
8804 return err;
8807 static struct cftype files[] = {
8809 .name = "usage",
8810 .read_u64 = cpuusage_read,
8811 .write_u64 = cpuusage_write,
8815 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8817 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8821 * charge this task's execution time to its accounting group.
8823 * called with rq->lock held.
8825 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8827 struct cpuacct *ca;
8829 if (!cpuacct_subsys.active)
8830 return;
8832 ca = task_ca(tsk);
8833 if (ca) {
8834 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8836 *cpuusage += cputime;
8840 struct cgroup_subsys cpuacct_subsys = {
8841 .name = "cpuacct",
8842 .create = cpuacct_create,
8843 .destroy = cpuacct_destroy,
8844 .populate = cpuacct_populate,
8845 .subsys_id = cpuacct_subsys_id,
8847 #endif /* CONFIG_CGROUP_CPUACCT */