2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/module.h>
30 #include <linux/writeback.h>
31 #include <linux/buffer_head.h>
32 #include <linux/mpage.h>
33 #include <linux/fiemap.h>
34 #include <linux/namei.h>
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
43 static int __ext2_write_inode(struct inode
*inode
, int do_sync
);
46 * Test whether an inode is a fast symlink.
48 static inline int ext2_inode_is_fast_symlink(struct inode
*inode
)
50 int ea_blocks
= EXT2_I(inode
)->i_file_acl
?
51 (inode
->i_sb
->s_blocksize
>> 9) : 0;
53 return (S_ISLNK(inode
->i_mode
) &&
54 inode
->i_blocks
- ea_blocks
== 0);
57 static void ext2_truncate_blocks(struct inode
*inode
, loff_t offset
);
59 static void ext2_write_failed(struct address_space
*mapping
, loff_t to
)
61 struct inode
*inode
= mapping
->host
;
63 if (to
> inode
->i_size
) {
64 truncate_pagecache(inode
, to
, inode
->i_size
);
65 ext2_truncate_blocks(inode
, inode
->i_size
);
70 * Called at the last iput() if i_nlink is zero.
72 void ext2_evict_inode(struct inode
* inode
)
74 struct ext2_block_alloc_info
*rsv
;
77 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
79 dquot_initialize(inode
);
84 truncate_inode_pages(&inode
->i_data
, 0);
88 EXT2_I(inode
)->i_dtime
= get_seconds();
89 mark_inode_dirty(inode
);
90 __ext2_write_inode(inode
, inode_needs_sync(inode
));
94 ext2_truncate_blocks(inode
, 0);
97 invalidate_inode_buffers(inode
);
100 ext2_discard_reservation(inode
);
101 rsv
= EXT2_I(inode
)->i_block_alloc_info
;
102 EXT2_I(inode
)->i_block_alloc_info
= NULL
;
107 ext2_free_inode(inode
);
113 struct buffer_head
*bh
;
116 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
118 p
->key
= *(p
->p
= v
);
122 static inline int verify_chain(Indirect
*from
, Indirect
*to
)
124 while (from
<= to
&& from
->key
== *from
->p
)
130 * ext2_block_to_path - parse the block number into array of offsets
131 * @inode: inode in question (we are only interested in its superblock)
132 * @i_block: block number to be parsed
133 * @offsets: array to store the offsets in
134 * @boundary: set this non-zero if the referred-to block is likely to be
135 * followed (on disk) by an indirect block.
136 * To store the locations of file's data ext2 uses a data structure common
137 * for UNIX filesystems - tree of pointers anchored in the inode, with
138 * data blocks at leaves and indirect blocks in intermediate nodes.
139 * This function translates the block number into path in that tree -
140 * return value is the path length and @offsets[n] is the offset of
141 * pointer to (n+1)th node in the nth one. If @block is out of range
142 * (negative or too large) warning is printed and zero returned.
144 * Note: function doesn't find node addresses, so no IO is needed. All
145 * we need to know is the capacity of indirect blocks (taken from the
150 * Portability note: the last comparison (check that we fit into triple
151 * indirect block) is spelled differently, because otherwise on an
152 * architecture with 32-bit longs and 8Kb pages we might get into trouble
153 * if our filesystem had 8Kb blocks. We might use long long, but that would
154 * kill us on x86. Oh, well, at least the sign propagation does not matter -
155 * i_block would have to be negative in the very beginning, so we would not
159 static int ext2_block_to_path(struct inode
*inode
,
160 long i_block
, int offsets
[4], int *boundary
)
162 int ptrs
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
163 int ptrs_bits
= EXT2_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
164 const long direct_blocks
= EXT2_NDIR_BLOCKS
,
165 indirect_blocks
= ptrs
,
166 double_blocks
= (1 << (ptrs_bits
* 2));
171 ext2_msg(inode
->i_sb
, KERN_WARNING
,
172 "warning: %s: block < 0", __func__
);
173 } else if (i_block
< direct_blocks
) {
174 offsets
[n
++] = i_block
;
175 final
= direct_blocks
;
176 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
177 offsets
[n
++] = EXT2_IND_BLOCK
;
178 offsets
[n
++] = i_block
;
180 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
181 offsets
[n
++] = EXT2_DIND_BLOCK
;
182 offsets
[n
++] = i_block
>> ptrs_bits
;
183 offsets
[n
++] = i_block
& (ptrs
- 1);
185 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
186 offsets
[n
++] = EXT2_TIND_BLOCK
;
187 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
188 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
189 offsets
[n
++] = i_block
& (ptrs
- 1);
192 ext2_msg(inode
->i_sb
, KERN_WARNING
,
193 "warning: %s: block is too big", __func__
);
196 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
202 * ext2_get_branch - read the chain of indirect blocks leading to data
203 * @inode: inode in question
204 * @depth: depth of the chain (1 - direct pointer, etc.)
205 * @offsets: offsets of pointers in inode/indirect blocks
206 * @chain: place to store the result
207 * @err: here we store the error value
209 * Function fills the array of triples <key, p, bh> and returns %NULL
210 * if everything went OK or the pointer to the last filled triple
211 * (incomplete one) otherwise. Upon the return chain[i].key contains
212 * the number of (i+1)-th block in the chain (as it is stored in memory,
213 * i.e. little-endian 32-bit), chain[i].p contains the address of that
214 * number (it points into struct inode for i==0 and into the bh->b_data
215 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
216 * block for i>0 and NULL for i==0. In other words, it holds the block
217 * numbers of the chain, addresses they were taken from (and where we can
218 * verify that chain did not change) and buffer_heads hosting these
221 * Function stops when it stumbles upon zero pointer (absent block)
222 * (pointer to last triple returned, *@err == 0)
223 * or when it gets an IO error reading an indirect block
224 * (ditto, *@err == -EIO)
225 * or when it notices that chain had been changed while it was reading
226 * (ditto, *@err == -EAGAIN)
227 * or when it reads all @depth-1 indirect blocks successfully and finds
228 * the whole chain, all way to the data (returns %NULL, *err == 0).
230 static Indirect
*ext2_get_branch(struct inode
*inode
,
236 struct super_block
*sb
= inode
->i_sb
;
238 struct buffer_head
*bh
;
241 /* i_data is not going away, no lock needed */
242 add_chain (chain
, NULL
, EXT2_I(inode
)->i_data
+ *offsets
);
246 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
249 read_lock(&EXT2_I(inode
)->i_meta_lock
);
250 if (!verify_chain(chain
, p
))
252 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
253 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
260 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
271 * ext2_find_near - find a place for allocation with sufficient locality
273 * @ind: descriptor of indirect block.
275 * This function returns the preferred place for block allocation.
276 * It is used when heuristic for sequential allocation fails.
278 * + if there is a block to the left of our position - allocate near it.
279 * + if pointer will live in indirect block - allocate near that block.
280 * + if pointer will live in inode - allocate in the same cylinder group.
282 * In the latter case we colour the starting block by the callers PID to
283 * prevent it from clashing with concurrent allocations for a different inode
284 * in the same block group. The PID is used here so that functionally related
285 * files will be close-by on-disk.
287 * Caller must make sure that @ind is valid and will stay that way.
290 static ext2_fsblk_t
ext2_find_near(struct inode
*inode
, Indirect
*ind
)
292 struct ext2_inode_info
*ei
= EXT2_I(inode
);
293 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
295 ext2_fsblk_t bg_start
;
298 /* Try to find previous block */
299 for (p
= ind
->p
- 1; p
>= start
; p
--)
301 return le32_to_cpu(*p
);
303 /* No such thing, so let's try location of indirect block */
305 return ind
->bh
->b_blocknr
;
308 * It is going to be refered from inode itself? OK, just put it into
309 * the same cylinder group then.
311 bg_start
= ext2_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
312 colour
= (current
->pid
% 16) *
313 (EXT2_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
314 return bg_start
+ colour
;
318 * ext2_find_goal - find a preferred place for allocation.
320 * @block: block we want
321 * @partial: pointer to the last triple within a chain
323 * Returns preferred place for a block (the goal).
326 static inline ext2_fsblk_t
ext2_find_goal(struct inode
*inode
, long block
,
329 struct ext2_block_alloc_info
*block_i
;
331 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
334 * try the heuristic for sequential allocation,
335 * failing that at least try to get decent locality.
337 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
338 && (block_i
->last_alloc_physical_block
!= 0)) {
339 return block_i
->last_alloc_physical_block
+ 1;
342 return ext2_find_near(inode
, partial
);
346 * ext2_blks_to_allocate: Look up the block map and count the number
347 * of direct blocks need to be allocated for the given branch.
349 * @branch: chain of indirect blocks
350 * @k: number of blocks need for indirect blocks
351 * @blks: number of data blocks to be mapped.
352 * @blocks_to_boundary: the offset in the indirect block
354 * return the total number of blocks to be allocate, including the
355 * direct and indirect blocks.
358 ext2_blks_to_allocate(Indirect
* branch
, int k
, unsigned long blks
,
359 int blocks_to_boundary
)
361 unsigned long count
= 0;
364 * Simple case, [t,d]Indirect block(s) has not allocated yet
365 * then it's clear blocks on that path have not allocated
368 /* right now don't hanel cross boundary allocation */
369 if (blks
< blocks_to_boundary
+ 1)
372 count
+= blocks_to_boundary
+ 1;
377 while (count
< blks
&& count
<= blocks_to_boundary
378 && le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
385 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
386 * @indirect_blks: the number of blocks need to allocate for indirect
389 * @new_blocks: on return it will store the new block numbers for
390 * the indirect blocks(if needed) and the first direct block,
391 * @blks: on return it will store the total number of allocated
394 static int ext2_alloc_blocks(struct inode
*inode
,
395 ext2_fsblk_t goal
, int indirect_blks
, int blks
,
396 ext2_fsblk_t new_blocks
[4], int *err
)
399 unsigned long count
= 0;
401 ext2_fsblk_t current_block
= 0;
405 * Here we try to allocate the requested multiple blocks at once,
406 * on a best-effort basis.
407 * To build a branch, we should allocate blocks for
408 * the indirect blocks(if not allocated yet), and at least
409 * the first direct block of this branch. That's the
410 * minimum number of blocks need to allocate(required)
412 target
= blks
+ indirect_blks
;
416 /* allocating blocks for indirect blocks and direct blocks */
417 current_block
= ext2_new_blocks(inode
,goal
,&count
,err
);
422 /* allocate blocks for indirect blocks */
423 while (index
< indirect_blks
&& count
) {
424 new_blocks
[index
++] = current_block
++;
432 /* save the new block number for the first direct block */
433 new_blocks
[index
] = current_block
;
435 /* total number of blocks allocated for direct blocks */
440 for (i
= 0; i
<index
; i
++)
441 ext2_free_blocks(inode
, new_blocks
[i
], 1);
443 mark_inode_dirty(inode
);
448 * ext2_alloc_branch - allocate and set up a chain of blocks.
450 * @num: depth of the chain (number of blocks to allocate)
451 * @offsets: offsets (in the blocks) to store the pointers to next.
452 * @branch: place to store the chain in.
454 * This function allocates @num blocks, zeroes out all but the last one,
455 * links them into chain and (if we are synchronous) writes them to disk.
456 * In other words, it prepares a branch that can be spliced onto the
457 * inode. It stores the information about that chain in the branch[], in
458 * the same format as ext2_get_branch() would do. We are calling it after
459 * we had read the existing part of chain and partial points to the last
460 * triple of that (one with zero ->key). Upon the exit we have the same
461 * picture as after the successful ext2_get_block(), excpet that in one
462 * place chain is disconnected - *branch->p is still zero (we did not
463 * set the last link), but branch->key contains the number that should
464 * be placed into *branch->p to fill that gap.
466 * If allocation fails we free all blocks we've allocated (and forget
467 * their buffer_heads) and return the error value the from failed
468 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
469 * as described above and return 0.
472 static int ext2_alloc_branch(struct inode
*inode
,
473 int indirect_blks
, int *blks
, ext2_fsblk_t goal
,
474 int *offsets
, Indirect
*branch
)
476 int blocksize
= inode
->i_sb
->s_blocksize
;
479 struct buffer_head
*bh
;
481 ext2_fsblk_t new_blocks
[4];
482 ext2_fsblk_t current_block
;
484 num
= ext2_alloc_blocks(inode
, goal
, indirect_blks
,
485 *blks
, new_blocks
, &err
);
489 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
491 * metadata blocks and data blocks are allocated.
493 for (n
= 1; n
<= indirect_blks
; n
++) {
495 * Get buffer_head for parent block, zero it out
496 * and set the pointer to new one, then send
499 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
502 memset(bh
->b_data
, 0, blocksize
);
503 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
504 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
505 *branch
[n
].p
= branch
[n
].key
;
506 if ( n
== indirect_blks
) {
507 current_block
= new_blocks
[n
];
509 * End of chain, update the last new metablock of
510 * the chain to point to the new allocated
511 * data blocks numbers
513 for (i
=1; i
< num
; i
++)
514 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
516 set_buffer_uptodate(bh
);
518 mark_buffer_dirty_inode(bh
, inode
);
519 /* We used to sync bh here if IS_SYNC(inode).
520 * But we now rely upon generic_write_sync()
521 * and b_inode_buffers. But not for directories.
523 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
524 sync_dirty_buffer(bh
);
531 * ext2_splice_branch - splice the allocated branch onto inode.
533 * @block: (logical) number of block we are adding
534 * @where: location of missing link
535 * @num: number of indirect blocks we are adding
536 * @blks: number of direct blocks we are adding
538 * This function fills the missing link and does all housekeeping needed in
539 * inode (->i_blocks, etc.). In case of success we end up with the full
540 * chain to new block and return 0.
542 static void ext2_splice_branch(struct inode
*inode
,
543 long block
, Indirect
*where
, int num
, int blks
)
546 struct ext2_block_alloc_info
*block_i
;
547 ext2_fsblk_t current_block
;
549 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
551 /* XXX LOCKING probably should have i_meta_lock ?*/
554 *where
->p
= where
->key
;
557 * Update the host buffer_head or inode to point to more just allocated
558 * direct blocks blocks
560 if (num
== 0 && blks
> 1) {
561 current_block
= le32_to_cpu(where
->key
) + 1;
562 for (i
= 1; i
< blks
; i
++)
563 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
567 * update the most recently allocated logical & physical block
568 * in i_block_alloc_info, to assist find the proper goal block for next
572 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
573 block_i
->last_alloc_physical_block
=
574 le32_to_cpu(where
[num
].key
) + blks
- 1;
577 /* We are done with atomic stuff, now do the rest of housekeeping */
579 /* had we spliced it onto indirect block? */
581 mark_buffer_dirty_inode(where
->bh
, inode
);
583 inode
->i_ctime
= CURRENT_TIME_SEC
;
584 mark_inode_dirty(inode
);
588 * Allocation strategy is simple: if we have to allocate something, we will
589 * have to go the whole way to leaf. So let's do it before attaching anything
590 * to tree, set linkage between the newborn blocks, write them if sync is
591 * required, recheck the path, free and repeat if check fails, otherwise
592 * set the last missing link (that will protect us from any truncate-generated
593 * removals - all blocks on the path are immune now) and possibly force the
594 * write on the parent block.
595 * That has a nice additional property: no special recovery from the failed
596 * allocations is needed - we simply release blocks and do not touch anything
597 * reachable from inode.
599 * `handle' can be NULL if create == 0.
601 * return > 0, # of blocks mapped or allocated.
602 * return = 0, if plain lookup failed.
603 * return < 0, error case.
605 static int ext2_get_blocks(struct inode
*inode
,
606 sector_t iblock
, unsigned long maxblocks
,
607 struct buffer_head
*bh_result
,
616 int blocks_to_boundary
= 0;
618 struct ext2_inode_info
*ei
= EXT2_I(inode
);
620 ext2_fsblk_t first_block
= 0;
622 depth
= ext2_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
627 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
628 /* Simplest case - block found, no allocation needed */
630 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
631 clear_buffer_new(bh_result
); /* What's this do? */
634 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
637 if (!verify_chain(chain
, chain
+ depth
- 1)) {
639 * Indirect block might be removed by
640 * truncate while we were reading it.
641 * Handling of that case: forget what we've
642 * got now, go to reread.
648 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
649 if (blk
== first_block
+ count
)
658 /* Next simple case - plain lookup or failed read of indirect block */
659 if (!create
|| err
== -EIO
)
662 mutex_lock(&ei
->truncate_mutex
);
664 * If the indirect block is missing while we are reading
665 * the chain(ext3_get_branch() returns -EAGAIN err), or
666 * if the chain has been changed after we grab the semaphore,
667 * (either because another process truncated this branch, or
668 * another get_block allocated this branch) re-grab the chain to see if
669 * the request block has been allocated or not.
671 * Since we already block the truncate/other get_block
672 * at this point, we will have the current copy of the chain when we
673 * splice the branch into the tree.
675 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
676 while (partial
> chain
) {
680 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
683 mutex_unlock(&ei
->truncate_mutex
);
686 clear_buffer_new(bh_result
);
692 * Okay, we need to do block allocation. Lazily initialize the block
693 * allocation info here if necessary
695 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
696 ext2_init_block_alloc_info(inode
);
698 goal
= ext2_find_goal(inode
, iblock
, partial
);
700 /* the number of blocks need to allocate for [d,t]indirect blocks */
701 indirect_blks
= (chain
+ depth
) - partial
- 1;
703 * Next look up the indirect map to count the totoal number of
704 * direct blocks to allocate for this branch.
706 count
= ext2_blks_to_allocate(partial
, indirect_blks
,
707 maxblocks
, blocks_to_boundary
);
709 * XXX ???? Block out ext2_truncate while we alter the tree
711 err
= ext2_alloc_branch(inode
, indirect_blks
, &count
, goal
,
712 offsets
+ (partial
- chain
), partial
);
715 mutex_unlock(&ei
->truncate_mutex
);
719 if (ext2_use_xip(inode
->i_sb
)) {
721 * we need to clear the block
723 err
= ext2_clear_xip_target (inode
,
724 le32_to_cpu(chain
[depth
-1].key
));
726 mutex_unlock(&ei
->truncate_mutex
);
731 ext2_splice_branch(inode
, iblock
, partial
, indirect_blks
, count
);
732 mutex_unlock(&ei
->truncate_mutex
);
733 set_buffer_new(bh_result
);
735 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
736 if (count
> blocks_to_boundary
)
737 set_buffer_boundary(bh_result
);
739 /* Clean up and exit */
740 partial
= chain
+ depth
- 1; /* the whole chain */
742 while (partial
> chain
) {
749 int ext2_get_block(struct inode
*inode
, sector_t iblock
, struct buffer_head
*bh_result
, int create
)
751 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
752 int ret
= ext2_get_blocks(inode
, iblock
, max_blocks
,
755 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
762 int ext2_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
765 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
769 static int ext2_writepage(struct page
*page
, struct writeback_control
*wbc
)
771 return block_write_full_page(page
, ext2_get_block
, wbc
);
774 static int ext2_readpage(struct file
*file
, struct page
*page
)
776 return mpage_readpage(page
, ext2_get_block
);
780 ext2_readpages(struct file
*file
, struct address_space
*mapping
,
781 struct list_head
*pages
, unsigned nr_pages
)
783 return mpage_readpages(mapping
, pages
, nr_pages
, ext2_get_block
);
787 ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
788 loff_t pos
, unsigned len
, unsigned flags
,
789 struct page
**pagep
, void **fsdata
)
793 ret
= block_write_begin(mapping
, pos
, len
, flags
, pagep
,
796 ext2_write_failed(mapping
, pos
+ len
);
800 static int ext2_write_end(struct file
*file
, struct address_space
*mapping
,
801 loff_t pos
, unsigned len
, unsigned copied
,
802 struct page
*page
, void *fsdata
)
806 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
808 ext2_write_failed(mapping
, pos
+ len
);
813 ext2_nobh_write_begin(struct file
*file
, struct address_space
*mapping
,
814 loff_t pos
, unsigned len
, unsigned flags
,
815 struct page
**pagep
, void **fsdata
)
819 ret
= nobh_write_begin(mapping
, pos
, len
, flags
, pagep
, fsdata
,
822 ext2_write_failed(mapping
, pos
+ len
);
826 static int ext2_nobh_writepage(struct page
*page
,
827 struct writeback_control
*wbc
)
829 return nobh_writepage(page
, ext2_get_block
, wbc
);
832 static sector_t
ext2_bmap(struct address_space
*mapping
, sector_t block
)
834 return generic_block_bmap(mapping
,block
,ext2_get_block
);
838 ext2_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
839 loff_t offset
, unsigned long nr_segs
)
841 struct file
*file
= iocb
->ki_filp
;
842 struct address_space
*mapping
= file
->f_mapping
;
843 struct inode
*inode
= mapping
->host
;
846 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
,
847 iov
, offset
, nr_segs
, ext2_get_block
, NULL
);
848 if (ret
< 0 && (rw
& WRITE
))
849 ext2_write_failed(mapping
, offset
+ iov_length(iov
, nr_segs
));
854 ext2_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
856 return mpage_writepages(mapping
, wbc
, ext2_get_block
);
859 const struct address_space_operations ext2_aops
= {
860 .readpage
= ext2_readpage
,
861 .readpages
= ext2_readpages
,
862 .writepage
= ext2_writepage
,
863 .sync_page
= block_sync_page
,
864 .write_begin
= ext2_write_begin
,
865 .write_end
= ext2_write_end
,
867 .direct_IO
= ext2_direct_IO
,
868 .writepages
= ext2_writepages
,
869 .migratepage
= buffer_migrate_page
,
870 .is_partially_uptodate
= block_is_partially_uptodate
,
871 .error_remove_page
= generic_error_remove_page
,
874 const struct address_space_operations ext2_aops_xip
= {
876 .get_xip_mem
= ext2_get_xip_mem
,
879 const struct address_space_operations ext2_nobh_aops
= {
880 .readpage
= ext2_readpage
,
881 .readpages
= ext2_readpages
,
882 .writepage
= ext2_nobh_writepage
,
883 .sync_page
= block_sync_page
,
884 .write_begin
= ext2_nobh_write_begin
,
885 .write_end
= nobh_write_end
,
887 .direct_IO
= ext2_direct_IO
,
888 .writepages
= ext2_writepages
,
889 .migratepage
= buffer_migrate_page
,
890 .error_remove_page
= generic_error_remove_page
,
894 * Probably it should be a library function... search for first non-zero word
895 * or memcmp with zero_page, whatever is better for particular architecture.
898 static inline int all_zeroes(__le32
*p
, __le32
*q
)
907 * ext2_find_shared - find the indirect blocks for partial truncation.
908 * @inode: inode in question
909 * @depth: depth of the affected branch
910 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
911 * @chain: place to store the pointers to partial indirect blocks
912 * @top: place to the (detached) top of branch
914 * This is a helper function used by ext2_truncate().
916 * When we do truncate() we may have to clean the ends of several indirect
917 * blocks but leave the blocks themselves alive. Block is partially
918 * truncated if some data below the new i_size is refered from it (and
919 * it is on the path to the first completely truncated data block, indeed).
920 * We have to free the top of that path along with everything to the right
921 * of the path. Since no allocation past the truncation point is possible
922 * until ext2_truncate() finishes, we may safely do the latter, but top
923 * of branch may require special attention - pageout below the truncation
924 * point might try to populate it.
926 * We atomically detach the top of branch from the tree, store the block
927 * number of its root in *@top, pointers to buffer_heads of partially
928 * truncated blocks - in @chain[].bh and pointers to their last elements
929 * that should not be removed - in @chain[].p. Return value is the pointer
930 * to last filled element of @chain.
932 * The work left to caller to do the actual freeing of subtrees:
933 * a) free the subtree starting from *@top
934 * b) free the subtrees whose roots are stored in
935 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
936 * c) free the subtrees growing from the inode past the @chain[0].p
937 * (no partially truncated stuff there).
940 static Indirect
*ext2_find_shared(struct inode
*inode
,
946 Indirect
*partial
, *p
;
950 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
952 partial
= ext2_get_branch(inode
, k
, offsets
, chain
, &err
);
954 partial
= chain
+ k
-1;
956 * If the branch acquired continuation since we've looked at it -
957 * fine, it should all survive and (new) top doesn't belong to us.
959 write_lock(&EXT2_I(inode
)->i_meta_lock
);
960 if (!partial
->key
&& *partial
->p
) {
961 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
964 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
967 * OK, we've found the last block that must survive. The rest of our
968 * branch should be detached before unlocking. However, if that rest
969 * of branch is all ours and does not grow immediately from the inode
970 * it's easier to cheat and just decrement partial->p.
972 if (p
== chain
+ k
- 1 && p
> chain
) {
978 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
990 * ext2_free_data - free a list of data blocks
991 * @inode: inode we are dealing with
992 * @p: array of block numbers
993 * @q: points immediately past the end of array
995 * We are freeing all blocks refered from that array (numbers are
996 * stored as little-endian 32-bit) and updating @inode->i_blocks
999 static inline void ext2_free_data(struct inode
*inode
, __le32
*p
, __le32
*q
)
1001 unsigned long block_to_free
= 0, count
= 0;
1004 for ( ; p
< q
; p
++) {
1005 nr
= le32_to_cpu(*p
);
1008 /* accumulate blocks to free if they're contiguous */
1011 else if (block_to_free
== nr
- count
)
1014 ext2_free_blocks (inode
, block_to_free
, count
);
1015 mark_inode_dirty(inode
);
1023 ext2_free_blocks (inode
, block_to_free
, count
);
1024 mark_inode_dirty(inode
);
1029 * ext2_free_branches - free an array of branches
1030 * @inode: inode we are dealing with
1031 * @p: array of block numbers
1032 * @q: pointer immediately past the end of array
1033 * @depth: depth of the branches to free
1035 * We are freeing all blocks refered from these branches (numbers are
1036 * stored as little-endian 32-bit) and updating @inode->i_blocks
1039 static void ext2_free_branches(struct inode
*inode
, __le32
*p
, __le32
*q
, int depth
)
1041 struct buffer_head
* bh
;
1045 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1046 for ( ; p
< q
; p
++) {
1047 nr
= le32_to_cpu(*p
);
1051 bh
= sb_bread(inode
->i_sb
, nr
);
1053 * A read failure? Report error and clear slot
1057 ext2_error(inode
->i_sb
, "ext2_free_branches",
1058 "Read failure, inode=%ld, block=%ld",
1062 ext2_free_branches(inode
,
1063 (__le32
*)bh
->b_data
,
1064 (__le32
*)bh
->b_data
+ addr_per_block
,
1067 ext2_free_blocks(inode
, nr
, 1);
1068 mark_inode_dirty(inode
);
1071 ext2_free_data(inode
, p
, q
);
1074 static void __ext2_truncate_blocks(struct inode
*inode
, loff_t offset
)
1076 __le32
*i_data
= EXT2_I(inode
)->i_data
;
1077 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1078 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1086 blocksize
= inode
->i_sb
->s_blocksize
;
1087 iblock
= (offset
+ blocksize
-1) >> EXT2_BLOCK_SIZE_BITS(inode
->i_sb
);
1089 n
= ext2_block_to_path(inode
, iblock
, offsets
, NULL
);
1094 * From here we block out all ext2_get_block() callers who want to
1095 * modify the block allocation tree.
1097 mutex_lock(&ei
->truncate_mutex
);
1100 ext2_free_data(inode
, i_data
+offsets
[0],
1101 i_data
+ EXT2_NDIR_BLOCKS
);
1105 partial
= ext2_find_shared(inode
, n
, offsets
, chain
, &nr
);
1106 /* Kill the top of shared branch (already detached) */
1108 if (partial
== chain
)
1109 mark_inode_dirty(inode
);
1111 mark_buffer_dirty_inode(partial
->bh
, inode
);
1112 ext2_free_branches(inode
, &nr
, &nr
+1, (chain
+n
-1) - partial
);
1114 /* Clear the ends of indirect blocks on the shared branch */
1115 while (partial
> chain
) {
1116 ext2_free_branches(inode
,
1118 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
1119 (chain
+n
-1) - partial
);
1120 mark_buffer_dirty_inode(partial
->bh
, inode
);
1121 brelse (partial
->bh
);
1125 /* Kill the remaining (whole) subtrees */
1126 switch (offsets
[0]) {
1128 nr
= i_data
[EXT2_IND_BLOCK
];
1130 i_data
[EXT2_IND_BLOCK
] = 0;
1131 mark_inode_dirty(inode
);
1132 ext2_free_branches(inode
, &nr
, &nr
+1, 1);
1134 case EXT2_IND_BLOCK
:
1135 nr
= i_data
[EXT2_DIND_BLOCK
];
1137 i_data
[EXT2_DIND_BLOCK
] = 0;
1138 mark_inode_dirty(inode
);
1139 ext2_free_branches(inode
, &nr
, &nr
+1, 2);
1141 case EXT2_DIND_BLOCK
:
1142 nr
= i_data
[EXT2_TIND_BLOCK
];
1144 i_data
[EXT2_TIND_BLOCK
] = 0;
1145 mark_inode_dirty(inode
);
1146 ext2_free_branches(inode
, &nr
, &nr
+1, 3);
1148 case EXT2_TIND_BLOCK
:
1152 ext2_discard_reservation(inode
);
1154 mutex_unlock(&ei
->truncate_mutex
);
1157 static void ext2_truncate_blocks(struct inode
*inode
, loff_t offset
)
1160 * XXX: it seems like a bug here that we don't allow
1161 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1162 * review and fix this.
1164 * Also would be nice to be able to handle IO errors and such,
1165 * but that's probably too much to ask.
1167 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1168 S_ISLNK(inode
->i_mode
)))
1170 if (ext2_inode_is_fast_symlink(inode
))
1172 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1174 __ext2_truncate_blocks(inode
, offset
);
1177 static int ext2_setsize(struct inode
*inode
, loff_t newsize
)
1181 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1182 S_ISLNK(inode
->i_mode
)))
1184 if (ext2_inode_is_fast_symlink(inode
))
1186 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1189 if (mapping_is_xip(inode
->i_mapping
))
1190 error
= xip_truncate_page(inode
->i_mapping
, newsize
);
1191 else if (test_opt(inode
->i_sb
, NOBH
))
1192 error
= nobh_truncate_page(inode
->i_mapping
,
1193 newsize
, ext2_get_block
);
1195 error
= block_truncate_page(inode
->i_mapping
,
1196 newsize
, ext2_get_block
);
1200 truncate_setsize(inode
, newsize
);
1201 __ext2_truncate_blocks(inode
, newsize
);
1203 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
1204 if (inode_needs_sync(inode
)) {
1205 sync_mapping_buffers(inode
->i_mapping
);
1206 ext2_sync_inode (inode
);
1208 mark_inode_dirty(inode
);
1214 static struct ext2_inode
*ext2_get_inode(struct super_block
*sb
, ino_t ino
,
1215 struct buffer_head
**p
)
1217 struct buffer_head
* bh
;
1218 unsigned long block_group
;
1219 unsigned long block
;
1220 unsigned long offset
;
1221 struct ext2_group_desc
* gdp
;
1224 if ((ino
!= EXT2_ROOT_INO
&& ino
< EXT2_FIRST_INO(sb
)) ||
1225 ino
> le32_to_cpu(EXT2_SB(sb
)->s_es
->s_inodes_count
))
1228 block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(sb
);
1229 gdp
= ext2_get_group_desc(sb
, block_group
, NULL
);
1233 * Figure out the offset within the block group inode table
1235 offset
= ((ino
- 1) % EXT2_INODES_PER_GROUP(sb
)) * EXT2_INODE_SIZE(sb
);
1236 block
= le32_to_cpu(gdp
->bg_inode_table
) +
1237 (offset
>> EXT2_BLOCK_SIZE_BITS(sb
));
1238 if (!(bh
= sb_bread(sb
, block
)))
1242 offset
&= (EXT2_BLOCK_SIZE(sb
) - 1);
1243 return (struct ext2_inode
*) (bh
->b_data
+ offset
);
1246 ext2_error(sb
, "ext2_get_inode", "bad inode number: %lu",
1247 (unsigned long) ino
);
1248 return ERR_PTR(-EINVAL
);
1250 ext2_error(sb
, "ext2_get_inode",
1251 "unable to read inode block - inode=%lu, block=%lu",
1252 (unsigned long) ino
, block
);
1254 return ERR_PTR(-EIO
);
1257 void ext2_set_inode_flags(struct inode
*inode
)
1259 unsigned int flags
= EXT2_I(inode
)->i_flags
;
1261 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
1262 if (flags
& EXT2_SYNC_FL
)
1263 inode
->i_flags
|= S_SYNC
;
1264 if (flags
& EXT2_APPEND_FL
)
1265 inode
->i_flags
|= S_APPEND
;
1266 if (flags
& EXT2_IMMUTABLE_FL
)
1267 inode
->i_flags
|= S_IMMUTABLE
;
1268 if (flags
& EXT2_NOATIME_FL
)
1269 inode
->i_flags
|= S_NOATIME
;
1270 if (flags
& EXT2_DIRSYNC_FL
)
1271 inode
->i_flags
|= S_DIRSYNC
;
1274 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1275 void ext2_get_inode_flags(struct ext2_inode_info
*ei
)
1277 unsigned int flags
= ei
->vfs_inode
.i_flags
;
1279 ei
->i_flags
&= ~(EXT2_SYNC_FL
|EXT2_APPEND_FL
|
1280 EXT2_IMMUTABLE_FL
|EXT2_NOATIME_FL
|EXT2_DIRSYNC_FL
);
1282 ei
->i_flags
|= EXT2_SYNC_FL
;
1283 if (flags
& S_APPEND
)
1284 ei
->i_flags
|= EXT2_APPEND_FL
;
1285 if (flags
& S_IMMUTABLE
)
1286 ei
->i_flags
|= EXT2_IMMUTABLE_FL
;
1287 if (flags
& S_NOATIME
)
1288 ei
->i_flags
|= EXT2_NOATIME_FL
;
1289 if (flags
& S_DIRSYNC
)
1290 ei
->i_flags
|= EXT2_DIRSYNC_FL
;
1293 struct inode
*ext2_iget (struct super_block
*sb
, unsigned long ino
)
1295 struct ext2_inode_info
*ei
;
1296 struct buffer_head
* bh
;
1297 struct ext2_inode
*raw_inode
;
1298 struct inode
*inode
;
1302 inode
= iget_locked(sb
, ino
);
1304 return ERR_PTR(-ENOMEM
);
1305 if (!(inode
->i_state
& I_NEW
))
1309 ei
->i_block_alloc_info
= NULL
;
1311 raw_inode
= ext2_get_inode(inode
->i_sb
, ino
, &bh
);
1312 if (IS_ERR(raw_inode
)) {
1313 ret
= PTR_ERR(raw_inode
);
1317 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
1318 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
1319 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
1320 if (!(test_opt (inode
->i_sb
, NO_UID32
))) {
1321 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
1322 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
1324 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
1325 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
1326 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
1327 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
1328 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
1329 inode
->i_atime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= 0;
1330 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
1331 /* We now have enough fields to check if the inode was active or not.
1332 * This is needed because nfsd might try to access dead inodes
1333 * the test is that same one that e2fsck uses
1334 * NeilBrown 1999oct15
1336 if (inode
->i_nlink
== 0 && (inode
->i_mode
== 0 || ei
->i_dtime
)) {
1337 /* this inode is deleted */
1342 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
1343 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
1344 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
1345 ei
->i_frag_no
= raw_inode
->i_frag
;
1346 ei
->i_frag_size
= raw_inode
->i_fsize
;
1347 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
1349 if (S_ISREG(inode
->i_mode
))
1350 inode
->i_size
|= ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
1352 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
1354 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
1356 ei
->i_block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(inode
->i_sb
);
1357 ei
->i_dir_start_lookup
= 0;
1360 * NOTE! The in-memory inode i_data array is in little-endian order
1361 * even on big-endian machines: we do NOT byteswap the block numbers!
1363 for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1364 ei
->i_data
[n
] = raw_inode
->i_block
[n
];
1366 if (S_ISREG(inode
->i_mode
)) {
1367 inode
->i_op
= &ext2_file_inode_operations
;
1368 if (ext2_use_xip(inode
->i_sb
)) {
1369 inode
->i_mapping
->a_ops
= &ext2_aops_xip
;
1370 inode
->i_fop
= &ext2_xip_file_operations
;
1371 } else if (test_opt(inode
->i_sb
, NOBH
)) {
1372 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1373 inode
->i_fop
= &ext2_file_operations
;
1375 inode
->i_mapping
->a_ops
= &ext2_aops
;
1376 inode
->i_fop
= &ext2_file_operations
;
1378 } else if (S_ISDIR(inode
->i_mode
)) {
1379 inode
->i_op
= &ext2_dir_inode_operations
;
1380 inode
->i_fop
= &ext2_dir_operations
;
1381 if (test_opt(inode
->i_sb
, NOBH
))
1382 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1384 inode
->i_mapping
->a_ops
= &ext2_aops
;
1385 } else if (S_ISLNK(inode
->i_mode
)) {
1386 if (ext2_inode_is_fast_symlink(inode
)) {
1387 inode
->i_op
= &ext2_fast_symlink_inode_operations
;
1388 nd_terminate_link(ei
->i_data
, inode
->i_size
,
1389 sizeof(ei
->i_data
) - 1);
1391 inode
->i_op
= &ext2_symlink_inode_operations
;
1392 if (test_opt(inode
->i_sb
, NOBH
))
1393 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1395 inode
->i_mapping
->a_ops
= &ext2_aops
;
1398 inode
->i_op
= &ext2_special_inode_operations
;
1399 if (raw_inode
->i_block
[0])
1400 init_special_inode(inode
, inode
->i_mode
,
1401 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
1403 init_special_inode(inode
, inode
->i_mode
,
1404 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
1407 ext2_set_inode_flags(inode
);
1408 unlock_new_inode(inode
);
1413 return ERR_PTR(ret
);
1416 static int __ext2_write_inode(struct inode
*inode
, int do_sync
)
1418 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1419 struct super_block
*sb
= inode
->i_sb
;
1420 ino_t ino
= inode
->i_ino
;
1421 uid_t uid
= inode
->i_uid
;
1422 gid_t gid
= inode
->i_gid
;
1423 struct buffer_head
* bh
;
1424 struct ext2_inode
* raw_inode
= ext2_get_inode(sb
, ino
, &bh
);
1428 if (IS_ERR(raw_inode
))
1431 /* For fields not not tracking in the in-memory inode,
1432 * initialise them to zero for new inodes. */
1433 if (ei
->i_state
& EXT2_STATE_NEW
)
1434 memset(raw_inode
, 0, EXT2_SB(sb
)->s_inode_size
);
1436 ext2_get_inode_flags(ei
);
1437 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
1438 if (!(test_opt(sb
, NO_UID32
))) {
1439 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(uid
));
1440 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(gid
));
1442 * Fix up interoperability with old kernels. Otherwise, old inodes get
1443 * re-used with the upper 16 bits of the uid/gid intact
1446 raw_inode
->i_uid_high
= cpu_to_le16(high_16_bits(uid
));
1447 raw_inode
->i_gid_high
= cpu_to_le16(high_16_bits(gid
));
1449 raw_inode
->i_uid_high
= 0;
1450 raw_inode
->i_gid_high
= 0;
1453 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(uid
));
1454 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(gid
));
1455 raw_inode
->i_uid_high
= 0;
1456 raw_inode
->i_gid_high
= 0;
1458 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
1459 raw_inode
->i_size
= cpu_to_le32(inode
->i_size
);
1460 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
1461 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
1462 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
1464 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
1465 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
1466 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
1467 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
1468 raw_inode
->i_frag
= ei
->i_frag_no
;
1469 raw_inode
->i_fsize
= ei
->i_frag_size
;
1470 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
1471 if (!S_ISREG(inode
->i_mode
))
1472 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
1474 raw_inode
->i_size_high
= cpu_to_le32(inode
->i_size
>> 32);
1475 if (inode
->i_size
> 0x7fffffffULL
) {
1476 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb
,
1477 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
) ||
1478 EXT2_SB(sb
)->s_es
->s_rev_level
==
1479 cpu_to_le32(EXT2_GOOD_OLD_REV
)) {
1480 /* If this is the first large file
1481 * created, add a flag to the superblock.
1483 spin_lock(&EXT2_SB(sb
)->s_lock
);
1484 ext2_update_dynamic_rev(sb
);
1485 EXT2_SET_RO_COMPAT_FEATURE(sb
,
1486 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
);
1487 spin_unlock(&EXT2_SB(sb
)->s_lock
);
1488 ext2_write_super(sb
);
1493 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
1494 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1495 if (old_valid_dev(inode
->i_rdev
)) {
1496 raw_inode
->i_block
[0] =
1497 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
1498 raw_inode
->i_block
[1] = 0;
1500 raw_inode
->i_block
[0] = 0;
1501 raw_inode
->i_block
[1] =
1502 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
1503 raw_inode
->i_block
[2] = 0;
1505 } else for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1506 raw_inode
->i_block
[n
] = ei
->i_data
[n
];
1507 mark_buffer_dirty(bh
);
1509 sync_dirty_buffer(bh
);
1510 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1511 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1512 sb
->s_id
, (unsigned long) ino
);
1516 ei
->i_state
&= ~EXT2_STATE_NEW
;
1521 int ext2_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1523 return __ext2_write_inode(inode
, wbc
->sync_mode
== WB_SYNC_ALL
);
1526 int ext2_sync_inode(struct inode
*inode
)
1528 struct writeback_control wbc
= {
1529 .sync_mode
= WB_SYNC_ALL
,
1530 .nr_to_write
= 0, /* sys_fsync did this */
1532 return sync_inode(inode
, &wbc
);
1535 int ext2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
1537 struct inode
*inode
= dentry
->d_inode
;
1540 error
= inode_change_ok(inode
, iattr
);
1544 if (is_quota_modification(inode
, iattr
))
1545 dquot_initialize(inode
);
1546 if ((iattr
->ia_valid
& ATTR_UID
&& iattr
->ia_uid
!= inode
->i_uid
) ||
1547 (iattr
->ia_valid
& ATTR_GID
&& iattr
->ia_gid
!= inode
->i_gid
)) {
1548 error
= dquot_transfer(inode
, iattr
);
1552 if (iattr
->ia_valid
& ATTR_SIZE
&& iattr
->ia_size
!= inode
->i_size
) {
1553 error
= ext2_setsize(inode
, iattr
->ia_size
);
1557 setattr_copy(inode
, iattr
);
1558 if (iattr
->ia_valid
& ATTR_MODE
)
1559 error
= ext2_acl_chmod(inode
);
1560 mark_inode_dirty(inode
);