2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
85 #include <linux/net_tstamp.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
98 #include <linux/of_net.h>
101 #include "fsl_pq_mdio.h"
103 #define TX_TIMEOUT (1*HZ)
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
107 const char gfar_driver_name
[] = "Gianfar Ethernet";
108 const char gfar_driver_version
[] = "1.3";
110 static int gfar_enet_open(struct net_device
*dev
);
111 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
112 static void gfar_reset_task(struct work_struct
*work
);
113 static void gfar_timeout(struct net_device
*dev
);
114 static int gfar_close(struct net_device
*dev
);
115 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
117 struct sk_buff
*skb
);
118 static int gfar_set_mac_address(struct net_device
*dev
);
119 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
120 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
121 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
122 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
123 static void adjust_link(struct net_device
*dev
);
124 static void init_registers(struct net_device
*dev
);
125 static int init_phy(struct net_device
*dev
);
126 static int gfar_probe(struct platform_device
*ofdev
);
127 static int gfar_remove(struct platform_device
*ofdev
);
128 static void free_skb_resources(struct gfar_private
*priv
);
129 static void gfar_set_multi(struct net_device
*dev
);
130 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
131 static void gfar_configure_serdes(struct net_device
*dev
);
132 static int gfar_poll(struct napi_struct
*napi
, int budget
);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device
*dev
);
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
138 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
140 static void gfar_vlan_rx_register(struct net_device
*netdev
,
141 struct vlan_group
*grp
);
142 void gfar_halt(struct net_device
*dev
);
143 static void gfar_halt_nodisable(struct net_device
*dev
);
144 void gfar_start(struct net_device
*dev
);
145 static void gfar_clear_exact_match(struct net_device
*dev
);
146 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
148 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
154 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
161 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
162 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
163 lstatus
|= BD_LFLAG(RXBD_WRAP
);
167 bdp
->lstatus
= lstatus
;
170 static int gfar_init_bds(struct net_device
*ndev
)
172 struct gfar_private
*priv
= netdev_priv(ndev
);
173 struct gfar_priv_tx_q
*tx_queue
= NULL
;
174 struct gfar_priv_rx_q
*rx_queue
= NULL
;
179 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
180 tx_queue
= priv
->tx_queue
[i
];
181 /* Initialize some variables in our dev structure */
182 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
183 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
184 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
185 tx_queue
->skb_curtx
= 0;
186 tx_queue
->skb_dirtytx
= 0;
188 /* Initialize Transmit Descriptor Ring */
189 txbdp
= tx_queue
->tx_bd_base
;
190 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
196 /* Set the last descriptor in the ring to indicate wrap */
198 txbdp
->status
|= TXBD_WRAP
;
201 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
202 rx_queue
= priv
->rx_queue
[i
];
203 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
204 rx_queue
->skb_currx
= 0;
205 rxbdp
= rx_queue
->rx_bd_base
;
207 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
208 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
211 gfar_init_rxbdp(rx_queue
, rxbdp
,
214 skb
= gfar_new_skb(ndev
);
216 pr_err("%s: Can't allocate RX buffers\n",
218 goto err_rxalloc_fail
;
220 rx_queue
->rx_skbuff
[j
] = skb
;
222 gfar_new_rxbdp(rx_queue
, rxbdp
, skb
);
233 free_skb_resources(priv
);
237 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
242 struct gfar_private
*priv
= netdev_priv(ndev
);
243 struct device
*dev
= &priv
->ofdev
->dev
;
244 struct gfar_priv_tx_q
*tx_queue
= NULL
;
245 struct gfar_priv_rx_q
*rx_queue
= NULL
;
247 priv
->total_tx_ring_size
= 0;
248 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
249 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
251 priv
->total_rx_ring_size
= 0;
252 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
253 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
255 /* Allocate memory for the buffer descriptors */
256 vaddr
= dma_alloc_coherent(dev
,
257 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
258 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
261 if (netif_msg_ifup(priv
))
262 pr_err("%s: Could not allocate buffer descriptors!\n",
267 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
268 tx_queue
= priv
->tx_queue
[i
];
269 tx_queue
->tx_bd_base
= (struct txbd8
*) vaddr
;
270 tx_queue
->tx_bd_dma_base
= addr
;
271 tx_queue
->dev
= ndev
;
272 /* enet DMA only understands physical addresses */
273 addr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
274 vaddr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
277 /* Start the rx descriptor ring where the tx ring leaves off */
278 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
279 rx_queue
= priv
->rx_queue
[i
];
280 rx_queue
->rx_bd_base
= (struct rxbd8
*) vaddr
;
281 rx_queue
->rx_bd_dma_base
= addr
;
282 rx_queue
->dev
= ndev
;
283 addr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
284 vaddr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
287 /* Setup the skbuff rings */
288 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
289 tx_queue
= priv
->tx_queue
[i
];
290 tx_queue
->tx_skbuff
= kmalloc(sizeof(*tx_queue
->tx_skbuff
) *
291 tx_queue
->tx_ring_size
, GFP_KERNEL
);
292 if (!tx_queue
->tx_skbuff
) {
293 if (netif_msg_ifup(priv
))
294 pr_err("%s: Could not allocate tx_skbuff\n",
299 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
300 tx_queue
->tx_skbuff
[k
] = NULL
;
303 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
304 rx_queue
= priv
->rx_queue
[i
];
305 rx_queue
->rx_skbuff
= kmalloc(sizeof(*rx_queue
->rx_skbuff
) *
306 rx_queue
->rx_ring_size
, GFP_KERNEL
);
308 if (!rx_queue
->rx_skbuff
) {
309 if (netif_msg_ifup(priv
))
310 pr_err("%s: Could not allocate rx_skbuff\n",
315 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
316 rx_queue
->rx_skbuff
[j
] = NULL
;
319 if (gfar_init_bds(ndev
))
325 free_skb_resources(priv
);
329 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
331 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
335 baddr
= ®s
->tbase0
;
336 for(i
= 0; i
< priv
->num_tx_queues
; i
++) {
337 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
341 baddr
= ®s
->rbase0
;
342 for(i
= 0; i
< priv
->num_rx_queues
; i
++) {
343 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
348 static void gfar_init_mac(struct net_device
*ndev
)
350 struct gfar_private
*priv
= netdev_priv(ndev
);
351 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
356 /* write the tx/rx base registers */
357 gfar_init_tx_rx_base(priv
);
359 /* Configure the coalescing support */
360 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
362 if (priv
->rx_filer_enable
) {
363 rctrl
|= RCTRL_FILREN
;
364 /* Program the RIR0 reg with the required distribution */
365 gfar_write(®s
->rir0
, DEFAULT_RIR0
);
368 if (ndev
->features
& NETIF_F_RXCSUM
)
369 rctrl
|= RCTRL_CHECKSUMMING
;
371 if (priv
->extended_hash
) {
372 rctrl
|= RCTRL_EXTHASH
;
374 gfar_clear_exact_match(ndev
);
379 rctrl
&= ~RCTRL_PAL_MASK
;
380 rctrl
|= RCTRL_PADDING(priv
->padding
);
383 /* Insert receive time stamps into padding alignment bytes */
384 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
) {
385 rctrl
&= ~RCTRL_PAL_MASK
;
386 rctrl
|= RCTRL_PADDING(8);
390 /* Enable HW time stamping if requested from user space */
391 if (priv
->hwts_rx_en
)
392 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
;
394 /* keep vlan related bits if it's enabled */
396 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
397 tctrl
|= TCTRL_VLINS
;
400 /* Init rctrl based on our settings */
401 gfar_write(®s
->rctrl
, rctrl
);
403 if (ndev
->features
& NETIF_F_IP_CSUM
)
404 tctrl
|= TCTRL_INIT_CSUM
;
406 tctrl
|= TCTRL_TXSCHED_PRIO
;
408 gfar_write(®s
->tctrl
, tctrl
);
410 /* Set the extraction length and index */
411 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
412 ATTRELI_EI(priv
->rx_stash_index
);
414 gfar_write(®s
->attreli
, attrs
);
416 /* Start with defaults, and add stashing or locking
417 * depending on the approprate variables */
418 attrs
= ATTR_INIT_SETTINGS
;
420 if (priv
->bd_stash_en
)
421 attrs
|= ATTR_BDSTASH
;
423 if (priv
->rx_stash_size
!= 0)
424 attrs
|= ATTR_BUFSTASH
;
426 gfar_write(®s
->attr
, attrs
);
428 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
429 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
430 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
433 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
435 struct gfar_private
*priv
= netdev_priv(dev
);
436 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
437 unsigned long tx_packets
= 0, tx_bytes
= 0;
440 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
441 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
442 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
443 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
446 dev
->stats
.rx_packets
= rx_packets
;
447 dev
->stats
.rx_bytes
= rx_bytes
;
448 dev
->stats
.rx_dropped
= rx_dropped
;
450 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
451 tx_bytes
+= priv
->tx_queue
[i
]->stats
.tx_bytes
;
452 tx_packets
+= priv
->tx_queue
[i
]->stats
.tx_packets
;
455 dev
->stats
.tx_bytes
= tx_bytes
;
456 dev
->stats
.tx_packets
= tx_packets
;
461 static const struct net_device_ops gfar_netdev_ops
= {
462 .ndo_open
= gfar_enet_open
,
463 .ndo_start_xmit
= gfar_start_xmit
,
464 .ndo_stop
= gfar_close
,
465 .ndo_change_mtu
= gfar_change_mtu
,
466 .ndo_set_features
= gfar_set_features
,
467 .ndo_set_multicast_list
= gfar_set_multi
,
468 .ndo_tx_timeout
= gfar_timeout
,
469 .ndo_do_ioctl
= gfar_ioctl
,
470 .ndo_get_stats
= gfar_get_stats
,
471 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
472 .ndo_set_mac_address
= eth_mac_addr
,
473 .ndo_validate_addr
= eth_validate_addr
,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475 .ndo_poll_controller
= gfar_netpoll
,
479 void lock_rx_qs(struct gfar_private
*priv
)
483 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
484 spin_lock(&priv
->rx_queue
[i
]->rxlock
);
487 void lock_tx_qs(struct gfar_private
*priv
)
491 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
492 spin_lock(&priv
->tx_queue
[i
]->txlock
);
495 void unlock_rx_qs(struct gfar_private
*priv
)
499 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
500 spin_unlock(&priv
->rx_queue
[i
]->rxlock
);
503 void unlock_tx_qs(struct gfar_private
*priv
)
507 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
508 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
511 /* Returns 1 if incoming frames use an FCB */
512 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
514 return priv
->vlgrp
|| (priv
->ndev
->features
& NETIF_F_RXCSUM
) ||
515 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
);
518 static void free_tx_pointers(struct gfar_private
*priv
)
522 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
523 kfree(priv
->tx_queue
[i
]);
526 static void free_rx_pointers(struct gfar_private
*priv
)
530 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
531 kfree(priv
->rx_queue
[i
]);
534 static void unmap_group_regs(struct gfar_private
*priv
)
538 for (i
= 0; i
< MAXGROUPS
; i
++)
539 if (priv
->gfargrp
[i
].regs
)
540 iounmap(priv
->gfargrp
[i
].regs
);
543 static void disable_napi(struct gfar_private
*priv
)
547 for (i
= 0; i
< priv
->num_grps
; i
++)
548 napi_disable(&priv
->gfargrp
[i
].napi
);
551 static void enable_napi(struct gfar_private
*priv
)
555 for (i
= 0; i
< priv
->num_grps
; i
++)
556 napi_enable(&priv
->gfargrp
[i
].napi
);
559 static int gfar_parse_group(struct device_node
*np
,
560 struct gfar_private
*priv
, const char *model
)
564 priv
->gfargrp
[priv
->num_grps
].regs
= of_iomap(np
, 0);
565 if (!priv
->gfargrp
[priv
->num_grps
].regs
)
568 priv
->gfargrp
[priv
->num_grps
].interruptTransmit
=
569 irq_of_parse_and_map(np
, 0);
571 /* If we aren't the FEC we have multiple interrupts */
572 if (model
&& strcasecmp(model
, "FEC")) {
573 priv
->gfargrp
[priv
->num_grps
].interruptReceive
=
574 irq_of_parse_and_map(np
, 1);
575 priv
->gfargrp
[priv
->num_grps
].interruptError
=
576 irq_of_parse_and_map(np
,2);
577 if (priv
->gfargrp
[priv
->num_grps
].interruptTransmit
== NO_IRQ
||
578 priv
->gfargrp
[priv
->num_grps
].interruptReceive
== NO_IRQ
||
579 priv
->gfargrp
[priv
->num_grps
].interruptError
== NO_IRQ
)
583 priv
->gfargrp
[priv
->num_grps
].grp_id
= priv
->num_grps
;
584 priv
->gfargrp
[priv
->num_grps
].priv
= priv
;
585 spin_lock_init(&priv
->gfargrp
[priv
->num_grps
].grplock
);
586 if(priv
->mode
== MQ_MG_MODE
) {
587 queue_mask
= (u32
*)of_get_property(np
,
588 "fsl,rx-bit-map", NULL
);
589 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
=
590 queue_mask
? *queue_mask
:(DEFAULT_MAPPING
>> priv
->num_grps
);
591 queue_mask
= (u32
*)of_get_property(np
,
592 "fsl,tx-bit-map", NULL
);
593 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
=
594 queue_mask
? *queue_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
596 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
= 0xFF;
597 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
= 0xFF;
604 static int gfar_of_init(struct platform_device
*ofdev
, struct net_device
**pdev
)
608 const void *mac_addr
;
610 struct net_device
*dev
= NULL
;
611 struct gfar_private
*priv
= NULL
;
612 struct device_node
*np
= ofdev
->dev
.of_node
;
613 struct device_node
*child
= NULL
;
615 const u32
*stash_len
;
616 const u32
*stash_idx
;
617 unsigned int num_tx_qs
, num_rx_qs
;
618 u32
*tx_queues
, *rx_queues
;
620 if (!np
|| !of_device_is_available(np
))
623 /* parse the num of tx and rx queues */
624 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
625 num_tx_qs
= tx_queues
? *tx_queues
: 1;
627 if (num_tx_qs
> MAX_TX_QS
) {
628 printk(KERN_ERR
"num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
629 num_tx_qs
, MAX_TX_QS
);
630 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
634 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
635 num_rx_qs
= rx_queues
? *rx_queues
: 1;
637 if (num_rx_qs
> MAX_RX_QS
) {
638 printk(KERN_ERR
"num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
639 num_tx_qs
, MAX_TX_QS
);
640 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
644 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
649 priv
= netdev_priv(dev
);
650 priv
->node
= ofdev
->dev
.of_node
;
653 priv
->num_tx_queues
= num_tx_qs
;
654 netif_set_real_num_rx_queues(dev
, num_rx_qs
);
655 priv
->num_rx_queues
= num_rx_qs
;
656 priv
->num_grps
= 0x0;
658 model
= of_get_property(np
, "model", NULL
);
660 for (i
= 0; i
< MAXGROUPS
; i
++)
661 priv
->gfargrp
[i
].regs
= NULL
;
663 /* Parse and initialize group specific information */
664 if (of_device_is_compatible(np
, "fsl,etsec2")) {
665 priv
->mode
= MQ_MG_MODE
;
666 for_each_child_of_node(np
, child
) {
667 err
= gfar_parse_group(child
, priv
, model
);
672 priv
->mode
= SQ_SG_MODE
;
673 err
= gfar_parse_group(np
, priv
, model
);
678 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
679 priv
->tx_queue
[i
] = NULL
;
680 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
681 priv
->rx_queue
[i
] = NULL
;
683 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
684 priv
->tx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_tx_q
),
686 if (!priv
->tx_queue
[i
]) {
688 goto tx_alloc_failed
;
690 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
691 priv
->tx_queue
[i
]->qindex
= i
;
692 priv
->tx_queue
[i
]->dev
= dev
;
693 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
696 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
697 priv
->rx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_rx_q
),
699 if (!priv
->rx_queue
[i
]) {
701 goto rx_alloc_failed
;
703 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
704 priv
->rx_queue
[i
]->qindex
= i
;
705 priv
->rx_queue
[i
]->dev
= dev
;
706 spin_lock_init(&(priv
->rx_queue
[i
]->rxlock
));
710 stash
= of_get_property(np
, "bd-stash", NULL
);
713 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
714 priv
->bd_stash_en
= 1;
717 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
720 priv
->rx_stash_size
= *stash_len
;
722 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
725 priv
->rx_stash_index
= *stash_idx
;
727 if (stash_len
|| stash_idx
)
728 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
730 mac_addr
= of_get_mac_address(np
);
732 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
734 if (model
&& !strcasecmp(model
, "TSEC"))
736 FSL_GIANFAR_DEV_HAS_GIGABIT
|
737 FSL_GIANFAR_DEV_HAS_COALESCE
|
738 FSL_GIANFAR_DEV_HAS_RMON
|
739 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
740 if (model
&& !strcasecmp(model
, "eTSEC"))
742 FSL_GIANFAR_DEV_HAS_GIGABIT
|
743 FSL_GIANFAR_DEV_HAS_COALESCE
|
744 FSL_GIANFAR_DEV_HAS_RMON
|
745 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
746 FSL_GIANFAR_DEV_HAS_PADDING
|
747 FSL_GIANFAR_DEV_HAS_CSUM
|
748 FSL_GIANFAR_DEV_HAS_VLAN
|
749 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
750 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
|
751 FSL_GIANFAR_DEV_HAS_TIMER
;
753 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
755 /* We only care about rgmii-id. The rest are autodetected */
756 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
757 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
759 priv
->interface
= PHY_INTERFACE_MODE_MII
;
761 if (of_get_property(np
, "fsl,magic-packet", NULL
))
762 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
764 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
766 /* Find the TBI PHY. If it's not there, we don't support SGMII */
767 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
772 free_rx_pointers(priv
);
774 free_tx_pointers(priv
);
776 unmap_group_regs(priv
);
781 static int gfar_hwtstamp_ioctl(struct net_device
*netdev
,
782 struct ifreq
*ifr
, int cmd
)
784 struct hwtstamp_config config
;
785 struct gfar_private
*priv
= netdev_priv(netdev
);
787 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
790 /* reserved for future extensions */
794 switch (config
.tx_type
) {
795 case HWTSTAMP_TX_OFF
:
796 priv
->hwts_tx_en
= 0;
799 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
801 priv
->hwts_tx_en
= 1;
807 switch (config
.rx_filter
) {
808 case HWTSTAMP_FILTER_NONE
:
809 if (priv
->hwts_rx_en
) {
811 priv
->hwts_rx_en
= 0;
812 startup_gfar(netdev
);
816 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
818 if (!priv
->hwts_rx_en
) {
820 priv
->hwts_rx_en
= 1;
821 startup_gfar(netdev
);
823 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
827 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
831 /* Ioctl MII Interface */
832 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
834 struct gfar_private
*priv
= netdev_priv(dev
);
836 if (!netif_running(dev
))
839 if (cmd
== SIOCSHWTSTAMP
)
840 return gfar_hwtstamp_ioctl(dev
, rq
, cmd
);
845 return phy_mii_ioctl(priv
->phydev
, rq
, cmd
);
848 static unsigned int reverse_bitmap(unsigned int bit_map
, unsigned int max_qs
)
850 unsigned int new_bit_map
= 0x0;
851 int mask
= 0x1 << (max_qs
- 1), i
;
852 for (i
= 0; i
< max_qs
; i
++) {
854 new_bit_map
= new_bit_map
+ (1 << i
);
860 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
863 u32 rqfpr
= FPR_FILER_MASK
;
867 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
868 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
869 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
870 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
873 rqfcr
= RQFCR_CMP_NOMATCH
;
874 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
875 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
876 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
879 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
881 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
882 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
883 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
886 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
888 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
889 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
890 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
895 static void gfar_init_filer_table(struct gfar_private
*priv
)
898 u32 rqfar
= MAX_FILER_IDX
;
900 u32 rqfpr
= FPR_FILER_MASK
;
903 rqfcr
= RQFCR_CMP_MATCH
;
904 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
905 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
906 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
908 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
909 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
910 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
911 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
912 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
913 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
915 /* cur_filer_idx indicated the first non-masked rule */
916 priv
->cur_filer_idx
= rqfar
;
918 /* Rest are masked rules */
919 rqfcr
= RQFCR_CMP_NOMATCH
;
920 for (i
= 0; i
< rqfar
; i
++) {
921 priv
->ftp_rqfcr
[i
] = rqfcr
;
922 priv
->ftp_rqfpr
[i
] = rqfpr
;
923 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
927 static void gfar_detect_errata(struct gfar_private
*priv
)
929 struct device
*dev
= &priv
->ofdev
->dev
;
930 unsigned int pvr
= mfspr(SPRN_PVR
);
931 unsigned int svr
= mfspr(SPRN_SVR
);
932 unsigned int mod
= (svr
>> 16) & 0xfff6; /* w/o E suffix */
933 unsigned int rev
= svr
& 0xffff;
935 /* MPC8313 Rev 2.0 and higher; All MPC837x */
936 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
>= 0x0020) ||
937 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
938 priv
->errata
|= GFAR_ERRATA_74
;
940 /* MPC8313 and MPC837x all rev */
941 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
942 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
943 priv
->errata
|= GFAR_ERRATA_76
;
945 /* MPC8313 and MPC837x all rev */
946 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
947 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
948 priv
->errata
|= GFAR_ERRATA_A002
;
950 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
951 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
< 0x0020) ||
952 (pvr
== 0x80210020 && mod
== 0x8030 && rev
== 0x0020))
953 priv
->errata
|= GFAR_ERRATA_12
;
956 dev_info(dev
, "enabled errata workarounds, flags: 0x%x\n",
960 /* Set up the ethernet device structure, private data,
961 * and anything else we need before we start */
962 static int gfar_probe(struct platform_device
*ofdev
)
965 struct net_device
*dev
= NULL
;
966 struct gfar_private
*priv
= NULL
;
967 struct gfar __iomem
*regs
= NULL
;
968 int err
= 0, i
, grp_idx
= 0;
970 u32 rstat
= 0, tstat
= 0, rqueue
= 0, tqueue
= 0;
974 err
= gfar_of_init(ofdev
, &dev
);
979 priv
= netdev_priv(dev
);
982 priv
->node
= ofdev
->dev
.of_node
;
983 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
985 spin_lock_init(&priv
->bflock
);
986 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
988 dev_set_drvdata(&ofdev
->dev
, priv
);
989 regs
= priv
->gfargrp
[0].regs
;
991 gfar_detect_errata(priv
);
993 /* Stop the DMA engine now, in case it was running before */
994 /* (The firmware could have used it, and left it running). */
997 /* Reset MAC layer */
998 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
1000 /* We need to delay at least 3 TX clocks */
1003 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
1004 gfar_write(®s
->maccfg1
, tempval
);
1006 /* Initialize MACCFG2. */
1007 tempval
= MACCFG2_INIT_SETTINGS
;
1008 if (gfar_has_errata(priv
, GFAR_ERRATA_74
))
1009 tempval
|= MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
;
1010 gfar_write(®s
->maccfg2
, tempval
);
1012 /* Initialize ECNTRL */
1013 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
1015 /* Set the dev->base_addr to the gfar reg region */
1016 dev
->base_addr
= (unsigned long) regs
;
1018 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
1020 /* Fill in the dev structure */
1021 dev
->watchdog_timeo
= TX_TIMEOUT
;
1023 dev
->netdev_ops
= &gfar_netdev_ops
;
1024 dev
->ethtool_ops
= &gfar_ethtool_ops
;
1026 /* Register for napi ...We are registering NAPI for each grp */
1027 for (i
= 0; i
< priv
->num_grps
; i
++)
1028 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
1030 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
1031 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1033 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1034 NETIF_F_RXCSUM
| NETIF_F_HIGHDMA
;
1039 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
1040 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1042 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
1043 priv
->extended_hash
= 1;
1044 priv
->hash_width
= 9;
1046 priv
->hash_regs
[0] = ®s
->igaddr0
;
1047 priv
->hash_regs
[1] = ®s
->igaddr1
;
1048 priv
->hash_regs
[2] = ®s
->igaddr2
;
1049 priv
->hash_regs
[3] = ®s
->igaddr3
;
1050 priv
->hash_regs
[4] = ®s
->igaddr4
;
1051 priv
->hash_regs
[5] = ®s
->igaddr5
;
1052 priv
->hash_regs
[6] = ®s
->igaddr6
;
1053 priv
->hash_regs
[7] = ®s
->igaddr7
;
1054 priv
->hash_regs
[8] = ®s
->gaddr0
;
1055 priv
->hash_regs
[9] = ®s
->gaddr1
;
1056 priv
->hash_regs
[10] = ®s
->gaddr2
;
1057 priv
->hash_regs
[11] = ®s
->gaddr3
;
1058 priv
->hash_regs
[12] = ®s
->gaddr4
;
1059 priv
->hash_regs
[13] = ®s
->gaddr5
;
1060 priv
->hash_regs
[14] = ®s
->gaddr6
;
1061 priv
->hash_regs
[15] = ®s
->gaddr7
;
1064 priv
->extended_hash
= 0;
1065 priv
->hash_width
= 8;
1067 priv
->hash_regs
[0] = ®s
->gaddr0
;
1068 priv
->hash_regs
[1] = ®s
->gaddr1
;
1069 priv
->hash_regs
[2] = ®s
->gaddr2
;
1070 priv
->hash_regs
[3] = ®s
->gaddr3
;
1071 priv
->hash_regs
[4] = ®s
->gaddr4
;
1072 priv
->hash_regs
[5] = ®s
->gaddr5
;
1073 priv
->hash_regs
[6] = ®s
->gaddr6
;
1074 priv
->hash_regs
[7] = ®s
->gaddr7
;
1077 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
1078 priv
->padding
= DEFAULT_PADDING
;
1082 if (dev
->features
& NETIF_F_IP_CSUM
||
1083 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1084 dev
->hard_header_len
+= GMAC_FCB_LEN
;
1086 /* Program the isrg regs only if number of grps > 1 */
1087 if (priv
->num_grps
> 1) {
1088 baddr
= ®s
->isrg0
;
1089 for (i
= 0; i
< priv
->num_grps
; i
++) {
1090 isrg
|= (priv
->gfargrp
[i
].rx_bit_map
<< ISRG_SHIFT_RX
);
1091 isrg
|= (priv
->gfargrp
[i
].tx_bit_map
<< ISRG_SHIFT_TX
);
1092 gfar_write(baddr
, isrg
);
1098 /* Need to reverse the bit maps as bit_map's MSB is q0
1099 * but, for_each_set_bit parses from right to left, which
1100 * basically reverses the queue numbers */
1101 for (i
= 0; i
< priv
->num_grps
; i
++) {
1102 priv
->gfargrp
[i
].tx_bit_map
= reverse_bitmap(
1103 priv
->gfargrp
[i
].tx_bit_map
, MAX_TX_QS
);
1104 priv
->gfargrp
[i
].rx_bit_map
= reverse_bitmap(
1105 priv
->gfargrp
[i
].rx_bit_map
, MAX_RX_QS
);
1108 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1109 * also assign queues to groups */
1110 for (grp_idx
= 0; grp_idx
< priv
->num_grps
; grp_idx
++) {
1111 priv
->gfargrp
[grp_idx
].num_rx_queues
= 0x0;
1112 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].rx_bit_map
,
1113 priv
->num_rx_queues
) {
1114 priv
->gfargrp
[grp_idx
].num_rx_queues
++;
1115 priv
->rx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1116 rstat
= rstat
| (RSTAT_CLEAR_RHALT
>> i
);
1117 rqueue
= rqueue
| ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
1119 priv
->gfargrp
[grp_idx
].num_tx_queues
= 0x0;
1120 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].tx_bit_map
,
1121 priv
->num_tx_queues
) {
1122 priv
->gfargrp
[grp_idx
].num_tx_queues
++;
1123 priv
->tx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1124 tstat
= tstat
| (TSTAT_CLEAR_THALT
>> i
);
1125 tqueue
= tqueue
| (TQUEUE_EN0
>> i
);
1127 priv
->gfargrp
[grp_idx
].rstat
= rstat
;
1128 priv
->gfargrp
[grp_idx
].tstat
= tstat
;
1132 gfar_write(®s
->rqueue
, rqueue
);
1133 gfar_write(®s
->tqueue
, tqueue
);
1135 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1137 /* Initializing some of the rx/tx queue level parameters */
1138 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1139 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1140 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1141 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1142 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1145 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1146 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1147 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1148 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1151 /* enable filer if using multiple RX queues*/
1152 if(priv
->num_rx_queues
> 1)
1153 priv
->rx_filer_enable
= 1;
1154 /* Enable most messages by default */
1155 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1157 /* Carrier starts down, phylib will bring it up */
1158 netif_carrier_off(dev
);
1160 err
= register_netdev(dev
);
1163 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1168 device_init_wakeup(&dev
->dev
,
1169 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1171 /* fill out IRQ number and name fields */
1172 len_devname
= strlen(dev
->name
);
1173 for (i
= 0; i
< priv
->num_grps
; i
++) {
1174 strncpy(&priv
->gfargrp
[i
].int_name_tx
[0], dev
->name
,
1176 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1177 strncpy(&priv
->gfargrp
[i
].int_name_tx
[len_devname
],
1178 "_g", sizeof("_g"));
1179 priv
->gfargrp
[i
].int_name_tx
[
1180 strlen(priv
->gfargrp
[i
].int_name_tx
)] = i
+48;
1181 strncpy(&priv
->gfargrp
[i
].int_name_tx
[strlen(
1182 priv
->gfargrp
[i
].int_name_tx
)],
1183 "_tx", sizeof("_tx") + 1);
1185 strncpy(&priv
->gfargrp
[i
].int_name_rx
[0], dev
->name
,
1187 strncpy(&priv
->gfargrp
[i
].int_name_rx
[len_devname
],
1188 "_g", sizeof("_g"));
1189 priv
->gfargrp
[i
].int_name_rx
[
1190 strlen(priv
->gfargrp
[i
].int_name_rx
)] = i
+48;
1191 strncpy(&priv
->gfargrp
[i
].int_name_rx
[strlen(
1192 priv
->gfargrp
[i
].int_name_rx
)],
1193 "_rx", sizeof("_rx") + 1);
1195 strncpy(&priv
->gfargrp
[i
].int_name_er
[0], dev
->name
,
1197 strncpy(&priv
->gfargrp
[i
].int_name_er
[len_devname
],
1198 "_g", sizeof("_g"));
1199 priv
->gfargrp
[i
].int_name_er
[strlen(
1200 priv
->gfargrp
[i
].int_name_er
)] = i
+48;
1201 strncpy(&priv
->gfargrp
[i
].int_name_er
[strlen(\
1202 priv
->gfargrp
[i
].int_name_er
)],
1203 "_er", sizeof("_er") + 1);
1205 priv
->gfargrp
[i
].int_name_tx
[len_devname
] = '\0';
1208 /* Initialize the filer table */
1209 gfar_init_filer_table(priv
);
1211 /* Create all the sysfs files */
1212 gfar_init_sysfs(dev
);
1214 /* Print out the device info */
1215 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
1217 /* Even more device info helps when determining which kernel */
1218 /* provided which set of benchmarks. */
1219 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
1220 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1221 printk(KERN_INFO
"%s: RX BD ring size for Q[%d]: %d\n",
1222 dev
->name
, i
, priv
->rx_queue
[i
]->rx_ring_size
);
1223 for(i
= 0; i
< priv
->num_tx_queues
; i
++)
1224 printk(KERN_INFO
"%s: TX BD ring size for Q[%d]: %d\n",
1225 dev
->name
, i
, priv
->tx_queue
[i
]->tx_ring_size
);
1230 unmap_group_regs(priv
);
1231 free_tx_pointers(priv
);
1232 free_rx_pointers(priv
);
1234 of_node_put(priv
->phy_node
);
1236 of_node_put(priv
->tbi_node
);
1241 static int gfar_remove(struct platform_device
*ofdev
)
1243 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
1246 of_node_put(priv
->phy_node
);
1248 of_node_put(priv
->tbi_node
);
1250 dev_set_drvdata(&ofdev
->dev
, NULL
);
1252 unregister_netdev(priv
->ndev
);
1253 unmap_group_regs(priv
);
1254 free_netdev(priv
->ndev
);
1261 static int gfar_suspend(struct device
*dev
)
1263 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1264 struct net_device
*ndev
= priv
->ndev
;
1265 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1266 unsigned long flags
;
1269 int magic_packet
= priv
->wol_en
&&
1270 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1272 netif_device_detach(ndev
);
1274 if (netif_running(ndev
)) {
1276 local_irq_save(flags
);
1280 gfar_halt_nodisable(ndev
);
1282 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1283 tempval
= gfar_read(®s
->maccfg1
);
1285 tempval
&= ~MACCFG1_TX_EN
;
1288 tempval
&= ~MACCFG1_RX_EN
;
1290 gfar_write(®s
->maccfg1
, tempval
);
1294 local_irq_restore(flags
);
1299 /* Enable interrupt on Magic Packet */
1300 gfar_write(®s
->imask
, IMASK_MAG
);
1302 /* Enable Magic Packet mode */
1303 tempval
= gfar_read(®s
->maccfg2
);
1304 tempval
|= MACCFG2_MPEN
;
1305 gfar_write(®s
->maccfg2
, tempval
);
1307 phy_stop(priv
->phydev
);
1314 static int gfar_resume(struct device
*dev
)
1316 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1317 struct net_device
*ndev
= priv
->ndev
;
1318 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1319 unsigned long flags
;
1321 int magic_packet
= priv
->wol_en
&&
1322 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1324 if (!netif_running(ndev
)) {
1325 netif_device_attach(ndev
);
1329 if (!magic_packet
&& priv
->phydev
)
1330 phy_start(priv
->phydev
);
1332 /* Disable Magic Packet mode, in case something
1335 local_irq_save(flags
);
1339 tempval
= gfar_read(®s
->maccfg2
);
1340 tempval
&= ~MACCFG2_MPEN
;
1341 gfar_write(®s
->maccfg2
, tempval
);
1347 local_irq_restore(flags
);
1349 netif_device_attach(ndev
);
1356 static int gfar_restore(struct device
*dev
)
1358 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1359 struct net_device
*ndev
= priv
->ndev
;
1361 if (!netif_running(ndev
))
1364 gfar_init_bds(ndev
);
1365 init_registers(ndev
);
1366 gfar_set_mac_address(ndev
);
1367 gfar_init_mac(ndev
);
1372 priv
->oldduplex
= -1;
1375 phy_start(priv
->phydev
);
1377 netif_device_attach(ndev
);
1383 static struct dev_pm_ops gfar_pm_ops
= {
1384 .suspend
= gfar_suspend
,
1385 .resume
= gfar_resume
,
1386 .freeze
= gfar_suspend
,
1387 .thaw
= gfar_resume
,
1388 .restore
= gfar_restore
,
1391 #define GFAR_PM_OPS (&gfar_pm_ops)
1395 #define GFAR_PM_OPS NULL
1399 /* Reads the controller's registers to determine what interface
1400 * connects it to the PHY.
1402 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1404 struct gfar_private
*priv
= netdev_priv(dev
);
1405 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1408 ecntrl
= gfar_read(®s
->ecntrl
);
1410 if (ecntrl
& ECNTRL_SGMII_MODE
)
1411 return PHY_INTERFACE_MODE_SGMII
;
1413 if (ecntrl
& ECNTRL_TBI_MODE
) {
1414 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1415 return PHY_INTERFACE_MODE_RTBI
;
1417 return PHY_INTERFACE_MODE_TBI
;
1420 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1421 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
1422 return PHY_INTERFACE_MODE_RMII
;
1424 phy_interface_t interface
= priv
->interface
;
1427 * This isn't autodetected right now, so it must
1428 * be set by the device tree or platform code.
1430 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1431 return PHY_INTERFACE_MODE_RGMII_ID
;
1433 return PHY_INTERFACE_MODE_RGMII
;
1437 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1438 return PHY_INTERFACE_MODE_GMII
;
1440 return PHY_INTERFACE_MODE_MII
;
1444 /* Initializes driver's PHY state, and attaches to the PHY.
1445 * Returns 0 on success.
1447 static int init_phy(struct net_device
*dev
)
1449 struct gfar_private
*priv
= netdev_priv(dev
);
1450 uint gigabit_support
=
1451 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1452 SUPPORTED_1000baseT_Full
: 0;
1453 phy_interface_t interface
;
1457 priv
->oldduplex
= -1;
1459 interface
= gfar_get_interface(dev
);
1461 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1464 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
1466 if (!priv
->phydev
) {
1467 dev_err(&dev
->dev
, "could not attach to PHY\n");
1471 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1472 gfar_configure_serdes(dev
);
1474 /* Remove any features not supported by the controller */
1475 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1476 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1482 * Initialize TBI PHY interface for communicating with the
1483 * SERDES lynx PHY on the chip. We communicate with this PHY
1484 * through the MDIO bus on each controller, treating it as a
1485 * "normal" PHY at the address found in the TBIPA register. We assume
1486 * that the TBIPA register is valid. Either the MDIO bus code will set
1487 * it to a value that doesn't conflict with other PHYs on the bus, or the
1488 * value doesn't matter, as there are no other PHYs on the bus.
1490 static void gfar_configure_serdes(struct net_device
*dev
)
1492 struct gfar_private
*priv
= netdev_priv(dev
);
1493 struct phy_device
*tbiphy
;
1495 if (!priv
->tbi_node
) {
1496 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1497 "device tree specify a tbi-handle\n");
1501 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1503 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1508 * If the link is already up, we must already be ok, and don't need to
1509 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1510 * everything for us? Resetting it takes the link down and requires
1511 * several seconds for it to come back.
1513 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1516 /* Single clk mode, mii mode off(for serdes communication) */
1517 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1519 phy_write(tbiphy
, MII_ADVERTISE
,
1520 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1521 ADVERTISE_1000XPSE_ASYM
);
1523 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
1524 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
1527 static void init_registers(struct net_device
*dev
)
1529 struct gfar_private
*priv
= netdev_priv(dev
);
1530 struct gfar __iomem
*regs
= NULL
;
1533 for (i
= 0; i
< priv
->num_grps
; i
++) {
1534 regs
= priv
->gfargrp
[i
].regs
;
1536 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1538 /* Initialize IMASK */
1539 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1542 regs
= priv
->gfargrp
[0].regs
;
1543 /* Init hash registers to zero */
1544 gfar_write(®s
->igaddr0
, 0);
1545 gfar_write(®s
->igaddr1
, 0);
1546 gfar_write(®s
->igaddr2
, 0);
1547 gfar_write(®s
->igaddr3
, 0);
1548 gfar_write(®s
->igaddr4
, 0);
1549 gfar_write(®s
->igaddr5
, 0);
1550 gfar_write(®s
->igaddr6
, 0);
1551 gfar_write(®s
->igaddr7
, 0);
1553 gfar_write(®s
->gaddr0
, 0);
1554 gfar_write(®s
->gaddr1
, 0);
1555 gfar_write(®s
->gaddr2
, 0);
1556 gfar_write(®s
->gaddr3
, 0);
1557 gfar_write(®s
->gaddr4
, 0);
1558 gfar_write(®s
->gaddr5
, 0);
1559 gfar_write(®s
->gaddr6
, 0);
1560 gfar_write(®s
->gaddr7
, 0);
1562 /* Zero out the rmon mib registers if it has them */
1563 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1564 memset_io(&(regs
->rmon
), 0, sizeof (struct rmon_mib
));
1566 /* Mask off the CAM interrupts */
1567 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1568 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1571 /* Initialize the max receive buffer length */
1572 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1574 /* Initialize the Minimum Frame Length Register */
1575 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1578 static int __gfar_is_rx_idle(struct gfar_private
*priv
)
1583 * Normaly TSEC should not hang on GRS commands, so we should
1584 * actually wait for IEVENT_GRSC flag.
1586 if (likely(!gfar_has_errata(priv
, GFAR_ERRATA_A002
)))
1590 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1591 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1592 * and the Rx can be safely reset.
1594 res
= gfar_read((void __iomem
*)priv
->gfargrp
[0].regs
+ 0xd1c);
1596 if ((res
& 0xffff) == (res
>> 16))
1602 /* Halt the receive and transmit queues */
1603 static void gfar_halt_nodisable(struct net_device
*dev
)
1605 struct gfar_private
*priv
= netdev_priv(dev
);
1606 struct gfar __iomem
*regs
= NULL
;
1610 for (i
= 0; i
< priv
->num_grps
; i
++) {
1611 regs
= priv
->gfargrp
[i
].regs
;
1612 /* Mask all interrupts */
1613 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1615 /* Clear all interrupts */
1616 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1619 regs
= priv
->gfargrp
[0].regs
;
1620 /* Stop the DMA, and wait for it to stop */
1621 tempval
= gfar_read(®s
->dmactrl
);
1622 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
1623 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
1626 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1627 gfar_write(®s
->dmactrl
, tempval
);
1630 ret
= spin_event_timeout(((gfar_read(®s
->ievent
) &
1631 (IEVENT_GRSC
| IEVENT_GTSC
)) ==
1632 (IEVENT_GRSC
| IEVENT_GTSC
)), 1000000, 0);
1633 if (!ret
&& !(gfar_read(®s
->ievent
) & IEVENT_GRSC
))
1634 ret
= __gfar_is_rx_idle(priv
);
1639 /* Halt the receive and transmit queues */
1640 void gfar_halt(struct net_device
*dev
)
1642 struct gfar_private
*priv
= netdev_priv(dev
);
1643 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1646 gfar_halt_nodisable(dev
);
1648 /* Disable Rx and Tx */
1649 tempval
= gfar_read(®s
->maccfg1
);
1650 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1651 gfar_write(®s
->maccfg1
, tempval
);
1654 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1656 free_irq(grp
->interruptError
, grp
);
1657 free_irq(grp
->interruptTransmit
, grp
);
1658 free_irq(grp
->interruptReceive
, grp
);
1661 void stop_gfar(struct net_device
*dev
)
1663 struct gfar_private
*priv
= netdev_priv(dev
);
1664 unsigned long flags
;
1667 phy_stop(priv
->phydev
);
1671 local_irq_save(flags
);
1679 local_irq_restore(flags
);
1682 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1683 for (i
= 0; i
< priv
->num_grps
; i
++)
1684 free_grp_irqs(&priv
->gfargrp
[i
]);
1686 for (i
= 0; i
< priv
->num_grps
; i
++)
1687 free_irq(priv
->gfargrp
[i
].interruptTransmit
,
1691 free_skb_resources(priv
);
1694 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1696 struct txbd8
*txbdp
;
1697 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1700 txbdp
= tx_queue
->tx_bd_base
;
1702 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1703 if (!tx_queue
->tx_skbuff
[i
])
1706 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1707 txbdp
->length
, DMA_TO_DEVICE
);
1709 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1712 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1713 txbdp
->length
, DMA_TO_DEVICE
);
1716 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1717 tx_queue
->tx_skbuff
[i
] = NULL
;
1719 kfree(tx_queue
->tx_skbuff
);
1722 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1724 struct rxbd8
*rxbdp
;
1725 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1728 rxbdp
= rx_queue
->rx_bd_base
;
1730 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1731 if (rx_queue
->rx_skbuff
[i
]) {
1732 dma_unmap_single(&priv
->ofdev
->dev
,
1733 rxbdp
->bufPtr
, priv
->rx_buffer_size
,
1735 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1736 rx_queue
->rx_skbuff
[i
] = NULL
;
1742 kfree(rx_queue
->rx_skbuff
);
1745 /* If there are any tx skbs or rx skbs still around, free them.
1746 * Then free tx_skbuff and rx_skbuff */
1747 static void free_skb_resources(struct gfar_private
*priv
)
1749 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1750 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1753 /* Go through all the buffer descriptors and free their data buffers */
1754 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1755 tx_queue
= priv
->tx_queue
[i
];
1756 if(tx_queue
->tx_skbuff
)
1757 free_skb_tx_queue(tx_queue
);
1760 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1761 rx_queue
= priv
->rx_queue
[i
];
1762 if(rx_queue
->rx_skbuff
)
1763 free_skb_rx_queue(rx_queue
);
1766 dma_free_coherent(&priv
->ofdev
->dev
,
1767 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1768 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1769 priv
->tx_queue
[0]->tx_bd_base
,
1770 priv
->tx_queue
[0]->tx_bd_dma_base
);
1771 skb_queue_purge(&priv
->rx_recycle
);
1774 void gfar_start(struct net_device
*dev
)
1776 struct gfar_private
*priv
= netdev_priv(dev
);
1777 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1781 /* Enable Rx and Tx in MACCFG1 */
1782 tempval
= gfar_read(®s
->maccfg1
);
1783 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1784 gfar_write(®s
->maccfg1
, tempval
);
1786 /* Initialize DMACTRL to have WWR and WOP */
1787 tempval
= gfar_read(®s
->dmactrl
);
1788 tempval
|= DMACTRL_INIT_SETTINGS
;
1789 gfar_write(®s
->dmactrl
, tempval
);
1791 /* Make sure we aren't stopped */
1792 tempval
= gfar_read(®s
->dmactrl
);
1793 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1794 gfar_write(®s
->dmactrl
, tempval
);
1796 for (i
= 0; i
< priv
->num_grps
; i
++) {
1797 regs
= priv
->gfargrp
[i
].regs
;
1798 /* Clear THLT/RHLT, so that the DMA starts polling now */
1799 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1800 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1801 /* Unmask the interrupts we look for */
1802 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1805 dev
->trans_start
= jiffies
; /* prevent tx timeout */
1808 void gfar_configure_coalescing(struct gfar_private
*priv
,
1809 unsigned long tx_mask
, unsigned long rx_mask
)
1811 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1815 /* Backward compatible case ---- even if we enable
1816 * multiple queues, there's only single reg to program
1818 gfar_write(®s
->txic
, 0);
1819 if(likely(priv
->tx_queue
[0]->txcoalescing
))
1820 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
1822 gfar_write(®s
->rxic
, 0);
1823 if(unlikely(priv
->rx_queue
[0]->rxcoalescing
))
1824 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
1826 if (priv
->mode
== MQ_MG_MODE
) {
1827 baddr
= ®s
->txic0
;
1828 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
1829 if (likely(priv
->tx_queue
[i
]->txcoalescing
)) {
1830 gfar_write(baddr
+ i
, 0);
1831 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
1835 baddr
= ®s
->rxic0
;
1836 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
1837 if (likely(priv
->rx_queue
[i
]->rxcoalescing
)) {
1838 gfar_write(baddr
+ i
, 0);
1839 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
1845 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1847 struct gfar_private
*priv
= grp
->priv
;
1848 struct net_device
*dev
= priv
->ndev
;
1851 /* If the device has multiple interrupts, register for
1852 * them. Otherwise, only register for the one */
1853 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1854 /* Install our interrupt handlers for Error,
1855 * Transmit, and Receive */
1856 if ((err
= request_irq(grp
->interruptError
, gfar_error
, 0,
1857 grp
->int_name_er
,grp
)) < 0) {
1858 if (netif_msg_intr(priv
))
1859 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1860 dev
->name
, grp
->interruptError
);
1865 if ((err
= request_irq(grp
->interruptTransmit
, gfar_transmit
,
1866 0, grp
->int_name_tx
, grp
)) < 0) {
1867 if (netif_msg_intr(priv
))
1868 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1869 dev
->name
, grp
->interruptTransmit
);
1873 if ((err
= request_irq(grp
->interruptReceive
, gfar_receive
, 0,
1874 grp
->int_name_rx
, grp
)) < 0) {
1875 if (netif_msg_intr(priv
))
1876 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1877 dev
->name
, grp
->interruptReceive
);
1881 if ((err
= request_irq(grp
->interruptTransmit
, gfar_interrupt
, 0,
1882 grp
->int_name_tx
, grp
)) < 0) {
1883 if (netif_msg_intr(priv
))
1884 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1885 dev
->name
, grp
->interruptTransmit
);
1893 free_irq(grp
->interruptTransmit
, grp
);
1895 free_irq(grp
->interruptError
, grp
);
1901 /* Bring the controller up and running */
1902 int startup_gfar(struct net_device
*ndev
)
1904 struct gfar_private
*priv
= netdev_priv(ndev
);
1905 struct gfar __iomem
*regs
= NULL
;
1908 for (i
= 0; i
< priv
->num_grps
; i
++) {
1909 regs
= priv
->gfargrp
[i
].regs
;
1910 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1913 regs
= priv
->gfargrp
[0].regs
;
1914 err
= gfar_alloc_skb_resources(ndev
);
1918 gfar_init_mac(ndev
);
1920 for (i
= 0; i
< priv
->num_grps
; i
++) {
1921 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
1923 for (j
= 0; j
< i
; j
++)
1924 free_grp_irqs(&priv
->gfargrp
[j
]);
1929 /* Start the controller */
1932 phy_start(priv
->phydev
);
1934 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
1939 free_skb_resources(priv
);
1943 /* Called when something needs to use the ethernet device */
1944 /* Returns 0 for success. */
1945 static int gfar_enet_open(struct net_device
*dev
)
1947 struct gfar_private
*priv
= netdev_priv(dev
);
1952 skb_queue_head_init(&priv
->rx_recycle
);
1954 /* Initialize a bunch of registers */
1955 init_registers(dev
);
1957 gfar_set_mac_address(dev
);
1959 err
= init_phy(dev
);
1966 err
= startup_gfar(dev
);
1972 netif_tx_start_all_queues(dev
);
1974 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1979 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1981 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1983 memset(fcb
, 0, GMAC_FCB_LEN
);
1988 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1992 /* If we're here, it's a IP packet with a TCP or UDP
1993 * payload. We set it to checksum, using a pseudo-header
1996 flags
= TXFCB_DEFAULT
;
1998 /* Tell the controller what the protocol is */
1999 /* And provide the already calculated phcs */
2000 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
2002 fcb
->phcs
= udp_hdr(skb
)->check
;
2004 fcb
->phcs
= tcp_hdr(skb
)->check
;
2006 /* l3os is the distance between the start of the
2007 * frame (skb->data) and the start of the IP hdr.
2008 * l4os is the distance between the start of the
2009 * l3 hdr and the l4 hdr */
2010 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
2011 fcb
->l4os
= skb_network_header_len(skb
);
2016 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
2018 fcb
->flags
|= TXFCB_VLN
;
2019 fcb
->vlctl
= vlan_tx_tag_get(skb
);
2022 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
2023 struct txbd8
*base
, int ring_size
)
2025 struct txbd8
*new_bd
= bdp
+ stride
;
2027 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
2030 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
2033 return skip_txbd(bdp
, 1, base
, ring_size
);
2036 /* This is called by the kernel when a frame is ready for transmission. */
2037 /* It is pointed to by the dev->hard_start_xmit function pointer */
2038 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2040 struct gfar_private
*priv
= netdev_priv(dev
);
2041 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2042 struct netdev_queue
*txq
;
2043 struct gfar __iomem
*regs
= NULL
;
2044 struct txfcb
*fcb
= NULL
;
2045 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
2047 int i
, rq
= 0, do_tstamp
= 0;
2049 unsigned long flags
;
2050 unsigned int nr_frags
, nr_txbds
, length
;
2053 * TOE=1 frames larger than 2500 bytes may see excess delays
2054 * before start of transmission.
2056 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_76
) &&
2057 skb
->ip_summed
== CHECKSUM_PARTIAL
&&
2061 ret
= skb_checksum_help(skb
);
2066 rq
= skb
->queue_mapping
;
2067 tx_queue
= priv
->tx_queue
[rq
];
2068 txq
= netdev_get_tx_queue(dev
, rq
);
2069 base
= tx_queue
->tx_bd_base
;
2070 regs
= tx_queue
->grp
->regs
;
2072 /* check if time stamp should be generated */
2073 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
2077 /* make space for additional header when fcb is needed */
2078 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2079 vlan_tx_tag_present(skb
) ||
2080 unlikely(do_tstamp
)) &&
2081 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
2082 struct sk_buff
*skb_new
;
2084 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
2086 dev
->stats
.tx_errors
++;
2088 return NETDEV_TX_OK
;
2094 /* total number of fragments in the SKB */
2095 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2097 /* calculate the required number of TxBDs for this skb */
2098 if (unlikely(do_tstamp
))
2099 nr_txbds
= nr_frags
+ 2;
2101 nr_txbds
= nr_frags
+ 1;
2103 /* check if there is space to queue this packet */
2104 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2105 /* no space, stop the queue */
2106 netif_tx_stop_queue(txq
);
2107 dev
->stats
.tx_fifo_errors
++;
2108 return NETDEV_TX_BUSY
;
2111 /* Update transmit stats */
2112 tx_queue
->stats
.tx_bytes
+= skb
->len
;
2113 tx_queue
->stats
.tx_packets
++;
2115 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2116 lstatus
= txbdp
->lstatus
;
2118 /* Time stamp insertion requires one additional TxBD */
2119 if (unlikely(do_tstamp
))
2120 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2121 tx_queue
->tx_ring_size
);
2123 if (nr_frags
== 0) {
2124 if (unlikely(do_tstamp
))
2125 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_LAST
|
2128 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2130 /* Place the fragment addresses and lengths into the TxBDs */
2131 for (i
= 0; i
< nr_frags
; i
++) {
2132 /* Point at the next BD, wrapping as needed */
2133 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2135 length
= skb_shinfo(skb
)->frags
[i
].size
;
2137 lstatus
= txbdp
->lstatus
| length
|
2138 BD_LFLAG(TXBD_READY
);
2140 /* Handle the last BD specially */
2141 if (i
== nr_frags
- 1)
2142 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2144 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
2145 skb_shinfo(skb
)->frags
[i
].page
,
2146 skb_shinfo(skb
)->frags
[i
].page_offset
,
2150 /* set the TxBD length and buffer pointer */
2151 txbdp
->bufPtr
= bufaddr
;
2152 txbdp
->lstatus
= lstatus
;
2155 lstatus
= txbdp_start
->lstatus
;
2158 /* Set up checksumming */
2159 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
2160 fcb
= gfar_add_fcb(skb
);
2161 /* as specified by errata */
2162 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_12
)
2163 && ((unsigned long)fcb
% 0x20) > 0x18)) {
2164 __skb_pull(skb
, GMAC_FCB_LEN
);
2165 skb_checksum_help(skb
);
2167 lstatus
|= BD_LFLAG(TXBD_TOE
);
2168 gfar_tx_checksum(skb
, fcb
);
2172 if (vlan_tx_tag_present(skb
)) {
2173 if (unlikely(NULL
== fcb
)) {
2174 fcb
= gfar_add_fcb(skb
);
2175 lstatus
|= BD_LFLAG(TXBD_TOE
);
2178 gfar_tx_vlan(skb
, fcb
);
2181 /* Setup tx hardware time stamping if requested */
2182 if (unlikely(do_tstamp
)) {
2183 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2185 fcb
= gfar_add_fcb(skb
);
2187 lstatus
|= BD_LFLAG(TXBD_TOE
);
2190 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2191 skb_headlen(skb
), DMA_TO_DEVICE
);
2194 * If time stamping is requested one additional TxBD must be set up. The
2195 * first TxBD points to the FCB and must have a data length of
2196 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2197 * the full frame length.
2199 if (unlikely(do_tstamp
)) {
2200 txbdp_tstamp
->bufPtr
= txbdp_start
->bufPtr
+ GMAC_FCB_LEN
;
2201 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_READY
) |
2202 (skb_headlen(skb
) - GMAC_FCB_LEN
);
2203 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2205 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2209 * We can work in parallel with gfar_clean_tx_ring(), except
2210 * when modifying num_txbdfree. Note that we didn't grab the lock
2211 * when we were reading the num_txbdfree and checking for available
2212 * space, that's because outside of this function it can only grow,
2213 * and once we've got needed space, it cannot suddenly disappear.
2215 * The lock also protects us from gfar_error(), which can modify
2216 * regs->tstat and thus retrigger the transfers, which is why we
2217 * also must grab the lock before setting ready bit for the first
2218 * to be transmitted BD.
2220 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2223 * The powerpc-specific eieio() is used, as wmb() has too strong
2224 * semantics (it requires synchronization between cacheable and
2225 * uncacheable mappings, which eieio doesn't provide and which we
2226 * don't need), thus requiring a more expensive sync instruction. At
2227 * some point, the set of architecture-independent barrier functions
2228 * should be expanded to include weaker barriers.
2232 txbdp_start
->lstatus
= lstatus
;
2234 eieio(); /* force lstatus write before tx_skbuff */
2236 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2238 /* Update the current skb pointer to the next entry we will use
2239 * (wrapping if necessary) */
2240 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2241 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2243 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2245 /* reduce TxBD free count */
2246 tx_queue
->num_txbdfree
-= (nr_txbds
);
2248 /* If the next BD still needs to be cleaned up, then the bds
2249 are full. We need to tell the kernel to stop sending us stuff. */
2250 if (!tx_queue
->num_txbdfree
) {
2251 netif_tx_stop_queue(txq
);
2253 dev
->stats
.tx_fifo_errors
++;
2256 /* Tell the DMA to go go go */
2257 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2260 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2262 return NETDEV_TX_OK
;
2265 /* Stops the kernel queue, and halts the controller */
2266 static int gfar_close(struct net_device
*dev
)
2268 struct gfar_private
*priv
= netdev_priv(dev
);
2272 cancel_work_sync(&priv
->reset_task
);
2275 /* Disconnect from the PHY */
2276 phy_disconnect(priv
->phydev
);
2277 priv
->phydev
= NULL
;
2279 netif_tx_stop_all_queues(dev
);
2284 /* Changes the mac address if the controller is not running. */
2285 static int gfar_set_mac_address(struct net_device
*dev
)
2287 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2293 /* Enables and disables VLAN insertion/extraction */
2294 static void gfar_vlan_rx_register(struct net_device
*dev
,
2295 struct vlan_group
*grp
)
2297 struct gfar_private
*priv
= netdev_priv(dev
);
2298 struct gfar __iomem
*regs
= NULL
;
2299 unsigned long flags
;
2302 regs
= priv
->gfargrp
[0].regs
;
2303 local_irq_save(flags
);
2309 /* Enable VLAN tag insertion */
2310 tempval
= gfar_read(®s
->tctrl
);
2311 tempval
|= TCTRL_VLINS
;
2313 gfar_write(®s
->tctrl
, tempval
);
2315 /* Enable VLAN tag extraction */
2316 tempval
= gfar_read(®s
->rctrl
);
2317 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
2318 gfar_write(®s
->rctrl
, tempval
);
2320 /* Disable VLAN tag insertion */
2321 tempval
= gfar_read(®s
->tctrl
);
2322 tempval
&= ~TCTRL_VLINS
;
2323 gfar_write(®s
->tctrl
, tempval
);
2325 /* Disable VLAN tag extraction */
2326 tempval
= gfar_read(®s
->rctrl
);
2327 tempval
&= ~RCTRL_VLEX
;
2328 /* If parse is no longer required, then disable parser */
2329 if (tempval
& RCTRL_REQ_PARSER
)
2330 tempval
|= RCTRL_PRSDEP_INIT
;
2332 tempval
&= ~RCTRL_PRSDEP_INIT
;
2333 gfar_write(®s
->rctrl
, tempval
);
2336 gfar_change_mtu(dev
, dev
->mtu
);
2339 local_irq_restore(flags
);
2342 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2344 int tempsize
, tempval
;
2345 struct gfar_private
*priv
= netdev_priv(dev
);
2346 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2347 int oldsize
= priv
->rx_buffer_size
;
2348 int frame_size
= new_mtu
+ ETH_HLEN
;
2351 frame_size
+= VLAN_HLEN
;
2353 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2354 if (netif_msg_drv(priv
))
2355 printk(KERN_ERR
"%s: Invalid MTU setting\n",
2360 if (gfar_uses_fcb(priv
))
2361 frame_size
+= GMAC_FCB_LEN
;
2363 frame_size
+= priv
->padding
;
2366 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
2367 INCREMENTAL_BUFFER_SIZE
;
2369 /* Only stop and start the controller if it isn't already
2370 * stopped, and we changed something */
2371 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2374 priv
->rx_buffer_size
= tempsize
;
2378 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
2379 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
2381 /* If the mtu is larger than the max size for standard
2382 * ethernet frames (ie, a jumbo frame), then set maccfg2
2383 * to allow huge frames, and to check the length */
2384 tempval
= gfar_read(®s
->maccfg2
);
2386 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
||
2387 gfar_has_errata(priv
, GFAR_ERRATA_74
))
2388 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2390 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2392 gfar_write(®s
->maccfg2
, tempval
);
2394 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2400 /* gfar_reset_task gets scheduled when a packet has not been
2401 * transmitted after a set amount of time.
2402 * For now, assume that clearing out all the structures, and
2403 * starting over will fix the problem.
2405 static void gfar_reset_task(struct work_struct
*work
)
2407 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2409 struct net_device
*dev
= priv
->ndev
;
2411 if (dev
->flags
& IFF_UP
) {
2412 netif_tx_stop_all_queues(dev
);
2415 netif_tx_start_all_queues(dev
);
2418 netif_tx_schedule_all(dev
);
2421 static void gfar_timeout(struct net_device
*dev
)
2423 struct gfar_private
*priv
= netdev_priv(dev
);
2425 dev
->stats
.tx_errors
++;
2426 schedule_work(&priv
->reset_task
);
2429 static void gfar_align_skb(struct sk_buff
*skb
)
2431 /* We need the data buffer to be aligned properly. We will reserve
2432 * as many bytes as needed to align the data properly
2434 skb_reserve(skb
, RXBUF_ALIGNMENT
-
2435 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
2438 /* Interrupt Handler for Transmit complete */
2439 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2441 struct net_device
*dev
= tx_queue
->dev
;
2442 struct gfar_private
*priv
= netdev_priv(dev
);
2443 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2444 struct txbd8
*bdp
, *next
= NULL
;
2445 struct txbd8
*lbdp
= NULL
;
2446 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2447 struct sk_buff
*skb
;
2449 int tx_ring_size
= tx_queue
->tx_ring_size
;
2450 int frags
= 0, nr_txbds
= 0;
2456 rx_queue
= priv
->rx_queue
[tx_queue
->qindex
];
2457 bdp
= tx_queue
->dirty_tx
;
2458 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2460 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2461 unsigned long flags
;
2463 frags
= skb_shinfo(skb
)->nr_frags
;
2466 * When time stamping, one additional TxBD must be freed.
2467 * Also, we need to dma_unmap_single() the TxPAL.
2469 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2470 nr_txbds
= frags
+ 2;
2472 nr_txbds
= frags
+ 1;
2474 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2476 lstatus
= lbdp
->lstatus
;
2478 /* Only clean completed frames */
2479 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2480 (lstatus
& BD_LENGTH_MASK
))
2483 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2484 next
= next_txbd(bdp
, base
, tx_ring_size
);
2485 buflen
= next
->length
+ GMAC_FCB_LEN
;
2487 buflen
= bdp
->length
;
2489 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2490 buflen
, DMA_TO_DEVICE
);
2492 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2493 struct skb_shared_hwtstamps shhwtstamps
;
2494 u64
*ns
= (u64
*) (((u32
)skb
->data
+ 0x10) & ~0x7);
2495 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2496 shhwtstamps
.hwtstamp
= ns_to_ktime(*ns
);
2497 skb_tstamp_tx(skb
, &shhwtstamps
);
2498 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2502 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2503 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2505 for (i
= 0; i
< frags
; i
++) {
2506 dma_unmap_page(&priv
->ofdev
->dev
,
2510 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2511 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2515 * If there's room in the queue (limit it to rx_buffer_size)
2516 * we add this skb back into the pool, if it's the right size
2518 if (skb_queue_len(&priv
->rx_recycle
) < rx_queue
->rx_ring_size
&&
2519 skb_recycle_check(skb
, priv
->rx_buffer_size
+
2521 gfar_align_skb(skb
);
2522 skb_queue_head(&priv
->rx_recycle
, skb
);
2524 dev_kfree_skb_any(skb
);
2526 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2528 skb_dirtytx
= (skb_dirtytx
+ 1) &
2529 TX_RING_MOD_MASK(tx_ring_size
);
2532 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2533 tx_queue
->num_txbdfree
+= nr_txbds
;
2534 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2537 /* If we freed a buffer, we can restart transmission, if necessary */
2538 if (__netif_subqueue_stopped(dev
, tx_queue
->qindex
) && tx_queue
->num_txbdfree
)
2539 netif_wake_subqueue(dev
, tx_queue
->qindex
);
2541 /* Update dirty indicators */
2542 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2543 tx_queue
->dirty_tx
= bdp
;
2548 static void gfar_schedule_cleanup(struct gfar_priv_grp
*gfargrp
)
2550 unsigned long flags
;
2552 spin_lock_irqsave(&gfargrp
->grplock
, flags
);
2553 if (napi_schedule_prep(&gfargrp
->napi
)) {
2554 gfar_write(&gfargrp
->regs
->imask
, IMASK_RTX_DISABLED
);
2555 __napi_schedule(&gfargrp
->napi
);
2558 * Clear IEVENT, so interrupts aren't called again
2559 * because of the packets that have already arrived.
2561 gfar_write(&gfargrp
->regs
->ievent
, IEVENT_RTX_MASK
);
2563 spin_unlock_irqrestore(&gfargrp
->grplock
, flags
);
2567 /* Interrupt Handler for Transmit complete */
2568 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2570 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2574 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
2575 struct sk_buff
*skb
)
2577 struct net_device
*dev
= rx_queue
->dev
;
2578 struct gfar_private
*priv
= netdev_priv(dev
);
2581 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2582 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2583 gfar_init_rxbdp(rx_queue
, bdp
, buf
);
2586 static struct sk_buff
* gfar_alloc_skb(struct net_device
*dev
)
2588 struct gfar_private
*priv
= netdev_priv(dev
);
2589 struct sk_buff
*skb
= NULL
;
2591 skb
= netdev_alloc_skb(dev
, priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2595 gfar_align_skb(skb
);
2600 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
2602 struct gfar_private
*priv
= netdev_priv(dev
);
2603 struct sk_buff
*skb
= NULL
;
2605 skb
= skb_dequeue(&priv
->rx_recycle
);
2607 skb
= gfar_alloc_skb(dev
);
2612 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2614 struct gfar_private
*priv
= netdev_priv(dev
);
2615 struct net_device_stats
*stats
= &dev
->stats
;
2616 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2618 /* If the packet was truncated, none of the other errors
2620 if (status
& RXBD_TRUNCATED
) {
2621 stats
->rx_length_errors
++;
2627 /* Count the errors, if there were any */
2628 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2629 stats
->rx_length_errors
++;
2631 if (status
& RXBD_LARGE
)
2636 if (status
& RXBD_NONOCTET
) {
2637 stats
->rx_frame_errors
++;
2638 estats
->rx_nonoctet
++;
2640 if (status
& RXBD_CRCERR
) {
2641 estats
->rx_crcerr
++;
2642 stats
->rx_crc_errors
++;
2644 if (status
& RXBD_OVERRUN
) {
2645 estats
->rx_overrun
++;
2646 stats
->rx_crc_errors
++;
2650 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2652 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2656 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2658 /* If valid headers were found, and valid sums
2659 * were verified, then we tell the kernel that no
2660 * checksumming is necessary. Otherwise, it is */
2661 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2662 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2664 skb_checksum_none_assert(skb
);
2668 /* gfar_process_frame() -- handle one incoming packet if skb
2670 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2673 struct gfar_private
*priv
= netdev_priv(dev
);
2674 struct rxfcb
*fcb
= NULL
;
2678 /* fcb is at the beginning if exists */
2679 fcb
= (struct rxfcb
*)skb
->data
;
2681 /* Remove the FCB from the skb */
2682 /* Remove the padded bytes, if there are any */
2684 skb_record_rx_queue(skb
, fcb
->rq
);
2685 skb_pull(skb
, amount_pull
);
2688 /* Get receive timestamp from the skb */
2689 if (priv
->hwts_rx_en
) {
2690 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
2691 u64
*ns
= (u64
*) skb
->data
;
2692 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
2693 shhwtstamps
->hwtstamp
= ns_to_ktime(*ns
);
2697 skb_pull(skb
, priv
->padding
);
2699 if (dev
->features
& NETIF_F_RXCSUM
)
2700 gfar_rx_checksum(skb
, fcb
);
2702 /* Tell the skb what kind of packet this is */
2703 skb
->protocol
= eth_type_trans(skb
, dev
);
2705 /* Send the packet up the stack */
2706 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
2707 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
2709 ret
= netif_receive_skb(skb
);
2711 if (NET_RX_DROP
== ret
)
2712 priv
->extra_stats
.kernel_dropped
++;
2717 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2718 * until the budget/quota has been reached. Returns the number
2721 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2723 struct net_device
*dev
= rx_queue
->dev
;
2724 struct rxbd8
*bdp
, *base
;
2725 struct sk_buff
*skb
;
2729 struct gfar_private
*priv
= netdev_priv(dev
);
2731 /* Get the first full descriptor */
2732 bdp
= rx_queue
->cur_rx
;
2733 base
= rx_queue
->rx_bd_base
;
2735 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0);
2737 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2738 struct sk_buff
*newskb
;
2741 /* Add another skb for the future */
2742 newskb
= gfar_new_skb(dev
);
2744 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2746 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2747 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2749 if (unlikely(!(bdp
->status
& RXBD_ERR
) &&
2750 bdp
->length
> priv
->rx_buffer_size
))
2751 bdp
->status
= RXBD_LARGE
;
2753 /* We drop the frame if we failed to allocate a new buffer */
2754 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2755 bdp
->status
& RXBD_ERR
)) {
2756 count_errors(bdp
->status
, dev
);
2758 if (unlikely(!newskb
))
2761 skb_queue_head(&priv
->rx_recycle
, skb
);
2763 /* Increment the number of packets */
2764 rx_queue
->stats
.rx_packets
++;
2768 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2769 /* Remove the FCS from the packet length */
2770 skb_put(skb
, pkt_len
);
2771 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2772 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2773 gfar_process_frame(dev
, skb
, amount_pull
);
2776 if (netif_msg_rx_err(priv
))
2778 "%s: Missing skb!\n", dev
->name
);
2779 rx_queue
->stats
.rx_dropped
++;
2780 priv
->extra_stats
.rx_skbmissing
++;
2785 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2787 /* Setup the new bdp */
2788 gfar_new_rxbdp(rx_queue
, bdp
, newskb
);
2790 /* Update to the next pointer */
2791 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2793 /* update to point at the next skb */
2794 rx_queue
->skb_currx
=
2795 (rx_queue
->skb_currx
+ 1) &
2796 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2799 /* Update the current rxbd pointer to be the next one */
2800 rx_queue
->cur_rx
= bdp
;
2805 static int gfar_poll(struct napi_struct
*napi
, int budget
)
2807 struct gfar_priv_grp
*gfargrp
= container_of(napi
,
2808 struct gfar_priv_grp
, napi
);
2809 struct gfar_private
*priv
= gfargrp
->priv
;
2810 struct gfar __iomem
*regs
= gfargrp
->regs
;
2811 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2812 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2813 int rx_cleaned
= 0, budget_per_queue
= 0, rx_cleaned_per_queue
= 0;
2814 int tx_cleaned
= 0, i
, left_over_budget
= budget
;
2815 unsigned long serviced_queues
= 0;
2818 num_queues
= gfargrp
->num_rx_queues
;
2819 budget_per_queue
= budget
/num_queues
;
2821 /* Clear IEVENT, so interrupts aren't called again
2822 * because of the packets that have already arrived */
2823 gfar_write(®s
->ievent
, IEVENT_RTX_MASK
);
2825 while (num_queues
&& left_over_budget
) {
2827 budget_per_queue
= left_over_budget
/num_queues
;
2828 left_over_budget
= 0;
2830 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
2831 if (test_bit(i
, &serviced_queues
))
2833 rx_queue
= priv
->rx_queue
[i
];
2834 tx_queue
= priv
->tx_queue
[rx_queue
->qindex
];
2836 tx_cleaned
+= gfar_clean_tx_ring(tx_queue
);
2837 rx_cleaned_per_queue
= gfar_clean_rx_ring(rx_queue
,
2839 rx_cleaned
+= rx_cleaned_per_queue
;
2840 if(rx_cleaned_per_queue
< budget_per_queue
) {
2841 left_over_budget
= left_over_budget
+
2842 (budget_per_queue
- rx_cleaned_per_queue
);
2843 set_bit(i
, &serviced_queues
);
2852 if (rx_cleaned
< budget
) {
2853 napi_complete(napi
);
2855 /* Clear the halt bit in RSTAT */
2856 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2858 gfar_write(®s
->imask
, IMASK_DEFAULT
);
2860 /* If we are coalescing interrupts, update the timer */
2861 /* Otherwise, clear it */
2862 gfar_configure_coalescing(priv
,
2863 gfargrp
->rx_bit_map
, gfargrp
->tx_bit_map
);
2869 #ifdef CONFIG_NET_POLL_CONTROLLER
2871 * Polling 'interrupt' - used by things like netconsole to send skbs
2872 * without having to re-enable interrupts. It's not called while
2873 * the interrupt routine is executing.
2875 static void gfar_netpoll(struct net_device
*dev
)
2877 struct gfar_private
*priv
= netdev_priv(dev
);
2880 /* If the device has multiple interrupts, run tx/rx */
2881 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2882 for (i
= 0; i
< priv
->num_grps
; i
++) {
2883 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2884 disable_irq(priv
->gfargrp
[i
].interruptReceive
);
2885 disable_irq(priv
->gfargrp
[i
].interruptError
);
2886 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2888 enable_irq(priv
->gfargrp
[i
].interruptError
);
2889 enable_irq(priv
->gfargrp
[i
].interruptReceive
);
2890 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2893 for (i
= 0; i
< priv
->num_grps
; i
++) {
2894 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2895 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2897 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2903 /* The interrupt handler for devices with one interrupt */
2904 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
2906 struct gfar_priv_grp
*gfargrp
= grp_id
;
2908 /* Save ievent for future reference */
2909 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
2911 /* Check for reception */
2912 if (events
& IEVENT_RX_MASK
)
2913 gfar_receive(irq
, grp_id
);
2915 /* Check for transmit completion */
2916 if (events
& IEVENT_TX_MASK
)
2917 gfar_transmit(irq
, grp_id
);
2919 /* Check for errors */
2920 if (events
& IEVENT_ERR_MASK
)
2921 gfar_error(irq
, grp_id
);
2926 /* Called every time the controller might need to be made
2927 * aware of new link state. The PHY code conveys this
2928 * information through variables in the phydev structure, and this
2929 * function converts those variables into the appropriate
2930 * register values, and can bring down the device if needed.
2932 static void adjust_link(struct net_device
*dev
)
2934 struct gfar_private
*priv
= netdev_priv(dev
);
2935 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2936 unsigned long flags
;
2937 struct phy_device
*phydev
= priv
->phydev
;
2940 local_irq_save(flags
);
2944 u32 tempval
= gfar_read(®s
->maccfg2
);
2945 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2947 /* Now we make sure that we can be in full duplex mode.
2948 * If not, we operate in half-duplex mode. */
2949 if (phydev
->duplex
!= priv
->oldduplex
) {
2951 if (!(phydev
->duplex
))
2952 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2954 tempval
|= MACCFG2_FULL_DUPLEX
;
2956 priv
->oldduplex
= phydev
->duplex
;
2959 if (phydev
->speed
!= priv
->oldspeed
) {
2961 switch (phydev
->speed
) {
2964 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2966 ecntrl
&= ~(ECNTRL_R100
);
2971 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2973 /* Reduced mode distinguishes
2974 * between 10 and 100 */
2975 if (phydev
->speed
== SPEED_100
)
2976 ecntrl
|= ECNTRL_R100
;
2978 ecntrl
&= ~(ECNTRL_R100
);
2981 if (netif_msg_link(priv
))
2983 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2984 dev
->name
, phydev
->speed
);
2988 priv
->oldspeed
= phydev
->speed
;
2991 gfar_write(®s
->maccfg2
, tempval
);
2992 gfar_write(®s
->ecntrl
, ecntrl
);
2994 if (!priv
->oldlink
) {
2998 } else if (priv
->oldlink
) {
3002 priv
->oldduplex
= -1;
3005 if (new_state
&& netif_msg_link(priv
))
3006 phy_print_status(phydev
);
3008 local_irq_restore(flags
);
3011 /* Update the hash table based on the current list of multicast
3012 * addresses we subscribe to. Also, change the promiscuity of
3013 * the device based on the flags (this function is called
3014 * whenever dev->flags is changed */
3015 static void gfar_set_multi(struct net_device
*dev
)
3017 struct netdev_hw_addr
*ha
;
3018 struct gfar_private
*priv
= netdev_priv(dev
);
3019 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3022 if (dev
->flags
& IFF_PROMISC
) {
3023 /* Set RCTRL to PROM */
3024 tempval
= gfar_read(®s
->rctrl
);
3025 tempval
|= RCTRL_PROM
;
3026 gfar_write(®s
->rctrl
, tempval
);
3028 /* Set RCTRL to not PROM */
3029 tempval
= gfar_read(®s
->rctrl
);
3030 tempval
&= ~(RCTRL_PROM
);
3031 gfar_write(®s
->rctrl
, tempval
);
3034 if (dev
->flags
& IFF_ALLMULTI
) {
3035 /* Set the hash to rx all multicast frames */
3036 gfar_write(®s
->igaddr0
, 0xffffffff);
3037 gfar_write(®s
->igaddr1
, 0xffffffff);
3038 gfar_write(®s
->igaddr2
, 0xffffffff);
3039 gfar_write(®s
->igaddr3
, 0xffffffff);
3040 gfar_write(®s
->igaddr4
, 0xffffffff);
3041 gfar_write(®s
->igaddr5
, 0xffffffff);
3042 gfar_write(®s
->igaddr6
, 0xffffffff);
3043 gfar_write(®s
->igaddr7
, 0xffffffff);
3044 gfar_write(®s
->gaddr0
, 0xffffffff);
3045 gfar_write(®s
->gaddr1
, 0xffffffff);
3046 gfar_write(®s
->gaddr2
, 0xffffffff);
3047 gfar_write(®s
->gaddr3
, 0xffffffff);
3048 gfar_write(®s
->gaddr4
, 0xffffffff);
3049 gfar_write(®s
->gaddr5
, 0xffffffff);
3050 gfar_write(®s
->gaddr6
, 0xffffffff);
3051 gfar_write(®s
->gaddr7
, 0xffffffff);
3056 /* zero out the hash */
3057 gfar_write(®s
->igaddr0
, 0x0);
3058 gfar_write(®s
->igaddr1
, 0x0);
3059 gfar_write(®s
->igaddr2
, 0x0);
3060 gfar_write(®s
->igaddr3
, 0x0);
3061 gfar_write(®s
->igaddr4
, 0x0);
3062 gfar_write(®s
->igaddr5
, 0x0);
3063 gfar_write(®s
->igaddr6
, 0x0);
3064 gfar_write(®s
->igaddr7
, 0x0);
3065 gfar_write(®s
->gaddr0
, 0x0);
3066 gfar_write(®s
->gaddr1
, 0x0);
3067 gfar_write(®s
->gaddr2
, 0x0);
3068 gfar_write(®s
->gaddr3
, 0x0);
3069 gfar_write(®s
->gaddr4
, 0x0);
3070 gfar_write(®s
->gaddr5
, 0x0);
3071 gfar_write(®s
->gaddr6
, 0x0);
3072 gfar_write(®s
->gaddr7
, 0x0);
3074 /* If we have extended hash tables, we need to
3075 * clear the exact match registers to prepare for
3077 if (priv
->extended_hash
) {
3078 em_num
= GFAR_EM_NUM
+ 1;
3079 gfar_clear_exact_match(dev
);
3086 if (netdev_mc_empty(dev
))
3089 /* Parse the list, and set the appropriate bits */
3090 netdev_for_each_mc_addr(ha
, dev
) {
3092 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
3095 gfar_set_hash_for_addr(dev
, ha
->addr
);
3101 /* Clears each of the exact match registers to zero, so they
3102 * don't interfere with normal reception */
3103 static void gfar_clear_exact_match(struct net_device
*dev
)
3106 static const u8 zero_arr
[MAC_ADDR_LEN
] = {0, 0, 0, 0, 0, 0};
3108 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
3109 gfar_set_mac_for_addr(dev
, idx
, zero_arr
);
3112 /* Set the appropriate hash bit for the given addr */
3113 /* The algorithm works like so:
3114 * 1) Take the Destination Address (ie the multicast address), and
3115 * do a CRC on it (little endian), and reverse the bits of the
3117 * 2) Use the 8 most significant bits as a hash into a 256-entry
3118 * table. The table is controlled through 8 32-bit registers:
3119 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3120 * gaddr7. This means that the 3 most significant bits in the
3121 * hash index which gaddr register to use, and the 5 other bits
3122 * indicate which bit (assuming an IBM numbering scheme, which
3123 * for PowerPC (tm) is usually the case) in the register holds
3125 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3128 struct gfar_private
*priv
= netdev_priv(dev
);
3129 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
3130 int width
= priv
->hash_width
;
3131 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3132 u8 whichreg
= result
>> (32 - width
+ 5);
3133 u32 value
= (1 << (31-whichbit
));
3135 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3137 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3141 /* There are multiple MAC Address register pairs on some controllers
3142 * This function sets the numth pair to a given address
3144 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
3147 struct gfar_private
*priv
= netdev_priv(dev
);
3148 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3150 char tmpbuf
[MAC_ADDR_LEN
];
3152 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3156 /* Now copy it into the mac registers backwards, cuz */
3157 /* little endian is silly */
3158 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
3159 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
3161 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
3163 tempval
= *((u32
*) (tmpbuf
+ 4));
3165 gfar_write(macptr
+1, tempval
);
3168 /* GFAR error interrupt handler */
3169 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3171 struct gfar_priv_grp
*gfargrp
= grp_id
;
3172 struct gfar __iomem
*regs
= gfargrp
->regs
;
3173 struct gfar_private
*priv
= gfargrp
->priv
;
3174 struct net_device
*dev
= priv
->ndev
;
3176 /* Save ievent for future reference */
3177 u32 events
= gfar_read(®s
->ievent
);
3180 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3182 /* Magic Packet is not an error. */
3183 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3184 (events
& IEVENT_MAG
))
3185 events
&= ~IEVENT_MAG
;
3188 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3189 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3190 dev
->name
, events
, gfar_read(®s
->imask
));
3192 /* Update the error counters */
3193 if (events
& IEVENT_TXE
) {
3194 dev
->stats
.tx_errors
++;
3196 if (events
& IEVENT_LC
)
3197 dev
->stats
.tx_window_errors
++;
3198 if (events
& IEVENT_CRL
)
3199 dev
->stats
.tx_aborted_errors
++;
3200 if (events
& IEVENT_XFUN
) {
3201 unsigned long flags
;
3203 if (netif_msg_tx_err(priv
))
3204 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
3205 "packet dropped.\n", dev
->name
);
3206 dev
->stats
.tx_dropped
++;
3207 priv
->extra_stats
.tx_underrun
++;
3209 local_irq_save(flags
);
3212 /* Reactivate the Tx Queues */
3213 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3216 local_irq_restore(flags
);
3218 if (netif_msg_tx_err(priv
))
3219 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
3221 if (events
& IEVENT_BSY
) {
3222 dev
->stats
.rx_errors
++;
3223 priv
->extra_stats
.rx_bsy
++;
3225 gfar_receive(irq
, grp_id
);
3227 if (netif_msg_rx_err(priv
))
3228 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
3229 dev
->name
, gfar_read(®s
->rstat
));
3231 if (events
& IEVENT_BABR
) {
3232 dev
->stats
.rx_errors
++;
3233 priv
->extra_stats
.rx_babr
++;
3235 if (netif_msg_rx_err(priv
))
3236 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
3238 if (events
& IEVENT_EBERR
) {
3239 priv
->extra_stats
.eberr
++;
3240 if (netif_msg_rx_err(priv
))
3241 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
3243 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
3244 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
3246 if (events
& IEVENT_BABT
) {
3247 priv
->extra_stats
.tx_babt
++;
3248 if (netif_msg_tx_err(priv
))
3249 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
3254 static struct of_device_id gfar_match
[] =
3258 .compatible
= "gianfar",
3261 .compatible
= "fsl,etsec2",
3265 MODULE_DEVICE_TABLE(of
, gfar_match
);
3267 /* Structure for a device driver */
3268 static struct platform_driver gfar_driver
= {
3270 .name
= "fsl-gianfar",
3271 .owner
= THIS_MODULE
,
3273 .of_match_table
= gfar_match
,
3275 .probe
= gfar_probe
,
3276 .remove
= gfar_remove
,
3279 static int __init
gfar_init(void)
3281 return platform_driver_register(&gfar_driver
);
3284 static void __exit
gfar_exit(void)
3286 platform_driver_unregister(&gfar_driver
);
3289 module_init(gfar_init
);
3290 module_exit(gfar_exit
);