ath5k: Use new dma_stop function on base.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath5k / base.c
blobeea5879575ba803f8a1eaf3f6fe9b72e6e1cb7bb
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/pci-aspm.h>
52 #include <linux/ethtool.h>
53 #include <linux/uaccess.h>
54 #include <linux/slab.h>
55 #include <linux/etherdevice.h>
57 #include <net/ieee80211_radiotap.h>
59 #include <asm/unaligned.h>
61 #include "base.h"
62 #include "reg.h"
63 #include "debug.h"
64 #include "ani.h"
65 #include "../debug.h"
67 static int modparam_nohwcrypt;
68 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
69 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
71 static int modparam_all_channels;
72 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
73 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
75 /* Module info */
76 MODULE_AUTHOR("Jiri Slaby");
77 MODULE_AUTHOR("Nick Kossifidis");
78 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
79 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
80 MODULE_LICENSE("Dual BSD/GPL");
81 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
83 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
84 static int ath5k_beacon_update(struct ieee80211_hw *hw,
85 struct ieee80211_vif *vif);
86 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
88 /* Known PCI ids */
89 static DEFINE_PCI_DEVICE_TABLE(ath5k_pci_id_table) = {
90 { PCI_VDEVICE(ATHEROS, 0x0207) }, /* 5210 early */
91 { PCI_VDEVICE(ATHEROS, 0x0007) }, /* 5210 */
92 { PCI_VDEVICE(ATHEROS, 0x0011) }, /* 5311 - this is on AHB bus !*/
93 { PCI_VDEVICE(ATHEROS, 0x0012) }, /* 5211 */
94 { PCI_VDEVICE(ATHEROS, 0x0013) }, /* 5212 */
95 { PCI_VDEVICE(3COM_2, 0x0013) }, /* 3com 5212 */
96 { PCI_VDEVICE(3COM, 0x0013) }, /* 3com 3CRDAG675 5212 */
97 { PCI_VDEVICE(ATHEROS, 0x1014) }, /* IBM minipci 5212 */
98 { PCI_VDEVICE(ATHEROS, 0x0014) }, /* 5212 combatible */
99 { PCI_VDEVICE(ATHEROS, 0x0015) }, /* 5212 combatible */
100 { PCI_VDEVICE(ATHEROS, 0x0016) }, /* 5212 combatible */
101 { PCI_VDEVICE(ATHEROS, 0x0017) }, /* 5212 combatible */
102 { PCI_VDEVICE(ATHEROS, 0x0018) }, /* 5212 combatible */
103 { PCI_VDEVICE(ATHEROS, 0x0019) }, /* 5212 combatible */
104 { PCI_VDEVICE(ATHEROS, 0x001a) }, /* 2413 Griffin-lite */
105 { PCI_VDEVICE(ATHEROS, 0x001b) }, /* 5413 Eagle */
106 { PCI_VDEVICE(ATHEROS, 0x001c) }, /* PCI-E cards */
107 { PCI_VDEVICE(ATHEROS, 0x001d) }, /* 2417 Nala */
108 { 0 }
110 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
112 /* Known SREVs */
113 static const struct ath5k_srev_name srev_names[] = {
114 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
115 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
116 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
117 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
118 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
119 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
120 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
121 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
122 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
123 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
124 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
125 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
126 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
127 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
128 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
129 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
130 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
131 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
132 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
133 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
134 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
135 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
136 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
137 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
138 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
139 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
140 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
141 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
142 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
143 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
144 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
145 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
146 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
147 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
148 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
149 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
152 static const struct ieee80211_rate ath5k_rates[] = {
153 { .bitrate = 10,
154 .hw_value = ATH5K_RATE_CODE_1M, },
155 { .bitrate = 20,
156 .hw_value = ATH5K_RATE_CODE_2M,
157 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 55,
160 .hw_value = ATH5K_RATE_CODE_5_5M,
161 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 { .bitrate = 110,
164 .hw_value = ATH5K_RATE_CODE_11M,
165 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 { .bitrate = 60,
168 .hw_value = ATH5K_RATE_CODE_6M,
169 .flags = 0 },
170 { .bitrate = 90,
171 .hw_value = ATH5K_RATE_CODE_9M,
172 .flags = 0 },
173 { .bitrate = 120,
174 .hw_value = ATH5K_RATE_CODE_12M,
175 .flags = 0 },
176 { .bitrate = 180,
177 .hw_value = ATH5K_RATE_CODE_18M,
178 .flags = 0 },
179 { .bitrate = 240,
180 .hw_value = ATH5K_RATE_CODE_24M,
181 .flags = 0 },
182 { .bitrate = 360,
183 .hw_value = ATH5K_RATE_CODE_36M,
184 .flags = 0 },
185 { .bitrate = 480,
186 .hw_value = ATH5K_RATE_CODE_48M,
187 .flags = 0 },
188 { .bitrate = 540,
189 .hw_value = ATH5K_RATE_CODE_54M,
190 .flags = 0 },
191 /* XR missing */
194 static inline void ath5k_txbuf_free_skb(struct ath5k_softc *sc,
195 struct ath5k_buf *bf)
197 BUG_ON(!bf);
198 if (!bf->skb)
199 return;
200 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
201 PCI_DMA_TODEVICE);
202 dev_kfree_skb_any(bf->skb);
203 bf->skb = NULL;
204 bf->skbaddr = 0;
205 bf->desc->ds_data = 0;
208 static inline void ath5k_rxbuf_free_skb(struct ath5k_softc *sc,
209 struct ath5k_buf *bf)
211 struct ath5k_hw *ah = sc->ah;
212 struct ath_common *common = ath5k_hw_common(ah);
214 BUG_ON(!bf);
215 if (!bf->skb)
216 return;
217 pci_unmap_single(sc->pdev, bf->skbaddr, common->rx_bufsize,
218 PCI_DMA_FROMDEVICE);
219 dev_kfree_skb_any(bf->skb);
220 bf->skb = NULL;
221 bf->skbaddr = 0;
222 bf->desc->ds_data = 0;
226 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
228 u64 tsf = ath5k_hw_get_tsf64(ah);
230 if ((tsf & 0x7fff) < rstamp)
231 tsf -= 0x8000;
233 return (tsf & ~0x7fff) | rstamp;
236 static const char *
237 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
239 const char *name = "xxxxx";
240 unsigned int i;
242 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
243 if (srev_names[i].sr_type != type)
244 continue;
246 if ((val & 0xf0) == srev_names[i].sr_val)
247 name = srev_names[i].sr_name;
249 if ((val & 0xff) == srev_names[i].sr_val) {
250 name = srev_names[i].sr_name;
251 break;
255 return name;
257 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
259 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
260 return ath5k_hw_reg_read(ah, reg_offset);
263 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
265 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
266 ath5k_hw_reg_write(ah, val, reg_offset);
269 static const struct ath_ops ath5k_common_ops = {
270 .read = ath5k_ioread32,
271 .write = ath5k_iowrite32,
274 /***********************\
275 * Driver Initialization *
276 \***********************/
278 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
280 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
281 struct ath5k_softc *sc = hw->priv;
282 struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
284 return ath_reg_notifier_apply(wiphy, request, regulatory);
287 /********************\
288 * Channel/mode setup *
289 \********************/
292 * Convert IEEE channel number to MHz frequency.
294 static inline short
295 ath5k_ieee2mhz(short chan)
297 if (chan <= 14 || chan >= 27)
298 return ieee80211chan2mhz(chan);
299 else
300 return 2212 + chan * 20;
304 * Returns true for the channel numbers used without all_channels modparam.
306 static bool ath5k_is_standard_channel(short chan)
308 return ((chan <= 14) ||
309 /* UNII 1,2 */
310 ((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
311 /* midband */
312 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
313 /* UNII-3 */
314 ((chan & 3) == 1 && chan >= 149 && chan <= 165));
317 static unsigned int
318 ath5k_copy_channels(struct ath5k_hw *ah,
319 struct ieee80211_channel *channels,
320 unsigned int mode,
321 unsigned int max)
323 unsigned int i, count, size, chfreq, freq, ch;
325 if (!test_bit(mode, ah->ah_modes))
326 return 0;
328 switch (mode) {
329 case AR5K_MODE_11A:
330 case AR5K_MODE_11A_TURBO:
331 /* 1..220, but 2GHz frequencies are filtered by check_channel */
332 size = 220 ;
333 chfreq = CHANNEL_5GHZ;
334 break;
335 case AR5K_MODE_11B:
336 case AR5K_MODE_11G:
337 case AR5K_MODE_11G_TURBO:
338 size = 26;
339 chfreq = CHANNEL_2GHZ;
340 break;
341 default:
342 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
343 return 0;
346 for (i = 0, count = 0; i < size && max > 0; i++) {
347 ch = i + 1 ;
348 freq = ath5k_ieee2mhz(ch);
350 /* Check if channel is supported by the chipset */
351 if (!ath5k_channel_ok(ah, freq, chfreq))
352 continue;
354 if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
355 continue;
357 /* Write channel info and increment counter */
358 channels[count].center_freq = freq;
359 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
360 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
361 switch (mode) {
362 case AR5K_MODE_11A:
363 case AR5K_MODE_11G:
364 channels[count].hw_value = chfreq | CHANNEL_OFDM;
365 break;
366 case AR5K_MODE_11A_TURBO:
367 case AR5K_MODE_11G_TURBO:
368 channels[count].hw_value = chfreq |
369 CHANNEL_OFDM | CHANNEL_TURBO;
370 break;
371 case AR5K_MODE_11B:
372 channels[count].hw_value = CHANNEL_B;
375 count++;
376 max--;
379 return count;
382 static void
383 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
385 u8 i;
387 for (i = 0; i < AR5K_MAX_RATES; i++)
388 sc->rate_idx[b->band][i] = -1;
390 for (i = 0; i < b->n_bitrates; i++) {
391 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
392 if (b->bitrates[i].hw_value_short)
393 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
397 static int
398 ath5k_setup_bands(struct ieee80211_hw *hw)
400 struct ath5k_softc *sc = hw->priv;
401 struct ath5k_hw *ah = sc->ah;
402 struct ieee80211_supported_band *sband;
403 int max_c, count_c = 0;
404 int i;
406 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
407 max_c = ARRAY_SIZE(sc->channels);
409 /* 2GHz band */
410 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
411 sband->band = IEEE80211_BAND_2GHZ;
412 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
414 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
415 /* G mode */
416 memcpy(sband->bitrates, &ath5k_rates[0],
417 sizeof(struct ieee80211_rate) * 12);
418 sband->n_bitrates = 12;
420 sband->channels = sc->channels;
421 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
422 AR5K_MODE_11G, max_c);
424 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
425 count_c = sband->n_channels;
426 max_c -= count_c;
427 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
428 /* B mode */
429 memcpy(sband->bitrates, &ath5k_rates[0],
430 sizeof(struct ieee80211_rate) * 4);
431 sband->n_bitrates = 4;
433 /* 5211 only supports B rates and uses 4bit rate codes
434 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
435 * fix them up here:
437 if (ah->ah_version == AR5K_AR5211) {
438 for (i = 0; i < 4; i++) {
439 sband->bitrates[i].hw_value =
440 sband->bitrates[i].hw_value & 0xF;
441 sband->bitrates[i].hw_value_short =
442 sband->bitrates[i].hw_value_short & 0xF;
446 sband->channels = sc->channels;
447 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
448 AR5K_MODE_11B, max_c);
450 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
451 count_c = sband->n_channels;
452 max_c -= count_c;
454 ath5k_setup_rate_idx(sc, sband);
456 /* 5GHz band, A mode */
457 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
458 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
459 sband->band = IEEE80211_BAND_5GHZ;
460 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
462 memcpy(sband->bitrates, &ath5k_rates[4],
463 sizeof(struct ieee80211_rate) * 8);
464 sband->n_bitrates = 8;
466 sband->channels = &sc->channels[count_c];
467 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
468 AR5K_MODE_11A, max_c);
470 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
472 ath5k_setup_rate_idx(sc, sband);
474 ath5k_debug_dump_bands(sc);
476 return 0;
480 * Set/change channels. We always reset the chip.
481 * To accomplish this we must first cleanup any pending DMA,
482 * then restart stuff after a la ath5k_init.
484 * Called with sc->lock.
486 static int
487 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
489 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
490 "channel set, resetting (%u -> %u MHz)\n",
491 sc->curchan->center_freq, chan->center_freq);
494 * To switch channels clear any pending DMA operations;
495 * wait long enough for the RX fifo to drain, reset the
496 * hardware at the new frequency, and then re-enable
497 * the relevant bits of the h/w.
499 return ath5k_reset(sc, chan);
502 static void
503 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
505 sc->curmode = mode;
507 if (mode == AR5K_MODE_11A) {
508 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
509 } else {
510 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
514 struct ath_vif_iter_data {
515 const u8 *hw_macaddr;
516 u8 mask[ETH_ALEN];
517 u8 active_mac[ETH_ALEN]; /* first active MAC */
518 bool need_set_hw_addr;
519 bool found_active;
520 bool any_assoc;
521 enum nl80211_iftype opmode;
524 static void ath_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
526 struct ath_vif_iter_data *iter_data = data;
527 int i;
528 struct ath5k_vif *avf = (void *)vif->drv_priv;
530 if (iter_data->hw_macaddr)
531 for (i = 0; i < ETH_ALEN; i++)
532 iter_data->mask[i] &=
533 ~(iter_data->hw_macaddr[i] ^ mac[i]);
535 if (!iter_data->found_active) {
536 iter_data->found_active = true;
537 memcpy(iter_data->active_mac, mac, ETH_ALEN);
540 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
541 if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
542 iter_data->need_set_hw_addr = false;
544 if (!iter_data->any_assoc) {
545 if (avf->assoc)
546 iter_data->any_assoc = true;
549 /* Calculate combined mode - when APs are active, operate in AP mode.
550 * Otherwise use the mode of the new interface. This can currently
551 * only deal with combinations of APs and STAs. Only one ad-hoc
552 * interfaces is allowed.
554 if (avf->opmode == NL80211_IFTYPE_AP)
555 iter_data->opmode = NL80211_IFTYPE_AP;
556 else
557 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
558 iter_data->opmode = avf->opmode;
561 static void ath5k_update_bssid_mask_and_opmode(struct ath5k_softc *sc,
562 struct ieee80211_vif *vif)
564 struct ath_common *common = ath5k_hw_common(sc->ah);
565 struct ath_vif_iter_data iter_data;
568 * Use the hardware MAC address as reference, the hardware uses it
569 * together with the BSSID mask when matching addresses.
571 iter_data.hw_macaddr = common->macaddr;
572 memset(&iter_data.mask, 0xff, ETH_ALEN);
573 iter_data.found_active = false;
574 iter_data.need_set_hw_addr = true;
575 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
577 if (vif)
578 ath_vif_iter(&iter_data, vif->addr, vif);
580 /* Get list of all active MAC addresses */
581 ieee80211_iterate_active_interfaces_atomic(sc->hw, ath_vif_iter,
582 &iter_data);
583 memcpy(sc->bssidmask, iter_data.mask, ETH_ALEN);
585 sc->opmode = iter_data.opmode;
586 if (sc->opmode == NL80211_IFTYPE_UNSPECIFIED)
587 /* Nothing active, default to station mode */
588 sc->opmode = NL80211_IFTYPE_STATION;
590 ath5k_hw_set_opmode(sc->ah, sc->opmode);
591 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
592 sc->opmode, ath_opmode_to_string(sc->opmode));
594 if (iter_data.need_set_hw_addr && iter_data.found_active)
595 ath5k_hw_set_lladdr(sc->ah, iter_data.active_mac);
597 if (ath5k_hw_hasbssidmask(sc->ah))
598 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
601 static void
602 ath5k_mode_setup(struct ath5k_softc *sc, struct ieee80211_vif *vif)
604 struct ath5k_hw *ah = sc->ah;
605 u32 rfilt;
607 /* configure rx filter */
608 rfilt = sc->filter_flags;
609 ath5k_hw_set_rx_filter(ah, rfilt);
610 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
612 ath5k_update_bssid_mask_and_opmode(sc, vif);
615 static inline int
616 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
618 int rix;
620 /* return base rate on errors */
621 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
622 "hw_rix out of bounds: %x\n", hw_rix))
623 return 0;
625 rix = sc->rate_idx[sc->curband->band][hw_rix];
626 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
627 rix = 0;
629 return rix;
632 /***************\
633 * Buffers setup *
634 \***************/
636 static
637 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
639 struct ath_common *common = ath5k_hw_common(sc->ah);
640 struct sk_buff *skb;
643 * Allocate buffer with headroom_needed space for the
644 * fake physical layer header at the start.
646 skb = ath_rxbuf_alloc(common,
647 common->rx_bufsize,
648 GFP_ATOMIC);
650 if (!skb) {
651 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
652 common->rx_bufsize);
653 return NULL;
656 *skb_addr = pci_map_single(sc->pdev,
657 skb->data, common->rx_bufsize,
658 PCI_DMA_FROMDEVICE);
659 if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
660 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
661 dev_kfree_skb(skb);
662 return NULL;
664 return skb;
667 static int
668 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
670 struct ath5k_hw *ah = sc->ah;
671 struct sk_buff *skb = bf->skb;
672 struct ath5k_desc *ds;
673 int ret;
675 if (!skb) {
676 skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
677 if (!skb)
678 return -ENOMEM;
679 bf->skb = skb;
683 * Setup descriptors. For receive we always terminate
684 * the descriptor list with a self-linked entry so we'll
685 * not get overrun under high load (as can happen with a
686 * 5212 when ANI processing enables PHY error frames).
688 * To ensure the last descriptor is self-linked we create
689 * each descriptor as self-linked and add it to the end. As
690 * each additional descriptor is added the previous self-linked
691 * entry is "fixed" naturally. This should be safe even
692 * if DMA is happening. When processing RX interrupts we
693 * never remove/process the last, self-linked, entry on the
694 * descriptor list. This ensures the hardware always has
695 * someplace to write a new frame.
697 ds = bf->desc;
698 ds->ds_link = bf->daddr; /* link to self */
699 ds->ds_data = bf->skbaddr;
700 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
701 if (ret) {
702 ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
703 return ret;
706 if (sc->rxlink != NULL)
707 *sc->rxlink = bf->daddr;
708 sc->rxlink = &ds->ds_link;
709 return 0;
712 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
714 struct ieee80211_hdr *hdr;
715 enum ath5k_pkt_type htype;
716 __le16 fc;
718 hdr = (struct ieee80211_hdr *)skb->data;
719 fc = hdr->frame_control;
721 if (ieee80211_is_beacon(fc))
722 htype = AR5K_PKT_TYPE_BEACON;
723 else if (ieee80211_is_probe_resp(fc))
724 htype = AR5K_PKT_TYPE_PROBE_RESP;
725 else if (ieee80211_is_atim(fc))
726 htype = AR5K_PKT_TYPE_ATIM;
727 else if (ieee80211_is_pspoll(fc))
728 htype = AR5K_PKT_TYPE_PSPOLL;
729 else
730 htype = AR5K_PKT_TYPE_NORMAL;
732 return htype;
735 static int
736 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
737 struct ath5k_txq *txq, int padsize)
739 struct ath5k_hw *ah = sc->ah;
740 struct ath5k_desc *ds = bf->desc;
741 struct sk_buff *skb = bf->skb;
742 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
743 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
744 struct ieee80211_rate *rate;
745 unsigned int mrr_rate[3], mrr_tries[3];
746 int i, ret;
747 u16 hw_rate;
748 u16 cts_rate = 0;
749 u16 duration = 0;
750 u8 rc_flags;
752 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
754 /* XXX endianness */
755 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
756 PCI_DMA_TODEVICE);
758 rate = ieee80211_get_tx_rate(sc->hw, info);
759 if (!rate) {
760 ret = -EINVAL;
761 goto err_unmap;
764 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
765 flags |= AR5K_TXDESC_NOACK;
767 rc_flags = info->control.rates[0].flags;
768 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
769 rate->hw_value_short : rate->hw_value;
771 pktlen = skb->len;
773 /* FIXME: If we are in g mode and rate is a CCK rate
774 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
775 * from tx power (value is in dB units already) */
776 if (info->control.hw_key) {
777 keyidx = info->control.hw_key->hw_key_idx;
778 pktlen += info->control.hw_key->icv_len;
780 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
781 flags |= AR5K_TXDESC_RTSENA;
782 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
783 duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
784 info->control.vif, pktlen, info));
786 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
787 flags |= AR5K_TXDESC_CTSENA;
788 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
789 duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
790 info->control.vif, pktlen, info));
792 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
793 ieee80211_get_hdrlen_from_skb(skb), padsize,
794 get_hw_packet_type(skb),
795 (sc->power_level * 2),
796 hw_rate,
797 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
798 cts_rate, duration);
799 if (ret)
800 goto err_unmap;
802 memset(mrr_rate, 0, sizeof(mrr_rate));
803 memset(mrr_tries, 0, sizeof(mrr_tries));
804 for (i = 0; i < 3; i++) {
805 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
806 if (!rate)
807 break;
809 mrr_rate[i] = rate->hw_value;
810 mrr_tries[i] = info->control.rates[i + 1].count;
813 ath5k_hw_setup_mrr_tx_desc(ah, ds,
814 mrr_rate[0], mrr_tries[0],
815 mrr_rate[1], mrr_tries[1],
816 mrr_rate[2], mrr_tries[2]);
818 ds->ds_link = 0;
819 ds->ds_data = bf->skbaddr;
821 spin_lock_bh(&txq->lock);
822 list_add_tail(&bf->list, &txq->q);
823 txq->txq_len++;
824 if (txq->link == NULL) /* is this first packet? */
825 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
826 else /* no, so only link it */
827 *txq->link = bf->daddr;
829 txq->link = &ds->ds_link;
830 ath5k_hw_start_tx_dma(ah, txq->qnum);
831 mmiowb();
832 spin_unlock_bh(&txq->lock);
834 return 0;
835 err_unmap:
836 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
837 return ret;
840 /*******************\
841 * Descriptors setup *
842 \*******************/
844 static int
845 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
847 struct ath5k_desc *ds;
848 struct ath5k_buf *bf;
849 dma_addr_t da;
850 unsigned int i;
851 int ret;
853 /* allocate descriptors */
854 sc->desc_len = sizeof(struct ath5k_desc) *
855 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
856 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
857 if (sc->desc == NULL) {
858 ATH5K_ERR(sc, "can't allocate descriptors\n");
859 ret = -ENOMEM;
860 goto err;
862 ds = sc->desc;
863 da = sc->desc_daddr;
864 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
865 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
867 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
868 sizeof(struct ath5k_buf), GFP_KERNEL);
869 if (bf == NULL) {
870 ATH5K_ERR(sc, "can't allocate bufptr\n");
871 ret = -ENOMEM;
872 goto err_free;
874 sc->bufptr = bf;
876 INIT_LIST_HEAD(&sc->rxbuf);
877 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
878 bf->desc = ds;
879 bf->daddr = da;
880 list_add_tail(&bf->list, &sc->rxbuf);
883 INIT_LIST_HEAD(&sc->txbuf);
884 sc->txbuf_len = ATH_TXBUF;
885 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
886 da += sizeof(*ds)) {
887 bf->desc = ds;
888 bf->daddr = da;
889 list_add_tail(&bf->list, &sc->txbuf);
892 /* beacon buffers */
893 INIT_LIST_HEAD(&sc->bcbuf);
894 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
895 bf->desc = ds;
896 bf->daddr = da;
897 list_add_tail(&bf->list, &sc->bcbuf);
900 return 0;
901 err_free:
902 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
903 err:
904 sc->desc = NULL;
905 return ret;
908 static void
909 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
911 struct ath5k_buf *bf;
913 list_for_each_entry(bf, &sc->txbuf, list)
914 ath5k_txbuf_free_skb(sc, bf);
915 list_for_each_entry(bf, &sc->rxbuf, list)
916 ath5k_rxbuf_free_skb(sc, bf);
917 list_for_each_entry(bf, &sc->bcbuf, list)
918 ath5k_txbuf_free_skb(sc, bf);
920 /* Free memory associated with all descriptors */
921 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
922 sc->desc = NULL;
923 sc->desc_daddr = 0;
925 kfree(sc->bufptr);
926 sc->bufptr = NULL;
930 /**************\
931 * Queues setup *
932 \**************/
934 static struct ath5k_txq *
935 ath5k_txq_setup(struct ath5k_softc *sc,
936 int qtype, int subtype)
938 struct ath5k_hw *ah = sc->ah;
939 struct ath5k_txq *txq;
940 struct ath5k_txq_info qi = {
941 .tqi_subtype = subtype,
942 /* XXX: default values not correct for B and XR channels,
943 * but who cares? */
944 .tqi_aifs = AR5K_TUNE_AIFS,
945 .tqi_cw_min = AR5K_TUNE_CWMIN,
946 .tqi_cw_max = AR5K_TUNE_CWMAX
948 int qnum;
951 * Enable interrupts only for EOL and DESC conditions.
952 * We mark tx descriptors to receive a DESC interrupt
953 * when a tx queue gets deep; otherwise we wait for the
954 * EOL to reap descriptors. Note that this is done to
955 * reduce interrupt load and this only defers reaping
956 * descriptors, never transmitting frames. Aside from
957 * reducing interrupts this also permits more concurrency.
958 * The only potential downside is if the tx queue backs
959 * up in which case the top half of the kernel may backup
960 * due to a lack of tx descriptors.
962 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
963 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
964 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
965 if (qnum < 0) {
967 * NB: don't print a message, this happens
968 * normally on parts with too few tx queues
970 return ERR_PTR(qnum);
972 if (qnum >= ARRAY_SIZE(sc->txqs)) {
973 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
974 qnum, ARRAY_SIZE(sc->txqs));
975 ath5k_hw_release_tx_queue(ah, qnum);
976 return ERR_PTR(-EINVAL);
978 txq = &sc->txqs[qnum];
979 if (!txq->setup) {
980 txq->qnum = qnum;
981 txq->link = NULL;
982 INIT_LIST_HEAD(&txq->q);
983 spin_lock_init(&txq->lock);
984 txq->setup = true;
985 txq->txq_len = 0;
986 txq->txq_poll_mark = false;
987 txq->txq_stuck = 0;
989 return &sc->txqs[qnum];
992 static int
993 ath5k_beaconq_setup(struct ath5k_hw *ah)
995 struct ath5k_txq_info qi = {
996 /* XXX: default values not correct for B and XR channels,
997 * but who cares? */
998 .tqi_aifs = AR5K_TUNE_AIFS,
999 .tqi_cw_min = AR5K_TUNE_CWMIN,
1000 .tqi_cw_max = AR5K_TUNE_CWMAX,
1001 /* NB: for dynamic turbo, don't enable any other interrupts */
1002 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1005 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1008 static int
1009 ath5k_beaconq_config(struct ath5k_softc *sc)
1011 struct ath5k_hw *ah = sc->ah;
1012 struct ath5k_txq_info qi;
1013 int ret;
1015 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1016 if (ret)
1017 goto err;
1019 if (sc->opmode == NL80211_IFTYPE_AP ||
1020 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1022 * Always burst out beacon and CAB traffic
1023 * (aifs = cwmin = cwmax = 0)
1025 qi.tqi_aifs = 0;
1026 qi.tqi_cw_min = 0;
1027 qi.tqi_cw_max = 0;
1028 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1030 * Adhoc mode; backoff between 0 and (2 * cw_min).
1032 qi.tqi_aifs = 0;
1033 qi.tqi_cw_min = 0;
1034 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1037 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1038 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1039 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1041 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1042 if (ret) {
1043 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1044 "hardware queue!\n", __func__);
1045 goto err;
1047 ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1048 if (ret)
1049 goto err;
1051 /* reconfigure cabq with ready time to 80% of beacon_interval */
1052 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1053 if (ret)
1054 goto err;
1056 qi.tqi_ready_time = (sc->bintval * 80) / 100;
1057 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1058 if (ret)
1059 goto err;
1061 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1062 err:
1063 return ret;
1067 * ath5k_drain_tx_buffs - Empty tx buffers
1069 * @sc The &struct ath5k_softc
1071 * Empty tx buffers from all queues in preparation
1072 * of a reset or during shutdown.
1074 * NB: this assumes output has been stopped and
1075 * we do not need to block ath5k_tx_tasklet
1077 static void
1078 ath5k_drain_tx_buffs(struct ath5k_softc *sc)
1080 struct ath5k_txq *txq;
1081 struct ath5k_buf *bf, *bf0;
1082 int i;
1084 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
1085 if (sc->txqs[i].setup) {
1086 txq = &sc->txqs[i];
1087 spin_lock_bh(&txq->lock);
1088 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1089 ath5k_debug_printtxbuf(sc, bf);
1091 ath5k_txbuf_free_skb(sc, bf);
1093 spin_lock_bh(&sc->txbuflock);
1094 list_move_tail(&bf->list, &sc->txbuf);
1095 sc->txbuf_len++;
1096 txq->txq_len--;
1097 spin_unlock_bh(&sc->txbuflock);
1099 txq->link = NULL;
1100 txq->txq_poll_mark = false;
1101 spin_unlock_bh(&txq->lock);
1106 static void
1107 ath5k_txq_release(struct ath5k_softc *sc)
1109 struct ath5k_txq *txq = sc->txqs;
1110 unsigned int i;
1112 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1113 if (txq->setup) {
1114 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1115 txq->setup = false;
1120 /*************\
1121 * RX Handling *
1122 \*************/
1125 * Enable the receive h/w following a reset.
1127 static int
1128 ath5k_rx_start(struct ath5k_softc *sc)
1130 struct ath5k_hw *ah = sc->ah;
1131 struct ath_common *common = ath5k_hw_common(ah);
1132 struct ath5k_buf *bf;
1133 int ret;
1135 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1137 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1138 common->cachelsz, common->rx_bufsize);
1140 spin_lock_bh(&sc->rxbuflock);
1141 sc->rxlink = NULL;
1142 list_for_each_entry(bf, &sc->rxbuf, list) {
1143 ret = ath5k_rxbuf_setup(sc, bf);
1144 if (ret != 0) {
1145 spin_unlock_bh(&sc->rxbuflock);
1146 goto err;
1149 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1150 ath5k_hw_set_rxdp(ah, bf->daddr);
1151 spin_unlock_bh(&sc->rxbuflock);
1153 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1154 ath5k_mode_setup(sc, NULL); /* set filters, etc. */
1155 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1157 return 0;
1158 err:
1159 return ret;
1163 * Disable the receive logic on PCU (DRU)
1164 * In preparation for a shutdown.
1166 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1167 * does.
1169 static void
1170 ath5k_rx_stop(struct ath5k_softc *sc)
1172 struct ath5k_hw *ah = sc->ah;
1174 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1175 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1177 ath5k_debug_printrxbuffs(sc, ah);
1180 static unsigned int
1181 ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1182 struct ath5k_rx_status *rs)
1184 struct ath5k_hw *ah = sc->ah;
1185 struct ath_common *common = ath5k_hw_common(ah);
1186 struct ieee80211_hdr *hdr = (void *)skb->data;
1187 unsigned int keyix, hlen;
1189 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1190 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1191 return RX_FLAG_DECRYPTED;
1193 /* Apparently when a default key is used to decrypt the packet
1194 the hw does not set the index used to decrypt. In such cases
1195 get the index from the packet. */
1196 hlen = ieee80211_hdrlen(hdr->frame_control);
1197 if (ieee80211_has_protected(hdr->frame_control) &&
1198 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1199 skb->len >= hlen + 4) {
1200 keyix = skb->data[hlen + 3] >> 6;
1202 if (test_bit(keyix, common->keymap))
1203 return RX_FLAG_DECRYPTED;
1206 return 0;
1210 static void
1211 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1212 struct ieee80211_rx_status *rxs)
1214 struct ath_common *common = ath5k_hw_common(sc->ah);
1215 u64 tsf, bc_tstamp;
1216 u32 hw_tu;
1217 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1219 if (ieee80211_is_beacon(mgmt->frame_control) &&
1220 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1221 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1223 * Received an IBSS beacon with the same BSSID. Hardware *must*
1224 * have updated the local TSF. We have to work around various
1225 * hardware bugs, though...
1227 tsf = ath5k_hw_get_tsf64(sc->ah);
1228 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1229 hw_tu = TSF_TO_TU(tsf);
1231 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1232 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1233 (unsigned long long)bc_tstamp,
1234 (unsigned long long)rxs->mactime,
1235 (unsigned long long)(rxs->mactime - bc_tstamp),
1236 (unsigned long long)tsf);
1239 * Sometimes the HW will give us a wrong tstamp in the rx
1240 * status, causing the timestamp extension to go wrong.
1241 * (This seems to happen especially with beacon frames bigger
1242 * than 78 byte (incl. FCS))
1243 * But we know that the receive timestamp must be later than the
1244 * timestamp of the beacon since HW must have synced to that.
1246 * NOTE: here we assume mactime to be after the frame was
1247 * received, not like mac80211 which defines it at the start.
1249 if (bc_tstamp > rxs->mactime) {
1250 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1251 "fixing mactime from %llx to %llx\n",
1252 (unsigned long long)rxs->mactime,
1253 (unsigned long long)tsf);
1254 rxs->mactime = tsf;
1258 * Local TSF might have moved higher than our beacon timers,
1259 * in that case we have to update them to continue sending
1260 * beacons. This also takes care of synchronizing beacon sending
1261 * times with other stations.
1263 if (hw_tu >= sc->nexttbtt)
1264 ath5k_beacon_update_timers(sc, bc_tstamp);
1266 /* Check if the beacon timers are still correct, because a TSF
1267 * update might have created a window between them - for a
1268 * longer description see the comment of this function: */
1269 if (!ath5k_hw_check_beacon_timers(sc->ah, sc->bintval)) {
1270 ath5k_beacon_update_timers(sc, bc_tstamp);
1271 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1272 "fixed beacon timers after beacon receive\n");
1277 static void
1278 ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1280 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1281 struct ath5k_hw *ah = sc->ah;
1282 struct ath_common *common = ath5k_hw_common(ah);
1284 /* only beacons from our BSSID */
1285 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1286 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1287 return;
1289 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1291 /* in IBSS mode we should keep RSSI statistics per neighbour */
1292 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1296 * Compute padding position. skb must contain an IEEE 802.11 frame
1298 static int ath5k_common_padpos(struct sk_buff *skb)
1300 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1301 __le16 frame_control = hdr->frame_control;
1302 int padpos = 24;
1304 if (ieee80211_has_a4(frame_control)) {
1305 padpos += ETH_ALEN;
1307 if (ieee80211_is_data_qos(frame_control)) {
1308 padpos += IEEE80211_QOS_CTL_LEN;
1311 return padpos;
1315 * This function expects an 802.11 frame and returns the number of
1316 * bytes added, or -1 if we don't have enough header room.
1318 static int ath5k_add_padding(struct sk_buff *skb)
1320 int padpos = ath5k_common_padpos(skb);
1321 int padsize = padpos & 3;
1323 if (padsize && skb->len>padpos) {
1325 if (skb_headroom(skb) < padsize)
1326 return -1;
1328 skb_push(skb, padsize);
1329 memmove(skb->data, skb->data+padsize, padpos);
1330 return padsize;
1333 return 0;
1337 * The MAC header is padded to have 32-bit boundary if the
1338 * packet payload is non-zero. The general calculation for
1339 * padsize would take into account odd header lengths:
1340 * padsize = 4 - (hdrlen & 3); however, since only
1341 * even-length headers are used, padding can only be 0 or 2
1342 * bytes and we can optimize this a bit. We must not try to
1343 * remove padding from short control frames that do not have a
1344 * payload.
1346 * This function expects an 802.11 frame and returns the number of
1347 * bytes removed.
1349 static int ath5k_remove_padding(struct sk_buff *skb)
1351 int padpos = ath5k_common_padpos(skb);
1352 int padsize = padpos & 3;
1354 if (padsize && skb->len>=padpos+padsize) {
1355 memmove(skb->data + padsize, skb->data, padpos);
1356 skb_pull(skb, padsize);
1357 return padsize;
1360 return 0;
1363 static void
1364 ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1365 struct ath5k_rx_status *rs)
1367 struct ieee80211_rx_status *rxs;
1369 ath5k_remove_padding(skb);
1371 rxs = IEEE80211_SKB_RXCB(skb);
1373 rxs->flag = 0;
1374 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1375 rxs->flag |= RX_FLAG_MMIC_ERROR;
1378 * always extend the mac timestamp, since this information is
1379 * also needed for proper IBSS merging.
1381 * XXX: it might be too late to do it here, since rs_tstamp is
1382 * 15bit only. that means TSF extension has to be done within
1383 * 32768usec (about 32ms). it might be necessary to move this to
1384 * the interrupt handler, like it is done in madwifi.
1386 * Unfortunately we don't know when the hardware takes the rx
1387 * timestamp (beginning of phy frame, data frame, end of rx?).
1388 * The only thing we know is that it is hardware specific...
1389 * On AR5213 it seems the rx timestamp is at the end of the
1390 * frame, but i'm not sure.
1392 * NOTE: mac80211 defines mactime at the beginning of the first
1393 * data symbol. Since we don't have any time references it's
1394 * impossible to comply to that. This affects IBSS merge only
1395 * right now, so it's not too bad...
1397 rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1398 rxs->flag |= RX_FLAG_TSFT;
1400 rxs->freq = sc->curchan->center_freq;
1401 rxs->band = sc->curband->band;
1403 rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
1405 rxs->antenna = rs->rs_antenna;
1407 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1408 sc->stats.antenna_rx[rs->rs_antenna]++;
1409 else
1410 sc->stats.antenna_rx[0]++; /* invalid */
1412 rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1413 rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
1415 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1416 sc->curband->bitrates[rxs->rate_idx].hw_value_short)
1417 rxs->flag |= RX_FLAG_SHORTPRE;
1419 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1421 ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
1423 /* check beacons in IBSS mode */
1424 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1425 ath5k_check_ibss_tsf(sc, skb, rxs);
1427 ieee80211_rx(sc->hw, skb);
1430 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1432 * Check if we want to further process this frame or not. Also update
1433 * statistics. Return true if we want this frame, false if not.
1435 static bool
1436 ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
1438 sc->stats.rx_all_count++;
1439 sc->stats.rx_bytes_count += rs->rs_datalen;
1441 if (unlikely(rs->rs_status)) {
1442 if (rs->rs_status & AR5K_RXERR_CRC)
1443 sc->stats.rxerr_crc++;
1444 if (rs->rs_status & AR5K_RXERR_FIFO)
1445 sc->stats.rxerr_fifo++;
1446 if (rs->rs_status & AR5K_RXERR_PHY) {
1447 sc->stats.rxerr_phy++;
1448 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1449 sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1450 return false;
1452 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1454 * Decrypt error. If the error occurred
1455 * because there was no hardware key, then
1456 * let the frame through so the upper layers
1457 * can process it. This is necessary for 5210
1458 * parts which have no way to setup a ``clear''
1459 * key cache entry.
1461 * XXX do key cache faulting
1463 sc->stats.rxerr_decrypt++;
1464 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1465 !(rs->rs_status & AR5K_RXERR_CRC))
1466 return true;
1468 if (rs->rs_status & AR5K_RXERR_MIC) {
1469 sc->stats.rxerr_mic++;
1470 return true;
1473 /* reject any frames with non-crypto errors */
1474 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1475 return false;
1478 if (unlikely(rs->rs_more)) {
1479 sc->stats.rxerr_jumbo++;
1480 return false;
1482 return true;
1485 static void
1486 ath5k_tasklet_rx(unsigned long data)
1488 struct ath5k_rx_status rs = {};
1489 struct sk_buff *skb, *next_skb;
1490 dma_addr_t next_skb_addr;
1491 struct ath5k_softc *sc = (void *)data;
1492 struct ath5k_hw *ah = sc->ah;
1493 struct ath_common *common = ath5k_hw_common(ah);
1494 struct ath5k_buf *bf;
1495 struct ath5k_desc *ds;
1496 int ret;
1498 spin_lock(&sc->rxbuflock);
1499 if (list_empty(&sc->rxbuf)) {
1500 ATH5K_WARN(sc, "empty rx buf pool\n");
1501 goto unlock;
1503 do {
1504 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1505 BUG_ON(bf->skb == NULL);
1506 skb = bf->skb;
1507 ds = bf->desc;
1509 /* bail if HW is still using self-linked descriptor */
1510 if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1511 break;
1513 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1514 if (unlikely(ret == -EINPROGRESS))
1515 break;
1516 else if (unlikely(ret)) {
1517 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1518 sc->stats.rxerr_proc++;
1519 break;
1522 if (ath5k_receive_frame_ok(sc, &rs)) {
1523 next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1526 * If we can't replace bf->skb with a new skb under
1527 * memory pressure, just skip this packet
1529 if (!next_skb)
1530 goto next;
1532 pci_unmap_single(sc->pdev, bf->skbaddr,
1533 common->rx_bufsize,
1534 PCI_DMA_FROMDEVICE);
1536 skb_put(skb, rs.rs_datalen);
1538 ath5k_receive_frame(sc, skb, &rs);
1540 bf->skb = next_skb;
1541 bf->skbaddr = next_skb_addr;
1543 next:
1544 list_move_tail(&bf->list, &sc->rxbuf);
1545 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1546 unlock:
1547 spin_unlock(&sc->rxbuflock);
1551 /*************\
1552 * TX Handling *
1553 \*************/
1555 static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1556 struct ath5k_txq *txq)
1558 struct ath5k_softc *sc = hw->priv;
1559 struct ath5k_buf *bf;
1560 unsigned long flags;
1561 int padsize;
1563 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
1566 * The hardware expects the header padded to 4 byte boundaries.
1567 * If this is not the case, we add the padding after the header.
1569 padsize = ath5k_add_padding(skb);
1570 if (padsize < 0) {
1571 ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1572 " headroom to pad");
1573 goto drop_packet;
1576 if (txq->txq_len >= ATH5K_TXQ_LEN_MAX)
1577 ieee80211_stop_queue(hw, txq->qnum);
1579 spin_lock_irqsave(&sc->txbuflock, flags);
1580 if (list_empty(&sc->txbuf)) {
1581 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1582 spin_unlock_irqrestore(&sc->txbuflock, flags);
1583 ieee80211_stop_queues(hw);
1584 goto drop_packet;
1586 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1587 list_del(&bf->list);
1588 sc->txbuf_len--;
1589 if (list_empty(&sc->txbuf))
1590 ieee80211_stop_queues(hw);
1591 spin_unlock_irqrestore(&sc->txbuflock, flags);
1593 bf->skb = skb;
1595 if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1596 bf->skb = NULL;
1597 spin_lock_irqsave(&sc->txbuflock, flags);
1598 list_add_tail(&bf->list, &sc->txbuf);
1599 sc->txbuf_len++;
1600 spin_unlock_irqrestore(&sc->txbuflock, flags);
1601 goto drop_packet;
1603 return NETDEV_TX_OK;
1605 drop_packet:
1606 dev_kfree_skb_any(skb);
1607 return NETDEV_TX_OK;
1610 static void
1611 ath5k_tx_frame_completed(struct ath5k_softc *sc, struct sk_buff *skb,
1612 struct ath5k_tx_status *ts)
1614 struct ieee80211_tx_info *info;
1615 int i;
1617 sc->stats.tx_all_count++;
1618 sc->stats.tx_bytes_count += skb->len;
1619 info = IEEE80211_SKB_CB(skb);
1621 ieee80211_tx_info_clear_status(info);
1622 for (i = 0; i < 4; i++) {
1623 struct ieee80211_tx_rate *r =
1624 &info->status.rates[i];
1626 if (ts->ts_rate[i]) {
1627 r->idx = ath5k_hw_to_driver_rix(sc, ts->ts_rate[i]);
1628 r->count = ts->ts_retry[i];
1629 } else {
1630 r->idx = -1;
1631 r->count = 0;
1635 /* count the successful attempt as well */
1636 info->status.rates[ts->ts_final_idx].count++;
1638 if (unlikely(ts->ts_status)) {
1639 sc->stats.ack_fail++;
1640 if (ts->ts_status & AR5K_TXERR_FILT) {
1641 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1642 sc->stats.txerr_filt++;
1644 if (ts->ts_status & AR5K_TXERR_XRETRY)
1645 sc->stats.txerr_retry++;
1646 if (ts->ts_status & AR5K_TXERR_FIFO)
1647 sc->stats.txerr_fifo++;
1648 } else {
1649 info->flags |= IEEE80211_TX_STAT_ACK;
1650 info->status.ack_signal = ts->ts_rssi;
1654 * Remove MAC header padding before giving the frame
1655 * back to mac80211.
1657 ath5k_remove_padding(skb);
1659 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1660 sc->stats.antenna_tx[ts->ts_antenna]++;
1661 else
1662 sc->stats.antenna_tx[0]++; /* invalid */
1664 ieee80211_tx_status(sc->hw, skb);
1667 static void
1668 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1670 struct ath5k_tx_status ts = {};
1671 struct ath5k_buf *bf, *bf0;
1672 struct ath5k_desc *ds;
1673 struct sk_buff *skb;
1674 int ret;
1676 spin_lock(&txq->lock);
1677 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1679 txq->txq_poll_mark = false;
1681 /* skb might already have been processed last time. */
1682 if (bf->skb != NULL) {
1683 ds = bf->desc;
1685 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1686 if (unlikely(ret == -EINPROGRESS))
1687 break;
1688 else if (unlikely(ret)) {
1689 ATH5K_ERR(sc,
1690 "error %d while processing "
1691 "queue %u\n", ret, txq->qnum);
1692 break;
1695 skb = bf->skb;
1696 bf->skb = NULL;
1697 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1698 PCI_DMA_TODEVICE);
1699 ath5k_tx_frame_completed(sc, skb, &ts);
1703 * It's possible that the hardware can say the buffer is
1704 * completed when it hasn't yet loaded the ds_link from
1705 * host memory and moved on.
1706 * Always keep the last descriptor to avoid HW races...
1708 if (ath5k_hw_get_txdp(sc->ah, txq->qnum) != bf->daddr) {
1709 spin_lock(&sc->txbuflock);
1710 list_move_tail(&bf->list, &sc->txbuf);
1711 sc->txbuf_len++;
1712 txq->txq_len--;
1713 spin_unlock(&sc->txbuflock);
1716 spin_unlock(&txq->lock);
1717 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1718 ieee80211_wake_queue(sc->hw, txq->qnum);
1721 static void
1722 ath5k_tasklet_tx(unsigned long data)
1724 int i;
1725 struct ath5k_softc *sc = (void *)data;
1727 for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1728 if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1729 ath5k_tx_processq(sc, &sc->txqs[i]);
1733 /*****************\
1734 * Beacon handling *
1735 \*****************/
1738 * Setup the beacon frame for transmit.
1740 static int
1741 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1743 struct sk_buff *skb = bf->skb;
1744 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1745 struct ath5k_hw *ah = sc->ah;
1746 struct ath5k_desc *ds;
1747 int ret = 0;
1748 u8 antenna;
1749 u32 flags;
1750 const int padsize = 0;
1752 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1753 PCI_DMA_TODEVICE);
1754 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1755 "skbaddr %llx\n", skb, skb->data, skb->len,
1756 (unsigned long long)bf->skbaddr);
1757 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
1758 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1759 return -EIO;
1762 ds = bf->desc;
1763 antenna = ah->ah_tx_ant;
1765 flags = AR5K_TXDESC_NOACK;
1766 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1767 ds->ds_link = bf->daddr; /* self-linked */
1768 flags |= AR5K_TXDESC_VEOL;
1769 } else
1770 ds->ds_link = 0;
1773 * If we use multiple antennas on AP and use
1774 * the Sectored AP scenario, switch antenna every
1775 * 4 beacons to make sure everybody hears our AP.
1776 * When a client tries to associate, hw will keep
1777 * track of the tx antenna to be used for this client
1778 * automaticaly, based on ACKed packets.
1780 * Note: AP still listens and transmits RTS on the
1781 * default antenna which is supposed to be an omni.
1783 * Note2: On sectored scenarios it's possible to have
1784 * multiple antennas (1 omni -- the default -- and 14
1785 * sectors), so if we choose to actually support this
1786 * mode, we need to allow the user to set how many antennas
1787 * we have and tweak the code below to send beacons
1788 * on all of them.
1790 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1791 antenna = sc->bsent & 4 ? 2 : 1;
1794 /* FIXME: If we are in g mode and rate is a CCK rate
1795 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1796 * from tx power (value is in dB units already) */
1797 ds->ds_data = bf->skbaddr;
1798 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1799 ieee80211_get_hdrlen_from_skb(skb), padsize,
1800 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1801 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1802 1, AR5K_TXKEYIX_INVALID,
1803 antenna, flags, 0, 0);
1804 if (ret)
1805 goto err_unmap;
1807 return 0;
1808 err_unmap:
1809 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1810 return ret;
1814 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1815 * this is called only once at config_bss time, for AP we do it every
1816 * SWBA interrupt so that the TIM will reflect buffered frames.
1818 * Called with the beacon lock.
1820 static int
1821 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1823 int ret;
1824 struct ath5k_softc *sc = hw->priv;
1825 struct ath5k_vif *avf = (void *)vif->drv_priv;
1826 struct sk_buff *skb;
1828 if (WARN_ON(!vif)) {
1829 ret = -EINVAL;
1830 goto out;
1833 skb = ieee80211_beacon_get(hw, vif);
1835 if (!skb) {
1836 ret = -ENOMEM;
1837 goto out;
1840 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
1842 ath5k_txbuf_free_skb(sc, avf->bbuf);
1843 avf->bbuf->skb = skb;
1844 ret = ath5k_beacon_setup(sc, avf->bbuf);
1845 if (ret)
1846 avf->bbuf->skb = NULL;
1847 out:
1848 return ret;
1852 * Transmit a beacon frame at SWBA. Dynamic updates to the
1853 * frame contents are done as needed and the slot time is
1854 * also adjusted based on current state.
1856 * This is called from software irq context (beacontq tasklets)
1857 * or user context from ath5k_beacon_config.
1859 static void
1860 ath5k_beacon_send(struct ath5k_softc *sc)
1862 struct ath5k_hw *ah = sc->ah;
1863 struct ieee80211_vif *vif;
1864 struct ath5k_vif *avf;
1865 struct ath5k_buf *bf;
1866 struct sk_buff *skb;
1868 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1871 * Check if the previous beacon has gone out. If
1872 * not, don't don't try to post another: skip this
1873 * period and wait for the next. Missed beacons
1874 * indicate a problem and should not occur. If we
1875 * miss too many consecutive beacons reset the device.
1877 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1878 sc->bmisscount++;
1879 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1880 "missed %u consecutive beacons\n", sc->bmisscount);
1881 if (sc->bmisscount > 10) { /* NB: 10 is a guess */
1882 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1883 "stuck beacon time (%u missed)\n",
1884 sc->bmisscount);
1885 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1886 "stuck beacon, resetting\n");
1887 ieee80211_queue_work(sc->hw, &sc->reset_work);
1889 return;
1891 if (unlikely(sc->bmisscount != 0)) {
1892 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1893 "resume beacon xmit after %u misses\n",
1894 sc->bmisscount);
1895 sc->bmisscount = 0;
1898 if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1899 u64 tsf = ath5k_hw_get_tsf64(ah);
1900 u32 tsftu = TSF_TO_TU(tsf);
1901 int slot = ((tsftu % sc->bintval) * ATH_BCBUF) / sc->bintval;
1902 vif = sc->bslot[(slot + 1) % ATH_BCBUF];
1903 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1904 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1905 (unsigned long long)tsf, tsftu, sc->bintval, slot, vif);
1906 } else /* only one interface */
1907 vif = sc->bslot[0];
1909 if (!vif)
1910 return;
1912 avf = (void *)vif->drv_priv;
1913 bf = avf->bbuf;
1914 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1915 sc->opmode == NL80211_IFTYPE_MONITOR)) {
1916 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1917 return;
1921 * Stop any current dma and put the new frame on the queue.
1922 * This should never fail since we check above that no frames
1923 * are still pending on the queue.
1925 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
1926 ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
1927 /* NB: hw still stops DMA, so proceed */
1930 /* refresh the beacon for AP mode */
1931 if (sc->opmode == NL80211_IFTYPE_AP)
1932 ath5k_beacon_update(sc->hw, vif);
1934 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1935 ath5k_hw_start_tx_dma(ah, sc->bhalq);
1936 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1937 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1939 skb = ieee80211_get_buffered_bc(sc->hw, vif);
1940 while (skb) {
1941 ath5k_tx_queue(sc->hw, skb, sc->cabq);
1942 skb = ieee80211_get_buffered_bc(sc->hw, vif);
1945 sc->bsent++;
1949 * ath5k_beacon_update_timers - update beacon timers
1951 * @sc: struct ath5k_softc pointer we are operating on
1952 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1953 * beacon timer update based on the current HW TSF.
1955 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1956 * of a received beacon or the current local hardware TSF and write it to the
1957 * beacon timer registers.
1959 * This is called in a variety of situations, e.g. when a beacon is received,
1960 * when a TSF update has been detected, but also when an new IBSS is created or
1961 * when we otherwise know we have to update the timers, but we keep it in this
1962 * function to have it all together in one place.
1964 static void
1965 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
1967 struct ath5k_hw *ah = sc->ah;
1968 u32 nexttbtt, intval, hw_tu, bc_tu;
1969 u64 hw_tsf;
1971 intval = sc->bintval & AR5K_BEACON_PERIOD;
1972 if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1973 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1974 if (intval < 15)
1975 ATH5K_WARN(sc, "intval %u is too low, min 15\n",
1976 intval);
1978 if (WARN_ON(!intval))
1979 return;
1981 /* beacon TSF converted to TU */
1982 bc_tu = TSF_TO_TU(bc_tsf);
1984 /* current TSF converted to TU */
1985 hw_tsf = ath5k_hw_get_tsf64(ah);
1986 hw_tu = TSF_TO_TU(hw_tsf);
1988 #define FUDGE AR5K_TUNE_SW_BEACON_RESP + 3
1989 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1990 * Since we later substract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1991 * configuration we need to make sure it is bigger than that. */
1993 if (bc_tsf == -1) {
1995 * no beacons received, called internally.
1996 * just need to refresh timers based on HW TSF.
1998 nexttbtt = roundup(hw_tu + FUDGE, intval);
1999 } else if (bc_tsf == 0) {
2001 * no beacon received, probably called by ath5k_reset_tsf().
2002 * reset TSF to start with 0.
2004 nexttbtt = intval;
2005 intval |= AR5K_BEACON_RESET_TSF;
2006 } else if (bc_tsf > hw_tsf) {
2008 * beacon received, SW merge happend but HW TSF not yet updated.
2009 * not possible to reconfigure timers yet, but next time we
2010 * receive a beacon with the same BSSID, the hardware will
2011 * automatically update the TSF and then we need to reconfigure
2012 * the timers.
2014 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2015 "need to wait for HW TSF sync\n");
2016 return;
2017 } else {
2019 * most important case for beacon synchronization between STA.
2021 * beacon received and HW TSF has been already updated by HW.
2022 * update next TBTT based on the TSF of the beacon, but make
2023 * sure it is ahead of our local TSF timer.
2025 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2027 #undef FUDGE
2029 sc->nexttbtt = nexttbtt;
2031 intval |= AR5K_BEACON_ENA;
2032 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2035 * debugging output last in order to preserve the time critical aspect
2036 * of this function
2038 if (bc_tsf == -1)
2039 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2040 "reconfigured timers based on HW TSF\n");
2041 else if (bc_tsf == 0)
2042 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2043 "reset HW TSF and timers\n");
2044 else
2045 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2046 "updated timers based on beacon TSF\n");
2048 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2049 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2050 (unsigned long long) bc_tsf,
2051 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2052 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2053 intval & AR5K_BEACON_PERIOD,
2054 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2055 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2059 * ath5k_beacon_config - Configure the beacon queues and interrupts
2061 * @sc: struct ath5k_softc pointer we are operating on
2063 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2064 * interrupts to detect TSF updates only.
2066 static void
2067 ath5k_beacon_config(struct ath5k_softc *sc)
2069 struct ath5k_hw *ah = sc->ah;
2070 unsigned long flags;
2072 spin_lock_irqsave(&sc->block, flags);
2073 sc->bmisscount = 0;
2074 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2076 if (sc->enable_beacon) {
2078 * In IBSS mode we use a self-linked tx descriptor and let the
2079 * hardware send the beacons automatically. We have to load it
2080 * only once here.
2081 * We use the SWBA interrupt only to keep track of the beacon
2082 * timers in order to detect automatic TSF updates.
2084 ath5k_beaconq_config(sc);
2086 sc->imask |= AR5K_INT_SWBA;
2088 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2089 if (ath5k_hw_hasveol(ah))
2090 ath5k_beacon_send(sc);
2091 } else
2092 ath5k_beacon_update_timers(sc, -1);
2093 } else {
2094 ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
2097 ath5k_hw_set_imr(ah, sc->imask);
2098 mmiowb();
2099 spin_unlock_irqrestore(&sc->block, flags);
2102 static void ath5k_tasklet_beacon(unsigned long data)
2104 struct ath5k_softc *sc = (struct ath5k_softc *) data;
2107 * Software beacon alert--time to send a beacon.
2109 * In IBSS mode we use this interrupt just to
2110 * keep track of the next TBTT (target beacon
2111 * transmission time) in order to detect wether
2112 * automatic TSF updates happened.
2114 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2115 /* XXX: only if VEOL suppported */
2116 u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2117 sc->nexttbtt += sc->bintval;
2118 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2119 "SWBA nexttbtt: %x hw_tu: %x "
2120 "TSF: %llx\n",
2121 sc->nexttbtt,
2122 TSF_TO_TU(tsf),
2123 (unsigned long long) tsf);
2124 } else {
2125 spin_lock(&sc->block);
2126 ath5k_beacon_send(sc);
2127 spin_unlock(&sc->block);
2132 /********************\
2133 * Interrupt handling *
2134 \********************/
2136 static void
2137 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2139 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2140 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2141 /* run ANI only when full calibration is not active */
2142 ah->ah_cal_next_ani = jiffies +
2143 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2144 tasklet_schedule(&ah->ah_sc->ani_tasklet);
2146 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2147 ah->ah_cal_next_full = jiffies +
2148 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2149 tasklet_schedule(&ah->ah_sc->calib);
2151 /* we could use SWI to generate enough interrupts to meet our
2152 * calibration interval requirements, if necessary:
2153 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2156 static irqreturn_t
2157 ath5k_intr(int irq, void *dev_id)
2159 struct ath5k_softc *sc = dev_id;
2160 struct ath5k_hw *ah = sc->ah;
2161 enum ath5k_int status;
2162 unsigned int counter = 1000;
2164 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2165 !ath5k_hw_is_intr_pending(ah)))
2166 return IRQ_NONE;
2168 do {
2169 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2170 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2171 status, sc->imask);
2172 if (unlikely(status & AR5K_INT_FATAL)) {
2174 * Fatal errors are unrecoverable.
2175 * Typically these are caused by DMA errors.
2177 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2178 "fatal int, resetting\n");
2179 ieee80211_queue_work(sc->hw, &sc->reset_work);
2180 } else if (unlikely(status & AR5K_INT_RXORN)) {
2182 * Receive buffers are full. Either the bus is busy or
2183 * the CPU is not fast enough to process all received
2184 * frames.
2185 * Older chipsets need a reset to come out of this
2186 * condition, but we treat it as RX for newer chips.
2187 * We don't know exactly which versions need a reset -
2188 * this guess is copied from the HAL.
2190 sc->stats.rxorn_intr++;
2191 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2192 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2193 "rx overrun, resetting\n");
2194 ieee80211_queue_work(sc->hw, &sc->reset_work);
2196 else
2197 tasklet_schedule(&sc->rxtq);
2198 } else {
2199 if (status & AR5K_INT_SWBA) {
2200 tasklet_hi_schedule(&sc->beacontq);
2202 if (status & AR5K_INT_RXEOL) {
2204 * NB: the hardware should re-read the link when
2205 * RXE bit is written, but it doesn't work at
2206 * least on older hardware revs.
2208 sc->stats.rxeol_intr++;
2210 if (status & AR5K_INT_TXURN) {
2211 /* bump tx trigger level */
2212 ath5k_hw_update_tx_triglevel(ah, true);
2214 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2215 tasklet_schedule(&sc->rxtq);
2216 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2217 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
2218 tasklet_schedule(&sc->txtq);
2219 if (status & AR5K_INT_BMISS) {
2220 /* TODO */
2222 if (status & AR5K_INT_MIB) {
2223 sc->stats.mib_intr++;
2224 ath5k_hw_update_mib_counters(ah);
2225 ath5k_ani_mib_intr(ah);
2227 if (status & AR5K_INT_GPIO)
2228 tasklet_schedule(&sc->rf_kill.toggleq);
2231 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2233 if (unlikely(!counter))
2234 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2236 ath5k_intr_calibration_poll(ah);
2238 return IRQ_HANDLED;
2242 * Periodically recalibrate the PHY to account
2243 * for temperature/environment changes.
2245 static void
2246 ath5k_tasklet_calibrate(unsigned long data)
2248 struct ath5k_softc *sc = (void *)data;
2249 struct ath5k_hw *ah = sc->ah;
2251 /* Only full calibration for now */
2252 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2254 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2255 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2256 sc->curchan->hw_value);
2258 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2260 * Rfgain is out of bounds, reset the chip
2261 * to load new gain values.
2263 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2264 ieee80211_queue_work(sc->hw, &sc->reset_work);
2266 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2267 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2268 ieee80211_frequency_to_channel(
2269 sc->curchan->center_freq));
2271 /* Noise floor calibration interrupts rx/tx path while I/Q calibration
2272 * doesn't.
2273 * TODO: We should stop TX here, so that it doesn't interfere.
2274 * Note that stopping the queues is not enough to stop TX! */
2275 if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2276 ah->ah_cal_next_nf = jiffies +
2277 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2278 ath5k_hw_update_noise_floor(ah);
2281 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2285 static void
2286 ath5k_tasklet_ani(unsigned long data)
2288 struct ath5k_softc *sc = (void *)data;
2289 struct ath5k_hw *ah = sc->ah;
2291 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2292 ath5k_ani_calibration(ah);
2293 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2297 static void
2298 ath5k_tx_complete_poll_work(struct work_struct *work)
2300 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2301 tx_complete_work.work);
2302 struct ath5k_txq *txq;
2303 int i;
2304 bool needreset = false;
2306 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
2307 if (sc->txqs[i].setup) {
2308 txq = &sc->txqs[i];
2309 spin_lock_bh(&txq->lock);
2310 if (txq->txq_len > 1) {
2311 if (txq->txq_poll_mark) {
2312 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT,
2313 "TX queue stuck %d\n",
2314 txq->qnum);
2315 needreset = true;
2316 txq->txq_stuck++;
2317 spin_unlock_bh(&txq->lock);
2318 break;
2319 } else {
2320 txq->txq_poll_mark = true;
2323 spin_unlock_bh(&txq->lock);
2327 if (needreset) {
2328 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2329 "TX queues stuck, resetting\n");
2330 ath5k_reset(sc, sc->curchan);
2333 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2334 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2338 /*************************\
2339 * Initialization routines *
2340 \*************************/
2342 static int
2343 ath5k_stop_locked(struct ath5k_softc *sc)
2345 struct ath5k_hw *ah = sc->ah;
2347 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2348 test_bit(ATH_STAT_INVALID, sc->status));
2351 * Shutdown the hardware and driver:
2352 * stop output from above
2353 * disable interrupts
2354 * turn off timers
2355 * turn off the radio
2356 * clear transmit machinery
2357 * clear receive machinery
2358 * drain and release tx queues
2359 * reclaim beacon resources
2360 * power down hardware
2362 * Note that some of this work is not possible if the
2363 * hardware is gone (invalid).
2365 ieee80211_stop_queues(sc->hw);
2367 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2368 ath5k_led_off(sc);
2369 ath5k_hw_set_imr(ah, 0);
2370 synchronize_irq(sc->pdev->irq);
2371 ath5k_rx_stop(sc);
2372 ath5k_hw_dma_stop(ah);
2373 ath5k_drain_tx_buffs(sc);
2374 ath5k_hw_phy_disable(ah);
2377 return 0;
2380 static int
2381 ath5k_init(struct ath5k_softc *sc)
2383 struct ath5k_hw *ah = sc->ah;
2384 struct ath_common *common = ath5k_hw_common(ah);
2385 int ret, i;
2387 mutex_lock(&sc->lock);
2389 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2392 * Stop anything previously setup. This is safe
2393 * no matter this is the first time through or not.
2395 ath5k_stop_locked(sc);
2398 * The basic interface to setting the hardware in a good
2399 * state is ``reset''. On return the hardware is known to
2400 * be powered up and with interrupts disabled. This must
2401 * be followed by initialization of the appropriate bits
2402 * and then setup of the interrupt mask.
2404 sc->curchan = sc->hw->conf.channel;
2405 sc->curband = &sc->sbands[sc->curchan->band];
2406 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2407 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2408 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2410 ret = ath5k_reset(sc, NULL);
2411 if (ret)
2412 goto done;
2414 ath5k_rfkill_hw_start(ah);
2417 * Reset the key cache since some parts do not reset the
2418 * contents on initial power up or resume from suspend.
2420 for (i = 0; i < common->keymax; i++)
2421 ath_hw_keyreset(common, (u16) i);
2423 ath5k_hw_set_ack_bitrate_high(ah, true);
2425 for (i = 0; i < ARRAY_SIZE(sc->bslot); i++)
2426 sc->bslot[i] = NULL;
2428 ret = 0;
2429 done:
2430 mmiowb();
2431 mutex_unlock(&sc->lock);
2433 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2434 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2436 return ret;
2439 static void stop_tasklets(struct ath5k_softc *sc)
2441 tasklet_kill(&sc->rxtq);
2442 tasklet_kill(&sc->txtq);
2443 tasklet_kill(&sc->calib);
2444 tasklet_kill(&sc->beacontq);
2445 tasklet_kill(&sc->ani_tasklet);
2449 * Stop the device, grabbing the top-level lock to protect
2450 * against concurrent entry through ath5k_init (which can happen
2451 * if another thread does a system call and the thread doing the
2452 * stop is preempted).
2454 static int
2455 ath5k_stop_hw(struct ath5k_softc *sc)
2457 int ret;
2459 mutex_lock(&sc->lock);
2460 ret = ath5k_stop_locked(sc);
2461 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2463 * Don't set the card in full sleep mode!
2465 * a) When the device is in this state it must be carefully
2466 * woken up or references to registers in the PCI clock
2467 * domain may freeze the bus (and system). This varies
2468 * by chip and is mostly an issue with newer parts
2469 * (madwifi sources mentioned srev >= 0x78) that go to
2470 * sleep more quickly.
2472 * b) On older chips full sleep results a weird behaviour
2473 * during wakeup. I tested various cards with srev < 0x78
2474 * and they don't wake up after module reload, a second
2475 * module reload is needed to bring the card up again.
2477 * Until we figure out what's going on don't enable
2478 * full chip reset on any chip (this is what Legacy HAL
2479 * and Sam's HAL do anyway). Instead Perform a full reset
2480 * on the device (same as initial state after attach) and
2481 * leave it idle (keep MAC/BB on warm reset) */
2482 ret = ath5k_hw_on_hold(sc->ah);
2484 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2485 "putting device to sleep\n");
2488 mmiowb();
2489 mutex_unlock(&sc->lock);
2491 stop_tasklets(sc);
2493 cancel_delayed_work_sync(&sc->tx_complete_work);
2495 ath5k_rfkill_hw_stop(sc->ah);
2497 return ret;
2501 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2502 * and change to the given channel.
2504 * This should be called with sc->lock.
2506 static int
2507 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
2509 struct ath5k_hw *ah = sc->ah;
2510 int ret;
2512 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2514 ath5k_hw_set_imr(ah, 0);
2515 synchronize_irq(sc->pdev->irq);
2516 stop_tasklets(sc);
2518 if (chan) {
2519 ath5k_drain_tx_buffs(sc);
2521 sc->curchan = chan;
2522 sc->curband = &sc->sbands[chan->band];
2524 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL);
2525 if (ret) {
2526 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2527 goto err;
2530 ret = ath5k_rx_start(sc);
2531 if (ret) {
2532 ATH5K_ERR(sc, "can't start recv logic\n");
2533 goto err;
2536 ath5k_ani_init(ah, ah->ah_sc->ani_state.ani_mode);
2538 ah->ah_cal_next_full = jiffies;
2539 ah->ah_cal_next_ani = jiffies;
2540 ah->ah_cal_next_nf = jiffies;
2541 ewma_init(&ah->ah_beacon_rssi_avg, 1000, 8);
2544 * Change channels and update the h/w rate map if we're switching;
2545 * e.g. 11a to 11b/g.
2547 * We may be doing a reset in response to an ioctl that changes the
2548 * channel so update any state that might change as a result.
2550 * XXX needed?
2552 /* ath5k_chan_change(sc, c); */
2554 ath5k_beacon_config(sc);
2555 /* intrs are enabled by ath5k_beacon_config */
2557 ieee80211_wake_queues(sc->hw);
2559 return 0;
2560 err:
2561 return ret;
2564 static void ath5k_reset_work(struct work_struct *work)
2566 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2567 reset_work);
2569 mutex_lock(&sc->lock);
2570 ath5k_reset(sc, sc->curchan);
2571 mutex_unlock(&sc->lock);
2574 static int
2575 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
2577 struct ath5k_softc *sc = hw->priv;
2578 struct ath5k_hw *ah = sc->ah;
2579 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2580 struct ath5k_txq *txq;
2581 u8 mac[ETH_ALEN] = {};
2582 int ret;
2584 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
2587 * Check if the MAC has multi-rate retry support.
2588 * We do this by trying to setup a fake extended
2589 * descriptor. MACs that don't have support will
2590 * return false w/o doing anything. MACs that do
2591 * support it will return true w/o doing anything.
2593 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2595 if (ret < 0)
2596 goto err;
2597 if (ret > 0)
2598 __set_bit(ATH_STAT_MRRETRY, sc->status);
2601 * Collect the channel list. The 802.11 layer
2602 * is resposible for filtering this list based
2603 * on settings like the phy mode and regulatory
2604 * domain restrictions.
2606 ret = ath5k_setup_bands(hw);
2607 if (ret) {
2608 ATH5K_ERR(sc, "can't get channels\n");
2609 goto err;
2612 /* NB: setup here so ath5k_rate_update is happy */
2613 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
2614 ath5k_setcurmode(sc, AR5K_MODE_11A);
2615 else
2616 ath5k_setcurmode(sc, AR5K_MODE_11B);
2619 * Allocate tx+rx descriptors and populate the lists.
2621 ret = ath5k_desc_alloc(sc, pdev);
2622 if (ret) {
2623 ATH5K_ERR(sc, "can't allocate descriptors\n");
2624 goto err;
2628 * Allocate hardware transmit queues: one queue for
2629 * beacon frames and one data queue for each QoS
2630 * priority. Note that hw functions handle resetting
2631 * these queues at the needed time.
2633 ret = ath5k_beaconq_setup(ah);
2634 if (ret < 0) {
2635 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2636 goto err_desc;
2638 sc->bhalq = ret;
2639 sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2640 if (IS_ERR(sc->cabq)) {
2641 ATH5K_ERR(sc, "can't setup cab queue\n");
2642 ret = PTR_ERR(sc->cabq);
2643 goto err_bhal;
2646 /* This order matches mac80211's queue priority, so we can
2647 * directly use the mac80211 queue number without any mapping */
2648 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2649 if (IS_ERR(txq)) {
2650 ATH5K_ERR(sc, "can't setup xmit queue\n");
2651 ret = PTR_ERR(txq);
2652 goto err_queues;
2654 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2655 if (IS_ERR(txq)) {
2656 ATH5K_ERR(sc, "can't setup xmit queue\n");
2657 ret = PTR_ERR(txq);
2658 goto err_queues;
2660 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2661 if (IS_ERR(txq)) {
2662 ATH5K_ERR(sc, "can't setup xmit queue\n");
2663 ret = PTR_ERR(txq);
2664 goto err_queues;
2666 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2667 if (IS_ERR(txq)) {
2668 ATH5K_ERR(sc, "can't setup xmit queue\n");
2669 ret = PTR_ERR(txq);
2670 goto err_queues;
2672 hw->queues = 4;
2674 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2675 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2676 tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2677 tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2678 tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
2680 INIT_WORK(&sc->reset_work, ath5k_reset_work);
2681 INIT_DELAYED_WORK(&sc->tx_complete_work, ath5k_tx_complete_poll_work);
2683 ret = ath5k_eeprom_read_mac(ah, mac);
2684 if (ret) {
2685 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
2686 sc->pdev->device);
2687 goto err_queues;
2690 SET_IEEE80211_PERM_ADDR(hw, mac);
2691 memcpy(&sc->lladdr, mac, ETH_ALEN);
2692 /* All MAC address bits matter for ACKs */
2693 ath5k_update_bssid_mask_and_opmode(sc, NULL);
2695 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2696 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2697 if (ret) {
2698 ATH5K_ERR(sc, "can't initialize regulatory system\n");
2699 goto err_queues;
2702 ret = ieee80211_register_hw(hw);
2703 if (ret) {
2704 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2705 goto err_queues;
2708 if (!ath_is_world_regd(regulatory))
2709 regulatory_hint(hw->wiphy, regulatory->alpha2);
2711 ath5k_init_leds(sc);
2713 ath5k_sysfs_register(sc);
2715 return 0;
2716 err_queues:
2717 ath5k_txq_release(sc);
2718 err_bhal:
2719 ath5k_hw_release_tx_queue(ah, sc->bhalq);
2720 err_desc:
2721 ath5k_desc_free(sc, pdev);
2722 err:
2723 return ret;
2726 static void
2727 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
2729 struct ath5k_softc *sc = hw->priv;
2732 * NB: the order of these is important:
2733 * o call the 802.11 layer before detaching ath5k_hw to
2734 * ensure callbacks into the driver to delete global
2735 * key cache entries can be handled
2736 * o reclaim the tx queue data structures after calling
2737 * the 802.11 layer as we'll get called back to reclaim
2738 * node state and potentially want to use them
2739 * o to cleanup the tx queues the hal is called, so detach
2740 * it last
2741 * XXX: ??? detach ath5k_hw ???
2742 * Other than that, it's straightforward...
2744 ieee80211_unregister_hw(hw);
2745 ath5k_desc_free(sc, pdev);
2746 ath5k_txq_release(sc);
2747 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2748 ath5k_unregister_leds(sc);
2750 ath5k_sysfs_unregister(sc);
2752 * NB: can't reclaim these until after ieee80211_ifdetach
2753 * returns because we'll get called back to reclaim node
2754 * state and potentially want to use them.
2758 /********************\
2759 * Mac80211 functions *
2760 \********************/
2762 static int
2763 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2765 struct ath5k_softc *sc = hw->priv;
2766 u16 qnum = skb_get_queue_mapping(skb);
2768 if (WARN_ON(qnum >= sc->ah->ah_capabilities.cap_queues.q_tx_num)) {
2769 dev_kfree_skb_any(skb);
2770 return 0;
2773 return ath5k_tx_queue(hw, skb, &sc->txqs[qnum]);
2776 static int ath5k_start(struct ieee80211_hw *hw)
2778 return ath5k_init(hw->priv);
2781 static void ath5k_stop(struct ieee80211_hw *hw)
2783 ath5k_stop_hw(hw->priv);
2786 static int ath5k_add_interface(struct ieee80211_hw *hw,
2787 struct ieee80211_vif *vif)
2789 struct ath5k_softc *sc = hw->priv;
2790 int ret;
2791 struct ath5k_vif *avf = (void *)vif->drv_priv;
2793 mutex_lock(&sc->lock);
2795 if ((vif->type == NL80211_IFTYPE_AP ||
2796 vif->type == NL80211_IFTYPE_ADHOC)
2797 && (sc->num_ap_vifs + sc->num_adhoc_vifs) >= ATH_BCBUF) {
2798 ret = -ELNRNG;
2799 goto end;
2802 /* Don't allow other interfaces if one ad-hoc is configured.
2803 * TODO: Fix the problems with ad-hoc and multiple other interfaces.
2804 * We would need to operate the HW in ad-hoc mode to allow TSF updates
2805 * for the IBSS, but this breaks with additional AP or STA interfaces
2806 * at the moment. */
2807 if (sc->num_adhoc_vifs ||
2808 (sc->nvifs && vif->type == NL80211_IFTYPE_ADHOC)) {
2809 ATH5K_ERR(sc, "Only one single ad-hoc interface is allowed.\n");
2810 ret = -ELNRNG;
2811 goto end;
2814 switch (vif->type) {
2815 case NL80211_IFTYPE_AP:
2816 case NL80211_IFTYPE_STATION:
2817 case NL80211_IFTYPE_ADHOC:
2818 case NL80211_IFTYPE_MESH_POINT:
2819 avf->opmode = vif->type;
2820 break;
2821 default:
2822 ret = -EOPNOTSUPP;
2823 goto end;
2826 sc->nvifs++;
2827 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "add interface mode %d\n", avf->opmode);
2829 /* Assign the vap/adhoc to a beacon xmit slot. */
2830 if ((avf->opmode == NL80211_IFTYPE_AP) ||
2831 (avf->opmode == NL80211_IFTYPE_ADHOC)) {
2832 int slot;
2834 WARN_ON(list_empty(&sc->bcbuf));
2835 avf->bbuf = list_first_entry(&sc->bcbuf, struct ath5k_buf,
2836 list);
2837 list_del(&avf->bbuf->list);
2839 avf->bslot = 0;
2840 for (slot = 0; slot < ATH_BCBUF; slot++) {
2841 if (!sc->bslot[slot]) {
2842 avf->bslot = slot;
2843 break;
2846 BUG_ON(sc->bslot[avf->bslot] != NULL);
2847 sc->bslot[avf->bslot] = vif;
2848 if (avf->opmode == NL80211_IFTYPE_AP)
2849 sc->num_ap_vifs++;
2850 else
2851 sc->num_adhoc_vifs++;
2854 /* Any MAC address is fine, all others are included through the
2855 * filter.
2857 memcpy(&sc->lladdr, vif->addr, ETH_ALEN);
2858 ath5k_hw_set_lladdr(sc->ah, vif->addr);
2860 memcpy(&avf->lladdr, vif->addr, ETH_ALEN);
2862 ath5k_mode_setup(sc, vif);
2864 ret = 0;
2865 end:
2866 mutex_unlock(&sc->lock);
2867 return ret;
2870 static void
2871 ath5k_remove_interface(struct ieee80211_hw *hw,
2872 struct ieee80211_vif *vif)
2874 struct ath5k_softc *sc = hw->priv;
2875 struct ath5k_vif *avf = (void *)vif->drv_priv;
2876 unsigned int i;
2878 mutex_lock(&sc->lock);
2879 sc->nvifs--;
2881 if (avf->bbuf) {
2882 ath5k_txbuf_free_skb(sc, avf->bbuf);
2883 list_add_tail(&avf->bbuf->list, &sc->bcbuf);
2884 for (i = 0; i < ATH_BCBUF; i++) {
2885 if (sc->bslot[i] == vif) {
2886 sc->bslot[i] = NULL;
2887 break;
2890 avf->bbuf = NULL;
2892 if (avf->opmode == NL80211_IFTYPE_AP)
2893 sc->num_ap_vifs--;
2894 else if (avf->opmode == NL80211_IFTYPE_ADHOC)
2895 sc->num_adhoc_vifs--;
2897 ath5k_update_bssid_mask_and_opmode(sc, NULL);
2898 mutex_unlock(&sc->lock);
2902 * TODO: Phy disable/diversity etc
2904 static int
2905 ath5k_config(struct ieee80211_hw *hw, u32 changed)
2907 struct ath5k_softc *sc = hw->priv;
2908 struct ath5k_hw *ah = sc->ah;
2909 struct ieee80211_conf *conf = &hw->conf;
2910 int ret = 0;
2912 mutex_lock(&sc->lock);
2914 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2915 ret = ath5k_chan_set(sc, conf->channel);
2916 if (ret < 0)
2917 goto unlock;
2920 if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
2921 (sc->power_level != conf->power_level)) {
2922 sc->power_level = conf->power_level;
2924 /* Half dB steps */
2925 ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
2928 /* TODO:
2929 * 1) Move this on config_interface and handle each case
2930 * separately eg. when we have only one STA vif, use
2931 * AR5K_ANTMODE_SINGLE_AP
2933 * 2) Allow the user to change antenna mode eg. when only
2934 * one antenna is present
2936 * 3) Allow the user to set default/tx antenna when possible
2938 * 4) Default mode should handle 90% of the cases, together
2939 * with fixed a/b and single AP modes we should be able to
2940 * handle 99%. Sectored modes are extreme cases and i still
2941 * haven't found a usage for them. If we decide to support them,
2942 * then we must allow the user to set how many tx antennas we
2943 * have available
2945 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
2947 unlock:
2948 mutex_unlock(&sc->lock);
2949 return ret;
2952 static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
2953 struct netdev_hw_addr_list *mc_list)
2955 u32 mfilt[2], val;
2956 u8 pos;
2957 struct netdev_hw_addr *ha;
2959 mfilt[0] = 0;
2960 mfilt[1] = 1;
2962 netdev_hw_addr_list_for_each(ha, mc_list) {
2963 /* calculate XOR of eight 6-bit values */
2964 val = get_unaligned_le32(ha->addr + 0);
2965 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2966 val = get_unaligned_le32(ha->addr + 3);
2967 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2968 pos &= 0x3f;
2969 mfilt[pos / 32] |= (1 << (pos % 32));
2970 /* XXX: we might be able to just do this instead,
2971 * but not sure, needs testing, if we do use this we'd
2972 * neet to inform below to not reset the mcast */
2973 /* ath5k_hw_set_mcast_filterindex(ah,
2974 * ha->addr[5]); */
2977 return ((u64)(mfilt[1]) << 32) | mfilt[0];
2980 static bool ath_any_vif_assoc(struct ath5k_softc *sc)
2982 struct ath_vif_iter_data iter_data;
2983 iter_data.hw_macaddr = NULL;
2984 iter_data.any_assoc = false;
2985 iter_data.need_set_hw_addr = false;
2986 iter_data.found_active = true;
2988 ieee80211_iterate_active_interfaces_atomic(sc->hw, ath_vif_iter,
2989 &iter_data);
2990 return iter_data.any_assoc;
2993 #define SUPPORTED_FIF_FLAGS \
2994 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2995 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2996 FIF_BCN_PRBRESP_PROMISC
2998 * o always accept unicast, broadcast, and multicast traffic
2999 * o multicast traffic for all BSSIDs will be enabled if mac80211
3000 * says it should be
3001 * o maintain current state of phy ofdm or phy cck error reception.
3002 * If the hardware detects any of these type of errors then
3003 * ath5k_hw_get_rx_filter() will pass to us the respective
3004 * hardware filters to be able to receive these type of frames.
3005 * o probe request frames are accepted only when operating in
3006 * hostap, adhoc, or monitor modes
3007 * o enable promiscuous mode according to the interface state
3008 * o accept beacons:
3009 * - when operating in adhoc mode so the 802.11 layer creates
3010 * node table entries for peers,
3011 * - when operating in station mode for collecting rssi data when
3012 * the station is otherwise quiet, or
3013 * - when scanning
3015 static void ath5k_configure_filter(struct ieee80211_hw *hw,
3016 unsigned int changed_flags,
3017 unsigned int *new_flags,
3018 u64 multicast)
3020 struct ath5k_softc *sc = hw->priv;
3021 struct ath5k_hw *ah = sc->ah;
3022 u32 mfilt[2], rfilt;
3024 mutex_lock(&sc->lock);
3026 mfilt[0] = multicast;
3027 mfilt[1] = multicast >> 32;
3029 /* Only deal with supported flags */
3030 changed_flags &= SUPPORTED_FIF_FLAGS;
3031 *new_flags &= SUPPORTED_FIF_FLAGS;
3033 /* If HW detects any phy or radar errors, leave those filters on.
3034 * Also, always enable Unicast, Broadcasts and Multicast
3035 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
3036 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
3037 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
3038 AR5K_RX_FILTER_MCAST);
3040 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
3041 if (*new_flags & FIF_PROMISC_IN_BSS) {
3042 __set_bit(ATH_STAT_PROMISC, sc->status);
3043 } else {
3044 __clear_bit(ATH_STAT_PROMISC, sc->status);
3048 if (test_bit(ATH_STAT_PROMISC, sc->status))
3049 rfilt |= AR5K_RX_FILTER_PROM;
3051 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
3052 if (*new_flags & FIF_ALLMULTI) {
3053 mfilt[0] = ~0;
3054 mfilt[1] = ~0;
3057 /* This is the best we can do */
3058 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
3059 rfilt |= AR5K_RX_FILTER_PHYERR;
3061 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
3062 * and probes for any BSSID */
3063 if ((*new_flags & FIF_BCN_PRBRESP_PROMISC) || (sc->nvifs > 1))
3064 rfilt |= AR5K_RX_FILTER_BEACON;
3066 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
3067 * set we should only pass on control frames for this
3068 * station. This needs testing. I believe right now this
3069 * enables *all* control frames, which is OK.. but
3070 * but we should see if we can improve on granularity */
3071 if (*new_flags & FIF_CONTROL)
3072 rfilt |= AR5K_RX_FILTER_CONTROL;
3074 /* Additional settings per mode -- this is per ath5k */
3076 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
3078 switch (sc->opmode) {
3079 case NL80211_IFTYPE_MESH_POINT:
3080 rfilt |= AR5K_RX_FILTER_CONTROL |
3081 AR5K_RX_FILTER_BEACON |
3082 AR5K_RX_FILTER_PROBEREQ |
3083 AR5K_RX_FILTER_PROM;
3084 break;
3085 case NL80211_IFTYPE_AP:
3086 case NL80211_IFTYPE_ADHOC:
3087 rfilt |= AR5K_RX_FILTER_PROBEREQ |
3088 AR5K_RX_FILTER_BEACON;
3089 break;
3090 case NL80211_IFTYPE_STATION:
3091 if (sc->assoc)
3092 rfilt |= AR5K_RX_FILTER_BEACON;
3093 default:
3094 break;
3097 /* Set filters */
3098 ath5k_hw_set_rx_filter(ah, rfilt);
3100 /* Set multicast bits */
3101 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
3102 /* Set the cached hw filter flags, this will later actually
3103 * be set in HW */
3104 sc->filter_flags = rfilt;
3106 mutex_unlock(&sc->lock);
3109 static int
3110 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
3111 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
3112 struct ieee80211_key_conf *key)
3114 struct ath5k_softc *sc = hw->priv;
3115 struct ath5k_hw *ah = sc->ah;
3116 struct ath_common *common = ath5k_hw_common(ah);
3117 int ret = 0;
3119 if (modparam_nohwcrypt)
3120 return -EOPNOTSUPP;
3122 switch (key->cipher) {
3123 case WLAN_CIPHER_SUITE_WEP40:
3124 case WLAN_CIPHER_SUITE_WEP104:
3125 case WLAN_CIPHER_SUITE_TKIP:
3126 break;
3127 case WLAN_CIPHER_SUITE_CCMP:
3128 if (common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)
3129 break;
3130 return -EOPNOTSUPP;
3131 default:
3132 WARN_ON(1);
3133 return -EINVAL;
3136 mutex_lock(&sc->lock);
3138 switch (cmd) {
3139 case SET_KEY:
3140 ret = ath_key_config(common, vif, sta, key);
3141 if (ret >= 0) {
3142 key->hw_key_idx = ret;
3143 /* push IV and Michael MIC generation to stack */
3144 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
3145 if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
3146 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
3147 if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
3148 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
3149 ret = 0;
3151 break;
3152 case DISABLE_KEY:
3153 ath_key_delete(common, key);
3154 break;
3155 default:
3156 ret = -EINVAL;
3159 mmiowb();
3160 mutex_unlock(&sc->lock);
3161 return ret;
3164 static int
3165 ath5k_get_stats(struct ieee80211_hw *hw,
3166 struct ieee80211_low_level_stats *stats)
3168 struct ath5k_softc *sc = hw->priv;
3170 /* Force update */
3171 ath5k_hw_update_mib_counters(sc->ah);
3173 stats->dot11ACKFailureCount = sc->stats.ack_fail;
3174 stats->dot11RTSFailureCount = sc->stats.rts_fail;
3175 stats->dot11RTSSuccessCount = sc->stats.rts_ok;
3176 stats->dot11FCSErrorCount = sc->stats.fcs_error;
3178 return 0;
3181 static int ath5k_get_survey(struct ieee80211_hw *hw, int idx,
3182 struct survey_info *survey)
3184 struct ath5k_softc *sc = hw->priv;
3185 struct ieee80211_conf *conf = &hw->conf;
3186 struct ath_common *common = ath5k_hw_common(sc->ah);
3187 struct ath_cycle_counters *cc = &common->cc_survey;
3188 unsigned int div = common->clockrate * 1000;
3190 if (idx != 0)
3191 return -ENOENT;
3193 survey->channel = conf->channel;
3194 survey->filled = SURVEY_INFO_NOISE_DBM;
3195 survey->noise = sc->ah->ah_noise_floor;
3197 spin_lock_bh(&common->cc_lock);
3198 ath_hw_cycle_counters_update(common);
3199 if (cc->cycles > 0) {
3200 survey->filled |= SURVEY_INFO_CHANNEL_TIME |
3201 SURVEY_INFO_CHANNEL_TIME_BUSY |
3202 SURVEY_INFO_CHANNEL_TIME_RX |
3203 SURVEY_INFO_CHANNEL_TIME_TX;
3204 survey->channel_time += cc->cycles / div;
3205 survey->channel_time_busy += cc->rx_busy / div;
3206 survey->channel_time_rx += cc->rx_frame / div;
3207 survey->channel_time_tx += cc->tx_frame / div;
3209 memset(cc, 0, sizeof(*cc));
3210 spin_unlock_bh(&common->cc_lock);
3212 return 0;
3215 static u64
3216 ath5k_get_tsf(struct ieee80211_hw *hw)
3218 struct ath5k_softc *sc = hw->priv;
3220 return ath5k_hw_get_tsf64(sc->ah);
3223 static void
3224 ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3226 struct ath5k_softc *sc = hw->priv;
3228 ath5k_hw_set_tsf64(sc->ah, tsf);
3231 static void
3232 ath5k_reset_tsf(struct ieee80211_hw *hw)
3234 struct ath5k_softc *sc = hw->priv;
3237 * in IBSS mode we need to update the beacon timers too.
3238 * this will also reset the TSF if we call it with 0
3240 if (sc->opmode == NL80211_IFTYPE_ADHOC)
3241 ath5k_beacon_update_timers(sc, 0);
3242 else
3243 ath5k_hw_reset_tsf(sc->ah);
3246 static void
3247 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3249 struct ath5k_softc *sc = hw->priv;
3250 struct ath5k_hw *ah = sc->ah;
3251 u32 rfilt;
3252 rfilt = ath5k_hw_get_rx_filter(ah);
3253 if (enable)
3254 rfilt |= AR5K_RX_FILTER_BEACON;
3255 else
3256 rfilt &= ~AR5K_RX_FILTER_BEACON;
3257 ath5k_hw_set_rx_filter(ah, rfilt);
3258 sc->filter_flags = rfilt;
3261 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
3262 struct ieee80211_vif *vif,
3263 struct ieee80211_bss_conf *bss_conf,
3264 u32 changes)
3266 struct ath5k_vif *avf = (void *)vif->drv_priv;
3267 struct ath5k_softc *sc = hw->priv;
3268 struct ath5k_hw *ah = sc->ah;
3269 struct ath_common *common = ath5k_hw_common(ah);
3270 unsigned long flags;
3272 mutex_lock(&sc->lock);
3274 if (changes & BSS_CHANGED_BSSID) {
3275 /* Cache for later use during resets */
3276 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
3277 common->curaid = 0;
3278 ath5k_hw_set_bssid(ah);
3279 mmiowb();
3282 if (changes & BSS_CHANGED_BEACON_INT)
3283 sc->bintval = bss_conf->beacon_int;
3285 if (changes & BSS_CHANGED_ASSOC) {
3286 avf->assoc = bss_conf->assoc;
3287 if (bss_conf->assoc)
3288 sc->assoc = bss_conf->assoc;
3289 else
3290 sc->assoc = ath_any_vif_assoc(sc);
3292 if (sc->opmode == NL80211_IFTYPE_STATION)
3293 set_beacon_filter(hw, sc->assoc);
3294 ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3295 AR5K_LED_ASSOC : AR5K_LED_INIT);
3296 if (bss_conf->assoc) {
3297 ATH5K_DBG(sc, ATH5K_DEBUG_ANY,
3298 "Bss Info ASSOC %d, bssid: %pM\n",
3299 bss_conf->aid, common->curbssid);
3300 common->curaid = bss_conf->aid;
3301 ath5k_hw_set_bssid(ah);
3302 /* Once ANI is available you would start it here */
3306 if (changes & BSS_CHANGED_BEACON) {
3307 spin_lock_irqsave(&sc->block, flags);
3308 ath5k_beacon_update(hw, vif);
3309 spin_unlock_irqrestore(&sc->block, flags);
3312 if (changes & BSS_CHANGED_BEACON_ENABLED)
3313 sc->enable_beacon = bss_conf->enable_beacon;
3315 if (changes & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED |
3316 BSS_CHANGED_BEACON_INT))
3317 ath5k_beacon_config(sc);
3319 mutex_unlock(&sc->lock);
3322 static void ath5k_sw_scan_start(struct ieee80211_hw *hw)
3324 struct ath5k_softc *sc = hw->priv;
3325 if (!sc->assoc)
3326 ath5k_hw_set_ledstate(sc->ah, AR5K_LED_SCAN);
3329 static void ath5k_sw_scan_complete(struct ieee80211_hw *hw)
3331 struct ath5k_softc *sc = hw->priv;
3332 ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3333 AR5K_LED_ASSOC : AR5K_LED_INIT);
3337 * ath5k_set_coverage_class - Set IEEE 802.11 coverage class
3339 * @hw: struct ieee80211_hw pointer
3340 * @coverage_class: IEEE 802.11 coverage class number
3342 * Mac80211 callback. Sets slot time, ACK timeout and CTS timeout for given
3343 * coverage class. The values are persistent, they are restored after device
3344 * reset.
3346 static void ath5k_set_coverage_class(struct ieee80211_hw *hw, u8 coverage_class)
3348 struct ath5k_softc *sc = hw->priv;
3350 mutex_lock(&sc->lock);
3351 ath5k_hw_set_coverage_class(sc->ah, coverage_class);
3352 mutex_unlock(&sc->lock);
3355 static int ath5k_conf_tx(struct ieee80211_hw *hw, u16 queue,
3356 const struct ieee80211_tx_queue_params *params)
3358 struct ath5k_softc *sc = hw->priv;
3359 struct ath5k_hw *ah = sc->ah;
3360 struct ath5k_txq_info qi;
3361 int ret = 0;
3363 if (queue >= ah->ah_capabilities.cap_queues.q_tx_num)
3364 return 0;
3366 mutex_lock(&sc->lock);
3368 ath5k_hw_get_tx_queueprops(ah, queue, &qi);
3370 qi.tqi_aifs = params->aifs;
3371 qi.tqi_cw_min = params->cw_min;
3372 qi.tqi_cw_max = params->cw_max;
3373 qi.tqi_burst_time = params->txop;
3375 ATH5K_DBG(sc, ATH5K_DEBUG_ANY,
3376 "Configure tx [queue %d], "
3377 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
3378 queue, params->aifs, params->cw_min,
3379 params->cw_max, params->txop);
3381 if (ath5k_hw_set_tx_queueprops(ah, queue, &qi)) {
3382 ATH5K_ERR(sc,
3383 "Unable to update hardware queue %u!\n", queue);
3384 ret = -EIO;
3385 } else
3386 ath5k_hw_reset_tx_queue(ah, queue);
3388 mutex_unlock(&sc->lock);
3390 return ret;
3393 static int ath5k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
3395 struct ath5k_softc *sc = hw->priv;
3397 if (tx_ant == 1 && rx_ant == 1)
3398 ath5k_hw_set_antenna_mode(sc->ah, AR5K_ANTMODE_FIXED_A);
3399 else if (tx_ant == 2 && rx_ant == 2)
3400 ath5k_hw_set_antenna_mode(sc->ah, AR5K_ANTMODE_FIXED_B);
3401 else if ((tx_ant & 3) == 3 && (rx_ant & 3) == 3)
3402 ath5k_hw_set_antenna_mode(sc->ah, AR5K_ANTMODE_DEFAULT);
3403 else
3404 return -EINVAL;
3405 return 0;
3408 static int ath5k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
3410 struct ath5k_softc *sc = hw->priv;
3412 switch (sc->ah->ah_ant_mode) {
3413 case AR5K_ANTMODE_FIXED_A:
3414 *tx_ant = 1; *rx_ant = 1; break;
3415 case AR5K_ANTMODE_FIXED_B:
3416 *tx_ant = 2; *rx_ant = 2; break;
3417 case AR5K_ANTMODE_DEFAULT:
3418 *tx_ant = 3; *rx_ant = 3; break;
3420 return 0;
3423 static const struct ieee80211_ops ath5k_hw_ops = {
3424 .tx = ath5k_tx,
3425 .start = ath5k_start,
3426 .stop = ath5k_stop,
3427 .add_interface = ath5k_add_interface,
3428 .remove_interface = ath5k_remove_interface,
3429 .config = ath5k_config,
3430 .prepare_multicast = ath5k_prepare_multicast,
3431 .configure_filter = ath5k_configure_filter,
3432 .set_key = ath5k_set_key,
3433 .get_stats = ath5k_get_stats,
3434 .get_survey = ath5k_get_survey,
3435 .conf_tx = ath5k_conf_tx,
3436 .get_tsf = ath5k_get_tsf,
3437 .set_tsf = ath5k_set_tsf,
3438 .reset_tsf = ath5k_reset_tsf,
3439 .bss_info_changed = ath5k_bss_info_changed,
3440 .sw_scan_start = ath5k_sw_scan_start,
3441 .sw_scan_complete = ath5k_sw_scan_complete,
3442 .set_coverage_class = ath5k_set_coverage_class,
3443 .set_antenna = ath5k_set_antenna,
3444 .get_antenna = ath5k_get_antenna,
3447 /********************\
3448 * PCI Initialization *
3449 \********************/
3451 static int __devinit
3452 ath5k_pci_probe(struct pci_dev *pdev,
3453 const struct pci_device_id *id)
3455 void __iomem *mem;
3456 struct ath5k_softc *sc;
3457 struct ath_common *common;
3458 struct ieee80211_hw *hw;
3459 int ret;
3460 u8 csz;
3463 * L0s needs to be disabled on all ath5k cards.
3465 * For distributions shipping with CONFIG_PCIEASPM (this will be enabled
3466 * by default in the future in 2.6.36) this will also mean both L1 and
3467 * L0s will be disabled when a pre 1.1 PCIe device is detected. We do
3468 * know L1 works correctly even for all ath5k pre 1.1 PCIe devices
3469 * though but cannot currently undue the effect of a blacklist, for
3470 * details you can read pcie_aspm_sanity_check() and see how it adjusts
3471 * the device link capability.
3473 * It may be possible in the future to implement some PCI API to allow
3474 * drivers to override blacklists for pre 1.1 PCIe but for now it is
3475 * best to accept that both L0s and L1 will be disabled completely for
3476 * distributions shipping with CONFIG_PCIEASPM rather than having this
3477 * issue present. Motivation for adding this new API will be to help
3478 * with power consumption for some of these devices.
3480 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
3482 ret = pci_enable_device(pdev);
3483 if (ret) {
3484 dev_err(&pdev->dev, "can't enable device\n");
3485 goto err;
3488 /* XXX 32-bit addressing only */
3489 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3490 if (ret) {
3491 dev_err(&pdev->dev, "32-bit DMA not available\n");
3492 goto err_dis;
3496 * Cache line size is used to size and align various
3497 * structures used to communicate with the hardware.
3499 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
3500 if (csz == 0) {
3502 * Linux 2.4.18 (at least) writes the cache line size
3503 * register as a 16-bit wide register which is wrong.
3504 * We must have this setup properly for rx buffer
3505 * DMA to work so force a reasonable value here if it
3506 * comes up zero.
3508 csz = L1_CACHE_BYTES >> 2;
3509 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
3512 * The default setting of latency timer yields poor results,
3513 * set it to the value used by other systems. It may be worth
3514 * tweaking this setting more.
3516 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
3518 /* Enable bus mastering */
3519 pci_set_master(pdev);
3522 * Disable the RETRY_TIMEOUT register (0x41) to keep
3523 * PCI Tx retries from interfering with C3 CPU state.
3525 pci_write_config_byte(pdev, 0x41, 0);
3527 ret = pci_request_region(pdev, 0, "ath5k");
3528 if (ret) {
3529 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
3530 goto err_dis;
3533 mem = pci_iomap(pdev, 0, 0);
3534 if (!mem) {
3535 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
3536 ret = -EIO;
3537 goto err_reg;
3541 * Allocate hw (mac80211 main struct)
3542 * and hw->priv (driver private data)
3544 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
3545 if (hw == NULL) {
3546 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
3547 ret = -ENOMEM;
3548 goto err_map;
3551 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
3553 /* Initialize driver private data */
3554 SET_IEEE80211_DEV(hw, &pdev->dev);
3555 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
3556 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
3557 IEEE80211_HW_SIGNAL_DBM;
3559 hw->wiphy->interface_modes =
3560 BIT(NL80211_IFTYPE_AP) |
3561 BIT(NL80211_IFTYPE_STATION) |
3562 BIT(NL80211_IFTYPE_ADHOC) |
3563 BIT(NL80211_IFTYPE_MESH_POINT);
3565 hw->extra_tx_headroom = 2;
3566 hw->channel_change_time = 5000;
3567 sc = hw->priv;
3568 sc->hw = hw;
3569 sc->pdev = pdev;
3572 * Mark the device as detached to avoid processing
3573 * interrupts until setup is complete.
3575 __set_bit(ATH_STAT_INVALID, sc->status);
3577 sc->iobase = mem; /* So we can unmap it on detach */
3578 sc->opmode = NL80211_IFTYPE_STATION;
3579 sc->bintval = 1000;
3580 mutex_init(&sc->lock);
3581 spin_lock_init(&sc->rxbuflock);
3582 spin_lock_init(&sc->txbuflock);
3583 spin_lock_init(&sc->block);
3585 /* Set private data */
3586 pci_set_drvdata(pdev, sc);
3588 /* Setup interrupt handler */
3589 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
3590 if (ret) {
3591 ATH5K_ERR(sc, "request_irq failed\n");
3592 goto err_free;
3595 /* If we passed the test, malloc an ath5k_hw struct */
3596 sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
3597 if (!sc->ah) {
3598 ret = -ENOMEM;
3599 ATH5K_ERR(sc, "out of memory\n");
3600 goto err_irq;
3603 sc->ah->ah_sc = sc;
3604 sc->ah->ah_iobase = sc->iobase;
3605 common = ath5k_hw_common(sc->ah);
3606 common->ops = &ath5k_common_ops;
3607 common->ah = sc->ah;
3608 common->hw = hw;
3609 common->cachelsz = csz << 2; /* convert to bytes */
3610 spin_lock_init(&common->cc_lock);
3612 /* Initialize device */
3613 ret = ath5k_hw_attach(sc);
3614 if (ret) {
3615 goto err_free_ah;
3618 /* set up multi-rate retry capabilities */
3619 if (sc->ah->ah_version == AR5K_AR5212) {
3620 hw->max_rates = 4;
3621 hw->max_rate_tries = 11;
3624 hw->vif_data_size = sizeof(struct ath5k_vif);
3626 /* Finish private driver data initialization */
3627 ret = ath5k_attach(pdev, hw);
3628 if (ret)
3629 goto err_ah;
3631 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
3632 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
3633 sc->ah->ah_mac_srev,
3634 sc->ah->ah_phy_revision);
3636 if (!sc->ah->ah_single_chip) {
3637 /* Single chip radio (!RF5111) */
3638 if (sc->ah->ah_radio_5ghz_revision &&
3639 !sc->ah->ah_radio_2ghz_revision) {
3640 /* No 5GHz support -> report 2GHz radio */
3641 if (!test_bit(AR5K_MODE_11A,
3642 sc->ah->ah_capabilities.cap_mode)) {
3643 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
3644 ath5k_chip_name(AR5K_VERSION_RAD,
3645 sc->ah->ah_radio_5ghz_revision),
3646 sc->ah->ah_radio_5ghz_revision);
3647 /* No 2GHz support (5110 and some
3648 * 5Ghz only cards) -> report 5Ghz radio */
3649 } else if (!test_bit(AR5K_MODE_11B,
3650 sc->ah->ah_capabilities.cap_mode)) {
3651 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
3652 ath5k_chip_name(AR5K_VERSION_RAD,
3653 sc->ah->ah_radio_5ghz_revision),
3654 sc->ah->ah_radio_5ghz_revision);
3655 /* Multiband radio */
3656 } else {
3657 ATH5K_INFO(sc, "RF%s multiband radio found"
3658 " (0x%x)\n",
3659 ath5k_chip_name(AR5K_VERSION_RAD,
3660 sc->ah->ah_radio_5ghz_revision),
3661 sc->ah->ah_radio_5ghz_revision);
3664 /* Multi chip radio (RF5111 - RF2111) ->
3665 * report both 2GHz/5GHz radios */
3666 else if (sc->ah->ah_radio_5ghz_revision &&
3667 sc->ah->ah_radio_2ghz_revision){
3668 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
3669 ath5k_chip_name(AR5K_VERSION_RAD,
3670 sc->ah->ah_radio_5ghz_revision),
3671 sc->ah->ah_radio_5ghz_revision);
3672 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
3673 ath5k_chip_name(AR5K_VERSION_RAD,
3674 sc->ah->ah_radio_2ghz_revision),
3675 sc->ah->ah_radio_2ghz_revision);
3679 ath5k_debug_init_device(sc);
3681 /* ready to process interrupts */
3682 __clear_bit(ATH_STAT_INVALID, sc->status);
3684 return 0;
3685 err_ah:
3686 ath5k_hw_detach(sc->ah);
3687 err_free_ah:
3688 kfree(sc->ah);
3689 err_irq:
3690 free_irq(pdev->irq, sc);
3691 err_free:
3692 ieee80211_free_hw(hw);
3693 err_map:
3694 pci_iounmap(pdev, mem);
3695 err_reg:
3696 pci_release_region(pdev, 0);
3697 err_dis:
3698 pci_disable_device(pdev);
3699 err:
3700 return ret;
3703 static void __devexit
3704 ath5k_pci_remove(struct pci_dev *pdev)
3706 struct ath5k_softc *sc = pci_get_drvdata(pdev);
3708 ath5k_debug_finish_device(sc);
3709 ath5k_detach(pdev, sc->hw);
3710 ath5k_hw_detach(sc->ah);
3711 kfree(sc->ah);
3712 free_irq(pdev->irq, sc);
3713 pci_iounmap(pdev, sc->iobase);
3714 pci_release_region(pdev, 0);
3715 pci_disable_device(pdev);
3716 ieee80211_free_hw(sc->hw);
3719 #ifdef CONFIG_PM_SLEEP
3720 static int ath5k_pci_suspend(struct device *dev)
3722 struct ath5k_softc *sc = pci_get_drvdata(to_pci_dev(dev));
3724 ath5k_led_off(sc);
3725 return 0;
3728 static int ath5k_pci_resume(struct device *dev)
3730 struct pci_dev *pdev = to_pci_dev(dev);
3731 struct ath5k_softc *sc = pci_get_drvdata(pdev);
3734 * Suspend/Resume resets the PCI configuration space, so we have to
3735 * re-disable the RETRY_TIMEOUT register (0x41) to keep
3736 * PCI Tx retries from interfering with C3 CPU state
3738 pci_write_config_byte(pdev, 0x41, 0);
3740 ath5k_led_enable(sc);
3741 return 0;
3744 static SIMPLE_DEV_PM_OPS(ath5k_pm_ops, ath5k_pci_suspend, ath5k_pci_resume);
3745 #define ATH5K_PM_OPS (&ath5k_pm_ops)
3746 #else
3747 #define ATH5K_PM_OPS NULL
3748 #endif /* CONFIG_PM_SLEEP */
3750 static struct pci_driver ath5k_pci_driver = {
3751 .name = KBUILD_MODNAME,
3752 .id_table = ath5k_pci_id_table,
3753 .probe = ath5k_pci_probe,
3754 .remove = __devexit_p(ath5k_pci_remove),
3755 .driver.pm = ATH5K_PM_OPS,
3759 * Module init/exit functions
3761 static int __init
3762 init_ath5k_pci(void)
3764 int ret;
3766 ret = pci_register_driver(&ath5k_pci_driver);
3767 if (ret) {
3768 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
3769 return ret;
3772 return 0;
3775 static void __exit
3776 exit_ath5k_pci(void)
3778 pci_unregister_driver(&ath5k_pci_driver);
3781 module_init(init_ath5k_pci);
3782 module_exit(exit_ath5k_pci);