1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ioport.h>
43 #include <linux/sched.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/errno.h>
48 #include <linux/pci.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/skbuff.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56 #include <linux/random.h>
57 #include <linux/workqueue.h>
58 #include <linux/if_vlan.h>
59 #include <linux/bitops.h>
60 #include <linux/mutex.h>
62 #include <linux/gfp.h>
64 #include <asm/system.h>
66 #include <asm/byteorder.h>
67 #include <asm/uaccess.h>
71 #include <asm/idprom.h>
75 #ifdef CONFIG_PPC_PMAC
76 #include <asm/pci-bridge.h>
78 #include <asm/machdep.h>
79 #include <asm/pmac_feature.h>
82 #include "sungem_phy.h"
85 /* Stripping FCS is causing problems, disabled for now */
88 #define DEFAULT_MSG (NETIF_MSG_DRV | \
92 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
93 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
94 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
95 SUPPORTED_Pause | SUPPORTED_Autoneg)
97 #define DRV_NAME "sungem"
98 #define DRV_VERSION "0.98"
99 #define DRV_RELDATE "8/24/03"
100 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
102 static char version
[] __devinitdata
=
103 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
105 MODULE_AUTHOR(DRV_AUTHOR
);
106 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
107 MODULE_LICENSE("GPL");
109 #define GEM_MODULE_NAME "gem"
111 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl
) = {
112 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
113 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
115 /* These models only differ from the original GEM in
116 * that their tx/rx fifos are of a different size and
117 * they only support 10/100 speeds. -DaveM
119 * Apple's GMAC does support gigabit on machines with
120 * the BCM54xx PHYs. -BenH
122 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
123 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
125 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
127 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
133 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
134 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
139 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
141 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
148 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
149 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
150 cmd
|= (MIF_FRAME_TAMSB
);
151 writel(cmd
, gp
->regs
+ MIF_FRAME
);
154 cmd
= readl(gp
->regs
+ MIF_FRAME
);
155 if (cmd
& MIF_FRAME_TALSB
)
164 return cmd
& MIF_FRAME_DATA
;
167 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
169 struct gem
*gp
= netdev_priv(dev
);
170 return __phy_read(gp
, mii_id
, reg
);
173 static inline u16
phy_read(struct gem
*gp
, int reg
)
175 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
178 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
185 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
186 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
187 cmd
|= (MIF_FRAME_TAMSB
);
188 cmd
|= (val
& MIF_FRAME_DATA
);
189 writel(cmd
, gp
->regs
+ MIF_FRAME
);
192 cmd
= readl(gp
->regs
+ MIF_FRAME
);
193 if (cmd
& MIF_FRAME_TALSB
)
200 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
202 struct gem
*gp
= netdev_priv(dev
);
203 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
206 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
208 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
211 static inline void gem_enable_ints(struct gem
*gp
)
213 /* Enable all interrupts but TXDONE */
214 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
217 static inline void gem_disable_ints(struct gem
*gp
)
219 /* Disable all interrupts, including TXDONE */
220 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
223 static void gem_get_cell(struct gem
*gp
)
225 BUG_ON(gp
->cell_enabled
< 0);
227 #ifdef CONFIG_PPC_PMAC
228 if (gp
->cell_enabled
== 1) {
230 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
233 #endif /* CONFIG_PPC_PMAC */
236 /* Turn off the chip's clock */
237 static void gem_put_cell(struct gem
*gp
)
239 BUG_ON(gp
->cell_enabled
<= 0);
241 #ifdef CONFIG_PPC_PMAC
242 if (gp
->cell_enabled
== 0) {
244 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
247 #endif /* CONFIG_PPC_PMAC */
250 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
252 if (netif_msg_intr(gp
))
253 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
256 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
258 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
261 if (netif_msg_intr(gp
))
262 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp
->dev
->name
, pcs_istat
);
265 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
266 netdev_err(dev
, "PCS irq but no link status change???\n");
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
274 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
275 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
277 (readl(gp
->regs
+ PCS_MIISTAT
) &
280 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
284 if (pcs_miistat
& PCS_MIISTAT_RF
)
285 netdev_info(dev
, "PCS AutoNEG complete, RemoteFault\n");
287 netdev_info(dev
, "PCS AutoNEG complete\n");
290 if (pcs_miistat
& PCS_MIISTAT_LS
) {
291 netdev_info(dev
, "PCS link is now up\n");
292 netif_carrier_on(gp
->dev
);
294 netdev_info(dev
, "PCS link is now down\n");
295 netif_carrier_off(gp
->dev
);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp
->link_timer
))
306 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
308 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
310 if (netif_msg_intr(gp
))
311 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp
->dev
->name
, txmac_stat
);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
318 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
321 if (txmac_stat
& MAC_TXSTAT_URUN
) {
322 netdev_err(dev
, "TX MAC xmit underrun\n");
323 gp
->net_stats
.tx_fifo_errors
++;
326 if (txmac_stat
& MAC_TXSTAT_MPE
) {
327 netdev_err(dev
, "TX MAC max packet size error\n");
328 gp
->net_stats
.tx_errors
++;
331 /* The rest are all cases of one of the 16-bit TX
334 if (txmac_stat
& MAC_TXSTAT_NCE
)
335 gp
->net_stats
.collisions
+= 0x10000;
337 if (txmac_stat
& MAC_TXSTAT_ECE
) {
338 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
339 gp
->net_stats
.collisions
+= 0x10000;
342 if (txmac_stat
& MAC_TXSTAT_LCE
) {
343 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
344 gp
->net_stats
.collisions
+= 0x10000;
347 /* We do not keep track of MAC_TXSTAT_FCE and
348 * MAC_TXSTAT_PCE events.
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
359 static int gem_rxmac_reset(struct gem
*gp
)
361 struct net_device
*dev
= gp
->dev
;
366 /* First, reset & disable MAC RX. */
367 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
368 for (limit
= 0; limit
< 5000; limit
++) {
369 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
374 netdev_err(dev
, "RX MAC will not reset, resetting whole chip\n");
378 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
379 gp
->regs
+ MAC_RXCFG
);
380 for (limit
= 0; limit
< 5000; limit
++) {
381 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
386 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
390 /* Second, disable RX DMA. */
391 writel(0, gp
->regs
+ RXDMA_CFG
);
392 for (limit
= 0; limit
< 5000; limit
++) {
393 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
398 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
404 /* Execute RX reset command. */
405 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
406 gp
->regs
+ GREG_SWRST
);
407 for (limit
= 0; limit
< 5000; limit
++) {
408 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
413 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
417 /* Refresh the RX ring. */
418 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
419 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
421 if (gp
->rx_skbs
[i
] == NULL
) {
422 netdev_err(dev
, "Parts of RX ring empty, resetting whole chip\n");
426 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
428 gp
->rx_new
= gp
->rx_old
= 0;
430 /* Now we must reprogram the rest of RX unit. */
431 desc_dma
= (u64
) gp
->gblock_dvma
;
432 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
433 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
434 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
435 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
436 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
437 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
438 writel(val
, gp
->regs
+ RXDMA_CFG
);
439 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
440 writel(((5 & RXDMA_BLANK_IPKTS
) |
441 ((8 << 12) & RXDMA_BLANK_ITIME
)),
442 gp
->regs
+ RXDMA_BLANK
);
444 writel(((5 & RXDMA_BLANK_IPKTS
) |
445 ((4 << 12) & RXDMA_BLANK_ITIME
)),
446 gp
->regs
+ RXDMA_BLANK
);
447 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
448 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
449 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
450 val
= readl(gp
->regs
+ RXDMA_CFG
);
451 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
452 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
453 val
= readl(gp
->regs
+ MAC_RXCFG
);
454 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
459 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
461 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
464 if (netif_msg_intr(gp
))
465 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 gp
->dev
->name
, rxmac_stat
);
468 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
469 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
471 netdev_err(dev
, "RX MAC fifo overflow smac[%08x]\n", smac
);
472 gp
->net_stats
.rx_over_errors
++;
473 gp
->net_stats
.rx_fifo_errors
++;
475 ret
= gem_rxmac_reset(gp
);
478 if (rxmac_stat
& MAC_RXSTAT_ACE
)
479 gp
->net_stats
.rx_frame_errors
+= 0x10000;
481 if (rxmac_stat
& MAC_RXSTAT_CCE
)
482 gp
->net_stats
.rx_crc_errors
+= 0x10000;
484 if (rxmac_stat
& MAC_RXSTAT_LCE
)
485 gp
->net_stats
.rx_length_errors
+= 0x10000;
487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
493 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
495 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
497 if (netif_msg_intr(gp
))
498 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
499 gp
->dev
->name
, mac_cstat
);
501 /* This interrupt is just for pause frame and pause
502 * tracking. It is useful for diagnostics and debug
503 * but probably by default we will mask these events.
505 if (mac_cstat
& MAC_CSTAT_PS
)
508 if (mac_cstat
& MAC_CSTAT_PRCV
)
509 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
514 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
516 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
517 u32 reg_val
, changed_bits
;
519 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
520 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
522 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
527 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
529 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
531 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
532 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
533 netdev_err(dev
, "PCI error [%04x]", pci_estat
);
535 if (pci_estat
& GREG_PCIESTAT_BADACK
)
536 pr_cont(" <No ACK64# during ABS64 cycle>");
537 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
538 pr_cont(" <Delayed transaction timeout>");
539 if (pci_estat
& GREG_PCIESTAT_OTHER
)
543 pci_estat
|= GREG_PCIESTAT_OTHER
;
544 netdev_err(dev
, "PCI error\n");
547 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
550 /* Interrogate PCI config space for the
553 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
555 netdev_err(dev
, "Read PCI cfg space status [%04x]\n",
557 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
558 netdev_err(dev
, "PCI parity error detected\n");
559 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
560 netdev_err(dev
, "PCI target abort\n");
561 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
562 netdev_err(dev
, "PCI master acks target abort\n");
563 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
564 netdev_err(dev
, "PCI master abort\n");
565 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
566 netdev_err(dev
, "PCI system error SERR#\n");
567 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
568 netdev_err(dev
, "PCI parity error\n");
570 /* Write the error bits back to clear them. */
571 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
572 PCI_STATUS_SIG_TARGET_ABORT
|
573 PCI_STATUS_REC_TARGET_ABORT
|
574 PCI_STATUS_REC_MASTER_ABORT
|
575 PCI_STATUS_SIG_SYSTEM_ERROR
|
576 PCI_STATUS_DETECTED_PARITY
);
577 pci_write_config_word(gp
->pdev
,
578 PCI_STATUS
, pci_cfg_stat
);
581 /* For all PCI errors, we should reset the chip. */
585 /* All non-normal interrupt conditions get serviced here.
586 * Returns non-zero if we should just exit the interrupt
587 * handler right now (ie. if we reset the card which invalidates
588 * all of the other original irq status bits).
590 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
592 if (gem_status
& GREG_STAT_RXNOBUF
) {
593 /* Frame arrived, no free RX buffers available. */
594 if (netif_msg_rx_err(gp
))
595 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
597 gp
->net_stats
.rx_dropped
++;
600 if (gem_status
& GREG_STAT_RXTAGERR
) {
601 /* corrupt RX tag framing */
602 if (netif_msg_rx_err(gp
))
603 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
605 gp
->net_stats
.rx_errors
++;
610 if (gem_status
& GREG_STAT_PCS
) {
611 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
615 if (gem_status
& GREG_STAT_TXMAC
) {
616 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
620 if (gem_status
& GREG_STAT_RXMAC
) {
621 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
625 if (gem_status
& GREG_STAT_MAC
) {
626 if (gem_mac_interrupt(dev
, gp
, gem_status
))
630 if (gem_status
& GREG_STAT_MIF
) {
631 if (gem_mif_interrupt(dev
, gp
, gem_status
))
635 if (gem_status
& GREG_STAT_PCIERR
) {
636 if (gem_pci_interrupt(dev
, gp
, gem_status
))
643 gp
->reset_task_pending
= 1;
644 schedule_work(&gp
->reset_task
);
649 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
653 if (netif_msg_intr(gp
))
654 printk(KERN_DEBUG
"%s: tx interrupt, gem_status: 0x%x\n",
655 gp
->dev
->name
, gem_status
);
658 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
659 while (entry
!= limit
) {
666 if (netif_msg_tx_done(gp
))
667 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
668 gp
->dev
->name
, entry
);
669 skb
= gp
->tx_skbs
[entry
];
670 if (skb_shinfo(skb
)->nr_frags
) {
671 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
675 last
&= (TX_RING_SIZE
- 1);
677 walk
= NEXT_TX(walk
);
686 gp
->tx_skbs
[entry
] = NULL
;
687 gp
->net_stats
.tx_bytes
+= skb
->len
;
689 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
690 txd
= &gp
->init_block
->txd
[entry
];
692 dma_addr
= le64_to_cpu(txd
->buffer
);
693 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
695 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
696 entry
= NEXT_TX(entry
);
699 gp
->net_stats
.tx_packets
++;
700 dev_kfree_skb_irq(skb
);
704 if (netif_queue_stopped(dev
) &&
705 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
706 netif_wake_queue(dev
);
709 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
711 int cluster_start
, curr
, count
, kick
;
713 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
717 while (curr
!= limit
) {
718 curr
= NEXT_RX(curr
);
720 struct gem_rxd
*rxd
=
721 &gp
->init_block
->rxd
[cluster_start
];
723 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
725 cluster_start
= NEXT_RX(cluster_start
);
726 if (cluster_start
== curr
)
735 writel(kick
, gp
->regs
+ RXDMA_KICK
);
739 static int gem_rx(struct gem
*gp
, int work_to_do
)
741 int entry
, drops
, work_done
= 0;
745 if (netif_msg_rx_status(gp
))
746 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
747 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
751 done
= readl(gp
->regs
+ RXDMA_DONE
);
753 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
755 u64 status
= le64_to_cpu(rxd
->status_word
);
759 if ((status
& RXDCTRL_OWN
) != 0)
762 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
765 /* When writing back RX descriptor, GEM writes status
766 * then buffer address, possibly in separate transactions.
767 * If we don't wait for the chip to write both, we could
768 * post a new buffer to this descriptor then have GEM spam
769 * on the buffer address. We sync on the RX completion
770 * register to prevent this from happening.
773 done
= readl(gp
->regs
+ RXDMA_DONE
);
778 /* We can now account for the work we're about to do */
781 skb
= gp
->rx_skbs
[entry
];
783 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
784 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
785 gp
->net_stats
.rx_errors
++;
787 gp
->net_stats
.rx_length_errors
++;
788 if (len
& RXDCTRL_BAD
)
789 gp
->net_stats
.rx_crc_errors
++;
791 /* We'll just return it to GEM. */
793 gp
->net_stats
.rx_dropped
++;
797 dma_addr
= le64_to_cpu(rxd
->buffer
);
798 if (len
> RX_COPY_THRESHOLD
) {
799 struct sk_buff
*new_skb
;
801 new_skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
802 if (new_skb
== NULL
) {
806 pci_unmap_page(gp
->pdev
, dma_addr
,
807 RX_BUF_ALLOC_SIZE(gp
),
809 gp
->rx_skbs
[entry
] = new_skb
;
810 new_skb
->dev
= gp
->dev
;
811 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
812 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
813 virt_to_page(new_skb
->data
),
814 offset_in_page(new_skb
->data
),
815 RX_BUF_ALLOC_SIZE(gp
),
816 PCI_DMA_FROMDEVICE
));
817 skb_reserve(new_skb
, RX_OFFSET
);
819 /* Trim the original skb for the netif. */
822 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
824 if (copy_skb
== NULL
) {
829 skb_reserve(copy_skb
, 2);
830 skb_put(copy_skb
, len
);
831 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
832 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
833 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
835 /* We'll reuse the original ring buffer. */
839 csum
= (__force __sum16
)htons((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
840 skb
->csum
= csum_unfold(csum
);
841 skb
->ip_summed
= CHECKSUM_COMPLETE
;
842 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
844 netif_receive_skb(skb
);
846 gp
->net_stats
.rx_packets
++;
847 gp
->net_stats
.rx_bytes
+= len
;
850 entry
= NEXT_RX(entry
);
853 gem_post_rxds(gp
, entry
);
858 netdev_info(gp
->dev
, "Memory squeeze, deferring packet\n");
863 static int gem_poll(struct napi_struct
*napi
, int budget
)
865 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
866 struct net_device
*dev
= gp
->dev
;
871 * NAPI locking nightmare: See comment at head of driver
873 spin_lock_irqsave(&gp
->lock
, flags
);
877 /* Handle anomalies */
878 if (gp
->status
& GREG_STAT_ABNORMAL
) {
879 if (gem_abnormal_irq(dev
, gp
, gp
->status
))
883 /* Run TX completion thread */
884 spin_lock(&gp
->tx_lock
);
885 gem_tx(dev
, gp
, gp
->status
);
886 spin_unlock(&gp
->tx_lock
);
888 spin_unlock_irqrestore(&gp
->lock
, flags
);
890 /* Run RX thread. We don't use any locking here,
891 * code willing to do bad things - like cleaning the
892 * rx ring - must call napi_disable(), which
893 * schedule_timeout()'s if polling is already disabled.
895 work_done
+= gem_rx(gp
, budget
- work_done
);
897 if (work_done
>= budget
)
900 spin_lock_irqsave(&gp
->lock
, flags
);
902 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
903 } while (gp
->status
& GREG_STAT_NAPI
);
905 __napi_complete(napi
);
908 spin_unlock_irqrestore(&gp
->lock
, flags
);
913 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
915 struct net_device
*dev
= dev_id
;
916 struct gem
*gp
= netdev_priv(dev
);
919 /* Swallow interrupts when shutting the chip down, though
920 * that shouldn't happen, we should have done free_irq() at
926 spin_lock_irqsave(&gp
->lock
, flags
);
928 if (napi_schedule_prep(&gp
->napi
)) {
929 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
931 if (gem_status
== 0) {
932 napi_enable(&gp
->napi
);
933 spin_unlock_irqrestore(&gp
->lock
, flags
);
936 gp
->status
= gem_status
;
937 gem_disable_ints(gp
);
938 __napi_schedule(&gp
->napi
);
941 spin_unlock_irqrestore(&gp
->lock
, flags
);
943 /* If polling was disabled at the time we received that
944 * interrupt, we may return IRQ_HANDLED here while we
945 * should return IRQ_NONE. No big deal...
950 #ifdef CONFIG_NET_POLL_CONTROLLER
951 static void gem_poll_controller(struct net_device
*dev
)
953 /* gem_interrupt is safe to reentrance so no need
954 * to disable_irq here.
956 gem_interrupt(dev
->irq
, dev
);
960 static void gem_tx_timeout(struct net_device
*dev
)
962 struct gem
*gp
= netdev_priv(dev
);
964 netdev_err(dev
, "transmit timed out, resetting\n");
966 netdev_err(dev
, "hrm.. hw not running !\n");
969 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x]\n",
970 readl(gp
->regs
+ TXDMA_CFG
),
971 readl(gp
->regs
+ MAC_TXSTAT
),
972 readl(gp
->regs
+ MAC_TXCFG
));
973 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
974 readl(gp
->regs
+ RXDMA_CFG
),
975 readl(gp
->regs
+ MAC_RXSTAT
),
976 readl(gp
->regs
+ MAC_RXCFG
));
978 spin_lock_irq(&gp
->lock
);
979 spin_lock(&gp
->tx_lock
);
981 gp
->reset_task_pending
= 1;
982 schedule_work(&gp
->reset_task
);
984 spin_unlock(&gp
->tx_lock
);
985 spin_unlock_irq(&gp
->lock
);
988 static __inline__
int gem_intme(int entry
)
990 /* Algorithm: IRQ every 1/2 of descriptors. */
991 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
997 static netdev_tx_t
gem_start_xmit(struct sk_buff
*skb
,
998 struct net_device
*dev
)
1000 struct gem
*gp
= netdev_priv(dev
);
1003 unsigned long flags
;
1006 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1007 const u64 csum_start_off
= skb_transport_offset(skb
);
1008 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1010 ctrl
= (TXDCTRL_CENAB
|
1011 (csum_start_off
<< 15) |
1012 (csum_stuff_off
<< 21));
1015 if (!spin_trylock_irqsave(&gp
->tx_lock
, flags
)) {
1016 /* Tell upper layer to requeue */
1017 return NETDEV_TX_LOCKED
;
1019 /* We raced with gem_do_stop() */
1021 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1022 return NETDEV_TX_BUSY
;
1025 /* This is a hard error, log it. */
1026 if (TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
1027 netif_stop_queue(dev
);
1028 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1029 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
1030 return NETDEV_TX_BUSY
;
1034 gp
->tx_skbs
[entry
] = skb
;
1036 if (skb_shinfo(skb
)->nr_frags
== 0) {
1037 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1042 mapping
= pci_map_page(gp
->pdev
,
1043 virt_to_page(skb
->data
),
1044 offset_in_page(skb
->data
),
1045 len
, PCI_DMA_TODEVICE
);
1046 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1047 if (gem_intme(entry
))
1048 ctrl
|= TXDCTRL_INTME
;
1049 txd
->buffer
= cpu_to_le64(mapping
);
1051 txd
->control_word
= cpu_to_le64(ctrl
);
1052 entry
= NEXT_TX(entry
);
1054 struct gem_txd
*txd
;
1057 dma_addr_t first_mapping
;
1058 int frag
, first_entry
= entry
;
1061 if (gem_intme(entry
))
1062 intme
|= TXDCTRL_INTME
;
1064 /* We must give this initial chunk to the device last.
1065 * Otherwise we could race with the device.
1067 first_len
= skb_headlen(skb
);
1068 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1069 offset_in_page(skb
->data
),
1070 first_len
, PCI_DMA_TODEVICE
);
1071 entry
= NEXT_TX(entry
);
1073 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1074 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1079 len
= this_frag
->size
;
1080 mapping
= pci_map_page(gp
->pdev
,
1082 this_frag
->page_offset
,
1083 len
, PCI_DMA_TODEVICE
);
1085 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1086 this_ctrl
|= TXDCTRL_EOF
;
1088 txd
= &gp
->init_block
->txd
[entry
];
1089 txd
->buffer
= cpu_to_le64(mapping
);
1091 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1093 if (gem_intme(entry
))
1094 intme
|= TXDCTRL_INTME
;
1096 entry
= NEXT_TX(entry
);
1098 txd
= &gp
->init_block
->txd
[first_entry
];
1099 txd
->buffer
= cpu_to_le64(first_mapping
);
1102 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1106 if (TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))
1107 netif_stop_queue(dev
);
1109 if (netif_msg_tx_queued(gp
))
1110 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1111 dev
->name
, entry
, skb
->len
);
1113 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1114 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1116 dev
->trans_start
= jiffies
; /* NETIF_F_LLTX driver :( */
1118 return NETDEV_TX_OK
;
1121 static void gem_pcs_reset(struct gem
*gp
)
1126 /* Reset PCS unit. */
1127 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1128 val
|= PCS_MIICTRL_RST
;
1129 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1132 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1138 netdev_warn(gp
->dev
, "PCS reset bit would not clear\n");
1141 static void gem_pcs_reinit_adv(struct gem
*gp
)
1145 /* Make sure PCS is disabled while changing advertisement
1148 val
= readl(gp
->regs
+ PCS_CFG
);
1149 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1150 writel(val
, gp
->regs
+ PCS_CFG
);
1152 /* Advertise all capabilities except assymetric
1155 val
= readl(gp
->regs
+ PCS_MIIADV
);
1156 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1157 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1158 writel(val
, gp
->regs
+ PCS_MIIADV
);
1160 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1161 * and re-enable PCS.
1163 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1164 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1165 val
&= ~PCS_MIICTRL_WB
;
1166 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1168 val
= readl(gp
->regs
+ PCS_CFG
);
1169 val
|= PCS_CFG_ENABLE
;
1170 writel(val
, gp
->regs
+ PCS_CFG
);
1172 /* Make sure serialink loopback is off. The meaning
1173 * of this bit is logically inverted based upon whether
1174 * you are in Serialink or SERDES mode.
1176 val
= readl(gp
->regs
+ PCS_SCTRL
);
1177 if (gp
->phy_type
== phy_serialink
)
1178 val
&= ~PCS_SCTRL_LOOP
;
1180 val
|= PCS_SCTRL_LOOP
;
1181 writel(val
, gp
->regs
+ PCS_SCTRL
);
1184 #define STOP_TRIES 32
1186 /* Must be invoked under gp->lock and gp->tx_lock. */
1187 static void gem_reset(struct gem
*gp
)
1192 /* Make sure we won't get any more interrupts */
1193 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1195 /* Reset the chip */
1196 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1197 gp
->regs
+ GREG_SWRST
);
1203 val
= readl(gp
->regs
+ GREG_SWRST
);
1206 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1209 netdev_err(gp
->dev
, "SW reset is ghetto\n");
1211 if (gp
->phy_type
== phy_serialink
|| gp
->phy_type
== phy_serdes
)
1212 gem_pcs_reinit_adv(gp
);
1215 /* Must be invoked under gp->lock and gp->tx_lock. */
1216 static void gem_start_dma(struct gem
*gp
)
1220 /* We are ready to rock, turn everything on. */
1221 val
= readl(gp
->regs
+ TXDMA_CFG
);
1222 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1223 val
= readl(gp
->regs
+ RXDMA_CFG
);
1224 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1225 val
= readl(gp
->regs
+ MAC_TXCFG
);
1226 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1227 val
= readl(gp
->regs
+ MAC_RXCFG
);
1228 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1230 (void) readl(gp
->regs
+ MAC_RXCFG
);
1233 gem_enable_ints(gp
);
1235 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1238 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1239 * actually stopped before about 4ms tho ...
1241 static void gem_stop_dma(struct gem
*gp
)
1245 /* We are done rocking, turn everything off. */
1246 val
= readl(gp
->regs
+ TXDMA_CFG
);
1247 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1248 val
= readl(gp
->regs
+ RXDMA_CFG
);
1249 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1250 val
= readl(gp
->regs
+ MAC_TXCFG
);
1251 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1252 val
= readl(gp
->regs
+ MAC_RXCFG
);
1253 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1255 (void) readl(gp
->regs
+ MAC_RXCFG
);
1257 /* Need to wait a bit ... done by the caller */
1261 /* Must be invoked under gp->lock and gp->tx_lock. */
1262 // XXX dbl check what that function should do when called on PCS PHY
1263 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1265 u32 advertise
, features
;
1270 if (gp
->phy_type
!= phy_mii_mdio0
&&
1271 gp
->phy_type
!= phy_mii_mdio1
)
1274 /* Setup advertise */
1275 if (found_mii_phy(gp
))
1276 features
= gp
->phy_mii
.def
->features
;
1280 advertise
= features
& ADVERTISE_MASK
;
1281 if (gp
->phy_mii
.advertising
!= 0)
1282 advertise
&= gp
->phy_mii
.advertising
;
1284 autoneg
= gp
->want_autoneg
;
1285 speed
= gp
->phy_mii
.speed
;
1286 duplex
= gp
->phy_mii
.duplex
;
1288 /* Setup link parameters */
1291 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1292 advertise
= ep
->advertising
;
1297 duplex
= ep
->duplex
;
1301 /* Sanitize settings based on PHY capabilities */
1302 if ((features
& SUPPORTED_Autoneg
) == 0)
1304 if (speed
== SPEED_1000
&&
1305 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1307 if (speed
== SPEED_100
&&
1308 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1310 if (duplex
== DUPLEX_FULL
&&
1311 !(features
& (SUPPORTED_1000baseT_Full
|
1312 SUPPORTED_100baseT_Full
|
1313 SUPPORTED_10baseT_Full
)))
1314 duplex
= DUPLEX_HALF
;
1318 /* If we are asleep, we don't try to actually setup the PHY, we
1319 * just store the settings
1322 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1323 gp
->phy_mii
.speed
= speed
;
1324 gp
->phy_mii
.duplex
= duplex
;
1328 /* Configure PHY & start aneg */
1329 gp
->want_autoneg
= autoneg
;
1331 if (found_mii_phy(gp
))
1332 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1333 gp
->lstate
= link_aneg
;
1335 if (found_mii_phy(gp
))
1336 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1337 gp
->lstate
= link_force_ok
;
1341 gp
->timer_ticks
= 0;
1342 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1345 /* A link-up condition has occurred, initialize and enable the
1348 * Must be invoked under gp->lock and gp->tx_lock.
1350 static int gem_set_link_modes(struct gem
*gp
)
1353 int full_duplex
, speed
, pause
;
1359 if (found_mii_phy(gp
)) {
1360 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1362 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1363 speed
= gp
->phy_mii
.speed
;
1364 pause
= gp
->phy_mii
.pause
;
1365 } else if (gp
->phy_type
== phy_serialink
||
1366 gp
->phy_type
== phy_serdes
) {
1367 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1369 if ((pcs_lpa
& PCS_MIIADV_FD
) || gp
->phy_type
== phy_serdes
)
1374 netif_info(gp
, link
, gp
->dev
, "Link is up at %d Mbps, %s-duplex\n",
1375 speed
, (full_duplex
? "full" : "half"));
1380 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1382 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1384 /* MAC_TXCFG_NBO must be zero. */
1386 writel(val
, gp
->regs
+ MAC_TXCFG
);
1388 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1390 (gp
->phy_type
== phy_mii_mdio0
||
1391 gp
->phy_type
== phy_mii_mdio1
)) {
1392 val
|= MAC_XIFCFG_DISE
;
1393 } else if (full_duplex
) {
1394 val
|= MAC_XIFCFG_FLED
;
1397 if (speed
== SPEED_1000
)
1398 val
|= (MAC_XIFCFG_GMII
);
1400 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1402 /* If gigabit and half-duplex, enable carrier extension
1403 * mode. Else, disable it.
1405 if (speed
== SPEED_1000
&& !full_duplex
) {
1406 val
= readl(gp
->regs
+ MAC_TXCFG
);
1407 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1409 val
= readl(gp
->regs
+ MAC_RXCFG
);
1410 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1412 val
= readl(gp
->regs
+ MAC_TXCFG
);
1413 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1415 val
= readl(gp
->regs
+ MAC_RXCFG
);
1416 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1419 if (gp
->phy_type
== phy_serialink
||
1420 gp
->phy_type
== phy_serdes
) {
1421 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1423 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1427 if (netif_msg_link(gp
)) {
1429 netdev_info(gp
->dev
,
1430 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1435 netdev_info(gp
->dev
, "Pause is disabled\n");
1440 writel(512, gp
->regs
+ MAC_STIME
);
1442 writel(64, gp
->regs
+ MAC_STIME
);
1443 val
= readl(gp
->regs
+ MAC_MCCFG
);
1445 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1447 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1448 writel(val
, gp
->regs
+ MAC_MCCFG
);
1455 /* Must be invoked under gp->lock and gp->tx_lock. */
1456 static int gem_mdio_link_not_up(struct gem
*gp
)
1458 switch (gp
->lstate
) {
1459 case link_force_ret
:
1460 netif_info(gp
, link
, gp
->dev
,
1461 "Autoneg failed again, keeping forced mode\n");
1462 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1463 gp
->last_forced_speed
, DUPLEX_HALF
);
1464 gp
->timer_ticks
= 5;
1465 gp
->lstate
= link_force_ok
;
1468 /* We try forced modes after a failed aneg only on PHYs that don't
1469 * have "magic_aneg" bit set, which means they internally do the
1470 * while forced-mode thingy. On these, we just restart aneg
1472 if (gp
->phy_mii
.def
->magic_aneg
)
1474 netif_info(gp
, link
, gp
->dev
, "switching to forced 100bt\n");
1475 /* Try forced modes. */
1476 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1478 gp
->timer_ticks
= 5;
1479 gp
->lstate
= link_force_try
;
1481 case link_force_try
:
1482 /* Downgrade from 100 to 10 Mbps if necessary.
1483 * If already at 10Mbps, warn user about the
1484 * situation every 10 ticks.
1486 if (gp
->phy_mii
.speed
== SPEED_100
) {
1487 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1489 gp
->timer_ticks
= 5;
1490 netif_info(gp
, link
, gp
->dev
,
1491 "switching to forced 10bt\n");
1500 static void gem_link_timer(unsigned long data
)
1502 struct gem
*gp
= (struct gem
*) data
;
1503 int restart_aneg
= 0;
1508 spin_lock_irq(&gp
->lock
);
1509 spin_lock(&gp
->tx_lock
);
1512 /* If the reset task is still pending, we just
1513 * reschedule the link timer
1515 if (gp
->reset_task_pending
)
1518 if (gp
->phy_type
== phy_serialink
||
1519 gp
->phy_type
== phy_serdes
) {
1520 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1522 if (!(val
& PCS_MIISTAT_LS
))
1523 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1525 if ((val
& PCS_MIISTAT_LS
) != 0) {
1526 if (gp
->lstate
== link_up
)
1529 gp
->lstate
= link_up
;
1530 netif_carrier_on(gp
->dev
);
1531 (void)gem_set_link_modes(gp
);
1535 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1536 /* Ok, here we got a link. If we had it due to a forced
1537 * fallback, and we were configured for autoneg, we do
1538 * retry a short autoneg pass. If you know your hub is
1539 * broken, use ethtool ;)
1541 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1542 gp
->lstate
= link_force_ret
;
1543 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1544 gp
->timer_ticks
= 5;
1545 if (netif_msg_link(gp
))
1546 netdev_info(gp
->dev
,
1547 "Got link after fallback, retrying autoneg once...\n");
1548 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1549 } else if (gp
->lstate
!= link_up
) {
1550 gp
->lstate
= link_up
;
1551 netif_carrier_on(gp
->dev
);
1552 if (gem_set_link_modes(gp
))
1556 /* If the link was previously up, we restart the
1559 if (gp
->lstate
== link_up
) {
1560 gp
->lstate
= link_down
;
1561 netif_info(gp
, link
, gp
->dev
, "Link down\n");
1562 netif_carrier_off(gp
->dev
);
1563 gp
->reset_task_pending
= 1;
1564 schedule_work(&gp
->reset_task
);
1566 } else if (++gp
->timer_ticks
> 10) {
1567 if (found_mii_phy(gp
))
1568 restart_aneg
= gem_mdio_link_not_up(gp
);
1574 gem_begin_auto_negotiation(gp
, NULL
);
1578 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1581 spin_unlock(&gp
->tx_lock
);
1582 spin_unlock_irq(&gp
->lock
);
1585 /* Must be invoked under gp->lock and gp->tx_lock. */
1586 static void gem_clean_rings(struct gem
*gp
)
1588 struct gem_init_block
*gb
= gp
->init_block
;
1589 struct sk_buff
*skb
;
1591 dma_addr_t dma_addr
;
1593 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1594 struct gem_rxd
*rxd
;
1597 if (gp
->rx_skbs
[i
] != NULL
) {
1598 skb
= gp
->rx_skbs
[i
];
1599 dma_addr
= le64_to_cpu(rxd
->buffer
);
1600 pci_unmap_page(gp
->pdev
, dma_addr
,
1601 RX_BUF_ALLOC_SIZE(gp
),
1602 PCI_DMA_FROMDEVICE
);
1603 dev_kfree_skb_any(skb
);
1604 gp
->rx_skbs
[i
] = NULL
;
1606 rxd
->status_word
= 0;
1611 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1612 if (gp
->tx_skbs
[i
] != NULL
) {
1613 struct gem_txd
*txd
;
1616 skb
= gp
->tx_skbs
[i
];
1617 gp
->tx_skbs
[i
] = NULL
;
1619 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1620 int ent
= i
& (TX_RING_SIZE
- 1);
1622 txd
= &gb
->txd
[ent
];
1623 dma_addr
= le64_to_cpu(txd
->buffer
);
1624 pci_unmap_page(gp
->pdev
, dma_addr
,
1625 le64_to_cpu(txd
->control_word
) &
1626 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1628 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1631 dev_kfree_skb_any(skb
);
1636 /* Must be invoked under gp->lock and gp->tx_lock. */
1637 static void gem_init_rings(struct gem
*gp
)
1639 struct gem_init_block
*gb
= gp
->init_block
;
1640 struct net_device
*dev
= gp
->dev
;
1642 dma_addr_t dma_addr
;
1644 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1646 gem_clean_rings(gp
);
1648 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1649 (unsigned)VLAN_ETH_FRAME_LEN
);
1651 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1652 struct sk_buff
*skb
;
1653 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1655 skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
1658 rxd
->status_word
= 0;
1662 gp
->rx_skbs
[i
] = skb
;
1664 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1665 dma_addr
= pci_map_page(gp
->pdev
,
1666 virt_to_page(skb
->data
),
1667 offset_in_page(skb
->data
),
1668 RX_BUF_ALLOC_SIZE(gp
),
1669 PCI_DMA_FROMDEVICE
);
1670 rxd
->buffer
= cpu_to_le64(dma_addr
);
1672 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1673 skb_reserve(skb
, RX_OFFSET
);
1676 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1677 struct gem_txd
*txd
= &gb
->txd
[i
];
1679 txd
->control_word
= 0;
1686 /* Init PHY interface and start link poll state machine */
1687 static void gem_init_phy(struct gem
*gp
)
1691 /* Revert MIF CFG setting done on stop_phy */
1692 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1693 mifcfg
&= ~MIF_CFG_BBMODE
;
1694 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1696 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1699 /* Those delay sucks, the HW seem to love them though, I'll
1700 * serisouly consider breaking some locks here to be able
1701 * to schedule instead
1703 for (i
= 0; i
< 3; i
++) {
1704 #ifdef CONFIG_PPC_PMAC
1705 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1708 /* Some PHYs used by apple have problem getting back to us,
1709 * we do an additional reset here
1711 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1713 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1716 netdev_warn(gp
->dev
, "GMAC PHY not responding !\n");
1720 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1721 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1724 /* Init datapath mode register. */
1725 if (gp
->phy_type
== phy_mii_mdio0
||
1726 gp
->phy_type
== phy_mii_mdio1
) {
1727 val
= PCS_DMODE_MGM
;
1728 } else if (gp
->phy_type
== phy_serialink
) {
1729 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1731 val
= PCS_DMODE_ESM
;
1734 writel(val
, gp
->regs
+ PCS_DMODE
);
1737 if (gp
->phy_type
== phy_mii_mdio0
||
1738 gp
->phy_type
== phy_mii_mdio1
) {
1739 // XXX check for errors
1740 mii_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1743 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1744 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1747 gem_pcs_reinit_adv(gp
);
1750 /* Default aneg parameters */
1751 gp
->timer_ticks
= 0;
1752 gp
->lstate
= link_down
;
1753 netif_carrier_off(gp
->dev
);
1755 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1756 spin_lock_irq(&gp
->lock
);
1757 gem_begin_auto_negotiation(gp
, NULL
);
1758 spin_unlock_irq(&gp
->lock
);
1761 /* Must be invoked under gp->lock and gp->tx_lock. */
1762 static void gem_init_dma(struct gem
*gp
)
1764 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1767 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1768 writel(val
, gp
->regs
+ TXDMA_CFG
);
1770 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1771 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1772 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1774 writel(0, gp
->regs
+ TXDMA_KICK
);
1776 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1777 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1778 writel(val
, gp
->regs
+ RXDMA_CFG
);
1780 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1781 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1783 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1785 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1786 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1787 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1789 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1790 writel(((5 & RXDMA_BLANK_IPKTS
) |
1791 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1792 gp
->regs
+ RXDMA_BLANK
);
1794 writel(((5 & RXDMA_BLANK_IPKTS
) |
1795 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1796 gp
->regs
+ RXDMA_BLANK
);
1799 /* Must be invoked under gp->lock and gp->tx_lock. */
1800 static u32
gem_setup_multicast(struct gem
*gp
)
1805 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1806 (netdev_mc_count(gp
->dev
) > 256)) {
1807 for (i
=0; i
<16; i
++)
1808 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1809 rxcfg
|= MAC_RXCFG_HFE
;
1810 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1811 rxcfg
|= MAC_RXCFG_PROM
;
1815 struct netdev_hw_addr
*ha
;
1818 memset(hash_table
, 0, sizeof(hash_table
));
1819 netdev_for_each_mc_addr(ha
, gp
->dev
) {
1820 char *addrs
= ha
->addr
;
1825 crc
= ether_crc_le(6, addrs
);
1827 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1829 for (i
=0; i
<16; i
++)
1830 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1831 rxcfg
|= MAC_RXCFG_HFE
;
1837 /* Must be invoked under gp->lock and gp->tx_lock. */
1838 static void gem_init_mac(struct gem
*gp
)
1840 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1842 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1844 writel(0x00, gp
->regs
+ MAC_IPG0
);
1845 writel(0x08, gp
->regs
+ MAC_IPG1
);
1846 writel(0x04, gp
->regs
+ MAC_IPG2
);
1847 writel(0x40, gp
->regs
+ MAC_STIME
);
1848 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1850 /* Ethernet payload + header + FCS + optional VLAN tag. */
1851 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1853 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1854 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1855 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1856 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1858 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1860 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1861 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1862 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1864 writel(0, gp
->regs
+ MAC_ADDR3
);
1865 writel(0, gp
->regs
+ MAC_ADDR4
);
1866 writel(0, gp
->regs
+ MAC_ADDR5
);
1868 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1869 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1870 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1872 writel(0, gp
->regs
+ MAC_AFILT0
);
1873 writel(0, gp
->regs
+ MAC_AFILT1
);
1874 writel(0, gp
->regs
+ MAC_AFILT2
);
1875 writel(0, gp
->regs
+ MAC_AF21MSK
);
1876 writel(0, gp
->regs
+ MAC_AF0MSK
);
1878 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1880 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1882 writel(0, gp
->regs
+ MAC_NCOLL
);
1883 writel(0, gp
->regs
+ MAC_FASUCC
);
1884 writel(0, gp
->regs
+ MAC_ECOLL
);
1885 writel(0, gp
->regs
+ MAC_LCOLL
);
1886 writel(0, gp
->regs
+ MAC_DTIMER
);
1887 writel(0, gp
->regs
+ MAC_PATMPS
);
1888 writel(0, gp
->regs
+ MAC_RFCTR
);
1889 writel(0, gp
->regs
+ MAC_LERR
);
1890 writel(0, gp
->regs
+ MAC_AERR
);
1891 writel(0, gp
->regs
+ MAC_FCSERR
);
1892 writel(0, gp
->regs
+ MAC_RXCVERR
);
1894 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1895 * them once a link is established.
1897 writel(0, gp
->regs
+ MAC_TXCFG
);
1898 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1899 writel(0, gp
->regs
+ MAC_MCCFG
);
1900 writel(0, gp
->regs
+ MAC_XIFCFG
);
1902 /* Setup MAC interrupts. We want to get all of the interesting
1903 * counter expiration events, but we do not want to hear about
1904 * normal rx/tx as the DMA engine tells us that.
1906 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1907 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1909 /* Don't enable even the PAUSE interrupts for now, we
1910 * make no use of those events other than to record them.
1912 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1914 /* Don't enable GEM's WOL in normal operations
1917 writel(0, gp
->regs
+ WOL_WAKECSR
);
1920 /* Must be invoked under gp->lock and gp->tx_lock. */
1921 static void gem_init_pause_thresholds(struct gem
*gp
)
1925 /* Calculate pause thresholds. Setting the OFF threshold to the
1926 * full RX fifo size effectively disables PAUSE generation which
1927 * is what we do for 10/100 only GEMs which have FIFOs too small
1928 * to make real gains from PAUSE.
1930 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1931 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1933 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1934 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1935 int on
= off
- max_frame
;
1937 gp
->rx_pause_off
= off
;
1938 gp
->rx_pause_on
= on
;
1942 /* Configure the chip "burst" DMA mode & enable some
1943 * HW bug fixes on Apple version
1946 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1947 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1948 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1949 cfg
|= GREG_CFG_IBURST
;
1951 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1952 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1953 writel(cfg
, gp
->regs
+ GREG_CFG
);
1955 /* If Infinite Burst didn't stick, then use different
1956 * thresholds (and Apple bug fixes don't exist)
1958 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1959 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1960 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1961 writel(cfg
, gp
->regs
+ GREG_CFG
);
1965 static int gem_check_invariants(struct gem
*gp
)
1967 struct pci_dev
*pdev
= gp
->pdev
;
1970 /* On Apple's sungem, we can't rely on registers as the chip
1971 * was been powered down by the firmware. The PHY is looked
1974 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1975 gp
->phy_type
= phy_mii_mdio0
;
1976 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1977 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1980 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1981 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
1982 mif_cfg
|= MIF_CFG_MDI0
;
1983 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1984 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
1985 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
1987 /* We hard-code the PHY address so we can properly bring it out of
1988 * reset later on, we can't really probe it at this point, though
1989 * that isn't an issue.
1991 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
1992 gp
->mii_phy_addr
= 1;
1994 gp
->mii_phy_addr
= 0;
1999 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2001 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2002 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
2003 /* One of the MII PHYs _must_ be present
2004 * as this chip has no gigabit PHY.
2006 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
2007 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2013 /* Determine initial PHY interface type guess. MDIO1 is the
2014 * external PHY and thus takes precedence over MDIO0.
2017 if (mif_cfg
& MIF_CFG_MDI1
) {
2018 gp
->phy_type
= phy_mii_mdio1
;
2019 mif_cfg
|= MIF_CFG_PSELECT
;
2020 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2021 } else if (mif_cfg
& MIF_CFG_MDI0
) {
2022 gp
->phy_type
= phy_mii_mdio0
;
2023 mif_cfg
&= ~MIF_CFG_PSELECT
;
2024 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2029 p
= of_get_property(gp
->of_node
, "shared-pins", NULL
);
2030 if (p
&& !strcmp(p
, "serdes"))
2031 gp
->phy_type
= phy_serdes
;
2034 gp
->phy_type
= phy_serialink
;
2036 if (gp
->phy_type
== phy_mii_mdio1
||
2037 gp
->phy_type
== phy_mii_mdio0
) {
2040 for (i
= 0; i
< 32; i
++) {
2041 gp
->mii_phy_addr
= i
;
2042 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2046 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2047 pr_err("RIO MII phy will not respond\n");
2050 gp
->phy_type
= phy_serdes
;
2054 /* Fetch the FIFO configurations now too. */
2055 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2056 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2058 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2059 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2060 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2061 gp
->rx_fifo_sz
!= (20 * 1024)) {
2062 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2063 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2068 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2069 gp
->rx_fifo_sz
!= (2 * 1024)) {
2070 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2071 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2074 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2081 /* Must be invoked under gp->lock and gp->tx_lock. */
2082 static void gem_reinit_chip(struct gem
*gp
)
2084 /* Reset the chip */
2087 /* Make sure ints are disabled */
2088 gem_disable_ints(gp
);
2090 /* Allocate & setup ring buffers */
2093 /* Configure pause thresholds */
2094 gem_init_pause_thresholds(gp
);
2096 /* Init DMA & MAC engines */
2102 /* Must be invoked with no lock held. */
2103 static void gem_stop_phy(struct gem
*gp
, int wol
)
2106 unsigned long flags
;
2108 /* Let the chip settle down a bit, it seems that helps
2109 * for sleep mode on some models
2113 /* Make sure we aren't polling PHY status change. We
2114 * don't currently use that feature though
2116 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2117 mifcfg
&= ~MIF_CFG_POLL
;
2118 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2120 if (wol
&& gp
->has_wol
) {
2121 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2124 /* Setup wake-on-lan for MAGIC packet */
2125 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2126 gp
->regs
+ MAC_RXCFG
);
2127 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2128 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2129 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2131 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2132 csr
= WOL_WAKECSR_ENABLE
;
2133 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2134 csr
|= WOL_WAKECSR_MII
;
2135 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2137 writel(0, gp
->regs
+ MAC_RXCFG
);
2138 (void)readl(gp
->regs
+ MAC_RXCFG
);
2139 /* Machine sleep will die in strange ways if we
2140 * dont wait a bit here, looks like the chip takes
2141 * some time to really shut down
2146 writel(0, gp
->regs
+ MAC_TXCFG
);
2147 writel(0, gp
->regs
+ MAC_XIFCFG
);
2148 writel(0, gp
->regs
+ TXDMA_CFG
);
2149 writel(0, gp
->regs
+ RXDMA_CFG
);
2152 spin_lock_irqsave(&gp
->lock
, flags
);
2153 spin_lock(&gp
->tx_lock
);
2155 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2156 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2157 spin_unlock(&gp
->tx_lock
);
2158 spin_unlock_irqrestore(&gp
->lock
, flags
);
2160 /* No need to take the lock here */
2162 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2163 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2165 /* According to Apple, we must set the MDIO pins to this begnign
2166 * state or we may 1) eat more current, 2) damage some PHYs
2168 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2169 writel(0, gp
->regs
+ MIF_BBCLK
);
2170 writel(0, gp
->regs
+ MIF_BBDATA
);
2171 writel(0, gp
->regs
+ MIF_BBOENAB
);
2172 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2173 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2178 static int gem_do_start(struct net_device
*dev
)
2180 struct gem
*gp
= netdev_priv(dev
);
2181 unsigned long flags
;
2183 spin_lock_irqsave(&gp
->lock
, flags
);
2184 spin_lock(&gp
->tx_lock
);
2186 /* Enable the cell */
2189 /* Init & setup chip hardware */
2190 gem_reinit_chip(gp
);
2194 napi_enable(&gp
->napi
);
2196 if (gp
->lstate
== link_up
) {
2197 netif_carrier_on(gp
->dev
);
2198 gem_set_link_modes(gp
);
2201 netif_wake_queue(gp
->dev
);
2203 spin_unlock(&gp
->tx_lock
);
2204 spin_unlock_irqrestore(&gp
->lock
, flags
);
2206 if (request_irq(gp
->pdev
->irq
, gem_interrupt
,
2207 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2208 netdev_err(dev
, "failed to request irq !\n");
2210 spin_lock_irqsave(&gp
->lock
, flags
);
2211 spin_lock(&gp
->tx_lock
);
2213 napi_disable(&gp
->napi
);
2217 gem_clean_rings(gp
);
2220 spin_unlock(&gp
->tx_lock
);
2221 spin_unlock_irqrestore(&gp
->lock
, flags
);
2229 static void gem_do_stop(struct net_device
*dev
, int wol
)
2231 struct gem
*gp
= netdev_priv(dev
);
2232 unsigned long flags
;
2234 spin_lock_irqsave(&gp
->lock
, flags
);
2235 spin_lock(&gp
->tx_lock
);
2239 /* Stop netif queue */
2240 netif_stop_queue(dev
);
2242 /* Make sure ints are disabled */
2243 gem_disable_ints(gp
);
2245 /* We can drop the lock now */
2246 spin_unlock(&gp
->tx_lock
);
2247 spin_unlock_irqrestore(&gp
->lock
, flags
);
2249 /* If we are going to sleep with WOL */
2256 /* Get rid of rings */
2257 gem_clean_rings(gp
);
2259 /* No irq needed anymore */
2260 free_irq(gp
->pdev
->irq
, (void *) dev
);
2262 /* Cell not needed neither if no WOL */
2264 spin_lock_irqsave(&gp
->lock
, flags
);
2266 spin_unlock_irqrestore(&gp
->lock
, flags
);
2270 static void gem_reset_task(struct work_struct
*work
)
2272 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2274 mutex_lock(&gp
->pm_mutex
);
2277 napi_disable(&gp
->napi
);
2279 spin_lock_irq(&gp
->lock
);
2280 spin_lock(&gp
->tx_lock
);
2283 netif_stop_queue(gp
->dev
);
2285 /* Reset the chip & rings */
2286 gem_reinit_chip(gp
);
2287 if (gp
->lstate
== link_up
)
2288 gem_set_link_modes(gp
);
2289 netif_wake_queue(gp
->dev
);
2292 gp
->reset_task_pending
= 0;
2294 spin_unlock(&gp
->tx_lock
);
2295 spin_unlock_irq(&gp
->lock
);
2298 napi_enable(&gp
->napi
);
2300 mutex_unlock(&gp
->pm_mutex
);
2304 static int gem_open(struct net_device
*dev
)
2306 struct gem
*gp
= netdev_priv(dev
);
2309 mutex_lock(&gp
->pm_mutex
);
2311 /* We need the cell enabled */
2313 rc
= gem_do_start(dev
);
2314 gp
->opened
= (rc
== 0);
2316 mutex_unlock(&gp
->pm_mutex
);
2321 static int gem_close(struct net_device
*dev
)
2323 struct gem
*gp
= netdev_priv(dev
);
2325 mutex_lock(&gp
->pm_mutex
);
2327 napi_disable(&gp
->napi
);
2331 gem_do_stop(dev
, 0);
2333 mutex_unlock(&gp
->pm_mutex
);
2339 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2341 struct net_device
*dev
= pci_get_drvdata(pdev
);
2342 struct gem
*gp
= netdev_priv(dev
);
2343 unsigned long flags
;
2345 mutex_lock(&gp
->pm_mutex
);
2347 netdev_info(dev
, "suspending, WakeOnLan %s\n",
2348 (gp
->wake_on_lan
&& gp
->opened
) ? "enabled" : "disabled");
2350 /* Keep the cell enabled during the entire operation */
2351 spin_lock_irqsave(&gp
->lock
, flags
);
2352 spin_lock(&gp
->tx_lock
);
2354 spin_unlock(&gp
->tx_lock
);
2355 spin_unlock_irqrestore(&gp
->lock
, flags
);
2357 /* If the driver is opened, we stop the MAC */
2359 napi_disable(&gp
->napi
);
2361 /* Stop traffic, mark us closed */
2362 netif_device_detach(dev
);
2364 /* Switch off MAC, remember WOL setting */
2365 gp
->asleep_wol
= gp
->wake_on_lan
;
2366 gem_do_stop(dev
, gp
->asleep_wol
);
2370 /* Mark us asleep */
2374 /* Stop the link timer */
2375 del_timer_sync(&gp
->link_timer
);
2377 /* Now we release the mutex to not block the reset task who
2378 * can take it too. We are marked asleep, so there will be no
2381 mutex_unlock(&gp
->pm_mutex
);
2383 /* Wait for a pending reset task to complete */
2384 while (gp
->reset_task_pending
)
2386 flush_scheduled_work();
2388 /* Shut the PHY down eventually and setup WOL */
2389 gem_stop_phy(gp
, gp
->asleep_wol
);
2391 /* Make sure bus master is disabled */
2392 pci_disable_device(gp
->pdev
);
2394 /* Release the cell, no need to take a lock at this point since
2395 * nothing else can happen now
2402 static int gem_resume(struct pci_dev
*pdev
)
2404 struct net_device
*dev
= pci_get_drvdata(pdev
);
2405 struct gem
*gp
= netdev_priv(dev
);
2406 unsigned long flags
;
2408 netdev_info(dev
, "resuming\n");
2410 mutex_lock(&gp
->pm_mutex
);
2412 /* Keep the cell enabled during the entire operation, no need to
2413 * take a lock here tho since nothing else can happen while we are
2418 /* Make sure PCI access and bus master are enabled */
2419 if (pci_enable_device(gp
->pdev
)) {
2420 netdev_err(dev
, "Can't re-enable chip !\n");
2421 /* Put cell and forget it for now, it will be considered as
2422 * still asleep, a new sleep cycle may bring it back
2425 mutex_unlock(&gp
->pm_mutex
);
2428 pci_set_master(gp
->pdev
);
2430 /* Reset everything */
2433 /* Mark us woken up */
2437 /* Bring the PHY back. Again, lock is useless at this point as
2438 * nothing can be happening until we restart the whole thing
2442 /* If we were opened, bring everything back */
2447 /* Re-attach net device */
2448 netif_device_attach(dev
);
2451 spin_lock_irqsave(&gp
->lock
, flags
);
2452 spin_lock(&gp
->tx_lock
);
2454 /* If we had WOL enabled, the cell clock was never turned off during
2455 * sleep, so we end up beeing unbalanced. Fix that here
2460 /* This function doesn't need to hold the cell, it will be held if the
2461 * driver is open by gem_do_start().
2465 spin_unlock(&gp
->tx_lock
);
2466 spin_unlock_irqrestore(&gp
->lock
, flags
);
2468 mutex_unlock(&gp
->pm_mutex
);
2472 #endif /* CONFIG_PM */
2474 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2476 struct gem
*gp
= netdev_priv(dev
);
2477 struct net_device_stats
*stats
= &gp
->net_stats
;
2479 spin_lock_irq(&gp
->lock
);
2480 spin_lock(&gp
->tx_lock
);
2482 /* I have seen this being called while the PM was in progress,
2483 * so we shield against this
2486 stats
->rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2487 writel(0, gp
->regs
+ MAC_FCSERR
);
2489 stats
->rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2490 writel(0, gp
->regs
+ MAC_AERR
);
2492 stats
->rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2493 writel(0, gp
->regs
+ MAC_LERR
);
2495 stats
->tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2496 stats
->collisions
+=
2497 (readl(gp
->regs
+ MAC_ECOLL
) +
2498 readl(gp
->regs
+ MAC_LCOLL
));
2499 writel(0, gp
->regs
+ MAC_ECOLL
);
2500 writel(0, gp
->regs
+ MAC_LCOLL
);
2503 spin_unlock(&gp
->tx_lock
);
2504 spin_unlock_irq(&gp
->lock
);
2506 return &gp
->net_stats
;
2509 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2511 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2512 struct gem
*gp
= netdev_priv(dev
);
2513 unsigned char *e
= &dev
->dev_addr
[0];
2515 if (!is_valid_ether_addr(macaddr
->sa_data
))
2516 return -EADDRNOTAVAIL
;
2518 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2519 /* We'll just catch it later when the
2520 * device is up'd or resumed.
2522 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2526 mutex_lock(&gp
->pm_mutex
);
2527 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2529 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2530 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2531 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2533 mutex_unlock(&gp
->pm_mutex
);
2538 static void gem_set_multicast(struct net_device
*dev
)
2540 struct gem
*gp
= netdev_priv(dev
);
2541 u32 rxcfg
, rxcfg_new
;
2545 spin_lock_irq(&gp
->lock
);
2546 spin_lock(&gp
->tx_lock
);
2551 netif_stop_queue(dev
);
2553 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2554 rxcfg_new
= gem_setup_multicast(gp
);
2556 rxcfg_new
|= MAC_RXCFG_SFCS
;
2558 gp
->mac_rx_cfg
= rxcfg_new
;
2560 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2561 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2567 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2570 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2572 netif_wake_queue(dev
);
2575 spin_unlock(&gp
->tx_lock
);
2576 spin_unlock_irq(&gp
->lock
);
2579 /* Jumbo-grams don't seem to work :-( */
2580 #define GEM_MIN_MTU 68
2582 #define GEM_MAX_MTU 1500
2584 #define GEM_MAX_MTU 9000
2587 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2589 struct gem
*gp
= netdev_priv(dev
);
2591 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2594 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2595 /* We'll just catch it later when the
2596 * device is up'd or resumed.
2602 mutex_lock(&gp
->pm_mutex
);
2603 spin_lock_irq(&gp
->lock
);
2604 spin_lock(&gp
->tx_lock
);
2607 gem_reinit_chip(gp
);
2608 if (gp
->lstate
== link_up
)
2609 gem_set_link_modes(gp
);
2611 spin_unlock(&gp
->tx_lock
);
2612 spin_unlock_irq(&gp
->lock
);
2613 mutex_unlock(&gp
->pm_mutex
);
2618 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2620 struct gem
*gp
= netdev_priv(dev
);
2622 strcpy(info
->driver
, DRV_NAME
);
2623 strcpy(info
->version
, DRV_VERSION
);
2624 strcpy(info
->bus_info
, pci_name(gp
->pdev
));
2627 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2629 struct gem
*gp
= netdev_priv(dev
);
2631 if (gp
->phy_type
== phy_mii_mdio0
||
2632 gp
->phy_type
== phy_mii_mdio1
) {
2633 if (gp
->phy_mii
.def
)
2634 cmd
->supported
= gp
->phy_mii
.def
->features
;
2636 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2637 SUPPORTED_10baseT_Full
);
2639 /* XXX hardcoded stuff for now */
2640 cmd
->port
= PORT_MII
;
2641 cmd
->transceiver
= XCVR_EXTERNAL
;
2642 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2644 /* Return current PHY settings */
2645 spin_lock_irq(&gp
->lock
);
2646 cmd
->autoneg
= gp
->want_autoneg
;
2647 cmd
->speed
= gp
->phy_mii
.speed
;
2648 cmd
->duplex
= gp
->phy_mii
.duplex
;
2649 cmd
->advertising
= gp
->phy_mii
.advertising
;
2651 /* If we started with a forced mode, we don't have a default
2652 * advertise set, we need to return something sensible so
2653 * userland can re-enable autoneg properly.
2655 if (cmd
->advertising
== 0)
2656 cmd
->advertising
= cmd
->supported
;
2657 spin_unlock_irq(&gp
->lock
);
2658 } else { // XXX PCS ?
2660 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2661 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2663 cmd
->advertising
= cmd
->supported
;
2665 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2666 cmd
->transceiver
= cmd
->autoneg
= 0;
2668 /* serdes means usually a Fibre connector, with most fixed */
2669 if (gp
->phy_type
== phy_serdes
) {
2670 cmd
->port
= PORT_FIBRE
;
2671 cmd
->supported
= (SUPPORTED_1000baseT_Half
|
2672 SUPPORTED_1000baseT_Full
|
2673 SUPPORTED_FIBRE
| SUPPORTED_Autoneg
|
2674 SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
2675 cmd
->advertising
= cmd
->supported
;
2676 cmd
->transceiver
= XCVR_INTERNAL
;
2677 if (gp
->lstate
== link_up
)
2678 cmd
->speed
= SPEED_1000
;
2679 cmd
->duplex
= DUPLEX_FULL
;
2683 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2688 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2690 struct gem
*gp
= netdev_priv(dev
);
2692 /* Verify the settings we care about. */
2693 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2694 cmd
->autoneg
!= AUTONEG_DISABLE
)
2697 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2698 cmd
->advertising
== 0)
2701 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2702 ((cmd
->speed
!= SPEED_1000
&&
2703 cmd
->speed
!= SPEED_100
&&
2704 cmd
->speed
!= SPEED_10
) ||
2705 (cmd
->duplex
!= DUPLEX_HALF
&&
2706 cmd
->duplex
!= DUPLEX_FULL
)))
2709 /* Apply settings and restart link process. */
2710 spin_lock_irq(&gp
->lock
);
2712 gem_begin_auto_negotiation(gp
, cmd
);
2714 spin_unlock_irq(&gp
->lock
);
2719 static int gem_nway_reset(struct net_device
*dev
)
2721 struct gem
*gp
= netdev_priv(dev
);
2723 if (!gp
->want_autoneg
)
2726 /* Restart link process. */
2727 spin_lock_irq(&gp
->lock
);
2729 gem_begin_auto_negotiation(gp
, NULL
);
2731 spin_unlock_irq(&gp
->lock
);
2736 static u32
gem_get_msglevel(struct net_device
*dev
)
2738 struct gem
*gp
= netdev_priv(dev
);
2739 return gp
->msg_enable
;
2742 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2744 struct gem
*gp
= netdev_priv(dev
);
2745 gp
->msg_enable
= value
;
2749 /* Add more when I understand how to program the chip */
2750 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2752 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2754 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2756 struct gem
*gp
= netdev_priv(dev
);
2758 /* Add more when I understand how to program the chip */
2760 wol
->supported
= WOL_SUPPORTED_MASK
;
2761 wol
->wolopts
= gp
->wake_on_lan
;
2768 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2770 struct gem
*gp
= netdev_priv(dev
);
2774 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2778 static const struct ethtool_ops gem_ethtool_ops
= {
2779 .get_drvinfo
= gem_get_drvinfo
,
2780 .get_link
= ethtool_op_get_link
,
2781 .get_settings
= gem_get_settings
,
2782 .set_settings
= gem_set_settings
,
2783 .nway_reset
= gem_nway_reset
,
2784 .get_msglevel
= gem_get_msglevel
,
2785 .set_msglevel
= gem_set_msglevel
,
2786 .get_wol
= gem_get_wol
,
2787 .set_wol
= gem_set_wol
,
2790 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2792 struct gem
*gp
= netdev_priv(dev
);
2793 struct mii_ioctl_data
*data
= if_mii(ifr
);
2794 int rc
= -EOPNOTSUPP
;
2795 unsigned long flags
;
2797 /* Hold the PM mutex while doing ioctl's or we may collide
2798 * with power management.
2800 mutex_lock(&gp
->pm_mutex
);
2802 spin_lock_irqsave(&gp
->lock
, flags
);
2804 spin_unlock_irqrestore(&gp
->lock
, flags
);
2807 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2808 data
->phy_id
= gp
->mii_phy_addr
;
2809 /* Fallthrough... */
2811 case SIOCGMIIREG
: /* Read MII PHY register. */
2815 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2816 data
->reg_num
& 0x1f);
2821 case SIOCSMIIREG
: /* Write MII PHY register. */
2825 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2832 spin_lock_irqsave(&gp
->lock
, flags
);
2834 spin_unlock_irqrestore(&gp
->lock
, flags
);
2836 mutex_unlock(&gp
->pm_mutex
);
2841 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2842 /* Fetch MAC address from vital product data of PCI ROM. */
2843 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2847 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2848 void __iomem
*p
= rom_base
+ this_offset
;
2851 if (readb(p
+ 0) != 0x90 ||
2852 readb(p
+ 1) != 0x00 ||
2853 readb(p
+ 2) != 0x09 ||
2854 readb(p
+ 3) != 0x4e ||
2855 readb(p
+ 4) != 0x41 ||
2856 readb(p
+ 5) != 0x06)
2862 for (i
= 0; i
< 6; i
++)
2863 dev_addr
[i
] = readb(p
+ i
);
2869 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2872 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2877 found
= readb(p
) == 0x55 &&
2878 readb(p
+ 1) == 0xaa &&
2879 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2880 pci_unmap_rom(pdev
, p
);
2885 /* Sun MAC prefix then 3 random bytes. */
2889 get_random_bytes(dev_addr
+ 3, 3);
2891 #endif /* not Sparc and not PPC */
2893 static int __devinit
gem_get_device_address(struct gem
*gp
)
2895 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2896 struct net_device
*dev
= gp
->dev
;
2897 const unsigned char *addr
;
2899 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2902 addr
= idprom
->id_ethaddr
;
2905 pr_err("%s: can't get mac-address\n", dev
->name
);
2909 memcpy(dev
->dev_addr
, addr
, 6);
2911 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2916 static void gem_remove_one(struct pci_dev
*pdev
)
2918 struct net_device
*dev
= pci_get_drvdata(pdev
);
2921 struct gem
*gp
= netdev_priv(dev
);
2923 unregister_netdev(dev
);
2925 /* Stop the link timer */
2926 del_timer_sync(&gp
->link_timer
);
2928 /* We shouldn't need any locking here */
2931 /* Wait for a pending reset task to complete */
2932 while (gp
->reset_task_pending
)
2934 flush_scheduled_work();
2936 /* Shut the PHY down */
2937 gem_stop_phy(gp
, 0);
2941 /* Make sure bus master is disabled */
2942 pci_disable_device(gp
->pdev
);
2944 /* Free resources */
2945 pci_free_consistent(pdev
,
2946 sizeof(struct gem_init_block
),
2950 pci_release_regions(pdev
);
2953 pci_set_drvdata(pdev
, NULL
);
2957 static const struct net_device_ops gem_netdev_ops
= {
2958 .ndo_open
= gem_open
,
2959 .ndo_stop
= gem_close
,
2960 .ndo_start_xmit
= gem_start_xmit
,
2961 .ndo_get_stats
= gem_get_stats
,
2962 .ndo_set_multicast_list
= gem_set_multicast
,
2963 .ndo_do_ioctl
= gem_ioctl
,
2964 .ndo_tx_timeout
= gem_tx_timeout
,
2965 .ndo_change_mtu
= gem_change_mtu
,
2966 .ndo_validate_addr
= eth_validate_addr
,
2967 .ndo_set_mac_address
= gem_set_mac_address
,
2968 #ifdef CONFIG_NET_POLL_CONTROLLER
2969 .ndo_poll_controller
= gem_poll_controller
,
2973 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2974 const struct pci_device_id
*ent
)
2976 unsigned long gemreg_base
, gemreg_len
;
2977 struct net_device
*dev
;
2979 int err
, pci_using_dac
;
2981 printk_once(KERN_INFO
"%s", version
);
2983 /* Apple gmac note: during probe, the chip is powered up by
2984 * the arch code to allow the code below to work (and to let
2985 * the chip be probed on the config space. It won't stay powered
2986 * up until the interface is brought up however, so we can't rely
2987 * on register configuration done at this point.
2989 err
= pci_enable_device(pdev
);
2991 pr_err("Cannot enable MMIO operation, aborting\n");
2994 pci_set_master(pdev
);
2996 /* Configure DMA attributes. */
2998 /* All of the GEM documentation states that 64-bit DMA addressing
2999 * is fully supported and should work just fine. However the
3000 * front end for RIO based GEMs is different and only supports
3001 * 32-bit addressing.
3003 * For now we assume the various PPC GEMs are 32-bit only as well.
3005 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
3006 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
3007 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3010 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
3012 pr_err("No usable DMA configuration, aborting\n");
3013 goto err_disable_device
;
3018 gemreg_base
= pci_resource_start(pdev
, 0);
3019 gemreg_len
= pci_resource_len(pdev
, 0);
3021 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3022 pr_err("Cannot find proper PCI device base address, aborting\n");
3024 goto err_disable_device
;
3027 dev
= alloc_etherdev(sizeof(*gp
));
3029 pr_err("Etherdev alloc failed, aborting\n");
3031 goto err_disable_device
;
3033 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3035 gp
= netdev_priv(dev
);
3037 err
= pci_request_regions(pdev
, DRV_NAME
);
3039 pr_err("Cannot obtain PCI resources, aborting\n");
3040 goto err_out_free_netdev
;
3044 dev
->base_addr
= (long) pdev
;
3047 gp
->msg_enable
= DEFAULT_MSG
;
3049 spin_lock_init(&gp
->lock
);
3050 spin_lock_init(&gp
->tx_lock
);
3051 mutex_init(&gp
->pm_mutex
);
3053 init_timer(&gp
->link_timer
);
3054 gp
->link_timer
.function
= gem_link_timer
;
3055 gp
->link_timer
.data
= (unsigned long) gp
;
3057 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
3059 gp
->lstate
= link_down
;
3060 gp
->timer_ticks
= 0;
3061 netif_carrier_off(dev
);
3063 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
3065 pr_err("Cannot map device registers, aborting\n");
3067 goto err_out_free_res
;
3070 /* On Apple, we want a reference to the Open Firmware device-tree
3071 * node. We use it for clock control.
3073 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3074 gp
->of_node
= pci_device_to_OF_node(pdev
);
3077 /* Only Apple version supports WOL afaik */
3078 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
3081 /* Make sure cell is enabled */
3084 /* Make sure everything is stopped and in init state */
3087 /* Fill up the mii_phy structure (even if we won't use it) */
3088 gp
->phy_mii
.dev
= dev
;
3089 gp
->phy_mii
.mdio_read
= _phy_read
;
3090 gp
->phy_mii
.mdio_write
= _phy_write
;
3091 #ifdef CONFIG_PPC_PMAC
3092 gp
->phy_mii
.platform_data
= gp
->of_node
;
3094 /* By default, we start with autoneg */
3095 gp
->want_autoneg
= 1;
3097 /* Check fifo sizes, PHY type, etc... */
3098 if (gem_check_invariants(gp
)) {
3100 goto err_out_iounmap
;
3103 /* It is guaranteed that the returned buffer will be at least
3104 * PAGE_SIZE aligned.
3106 gp
->init_block
= (struct gem_init_block
*)
3107 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
3109 if (!gp
->init_block
) {
3110 pr_err("Cannot allocate init block, aborting\n");
3112 goto err_out_iounmap
;
3115 if (gem_get_device_address(gp
))
3116 goto err_out_free_consistent
;
3118 dev
->netdev_ops
= &gem_netdev_ops
;
3119 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
3120 dev
->ethtool_ops
= &gem_ethtool_ops
;
3121 dev
->watchdog_timeo
= 5 * HZ
;
3122 dev
->irq
= pdev
->irq
;
3125 /* Set that now, in case PM kicks in now */
3126 pci_set_drvdata(pdev
, dev
);
3128 /* Detect & init PHY, start autoneg, we release the cell now
3129 * too, it will be managed by whoever needs it
3133 spin_lock_irq(&gp
->lock
);
3135 spin_unlock_irq(&gp
->lock
);
3137 /* Register with kernel */
3138 if (register_netdev(dev
)) {
3139 pr_err("Cannot register net device, aborting\n");
3141 goto err_out_free_consistent
;
3144 netdev_info(dev
, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3147 if (gp
->phy_type
== phy_mii_mdio0
||
3148 gp
->phy_type
== phy_mii_mdio1
)
3149 netdev_info(dev
, "Found %s PHY\n",
3150 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
3152 /* GEM can do it all... */
3153 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
| NETIF_F_LLTX
;
3155 dev
->features
|= NETIF_F_HIGHDMA
;
3159 err_out_free_consistent
:
3160 gem_remove_one(pdev
);
3166 pci_release_regions(pdev
);
3168 err_out_free_netdev
:
3171 pci_disable_device(pdev
);
3177 static struct pci_driver gem_driver
= {
3178 .name
= GEM_MODULE_NAME
,
3179 .id_table
= gem_pci_tbl
,
3180 .probe
= gem_init_one
,
3181 .remove
= gem_remove_one
,
3183 .suspend
= gem_suspend
,
3184 .resume
= gem_resume
,
3185 #endif /* CONFIG_PM */
3188 static int __init
gem_init(void)
3190 return pci_register_driver(&gem_driver
);
3193 static void __exit
gem_cleanup(void)
3195 pci_unregister_driver(&gem_driver
);
3198 module_init(gem_init
);
3199 module_exit(gem_cleanup
);