2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn
;
18 EXPORT_SYMBOL(blk_max_low_pfn
);
20 unsigned long blk_max_pfn
;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
37 EXPORT_SYMBOL(blk_queue_prep_rq
);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
52 q
->unprep_rq_fn
= ufn
;
54 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
72 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
74 q
->merge_bvec_fn
= mbfn
;
76 EXPORT_SYMBOL(blk_queue_merge_bvec
);
78 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
80 q
->softirq_done_fn
= fn
;
82 EXPORT_SYMBOL(blk_queue_softirq_done
);
84 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
86 q
->rq_timeout
= timeout
;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
90 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
92 q
->rq_timed_out_fn
= fn
;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
96 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
107 * Returns a queue_limit struct to its default state. Can be used by
108 * stacking drivers like DM that stage table swaps and reuse an
109 * existing device queue.
111 void blk_set_default_limits(struct queue_limits
*lim
)
113 lim
->max_segments
= BLK_MAX_SEGMENTS
;
114 lim
->max_integrity_segments
= 0;
115 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
116 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
117 lim
->max_sectors
= BLK_DEF_MAX_SECTORS
;
118 lim
->max_hw_sectors
= INT_MAX
;
119 lim
->max_discard_sectors
= 0;
120 lim
->discard_granularity
= 0;
121 lim
->discard_alignment
= 0;
122 lim
->discard_misaligned
= 0;
123 lim
->discard_zeroes_data
= -1;
124 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
125 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
126 lim
->alignment_offset
= 0;
131 EXPORT_SYMBOL(blk_set_default_limits
);
134 * blk_queue_make_request - define an alternate make_request function for a device
135 * @q: the request queue for the device to be affected
136 * @mfn: the alternate make_request function
139 * The normal way for &struct bios to be passed to a device
140 * driver is for them to be collected into requests on a request
141 * queue, and then to allow the device driver to select requests
142 * off that queue when it is ready. This works well for many block
143 * devices. However some block devices (typically virtual devices
144 * such as md or lvm) do not benefit from the processing on the
145 * request queue, and are served best by having the requests passed
146 * directly to them. This can be achieved by providing a function
147 * to blk_queue_make_request().
150 * The driver that does this *must* be able to deal appropriately
151 * with buffers in "highmemory". This can be accomplished by either calling
152 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153 * blk_queue_bounce() to create a buffer in normal memory.
155 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
160 q
->nr_requests
= BLKDEV_MAX_RQ
;
162 q
->make_request_fn
= mfn
;
163 blk_queue_dma_alignment(q
, 511);
164 blk_queue_congestion_threshold(q
);
165 q
->nr_batching
= BLK_BATCH_REQ
;
167 q
->unplug_thresh
= 4; /* hmm */
168 q
->unplug_delay
= msecs_to_jiffies(3); /* 3 milliseconds */
169 if (q
->unplug_delay
== 0)
172 q
->unplug_timer
.function
= blk_unplug_timeout
;
173 q
->unplug_timer
.data
= (unsigned long)q
;
175 blk_set_default_limits(&q
->limits
);
176 blk_queue_max_hw_sectors(q
, BLK_SAFE_MAX_SECTORS
);
179 * If the caller didn't supply a lock, fall back to our embedded
183 q
->queue_lock
= &q
->__queue_lock
;
186 * by default assume old behaviour and bounce for any highmem page
188 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
190 EXPORT_SYMBOL(blk_queue_make_request
);
193 * blk_queue_bounce_limit - set bounce buffer limit for queue
194 * @q: the request queue for the device
195 * @dma_mask: the maximum address the device can handle
198 * Different hardware can have different requirements as to what pages
199 * it can do I/O directly to. A low level driver can call
200 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
201 * buffers for doing I/O to pages residing above @dma_mask.
203 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_mask
)
205 unsigned long b_pfn
= dma_mask
>> PAGE_SHIFT
;
208 q
->bounce_gfp
= GFP_NOIO
;
209 #if BITS_PER_LONG == 64
211 * Assume anything <= 4GB can be handled by IOMMU. Actually
212 * some IOMMUs can handle everything, but I don't know of a
213 * way to test this here.
215 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
217 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
219 if (b_pfn
< blk_max_low_pfn
)
221 q
->limits
.bounce_pfn
= b_pfn
;
224 init_emergency_isa_pool();
225 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
226 q
->limits
.bounce_pfn
= b_pfn
;
229 EXPORT_SYMBOL(blk_queue_bounce_limit
);
232 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
233 * @limits: the queue limits
234 * @max_hw_sectors: max hardware sectors in the usual 512b unit
237 * Enables a low level driver to set a hard upper limit,
238 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
239 * the device driver based upon the combined capabilities of I/O
240 * controller and storage device.
242 * max_sectors is a soft limit imposed by the block layer for
243 * filesystem type requests. This value can be overridden on a
244 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
245 * The soft limit can not exceed max_hw_sectors.
247 void blk_limits_max_hw_sectors(struct queue_limits
*limits
, unsigned int max_hw_sectors
)
249 if ((max_hw_sectors
<< 9) < PAGE_CACHE_SIZE
) {
250 max_hw_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
251 printk(KERN_INFO
"%s: set to minimum %d\n",
252 __func__
, max_hw_sectors
);
255 limits
->max_hw_sectors
= max_hw_sectors
;
256 limits
->max_sectors
= min_t(unsigned int, max_hw_sectors
,
257 BLK_DEF_MAX_SECTORS
);
259 EXPORT_SYMBOL(blk_limits_max_hw_sectors
);
262 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
263 * @q: the request queue for the device
264 * @max_hw_sectors: max hardware sectors in the usual 512b unit
267 * See description for blk_limits_max_hw_sectors().
269 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
271 blk_limits_max_hw_sectors(&q
->limits
, max_hw_sectors
);
273 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
276 * blk_queue_max_discard_sectors - set max sectors for a single discard
277 * @q: the request queue for the device
278 * @max_discard_sectors: maximum number of sectors to discard
280 void blk_queue_max_discard_sectors(struct request_queue
*q
,
281 unsigned int max_discard_sectors
)
283 q
->limits
.max_discard_sectors
= max_discard_sectors
;
285 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
288 * blk_queue_max_segments - set max hw segments for a request for this queue
289 * @q: the request queue for the device
290 * @max_segments: max number of segments
293 * Enables a low level driver to set an upper limit on the number of
294 * hw data segments in a request.
296 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
300 printk(KERN_INFO
"%s: set to minimum %d\n",
301 __func__
, max_segments
);
304 q
->limits
.max_segments
= max_segments
;
306 EXPORT_SYMBOL(blk_queue_max_segments
);
309 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
310 * @q: the request queue for the device
311 * @max_size: max size of segment in bytes
314 * Enables a low level driver to set an upper limit on the size of a
317 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
319 if (max_size
< PAGE_CACHE_SIZE
) {
320 max_size
= PAGE_CACHE_SIZE
;
321 printk(KERN_INFO
"%s: set to minimum %d\n",
325 q
->limits
.max_segment_size
= max_size
;
327 EXPORT_SYMBOL(blk_queue_max_segment_size
);
330 * blk_queue_logical_block_size - set logical block size for the queue
331 * @q: the request queue for the device
332 * @size: the logical block size, in bytes
335 * This should be set to the lowest possible block size that the
336 * storage device can address. The default of 512 covers most
339 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
341 q
->limits
.logical_block_size
= size
;
343 if (q
->limits
.physical_block_size
< size
)
344 q
->limits
.physical_block_size
= size
;
346 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
347 q
->limits
.io_min
= q
->limits
.physical_block_size
;
349 EXPORT_SYMBOL(blk_queue_logical_block_size
);
352 * blk_queue_physical_block_size - set physical block size for the queue
353 * @q: the request queue for the device
354 * @size: the physical block size, in bytes
357 * This should be set to the lowest possible sector size that the
358 * hardware can operate on without reverting to read-modify-write
361 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
363 q
->limits
.physical_block_size
= size
;
365 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
366 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
368 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
369 q
->limits
.io_min
= q
->limits
.physical_block_size
;
371 EXPORT_SYMBOL(blk_queue_physical_block_size
);
374 * blk_queue_alignment_offset - set physical block alignment offset
375 * @q: the request queue for the device
376 * @offset: alignment offset in bytes
379 * Some devices are naturally misaligned to compensate for things like
380 * the legacy DOS partition table 63-sector offset. Low-level drivers
381 * should call this function for devices whose first sector is not
384 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
386 q
->limits
.alignment_offset
=
387 offset
& (q
->limits
.physical_block_size
- 1);
388 q
->limits
.misaligned
= 0;
390 EXPORT_SYMBOL(blk_queue_alignment_offset
);
393 * blk_limits_io_min - set minimum request size for a device
394 * @limits: the queue limits
395 * @min: smallest I/O size in bytes
398 * Some devices have an internal block size bigger than the reported
399 * hardware sector size. This function can be used to signal the
400 * smallest I/O the device can perform without incurring a performance
403 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
405 limits
->io_min
= min
;
407 if (limits
->io_min
< limits
->logical_block_size
)
408 limits
->io_min
= limits
->logical_block_size
;
410 if (limits
->io_min
< limits
->physical_block_size
)
411 limits
->io_min
= limits
->physical_block_size
;
413 EXPORT_SYMBOL(blk_limits_io_min
);
416 * blk_queue_io_min - set minimum request size for the queue
417 * @q: the request queue for the device
418 * @min: smallest I/O size in bytes
421 * Storage devices may report a granularity or preferred minimum I/O
422 * size which is the smallest request the device can perform without
423 * incurring a performance penalty. For disk drives this is often the
424 * physical block size. For RAID arrays it is often the stripe chunk
425 * size. A properly aligned multiple of minimum_io_size is the
426 * preferred request size for workloads where a high number of I/O
427 * operations is desired.
429 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
431 blk_limits_io_min(&q
->limits
, min
);
433 EXPORT_SYMBOL(blk_queue_io_min
);
436 * blk_limits_io_opt - set optimal request size for a device
437 * @limits: the queue limits
438 * @opt: smallest I/O size in bytes
441 * Storage devices may report an optimal I/O size, which is the
442 * device's preferred unit for sustained I/O. This is rarely reported
443 * for disk drives. For RAID arrays it is usually the stripe width or
444 * the internal track size. A properly aligned multiple of
445 * optimal_io_size is the preferred request size for workloads where
446 * sustained throughput is desired.
448 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
450 limits
->io_opt
= opt
;
452 EXPORT_SYMBOL(blk_limits_io_opt
);
455 * blk_queue_io_opt - set optimal request size for the queue
456 * @q: the request queue for the device
457 * @opt: optimal request size in bytes
460 * Storage devices may report an optimal I/O size, which is the
461 * device's preferred unit for sustained I/O. This is rarely reported
462 * for disk drives. For RAID arrays it is usually the stripe width or
463 * the internal track size. A properly aligned multiple of
464 * optimal_io_size is the preferred request size for workloads where
465 * sustained throughput is desired.
467 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
469 blk_limits_io_opt(&q
->limits
, opt
);
471 EXPORT_SYMBOL(blk_queue_io_opt
);
474 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
475 * @t: the stacking driver (top)
476 * @b: the underlying device (bottom)
478 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
480 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
482 EXPORT_SYMBOL(blk_queue_stack_limits
);
485 * blk_stack_limits - adjust queue_limits for stacked devices
486 * @t: the stacking driver limits (top device)
487 * @b: the underlying queue limits (bottom, component device)
488 * @start: first data sector within component device
491 * This function is used by stacking drivers like MD and DM to ensure
492 * that all component devices have compatible block sizes and
493 * alignments. The stacking driver must provide a queue_limits
494 * struct (top) and then iteratively call the stacking function for
495 * all component (bottom) devices. The stacking function will
496 * attempt to combine the values and ensure proper alignment.
498 * Returns 0 if the top and bottom queue_limits are compatible. The
499 * top device's block sizes and alignment offsets may be adjusted to
500 * ensure alignment with the bottom device. If no compatible sizes
501 * and alignments exist, -1 is returned and the resulting top
502 * queue_limits will have the misaligned flag set to indicate that
503 * the alignment_offset is undefined.
505 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
508 unsigned int top
, bottom
, alignment
, ret
= 0;
510 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
511 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
512 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
514 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
515 b
->seg_boundary_mask
);
517 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
518 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
519 b
->max_integrity_segments
);
521 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
522 b
->max_segment_size
);
524 t
->misaligned
|= b
->misaligned
;
526 alignment
= queue_limit_alignment_offset(b
, start
);
528 /* Bottom device has different alignment. Check that it is
529 * compatible with the current top alignment.
531 if (t
->alignment_offset
!= alignment
) {
533 top
= max(t
->physical_block_size
, t
->io_min
)
534 + t
->alignment_offset
;
535 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
537 /* Verify that top and bottom intervals line up */
538 if (max(top
, bottom
) & (min(top
, bottom
) - 1)) {
544 t
->logical_block_size
= max(t
->logical_block_size
,
545 b
->logical_block_size
);
547 t
->physical_block_size
= max(t
->physical_block_size
,
548 b
->physical_block_size
);
550 t
->io_min
= max(t
->io_min
, b
->io_min
);
551 t
->io_opt
= lcm(t
->io_opt
, b
->io_opt
);
553 t
->cluster
&= b
->cluster
;
554 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
556 /* Physical block size a multiple of the logical block size? */
557 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
558 t
->physical_block_size
= t
->logical_block_size
;
563 /* Minimum I/O a multiple of the physical block size? */
564 if (t
->io_min
& (t
->physical_block_size
- 1)) {
565 t
->io_min
= t
->physical_block_size
;
570 /* Optimal I/O a multiple of the physical block size? */
571 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
577 /* Find lowest common alignment_offset */
578 t
->alignment_offset
= lcm(t
->alignment_offset
, alignment
)
579 & (max(t
->physical_block_size
, t
->io_min
) - 1);
581 /* Verify that new alignment_offset is on a logical block boundary */
582 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
587 /* Discard alignment and granularity */
588 if (b
->discard_granularity
) {
589 alignment
= queue_limit_discard_alignment(b
, start
);
591 if (t
->discard_granularity
!= 0 &&
592 t
->discard_alignment
!= alignment
) {
593 top
= t
->discard_granularity
+ t
->discard_alignment
;
594 bottom
= b
->discard_granularity
+ alignment
;
596 /* Verify that top and bottom intervals line up */
597 if (max(top
, bottom
) & (min(top
, bottom
) - 1))
598 t
->discard_misaligned
= 1;
601 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
602 b
->max_discard_sectors
);
603 t
->discard_granularity
= max(t
->discard_granularity
,
604 b
->discard_granularity
);
605 t
->discard_alignment
= lcm(t
->discard_alignment
, alignment
) &
606 (t
->discard_granularity
- 1);
611 EXPORT_SYMBOL(blk_stack_limits
);
614 * bdev_stack_limits - adjust queue limits for stacked drivers
615 * @t: the stacking driver limits (top device)
616 * @bdev: the component block_device (bottom)
617 * @start: first data sector within component device
620 * Merges queue limits for a top device and a block_device. Returns
621 * 0 if alignment didn't change. Returns -1 if adding the bottom
622 * device caused misalignment.
624 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
627 struct request_queue
*bq
= bdev_get_queue(bdev
);
629 start
+= get_start_sect(bdev
);
631 return blk_stack_limits(t
, &bq
->limits
, start
);
633 EXPORT_SYMBOL(bdev_stack_limits
);
636 * disk_stack_limits - adjust queue limits for stacked drivers
637 * @disk: MD/DM gendisk (top)
638 * @bdev: the underlying block device (bottom)
639 * @offset: offset to beginning of data within component device
642 * Merges the limits for a top level gendisk and a bottom level
645 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
648 struct request_queue
*t
= disk
->queue
;
650 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
651 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
653 disk_name(disk
, 0, top
);
654 bdevname(bdev
, bottom
);
656 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
660 EXPORT_SYMBOL(disk_stack_limits
);
663 * blk_queue_dma_pad - set pad mask
664 * @q: the request queue for the device
669 * Appending pad buffer to a request modifies the last entry of a
670 * scatter list such that it includes the pad buffer.
672 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
674 q
->dma_pad_mask
= mask
;
676 EXPORT_SYMBOL(blk_queue_dma_pad
);
679 * blk_queue_update_dma_pad - update pad mask
680 * @q: the request queue for the device
683 * Update dma pad mask.
685 * Appending pad buffer to a request modifies the last entry of a
686 * scatter list such that it includes the pad buffer.
688 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
690 if (mask
> q
->dma_pad_mask
)
691 q
->dma_pad_mask
= mask
;
693 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
696 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
697 * @q: the request queue for the device
698 * @dma_drain_needed: fn which returns non-zero if drain is necessary
699 * @buf: physically contiguous buffer
700 * @size: size of the buffer in bytes
702 * Some devices have excess DMA problems and can't simply discard (or
703 * zero fill) the unwanted piece of the transfer. They have to have a
704 * real area of memory to transfer it into. The use case for this is
705 * ATAPI devices in DMA mode. If the packet command causes a transfer
706 * bigger than the transfer size some HBAs will lock up if there
707 * aren't DMA elements to contain the excess transfer. What this API
708 * does is adjust the queue so that the buf is always appended
709 * silently to the scatterlist.
711 * Note: This routine adjusts max_hw_segments to make room for appending
712 * the drain buffer. If you call blk_queue_max_segments() after calling
713 * this routine, you must set the limit to one fewer than your device
714 * can support otherwise there won't be room for the drain buffer.
716 int blk_queue_dma_drain(struct request_queue
*q
,
717 dma_drain_needed_fn
*dma_drain_needed
,
718 void *buf
, unsigned int size
)
720 if (queue_max_segments(q
) < 2)
722 /* make room for appending the drain */
723 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
724 q
->dma_drain_needed
= dma_drain_needed
;
725 q
->dma_drain_buffer
= buf
;
726 q
->dma_drain_size
= size
;
730 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
733 * blk_queue_segment_boundary - set boundary rules for segment merging
734 * @q: the request queue for the device
735 * @mask: the memory boundary mask
737 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
739 if (mask
< PAGE_CACHE_SIZE
- 1) {
740 mask
= PAGE_CACHE_SIZE
- 1;
741 printk(KERN_INFO
"%s: set to minimum %lx\n",
745 q
->limits
.seg_boundary_mask
= mask
;
747 EXPORT_SYMBOL(blk_queue_segment_boundary
);
750 * blk_queue_dma_alignment - set dma length and memory alignment
751 * @q: the request queue for the device
752 * @mask: alignment mask
755 * set required memory and length alignment for direct dma transactions.
756 * this is used when building direct io requests for the queue.
759 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
761 q
->dma_alignment
= mask
;
763 EXPORT_SYMBOL(blk_queue_dma_alignment
);
766 * blk_queue_update_dma_alignment - update dma length and memory alignment
767 * @q: the request queue for the device
768 * @mask: alignment mask
771 * update required memory and length alignment for direct dma transactions.
772 * If the requested alignment is larger than the current alignment, then
773 * the current queue alignment is updated to the new value, otherwise it
774 * is left alone. The design of this is to allow multiple objects
775 * (driver, device, transport etc) to set their respective
776 * alignments without having them interfere.
779 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
781 BUG_ON(mask
> PAGE_SIZE
);
783 if (mask
> q
->dma_alignment
)
784 q
->dma_alignment
= mask
;
786 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
789 * blk_queue_flush - configure queue's cache flush capability
790 * @q: the request queue for the device
791 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
793 * Tell block layer cache flush capability of @q. If it supports
794 * flushing, REQ_FLUSH should be set. If it supports bypassing
795 * write cache for individual writes, REQ_FUA should be set.
797 void blk_queue_flush(struct request_queue
*q
, unsigned int flush
)
799 WARN_ON_ONCE(flush
& ~(REQ_FLUSH
| REQ_FUA
));
801 if (WARN_ON_ONCE(!(flush
& REQ_FLUSH
) && (flush
& REQ_FUA
)))
804 q
->flush_flags
= flush
& (REQ_FLUSH
| REQ_FUA
);
806 EXPORT_SYMBOL_GPL(blk_queue_flush
);
808 static int __init
blk_settings_init(void)
810 blk_max_low_pfn
= max_low_pfn
- 1;
811 blk_max_pfn
= max_pfn
- 1;
814 subsys_initcall(blk_settings_init
);