4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * (code doesn't rely on that order, so you could switch it around)
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 * Delete a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold the mapping's tree_lock.
117 void __delete_from_page_cache(struct page
*page
)
119 struct address_space
*mapping
= page
->mapping
;
121 radix_tree_delete(&mapping
->page_tree
, page
->index
);
122 page
->mapping
= NULL
;
124 __dec_zone_page_state(page
, NR_FILE_PAGES
);
125 if (PageSwapBacked(page
))
126 __dec_zone_page_state(page
, NR_SHMEM
);
127 BUG_ON(page_mapped(page
));
130 * Some filesystems seem to re-dirty the page even after
131 * the VM has canceled the dirty bit (eg ext3 journaling).
133 * Fix it up by doing a final dirty accounting check after
134 * having removed the page entirely.
136 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
137 dec_zone_page_state(page
, NR_FILE_DIRTY
);
138 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
143 * delete_from_page_cache - delete page from page cache
144 * @page: the page which the kernel is trying to remove from page cache
146 * This must be called only on pages that have been verified to be in the page
147 * cache and locked. It will never put the page into the free list, the caller
148 * has a reference on the page.
150 void delete_from_page_cache(struct page
*page
)
152 struct address_space
*mapping
= page
->mapping
;
153 void (*freepage
)(struct page
*);
155 BUG_ON(!PageLocked(page
));
157 freepage
= mapping
->a_ops
->freepage
;
158 spin_lock_irq(&mapping
->tree_lock
);
159 __delete_from_page_cache(page
);
160 spin_unlock_irq(&mapping
->tree_lock
);
161 mem_cgroup_uncharge_cache_page(page
);
165 page_cache_release(page
);
167 EXPORT_SYMBOL(delete_from_page_cache
);
169 static int sleep_on_page(void *word
)
175 static int sleep_on_page_killable(void *word
)
178 return fatal_signal_pending(current
) ? -EINTR
: 0;
182 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
183 * @mapping: address space structure to write
184 * @start: offset in bytes where the range starts
185 * @end: offset in bytes where the range ends (inclusive)
186 * @sync_mode: enable synchronous operation
188 * Start writeback against all of a mapping's dirty pages that lie
189 * within the byte offsets <start, end> inclusive.
191 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
192 * opposed to a regular memory cleansing writeback. The difference between
193 * these two operations is that if a dirty page/buffer is encountered, it must
194 * be waited upon, and not just skipped over.
196 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
197 loff_t end
, int sync_mode
)
200 struct writeback_control wbc
= {
201 .sync_mode
= sync_mode
,
202 .nr_to_write
= LONG_MAX
,
203 .range_start
= start
,
207 if (!mapping_cap_writeback_dirty(mapping
))
210 ret
= do_writepages(mapping
, &wbc
);
214 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
217 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
220 int filemap_fdatawrite(struct address_space
*mapping
)
222 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
224 EXPORT_SYMBOL(filemap_fdatawrite
);
226 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
229 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
231 EXPORT_SYMBOL(filemap_fdatawrite_range
);
234 * filemap_flush - mostly a non-blocking flush
235 * @mapping: target address_space
237 * This is a mostly non-blocking flush. Not suitable for data-integrity
238 * purposes - I/O may not be started against all dirty pages.
240 int filemap_flush(struct address_space
*mapping
)
242 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
244 EXPORT_SYMBOL(filemap_flush
);
247 * filemap_fdatawait_range - wait for writeback to complete
248 * @mapping: address space structure to wait for
249 * @start_byte: offset in bytes where the range starts
250 * @end_byte: offset in bytes where the range ends (inclusive)
252 * Walk the list of under-writeback pages of the given address space
253 * in the given range and wait for all of them.
255 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
258 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
259 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
264 if (end_byte
< start_byte
)
267 pagevec_init(&pvec
, 0);
268 while ((index
<= end
) &&
269 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
270 PAGECACHE_TAG_WRITEBACK
,
271 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
274 for (i
= 0; i
< nr_pages
; i
++) {
275 struct page
*page
= pvec
.pages
[i
];
277 /* until radix tree lookup accepts end_index */
278 if (page
->index
> end
)
281 wait_on_page_writeback(page
);
282 if (TestClearPageError(page
))
285 pagevec_release(&pvec
);
289 /* Check for outstanding write errors */
290 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
292 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
297 EXPORT_SYMBOL(filemap_fdatawait_range
);
300 * filemap_fdatawait - wait for all under-writeback pages to complete
301 * @mapping: address space structure to wait for
303 * Walk the list of under-writeback pages of the given address space
304 * and wait for all of them.
306 int filemap_fdatawait(struct address_space
*mapping
)
308 loff_t i_size
= i_size_read(mapping
->host
);
313 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
315 EXPORT_SYMBOL(filemap_fdatawait
);
317 int filemap_write_and_wait(struct address_space
*mapping
)
321 if (mapping
->nrpages
) {
322 err
= filemap_fdatawrite(mapping
);
324 * Even if the above returned error, the pages may be
325 * written partially (e.g. -ENOSPC), so we wait for it.
326 * But the -EIO is special case, it may indicate the worst
327 * thing (e.g. bug) happened, so we avoid waiting for it.
330 int err2
= filemap_fdatawait(mapping
);
337 EXPORT_SYMBOL(filemap_write_and_wait
);
340 * filemap_write_and_wait_range - write out & wait on a file range
341 * @mapping: the address_space for the pages
342 * @lstart: offset in bytes where the range starts
343 * @lend: offset in bytes where the range ends (inclusive)
345 * Write out and wait upon file offsets lstart->lend, inclusive.
347 * Note that `lend' is inclusive (describes the last byte to be written) so
348 * that this function can be used to write to the very end-of-file (end = -1).
350 int filemap_write_and_wait_range(struct address_space
*mapping
,
351 loff_t lstart
, loff_t lend
)
355 if (mapping
->nrpages
) {
356 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
358 /* See comment of filemap_write_and_wait() */
360 int err2
= filemap_fdatawait_range(mapping
,
368 EXPORT_SYMBOL(filemap_write_and_wait_range
);
371 * replace_page_cache_page - replace a pagecache page with a new one
372 * @old: page to be replaced
373 * @new: page to replace with
374 * @gfp_mask: allocation mode
376 * This function replaces a page in the pagecache with a new one. On
377 * success it acquires the pagecache reference for the new page and
378 * drops it for the old page. Both the old and new pages must be
379 * locked. This function does not add the new page to the LRU, the
380 * caller must do that.
382 * The remove + add is atomic. The only way this function can fail is
383 * memory allocation failure.
385 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
388 struct mem_cgroup
*memcg
= NULL
;
390 VM_BUG_ON(!PageLocked(old
));
391 VM_BUG_ON(!PageLocked(new));
392 VM_BUG_ON(new->mapping
);
395 * This is not page migration, but prepare_migration and
396 * end_migration does enough work for charge replacement.
398 * In the longer term we probably want a specialized function
399 * for moving the charge from old to new in a more efficient
402 error
= mem_cgroup_prepare_migration(old
, new, &memcg
, gfp_mask
);
406 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
408 struct address_space
*mapping
= old
->mapping
;
409 void (*freepage
)(struct page
*);
411 pgoff_t offset
= old
->index
;
412 freepage
= mapping
->a_ops
->freepage
;
415 new->mapping
= mapping
;
418 spin_lock_irq(&mapping
->tree_lock
);
419 __delete_from_page_cache(old
);
420 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
423 __inc_zone_page_state(new, NR_FILE_PAGES
);
424 if (PageSwapBacked(new))
425 __inc_zone_page_state(new, NR_SHMEM
);
426 spin_unlock_irq(&mapping
->tree_lock
);
427 radix_tree_preload_end();
430 page_cache_release(old
);
431 mem_cgroup_end_migration(memcg
, old
, new, true);
433 mem_cgroup_end_migration(memcg
, old
, new, false);
438 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
441 * add_to_page_cache_locked - add a locked page to the pagecache
443 * @mapping: the page's address_space
444 * @offset: page index
445 * @gfp_mask: page allocation mode
447 * This function is used to add a page to the pagecache. It must be locked.
448 * This function does not add the page to the LRU. The caller must do that.
450 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
451 pgoff_t offset
, gfp_t gfp_mask
)
455 VM_BUG_ON(!PageLocked(page
));
457 error
= mem_cgroup_cache_charge(page
, current
->mm
,
458 gfp_mask
& GFP_RECLAIM_MASK
);
462 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
464 page_cache_get(page
);
465 page
->mapping
= mapping
;
466 page
->index
= offset
;
468 spin_lock_irq(&mapping
->tree_lock
);
469 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
470 if (likely(!error
)) {
472 __inc_zone_page_state(page
, NR_FILE_PAGES
);
473 if (PageSwapBacked(page
))
474 __inc_zone_page_state(page
, NR_SHMEM
);
475 spin_unlock_irq(&mapping
->tree_lock
);
477 page
->mapping
= NULL
;
478 spin_unlock_irq(&mapping
->tree_lock
);
479 mem_cgroup_uncharge_cache_page(page
);
480 page_cache_release(page
);
482 radix_tree_preload_end();
484 mem_cgroup_uncharge_cache_page(page
);
488 EXPORT_SYMBOL(add_to_page_cache_locked
);
490 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
491 pgoff_t offset
, gfp_t gfp_mask
)
496 * Splice_read and readahead add shmem/tmpfs pages into the page cache
497 * before shmem_readpage has a chance to mark them as SwapBacked: they
498 * need to go on the anon lru below, and mem_cgroup_cache_charge
499 * (called in add_to_page_cache) needs to know where they're going too.
501 if (mapping_cap_swap_backed(mapping
))
502 SetPageSwapBacked(page
);
504 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
506 if (page_is_file_cache(page
))
507 lru_cache_add_file(page
);
509 lru_cache_add_anon(page
);
513 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
516 struct page
*__page_cache_alloc(gfp_t gfp
)
521 if (cpuset_do_page_mem_spread()) {
523 n
= cpuset_mem_spread_node();
524 page
= alloc_pages_exact_node(n
, gfp
, 0);
528 return alloc_pages(gfp
, 0);
530 EXPORT_SYMBOL(__page_cache_alloc
);
534 * In order to wait for pages to become available there must be
535 * waitqueues associated with pages. By using a hash table of
536 * waitqueues where the bucket discipline is to maintain all
537 * waiters on the same queue and wake all when any of the pages
538 * become available, and for the woken contexts to check to be
539 * sure the appropriate page became available, this saves space
540 * at a cost of "thundering herd" phenomena during rare hash
543 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
545 const struct zone
*zone
= page_zone(page
);
547 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
550 static inline void wake_up_page(struct page
*page
, int bit
)
552 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
555 void wait_on_page_bit(struct page
*page
, int bit_nr
)
557 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
559 if (test_bit(bit_nr
, &page
->flags
))
560 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
561 TASK_UNINTERRUPTIBLE
);
563 EXPORT_SYMBOL(wait_on_page_bit
);
566 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
567 * @page: Page defining the wait queue of interest
568 * @waiter: Waiter to add to the queue
570 * Add an arbitrary @waiter to the wait queue for the nominated @page.
572 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
574 wait_queue_head_t
*q
= page_waitqueue(page
);
577 spin_lock_irqsave(&q
->lock
, flags
);
578 __add_wait_queue(q
, waiter
);
579 spin_unlock_irqrestore(&q
->lock
, flags
);
581 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
584 * unlock_page - unlock a locked page
587 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
588 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
589 * mechananism between PageLocked pages and PageWriteback pages is shared.
590 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
592 * The mb is necessary to enforce ordering between the clear_bit and the read
593 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
595 void unlock_page(struct page
*page
)
597 VM_BUG_ON(!PageLocked(page
));
598 clear_bit_unlock(PG_locked
, &page
->flags
);
599 smp_mb__after_clear_bit();
600 wake_up_page(page
, PG_locked
);
602 EXPORT_SYMBOL(unlock_page
);
605 * end_page_writeback - end writeback against a page
608 void end_page_writeback(struct page
*page
)
610 if (TestClearPageReclaim(page
))
611 rotate_reclaimable_page(page
);
613 if (!test_clear_page_writeback(page
))
616 smp_mb__after_clear_bit();
617 wake_up_page(page
, PG_writeback
);
619 EXPORT_SYMBOL(end_page_writeback
);
622 * __lock_page - get a lock on the page, assuming we need to sleep to get it
623 * @page: the page to lock
625 void __lock_page(struct page
*page
)
627 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
629 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
630 TASK_UNINTERRUPTIBLE
);
632 EXPORT_SYMBOL(__lock_page
);
634 int __lock_page_killable(struct page
*page
)
636 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
638 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
639 sleep_on_page_killable
, TASK_KILLABLE
);
641 EXPORT_SYMBOL_GPL(__lock_page_killable
);
643 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
646 if (!(flags
& FAULT_FLAG_ALLOW_RETRY
)) {
650 if (!(flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
651 up_read(&mm
->mmap_sem
);
652 wait_on_page_locked(page
);
659 * find_get_page - find and get a page reference
660 * @mapping: the address_space to search
661 * @offset: the page index
663 * Is there a pagecache struct page at the given (mapping, offset) tuple?
664 * If yes, increment its refcount and return it; if no, return NULL.
666 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
674 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
676 page
= radix_tree_deref_slot(pagep
);
679 if (radix_tree_deref_retry(page
))
682 if (!page_cache_get_speculative(page
))
686 * Has the page moved?
687 * This is part of the lockless pagecache protocol. See
688 * include/linux/pagemap.h for details.
690 if (unlikely(page
!= *pagep
)) {
691 page_cache_release(page
);
700 EXPORT_SYMBOL(find_get_page
);
703 * find_lock_page - locate, pin and lock a pagecache page
704 * @mapping: the address_space to search
705 * @offset: the page index
707 * Locates the desired pagecache page, locks it, increments its reference
708 * count and returns its address.
710 * Returns zero if the page was not present. find_lock_page() may sleep.
712 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
717 page
= find_get_page(mapping
, offset
);
720 /* Has the page been truncated? */
721 if (unlikely(page
->mapping
!= mapping
)) {
723 page_cache_release(page
);
726 VM_BUG_ON(page
->index
!= offset
);
730 EXPORT_SYMBOL(find_lock_page
);
733 * find_or_create_page - locate or add a pagecache page
734 * @mapping: the page's address_space
735 * @index: the page's index into the mapping
736 * @gfp_mask: page allocation mode
738 * Locates a page in the pagecache. If the page is not present, a new page
739 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
740 * LRU list. The returned page is locked and has its reference count
743 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
746 * find_or_create_page() returns the desired page's address, or zero on
749 struct page
*find_or_create_page(struct address_space
*mapping
,
750 pgoff_t index
, gfp_t gfp_mask
)
755 page
= find_lock_page(mapping
, index
);
757 page
= __page_cache_alloc(gfp_mask
);
761 * We want a regular kernel memory (not highmem or DMA etc)
762 * allocation for the radix tree nodes, but we need to honour
763 * the context-specific requirements the caller has asked for.
764 * GFP_RECLAIM_MASK collects those requirements.
766 err
= add_to_page_cache_lru(page
, mapping
, index
,
767 (gfp_mask
& GFP_RECLAIM_MASK
));
769 page_cache_release(page
);
777 EXPORT_SYMBOL(find_or_create_page
);
780 * find_get_pages - gang pagecache lookup
781 * @mapping: The address_space to search
782 * @start: The starting page index
783 * @nr_pages: The maximum number of pages
784 * @pages: Where the resulting pages are placed
786 * find_get_pages() will search for and return a group of up to
787 * @nr_pages pages in the mapping. The pages are placed at @pages.
788 * find_get_pages() takes a reference against the returned pages.
790 * The search returns a group of mapping-contiguous pages with ascending
791 * indexes. There may be holes in the indices due to not-present pages.
793 * find_get_pages() returns the number of pages which were found.
795 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
796 unsigned int nr_pages
, struct page
**pages
)
800 unsigned int nr_found
;
804 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
805 (void ***)pages
, start
, nr_pages
);
807 for (i
= 0; i
< nr_found
; i
++) {
810 page
= radix_tree_deref_slot((void **)pages
[i
]);
815 * This can only trigger when the entry at index 0 moves out
816 * of or back to the root: none yet gotten, safe to restart.
818 if (radix_tree_deref_retry(page
)) {
823 if (!page_cache_get_speculative(page
))
826 /* Has the page moved? */
827 if (unlikely(page
!= *((void **)pages
[i
]))) {
828 page_cache_release(page
);
837 * If all entries were removed before we could secure them,
838 * try again, because callers stop trying once 0 is returned.
840 if (unlikely(!ret
&& nr_found
))
847 * find_get_pages_contig - gang contiguous pagecache lookup
848 * @mapping: The address_space to search
849 * @index: The starting page index
850 * @nr_pages: The maximum number of pages
851 * @pages: Where the resulting pages are placed
853 * find_get_pages_contig() works exactly like find_get_pages(), except
854 * that the returned number of pages are guaranteed to be contiguous.
856 * find_get_pages_contig() returns the number of pages which were found.
858 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
859 unsigned int nr_pages
, struct page
**pages
)
863 unsigned int nr_found
;
867 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
868 (void ***)pages
, index
, nr_pages
);
870 for (i
= 0; i
< nr_found
; i
++) {
873 page
= radix_tree_deref_slot((void **)pages
[i
]);
878 * This can only trigger when the entry at index 0 moves out
879 * of or back to the root: none yet gotten, safe to restart.
881 if (radix_tree_deref_retry(page
))
884 if (!page_cache_get_speculative(page
))
887 /* Has the page moved? */
888 if (unlikely(page
!= *((void **)pages
[i
]))) {
889 page_cache_release(page
);
894 * must check mapping and index after taking the ref.
895 * otherwise we can get both false positives and false
896 * negatives, which is just confusing to the caller.
898 if (page
->mapping
== NULL
|| page
->index
!= index
) {
899 page_cache_release(page
);
910 EXPORT_SYMBOL(find_get_pages_contig
);
913 * find_get_pages_tag - find and return pages that match @tag
914 * @mapping: the address_space to search
915 * @index: the starting page index
916 * @tag: the tag index
917 * @nr_pages: the maximum number of pages
918 * @pages: where the resulting pages are placed
920 * Like find_get_pages, except we only return pages which are tagged with
921 * @tag. We update @index to index the next page for the traversal.
923 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
924 int tag
, unsigned int nr_pages
, struct page
**pages
)
928 unsigned int nr_found
;
932 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
933 (void ***)pages
, *index
, nr_pages
, tag
);
935 for (i
= 0; i
< nr_found
; i
++) {
938 page
= radix_tree_deref_slot((void **)pages
[i
]);
943 * This can only trigger when the entry at index 0 moves out
944 * of or back to the root: none yet gotten, safe to restart.
946 if (radix_tree_deref_retry(page
))
949 if (!page_cache_get_speculative(page
))
952 /* Has the page moved? */
953 if (unlikely(page
!= *((void **)pages
[i
]))) {
954 page_cache_release(page
);
963 * If all entries were removed before we could secure them,
964 * try again, because callers stop trying once 0 is returned.
966 if (unlikely(!ret
&& nr_found
))
971 *index
= pages
[ret
- 1]->index
+ 1;
975 EXPORT_SYMBOL(find_get_pages_tag
);
978 * grab_cache_page_nowait - returns locked page at given index in given cache
979 * @mapping: target address_space
980 * @index: the page index
982 * Same as grab_cache_page(), but do not wait if the page is unavailable.
983 * This is intended for speculative data generators, where the data can
984 * be regenerated if the page couldn't be grabbed. This routine should
985 * be safe to call while holding the lock for another page.
987 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
988 * and deadlock against the caller's locked page.
991 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
993 struct page
*page
= find_get_page(mapping
, index
);
996 if (trylock_page(page
))
998 page_cache_release(page
);
1001 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
1002 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
1003 page_cache_release(page
);
1008 EXPORT_SYMBOL(grab_cache_page_nowait
);
1011 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1012 * a _large_ part of the i/o request. Imagine the worst scenario:
1014 * ---R__________________________________________B__________
1015 * ^ reading here ^ bad block(assume 4k)
1017 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1018 * => failing the whole request => read(R) => read(R+1) =>
1019 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1020 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1021 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1023 * It is going insane. Fix it by quickly scaling down the readahead size.
1025 static void shrink_readahead_size_eio(struct file
*filp
,
1026 struct file_ra_state
*ra
)
1032 * do_generic_file_read - generic file read routine
1033 * @filp: the file to read
1034 * @ppos: current file position
1035 * @desc: read_descriptor
1036 * @actor: read method
1038 * This is a generic file read routine, and uses the
1039 * mapping->a_ops->readpage() function for the actual low-level stuff.
1041 * This is really ugly. But the goto's actually try to clarify some
1042 * of the logic when it comes to error handling etc.
1044 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1045 read_descriptor_t
*desc
, read_actor_t actor
)
1047 struct address_space
*mapping
= filp
->f_mapping
;
1048 struct inode
*inode
= mapping
->host
;
1049 struct file_ra_state
*ra
= &filp
->f_ra
;
1053 unsigned long offset
; /* offset into pagecache page */
1054 unsigned int prev_offset
;
1057 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1058 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1059 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1060 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1061 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1067 unsigned long nr
, ret
;
1071 page
= find_get_page(mapping
, index
);
1073 page_cache_sync_readahead(mapping
,
1075 index
, last_index
- index
);
1076 page
= find_get_page(mapping
, index
);
1077 if (unlikely(page
== NULL
))
1078 goto no_cached_page
;
1080 if (PageReadahead(page
)) {
1081 page_cache_async_readahead(mapping
,
1083 index
, last_index
- index
);
1085 if (!PageUptodate(page
)) {
1086 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1087 !mapping
->a_ops
->is_partially_uptodate
)
1088 goto page_not_up_to_date
;
1089 if (!trylock_page(page
))
1090 goto page_not_up_to_date
;
1091 /* Did it get truncated before we got the lock? */
1093 goto page_not_up_to_date_locked
;
1094 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1096 goto page_not_up_to_date_locked
;
1101 * i_size must be checked after we know the page is Uptodate.
1103 * Checking i_size after the check allows us to calculate
1104 * the correct value for "nr", which means the zero-filled
1105 * part of the page is not copied back to userspace (unless
1106 * another truncate extends the file - this is desired though).
1109 isize
= i_size_read(inode
);
1110 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1111 if (unlikely(!isize
|| index
> end_index
)) {
1112 page_cache_release(page
);
1116 /* nr is the maximum number of bytes to copy from this page */
1117 nr
= PAGE_CACHE_SIZE
;
1118 if (index
== end_index
) {
1119 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1121 page_cache_release(page
);
1127 /* If users can be writing to this page using arbitrary
1128 * virtual addresses, take care about potential aliasing
1129 * before reading the page on the kernel side.
1131 if (mapping_writably_mapped(mapping
))
1132 flush_dcache_page(page
);
1135 * When a sequential read accesses a page several times,
1136 * only mark it as accessed the first time.
1138 if (prev_index
!= index
|| offset
!= prev_offset
)
1139 mark_page_accessed(page
);
1143 * Ok, we have the page, and it's up-to-date, so
1144 * now we can copy it to user space...
1146 * The actor routine returns how many bytes were actually used..
1147 * NOTE! This may not be the same as how much of a user buffer
1148 * we filled up (we may be padding etc), so we can only update
1149 * "pos" here (the actor routine has to update the user buffer
1150 * pointers and the remaining count).
1152 ret
= actor(desc
, page
, offset
, nr
);
1154 index
+= offset
>> PAGE_CACHE_SHIFT
;
1155 offset
&= ~PAGE_CACHE_MASK
;
1156 prev_offset
= offset
;
1158 page_cache_release(page
);
1159 if (ret
== nr
&& desc
->count
)
1163 page_not_up_to_date
:
1164 /* Get exclusive access to the page ... */
1165 error
= lock_page_killable(page
);
1166 if (unlikely(error
))
1167 goto readpage_error
;
1169 page_not_up_to_date_locked
:
1170 /* Did it get truncated before we got the lock? */
1171 if (!page
->mapping
) {
1173 page_cache_release(page
);
1177 /* Did somebody else fill it already? */
1178 if (PageUptodate(page
)) {
1185 * A previous I/O error may have been due to temporary
1186 * failures, eg. multipath errors.
1187 * PG_error will be set again if readpage fails.
1189 ClearPageError(page
);
1190 /* Start the actual read. The read will unlock the page. */
1191 error
= mapping
->a_ops
->readpage(filp
, page
);
1193 if (unlikely(error
)) {
1194 if (error
== AOP_TRUNCATED_PAGE
) {
1195 page_cache_release(page
);
1198 goto readpage_error
;
1201 if (!PageUptodate(page
)) {
1202 error
= lock_page_killable(page
);
1203 if (unlikely(error
))
1204 goto readpage_error
;
1205 if (!PageUptodate(page
)) {
1206 if (page
->mapping
== NULL
) {
1208 * invalidate_mapping_pages got it
1211 page_cache_release(page
);
1215 shrink_readahead_size_eio(filp
, ra
);
1217 goto readpage_error
;
1225 /* UHHUH! A synchronous read error occurred. Report it */
1226 desc
->error
= error
;
1227 page_cache_release(page
);
1232 * Ok, it wasn't cached, so we need to create a new
1235 page
= page_cache_alloc_cold(mapping
);
1237 desc
->error
= -ENOMEM
;
1240 error
= add_to_page_cache_lru(page
, mapping
,
1243 page_cache_release(page
);
1244 if (error
== -EEXIST
)
1246 desc
->error
= error
;
1253 ra
->prev_pos
= prev_index
;
1254 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1255 ra
->prev_pos
|= prev_offset
;
1257 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1258 file_accessed(filp
);
1261 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1262 unsigned long offset
, unsigned long size
)
1265 unsigned long left
, count
= desc
->count
;
1271 * Faults on the destination of a read are common, so do it before
1274 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1275 kaddr
= kmap_atomic(page
, KM_USER0
);
1276 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1277 kaddr
+ offset
, size
);
1278 kunmap_atomic(kaddr
, KM_USER0
);
1283 /* Do it the slow way */
1285 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1290 desc
->error
= -EFAULT
;
1293 desc
->count
= count
- size
;
1294 desc
->written
+= size
;
1295 desc
->arg
.buf
+= size
;
1300 * Performs necessary checks before doing a write
1301 * @iov: io vector request
1302 * @nr_segs: number of segments in the iovec
1303 * @count: number of bytes to write
1304 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1306 * Adjust number of segments and amount of bytes to write (nr_segs should be
1307 * properly initialized first). Returns appropriate error code that caller
1308 * should return or zero in case that write should be allowed.
1310 int generic_segment_checks(const struct iovec
*iov
,
1311 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1315 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1316 const struct iovec
*iv
= &iov
[seg
];
1319 * If any segment has a negative length, or the cumulative
1320 * length ever wraps negative then return -EINVAL.
1323 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1325 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1330 cnt
-= iv
->iov_len
; /* This segment is no good */
1336 EXPORT_SYMBOL(generic_segment_checks
);
1339 * generic_file_aio_read - generic filesystem read routine
1340 * @iocb: kernel I/O control block
1341 * @iov: io vector request
1342 * @nr_segs: number of segments in the iovec
1343 * @pos: current file position
1345 * This is the "read()" routine for all filesystems
1346 * that can use the page cache directly.
1349 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1350 unsigned long nr_segs
, loff_t pos
)
1352 struct file
*filp
= iocb
->ki_filp
;
1354 unsigned long seg
= 0;
1356 loff_t
*ppos
= &iocb
->ki_pos
;
1357 struct blk_plug plug
;
1360 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1364 blk_start_plug(&plug
);
1366 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1367 if (filp
->f_flags
& O_DIRECT
) {
1369 struct address_space
*mapping
;
1370 struct inode
*inode
;
1372 mapping
= filp
->f_mapping
;
1373 inode
= mapping
->host
;
1375 goto out
; /* skip atime */
1376 size
= i_size_read(inode
);
1378 retval
= filemap_write_and_wait_range(mapping
, pos
,
1379 pos
+ iov_length(iov
, nr_segs
) - 1);
1381 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1385 *ppos
= pos
+ retval
;
1390 * Btrfs can have a short DIO read if we encounter
1391 * compressed extents, so if there was an error, or if
1392 * we've already read everything we wanted to, or if
1393 * there was a short read because we hit EOF, go ahead
1394 * and return. Otherwise fallthrough to buffered io for
1395 * the rest of the read.
1397 if (retval
< 0 || !count
|| *ppos
>= size
) {
1398 file_accessed(filp
);
1405 for (seg
= 0; seg
< nr_segs
; seg
++) {
1406 read_descriptor_t desc
;
1410 * If we did a short DIO read we need to skip the section of the
1411 * iov that we've already read data into.
1414 if (count
> iov
[seg
].iov_len
) {
1415 count
-= iov
[seg
].iov_len
;
1423 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1424 desc
.count
= iov
[seg
].iov_len
- offset
;
1425 if (desc
.count
== 0)
1428 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1429 retval
+= desc
.written
;
1431 retval
= retval
?: desc
.error
;
1438 blk_finish_plug(&plug
);
1441 EXPORT_SYMBOL(generic_file_aio_read
);
1444 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1445 pgoff_t index
, unsigned long nr
)
1447 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1450 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1454 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1462 if (file
->f_mode
& FMODE_READ
) {
1463 struct address_space
*mapping
= file
->f_mapping
;
1464 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1465 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1466 unsigned long len
= end
- start
+ 1;
1467 ret
= do_readahead(mapping
, file
, start
, len
);
1473 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1474 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1476 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1478 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1483 * page_cache_read - adds requested page to the page cache if not already there
1484 * @file: file to read
1485 * @offset: page index
1487 * This adds the requested page to the page cache if it isn't already there,
1488 * and schedules an I/O to read in its contents from disk.
1490 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1492 struct address_space
*mapping
= file
->f_mapping
;
1497 page
= page_cache_alloc_cold(mapping
);
1501 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1503 ret
= mapping
->a_ops
->readpage(file
, page
);
1504 else if (ret
== -EEXIST
)
1505 ret
= 0; /* losing race to add is OK */
1507 page_cache_release(page
);
1509 } while (ret
== AOP_TRUNCATED_PAGE
);
1514 #define MMAP_LOTSAMISS (100)
1517 * Synchronous readahead happens when we don't even find
1518 * a page in the page cache at all.
1520 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1521 struct file_ra_state
*ra
,
1525 unsigned long ra_pages
;
1526 struct address_space
*mapping
= file
->f_mapping
;
1528 /* If we don't want any read-ahead, don't bother */
1529 if (VM_RandomReadHint(vma
))
1532 if (VM_SequentialReadHint(vma
) ||
1533 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1534 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1539 if (ra
->mmap_miss
< INT_MAX
)
1543 * Do we miss much more than hit in this file? If so,
1544 * stop bothering with read-ahead. It will only hurt.
1546 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1552 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1554 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1555 ra
->size
= ra_pages
;
1557 ra_submit(ra
, mapping
, file
);
1562 * Asynchronous readahead happens when we find the page and PG_readahead,
1563 * so we want to possibly extend the readahead further..
1565 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1566 struct file_ra_state
*ra
,
1571 struct address_space
*mapping
= file
->f_mapping
;
1573 /* If we don't want any read-ahead, don't bother */
1574 if (VM_RandomReadHint(vma
))
1576 if (ra
->mmap_miss
> 0)
1578 if (PageReadahead(page
))
1579 page_cache_async_readahead(mapping
, ra
, file
,
1580 page
, offset
, ra
->ra_pages
);
1584 * filemap_fault - read in file data for page fault handling
1585 * @vma: vma in which the fault was taken
1586 * @vmf: struct vm_fault containing details of the fault
1588 * filemap_fault() is invoked via the vma operations vector for a
1589 * mapped memory region to read in file data during a page fault.
1591 * The goto's are kind of ugly, but this streamlines the normal case of having
1592 * it in the page cache, and handles the special cases reasonably without
1593 * having a lot of duplicated code.
1595 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1598 struct file
*file
= vma
->vm_file
;
1599 struct address_space
*mapping
= file
->f_mapping
;
1600 struct file_ra_state
*ra
= &file
->f_ra
;
1601 struct inode
*inode
= mapping
->host
;
1602 pgoff_t offset
= vmf
->pgoff
;
1607 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1609 return VM_FAULT_SIGBUS
;
1612 * Do we have something in the page cache already?
1614 page
= find_get_page(mapping
, offset
);
1617 * We found the page, so try async readahead before
1618 * waiting for the lock.
1620 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1622 /* No page in the page cache at all */
1623 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1624 count_vm_event(PGMAJFAULT
);
1625 ret
= VM_FAULT_MAJOR
;
1627 page
= find_get_page(mapping
, offset
);
1629 goto no_cached_page
;
1632 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1633 page_cache_release(page
);
1634 return ret
| VM_FAULT_RETRY
;
1637 /* Did it get truncated? */
1638 if (unlikely(page
->mapping
!= mapping
)) {
1643 VM_BUG_ON(page
->index
!= offset
);
1646 * We have a locked page in the page cache, now we need to check
1647 * that it's up-to-date. If not, it is going to be due to an error.
1649 if (unlikely(!PageUptodate(page
)))
1650 goto page_not_uptodate
;
1653 * Found the page and have a reference on it.
1654 * We must recheck i_size under page lock.
1656 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1657 if (unlikely(offset
>= size
)) {
1659 page_cache_release(page
);
1660 return VM_FAULT_SIGBUS
;
1663 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1665 return ret
| VM_FAULT_LOCKED
;
1669 * We're only likely to ever get here if MADV_RANDOM is in
1672 error
= page_cache_read(file
, offset
);
1675 * The page we want has now been added to the page cache.
1676 * In the unlikely event that someone removed it in the
1677 * meantime, we'll just come back here and read it again.
1683 * An error return from page_cache_read can result if the
1684 * system is low on memory, or a problem occurs while trying
1687 if (error
== -ENOMEM
)
1688 return VM_FAULT_OOM
;
1689 return VM_FAULT_SIGBUS
;
1693 * Umm, take care of errors if the page isn't up-to-date.
1694 * Try to re-read it _once_. We do this synchronously,
1695 * because there really aren't any performance issues here
1696 * and we need to check for errors.
1698 ClearPageError(page
);
1699 error
= mapping
->a_ops
->readpage(file
, page
);
1701 wait_on_page_locked(page
);
1702 if (!PageUptodate(page
))
1705 page_cache_release(page
);
1707 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1710 /* Things didn't work out. Return zero to tell the mm layer so. */
1711 shrink_readahead_size_eio(file
, ra
);
1712 return VM_FAULT_SIGBUS
;
1714 EXPORT_SYMBOL(filemap_fault
);
1716 const struct vm_operations_struct generic_file_vm_ops
= {
1717 .fault
= filemap_fault
,
1720 /* This is used for a general mmap of a disk file */
1722 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1724 struct address_space
*mapping
= file
->f_mapping
;
1726 if (!mapping
->a_ops
->readpage
)
1728 file_accessed(file
);
1729 vma
->vm_ops
= &generic_file_vm_ops
;
1730 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1735 * This is for filesystems which do not implement ->writepage.
1737 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1739 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1741 return generic_file_mmap(file
, vma
);
1744 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1748 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1752 #endif /* CONFIG_MMU */
1754 EXPORT_SYMBOL(generic_file_mmap
);
1755 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1757 static struct page
*__read_cache_page(struct address_space
*mapping
,
1759 int (*filler
)(void *,struct page
*),
1766 page
= find_get_page(mapping
, index
);
1768 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1770 return ERR_PTR(-ENOMEM
);
1771 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1772 if (unlikely(err
)) {
1773 page_cache_release(page
);
1776 /* Presumably ENOMEM for radix tree node */
1777 return ERR_PTR(err
);
1779 err
= filler(data
, page
);
1781 page_cache_release(page
);
1782 page
= ERR_PTR(err
);
1788 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1790 int (*filler
)(void *,struct page
*),
1799 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1802 if (PageUptodate(page
))
1806 if (!page
->mapping
) {
1808 page_cache_release(page
);
1811 if (PageUptodate(page
)) {
1815 err
= filler(data
, page
);
1817 page_cache_release(page
);
1818 return ERR_PTR(err
);
1821 mark_page_accessed(page
);
1826 * read_cache_page_async - read into page cache, fill it if needed
1827 * @mapping: the page's address_space
1828 * @index: the page index
1829 * @filler: function to perform the read
1830 * @data: destination for read data
1832 * Same as read_cache_page, but don't wait for page to become unlocked
1833 * after submitting it to the filler.
1835 * Read into the page cache. If a page already exists, and PageUptodate() is
1836 * not set, try to fill the page but don't wait for it to become unlocked.
1838 * If the page does not get brought uptodate, return -EIO.
1840 struct page
*read_cache_page_async(struct address_space
*mapping
,
1842 int (*filler
)(void *,struct page
*),
1845 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1847 EXPORT_SYMBOL(read_cache_page_async
);
1849 static struct page
*wait_on_page_read(struct page
*page
)
1851 if (!IS_ERR(page
)) {
1852 wait_on_page_locked(page
);
1853 if (!PageUptodate(page
)) {
1854 page_cache_release(page
);
1855 page
= ERR_PTR(-EIO
);
1862 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1863 * @mapping: the page's address_space
1864 * @index: the page index
1865 * @gfp: the page allocator flags to use if allocating
1867 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1868 * any new page allocations done using the specified allocation flags. Note
1869 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1870 * expect to do this atomically or anything like that - but you can pass in
1871 * other page requirements.
1873 * If the page does not get brought uptodate, return -EIO.
1875 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1879 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1881 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1883 EXPORT_SYMBOL(read_cache_page_gfp
);
1886 * read_cache_page - read into page cache, fill it if needed
1887 * @mapping: the page's address_space
1888 * @index: the page index
1889 * @filler: function to perform the read
1890 * @data: destination for read data
1892 * Read into the page cache. If a page already exists, and PageUptodate() is
1893 * not set, try to fill the page then wait for it to become unlocked.
1895 * If the page does not get brought uptodate, return -EIO.
1897 struct page
*read_cache_page(struct address_space
*mapping
,
1899 int (*filler
)(void *,struct page
*),
1902 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1904 EXPORT_SYMBOL(read_cache_page
);
1907 * The logic we want is
1909 * if suid or (sgid and xgrp)
1912 int should_remove_suid(struct dentry
*dentry
)
1914 mode_t mode
= dentry
->d_inode
->i_mode
;
1917 /* suid always must be killed */
1918 if (unlikely(mode
& S_ISUID
))
1919 kill
= ATTR_KILL_SUID
;
1922 * sgid without any exec bits is just a mandatory locking mark; leave
1923 * it alone. If some exec bits are set, it's a real sgid; kill it.
1925 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1926 kill
|= ATTR_KILL_SGID
;
1928 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1933 EXPORT_SYMBOL(should_remove_suid
);
1935 static int __remove_suid(struct dentry
*dentry
, int kill
)
1937 struct iattr newattrs
;
1939 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1940 return notify_change(dentry
, &newattrs
);
1943 int file_remove_suid(struct file
*file
)
1945 struct dentry
*dentry
= file
->f_path
.dentry
;
1946 int killsuid
= should_remove_suid(dentry
);
1947 int killpriv
= security_inode_need_killpriv(dentry
);
1953 error
= security_inode_killpriv(dentry
);
1954 if (!error
&& killsuid
)
1955 error
= __remove_suid(dentry
, killsuid
);
1959 EXPORT_SYMBOL(file_remove_suid
);
1961 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1962 const struct iovec
*iov
, size_t base
, size_t bytes
)
1964 size_t copied
= 0, left
= 0;
1967 char __user
*buf
= iov
->iov_base
+ base
;
1968 int copy
= min(bytes
, iov
->iov_len
- base
);
1971 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1980 return copied
- left
;
1984 * Copy as much as we can into the page and return the number of bytes which
1985 * were successfully copied. If a fault is encountered then return the number of
1986 * bytes which were copied.
1988 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1989 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1994 BUG_ON(!in_atomic());
1995 kaddr
= kmap_atomic(page
, KM_USER0
);
1996 if (likely(i
->nr_segs
== 1)) {
1998 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1999 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
2000 copied
= bytes
- left
;
2002 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2003 i
->iov
, i
->iov_offset
, bytes
);
2005 kunmap_atomic(kaddr
, KM_USER0
);
2009 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
2012 * This has the same sideeffects and return value as
2013 * iov_iter_copy_from_user_atomic().
2014 * The difference is that it attempts to resolve faults.
2015 * Page must not be locked.
2017 size_t iov_iter_copy_from_user(struct page
*page
,
2018 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2024 if (likely(i
->nr_segs
== 1)) {
2026 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2027 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
2028 copied
= bytes
- left
;
2030 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2031 i
->iov
, i
->iov_offset
, bytes
);
2036 EXPORT_SYMBOL(iov_iter_copy_from_user
);
2038 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
2040 BUG_ON(i
->count
< bytes
);
2042 if (likely(i
->nr_segs
== 1)) {
2043 i
->iov_offset
+= bytes
;
2046 const struct iovec
*iov
= i
->iov
;
2047 size_t base
= i
->iov_offset
;
2050 * The !iov->iov_len check ensures we skip over unlikely
2051 * zero-length segments (without overruning the iovec).
2053 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
2056 copy
= min(bytes
, iov
->iov_len
- base
);
2057 BUG_ON(!i
->count
|| i
->count
< copy
);
2061 if (iov
->iov_len
== base
) {
2067 i
->iov_offset
= base
;
2070 EXPORT_SYMBOL(iov_iter_advance
);
2073 * Fault in the first iovec of the given iov_iter, to a maximum length
2074 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2075 * accessed (ie. because it is an invalid address).
2077 * writev-intensive code may want this to prefault several iovecs -- that
2078 * would be possible (callers must not rely on the fact that _only_ the
2079 * first iovec will be faulted with the current implementation).
2081 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2083 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2084 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2085 return fault_in_pages_readable(buf
, bytes
);
2087 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2090 * Return the count of just the current iov_iter segment.
2092 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2094 const struct iovec
*iov
= i
->iov
;
2095 if (i
->nr_segs
== 1)
2098 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2100 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2103 * Performs necessary checks before doing a write
2105 * Can adjust writing position or amount of bytes to write.
2106 * Returns appropriate error code that caller should return or
2107 * zero in case that write should be allowed.
2109 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2111 struct inode
*inode
= file
->f_mapping
->host
;
2112 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2114 if (unlikely(*pos
< 0))
2118 /* FIXME: this is for backwards compatibility with 2.4 */
2119 if (file
->f_flags
& O_APPEND
)
2120 *pos
= i_size_read(inode
);
2122 if (limit
!= RLIM_INFINITY
) {
2123 if (*pos
>= limit
) {
2124 send_sig(SIGXFSZ
, current
, 0);
2127 if (*count
> limit
- (typeof(limit
))*pos
) {
2128 *count
= limit
- (typeof(limit
))*pos
;
2136 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2137 !(file
->f_flags
& O_LARGEFILE
))) {
2138 if (*pos
>= MAX_NON_LFS
) {
2141 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2142 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2147 * Are we about to exceed the fs block limit ?
2149 * If we have written data it becomes a short write. If we have
2150 * exceeded without writing data we send a signal and return EFBIG.
2151 * Linus frestrict idea will clean these up nicely..
2153 if (likely(!isblk
)) {
2154 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2155 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2158 /* zero-length writes at ->s_maxbytes are OK */
2161 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2162 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2166 if (bdev_read_only(I_BDEV(inode
)))
2168 isize
= i_size_read(inode
);
2169 if (*pos
>= isize
) {
2170 if (*count
|| *pos
> isize
)
2174 if (*pos
+ *count
> isize
)
2175 *count
= isize
- *pos
;
2182 EXPORT_SYMBOL(generic_write_checks
);
2184 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2185 loff_t pos
, unsigned len
, unsigned flags
,
2186 struct page
**pagep
, void **fsdata
)
2188 const struct address_space_operations
*aops
= mapping
->a_ops
;
2190 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2193 EXPORT_SYMBOL(pagecache_write_begin
);
2195 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2196 loff_t pos
, unsigned len
, unsigned copied
,
2197 struct page
*page
, void *fsdata
)
2199 const struct address_space_operations
*aops
= mapping
->a_ops
;
2201 mark_page_accessed(page
);
2202 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2204 EXPORT_SYMBOL(pagecache_write_end
);
2207 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2208 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2209 size_t count
, size_t ocount
)
2211 struct file
*file
= iocb
->ki_filp
;
2212 struct address_space
*mapping
= file
->f_mapping
;
2213 struct inode
*inode
= mapping
->host
;
2218 if (count
!= ocount
)
2219 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2221 write_len
= iov_length(iov
, *nr_segs
);
2222 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2224 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2229 * After a write we want buffered reads to be sure to go to disk to get
2230 * the new data. We invalidate clean cached page from the region we're
2231 * about to write. We do this *before* the write so that we can return
2232 * without clobbering -EIOCBQUEUED from ->direct_IO().
2234 if (mapping
->nrpages
) {
2235 written
= invalidate_inode_pages2_range(mapping
,
2236 pos
>> PAGE_CACHE_SHIFT
, end
);
2238 * If a page can not be invalidated, return 0 to fall back
2239 * to buffered write.
2242 if (written
== -EBUSY
)
2248 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2251 * Finally, try again to invalidate clean pages which might have been
2252 * cached by non-direct readahead, or faulted in by get_user_pages()
2253 * if the source of the write was an mmap'ed region of the file
2254 * we're writing. Either one is a pretty crazy thing to do,
2255 * so we don't support it 100%. If this invalidation
2256 * fails, tough, the write still worked...
2258 if (mapping
->nrpages
) {
2259 invalidate_inode_pages2_range(mapping
,
2260 pos
>> PAGE_CACHE_SHIFT
, end
);
2265 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2266 i_size_write(inode
, pos
);
2267 mark_inode_dirty(inode
);
2274 EXPORT_SYMBOL(generic_file_direct_write
);
2277 * Find or create a page at the given pagecache position. Return the locked
2278 * page. This function is specifically for buffered writes.
2280 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2281 pgoff_t index
, unsigned flags
)
2285 gfp_t gfp_notmask
= 0;
2286 if (flags
& AOP_FLAG_NOFS
)
2287 gfp_notmask
= __GFP_FS
;
2289 page
= find_lock_page(mapping
, index
);
2293 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2296 status
= add_to_page_cache_lru(page
, mapping
, index
,
2297 GFP_KERNEL
& ~gfp_notmask
);
2298 if (unlikely(status
)) {
2299 page_cache_release(page
);
2300 if (status
== -EEXIST
)
2306 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2308 static ssize_t
generic_perform_write(struct file
*file
,
2309 struct iov_iter
*i
, loff_t pos
)
2311 struct address_space
*mapping
= file
->f_mapping
;
2312 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2314 ssize_t written
= 0;
2315 unsigned int flags
= 0;
2318 * Copies from kernel address space cannot fail (NFSD is a big user).
2320 if (segment_eq(get_fs(), KERNEL_DS
))
2321 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2325 unsigned long offset
; /* Offset into pagecache page */
2326 unsigned long bytes
; /* Bytes to write to page */
2327 size_t copied
; /* Bytes copied from user */
2330 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2331 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2337 * Bring in the user page that we will copy from _first_.
2338 * Otherwise there's a nasty deadlock on copying from the
2339 * same page as we're writing to, without it being marked
2342 * Not only is this an optimisation, but it is also required
2343 * to check that the address is actually valid, when atomic
2344 * usercopies are used, below.
2346 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2351 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2353 if (unlikely(status
))
2356 if (mapping_writably_mapped(mapping
))
2357 flush_dcache_page(page
);
2359 pagefault_disable();
2360 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2362 flush_dcache_page(page
);
2364 mark_page_accessed(page
);
2365 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2367 if (unlikely(status
< 0))
2373 iov_iter_advance(i
, copied
);
2374 if (unlikely(copied
== 0)) {
2376 * If we were unable to copy any data at all, we must
2377 * fall back to a single segment length write.
2379 * If we didn't fallback here, we could livelock
2380 * because not all segments in the iov can be copied at
2381 * once without a pagefault.
2383 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2384 iov_iter_single_seg_count(i
));
2390 balance_dirty_pages_ratelimited(mapping
);
2392 } while (iov_iter_count(i
));
2394 return written
? written
: status
;
2398 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2399 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2400 size_t count
, ssize_t written
)
2402 struct file
*file
= iocb
->ki_filp
;
2406 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2407 status
= generic_perform_write(file
, &i
, pos
);
2409 if (likely(status
>= 0)) {
2411 *ppos
= pos
+ status
;
2414 return written
? written
: status
;
2416 EXPORT_SYMBOL(generic_file_buffered_write
);
2419 * __generic_file_aio_write - write data to a file
2420 * @iocb: IO state structure (file, offset, etc.)
2421 * @iov: vector with data to write
2422 * @nr_segs: number of segments in the vector
2423 * @ppos: position where to write
2425 * This function does all the work needed for actually writing data to a
2426 * file. It does all basic checks, removes SUID from the file, updates
2427 * modification times and calls proper subroutines depending on whether we
2428 * do direct IO or a standard buffered write.
2430 * It expects i_mutex to be grabbed unless we work on a block device or similar
2431 * object which does not need locking at all.
2433 * This function does *not* take care of syncing data in case of O_SYNC write.
2434 * A caller has to handle it. This is mainly due to the fact that we want to
2435 * avoid syncing under i_mutex.
2437 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2438 unsigned long nr_segs
, loff_t
*ppos
)
2440 struct file
*file
= iocb
->ki_filp
;
2441 struct address_space
* mapping
= file
->f_mapping
;
2442 size_t ocount
; /* original count */
2443 size_t count
; /* after file limit checks */
2444 struct inode
*inode
= mapping
->host
;
2450 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2457 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2459 /* We can write back this queue in page reclaim */
2460 current
->backing_dev_info
= mapping
->backing_dev_info
;
2463 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2470 err
= file_remove_suid(file
);
2474 file_update_time(file
);
2476 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2477 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2479 ssize_t written_buffered
;
2481 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2482 ppos
, count
, ocount
);
2483 if (written
< 0 || written
== count
)
2486 * direct-io write to a hole: fall through to buffered I/O
2487 * for completing the rest of the request.
2491 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2492 nr_segs
, pos
, ppos
, count
,
2495 * If generic_file_buffered_write() retuned a synchronous error
2496 * then we want to return the number of bytes which were
2497 * direct-written, or the error code if that was zero. Note
2498 * that this differs from normal direct-io semantics, which
2499 * will return -EFOO even if some bytes were written.
2501 if (written_buffered
< 0) {
2502 err
= written_buffered
;
2507 * We need to ensure that the page cache pages are written to
2508 * disk and invalidated to preserve the expected O_DIRECT
2511 endbyte
= pos
+ written_buffered
- written
- 1;
2512 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2514 written
= written_buffered
;
2515 invalidate_mapping_pages(mapping
,
2516 pos
>> PAGE_CACHE_SHIFT
,
2517 endbyte
>> PAGE_CACHE_SHIFT
);
2520 * We don't know how much we wrote, so just return
2521 * the number of bytes which were direct-written
2525 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2526 pos
, ppos
, count
, written
);
2529 current
->backing_dev_info
= NULL
;
2530 return written
? written
: err
;
2532 EXPORT_SYMBOL(__generic_file_aio_write
);
2535 * generic_file_aio_write - write data to a file
2536 * @iocb: IO state structure
2537 * @iov: vector with data to write
2538 * @nr_segs: number of segments in the vector
2539 * @pos: position in file where to write
2541 * This is a wrapper around __generic_file_aio_write() to be used by most
2542 * filesystems. It takes care of syncing the file in case of O_SYNC file
2543 * and acquires i_mutex as needed.
2545 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2546 unsigned long nr_segs
, loff_t pos
)
2548 struct file
*file
= iocb
->ki_filp
;
2549 struct inode
*inode
= file
->f_mapping
->host
;
2550 struct blk_plug plug
;
2553 BUG_ON(iocb
->ki_pos
!= pos
);
2555 mutex_lock(&inode
->i_mutex
);
2556 blk_start_plug(&plug
);
2557 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2558 mutex_unlock(&inode
->i_mutex
);
2560 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2563 err
= generic_write_sync(file
, pos
, ret
);
2564 if (err
< 0 && ret
> 0)
2567 blk_finish_plug(&plug
);
2570 EXPORT_SYMBOL(generic_file_aio_write
);
2573 * try_to_release_page() - release old fs-specific metadata on a page
2575 * @page: the page which the kernel is trying to free
2576 * @gfp_mask: memory allocation flags (and I/O mode)
2578 * The address_space is to try to release any data against the page
2579 * (presumably at page->private). If the release was successful, return `1'.
2580 * Otherwise return zero.
2582 * This may also be called if PG_fscache is set on a page, indicating that the
2583 * page is known to the local caching routines.
2585 * The @gfp_mask argument specifies whether I/O may be performed to release
2586 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2589 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2591 struct address_space
* const mapping
= page
->mapping
;
2593 BUG_ON(!PageLocked(page
));
2594 if (PageWriteback(page
))
2597 if (mapping
&& mapping
->a_ops
->releasepage
)
2598 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2599 return try_to_free_buffers(page
);
2602 EXPORT_SYMBOL(try_to_release_page
);