2 * Blackfin On-Chip Real Time Clock Driver
3 * Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
5 * Copyright 2004-2010 Analog Devices Inc.
7 * Enter bugs at http://blackfin.uclinux.org/
9 * Licensed under the GPL-2 or later.
12 /* The biggest issue we deal with in this driver is that register writes are
13 * synced to the RTC frequency of 1Hz. So if you write to a register and
14 * attempt to write again before the first write has completed, the new write
15 * is simply discarded. This can easily be troublesome if userspace disables
16 * one event (say periodic) and then right after enables an event (say alarm).
17 * Since all events are maintained in the same interrupt mask register, if
18 * we wrote to it to disable the first event and then wrote to it again to
19 * enable the second event, that second event would not be enabled as the
20 * write would be discarded and things quickly fall apart.
22 * To keep this delay from significantly degrading performance (we, in theory,
23 * would have to sleep for up to 1 second everytime we wanted to write a
24 * register), we only check the write pending status before we start to issue
25 * a new write. We bank on the idea that it doesnt matter when the sync
26 * happens so long as we don't attempt another write before it does. The only
27 * time userspace would take this penalty is when they try and do multiple
28 * operations right after another ... but in this case, they need to take the
29 * sync penalty, so we should be OK.
31 * Also note that the RTC_ISTAT register does not suffer this penalty; its
32 * writes to clear status registers complete immediately.
35 /* It may seem odd that there is no SWCNT code in here (which would be exposed
36 * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral
37 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
38 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
39 * The same exact behavior can be accomplished by using the update interrupt
40 * event (UIE). Maybe down the line the RTC peripheral will suck less in which
41 * case we can re-introduce PIE support.
44 #include <linux/bcd.h>
45 #include <linux/completion.h>
46 #include <linux/delay.h>
47 #include <linux/init.h>
48 #include <linux/interrupt.h>
49 #include <linux/kernel.h>
50 #include <linux/module.h>
51 #include <linux/platform_device.h>
52 #include <linux/rtc.h>
53 #include <linux/seq_file.h>
54 #include <linux/slab.h>
56 #include <asm/blackfin.h>
58 #define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
61 struct rtc_device
*rtc_dev
;
62 struct rtc_time rtc_alarm
;
66 /* Bit values for the ISTAT / ICTL registers */
67 #define RTC_ISTAT_WRITE_COMPLETE 0x8000
68 #define RTC_ISTAT_WRITE_PENDING 0x4000
69 #define RTC_ISTAT_ALARM_DAY 0x0040
70 #define RTC_ISTAT_24HR 0x0020
71 #define RTC_ISTAT_HOUR 0x0010
72 #define RTC_ISTAT_MIN 0x0008
73 #define RTC_ISTAT_SEC 0x0004
74 #define RTC_ISTAT_ALARM 0x0002
75 #define RTC_ISTAT_STOPWATCH 0x0001
77 /* Shift values for RTC_STAT register */
78 #define DAY_BITS_OFF 17
79 #define HOUR_BITS_OFF 12
80 #define MIN_BITS_OFF 6
81 #define SEC_BITS_OFF 0
83 /* Some helper functions to convert between the common RTC notion of time
84 * and the internal Blackfin notion that is encoded in 32bits.
86 static inline u32
rtc_time_to_bfin(unsigned long now
)
89 u32 min
= (now
% (60 * 60)) / 60;
90 u32 hour
= (now
% (60 * 60 * 24)) / (60 * 60);
91 u32 days
= (now
/ (60 * 60 * 24));
92 return (sec
<< SEC_BITS_OFF
) +
93 (min
<< MIN_BITS_OFF
) +
94 (hour
<< HOUR_BITS_OFF
) +
95 (days
<< DAY_BITS_OFF
);
97 static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin
)
99 return (((rtc_bfin
>> SEC_BITS_OFF
) & 0x003F)) +
100 (((rtc_bfin
>> MIN_BITS_OFF
) & 0x003F) * 60) +
101 (((rtc_bfin
>> HOUR_BITS_OFF
) & 0x001F) * 60 * 60) +
102 (((rtc_bfin
>> DAY_BITS_OFF
) & 0x7FFF) * 60 * 60 * 24);
104 static inline void rtc_bfin_to_tm(u32 rtc_bfin
, struct rtc_time
*tm
)
106 rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin
), tm
);
110 * bfin_rtc_sync_pending - make sure pending writes have complete
112 * Wait for the previous write to a RTC register to complete.
113 * Unfortunately, we can't sleep here as that introduces a race condition when
114 * turning on interrupt events. Consider this:
115 * - process sets alarm
116 * - process enables alarm
117 * - process sleeps while waiting for rtc write to sync
118 * - interrupt fires while process is sleeping
119 * - interrupt acks the event by writing to ISTAT
120 * - interrupt sets the WRITE PENDING bit
121 * - interrupt handler finishes
122 * - process wakes up, sees WRITE PENDING bit set, goes to sleep
123 * - interrupt fires while process is sleeping
124 * If anyone can point out the obvious solution here, i'm listening :). This
125 * shouldn't be an issue on an SMP or preempt system as this function should
126 * only be called with the rtc lock held.
129 * - disable PREN so the sync happens at 32.768kHZ ... but this changes the
130 * inc rate for all RTC registers from 1HZ to 32.768kHZ ...
131 * - use the write complete IRQ
134 static void bfin_rtc_sync_pending_polled(void)
136 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
137 if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
139 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
142 static DECLARE_COMPLETION(bfin_write_complete
);
143 static void bfin_rtc_sync_pending(struct device
*dev
)
146 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING
)
147 wait_for_completion_timeout(&bfin_write_complete
, HZ
* 5);
152 * bfin_rtc_reset - set RTC to sane/known state
154 * Initialize the RTC. Enable pre-scaler to scale RTC clock
155 * to 1Hz and clear interrupt/status registers.
157 static void bfin_rtc_reset(struct device
*dev
, u16 rtc_ictl
)
159 struct bfin_rtc
*rtc
= dev_get_drvdata(dev
);
161 bfin_rtc_sync_pending(dev
);
162 bfin_write_RTC_PREN(0x1);
163 bfin_write_RTC_ICTL(rtc_ictl
);
164 bfin_write_RTC_ALARM(0);
165 bfin_write_RTC_ISTAT(0xFFFF);
166 rtc
->rtc_wrote_regs
= 0;
170 * bfin_rtc_interrupt - handle interrupt from RTC
172 * Since we handle all RTC events here, we have to make sure the requested
173 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
174 * always gets updated regardless of the interrupt being enabled. So when one
175 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
176 * and say that other events have happened as well (e.g. second). We do not
177 * have to worry about pending writes to the RTC_ICTL register as interrupts
178 * only fire if they are enabled in the RTC_ICTL register.
180 static irqreturn_t
bfin_rtc_interrupt(int irq
, void *dev_id
)
182 struct device
*dev
= dev_id
;
183 struct bfin_rtc
*rtc
= dev_get_drvdata(dev
);
184 unsigned long events
= 0;
185 bool write_complete
= false;
186 u16 rtc_istat
, rtc_istat_clear
, rtc_ictl
, bits
;
190 rtc_istat
= bfin_read_RTC_ISTAT();
191 rtc_ictl
= bfin_read_RTC_ICTL();
194 bits
= RTC_ISTAT_WRITE_COMPLETE
;
195 if (rtc_istat
& bits
) {
196 rtc_istat_clear
|= bits
;
197 write_complete
= true;
198 complete(&bfin_write_complete
);
201 bits
= (RTC_ISTAT_ALARM
| RTC_ISTAT_ALARM_DAY
);
202 if (rtc_ictl
& bits
) {
203 if (rtc_istat
& bits
) {
204 rtc_istat_clear
|= bits
;
205 events
|= RTC_AF
| RTC_IRQF
;
209 bits
= RTC_ISTAT_SEC
;
210 if (rtc_ictl
& bits
) {
211 if (rtc_istat
& bits
) {
212 rtc_istat_clear
|= bits
;
213 events
|= RTC_UF
| RTC_IRQF
;
218 rtc_update_irq(rtc
->rtc_dev
, 1, events
);
220 if (write_complete
|| events
) {
221 bfin_write_RTC_ISTAT(rtc_istat_clear
);
227 static void bfin_rtc_int_set(u16 rtc_int
)
229 bfin_write_RTC_ISTAT(rtc_int
);
230 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int
);
232 static void bfin_rtc_int_clear(u16 rtc_int
)
234 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int
);
236 static void bfin_rtc_int_set_alarm(struct bfin_rtc
*rtc
)
238 /* Blackfin has different bits for whether the alarm is
239 * more than 24 hours away.
241 bfin_rtc_int_set(rtc
->rtc_alarm
.tm_yday
== -1 ? RTC_ISTAT_ALARM
: RTC_ISTAT_ALARM_DAY
);
243 static int bfin_rtc_ioctl(struct device
*dev
, unsigned int cmd
, unsigned long arg
)
245 struct bfin_rtc
*rtc
= dev_get_drvdata(dev
);
250 bfin_rtc_sync_pending(dev
);
255 bfin_rtc_int_set(RTC_ISTAT_SEC
);
259 bfin_rtc_int_clear(~RTC_ISTAT_SEC
);
270 static int bfin_rtc_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
272 struct bfin_rtc
*rtc
= dev_get_drvdata(dev
);
276 bfin_rtc_int_set_alarm(rtc
);
278 bfin_rtc_int_clear(~(RTC_ISTAT_ALARM
| RTC_ISTAT_ALARM_DAY
));
281 static int bfin_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
283 struct bfin_rtc
*rtc
= dev_get_drvdata(dev
);
287 if (rtc
->rtc_wrote_regs
& 0x1)
288 bfin_rtc_sync_pending(dev
);
290 rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm
);
295 static int bfin_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
297 struct bfin_rtc
*rtc
= dev_get_drvdata(dev
);
303 ret
= rtc_tm_to_time(tm
, &now
);
305 if (rtc
->rtc_wrote_regs
& 0x1)
306 bfin_rtc_sync_pending(dev
);
307 bfin_write_RTC_STAT(rtc_time_to_bfin(now
));
308 rtc
->rtc_wrote_regs
= 0x1;
314 static int bfin_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
316 struct bfin_rtc
*rtc
= dev_get_drvdata(dev
);
318 alrm
->time
= rtc
->rtc_alarm
;
319 bfin_rtc_sync_pending(dev
);
320 alrm
->enabled
= !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM
| RTC_ISTAT_ALARM_DAY
));
324 static int bfin_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
326 struct bfin_rtc
*rtc
= dev_get_drvdata(dev
);
327 unsigned long rtc_alarm
;
331 if (rtc_tm_to_time(&alrm
->time
, &rtc_alarm
))
334 rtc
->rtc_alarm
= alrm
->time
;
336 bfin_rtc_sync_pending(dev
);
337 bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm
));
339 bfin_rtc_int_set_alarm(rtc
);
344 static int bfin_rtc_proc(struct device
*dev
, struct seq_file
*seq
)
346 #define yesno(x) ((x) ? "yes" : "no")
347 u16 ictl
= bfin_read_RTC_ICTL();
351 "wkalarm_IRQ\t: %s\n"
352 "seconds_IRQ\t: %s\n",
353 yesno(ictl
& RTC_ISTAT_ALARM
),
354 yesno(ictl
& RTC_ISTAT_ALARM_DAY
),
355 yesno(ictl
& RTC_ISTAT_SEC
));
360 static struct rtc_class_ops bfin_rtc_ops
= {
361 .ioctl
= bfin_rtc_ioctl
,
362 .read_time
= bfin_rtc_read_time
,
363 .set_time
= bfin_rtc_set_time
,
364 .read_alarm
= bfin_rtc_read_alarm
,
365 .set_alarm
= bfin_rtc_set_alarm
,
366 .proc
= bfin_rtc_proc
,
367 .alarm_irq_enable
= bfin_rtc_alarm_irq_enable
,
370 static int __devinit
bfin_rtc_probe(struct platform_device
*pdev
)
372 struct bfin_rtc
*rtc
;
373 struct device
*dev
= &pdev
->dev
;
375 unsigned long timeout
= jiffies
+ HZ
;
379 /* Allocate memory for our RTC struct */
380 rtc
= kzalloc(sizeof(*rtc
), GFP_KERNEL
);
383 platform_set_drvdata(pdev
, rtc
);
384 device_init_wakeup(dev
, 1);
386 /* Register our RTC with the RTC framework */
387 rtc
->rtc_dev
= rtc_device_register(pdev
->name
, dev
, &bfin_rtc_ops
,
389 if (unlikely(IS_ERR(rtc
->rtc_dev
))) {
390 ret
= PTR_ERR(rtc
->rtc_dev
);
394 /* Grab the IRQ and init the hardware */
395 ret
= request_irq(IRQ_RTC
, bfin_rtc_interrupt
, 0, pdev
->name
, dev
);
398 /* sometimes the bootloader touched things, but the write complete was not
399 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
401 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING
)
402 if (time_after(jiffies
, timeout
))
404 bfin_rtc_reset(dev
, RTC_ISTAT_WRITE_COMPLETE
);
405 bfin_write_RTC_SWCNT(0);
410 rtc_device_unregister(rtc
->rtc_dev
);
416 static int __devexit
bfin_rtc_remove(struct platform_device
*pdev
)
418 struct bfin_rtc
*rtc
= platform_get_drvdata(pdev
);
419 struct device
*dev
= &pdev
->dev
;
421 bfin_rtc_reset(dev
, 0);
422 free_irq(IRQ_RTC
, dev
);
423 rtc_device_unregister(rtc
->rtc_dev
);
424 platform_set_drvdata(pdev
, NULL
);
431 static int bfin_rtc_suspend(struct platform_device
*pdev
, pm_message_t state
)
433 struct device
*dev
= &pdev
->dev
;
437 if (device_may_wakeup(dev
)) {
438 enable_irq_wake(IRQ_RTC
);
439 bfin_rtc_sync_pending(dev
);
441 bfin_rtc_int_clear(0);
446 static int bfin_rtc_resume(struct platform_device
*pdev
)
448 struct device
*dev
= &pdev
->dev
;
452 if (device_may_wakeup(dev
))
453 disable_irq_wake(IRQ_RTC
);
456 * Since only some of the RTC bits are maintained externally in the
457 * Vbat domain, we need to wait for the RTC MMRs to be synced into
458 * the core after waking up. This happens every RTC 1HZ. Once that
459 * has happened, we can go ahead and re-enable the important write
460 * complete interrupt event.
462 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC
))
464 bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE
);
469 # define bfin_rtc_suspend NULL
470 # define bfin_rtc_resume NULL
473 static struct platform_driver bfin_rtc_driver
= {
476 .owner
= THIS_MODULE
,
478 .probe
= bfin_rtc_probe
,
479 .remove
= __devexit_p(bfin_rtc_remove
),
480 .suspend
= bfin_rtc_suspend
,
481 .resume
= bfin_rtc_resume
,
484 static int __init
bfin_rtc_init(void)
486 return platform_driver_register(&bfin_rtc_driver
);
489 static void __exit
bfin_rtc_exit(void)
491 platform_driver_unregister(&bfin_rtc_driver
);
494 module_init(bfin_rtc_init
);
495 module_exit(bfin_rtc_exit
);
497 MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
498 MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
499 MODULE_LICENSE("GPL");
500 MODULE_ALIAS("platform:rtc-bfin");