1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2010 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
42 #include <net/checksum.h>
43 #include <linux/workqueue.h>
44 #include <linux/crc32.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
51 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
58 #define DRV_MODULE_NAME "bnx2"
59 #define DRV_MODULE_VERSION "2.0.21"
60 #define DRV_MODULE_RELDATE "Dec 23, 2010"
61 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.1.fw"
62 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
63 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1.fw"
64 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
65 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
67 #define RUN_AT(x) (jiffies + (x))
69 /* Time in jiffies before concluding the transmitter is hung. */
70 #define TX_TIMEOUT (5*HZ)
72 static char version
[] __devinitdata
=
73 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
75 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
76 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
77 MODULE_LICENSE("GPL");
78 MODULE_VERSION(DRV_MODULE_VERSION
);
79 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
80 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
85 static int disable_msi
= 0;
87 module_param(disable_msi
, int, 0);
88 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
104 /* indexed by board_t, above */
107 } board_info
[] __devinitdata
= {
108 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
109 { "HP NC370T Multifunction Gigabit Server Adapter" },
110 { "HP NC370i Multifunction Gigabit Server Adapter" },
111 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
112 { "HP NC370F Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
115 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
121 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
122 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
123 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
125 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
126 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
127 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
128 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
130 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
131 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
132 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
133 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
134 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
136 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
137 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
138 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
139 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
140 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
141 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
142 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
143 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
147 static const struct flash_spec flash_table
[] =
149 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
150 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
152 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
153 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
154 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
156 /* Expansion entry 0001 */
157 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
158 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
159 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
161 /* Saifun SA25F010 (non-buffered flash) */
162 /* strap, cfg1, & write1 need updates */
163 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
164 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
165 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
166 "Non-buffered flash (128kB)"},
167 /* Saifun SA25F020 (non-buffered flash) */
168 /* strap, cfg1, & write1 need updates */
169 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
170 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
171 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
172 "Non-buffered flash (256kB)"},
173 /* Expansion entry 0100 */
174 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
175 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
176 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
178 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
179 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
180 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
181 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
182 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
183 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
184 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
185 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
187 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
188 /* Saifun SA25F005 (non-buffered flash) */
189 /* strap, cfg1, & write1 need updates */
190 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
191 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
192 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
193 "Non-buffered flash (64kB)"},
195 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
196 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
197 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
199 /* Expansion entry 1001 */
200 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
202 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
204 /* Expansion entry 1010 */
205 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
207 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
209 /* ATMEL AT45DB011B (buffered flash) */
210 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
211 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
212 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
213 "Buffered flash (128kB)"},
214 /* Expansion entry 1100 */
215 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
217 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
219 /* Expansion entry 1101 */
220 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
222 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
224 /* Ateml Expansion entry 1110 */
225 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
226 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
227 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
228 "Entry 1110 (Atmel)"},
229 /* ATMEL AT45DB021B (buffered flash) */
230 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
231 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
232 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
233 "Buffered flash (256kB)"},
236 static const struct flash_spec flash_5709
= {
237 .flags
= BNX2_NV_BUFFERED
,
238 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
239 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
240 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
241 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
242 .name
= "5709 Buffered flash (256kB)",
245 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
247 static void bnx2_init_napi(struct bnx2
*bp
);
248 static void bnx2_del_napi(struct bnx2
*bp
);
250 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
254 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
260 diff
= txr
->tx_prod
- txr
->tx_cons
;
261 if (unlikely(diff
>= TX_DESC_CNT
)) {
263 if (diff
== TX_DESC_CNT
)
264 diff
= MAX_TX_DESC_CNT
;
266 return bp
->tx_ring_size
- diff
;
270 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
274 spin_lock_bh(&bp
->indirect_lock
);
275 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
276 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
277 spin_unlock_bh(&bp
->indirect_lock
);
282 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
284 spin_lock_bh(&bp
->indirect_lock
);
285 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
286 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
287 spin_unlock_bh(&bp
->indirect_lock
);
291 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
293 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
297 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
299 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
303 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
306 spin_lock_bh(&bp
->indirect_lock
);
307 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
310 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
311 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
312 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
313 for (i
= 0; i
< 5; i
++) {
314 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
315 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
320 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
321 REG_WR(bp
, BNX2_CTX_DATA
, val
);
323 spin_unlock_bh(&bp
->indirect_lock
);
328 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
330 struct bnx2
*bp
= netdev_priv(dev
);
331 struct drv_ctl_io
*io
= &info
->data
.io
;
334 case DRV_CTL_IO_WR_CMD
:
335 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
337 case DRV_CTL_IO_RD_CMD
:
338 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
340 case DRV_CTL_CTX_WR_CMD
:
341 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
349 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
351 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
352 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
355 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
356 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
357 bnapi
->cnic_present
= 0;
358 sb_id
= bp
->irq_nvecs
;
359 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
361 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
362 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
363 bnapi
->cnic_present
= 1;
365 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
368 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
369 cp
->irq_arr
[0].status_blk
= (void *)
370 ((unsigned long) bnapi
->status_blk
.msi
+
371 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
372 cp
->irq_arr
[0].status_blk_num
= sb_id
;
376 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
379 struct bnx2
*bp
= netdev_priv(dev
);
380 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
385 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
388 bp
->cnic_data
= data
;
389 rcu_assign_pointer(bp
->cnic_ops
, ops
);
392 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
394 bnx2_setup_cnic_irq_info(bp
);
399 static int bnx2_unregister_cnic(struct net_device
*dev
)
401 struct bnx2
*bp
= netdev_priv(dev
);
402 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
403 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
405 mutex_lock(&bp
->cnic_lock
);
407 bnapi
->cnic_present
= 0;
408 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
409 mutex_unlock(&bp
->cnic_lock
);
414 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
416 struct bnx2
*bp
= netdev_priv(dev
);
417 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
419 cp
->drv_owner
= THIS_MODULE
;
420 cp
->chip_id
= bp
->chip_id
;
422 cp
->io_base
= bp
->regview
;
423 cp
->drv_ctl
= bnx2_drv_ctl
;
424 cp
->drv_register_cnic
= bnx2_register_cnic
;
425 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
429 EXPORT_SYMBOL(bnx2_cnic_probe
);
432 bnx2_cnic_stop(struct bnx2
*bp
)
434 struct cnic_ops
*c_ops
;
435 struct cnic_ctl_info info
;
437 mutex_lock(&bp
->cnic_lock
);
438 c_ops
= bp
->cnic_ops
;
440 info
.cmd
= CNIC_CTL_STOP_CMD
;
441 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
443 mutex_unlock(&bp
->cnic_lock
);
447 bnx2_cnic_start(struct bnx2
*bp
)
449 struct cnic_ops
*c_ops
;
450 struct cnic_ctl_info info
;
452 mutex_lock(&bp
->cnic_lock
);
453 c_ops
= bp
->cnic_ops
;
455 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
456 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
458 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
460 info
.cmd
= CNIC_CTL_START_CMD
;
461 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
463 mutex_unlock(&bp
->cnic_lock
);
469 bnx2_cnic_stop(struct bnx2
*bp
)
474 bnx2_cnic_start(struct bnx2
*bp
)
481 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
486 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
487 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
488 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
490 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
491 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
496 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
497 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
498 BNX2_EMAC_MDIO_COMM_START_BUSY
;
499 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
501 for (i
= 0; i
< 50; i
++) {
504 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
505 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
508 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
509 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
515 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
524 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
525 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
526 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
528 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
529 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
538 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
543 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
544 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
545 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
547 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
548 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
553 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
554 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
555 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
556 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
558 for (i
= 0; i
< 50; i
++) {
561 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
562 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
568 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
573 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
574 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
575 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
577 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
578 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
587 bnx2_disable_int(struct bnx2
*bp
)
590 struct bnx2_napi
*bnapi
;
592 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
593 bnapi
= &bp
->bnx2_napi
[i
];
594 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
595 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
597 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
601 bnx2_enable_int(struct bnx2
*bp
)
604 struct bnx2_napi
*bnapi
;
606 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
607 bnapi
= &bp
->bnx2_napi
[i
];
609 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
611 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
612 bnapi
->last_status_idx
);
614 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
615 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
616 bnapi
->last_status_idx
);
618 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
622 bnx2_disable_int_sync(struct bnx2
*bp
)
626 atomic_inc(&bp
->intr_sem
);
627 if (!netif_running(bp
->dev
))
630 bnx2_disable_int(bp
);
631 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
632 synchronize_irq(bp
->irq_tbl
[i
].vector
);
636 bnx2_napi_disable(struct bnx2
*bp
)
640 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
641 napi_disable(&bp
->bnx2_napi
[i
].napi
);
645 bnx2_napi_enable(struct bnx2
*bp
)
649 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
650 napi_enable(&bp
->bnx2_napi
[i
].napi
);
654 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
658 if (netif_running(bp
->dev
)) {
659 bnx2_napi_disable(bp
);
660 netif_tx_disable(bp
->dev
);
662 bnx2_disable_int_sync(bp
);
663 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
667 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
669 if (atomic_dec_and_test(&bp
->intr_sem
)) {
670 if (netif_running(bp
->dev
)) {
671 netif_tx_wake_all_queues(bp
->dev
);
672 spin_lock_bh(&bp
->phy_lock
);
674 netif_carrier_on(bp
->dev
);
675 spin_unlock_bh(&bp
->phy_lock
);
676 bnx2_napi_enable(bp
);
685 bnx2_free_tx_mem(struct bnx2
*bp
)
689 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
690 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
691 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
693 if (txr
->tx_desc_ring
) {
694 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
696 txr
->tx_desc_mapping
);
697 txr
->tx_desc_ring
= NULL
;
699 kfree(txr
->tx_buf_ring
);
700 txr
->tx_buf_ring
= NULL
;
705 bnx2_free_rx_mem(struct bnx2
*bp
)
709 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
710 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
711 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
714 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
715 if (rxr
->rx_desc_ring
[j
])
716 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
717 rxr
->rx_desc_ring
[j
],
718 rxr
->rx_desc_mapping
[j
]);
719 rxr
->rx_desc_ring
[j
] = NULL
;
721 vfree(rxr
->rx_buf_ring
);
722 rxr
->rx_buf_ring
= NULL
;
724 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
725 if (rxr
->rx_pg_desc_ring
[j
])
726 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
727 rxr
->rx_pg_desc_ring
[j
],
728 rxr
->rx_pg_desc_mapping
[j
]);
729 rxr
->rx_pg_desc_ring
[j
] = NULL
;
731 vfree(rxr
->rx_pg_ring
);
732 rxr
->rx_pg_ring
= NULL
;
737 bnx2_alloc_tx_mem(struct bnx2
*bp
)
741 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
742 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
743 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
745 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
746 if (txr
->tx_buf_ring
== NULL
)
750 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
751 &txr
->tx_desc_mapping
, GFP_KERNEL
);
752 if (txr
->tx_desc_ring
== NULL
)
759 bnx2_alloc_rx_mem(struct bnx2
*bp
)
763 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
764 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
765 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
769 vzalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
770 if (rxr
->rx_buf_ring
== NULL
)
773 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
774 rxr
->rx_desc_ring
[j
] =
775 dma_alloc_coherent(&bp
->pdev
->dev
,
777 &rxr
->rx_desc_mapping
[j
],
779 if (rxr
->rx_desc_ring
[j
] == NULL
)
784 if (bp
->rx_pg_ring_size
) {
785 rxr
->rx_pg_ring
= vzalloc(SW_RXPG_RING_SIZE
*
787 if (rxr
->rx_pg_ring
== NULL
)
792 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
793 rxr
->rx_pg_desc_ring
[j
] =
794 dma_alloc_coherent(&bp
->pdev
->dev
,
796 &rxr
->rx_pg_desc_mapping
[j
],
798 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
807 bnx2_free_mem(struct bnx2
*bp
)
810 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
812 bnx2_free_tx_mem(bp
);
813 bnx2_free_rx_mem(bp
);
815 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
816 if (bp
->ctx_blk
[i
]) {
817 dma_free_coherent(&bp
->pdev
->dev
, BCM_PAGE_SIZE
,
819 bp
->ctx_blk_mapping
[i
]);
820 bp
->ctx_blk
[i
] = NULL
;
823 if (bnapi
->status_blk
.msi
) {
824 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
825 bnapi
->status_blk
.msi
,
826 bp
->status_blk_mapping
);
827 bnapi
->status_blk
.msi
= NULL
;
828 bp
->stats_blk
= NULL
;
833 bnx2_alloc_mem(struct bnx2
*bp
)
835 int i
, status_blk_size
, err
;
836 struct bnx2_napi
*bnapi
;
839 /* Combine status and statistics blocks into one allocation. */
840 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
841 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
842 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
843 BNX2_SBLK_MSIX_ALIGN_SIZE
);
844 bp
->status_stats_size
= status_blk_size
+
845 sizeof(struct statistics_block
);
847 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
848 &bp
->status_blk_mapping
, GFP_KERNEL
);
849 if (status_blk
== NULL
)
852 memset(status_blk
, 0, bp
->status_stats_size
);
854 bnapi
= &bp
->bnx2_napi
[0];
855 bnapi
->status_blk
.msi
= status_blk
;
856 bnapi
->hw_tx_cons_ptr
=
857 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
858 bnapi
->hw_rx_cons_ptr
=
859 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
860 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
861 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
862 struct status_block_msix
*sblk
;
864 bnapi
= &bp
->bnx2_napi
[i
];
866 sblk
= (void *) (status_blk
+
867 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
868 bnapi
->status_blk
.msix
= sblk
;
869 bnapi
->hw_tx_cons_ptr
=
870 &sblk
->status_tx_quick_consumer_index
;
871 bnapi
->hw_rx_cons_ptr
=
872 &sblk
->status_rx_quick_consumer_index
;
873 bnapi
->int_num
= i
<< 24;
877 bp
->stats_blk
= status_blk
+ status_blk_size
;
879 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
881 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
882 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
883 if (bp
->ctx_pages
== 0)
885 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
886 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
888 &bp
->ctx_blk_mapping
[i
],
890 if (bp
->ctx_blk
[i
] == NULL
)
895 err
= bnx2_alloc_rx_mem(bp
);
899 err
= bnx2_alloc_tx_mem(bp
);
911 bnx2_report_fw_link(struct bnx2
*bp
)
913 u32 fw_link_status
= 0;
915 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
921 switch (bp
->line_speed
) {
923 if (bp
->duplex
== DUPLEX_HALF
)
924 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
926 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
929 if (bp
->duplex
== DUPLEX_HALF
)
930 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
932 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
935 if (bp
->duplex
== DUPLEX_HALF
)
936 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
938 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
941 if (bp
->duplex
== DUPLEX_HALF
)
942 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
944 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
948 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
951 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
953 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
954 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
956 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
957 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
958 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
960 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
964 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
966 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
970 bnx2_xceiver_str(struct bnx2
*bp
)
972 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
973 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
978 bnx2_report_link(struct bnx2
*bp
)
981 netif_carrier_on(bp
->dev
);
982 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
983 bnx2_xceiver_str(bp
),
985 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
988 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
989 pr_cont(", receive ");
990 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
991 pr_cont("& transmit ");
994 pr_cont(", transmit ");
996 pr_cont("flow control ON");
1000 netif_carrier_off(bp
->dev
);
1001 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1002 bnx2_xceiver_str(bp
));
1005 bnx2_report_fw_link(bp
);
1009 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1011 u32 local_adv
, remote_adv
;
1014 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1015 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1017 if (bp
->duplex
== DUPLEX_FULL
) {
1018 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1023 if (bp
->duplex
!= DUPLEX_FULL
) {
1027 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1028 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1031 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1032 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1033 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1034 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1035 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1039 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1040 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1042 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1043 u32 new_local_adv
= 0;
1044 u32 new_remote_adv
= 0;
1046 if (local_adv
& ADVERTISE_1000XPAUSE
)
1047 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1048 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1049 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1050 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1051 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1052 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1053 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1055 local_adv
= new_local_adv
;
1056 remote_adv
= new_remote_adv
;
1059 /* See Table 28B-3 of 802.3ab-1999 spec. */
1060 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1061 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1062 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1063 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1065 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1066 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1070 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1071 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1075 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1076 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1077 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1079 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1085 bnx2_5709s_linkup(struct bnx2
*bp
)
1091 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1092 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1093 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1095 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1096 bp
->line_speed
= bp
->req_line_speed
;
1097 bp
->duplex
= bp
->req_duplex
;
1100 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1102 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1103 bp
->line_speed
= SPEED_10
;
1105 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1106 bp
->line_speed
= SPEED_100
;
1108 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1109 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1110 bp
->line_speed
= SPEED_1000
;
1112 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1113 bp
->line_speed
= SPEED_2500
;
1116 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1117 bp
->duplex
= DUPLEX_FULL
;
1119 bp
->duplex
= DUPLEX_HALF
;
1124 bnx2_5708s_linkup(struct bnx2
*bp
)
1129 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1130 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1131 case BCM5708S_1000X_STAT1_SPEED_10
:
1132 bp
->line_speed
= SPEED_10
;
1134 case BCM5708S_1000X_STAT1_SPEED_100
:
1135 bp
->line_speed
= SPEED_100
;
1137 case BCM5708S_1000X_STAT1_SPEED_1G
:
1138 bp
->line_speed
= SPEED_1000
;
1140 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1141 bp
->line_speed
= SPEED_2500
;
1144 if (val
& BCM5708S_1000X_STAT1_FD
)
1145 bp
->duplex
= DUPLEX_FULL
;
1147 bp
->duplex
= DUPLEX_HALF
;
1153 bnx2_5706s_linkup(struct bnx2
*bp
)
1155 u32 bmcr
, local_adv
, remote_adv
, common
;
1158 bp
->line_speed
= SPEED_1000
;
1160 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1161 if (bmcr
& BMCR_FULLDPLX
) {
1162 bp
->duplex
= DUPLEX_FULL
;
1165 bp
->duplex
= DUPLEX_HALF
;
1168 if (!(bmcr
& BMCR_ANENABLE
)) {
1172 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1173 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1175 common
= local_adv
& remote_adv
;
1176 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1178 if (common
& ADVERTISE_1000XFULL
) {
1179 bp
->duplex
= DUPLEX_FULL
;
1182 bp
->duplex
= DUPLEX_HALF
;
1190 bnx2_copper_linkup(struct bnx2
*bp
)
1194 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1195 if (bmcr
& BMCR_ANENABLE
) {
1196 u32 local_adv
, remote_adv
, common
;
1198 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1199 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1201 common
= local_adv
& (remote_adv
>> 2);
1202 if (common
& ADVERTISE_1000FULL
) {
1203 bp
->line_speed
= SPEED_1000
;
1204 bp
->duplex
= DUPLEX_FULL
;
1206 else if (common
& ADVERTISE_1000HALF
) {
1207 bp
->line_speed
= SPEED_1000
;
1208 bp
->duplex
= DUPLEX_HALF
;
1211 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1212 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1214 common
= local_adv
& remote_adv
;
1215 if (common
& ADVERTISE_100FULL
) {
1216 bp
->line_speed
= SPEED_100
;
1217 bp
->duplex
= DUPLEX_FULL
;
1219 else if (common
& ADVERTISE_100HALF
) {
1220 bp
->line_speed
= SPEED_100
;
1221 bp
->duplex
= DUPLEX_HALF
;
1223 else if (common
& ADVERTISE_10FULL
) {
1224 bp
->line_speed
= SPEED_10
;
1225 bp
->duplex
= DUPLEX_FULL
;
1227 else if (common
& ADVERTISE_10HALF
) {
1228 bp
->line_speed
= SPEED_10
;
1229 bp
->duplex
= DUPLEX_HALF
;
1238 if (bmcr
& BMCR_SPEED100
) {
1239 bp
->line_speed
= SPEED_100
;
1242 bp
->line_speed
= SPEED_10
;
1244 if (bmcr
& BMCR_FULLDPLX
) {
1245 bp
->duplex
= DUPLEX_FULL
;
1248 bp
->duplex
= DUPLEX_HALF
;
1256 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1258 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1260 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1261 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1264 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1265 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1267 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1271 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1276 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1279 bnx2_init_rx_context(bp
, cid
);
1284 bnx2_set_mac_link(struct bnx2
*bp
)
1288 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1289 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1290 (bp
->duplex
== DUPLEX_HALF
)) {
1291 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1294 /* Configure the EMAC mode register. */
1295 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1297 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1298 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1299 BNX2_EMAC_MODE_25G_MODE
);
1302 switch (bp
->line_speed
) {
1304 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1305 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1310 val
|= BNX2_EMAC_MODE_PORT_MII
;
1313 val
|= BNX2_EMAC_MODE_25G_MODE
;
1316 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1321 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1324 /* Set the MAC to operate in the appropriate duplex mode. */
1325 if (bp
->duplex
== DUPLEX_HALF
)
1326 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1327 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1329 /* Enable/disable rx PAUSE. */
1330 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1332 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1333 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1334 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1336 /* Enable/disable tx PAUSE. */
1337 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1338 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1340 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1341 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1342 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1344 /* Acknowledge the interrupt. */
1345 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1347 bnx2_init_all_rx_contexts(bp
);
1351 bnx2_enable_bmsr1(struct bnx2
*bp
)
1353 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1354 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1355 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1356 MII_BNX2_BLK_ADDR_GP_STATUS
);
1360 bnx2_disable_bmsr1(struct bnx2
*bp
)
1362 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1363 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1364 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1365 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1369 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1374 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1377 if (bp
->autoneg
& AUTONEG_SPEED
)
1378 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1380 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1381 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1383 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1384 if (!(up1
& BCM5708S_UP1_2G5
)) {
1385 up1
|= BCM5708S_UP1_2G5
;
1386 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1390 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1391 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1392 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1398 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1403 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1406 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1407 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1409 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1410 if (up1
& BCM5708S_UP1_2G5
) {
1411 up1
&= ~BCM5708S_UP1_2G5
;
1412 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1416 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1417 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1418 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1424 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1426 u32
uninitialized_var(bmcr
);
1429 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1432 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1435 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1436 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1437 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1438 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1439 val
|= MII_BNX2_SD_MISC1_FORCE
|
1440 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1441 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1444 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1445 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1446 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1448 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1449 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1451 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1459 if (bp
->autoneg
& AUTONEG_SPEED
) {
1460 bmcr
&= ~BMCR_ANENABLE
;
1461 if (bp
->req_duplex
== DUPLEX_FULL
)
1462 bmcr
|= BMCR_FULLDPLX
;
1464 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1468 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1470 u32
uninitialized_var(bmcr
);
1473 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1476 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1479 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1480 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1481 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1482 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1483 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1486 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1487 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1488 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1490 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1491 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1493 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1501 if (bp
->autoneg
& AUTONEG_SPEED
)
1502 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1503 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1507 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1511 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1512 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1514 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1516 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1520 bnx2_set_link(struct bnx2
*bp
)
1525 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1530 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1533 link_up
= bp
->link_up
;
1535 bnx2_enable_bmsr1(bp
);
1536 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1537 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1538 bnx2_disable_bmsr1(bp
);
1540 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1541 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1544 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1545 bnx2_5706s_force_link_dn(bp
, 0);
1546 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1548 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1550 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1551 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1552 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1554 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1555 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1556 bmsr
|= BMSR_LSTATUS
;
1558 bmsr
&= ~BMSR_LSTATUS
;
1561 if (bmsr
& BMSR_LSTATUS
) {
1564 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1565 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1566 bnx2_5706s_linkup(bp
);
1567 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1568 bnx2_5708s_linkup(bp
);
1569 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1570 bnx2_5709s_linkup(bp
);
1573 bnx2_copper_linkup(bp
);
1575 bnx2_resolve_flow_ctrl(bp
);
1578 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1579 (bp
->autoneg
& AUTONEG_SPEED
))
1580 bnx2_disable_forced_2g5(bp
);
1582 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1585 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1586 bmcr
|= BMCR_ANENABLE
;
1587 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1589 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1594 if (bp
->link_up
!= link_up
) {
1595 bnx2_report_link(bp
);
1598 bnx2_set_mac_link(bp
);
1604 bnx2_reset_phy(struct bnx2
*bp
)
1609 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1611 #define PHY_RESET_MAX_WAIT 100
1612 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1615 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1616 if (!(reg
& BMCR_RESET
)) {
1621 if (i
== PHY_RESET_MAX_WAIT
) {
1628 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1632 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1633 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1635 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1636 adv
= ADVERTISE_1000XPAUSE
;
1639 adv
= ADVERTISE_PAUSE_CAP
;
1642 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1643 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1644 adv
= ADVERTISE_1000XPSE_ASYM
;
1647 adv
= ADVERTISE_PAUSE_ASYM
;
1650 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1651 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1652 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1655 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1661 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1664 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1665 __releases(&bp
->phy_lock
)
1666 __acquires(&bp
->phy_lock
)
1668 u32 speed_arg
= 0, pause_adv
;
1670 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1672 if (bp
->autoneg
& AUTONEG_SPEED
) {
1673 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1674 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1675 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1676 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1677 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1678 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1679 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1680 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1681 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1682 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1683 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1684 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1685 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1687 if (bp
->req_line_speed
== SPEED_2500
)
1688 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1689 else if (bp
->req_line_speed
== SPEED_1000
)
1690 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1691 else if (bp
->req_line_speed
== SPEED_100
) {
1692 if (bp
->req_duplex
== DUPLEX_FULL
)
1693 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1695 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1696 } else if (bp
->req_line_speed
== SPEED_10
) {
1697 if (bp
->req_duplex
== DUPLEX_FULL
)
1698 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1700 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1704 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1705 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1706 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1707 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1709 if (port
== PORT_TP
)
1710 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1711 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1713 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1715 spin_unlock_bh(&bp
->phy_lock
);
1716 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1717 spin_lock_bh(&bp
->phy_lock
);
1723 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1724 __releases(&bp
->phy_lock
)
1725 __acquires(&bp
->phy_lock
)
1730 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1731 return bnx2_setup_remote_phy(bp
, port
);
1733 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1735 int force_link_down
= 0;
1737 if (bp
->req_line_speed
== SPEED_2500
) {
1738 if (!bnx2_test_and_enable_2g5(bp
))
1739 force_link_down
= 1;
1740 } else if (bp
->req_line_speed
== SPEED_1000
) {
1741 if (bnx2_test_and_disable_2g5(bp
))
1742 force_link_down
= 1;
1744 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1745 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1747 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1748 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1749 new_bmcr
|= BMCR_SPEED1000
;
1751 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1752 if (bp
->req_line_speed
== SPEED_2500
)
1753 bnx2_enable_forced_2g5(bp
);
1754 else if (bp
->req_line_speed
== SPEED_1000
) {
1755 bnx2_disable_forced_2g5(bp
);
1756 new_bmcr
&= ~0x2000;
1759 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1760 if (bp
->req_line_speed
== SPEED_2500
)
1761 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1763 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1766 if (bp
->req_duplex
== DUPLEX_FULL
) {
1767 adv
|= ADVERTISE_1000XFULL
;
1768 new_bmcr
|= BMCR_FULLDPLX
;
1771 adv
|= ADVERTISE_1000XHALF
;
1772 new_bmcr
&= ~BMCR_FULLDPLX
;
1774 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1775 /* Force a link down visible on the other side */
1777 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1778 ~(ADVERTISE_1000XFULL
|
1779 ADVERTISE_1000XHALF
));
1780 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1781 BMCR_ANRESTART
| BMCR_ANENABLE
);
1784 netif_carrier_off(bp
->dev
);
1785 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1786 bnx2_report_link(bp
);
1788 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1789 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1791 bnx2_resolve_flow_ctrl(bp
);
1792 bnx2_set_mac_link(bp
);
1797 bnx2_test_and_enable_2g5(bp
);
1799 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1800 new_adv
|= ADVERTISE_1000XFULL
;
1802 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1804 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1805 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1807 bp
->serdes_an_pending
= 0;
1808 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1809 /* Force a link down visible on the other side */
1811 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1812 spin_unlock_bh(&bp
->phy_lock
);
1814 spin_lock_bh(&bp
->phy_lock
);
1817 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1818 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1820 /* Speed up link-up time when the link partner
1821 * does not autonegotiate which is very common
1822 * in blade servers. Some blade servers use
1823 * IPMI for kerboard input and it's important
1824 * to minimize link disruptions. Autoneg. involves
1825 * exchanging base pages plus 3 next pages and
1826 * normally completes in about 120 msec.
1828 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1829 bp
->serdes_an_pending
= 1;
1830 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1832 bnx2_resolve_flow_ctrl(bp
);
1833 bnx2_set_mac_link(bp
);
1839 #define ETHTOOL_ALL_FIBRE_SPEED \
1840 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1841 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1842 (ADVERTISED_1000baseT_Full)
1844 #define ETHTOOL_ALL_COPPER_SPEED \
1845 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1846 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1847 ADVERTISED_1000baseT_Full)
1849 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1850 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1852 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1855 bnx2_set_default_remote_link(struct bnx2
*bp
)
1859 if (bp
->phy_port
== PORT_TP
)
1860 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1862 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1864 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1865 bp
->req_line_speed
= 0;
1866 bp
->autoneg
|= AUTONEG_SPEED
;
1867 bp
->advertising
= ADVERTISED_Autoneg
;
1868 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1869 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1870 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1871 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1872 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1873 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1874 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1875 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1876 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1877 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1878 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1879 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1882 bp
->advertising
= 0;
1883 bp
->req_duplex
= DUPLEX_FULL
;
1884 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1885 bp
->req_line_speed
= SPEED_10
;
1886 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1887 bp
->req_duplex
= DUPLEX_HALF
;
1889 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1890 bp
->req_line_speed
= SPEED_100
;
1891 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1892 bp
->req_duplex
= DUPLEX_HALF
;
1894 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1895 bp
->req_line_speed
= SPEED_1000
;
1896 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1897 bp
->req_line_speed
= SPEED_2500
;
1902 bnx2_set_default_link(struct bnx2
*bp
)
1904 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1905 bnx2_set_default_remote_link(bp
);
1909 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1910 bp
->req_line_speed
= 0;
1911 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1914 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1916 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1917 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1918 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1920 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1921 bp
->req_duplex
= DUPLEX_FULL
;
1924 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1928 bnx2_send_heart_beat(struct bnx2
*bp
)
1933 spin_lock(&bp
->indirect_lock
);
1934 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1935 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1936 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1937 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1938 spin_unlock(&bp
->indirect_lock
);
1942 bnx2_remote_phy_event(struct bnx2
*bp
)
1945 u8 link_up
= bp
->link_up
;
1948 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1950 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1951 bnx2_send_heart_beat(bp
);
1953 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1955 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1961 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1962 bp
->duplex
= DUPLEX_FULL
;
1964 case BNX2_LINK_STATUS_10HALF
:
1965 bp
->duplex
= DUPLEX_HALF
;
1966 case BNX2_LINK_STATUS_10FULL
:
1967 bp
->line_speed
= SPEED_10
;
1969 case BNX2_LINK_STATUS_100HALF
:
1970 bp
->duplex
= DUPLEX_HALF
;
1971 case BNX2_LINK_STATUS_100BASE_T4
:
1972 case BNX2_LINK_STATUS_100FULL
:
1973 bp
->line_speed
= SPEED_100
;
1975 case BNX2_LINK_STATUS_1000HALF
:
1976 bp
->duplex
= DUPLEX_HALF
;
1977 case BNX2_LINK_STATUS_1000FULL
:
1978 bp
->line_speed
= SPEED_1000
;
1980 case BNX2_LINK_STATUS_2500HALF
:
1981 bp
->duplex
= DUPLEX_HALF
;
1982 case BNX2_LINK_STATUS_2500FULL
:
1983 bp
->line_speed
= SPEED_2500
;
1991 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1992 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1993 if (bp
->duplex
== DUPLEX_FULL
)
1994 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1996 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1997 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1998 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1999 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2002 old_port
= bp
->phy_port
;
2003 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2004 bp
->phy_port
= PORT_FIBRE
;
2006 bp
->phy_port
= PORT_TP
;
2008 if (old_port
!= bp
->phy_port
)
2009 bnx2_set_default_link(bp
);
2012 if (bp
->link_up
!= link_up
)
2013 bnx2_report_link(bp
);
2015 bnx2_set_mac_link(bp
);
2019 bnx2_set_remote_link(struct bnx2
*bp
)
2023 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2025 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2026 bnx2_remote_phy_event(bp
);
2028 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2030 bnx2_send_heart_beat(bp
);
2037 bnx2_setup_copper_phy(struct bnx2
*bp
)
2038 __releases(&bp
->phy_lock
)
2039 __acquires(&bp
->phy_lock
)
2044 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2046 if (bp
->autoneg
& AUTONEG_SPEED
) {
2047 u32 adv_reg
, adv1000_reg
;
2048 u32 new_adv_reg
= 0;
2049 u32 new_adv1000_reg
= 0;
2051 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2052 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2053 ADVERTISE_PAUSE_ASYM
);
2055 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2056 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2058 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2059 new_adv_reg
|= ADVERTISE_10HALF
;
2060 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2061 new_adv_reg
|= ADVERTISE_10FULL
;
2062 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2063 new_adv_reg
|= ADVERTISE_100HALF
;
2064 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2065 new_adv_reg
|= ADVERTISE_100FULL
;
2066 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2067 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2069 new_adv_reg
|= ADVERTISE_CSMA
;
2071 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2073 if ((adv1000_reg
!= new_adv1000_reg
) ||
2074 (adv_reg
!= new_adv_reg
) ||
2075 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2077 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2078 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2079 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2082 else if (bp
->link_up
) {
2083 /* Flow ctrl may have changed from auto to forced */
2084 /* or vice-versa. */
2086 bnx2_resolve_flow_ctrl(bp
);
2087 bnx2_set_mac_link(bp
);
2093 if (bp
->req_line_speed
== SPEED_100
) {
2094 new_bmcr
|= BMCR_SPEED100
;
2096 if (bp
->req_duplex
== DUPLEX_FULL
) {
2097 new_bmcr
|= BMCR_FULLDPLX
;
2099 if (new_bmcr
!= bmcr
) {
2102 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2103 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2105 if (bmsr
& BMSR_LSTATUS
) {
2106 /* Force link down */
2107 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2108 spin_unlock_bh(&bp
->phy_lock
);
2110 spin_lock_bh(&bp
->phy_lock
);
2112 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2113 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2116 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2118 /* Normally, the new speed is setup after the link has
2119 * gone down and up again. In some cases, link will not go
2120 * down so we need to set up the new speed here.
2122 if (bmsr
& BMSR_LSTATUS
) {
2123 bp
->line_speed
= bp
->req_line_speed
;
2124 bp
->duplex
= bp
->req_duplex
;
2125 bnx2_resolve_flow_ctrl(bp
);
2126 bnx2_set_mac_link(bp
);
2129 bnx2_resolve_flow_ctrl(bp
);
2130 bnx2_set_mac_link(bp
);
2136 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2137 __releases(&bp
->phy_lock
)
2138 __acquires(&bp
->phy_lock
)
2140 if (bp
->loopback
== MAC_LOOPBACK
)
2143 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2144 return bnx2_setup_serdes_phy(bp
, port
);
2147 return bnx2_setup_copper_phy(bp
);
2152 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2156 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2157 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2158 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2159 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2160 bp
->mii_lpa
= MII_LPA
+ 0x10;
2161 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2163 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2164 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2166 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2170 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2172 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2173 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2174 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2175 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2177 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2178 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2179 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2180 val
|= BCM5708S_UP1_2G5
;
2182 val
&= ~BCM5708S_UP1_2G5
;
2183 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2185 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2186 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2187 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2188 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2190 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2192 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2193 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2194 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2196 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2202 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2209 bp
->mii_up1
= BCM5708S_UP1
;
2211 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2212 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2213 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2215 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2216 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2217 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2219 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2220 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2221 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2223 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2224 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2225 val
|= BCM5708S_UP1_2G5
;
2226 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2229 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2230 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2231 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2232 /* increase tx signal amplitude */
2233 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2234 BCM5708S_BLK_ADDR_TX_MISC
);
2235 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2236 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2237 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2238 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2241 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2242 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2247 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2248 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2249 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2250 BCM5708S_BLK_ADDR_TX_MISC
);
2251 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2252 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2253 BCM5708S_BLK_ADDR_DIG
);
2260 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2265 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2267 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2268 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2270 if (bp
->dev
->mtu
> 1500) {
2273 /* Set extended packet length bit */
2274 bnx2_write_phy(bp
, 0x18, 0x7);
2275 bnx2_read_phy(bp
, 0x18, &val
);
2276 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2278 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2279 bnx2_read_phy(bp
, 0x1c, &val
);
2280 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2285 bnx2_write_phy(bp
, 0x18, 0x7);
2286 bnx2_read_phy(bp
, 0x18, &val
);
2287 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2289 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2290 bnx2_read_phy(bp
, 0x1c, &val
);
2291 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2298 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2305 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2306 bnx2_write_phy(bp
, 0x18, 0x0c00);
2307 bnx2_write_phy(bp
, 0x17, 0x000a);
2308 bnx2_write_phy(bp
, 0x15, 0x310b);
2309 bnx2_write_phy(bp
, 0x17, 0x201f);
2310 bnx2_write_phy(bp
, 0x15, 0x9506);
2311 bnx2_write_phy(bp
, 0x17, 0x401f);
2312 bnx2_write_phy(bp
, 0x15, 0x14e2);
2313 bnx2_write_phy(bp
, 0x18, 0x0400);
2316 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2317 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2318 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2319 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2321 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2324 if (bp
->dev
->mtu
> 1500) {
2325 /* Set extended packet length bit */
2326 bnx2_write_phy(bp
, 0x18, 0x7);
2327 bnx2_read_phy(bp
, 0x18, &val
);
2328 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2330 bnx2_read_phy(bp
, 0x10, &val
);
2331 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2334 bnx2_write_phy(bp
, 0x18, 0x7);
2335 bnx2_read_phy(bp
, 0x18, &val
);
2336 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2338 bnx2_read_phy(bp
, 0x10, &val
);
2339 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2342 /* ethernet@wirespeed */
2343 bnx2_write_phy(bp
, 0x18, 0x7007);
2344 bnx2_read_phy(bp
, 0x18, &val
);
2345 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2351 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2352 __releases(&bp
->phy_lock
)
2353 __acquires(&bp
->phy_lock
)
2358 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2359 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2361 bp
->mii_bmcr
= MII_BMCR
;
2362 bp
->mii_bmsr
= MII_BMSR
;
2363 bp
->mii_bmsr1
= MII_BMSR
;
2364 bp
->mii_adv
= MII_ADVERTISE
;
2365 bp
->mii_lpa
= MII_LPA
;
2367 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2369 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2372 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2373 bp
->phy_id
= val
<< 16;
2374 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2375 bp
->phy_id
|= val
& 0xffff;
2377 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2378 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2379 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2380 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2381 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2382 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2383 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2386 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2391 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2397 bnx2_set_mac_loopback(struct bnx2
*bp
)
2401 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2402 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2403 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2404 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2409 static int bnx2_test_link(struct bnx2
*);
2412 bnx2_set_phy_loopback(struct bnx2
*bp
)
2417 spin_lock_bh(&bp
->phy_lock
);
2418 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2420 spin_unlock_bh(&bp
->phy_lock
);
2424 for (i
= 0; i
< 10; i
++) {
2425 if (bnx2_test_link(bp
) == 0)
2430 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2431 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2432 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2433 BNX2_EMAC_MODE_25G_MODE
);
2435 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2436 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2442 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2448 msg_data
|= bp
->fw_wr_seq
;
2450 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2455 /* wait for an acknowledgement. */
2456 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2459 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2461 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2464 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2467 /* If we timed out, inform the firmware that this is the case. */
2468 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2470 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2472 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2473 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2475 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2480 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2487 bnx2_init_5709_context(struct bnx2
*bp
)
2492 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2493 val
|= (BCM_PAGE_BITS
- 8) << 16;
2494 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2495 for (i
= 0; i
< 10; i
++) {
2496 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2497 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2501 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2504 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2508 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2512 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2513 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2514 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2515 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2516 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2517 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2518 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2519 for (j
= 0; j
< 10; j
++) {
2521 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2522 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2526 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2535 bnx2_init_context(struct bnx2
*bp
)
2541 u32 vcid_addr
, pcid_addr
, offset
;
2546 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2549 vcid_addr
= GET_PCID_ADDR(vcid
);
2551 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2556 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2559 vcid_addr
= GET_CID_ADDR(vcid
);
2560 pcid_addr
= vcid_addr
;
2563 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2564 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2565 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2567 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2568 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2570 /* Zero out the context. */
2571 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2572 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2578 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2584 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2585 if (good_mbuf
== NULL
) {
2586 pr_err("Failed to allocate memory in %s\n", __func__
);
2590 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2591 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2595 /* Allocate a bunch of mbufs and save the good ones in an array. */
2596 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2597 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2598 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2599 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2601 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2603 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2605 /* The addresses with Bit 9 set are bad memory blocks. */
2606 if (!(val
& (1 << 9))) {
2607 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2611 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2614 /* Free the good ones back to the mbuf pool thus discarding
2615 * all the bad ones. */
2616 while (good_mbuf_cnt
) {
2619 val
= good_mbuf
[good_mbuf_cnt
];
2620 val
= (val
<< 9) | val
| 1;
2622 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2629 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2633 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2635 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2637 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2638 (mac_addr
[4] << 8) | mac_addr
[5];
2640 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2644 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2647 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2648 struct rx_bd
*rxbd
=
2649 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2650 struct page
*page
= alloc_page(gfp
);
2654 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2655 PCI_DMA_FROMDEVICE
);
2656 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2662 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2663 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2664 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2669 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2671 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2672 struct page
*page
= rx_pg
->page
;
2677 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2678 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2685 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2687 struct sk_buff
*skb
;
2688 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2690 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2691 unsigned long align
;
2693 skb
= __netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
, gfp
);
2698 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2699 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2701 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, bp
->rx_buf_use_size
,
2702 PCI_DMA_FROMDEVICE
);
2703 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2709 rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2710 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2712 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2713 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2715 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2721 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2723 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2724 u32 new_link_state
, old_link_state
;
2727 new_link_state
= sblk
->status_attn_bits
& event
;
2728 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2729 if (new_link_state
!= old_link_state
) {
2731 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2733 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2741 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2743 spin_lock(&bp
->phy_lock
);
2745 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2747 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2748 bnx2_set_remote_link(bp
);
2750 spin_unlock(&bp
->phy_lock
);
2755 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2759 /* Tell compiler that status block fields can change. */
2761 cons
= *bnapi
->hw_tx_cons_ptr
;
2763 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2769 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2771 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2772 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2773 int tx_pkt
= 0, index
;
2774 struct netdev_queue
*txq
;
2776 index
= (bnapi
- bp
->bnx2_napi
);
2777 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2779 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2780 sw_cons
= txr
->tx_cons
;
2782 while (sw_cons
!= hw_cons
) {
2783 struct sw_tx_bd
*tx_buf
;
2784 struct sk_buff
*skb
;
2787 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2789 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2792 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2793 prefetch(&skb
->end
);
2795 /* partial BD completions possible with TSO packets */
2796 if (tx_buf
->is_gso
) {
2797 u16 last_idx
, last_ring_idx
;
2799 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2800 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2801 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2804 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2809 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2810 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2813 last
= tx_buf
->nr_frags
;
2815 for (i
= 0; i
< last
; i
++) {
2816 sw_cons
= NEXT_TX_BD(sw_cons
);
2818 dma_unmap_page(&bp
->pdev
->dev
,
2820 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2822 skb_shinfo(skb
)->frags
[i
].size
,
2826 sw_cons
= NEXT_TX_BD(sw_cons
);
2830 if (tx_pkt
== budget
)
2833 if (hw_cons
== sw_cons
)
2834 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2837 txr
->hw_tx_cons
= hw_cons
;
2838 txr
->tx_cons
= sw_cons
;
2840 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2841 * before checking for netif_tx_queue_stopped(). Without the
2842 * memory barrier, there is a small possibility that bnx2_start_xmit()
2843 * will miss it and cause the queue to be stopped forever.
2847 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2848 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2849 __netif_tx_lock(txq
, smp_processor_id());
2850 if ((netif_tx_queue_stopped(txq
)) &&
2851 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2852 netif_tx_wake_queue(txq
);
2853 __netif_tx_unlock(txq
);
2860 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2861 struct sk_buff
*skb
, int count
)
2863 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2864 struct rx_bd
*cons_bd
, *prod_bd
;
2867 u16 cons
= rxr
->rx_pg_cons
;
2869 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2871 /* The caller was unable to allocate a new page to replace the
2872 * last one in the frags array, so we need to recycle that page
2873 * and then free the skb.
2877 struct skb_shared_info
*shinfo
;
2879 shinfo
= skb_shinfo(skb
);
2881 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2882 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2884 cons_rx_pg
->page
= page
;
2888 hw_prod
= rxr
->rx_pg_prod
;
2890 for (i
= 0; i
< count
; i
++) {
2891 prod
= RX_PG_RING_IDX(hw_prod
);
2893 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2894 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2895 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2896 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2899 prod_rx_pg
->page
= cons_rx_pg
->page
;
2900 cons_rx_pg
->page
= NULL
;
2901 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2902 dma_unmap_addr(cons_rx_pg
, mapping
));
2904 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2905 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2908 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2909 hw_prod
= NEXT_RX_BD(hw_prod
);
2911 rxr
->rx_pg_prod
= hw_prod
;
2912 rxr
->rx_pg_cons
= cons
;
2916 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2917 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2919 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2920 struct rx_bd
*cons_bd
, *prod_bd
;
2922 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2923 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2925 dma_sync_single_for_device(&bp
->pdev
->dev
,
2926 dma_unmap_addr(cons_rx_buf
, mapping
),
2927 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2929 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2931 prod_rx_buf
->skb
= skb
;
2932 prod_rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2937 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2938 dma_unmap_addr(cons_rx_buf
, mapping
));
2940 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2941 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2942 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2943 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2947 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2948 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2952 u16 prod
= ring_idx
& 0xffff;
2954 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
, GFP_ATOMIC
);
2955 if (unlikely(err
)) {
2956 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2958 unsigned int raw_len
= len
+ 4;
2959 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2961 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2966 skb_reserve(skb
, BNX2_RX_OFFSET
);
2967 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
2968 PCI_DMA_FROMDEVICE
);
2974 unsigned int i
, frag_len
, frag_size
, pages
;
2975 struct sw_pg
*rx_pg
;
2976 u16 pg_cons
= rxr
->rx_pg_cons
;
2977 u16 pg_prod
= rxr
->rx_pg_prod
;
2979 frag_size
= len
+ 4 - hdr_len
;
2980 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2981 skb_put(skb
, hdr_len
);
2983 for (i
= 0; i
< pages
; i
++) {
2984 dma_addr_t mapping_old
;
2986 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2987 if (unlikely(frag_len
<= 4)) {
2988 unsigned int tail
= 4 - frag_len
;
2990 rxr
->rx_pg_cons
= pg_cons
;
2991 rxr
->rx_pg_prod
= pg_prod
;
2992 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
2999 &skb_shinfo(skb
)->frags
[i
- 1];
3001 skb
->data_len
-= tail
;
3002 skb
->truesize
-= tail
;
3006 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3008 /* Don't unmap yet. If we're unable to allocate a new
3009 * page, we need to recycle the page and the DMA addr.
3011 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3015 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3018 err
= bnx2_alloc_rx_page(bp
, rxr
,
3019 RX_PG_RING_IDX(pg_prod
),
3021 if (unlikely(err
)) {
3022 rxr
->rx_pg_cons
= pg_cons
;
3023 rxr
->rx_pg_prod
= pg_prod
;
3024 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3029 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3030 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3032 frag_size
-= frag_len
;
3033 skb
->data_len
+= frag_len
;
3034 skb
->truesize
+= frag_len
;
3035 skb
->len
+= frag_len
;
3037 pg_prod
= NEXT_RX_BD(pg_prod
);
3038 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3040 rxr
->rx_pg_prod
= pg_prod
;
3041 rxr
->rx_pg_cons
= pg_cons
;
3047 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3051 /* Tell compiler that status block fields can change. */
3053 cons
= *bnapi
->hw_rx_cons_ptr
;
3055 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3061 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3063 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3064 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3065 struct l2_fhdr
*rx_hdr
;
3066 int rx_pkt
= 0, pg_ring_used
= 0;
3068 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3069 sw_cons
= rxr
->rx_cons
;
3070 sw_prod
= rxr
->rx_prod
;
3072 /* Memory barrier necessary as speculative reads of the rx
3073 * buffer can be ahead of the index in the status block
3076 while (sw_cons
!= hw_cons
) {
3077 unsigned int len
, hdr_len
;
3079 struct sw_bd
*rx_buf
, *next_rx_buf
;
3080 struct sk_buff
*skb
;
3081 dma_addr_t dma_addr
;
3083 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3084 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3086 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3091 &rxr
->rx_buf_ring
[RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3092 prefetch(next_rx_buf
->desc
);
3096 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3098 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3099 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3100 PCI_DMA_FROMDEVICE
);
3102 rx_hdr
= rx_buf
->desc
;
3103 len
= rx_hdr
->l2_fhdr_pkt_len
;
3104 status
= rx_hdr
->l2_fhdr_status
;
3107 if (status
& L2_FHDR_STATUS_SPLIT
) {
3108 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3110 } else if (len
> bp
->rx_jumbo_thresh
) {
3111 hdr_len
= bp
->rx_jumbo_thresh
;
3115 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3116 L2_FHDR_ERRORS_PHY_DECODE
|
3117 L2_FHDR_ERRORS_ALIGNMENT
|
3118 L2_FHDR_ERRORS_TOO_SHORT
|
3119 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3121 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3126 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3128 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3135 if (len
<= bp
->rx_copy_thresh
) {
3136 struct sk_buff
*new_skb
;
3138 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3139 if (new_skb
== NULL
) {
3140 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3146 skb_copy_from_linear_data_offset(skb
,
3148 new_skb
->data
, len
+ 6);
3149 skb_reserve(new_skb
, 6);
3150 skb_put(new_skb
, len
);
3152 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3153 sw_ring_cons
, sw_ring_prod
);
3156 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3157 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3160 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3161 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3162 __vlan_hwaccel_put_tag(skb
, rx_hdr
->l2_fhdr_vlan_tag
);
3164 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3166 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3167 (ntohs(skb
->protocol
) != 0x8100)) {
3174 skb_checksum_none_assert(skb
);
3176 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3177 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3179 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3180 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3181 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3183 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3184 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3185 L2_FHDR_STATUS_USE_RXHASH
))
3186 skb
->rxhash
= rx_hdr
->l2_fhdr_hash
;
3188 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3189 napi_gro_receive(&bnapi
->napi
, skb
);
3193 sw_cons
= NEXT_RX_BD(sw_cons
);
3194 sw_prod
= NEXT_RX_BD(sw_prod
);
3196 if ((rx_pkt
== budget
))
3199 /* Refresh hw_cons to see if there is new work */
3200 if (sw_cons
== hw_cons
) {
3201 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3205 rxr
->rx_cons
= sw_cons
;
3206 rxr
->rx_prod
= sw_prod
;
3209 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3211 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3213 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3221 /* MSI ISR - The only difference between this and the INTx ISR
3222 * is that the MSI interrupt is always serviced.
3225 bnx2_msi(int irq
, void *dev_instance
)
3227 struct bnx2_napi
*bnapi
= dev_instance
;
3228 struct bnx2
*bp
= bnapi
->bp
;
3230 prefetch(bnapi
->status_blk
.msi
);
3231 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3232 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3233 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3235 /* Return here if interrupt is disabled. */
3236 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3239 napi_schedule(&bnapi
->napi
);
3245 bnx2_msi_1shot(int irq
, void *dev_instance
)
3247 struct bnx2_napi
*bnapi
= dev_instance
;
3248 struct bnx2
*bp
= bnapi
->bp
;
3250 prefetch(bnapi
->status_blk
.msi
);
3252 /* Return here if interrupt is disabled. */
3253 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3256 napi_schedule(&bnapi
->napi
);
3262 bnx2_interrupt(int irq
, void *dev_instance
)
3264 struct bnx2_napi
*bnapi
= dev_instance
;
3265 struct bnx2
*bp
= bnapi
->bp
;
3266 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3268 /* When using INTx, it is possible for the interrupt to arrive
3269 * at the CPU before the status block posted prior to the
3270 * interrupt. Reading a register will flush the status block.
3271 * When using MSI, the MSI message will always complete after
3272 * the status block write.
3274 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3275 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3276 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3279 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3280 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3281 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3283 /* Read back to deassert IRQ immediately to avoid too many
3284 * spurious interrupts.
3286 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3288 /* Return here if interrupt is shared and is disabled. */
3289 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3292 if (napi_schedule_prep(&bnapi
->napi
)) {
3293 bnapi
->last_status_idx
= sblk
->status_idx
;
3294 __napi_schedule(&bnapi
->napi
);
3301 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3303 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3304 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3306 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3307 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3312 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3313 STATUS_ATTN_BITS_TIMER_ABORT)
3316 bnx2_has_work(struct bnx2_napi
*bnapi
)
3318 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3320 if (bnx2_has_fast_work(bnapi
))
3324 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3328 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3329 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3336 bnx2_chk_missed_msi(struct bnx2
*bp
)
3338 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3341 if (bnx2_has_work(bnapi
)) {
3342 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3343 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3346 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3347 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3348 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3349 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3350 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3354 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3358 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3360 struct cnic_ops
*c_ops
;
3362 if (!bnapi
->cnic_present
)
3366 c_ops
= rcu_dereference(bp
->cnic_ops
);
3368 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3369 bnapi
->status_blk
.msi
);
3374 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3376 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3377 u32 status_attn_bits
= sblk
->status_attn_bits
;
3378 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3380 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3381 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3383 bnx2_phy_int(bp
, bnapi
);
3385 /* This is needed to take care of transient status
3386 * during link changes.
3388 REG_WR(bp
, BNX2_HC_COMMAND
,
3389 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3390 REG_RD(bp
, BNX2_HC_COMMAND
);
3394 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3395 int work_done
, int budget
)
3397 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3398 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3400 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3401 bnx2_tx_int(bp
, bnapi
, 0);
3403 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3404 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3409 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3411 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3412 struct bnx2
*bp
= bnapi
->bp
;
3414 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3417 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3418 if (unlikely(work_done
>= budget
))
3421 bnapi
->last_status_idx
= sblk
->status_idx
;
3422 /* status idx must be read before checking for more work. */
3424 if (likely(!bnx2_has_fast_work(bnapi
))) {
3426 napi_complete(napi
);
3427 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3428 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3429 bnapi
->last_status_idx
);
3436 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3438 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3439 struct bnx2
*bp
= bnapi
->bp
;
3441 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3444 bnx2_poll_link(bp
, bnapi
);
3446 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3449 bnx2_poll_cnic(bp
, bnapi
);
3452 /* bnapi->last_status_idx is used below to tell the hw how
3453 * much work has been processed, so we must read it before
3454 * checking for more work.
3456 bnapi
->last_status_idx
= sblk
->status_idx
;
3458 if (unlikely(work_done
>= budget
))
3462 if (likely(!bnx2_has_work(bnapi
))) {
3463 napi_complete(napi
);
3464 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3465 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3466 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3467 bnapi
->last_status_idx
);
3470 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3471 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3472 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3473 bnapi
->last_status_idx
);
3475 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3476 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3477 bnapi
->last_status_idx
);
3485 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3486 * from set_multicast.
3489 bnx2_set_rx_mode(struct net_device
*dev
)
3491 struct bnx2
*bp
= netdev_priv(dev
);
3492 u32 rx_mode
, sort_mode
;
3493 struct netdev_hw_addr
*ha
;
3496 if (!netif_running(dev
))
3499 spin_lock_bh(&bp
->phy_lock
);
3501 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3502 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3503 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3504 if (!(dev
->features
& NETIF_F_HW_VLAN_RX
) &&
3505 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3506 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3507 if (dev
->flags
& IFF_PROMISC
) {
3508 /* Promiscuous mode. */
3509 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3510 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3511 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3513 else if (dev
->flags
& IFF_ALLMULTI
) {
3514 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3515 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3518 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3521 /* Accept one or more multicast(s). */
3522 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3527 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3529 netdev_for_each_mc_addr(ha
, dev
) {
3530 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3532 regidx
= (bit
& 0xe0) >> 5;
3534 mc_filter
[regidx
] |= (1 << bit
);
3537 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3538 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3542 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3545 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3546 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3547 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3548 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3549 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3550 /* Add all entries into to the match filter list */
3552 netdev_for_each_uc_addr(ha
, dev
) {
3553 bnx2_set_mac_addr(bp
, ha
->addr
,
3554 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3556 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3562 if (rx_mode
!= bp
->rx_mode
) {
3563 bp
->rx_mode
= rx_mode
;
3564 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3567 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3568 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3569 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3571 spin_unlock_bh(&bp
->phy_lock
);
3574 static int __devinit
3575 check_fw_section(const struct firmware
*fw
,
3576 const struct bnx2_fw_file_section
*section
,
3577 u32 alignment
, bool non_empty
)
3579 u32 offset
= be32_to_cpu(section
->offset
);
3580 u32 len
= be32_to_cpu(section
->len
);
3582 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3584 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3585 len
& (alignment
- 1))
3590 static int __devinit
3591 check_mips_fw_entry(const struct firmware
*fw
,
3592 const struct bnx2_mips_fw_file_entry
*entry
)
3594 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3595 check_fw_section(fw
, &entry
->data
, 4, false) ||
3596 check_fw_section(fw
, &entry
->rodata
, 4, false))
3601 static int __devinit
3602 bnx2_request_firmware(struct bnx2
*bp
)
3604 const char *mips_fw_file
, *rv2p_fw_file
;
3605 const struct bnx2_mips_fw_file
*mips_fw
;
3606 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3609 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3610 mips_fw_file
= FW_MIPS_FILE_09
;
3611 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3612 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3613 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3615 rv2p_fw_file
= FW_RV2P_FILE_09
;
3617 mips_fw_file
= FW_MIPS_FILE_06
;
3618 rv2p_fw_file
= FW_RV2P_FILE_06
;
3621 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3623 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3627 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3629 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3632 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3633 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3634 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3635 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3636 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3637 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3638 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3639 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3640 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3643 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3644 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3645 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3646 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3654 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3657 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3658 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3659 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3666 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3667 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3669 u32 rv2p_code_len
, file_offset
;
3674 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3675 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3677 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3679 if (rv2p_proc
== RV2P_PROC1
) {
3680 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3681 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3683 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3684 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3687 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3688 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3690 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3693 val
= (i
/ 8) | cmd
;
3694 REG_WR(bp
, addr
, val
);
3697 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3698 for (i
= 0; i
< 8; i
++) {
3701 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3702 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3703 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3704 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3705 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3706 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3707 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3709 val
= (loc
/ 2) | cmd
;
3710 REG_WR(bp
, addr
, val
);
3714 /* Reset the processor, un-stall is done later. */
3715 if (rv2p_proc
== RV2P_PROC1
) {
3716 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3719 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3726 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3727 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3729 u32 addr
, len
, file_offset
;
3735 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3736 val
|= cpu_reg
->mode_value_halt
;
3737 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3738 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3740 /* Load the Text area. */
3741 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3742 len
= be32_to_cpu(fw_entry
->text
.len
);
3743 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3744 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3746 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3750 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3751 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3754 /* Load the Data area. */
3755 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3756 len
= be32_to_cpu(fw_entry
->data
.len
);
3757 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3758 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3760 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3764 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3765 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3768 /* Load the Read-Only area. */
3769 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3770 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3771 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3772 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3774 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3778 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3779 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3782 /* Clear the pre-fetch instruction. */
3783 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3785 val
= be32_to_cpu(fw_entry
->start_addr
);
3786 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3788 /* Start the CPU. */
3789 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3790 val
&= ~cpu_reg
->mode_value_halt
;
3791 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3792 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3798 bnx2_init_cpus(struct bnx2
*bp
)
3800 const struct bnx2_mips_fw_file
*mips_fw
=
3801 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3802 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3803 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3806 /* Initialize the RV2P processor. */
3807 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3808 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3810 /* Initialize the RX Processor. */
3811 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3815 /* Initialize the TX Processor. */
3816 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3820 /* Initialize the TX Patch-up Processor. */
3821 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3825 /* Initialize the Completion Processor. */
3826 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3830 /* Initialize the Command Processor. */
3831 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3838 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3842 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3848 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3849 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3850 PCI_PM_CTRL_PME_STATUS
);
3852 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3853 /* delay required during transition out of D3hot */
3856 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3857 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3858 val
&= ~BNX2_EMAC_MODE_MPKT
;
3859 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3861 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3862 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3863 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3874 autoneg
= bp
->autoneg
;
3875 advertising
= bp
->advertising
;
3877 if (bp
->phy_port
== PORT_TP
) {
3878 bp
->autoneg
= AUTONEG_SPEED
;
3879 bp
->advertising
= ADVERTISED_10baseT_Half
|
3880 ADVERTISED_10baseT_Full
|
3881 ADVERTISED_100baseT_Half
|
3882 ADVERTISED_100baseT_Full
|
3886 spin_lock_bh(&bp
->phy_lock
);
3887 bnx2_setup_phy(bp
, bp
->phy_port
);
3888 spin_unlock_bh(&bp
->phy_lock
);
3890 bp
->autoneg
= autoneg
;
3891 bp
->advertising
= advertising
;
3893 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3895 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3897 /* Enable port mode. */
3898 val
&= ~BNX2_EMAC_MODE_PORT
;
3899 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3900 BNX2_EMAC_MODE_ACPI_RCVD
|
3901 BNX2_EMAC_MODE_MPKT
;
3902 if (bp
->phy_port
== PORT_TP
)
3903 val
|= BNX2_EMAC_MODE_PORT_MII
;
3905 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3906 if (bp
->line_speed
== SPEED_2500
)
3907 val
|= BNX2_EMAC_MODE_25G_MODE
;
3910 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3912 /* receive all multicast */
3913 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3914 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3917 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3918 BNX2_EMAC_RX_MODE_SORT_MODE
);
3920 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3921 BNX2_RPM_SORT_USER0_MC_EN
;
3922 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3923 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3924 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3925 BNX2_RPM_SORT_USER0_ENA
);
3927 /* Need to enable EMAC and RPM for WOL. */
3928 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3929 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3930 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3931 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3933 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3934 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3935 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3937 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3940 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3943 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3944 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3947 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3948 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3949 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3958 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3960 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3963 /* No more memory access after this point until
3964 * device is brought back to D0.
3976 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3981 /* Request access to the flash interface. */
3982 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3983 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3984 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3985 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3991 if (j
>= NVRAM_TIMEOUT_COUNT
)
3998 bnx2_release_nvram_lock(struct bnx2
*bp
)
4003 /* Relinquish nvram interface. */
4004 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4006 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4007 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4008 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4014 if (j
>= NVRAM_TIMEOUT_COUNT
)
4022 bnx2_enable_nvram_write(struct bnx2
*bp
)
4026 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4027 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4029 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4032 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4033 REG_WR(bp
, BNX2_NVM_COMMAND
,
4034 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4036 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4039 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4040 if (val
& BNX2_NVM_COMMAND_DONE
)
4044 if (j
>= NVRAM_TIMEOUT_COUNT
)
4051 bnx2_disable_nvram_write(struct bnx2
*bp
)
4055 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4056 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4061 bnx2_enable_nvram_access(struct bnx2
*bp
)
4065 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4066 /* Enable both bits, even on read. */
4067 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4068 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4072 bnx2_disable_nvram_access(struct bnx2
*bp
)
4076 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4077 /* Disable both bits, even after read. */
4078 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4079 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4080 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4084 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4089 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4090 /* Buffered flash, no erase needed */
4093 /* Build an erase command */
4094 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4095 BNX2_NVM_COMMAND_DOIT
;
4097 /* Need to clear DONE bit separately. */
4098 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4100 /* Address of the NVRAM to read from. */
4101 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4103 /* Issue an erase command. */
4104 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4106 /* Wait for completion. */
4107 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4112 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4113 if (val
& BNX2_NVM_COMMAND_DONE
)
4117 if (j
>= NVRAM_TIMEOUT_COUNT
)
4124 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4129 /* Build the command word. */
4130 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4132 /* Calculate an offset of a buffered flash, not needed for 5709. */
4133 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4134 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4135 bp
->flash_info
->page_bits
) +
4136 (offset
% bp
->flash_info
->page_size
);
4139 /* Need to clear DONE bit separately. */
4140 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4142 /* Address of the NVRAM to read from. */
4143 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4145 /* Issue a read command. */
4146 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4148 /* Wait for completion. */
4149 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4154 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4155 if (val
& BNX2_NVM_COMMAND_DONE
) {
4156 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4157 memcpy(ret_val
, &v
, 4);
4161 if (j
>= NVRAM_TIMEOUT_COUNT
)
4169 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4175 /* Build the command word. */
4176 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4178 /* Calculate an offset of a buffered flash, not needed for 5709. */
4179 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4180 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4181 bp
->flash_info
->page_bits
) +
4182 (offset
% bp
->flash_info
->page_size
);
4185 /* Need to clear DONE bit separately. */
4186 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4188 memcpy(&val32
, val
, 4);
4190 /* Write the data. */
4191 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4193 /* Address of the NVRAM to write to. */
4194 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4196 /* Issue the write command. */
4197 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4199 /* Wait for completion. */
4200 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4203 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4206 if (j
>= NVRAM_TIMEOUT_COUNT
)
4213 bnx2_init_nvram(struct bnx2
*bp
)
4216 int j
, entry_count
, rc
= 0;
4217 const struct flash_spec
*flash
;
4219 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4220 bp
->flash_info
= &flash_5709
;
4221 goto get_flash_size
;
4224 /* Determine the selected interface. */
4225 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4227 entry_count
= ARRAY_SIZE(flash_table
);
4229 if (val
& 0x40000000) {
4231 /* Flash interface has been reconfigured */
4232 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4234 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4235 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4236 bp
->flash_info
= flash
;
4243 /* Not yet been reconfigured */
4245 if (val
& (1 << 23))
4246 mask
= FLASH_BACKUP_STRAP_MASK
;
4248 mask
= FLASH_STRAP_MASK
;
4250 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4253 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4254 bp
->flash_info
= flash
;
4256 /* Request access to the flash interface. */
4257 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4260 /* Enable access to flash interface */
4261 bnx2_enable_nvram_access(bp
);
4263 /* Reconfigure the flash interface */
4264 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4265 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4266 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4267 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4269 /* Disable access to flash interface */
4270 bnx2_disable_nvram_access(bp
);
4271 bnx2_release_nvram_lock(bp
);
4276 } /* if (val & 0x40000000) */
4278 if (j
== entry_count
) {
4279 bp
->flash_info
= NULL
;
4280 pr_alert("Unknown flash/EEPROM type\n");
4285 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4286 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4288 bp
->flash_size
= val
;
4290 bp
->flash_size
= bp
->flash_info
->total_size
;
4296 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4300 u32 cmd_flags
, offset32
, len32
, extra
;
4305 /* Request access to the flash interface. */
4306 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4309 /* Enable access to flash interface */
4310 bnx2_enable_nvram_access(bp
);
4323 pre_len
= 4 - (offset
& 3);
4325 if (pre_len
>= len32
) {
4327 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4328 BNX2_NVM_COMMAND_LAST
;
4331 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4334 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4339 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4346 extra
= 4 - (len32
& 3);
4347 len32
= (len32
+ 4) & ~3;
4354 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4356 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4357 BNX2_NVM_COMMAND_LAST
;
4359 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4361 memcpy(ret_buf
, buf
, 4 - extra
);
4363 else if (len32
> 0) {
4366 /* Read the first word. */
4370 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4372 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4374 /* Advance to the next dword. */
4379 while (len32
> 4 && rc
== 0) {
4380 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4382 /* Advance to the next dword. */
4391 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4392 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4394 memcpy(ret_buf
, buf
, 4 - extra
);
4397 /* Disable access to flash interface */
4398 bnx2_disable_nvram_access(bp
);
4400 bnx2_release_nvram_lock(bp
);
4406 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4409 u32 written
, offset32
, len32
;
4410 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4412 int align_start
, align_end
;
4417 align_start
= align_end
= 0;
4419 if ((align_start
= (offset32
& 3))) {
4421 len32
+= align_start
;
4424 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4429 align_end
= 4 - (len32
& 3);
4431 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4435 if (align_start
|| align_end
) {
4436 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4437 if (align_buf
== NULL
)
4440 memcpy(align_buf
, start
, 4);
4443 memcpy(align_buf
+ len32
- 4, end
, 4);
4445 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4449 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4450 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4451 if (flash_buffer
== NULL
) {
4453 goto nvram_write_end
;
4458 while ((written
< len32
) && (rc
== 0)) {
4459 u32 page_start
, page_end
, data_start
, data_end
;
4460 u32 addr
, cmd_flags
;
4463 /* Find the page_start addr */
4464 page_start
= offset32
+ written
;
4465 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4466 /* Find the page_end addr */
4467 page_end
= page_start
+ bp
->flash_info
->page_size
;
4468 /* Find the data_start addr */
4469 data_start
= (written
== 0) ? offset32
: page_start
;
4470 /* Find the data_end addr */
4471 data_end
= (page_end
> offset32
+ len32
) ?
4472 (offset32
+ len32
) : page_end
;
4474 /* Request access to the flash interface. */
4475 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4476 goto nvram_write_end
;
4478 /* Enable access to flash interface */
4479 bnx2_enable_nvram_access(bp
);
4481 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4482 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4485 /* Read the whole page into the buffer
4486 * (non-buffer flash only) */
4487 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4488 if (j
== (bp
->flash_info
->page_size
- 4)) {
4489 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4491 rc
= bnx2_nvram_read_dword(bp
,
4497 goto nvram_write_end
;
4503 /* Enable writes to flash interface (unlock write-protect) */
4504 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4505 goto nvram_write_end
;
4507 /* Loop to write back the buffer data from page_start to
4510 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4511 /* Erase the page */
4512 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4513 goto nvram_write_end
;
4515 /* Re-enable the write again for the actual write */
4516 bnx2_enable_nvram_write(bp
);
4518 for (addr
= page_start
; addr
< data_start
;
4519 addr
+= 4, i
+= 4) {
4521 rc
= bnx2_nvram_write_dword(bp
, addr
,
4522 &flash_buffer
[i
], cmd_flags
);
4525 goto nvram_write_end
;
4531 /* Loop to write the new data from data_start to data_end */
4532 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4533 if ((addr
== page_end
- 4) ||
4534 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4535 (addr
== data_end
- 4))) {
4537 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4539 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4543 goto nvram_write_end
;
4549 /* Loop to write back the buffer data from data_end
4551 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4552 for (addr
= data_end
; addr
< page_end
;
4553 addr
+= 4, i
+= 4) {
4555 if (addr
== page_end
-4) {
4556 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4558 rc
= bnx2_nvram_write_dword(bp
, addr
,
4559 &flash_buffer
[i
], cmd_flags
);
4562 goto nvram_write_end
;
4568 /* Disable writes to flash interface (lock write-protect) */
4569 bnx2_disable_nvram_write(bp
);
4571 /* Disable access to flash interface */
4572 bnx2_disable_nvram_access(bp
);
4573 bnx2_release_nvram_lock(bp
);
4575 /* Increment written */
4576 written
+= data_end
- data_start
;
4580 kfree(flash_buffer
);
4586 bnx2_init_fw_cap(struct bnx2
*bp
)
4590 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4591 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4593 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4594 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4596 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4597 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4600 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4601 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4602 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4605 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4606 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4609 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4611 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4612 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4613 bp
->phy_port
= PORT_FIBRE
;
4615 bp
->phy_port
= PORT_TP
;
4617 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4618 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4621 if (netif_running(bp
->dev
) && sig
)
4622 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4626 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4628 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4630 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4631 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4635 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4641 /* Wait for the current PCI transaction to complete before
4642 * issuing a reset. */
4643 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
4644 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
4645 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4646 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4647 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4648 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4649 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4650 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4653 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4654 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4655 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4656 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4658 for (i
= 0; i
< 100; i
++) {
4660 val
= REG_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4661 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4666 /* Wait for the firmware to tell us it is ok to issue a reset. */
4667 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4669 /* Deposit a driver reset signature so the firmware knows that
4670 * this is a soft reset. */
4671 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4672 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4674 /* Do a dummy read to force the chip to complete all current transaction
4675 * before we issue a reset. */
4676 val
= REG_RD(bp
, BNX2_MISC_ID
);
4678 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4679 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4680 REG_RD(bp
, BNX2_MISC_COMMAND
);
4683 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4684 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4686 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4689 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4690 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4691 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4694 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4696 /* Reading back any register after chip reset will hang the
4697 * bus on 5706 A0 and A1. The msleep below provides plenty
4698 * of margin for write posting.
4700 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4701 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4704 /* Reset takes approximate 30 usec */
4705 for (i
= 0; i
< 10; i
++) {
4706 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4707 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4708 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4713 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4714 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4715 pr_err("Chip reset did not complete\n");
4720 /* Make sure byte swapping is properly configured. */
4721 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4722 if (val
!= 0x01020304) {
4723 pr_err("Chip not in correct endian mode\n");
4727 /* Wait for the firmware to finish its initialization. */
4728 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4732 spin_lock_bh(&bp
->phy_lock
);
4733 old_port
= bp
->phy_port
;
4734 bnx2_init_fw_cap(bp
);
4735 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4736 old_port
!= bp
->phy_port
)
4737 bnx2_set_default_remote_link(bp
);
4738 spin_unlock_bh(&bp
->phy_lock
);
4740 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4741 /* Adjust the voltage regular to two steps lower. The default
4742 * of this register is 0x0000000e. */
4743 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4745 /* Remove bad rbuf memory from the free pool. */
4746 rc
= bnx2_alloc_bad_rbuf(bp
);
4749 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4750 bnx2_setup_msix_tbl(bp
);
4751 /* Prevent MSIX table reads and write from timing out */
4752 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4753 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4760 bnx2_init_chip(struct bnx2
*bp
)
4765 /* Make sure the interrupt is not active. */
4766 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4768 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4769 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4771 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4773 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4774 DMA_READ_CHANS
<< 12 |
4775 DMA_WRITE_CHANS
<< 16;
4777 val
|= (0x2 << 20) | (1 << 11);
4779 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4782 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4783 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4784 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4786 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4788 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4789 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4790 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4791 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4794 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4797 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4799 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4800 val16
& ~PCI_X_CMD_ERO
);
4803 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4804 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4805 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4806 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4808 /* Initialize context mapping and zero out the quick contexts. The
4809 * context block must have already been enabled. */
4810 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4811 rc
= bnx2_init_5709_context(bp
);
4815 bnx2_init_context(bp
);
4817 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4820 bnx2_init_nvram(bp
);
4822 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4824 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4825 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4826 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4827 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4828 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4829 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4830 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4833 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4835 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4836 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4837 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4839 val
= (BCM_PAGE_BITS
- 8) << 24;
4840 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4842 /* Configure page size. */
4843 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4844 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4845 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4846 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4848 val
= bp
->mac_addr
[0] +
4849 (bp
->mac_addr
[1] << 8) +
4850 (bp
->mac_addr
[2] << 16) +
4852 (bp
->mac_addr
[4] << 8) +
4853 (bp
->mac_addr
[5] << 16);
4854 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4856 /* Program the MTU. Also include 4 bytes for CRC32. */
4858 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4859 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4860 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4861 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4866 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4867 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4868 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4870 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4871 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4872 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4874 bp
->idle_chk_status_idx
= 0xffff;
4876 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4878 /* Set up how to generate a link change interrupt. */
4879 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4881 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4882 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4883 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4885 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4886 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4887 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4888 (u64
) bp
->stats_blk_mapping
>> 32);
4890 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4891 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4893 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4894 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4896 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4897 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4899 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4901 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4903 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4904 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4906 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4907 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4909 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4910 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4912 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4913 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4915 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4916 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4918 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4919 BNX2_HC_CONFIG_COLLECT_STATS
;
4922 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4923 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4924 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4926 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4929 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4930 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
4932 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4934 if (bp
->rx_ticks
< 25)
4935 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
4937 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
4939 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4940 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4941 BNX2_HC_SB_CONFIG_1
;
4944 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4945 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4946 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4948 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4949 (bp
->tx_quick_cons_trip_int
<< 16) |
4950 bp
->tx_quick_cons_trip
);
4952 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4953 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4955 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4956 (bp
->rx_quick_cons_trip_int
<< 16) |
4957 bp
->rx_quick_cons_trip
);
4959 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4960 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4963 /* Clear internal stats counters. */
4964 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4966 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4968 /* Initialize the receive filter. */
4969 bnx2_set_rx_mode(bp
->dev
);
4971 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4972 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4973 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4974 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4976 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4979 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4980 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4984 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4990 bnx2_clear_ring_states(struct bnx2
*bp
)
4992 struct bnx2_napi
*bnapi
;
4993 struct bnx2_tx_ring_info
*txr
;
4994 struct bnx2_rx_ring_info
*rxr
;
4997 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4998 bnapi
= &bp
->bnx2_napi
[i
];
4999 txr
= &bnapi
->tx_ring
;
5000 rxr
= &bnapi
->rx_ring
;
5003 txr
->hw_tx_cons
= 0;
5004 rxr
->rx_prod_bseq
= 0;
5007 rxr
->rx_pg_prod
= 0;
5008 rxr
->rx_pg_cons
= 0;
5013 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5015 u32 val
, offset0
, offset1
, offset2
, offset3
;
5016 u32 cid_addr
= GET_CID_ADDR(cid
);
5018 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5019 offset0
= BNX2_L2CTX_TYPE_XI
;
5020 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5021 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5022 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5024 offset0
= BNX2_L2CTX_TYPE
;
5025 offset1
= BNX2_L2CTX_CMD_TYPE
;
5026 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5027 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5029 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5030 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5032 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5033 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5035 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5036 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5038 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5039 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5043 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5047 struct bnx2_napi
*bnapi
;
5048 struct bnx2_tx_ring_info
*txr
;
5050 bnapi
= &bp
->bnx2_napi
[ring_num
];
5051 txr
= &bnapi
->tx_ring
;
5056 cid
= TX_TSS_CID
+ ring_num
- 1;
5058 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5060 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5062 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5063 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5066 txr
->tx_prod_bseq
= 0;
5068 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5069 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5071 bnx2_init_tx_context(bp
, cid
, txr
);
5075 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5081 for (i
= 0; i
< num_rings
; i
++) {
5084 rxbd
= &rx_ring
[i
][0];
5085 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5086 rxbd
->rx_bd_len
= buf_size
;
5087 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5089 if (i
== (num_rings
- 1))
5093 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5094 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5099 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5102 u16 prod
, ring_prod
;
5103 u32 cid
, rx_cid_addr
, val
;
5104 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5105 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5110 cid
= RX_RSS_CID
+ ring_num
- 1;
5112 rx_cid_addr
= GET_CID_ADDR(cid
);
5114 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5115 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5117 bnx2_init_rx_context(bp
, cid
);
5119 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5120 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5121 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5124 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5125 if (bp
->rx_pg_ring_size
) {
5126 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5127 rxr
->rx_pg_desc_mapping
,
5128 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5129 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5130 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5131 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5132 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5134 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5135 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5137 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5138 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5140 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5141 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5144 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5145 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5147 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5148 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5150 ring_prod
= prod
= rxr
->rx_pg_prod
;
5151 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5152 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5153 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5154 ring_num
, i
, bp
->rx_pg_ring_size
);
5157 prod
= NEXT_RX_BD(prod
);
5158 ring_prod
= RX_PG_RING_IDX(prod
);
5160 rxr
->rx_pg_prod
= prod
;
5162 ring_prod
= prod
= rxr
->rx_prod
;
5163 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5164 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5165 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5166 ring_num
, i
, bp
->rx_ring_size
);
5169 prod
= NEXT_RX_BD(prod
);
5170 ring_prod
= RX_RING_IDX(prod
);
5172 rxr
->rx_prod
= prod
;
5174 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5175 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5176 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5178 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5179 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5181 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5185 bnx2_init_all_rings(struct bnx2
*bp
)
5190 bnx2_clear_ring_states(bp
);
5192 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5193 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5194 bnx2_init_tx_ring(bp
, i
);
5196 if (bp
->num_tx_rings
> 1)
5197 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5200 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5201 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5203 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5204 bnx2_init_rx_ring(bp
, i
);
5206 if (bp
->num_rx_rings
> 1) {
5209 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5210 int shift
= (i
% 8) << 2;
5212 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5214 REG_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5215 REG_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5216 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5217 BNX2_RLUP_RSS_COMMAND_WRITE
|
5218 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5223 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5224 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5226 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5231 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5233 u32 max
, num_rings
= 1;
5235 while (ring_size
> MAX_RX_DESC_CNT
) {
5236 ring_size
-= MAX_RX_DESC_CNT
;
5239 /* round to next power of 2 */
5241 while ((max
& num_rings
) == 0)
5244 if (num_rings
!= max
)
5251 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5253 u32 rx_size
, rx_space
, jumbo_size
;
5255 /* 8 for CRC and VLAN */
5256 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5258 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5259 sizeof(struct skb_shared_info
);
5261 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5262 bp
->rx_pg_ring_size
= 0;
5263 bp
->rx_max_pg_ring
= 0;
5264 bp
->rx_max_pg_ring_idx
= 0;
5265 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5266 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5268 jumbo_size
= size
* pages
;
5269 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5270 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5272 bp
->rx_pg_ring_size
= jumbo_size
;
5273 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5275 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5276 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5277 bp
->rx_copy_thresh
= 0;
5280 bp
->rx_buf_use_size
= rx_size
;
5282 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5283 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5284 bp
->rx_ring_size
= size
;
5285 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5286 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5290 bnx2_free_tx_skbs(struct bnx2
*bp
)
5294 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5295 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5296 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5299 if (txr
->tx_buf_ring
== NULL
)
5302 for (j
= 0; j
< TX_DESC_CNT
; ) {
5303 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5304 struct sk_buff
*skb
= tx_buf
->skb
;
5312 dma_unmap_single(&bp
->pdev
->dev
,
5313 dma_unmap_addr(tx_buf
, mapping
),
5319 last
= tx_buf
->nr_frags
;
5321 for (k
= 0; k
< last
; k
++, j
++) {
5322 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5323 dma_unmap_page(&bp
->pdev
->dev
,
5324 dma_unmap_addr(tx_buf
, mapping
),
5325 skb_shinfo(skb
)->frags
[k
].size
,
5334 bnx2_free_rx_skbs(struct bnx2
*bp
)
5338 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5339 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5340 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5343 if (rxr
->rx_buf_ring
== NULL
)
5346 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5347 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5348 struct sk_buff
*skb
= rx_buf
->skb
;
5353 dma_unmap_single(&bp
->pdev
->dev
,
5354 dma_unmap_addr(rx_buf
, mapping
),
5355 bp
->rx_buf_use_size
,
5356 PCI_DMA_FROMDEVICE
);
5362 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5363 bnx2_free_rx_page(bp
, rxr
, j
);
5368 bnx2_free_skbs(struct bnx2
*bp
)
5370 bnx2_free_tx_skbs(bp
);
5371 bnx2_free_rx_skbs(bp
);
5375 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5379 rc
= bnx2_reset_chip(bp
, reset_code
);
5384 if ((rc
= bnx2_init_chip(bp
)) != 0)
5387 bnx2_init_all_rings(bp
);
5392 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5396 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5399 spin_lock_bh(&bp
->phy_lock
);
5400 bnx2_init_phy(bp
, reset_phy
);
5402 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5403 bnx2_remote_phy_event(bp
);
5404 spin_unlock_bh(&bp
->phy_lock
);
5409 bnx2_shutdown_chip(struct bnx2
*bp
)
5413 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5414 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5416 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5418 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5420 return bnx2_reset_chip(bp
, reset_code
);
5424 bnx2_test_registers(struct bnx2
*bp
)
5428 static const struct {
5431 #define BNX2_FL_NOT_5709 1
5435 { 0x006c, 0, 0x00000000, 0x0000003f },
5436 { 0x0090, 0, 0xffffffff, 0x00000000 },
5437 { 0x0094, 0, 0x00000000, 0x00000000 },
5439 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5440 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5441 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5442 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5443 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5444 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5445 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5446 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5447 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5449 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5450 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5451 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5452 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5453 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5454 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5456 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5457 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5458 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5460 { 0x1000, 0, 0x00000000, 0x00000001 },
5461 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5463 { 0x1408, 0, 0x01c00800, 0x00000000 },
5464 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5465 { 0x14a8, 0, 0x00000000, 0x000001ff },
5466 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5467 { 0x14b0, 0, 0x00000002, 0x00000001 },
5468 { 0x14b8, 0, 0x00000000, 0x00000000 },
5469 { 0x14c0, 0, 0x00000000, 0x00000009 },
5470 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5471 { 0x14cc, 0, 0x00000000, 0x00000001 },
5472 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5474 { 0x1800, 0, 0x00000000, 0x00000001 },
5475 { 0x1804, 0, 0x00000000, 0x00000003 },
5477 { 0x2800, 0, 0x00000000, 0x00000001 },
5478 { 0x2804, 0, 0x00000000, 0x00003f01 },
5479 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5480 { 0x2810, 0, 0xffff0000, 0x00000000 },
5481 { 0x2814, 0, 0xffff0000, 0x00000000 },
5482 { 0x2818, 0, 0xffff0000, 0x00000000 },
5483 { 0x281c, 0, 0xffff0000, 0x00000000 },
5484 { 0x2834, 0, 0xffffffff, 0x00000000 },
5485 { 0x2840, 0, 0x00000000, 0xffffffff },
5486 { 0x2844, 0, 0x00000000, 0xffffffff },
5487 { 0x2848, 0, 0xffffffff, 0x00000000 },
5488 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5490 { 0x2c00, 0, 0x00000000, 0x00000011 },
5491 { 0x2c04, 0, 0x00000000, 0x00030007 },
5493 { 0x3c00, 0, 0x00000000, 0x00000001 },
5494 { 0x3c04, 0, 0x00000000, 0x00070000 },
5495 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5496 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5497 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5498 { 0x3c14, 0, 0x00000000, 0xffffffff },
5499 { 0x3c18, 0, 0x00000000, 0xffffffff },
5500 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5501 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5503 { 0x5004, 0, 0x00000000, 0x0000007f },
5504 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5506 { 0x5c00, 0, 0x00000000, 0x00000001 },
5507 { 0x5c04, 0, 0x00000000, 0x0003000f },
5508 { 0x5c08, 0, 0x00000003, 0x00000000 },
5509 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5510 { 0x5c10, 0, 0x00000000, 0xffffffff },
5511 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5512 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5513 { 0x5c88, 0, 0x00000000, 0x00077373 },
5514 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5516 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5517 { 0x680c, 0, 0xffffffff, 0x00000000 },
5518 { 0x6810, 0, 0xffffffff, 0x00000000 },
5519 { 0x6814, 0, 0xffffffff, 0x00000000 },
5520 { 0x6818, 0, 0xffffffff, 0x00000000 },
5521 { 0x681c, 0, 0xffffffff, 0x00000000 },
5522 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5523 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5524 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5525 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5526 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5527 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5528 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5529 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5530 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5531 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5532 { 0x684c, 0, 0xffffffff, 0x00000000 },
5533 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5534 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5535 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5536 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5537 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5538 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5540 { 0xffff, 0, 0x00000000, 0x00000000 },
5545 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5548 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5549 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5550 u16 flags
= reg_tbl
[i
].flags
;
5552 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5555 offset
= (u32
) reg_tbl
[i
].offset
;
5556 rw_mask
= reg_tbl
[i
].rw_mask
;
5557 ro_mask
= reg_tbl
[i
].ro_mask
;
5559 save_val
= readl(bp
->regview
+ offset
);
5561 writel(0, bp
->regview
+ offset
);
5563 val
= readl(bp
->regview
+ offset
);
5564 if ((val
& rw_mask
) != 0) {
5568 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5572 writel(0xffffffff, bp
->regview
+ offset
);
5574 val
= readl(bp
->regview
+ offset
);
5575 if ((val
& rw_mask
) != rw_mask
) {
5579 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5583 writel(save_val
, bp
->regview
+ offset
);
5587 writel(save_val
, bp
->regview
+ offset
);
5595 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5597 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5598 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5601 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5604 for (offset
= 0; offset
< size
; offset
+= 4) {
5606 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5608 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5618 bnx2_test_memory(struct bnx2
*bp
)
5622 static struct mem_entry
{
5625 } mem_tbl_5706
[] = {
5626 { 0x60000, 0x4000 },
5627 { 0xa0000, 0x3000 },
5628 { 0xe0000, 0x4000 },
5629 { 0x120000, 0x4000 },
5630 { 0x1a0000, 0x4000 },
5631 { 0x160000, 0x4000 },
5635 { 0x60000, 0x4000 },
5636 { 0xa0000, 0x3000 },
5637 { 0xe0000, 0x4000 },
5638 { 0x120000, 0x4000 },
5639 { 0x1a0000, 0x4000 },
5642 struct mem_entry
*mem_tbl
;
5644 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5645 mem_tbl
= mem_tbl_5709
;
5647 mem_tbl
= mem_tbl_5706
;
5649 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5650 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5651 mem_tbl
[i
].len
)) != 0) {
5659 #define BNX2_MAC_LOOPBACK 0
5660 #define BNX2_PHY_LOOPBACK 1
5663 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5665 unsigned int pkt_size
, num_pkts
, i
;
5666 struct sk_buff
*skb
, *rx_skb
;
5667 unsigned char *packet
;
5668 u16 rx_start_idx
, rx_idx
;
5671 struct sw_bd
*rx_buf
;
5672 struct l2_fhdr
*rx_hdr
;
5674 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5675 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5676 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5680 txr
= &tx_napi
->tx_ring
;
5681 rxr
= &bnapi
->rx_ring
;
5682 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5683 bp
->loopback
= MAC_LOOPBACK
;
5684 bnx2_set_mac_loopback(bp
);
5686 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5687 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5690 bp
->loopback
= PHY_LOOPBACK
;
5691 bnx2_set_phy_loopback(bp
);
5696 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5697 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5700 packet
= skb_put(skb
, pkt_size
);
5701 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5702 memset(packet
+ 6, 0x0, 8);
5703 for (i
= 14; i
< pkt_size
; i
++)
5704 packet
[i
] = (unsigned char) (i
& 0xff);
5706 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5708 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5713 REG_WR(bp
, BNX2_HC_COMMAND
,
5714 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5716 REG_RD(bp
, BNX2_HC_COMMAND
);
5719 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5723 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5725 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5726 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5727 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5728 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5731 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5732 txr
->tx_prod_bseq
+= pkt_size
;
5734 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5735 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5739 REG_WR(bp
, BNX2_HC_COMMAND
,
5740 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5742 REG_RD(bp
, BNX2_HC_COMMAND
);
5746 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5749 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5750 goto loopback_test_done
;
5752 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5753 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5754 goto loopback_test_done
;
5757 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5758 rx_skb
= rx_buf
->skb
;
5760 rx_hdr
= rx_buf
->desc
;
5761 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5763 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5764 dma_unmap_addr(rx_buf
, mapping
),
5765 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5767 if (rx_hdr
->l2_fhdr_status
&
5768 (L2_FHDR_ERRORS_BAD_CRC
|
5769 L2_FHDR_ERRORS_PHY_DECODE
|
5770 L2_FHDR_ERRORS_ALIGNMENT
|
5771 L2_FHDR_ERRORS_TOO_SHORT
|
5772 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5774 goto loopback_test_done
;
5777 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5778 goto loopback_test_done
;
5781 for (i
= 14; i
< pkt_size
; i
++) {
5782 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5783 goto loopback_test_done
;
5794 #define BNX2_MAC_LOOPBACK_FAILED 1
5795 #define BNX2_PHY_LOOPBACK_FAILED 2
5796 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5797 BNX2_PHY_LOOPBACK_FAILED)
5800 bnx2_test_loopback(struct bnx2
*bp
)
5804 if (!netif_running(bp
->dev
))
5805 return BNX2_LOOPBACK_FAILED
;
5807 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5808 spin_lock_bh(&bp
->phy_lock
);
5809 bnx2_init_phy(bp
, 1);
5810 spin_unlock_bh(&bp
->phy_lock
);
5811 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5812 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5813 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5814 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5818 #define NVRAM_SIZE 0x200
5819 #define CRC32_RESIDUAL 0xdebb20e3
5822 bnx2_test_nvram(struct bnx2
*bp
)
5824 __be32 buf
[NVRAM_SIZE
/ 4];
5825 u8
*data
= (u8
*) buf
;
5829 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5830 goto test_nvram_done
;
5832 magic
= be32_to_cpu(buf
[0]);
5833 if (magic
!= 0x669955aa) {
5835 goto test_nvram_done
;
5838 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5839 goto test_nvram_done
;
5841 csum
= ether_crc_le(0x100, data
);
5842 if (csum
!= CRC32_RESIDUAL
) {
5844 goto test_nvram_done
;
5847 csum
= ether_crc_le(0x100, data
+ 0x100);
5848 if (csum
!= CRC32_RESIDUAL
) {
5857 bnx2_test_link(struct bnx2
*bp
)
5861 if (!netif_running(bp
->dev
))
5864 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5869 spin_lock_bh(&bp
->phy_lock
);
5870 bnx2_enable_bmsr1(bp
);
5871 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5872 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5873 bnx2_disable_bmsr1(bp
);
5874 spin_unlock_bh(&bp
->phy_lock
);
5876 if (bmsr
& BMSR_LSTATUS
) {
5883 bnx2_test_intr(struct bnx2
*bp
)
5888 if (!netif_running(bp
->dev
))
5891 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5893 /* This register is not touched during run-time. */
5894 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5895 REG_RD(bp
, BNX2_HC_COMMAND
);
5897 for (i
= 0; i
< 10; i
++) {
5898 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5904 msleep_interruptible(10);
5912 /* Determining link for parallel detection. */
5914 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5916 u32 mode_ctl
, an_dbg
, exp
;
5918 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5921 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5922 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5924 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5927 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5928 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5929 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5931 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5934 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5935 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5936 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5938 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5945 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5949 spin_lock(&bp
->phy_lock
);
5950 if (bp
->serdes_an_pending
) {
5951 bp
->serdes_an_pending
--;
5953 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5956 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5958 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5960 if (bmcr
& BMCR_ANENABLE
) {
5961 if (bnx2_5706_serdes_has_link(bp
)) {
5962 bmcr
&= ~BMCR_ANENABLE
;
5963 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5964 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5965 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5969 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5970 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5973 bnx2_write_phy(bp
, 0x17, 0x0f01);
5974 bnx2_read_phy(bp
, 0x15, &phy2
);
5978 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5979 bmcr
|= BMCR_ANENABLE
;
5980 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5982 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5985 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5990 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5991 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5992 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5994 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5995 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5996 bnx2_5706s_force_link_dn(bp
, 1);
5997 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6000 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6003 spin_unlock(&bp
->phy_lock
);
6007 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6009 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6012 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6013 bp
->serdes_an_pending
= 0;
6017 spin_lock(&bp
->phy_lock
);
6018 if (bp
->serdes_an_pending
)
6019 bp
->serdes_an_pending
--;
6020 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6023 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6024 if (bmcr
& BMCR_ANENABLE
) {
6025 bnx2_enable_forced_2g5(bp
);
6026 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6028 bnx2_disable_forced_2g5(bp
);
6029 bp
->serdes_an_pending
= 2;
6030 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6034 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6036 spin_unlock(&bp
->phy_lock
);
6040 bnx2_timer(unsigned long data
)
6042 struct bnx2
*bp
= (struct bnx2
*) data
;
6044 if (!netif_running(bp
->dev
))
6047 if (atomic_read(&bp
->intr_sem
) != 0)
6048 goto bnx2_restart_timer
;
6050 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6051 BNX2_FLAG_USING_MSI
)
6052 bnx2_chk_missed_msi(bp
);
6054 bnx2_send_heart_beat(bp
);
6056 bp
->stats_blk
->stat_FwRxDrop
=
6057 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6059 /* workaround occasional corrupted counters */
6060 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6061 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6062 BNX2_HC_COMMAND_STATS_NOW
);
6064 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6065 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6066 bnx2_5706_serdes_timer(bp
);
6068 bnx2_5708_serdes_timer(bp
);
6072 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6076 bnx2_request_irq(struct bnx2
*bp
)
6078 unsigned long flags
;
6079 struct bnx2_irq
*irq
;
6082 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6085 flags
= IRQF_SHARED
;
6087 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6088 irq
= &bp
->irq_tbl
[i
];
6089 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6099 __bnx2_free_irq(struct bnx2
*bp
)
6101 struct bnx2_irq
*irq
;
6104 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6105 irq
= &bp
->irq_tbl
[i
];
6107 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6113 bnx2_free_irq(struct bnx2
*bp
)
6116 __bnx2_free_irq(bp
);
6117 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6118 pci_disable_msi(bp
->pdev
);
6119 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6120 pci_disable_msix(bp
->pdev
);
6122 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6126 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6128 int i
, total_vecs
, rc
;
6129 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6130 struct net_device
*dev
= bp
->dev
;
6131 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6133 bnx2_setup_msix_tbl(bp
);
6134 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6135 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6136 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6138 /* Need to flush the previous three writes to ensure MSI-X
6139 * is setup properly */
6140 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6142 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6143 msix_ent
[i
].entry
= i
;
6144 msix_ent
[i
].vector
= 0;
6147 total_vecs
= msix_vecs
;
6152 while (total_vecs
>= BNX2_MIN_MSIX_VEC
) {
6153 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, total_vecs
);
6163 msix_vecs
= total_vecs
;
6167 bp
->irq_nvecs
= msix_vecs
;
6168 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6169 for (i
= 0; i
< total_vecs
; i
++) {
6170 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6171 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6172 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6177 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6179 int cpus
= num_online_cpus();
6180 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6182 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6183 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6185 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6187 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6188 bnx2_enable_msix(bp
, msix_vecs
);
6190 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6191 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6192 if (pci_enable_msi(bp
->pdev
) == 0) {
6193 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6194 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6195 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6196 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6198 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6200 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6204 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6205 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6207 bp
->num_rx_rings
= bp
->irq_nvecs
;
6208 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6211 /* Called with rtnl_lock */
6213 bnx2_open(struct net_device
*dev
)
6215 struct bnx2
*bp
= netdev_priv(dev
);
6218 netif_carrier_off(dev
);
6220 bnx2_set_power_state(bp
, PCI_D0
);
6221 bnx2_disable_int(bp
);
6223 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6227 bnx2_napi_enable(bp
);
6228 rc
= bnx2_alloc_mem(bp
);
6232 rc
= bnx2_request_irq(bp
);
6236 rc
= bnx2_init_nic(bp
, 1);
6240 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6242 atomic_set(&bp
->intr_sem
, 0);
6244 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6246 bnx2_enable_int(bp
);
6248 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6249 /* Test MSI to make sure it is working
6250 * If MSI test fails, go back to INTx mode
6252 if (bnx2_test_intr(bp
) != 0) {
6253 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6255 bnx2_disable_int(bp
);
6258 bnx2_setup_int_mode(bp
, 1);
6260 rc
= bnx2_init_nic(bp
, 0);
6263 rc
= bnx2_request_irq(bp
);
6266 del_timer_sync(&bp
->timer
);
6269 bnx2_enable_int(bp
);
6272 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6273 netdev_info(dev
, "using MSI\n");
6274 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6275 netdev_info(dev
, "using MSIX\n");
6277 netif_tx_start_all_queues(dev
);
6282 bnx2_napi_disable(bp
);
6291 bnx2_reset_task(struct work_struct
*work
)
6293 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6296 if (!netif_running(bp
->dev
)) {
6301 bnx2_netif_stop(bp
, true);
6303 bnx2_init_nic(bp
, 1);
6305 atomic_set(&bp
->intr_sem
, 1);
6306 bnx2_netif_start(bp
, true);
6311 bnx2_dump_state(struct bnx2
*bp
)
6313 struct net_device
*dev
= bp
->dev
;
6314 u32 mcp_p0
, mcp_p1
, val1
, val2
;
6316 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6317 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6318 atomic_read(&bp
->intr_sem
), val1
);
6319 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6320 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6321 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6322 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6323 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6324 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6325 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6326 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6327 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6328 mcp_p0
= BNX2_MCP_STATE_P0
;
6329 mcp_p1
= BNX2_MCP_STATE_P1
;
6331 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
6332 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
6334 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6335 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
6336 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6337 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6338 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6339 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6340 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6344 bnx2_tx_timeout(struct net_device
*dev
)
6346 struct bnx2
*bp
= netdev_priv(dev
);
6348 bnx2_dump_state(bp
);
6350 /* This allows the netif to be shutdown gracefully before resetting */
6351 schedule_work(&bp
->reset_task
);
6354 /* Called with netif_tx_lock.
6355 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6356 * netif_wake_queue().
6359 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6361 struct bnx2
*bp
= netdev_priv(dev
);
6364 struct sw_tx_bd
*tx_buf
;
6365 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6366 u16 prod
, ring_prod
;
6368 struct bnx2_napi
*bnapi
;
6369 struct bnx2_tx_ring_info
*txr
;
6370 struct netdev_queue
*txq
;
6372 /* Determine which tx ring we will be placed on */
6373 i
= skb_get_queue_mapping(skb
);
6374 bnapi
= &bp
->bnx2_napi
[i
];
6375 txr
= &bnapi
->tx_ring
;
6376 txq
= netdev_get_tx_queue(dev
, i
);
6378 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6379 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6380 netif_tx_stop_queue(txq
);
6381 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6383 return NETDEV_TX_BUSY
;
6385 len
= skb_headlen(skb
);
6386 prod
= txr
->tx_prod
;
6387 ring_prod
= TX_RING_IDX(prod
);
6390 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6391 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6394 if (vlan_tx_tag_present(skb
)) {
6396 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6399 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6403 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6405 tcp_opt_len
= tcp_optlen(skb
);
6407 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6408 u32 tcp_off
= skb_transport_offset(skb
) -
6409 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6411 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6412 TX_BD_FLAGS_SW_FLAGS
;
6413 if (likely(tcp_off
== 0))
6414 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6417 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6418 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6419 ((tcp_off
& 0x10) <<
6420 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6421 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6425 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6426 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6427 (tcp_opt_len
>> 2)) << 8;
6433 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6434 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6436 return NETDEV_TX_OK
;
6439 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6441 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6443 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6445 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6446 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6447 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6448 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6450 last_frag
= skb_shinfo(skb
)->nr_frags
;
6451 tx_buf
->nr_frags
= last_frag
;
6452 tx_buf
->is_gso
= skb_is_gso(skb
);
6454 for (i
= 0; i
< last_frag
; i
++) {
6455 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6457 prod
= NEXT_TX_BD(prod
);
6458 ring_prod
= TX_RING_IDX(prod
);
6459 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6462 mapping
= dma_map_page(&bp
->pdev
->dev
, frag
->page
, frag
->page_offset
,
6463 len
, PCI_DMA_TODEVICE
);
6464 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6466 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6469 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6470 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6471 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6472 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6475 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6477 prod
= NEXT_TX_BD(prod
);
6478 txr
->tx_prod_bseq
+= skb
->len
;
6480 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6481 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6485 txr
->tx_prod
= prod
;
6487 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6488 netif_tx_stop_queue(txq
);
6490 /* netif_tx_stop_queue() must be done before checking
6491 * tx index in bnx2_tx_avail() below, because in
6492 * bnx2_tx_int(), we update tx index before checking for
6493 * netif_tx_queue_stopped().
6496 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6497 netif_tx_wake_queue(txq
);
6500 return NETDEV_TX_OK
;
6502 /* save value of frag that failed */
6505 /* start back at beginning and unmap skb */
6506 prod
= txr
->tx_prod
;
6507 ring_prod
= TX_RING_IDX(prod
);
6508 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6510 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6511 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6513 /* unmap remaining mapped pages */
6514 for (i
= 0; i
< last_frag
; i
++) {
6515 prod
= NEXT_TX_BD(prod
);
6516 ring_prod
= TX_RING_IDX(prod
);
6517 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6518 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6519 skb_shinfo(skb
)->frags
[i
].size
,
6524 return NETDEV_TX_OK
;
6527 /* Called with rtnl_lock */
6529 bnx2_close(struct net_device
*dev
)
6531 struct bnx2
*bp
= netdev_priv(dev
);
6533 cancel_work_sync(&bp
->reset_task
);
6535 bnx2_disable_int_sync(bp
);
6536 bnx2_napi_disable(bp
);
6537 del_timer_sync(&bp
->timer
);
6538 bnx2_shutdown_chip(bp
);
6544 netif_carrier_off(bp
->dev
);
6545 bnx2_set_power_state(bp
, PCI_D3hot
);
6550 bnx2_save_stats(struct bnx2
*bp
)
6552 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6553 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6556 /* The 1st 10 counters are 64-bit counters */
6557 for (i
= 0; i
< 20; i
+= 2) {
6561 hi
= temp_stats
[i
] + hw_stats
[i
];
6562 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6563 if (lo
> 0xffffffff)
6566 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6569 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6570 temp_stats
[i
] += hw_stats
[i
];
6573 #define GET_64BIT_NET_STATS64(ctr) \
6574 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6576 #define GET_64BIT_NET_STATS(ctr) \
6577 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6578 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6580 #define GET_32BIT_NET_STATS(ctr) \
6581 (unsigned long) (bp->stats_blk->ctr + \
6582 bp->temp_stats_blk->ctr)
6584 static struct rtnl_link_stats64
*
6585 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6587 struct bnx2
*bp
= netdev_priv(dev
);
6589 if (bp
->stats_blk
== NULL
)
6592 net_stats
->rx_packets
=
6593 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6594 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6595 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6597 net_stats
->tx_packets
=
6598 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6599 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6600 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6602 net_stats
->rx_bytes
=
6603 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6605 net_stats
->tx_bytes
=
6606 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6608 net_stats
->multicast
=
6609 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6611 net_stats
->collisions
=
6612 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6614 net_stats
->rx_length_errors
=
6615 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6616 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6618 net_stats
->rx_over_errors
=
6619 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6620 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6622 net_stats
->rx_frame_errors
=
6623 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6625 net_stats
->rx_crc_errors
=
6626 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6628 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6629 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6630 net_stats
->rx_crc_errors
;
6632 net_stats
->tx_aborted_errors
=
6633 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6634 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6636 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6637 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6638 net_stats
->tx_carrier_errors
= 0;
6640 net_stats
->tx_carrier_errors
=
6641 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6644 net_stats
->tx_errors
=
6645 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6646 net_stats
->tx_aborted_errors
+
6647 net_stats
->tx_carrier_errors
;
6649 net_stats
->rx_missed_errors
=
6650 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6651 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6652 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6657 /* All ethtool functions called with rtnl_lock */
6660 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6662 struct bnx2
*bp
= netdev_priv(dev
);
6663 int support_serdes
= 0, support_copper
= 0;
6665 cmd
->supported
= SUPPORTED_Autoneg
;
6666 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6669 } else if (bp
->phy_port
== PORT_FIBRE
)
6674 if (support_serdes
) {
6675 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6677 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6678 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6681 if (support_copper
) {
6682 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6683 SUPPORTED_10baseT_Full
|
6684 SUPPORTED_100baseT_Half
|
6685 SUPPORTED_100baseT_Full
|
6686 SUPPORTED_1000baseT_Full
|
6691 spin_lock_bh(&bp
->phy_lock
);
6692 cmd
->port
= bp
->phy_port
;
6693 cmd
->advertising
= bp
->advertising
;
6695 if (bp
->autoneg
& AUTONEG_SPEED
) {
6696 cmd
->autoneg
= AUTONEG_ENABLE
;
6699 cmd
->autoneg
= AUTONEG_DISABLE
;
6702 if (netif_carrier_ok(dev
)) {
6703 cmd
->speed
= bp
->line_speed
;
6704 cmd
->duplex
= bp
->duplex
;
6710 spin_unlock_bh(&bp
->phy_lock
);
6712 cmd
->transceiver
= XCVR_INTERNAL
;
6713 cmd
->phy_address
= bp
->phy_addr
;
6719 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6721 struct bnx2
*bp
= netdev_priv(dev
);
6722 u8 autoneg
= bp
->autoneg
;
6723 u8 req_duplex
= bp
->req_duplex
;
6724 u16 req_line_speed
= bp
->req_line_speed
;
6725 u32 advertising
= bp
->advertising
;
6728 spin_lock_bh(&bp
->phy_lock
);
6730 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6731 goto err_out_unlock
;
6733 if (cmd
->port
!= bp
->phy_port
&&
6734 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6735 goto err_out_unlock
;
6737 /* If device is down, we can store the settings only if the user
6738 * is setting the currently active port.
6740 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6741 goto err_out_unlock
;
6743 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6744 autoneg
|= AUTONEG_SPEED
;
6746 advertising
= cmd
->advertising
;
6747 if (cmd
->port
== PORT_TP
) {
6748 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6750 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6752 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6754 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6756 advertising
|= ADVERTISED_Autoneg
;
6759 if (cmd
->port
== PORT_FIBRE
) {
6760 if ((cmd
->speed
!= SPEED_1000
&&
6761 cmd
->speed
!= SPEED_2500
) ||
6762 (cmd
->duplex
!= DUPLEX_FULL
))
6763 goto err_out_unlock
;
6765 if (cmd
->speed
== SPEED_2500
&&
6766 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6767 goto err_out_unlock
;
6769 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6770 goto err_out_unlock
;
6772 autoneg
&= ~AUTONEG_SPEED
;
6773 req_line_speed
= cmd
->speed
;
6774 req_duplex
= cmd
->duplex
;
6778 bp
->autoneg
= autoneg
;
6779 bp
->advertising
= advertising
;
6780 bp
->req_line_speed
= req_line_speed
;
6781 bp
->req_duplex
= req_duplex
;
6784 /* If device is down, the new settings will be picked up when it is
6787 if (netif_running(dev
))
6788 err
= bnx2_setup_phy(bp
, cmd
->port
);
6791 spin_unlock_bh(&bp
->phy_lock
);
6797 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6799 struct bnx2
*bp
= netdev_priv(dev
);
6801 strcpy(info
->driver
, DRV_MODULE_NAME
);
6802 strcpy(info
->version
, DRV_MODULE_VERSION
);
6803 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6804 strcpy(info
->fw_version
, bp
->fw_version
);
6807 #define BNX2_REGDUMP_LEN (32 * 1024)
6810 bnx2_get_regs_len(struct net_device
*dev
)
6812 return BNX2_REGDUMP_LEN
;
6816 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6818 u32
*p
= _p
, i
, offset
;
6820 struct bnx2
*bp
= netdev_priv(dev
);
6821 static const u32 reg_boundaries
[] = {
6822 0x0000, 0x0098, 0x0400, 0x045c,
6823 0x0800, 0x0880, 0x0c00, 0x0c10,
6824 0x0c30, 0x0d08, 0x1000, 0x101c,
6825 0x1040, 0x1048, 0x1080, 0x10a4,
6826 0x1400, 0x1490, 0x1498, 0x14f0,
6827 0x1500, 0x155c, 0x1580, 0x15dc,
6828 0x1600, 0x1658, 0x1680, 0x16d8,
6829 0x1800, 0x1820, 0x1840, 0x1854,
6830 0x1880, 0x1894, 0x1900, 0x1984,
6831 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6832 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6833 0x2000, 0x2030, 0x23c0, 0x2400,
6834 0x2800, 0x2820, 0x2830, 0x2850,
6835 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6836 0x3c00, 0x3c94, 0x4000, 0x4010,
6837 0x4080, 0x4090, 0x43c0, 0x4458,
6838 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6839 0x4fc0, 0x5010, 0x53c0, 0x5444,
6840 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6841 0x5fc0, 0x6000, 0x6400, 0x6428,
6842 0x6800, 0x6848, 0x684c, 0x6860,
6843 0x6888, 0x6910, 0x8000
6848 memset(p
, 0, BNX2_REGDUMP_LEN
);
6850 if (!netif_running(bp
->dev
))
6854 offset
= reg_boundaries
[0];
6856 while (offset
< BNX2_REGDUMP_LEN
) {
6857 *p
++ = REG_RD(bp
, offset
);
6859 if (offset
== reg_boundaries
[i
+ 1]) {
6860 offset
= reg_boundaries
[i
+ 2];
6861 p
= (u32
*) (orig_p
+ offset
);
6868 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6870 struct bnx2
*bp
= netdev_priv(dev
);
6872 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6877 wol
->supported
= WAKE_MAGIC
;
6879 wol
->wolopts
= WAKE_MAGIC
;
6883 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6887 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6889 struct bnx2
*bp
= netdev_priv(dev
);
6891 if (wol
->wolopts
& ~WAKE_MAGIC
)
6894 if (wol
->wolopts
& WAKE_MAGIC
) {
6895 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6907 bnx2_nway_reset(struct net_device
*dev
)
6909 struct bnx2
*bp
= netdev_priv(dev
);
6912 if (!netif_running(dev
))
6915 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6919 spin_lock_bh(&bp
->phy_lock
);
6921 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6924 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6925 spin_unlock_bh(&bp
->phy_lock
);
6929 /* Force a link down visible on the other side */
6930 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6931 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6932 spin_unlock_bh(&bp
->phy_lock
);
6936 spin_lock_bh(&bp
->phy_lock
);
6938 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6939 bp
->serdes_an_pending
= 1;
6940 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6943 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6944 bmcr
&= ~BMCR_LOOPBACK
;
6945 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6947 spin_unlock_bh(&bp
->phy_lock
);
6953 bnx2_get_link(struct net_device
*dev
)
6955 struct bnx2
*bp
= netdev_priv(dev
);
6961 bnx2_get_eeprom_len(struct net_device
*dev
)
6963 struct bnx2
*bp
= netdev_priv(dev
);
6965 if (bp
->flash_info
== NULL
)
6968 return (int) bp
->flash_size
;
6972 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6975 struct bnx2
*bp
= netdev_priv(dev
);
6978 if (!netif_running(dev
))
6981 /* parameters already validated in ethtool_get_eeprom */
6983 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6989 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6992 struct bnx2
*bp
= netdev_priv(dev
);
6995 if (!netif_running(dev
))
6998 /* parameters already validated in ethtool_set_eeprom */
7000 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7006 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7008 struct bnx2
*bp
= netdev_priv(dev
);
7010 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7012 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7013 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7014 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7015 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7017 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7018 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7019 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7020 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7022 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7028 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7030 struct bnx2
*bp
= netdev_priv(dev
);
7032 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7033 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7035 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7036 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7038 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7039 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7041 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7042 if (bp
->rx_quick_cons_trip_int
> 0xff)
7043 bp
->rx_quick_cons_trip_int
= 0xff;
7045 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7046 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7048 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7049 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7051 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7052 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7054 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7055 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7058 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7059 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7060 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7061 bp
->stats_ticks
= USEC_PER_SEC
;
7063 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7064 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7065 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7067 if (netif_running(bp
->dev
)) {
7068 bnx2_netif_stop(bp
, true);
7069 bnx2_init_nic(bp
, 0);
7070 bnx2_netif_start(bp
, true);
7077 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7079 struct bnx2
*bp
= netdev_priv(dev
);
7081 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7082 ering
->rx_mini_max_pending
= 0;
7083 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7085 ering
->rx_pending
= bp
->rx_ring_size
;
7086 ering
->rx_mini_pending
= 0;
7087 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7089 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7090 ering
->tx_pending
= bp
->tx_ring_size
;
7094 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7096 if (netif_running(bp
->dev
)) {
7097 /* Reset will erase chipset stats; save them */
7098 bnx2_save_stats(bp
);
7100 bnx2_netif_stop(bp
, true);
7101 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7102 __bnx2_free_irq(bp
);
7107 bnx2_set_rx_ring_size(bp
, rx
);
7108 bp
->tx_ring_size
= tx
;
7110 if (netif_running(bp
->dev
)) {
7113 rc
= bnx2_alloc_mem(bp
);
7115 rc
= bnx2_request_irq(bp
);
7118 rc
= bnx2_init_nic(bp
, 0);
7121 bnx2_napi_enable(bp
);
7126 mutex_lock(&bp
->cnic_lock
);
7127 /* Let cnic know about the new status block. */
7128 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7129 bnx2_setup_cnic_irq_info(bp
);
7130 mutex_unlock(&bp
->cnic_lock
);
7132 bnx2_netif_start(bp
, true);
7138 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7140 struct bnx2
*bp
= netdev_priv(dev
);
7143 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7144 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7145 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7149 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7154 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7156 struct bnx2
*bp
= netdev_priv(dev
);
7158 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7159 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7160 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7164 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7166 struct bnx2
*bp
= netdev_priv(dev
);
7168 bp
->req_flow_ctrl
= 0;
7169 if (epause
->rx_pause
)
7170 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7171 if (epause
->tx_pause
)
7172 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7174 if (epause
->autoneg
) {
7175 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7178 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7181 if (netif_running(dev
)) {
7182 spin_lock_bh(&bp
->phy_lock
);
7183 bnx2_setup_phy(bp
, bp
->phy_port
);
7184 spin_unlock_bh(&bp
->phy_lock
);
7191 bnx2_get_rx_csum(struct net_device
*dev
)
7193 struct bnx2
*bp
= netdev_priv(dev
);
7199 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
7201 struct bnx2
*bp
= netdev_priv(dev
);
7208 bnx2_set_tso(struct net_device
*dev
, u32 data
)
7210 struct bnx2
*bp
= netdev_priv(dev
);
7213 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7214 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7215 dev
->features
|= NETIF_F_TSO6
;
7217 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
7223 char string
[ETH_GSTRING_LEN
];
7224 } bnx2_stats_str_arr
[] = {
7226 { "rx_error_bytes" },
7228 { "tx_error_bytes" },
7229 { "rx_ucast_packets" },
7230 { "rx_mcast_packets" },
7231 { "rx_bcast_packets" },
7232 { "tx_ucast_packets" },
7233 { "tx_mcast_packets" },
7234 { "tx_bcast_packets" },
7235 { "tx_mac_errors" },
7236 { "tx_carrier_errors" },
7237 { "rx_crc_errors" },
7238 { "rx_align_errors" },
7239 { "tx_single_collisions" },
7240 { "tx_multi_collisions" },
7242 { "tx_excess_collisions" },
7243 { "tx_late_collisions" },
7244 { "tx_total_collisions" },
7247 { "rx_undersize_packets" },
7248 { "rx_oversize_packets" },
7249 { "rx_64_byte_packets" },
7250 { "rx_65_to_127_byte_packets" },
7251 { "rx_128_to_255_byte_packets" },
7252 { "rx_256_to_511_byte_packets" },
7253 { "rx_512_to_1023_byte_packets" },
7254 { "rx_1024_to_1522_byte_packets" },
7255 { "rx_1523_to_9022_byte_packets" },
7256 { "tx_64_byte_packets" },
7257 { "tx_65_to_127_byte_packets" },
7258 { "tx_128_to_255_byte_packets" },
7259 { "tx_256_to_511_byte_packets" },
7260 { "tx_512_to_1023_byte_packets" },
7261 { "tx_1024_to_1522_byte_packets" },
7262 { "tx_1523_to_9022_byte_packets" },
7263 { "rx_xon_frames" },
7264 { "rx_xoff_frames" },
7265 { "tx_xon_frames" },
7266 { "tx_xoff_frames" },
7267 { "rx_mac_ctrl_frames" },
7268 { "rx_filtered_packets" },
7269 { "rx_ftq_discards" },
7271 { "rx_fw_discards" },
7274 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7275 sizeof(bnx2_stats_str_arr[0]))
7277 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7279 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7280 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7281 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7282 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7283 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7284 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7285 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7286 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7287 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7288 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7289 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7290 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7291 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7292 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7293 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7294 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7295 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7296 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7297 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7298 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7299 STATS_OFFSET32(stat_EtherStatsCollisions
),
7300 STATS_OFFSET32(stat_EtherStatsFragments
),
7301 STATS_OFFSET32(stat_EtherStatsJabbers
),
7302 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7303 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7304 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7305 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7306 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7307 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7308 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7309 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7310 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7311 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7312 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7313 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7314 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7315 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7316 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7317 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7318 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7319 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7320 STATS_OFFSET32(stat_OutXonSent
),
7321 STATS_OFFSET32(stat_OutXoffSent
),
7322 STATS_OFFSET32(stat_MacControlFramesReceived
),
7323 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7324 STATS_OFFSET32(stat_IfInFTQDiscards
),
7325 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7326 STATS_OFFSET32(stat_FwRxDrop
),
7329 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7330 * skipped because of errata.
7332 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7333 8,0,8,8,8,8,8,8,8,8,
7334 4,0,4,4,4,4,4,4,4,4,
7335 4,4,4,4,4,4,4,4,4,4,
7336 4,4,4,4,4,4,4,4,4,4,
7340 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7341 8,0,8,8,8,8,8,8,8,8,
7342 4,4,4,4,4,4,4,4,4,4,
7343 4,4,4,4,4,4,4,4,4,4,
7344 4,4,4,4,4,4,4,4,4,4,
7348 #define BNX2_NUM_TESTS 6
7351 char string
[ETH_GSTRING_LEN
];
7352 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7353 { "register_test (offline)" },
7354 { "memory_test (offline)" },
7355 { "loopback_test (offline)" },
7356 { "nvram_test (online)" },
7357 { "interrupt_test (online)" },
7358 { "link_test (online)" },
7362 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7366 return BNX2_NUM_TESTS
;
7368 return BNX2_NUM_STATS
;
7375 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7377 struct bnx2
*bp
= netdev_priv(dev
);
7379 bnx2_set_power_state(bp
, PCI_D0
);
7381 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7382 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7385 bnx2_netif_stop(bp
, true);
7386 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7389 if (bnx2_test_registers(bp
) != 0) {
7391 etest
->flags
|= ETH_TEST_FL_FAILED
;
7393 if (bnx2_test_memory(bp
) != 0) {
7395 etest
->flags
|= ETH_TEST_FL_FAILED
;
7397 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7398 etest
->flags
|= ETH_TEST_FL_FAILED
;
7400 if (!netif_running(bp
->dev
))
7401 bnx2_shutdown_chip(bp
);
7403 bnx2_init_nic(bp
, 1);
7404 bnx2_netif_start(bp
, true);
7407 /* wait for link up */
7408 for (i
= 0; i
< 7; i
++) {
7411 msleep_interruptible(1000);
7415 if (bnx2_test_nvram(bp
) != 0) {
7417 etest
->flags
|= ETH_TEST_FL_FAILED
;
7419 if (bnx2_test_intr(bp
) != 0) {
7421 etest
->flags
|= ETH_TEST_FL_FAILED
;
7424 if (bnx2_test_link(bp
) != 0) {
7426 etest
->flags
|= ETH_TEST_FL_FAILED
;
7429 if (!netif_running(bp
->dev
))
7430 bnx2_set_power_state(bp
, PCI_D3hot
);
7434 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7436 switch (stringset
) {
7438 memcpy(buf
, bnx2_stats_str_arr
,
7439 sizeof(bnx2_stats_str_arr
));
7442 memcpy(buf
, bnx2_tests_str_arr
,
7443 sizeof(bnx2_tests_str_arr
));
7449 bnx2_get_ethtool_stats(struct net_device
*dev
,
7450 struct ethtool_stats
*stats
, u64
*buf
)
7452 struct bnx2
*bp
= netdev_priv(dev
);
7454 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7455 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7456 u8
*stats_len_arr
= NULL
;
7458 if (hw_stats
== NULL
) {
7459 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7463 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7464 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7465 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7466 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7467 stats_len_arr
= bnx2_5706_stats_len_arr
;
7469 stats_len_arr
= bnx2_5708_stats_len_arr
;
7471 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7472 unsigned long offset
;
7474 if (stats_len_arr
[i
] == 0) {
7475 /* skip this counter */
7480 offset
= bnx2_stats_offset_arr
[i
];
7481 if (stats_len_arr
[i
] == 4) {
7482 /* 4-byte counter */
7483 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7484 *(temp_stats
+ offset
);
7487 /* 8-byte counter */
7488 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7489 *(hw_stats
+ offset
+ 1) +
7490 (((u64
) *(temp_stats
+ offset
)) << 32) +
7491 *(temp_stats
+ offset
+ 1);
7496 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7498 struct bnx2
*bp
= netdev_priv(dev
);
7502 bnx2_set_power_state(bp
, PCI_D0
);
7507 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7508 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7510 for (i
= 0; i
< (data
* 2); i
++) {
7512 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7515 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7516 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7517 BNX2_EMAC_LED_100MB_OVERRIDE
|
7518 BNX2_EMAC_LED_10MB_OVERRIDE
|
7519 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7520 BNX2_EMAC_LED_TRAFFIC
);
7522 msleep_interruptible(500);
7523 if (signal_pending(current
))
7526 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7527 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7529 if (!netif_running(dev
))
7530 bnx2_set_power_state(bp
, PCI_D3hot
);
7536 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7538 struct bnx2
*bp
= netdev_priv(dev
);
7540 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7541 return ethtool_op_set_tx_ipv6_csum(dev
, data
);
7543 return ethtool_op_set_tx_csum(dev
, data
);
7547 bnx2_set_flags(struct net_device
*dev
, u32 data
)
7549 struct bnx2
*bp
= netdev_priv(dev
);
7552 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
) &&
7553 !(data
& ETH_FLAG_RXVLAN
))
7556 /* TSO with VLAN tag won't work with current firmware */
7557 if (!(data
& ETH_FLAG_TXVLAN
))
7560 rc
= ethtool_op_set_flags(dev
, data
, ETH_FLAG_RXHASH
| ETH_FLAG_RXVLAN
|
7565 if ((!!(data
& ETH_FLAG_RXVLAN
) !=
7566 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7567 netif_running(dev
)) {
7568 bnx2_netif_stop(bp
, false);
7569 bnx2_set_rx_mode(dev
);
7570 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7571 bnx2_netif_start(bp
, false);
7577 static const struct ethtool_ops bnx2_ethtool_ops
= {
7578 .get_settings
= bnx2_get_settings
,
7579 .set_settings
= bnx2_set_settings
,
7580 .get_drvinfo
= bnx2_get_drvinfo
,
7581 .get_regs_len
= bnx2_get_regs_len
,
7582 .get_regs
= bnx2_get_regs
,
7583 .get_wol
= bnx2_get_wol
,
7584 .set_wol
= bnx2_set_wol
,
7585 .nway_reset
= bnx2_nway_reset
,
7586 .get_link
= bnx2_get_link
,
7587 .get_eeprom_len
= bnx2_get_eeprom_len
,
7588 .get_eeprom
= bnx2_get_eeprom
,
7589 .set_eeprom
= bnx2_set_eeprom
,
7590 .get_coalesce
= bnx2_get_coalesce
,
7591 .set_coalesce
= bnx2_set_coalesce
,
7592 .get_ringparam
= bnx2_get_ringparam
,
7593 .set_ringparam
= bnx2_set_ringparam
,
7594 .get_pauseparam
= bnx2_get_pauseparam
,
7595 .set_pauseparam
= bnx2_set_pauseparam
,
7596 .get_rx_csum
= bnx2_get_rx_csum
,
7597 .set_rx_csum
= bnx2_set_rx_csum
,
7598 .set_tx_csum
= bnx2_set_tx_csum
,
7599 .set_sg
= ethtool_op_set_sg
,
7600 .set_tso
= bnx2_set_tso
,
7601 .self_test
= bnx2_self_test
,
7602 .get_strings
= bnx2_get_strings
,
7603 .phys_id
= bnx2_phys_id
,
7604 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7605 .get_sset_count
= bnx2_get_sset_count
,
7606 .set_flags
= bnx2_set_flags
,
7607 .get_flags
= ethtool_op_get_flags
,
7610 /* Called with rtnl_lock */
7612 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7614 struct mii_ioctl_data
*data
= if_mii(ifr
);
7615 struct bnx2
*bp
= netdev_priv(dev
);
7620 data
->phy_id
= bp
->phy_addr
;
7626 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7629 if (!netif_running(dev
))
7632 spin_lock_bh(&bp
->phy_lock
);
7633 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7634 spin_unlock_bh(&bp
->phy_lock
);
7636 data
->val_out
= mii_regval
;
7642 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7645 if (!netif_running(dev
))
7648 spin_lock_bh(&bp
->phy_lock
);
7649 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7650 spin_unlock_bh(&bp
->phy_lock
);
7661 /* Called with rtnl_lock */
7663 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7665 struct sockaddr
*addr
= p
;
7666 struct bnx2
*bp
= netdev_priv(dev
);
7668 if (!is_valid_ether_addr(addr
->sa_data
))
7671 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7672 if (netif_running(dev
))
7673 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7678 /* Called with rtnl_lock */
7680 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7682 struct bnx2
*bp
= netdev_priv(dev
);
7684 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7685 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7689 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
);
7692 #ifdef CONFIG_NET_POLL_CONTROLLER
7694 poll_bnx2(struct net_device
*dev
)
7696 struct bnx2
*bp
= netdev_priv(dev
);
7699 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7700 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7702 disable_irq(irq
->vector
);
7703 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7704 enable_irq(irq
->vector
);
7709 static void __devinit
7710 bnx2_get_5709_media(struct bnx2
*bp
)
7712 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7713 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7716 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7718 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7719 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7723 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7724 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7726 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7728 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7733 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7741 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7747 static void __devinit
7748 bnx2_get_pci_speed(struct bnx2
*bp
)
7752 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7753 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7756 bp
->flags
|= BNX2_FLAG_PCIX
;
7758 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7760 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7762 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7763 bp
->bus_speed_mhz
= 133;
7766 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7767 bp
->bus_speed_mhz
= 100;
7770 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7771 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7772 bp
->bus_speed_mhz
= 66;
7775 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7776 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7777 bp
->bus_speed_mhz
= 50;
7780 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7781 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7782 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7783 bp
->bus_speed_mhz
= 33;
7788 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7789 bp
->bus_speed_mhz
= 66;
7791 bp
->bus_speed_mhz
= 33;
7794 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7795 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7799 static void __devinit
7800 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7804 unsigned int block_end
, rosize
, len
;
7806 #define BNX2_VPD_NVRAM_OFFSET 0x300
7807 #define BNX2_VPD_LEN 128
7808 #define BNX2_MAX_VER_SLEN 30
7810 data
= kmalloc(256, GFP_KERNEL
);
7814 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
7819 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
7820 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
7821 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
7822 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
7823 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
7826 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
7830 rosize
= pci_vpd_lrdt_size(&data
[i
]);
7831 i
+= PCI_VPD_LRDT_TAG_SIZE
;
7832 block_end
= i
+ rosize
;
7834 if (block_end
> BNX2_VPD_LEN
)
7837 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7838 PCI_VPD_RO_KEYWORD_MFR_ID
);
7842 len
= pci_vpd_info_field_size(&data
[j
]);
7844 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7845 if (j
+ len
> block_end
|| len
!= 4 ||
7846 memcmp(&data
[j
], "1028", 4))
7849 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7850 PCI_VPD_RO_KEYWORD_VENDOR0
);
7854 len
= pci_vpd_info_field_size(&data
[j
]);
7856 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7857 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
7860 memcpy(bp
->fw_version
, &data
[j
], len
);
7861 bp
->fw_version
[len
] = ' ';
7867 static int __devinit
7868 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7871 unsigned long mem_len
;
7874 u64 dma_mask
, persist_dma_mask
;
7877 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7878 bp
= netdev_priv(dev
);
7883 bp
->temp_stats_blk
=
7884 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
7886 if (bp
->temp_stats_blk
== NULL
) {
7891 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7892 rc
= pci_enable_device(pdev
);
7894 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7898 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7900 "Cannot find PCI device base address, aborting\n");
7902 goto err_out_disable
;
7905 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7907 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
7908 goto err_out_disable
;
7911 pci_set_master(pdev
);
7913 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7914 if (bp
->pm_cap
== 0) {
7916 "Cannot find power management capability, aborting\n");
7918 goto err_out_release
;
7924 spin_lock_init(&bp
->phy_lock
);
7925 spin_lock_init(&bp
->indirect_lock
);
7927 mutex_init(&bp
->cnic_lock
);
7929 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7931 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7932 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7933 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7934 dev
->irq
= pdev
->irq
;
7936 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7939 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
7941 goto err_out_release
;
7944 bnx2_set_power_state(bp
, PCI_D0
);
7946 /* Configure byte swap and enable write to the reg_window registers.
7947 * Rely on CPU to do target byte swapping on big endian systems
7948 * The chip's target access swapping will not swap all accesses
7950 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
7951 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7952 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7954 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7956 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7957 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7959 "Cannot find PCIE capability, aborting\n");
7963 bp
->flags
|= BNX2_FLAG_PCIE
;
7964 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7965 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7967 /* AER (Advanced Error Reporting) hooks */
7968 err
= pci_enable_pcie_error_reporting(pdev
);
7970 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
7973 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7974 if (bp
->pcix_cap
== 0) {
7976 "Cannot find PCIX capability, aborting\n");
7980 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
7983 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7984 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7985 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7988 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7989 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7990 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7993 /* 5708 cannot support DMA addresses > 40-bit. */
7994 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7995 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
7997 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
7999 /* Configure DMA attributes. */
8000 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8001 dev
->features
|= NETIF_F_HIGHDMA
;
8002 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8005 "pci_set_consistent_dma_mask failed, aborting\n");
8008 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8009 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8013 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8014 bnx2_get_pci_speed(bp
);
8016 /* 5706A0 may falsely detect SERR and PERR. */
8017 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8018 reg
= REG_RD(bp
, PCI_COMMAND
);
8019 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8020 REG_WR(bp
, PCI_COMMAND
, reg
);
8022 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
8023 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8026 "5706 A1 can only be used in a PCIX bus, aborting\n");
8030 bnx2_init_nvram(bp
);
8032 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8034 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8035 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8036 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
8038 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8040 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8042 /* Get the permanent MAC address. First we need to make sure the
8043 * firmware is actually running.
8045 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8047 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8048 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8049 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8054 bnx2_read_vpd_fw_ver(bp
);
8056 j
= strlen(bp
->fw_version
);
8057 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8058 for (i
= 0; i
< 3 && j
< 24; i
++) {
8062 bp
->fw_version
[j
++] = 'b';
8063 bp
->fw_version
[j
++] = 'c';
8064 bp
->fw_version
[j
++] = ' ';
8066 num
= (u8
) (reg
>> (24 - (i
* 8)));
8067 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8068 if (num
>= k
|| !skip0
|| k
== 1) {
8069 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8074 bp
->fw_version
[j
++] = '.';
8076 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8077 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8080 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8081 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8083 for (i
= 0; i
< 30; i
++) {
8084 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8085 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8090 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8091 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8092 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8093 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8094 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8097 bp
->fw_version
[j
++] = ' ';
8098 for (i
= 0; i
< 3 && j
< 28; i
++) {
8099 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8101 memcpy(&bp
->fw_version
[j
], ®
, 4);
8106 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8107 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8108 bp
->mac_addr
[1] = (u8
) reg
;
8110 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8111 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8112 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8113 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8114 bp
->mac_addr
[5] = (u8
) reg
;
8116 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8117 bnx2_set_rx_ring_size(bp
, 255);
8121 bp
->tx_quick_cons_trip_int
= 2;
8122 bp
->tx_quick_cons_trip
= 20;
8123 bp
->tx_ticks_int
= 18;
8126 bp
->rx_quick_cons_trip_int
= 2;
8127 bp
->rx_quick_cons_trip
= 12;
8128 bp
->rx_ticks_int
= 18;
8131 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8133 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8137 /* Disable WOL support if we are running on a SERDES chip. */
8138 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8139 bnx2_get_5709_media(bp
);
8140 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8141 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8143 bp
->phy_port
= PORT_TP
;
8144 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8145 bp
->phy_port
= PORT_FIBRE
;
8146 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8147 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8148 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8151 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8152 /* Don't do parallel detect on this board because of
8153 * some board problems. The link will not go down
8154 * if we do parallel detect.
8156 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8157 pdev
->subsystem_device
== 0x310c)
8158 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8161 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8162 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8164 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8165 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8166 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8167 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8168 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8169 CHIP_REV(bp
) == CHIP_REV_Bx
))
8170 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8172 bnx2_init_fw_cap(bp
);
8174 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8175 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8176 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8177 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8178 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8182 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8183 bp
->tx_quick_cons_trip_int
=
8184 bp
->tx_quick_cons_trip
;
8185 bp
->tx_ticks_int
= bp
->tx_ticks
;
8186 bp
->rx_quick_cons_trip_int
=
8187 bp
->rx_quick_cons_trip
;
8188 bp
->rx_ticks_int
= bp
->rx_ticks
;
8189 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8190 bp
->com_ticks_int
= bp
->com_ticks
;
8191 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8194 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8196 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8197 * with byte enables disabled on the unused 32-bit word. This is legal
8198 * but causes problems on the AMD 8132 which will eventually stop
8199 * responding after a while.
8201 * AMD believes this incompatibility is unique to the 5706, and
8202 * prefers to locally disable MSI rather than globally disabling it.
8204 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8205 struct pci_dev
*amd_8132
= NULL
;
8207 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8208 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8211 if (amd_8132
->revision
>= 0x10 &&
8212 amd_8132
->revision
<= 0x13) {
8214 pci_dev_put(amd_8132
);
8220 bnx2_set_default_link(bp
);
8221 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8223 init_timer(&bp
->timer
);
8224 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8225 bp
->timer
.data
= (unsigned long) bp
;
8226 bp
->timer
.function
= bnx2_timer
;
8228 pci_save_state(pdev
);
8233 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8234 pci_disable_pcie_error_reporting(pdev
);
8235 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8239 iounmap(bp
->regview
);
8244 pci_release_regions(pdev
);
8247 pci_disable_device(pdev
);
8248 pci_set_drvdata(pdev
, NULL
);
8254 static char * __devinit
8255 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8259 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8260 s
+= sprintf(s
, "PCI Express");
8262 s
+= sprintf(s
, "PCI");
8263 if (bp
->flags
& BNX2_FLAG_PCIX
)
8264 s
+= sprintf(s
, "-X");
8265 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8266 s
+= sprintf(s
, " 32-bit");
8268 s
+= sprintf(s
, " 64-bit");
8269 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8275 bnx2_del_napi(struct bnx2
*bp
)
8279 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8280 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8284 bnx2_init_napi(struct bnx2
*bp
)
8288 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8289 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8290 int (*poll
)(struct napi_struct
*, int);
8295 poll
= bnx2_poll_msix
;
8297 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8302 static const struct net_device_ops bnx2_netdev_ops
= {
8303 .ndo_open
= bnx2_open
,
8304 .ndo_start_xmit
= bnx2_start_xmit
,
8305 .ndo_stop
= bnx2_close
,
8306 .ndo_get_stats64
= bnx2_get_stats64
,
8307 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8308 .ndo_do_ioctl
= bnx2_ioctl
,
8309 .ndo_validate_addr
= eth_validate_addr
,
8310 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8311 .ndo_change_mtu
= bnx2_change_mtu
,
8312 .ndo_tx_timeout
= bnx2_tx_timeout
,
8313 #ifdef CONFIG_NET_POLL_CONTROLLER
8314 .ndo_poll_controller
= poll_bnx2
,
8318 static void inline vlan_features_add(struct net_device
*dev
, unsigned long flags
)
8320 dev
->vlan_features
|= flags
;
8323 static int __devinit
8324 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8326 static int version_printed
= 0;
8327 struct net_device
*dev
= NULL
;
8332 if (version_printed
++ == 0)
8333 pr_info("%s", version
);
8335 /* dev zeroed in init_etherdev */
8336 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8341 rc
= bnx2_init_board(pdev
, dev
);
8347 dev
->netdev_ops
= &bnx2_netdev_ops
;
8348 dev
->watchdog_timeo
= TX_TIMEOUT
;
8349 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8351 bp
= netdev_priv(dev
);
8353 pci_set_drvdata(pdev
, dev
);
8355 rc
= bnx2_request_firmware(bp
);
8359 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8360 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8362 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_GRO
|
8364 vlan_features_add(dev
, NETIF_F_IP_CSUM
| NETIF_F_SG
);
8365 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8366 dev
->features
|= NETIF_F_IPV6_CSUM
;
8367 vlan_features_add(dev
, NETIF_F_IPV6_CSUM
);
8369 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8370 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
8371 vlan_features_add(dev
, NETIF_F_TSO
| NETIF_F_TSO_ECN
);
8372 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8373 dev
->features
|= NETIF_F_TSO6
;
8374 vlan_features_add(dev
, NETIF_F_TSO6
);
8376 if ((rc
= register_netdev(dev
))) {
8377 dev_err(&pdev
->dev
, "Cannot register net device\n");
8381 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8382 board_info
[ent
->driver_data
].name
,
8383 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8384 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8385 bnx2_bus_string(bp
, str
),
8387 bp
->pdev
->irq
, dev
->dev_addr
);
8392 if (bp
->mips_firmware
)
8393 release_firmware(bp
->mips_firmware
);
8394 if (bp
->rv2p_firmware
)
8395 release_firmware(bp
->rv2p_firmware
);
8398 iounmap(bp
->regview
);
8399 pci_release_regions(pdev
);
8400 pci_disable_device(pdev
);
8401 pci_set_drvdata(pdev
, NULL
);
8406 static void __devexit
8407 bnx2_remove_one(struct pci_dev
*pdev
)
8409 struct net_device
*dev
= pci_get_drvdata(pdev
);
8410 struct bnx2
*bp
= netdev_priv(dev
);
8412 unregister_netdev(dev
);
8414 if (bp
->mips_firmware
)
8415 release_firmware(bp
->mips_firmware
);
8416 if (bp
->rv2p_firmware
)
8417 release_firmware(bp
->rv2p_firmware
);
8420 iounmap(bp
->regview
);
8422 kfree(bp
->temp_stats_blk
);
8424 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8425 pci_disable_pcie_error_reporting(pdev
);
8426 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8431 pci_release_regions(pdev
);
8432 pci_disable_device(pdev
);
8433 pci_set_drvdata(pdev
, NULL
);
8437 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8439 struct net_device
*dev
= pci_get_drvdata(pdev
);
8440 struct bnx2
*bp
= netdev_priv(dev
);
8442 /* PCI register 4 needs to be saved whether netif_running() or not.
8443 * MSI address and data need to be saved if using MSI and
8446 pci_save_state(pdev
);
8447 if (!netif_running(dev
))
8450 cancel_work_sync(&bp
->reset_task
);
8451 bnx2_netif_stop(bp
, true);
8452 netif_device_detach(dev
);
8453 del_timer_sync(&bp
->timer
);
8454 bnx2_shutdown_chip(bp
);
8456 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8461 bnx2_resume(struct pci_dev
*pdev
)
8463 struct net_device
*dev
= pci_get_drvdata(pdev
);
8464 struct bnx2
*bp
= netdev_priv(dev
);
8466 pci_restore_state(pdev
);
8467 if (!netif_running(dev
))
8470 bnx2_set_power_state(bp
, PCI_D0
);
8471 netif_device_attach(dev
);
8472 bnx2_init_nic(bp
, 1);
8473 bnx2_netif_start(bp
, true);
8478 * bnx2_io_error_detected - called when PCI error is detected
8479 * @pdev: Pointer to PCI device
8480 * @state: The current pci connection state
8482 * This function is called after a PCI bus error affecting
8483 * this device has been detected.
8485 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8486 pci_channel_state_t state
)
8488 struct net_device
*dev
= pci_get_drvdata(pdev
);
8489 struct bnx2
*bp
= netdev_priv(dev
);
8492 netif_device_detach(dev
);
8494 if (state
== pci_channel_io_perm_failure
) {
8496 return PCI_ERS_RESULT_DISCONNECT
;
8499 if (netif_running(dev
)) {
8500 bnx2_netif_stop(bp
, true);
8501 del_timer_sync(&bp
->timer
);
8502 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8505 pci_disable_device(pdev
);
8508 /* Request a slot slot reset. */
8509 return PCI_ERS_RESULT_NEED_RESET
;
8513 * bnx2_io_slot_reset - called after the pci bus has been reset.
8514 * @pdev: Pointer to PCI device
8516 * Restart the card from scratch, as if from a cold-boot.
8518 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8520 struct net_device
*dev
= pci_get_drvdata(pdev
);
8521 struct bnx2
*bp
= netdev_priv(dev
);
8522 pci_ers_result_t result
;
8526 if (pci_enable_device(pdev
)) {
8528 "Cannot re-enable PCI device after reset\n");
8529 result
= PCI_ERS_RESULT_DISCONNECT
;
8531 pci_set_master(pdev
);
8532 pci_restore_state(pdev
);
8533 pci_save_state(pdev
);
8535 if (netif_running(dev
)) {
8536 bnx2_set_power_state(bp
, PCI_D0
);
8537 bnx2_init_nic(bp
, 1);
8539 result
= PCI_ERS_RESULT_RECOVERED
;
8543 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8546 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8549 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8550 err
); /* non-fatal, continue */
8557 * bnx2_io_resume - called when traffic can start flowing again.
8558 * @pdev: Pointer to PCI device
8560 * This callback is called when the error recovery driver tells us that
8561 * its OK to resume normal operation.
8563 static void bnx2_io_resume(struct pci_dev
*pdev
)
8565 struct net_device
*dev
= pci_get_drvdata(pdev
);
8566 struct bnx2
*bp
= netdev_priv(dev
);
8569 if (netif_running(dev
))
8570 bnx2_netif_start(bp
, true);
8572 netif_device_attach(dev
);
8576 static struct pci_error_handlers bnx2_err_handler
= {
8577 .error_detected
= bnx2_io_error_detected
,
8578 .slot_reset
= bnx2_io_slot_reset
,
8579 .resume
= bnx2_io_resume
,
8582 static struct pci_driver bnx2_pci_driver
= {
8583 .name
= DRV_MODULE_NAME
,
8584 .id_table
= bnx2_pci_tbl
,
8585 .probe
= bnx2_init_one
,
8586 .remove
= __devexit_p(bnx2_remove_one
),
8587 .suspend
= bnx2_suspend
,
8588 .resume
= bnx2_resume
,
8589 .err_handler
= &bnx2_err_handler
,
8592 static int __init
bnx2_init(void)
8594 return pci_register_driver(&bnx2_pci_driver
);
8597 static void __exit
bnx2_cleanup(void)
8599 pci_unregister_driver(&bnx2_pci_driver
);
8602 module_init(bnx2_init
);
8603 module_exit(bnx2_cleanup
);