af_unix: limit recursion level
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob2b085d51411cd9eeb12f8438a289a8bbbf6e1c8e
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
58 #include "internal.h"
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node);
62 EXPORT_PER_CPU_SYMBOL(numa_node);
63 #endif
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74 #endif
77 * Array of node states.
79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 [N_POSSIBLE] = NODE_MASK_ALL,
81 [N_ONLINE] = { { [0] = 1UL } },
82 #ifndef CONFIG_NUMA
83 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
84 #ifdef CONFIG_HIGHMEM
85 [N_HIGH_MEMORY] = { { [0] = 1UL } },
86 #endif
87 [N_CPU] = { { [0] = 1UL } },
88 #endif /* NUMA */
90 EXPORT_SYMBOL(node_states);
92 unsigned long totalram_pages __read_mostly;
93 unsigned long totalreserve_pages __read_mostly;
94 int percpu_pagelist_fraction;
95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 #ifdef CONFIG_PM_SLEEP
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
107 static gfp_t saved_gfp_mask;
109 void pm_restore_gfp_mask(void)
111 WARN_ON(!mutex_is_locked(&pm_mutex));
112 if (saved_gfp_mask) {
113 gfp_allowed_mask = saved_gfp_mask;
114 saved_gfp_mask = 0;
118 void pm_restrict_gfp_mask(void)
120 WARN_ON(!mutex_is_locked(&pm_mutex));
121 WARN_ON(saved_gfp_mask);
122 saved_gfp_mask = gfp_allowed_mask;
123 gfp_allowed_mask &= ~GFP_IOFS;
125 #endif /* CONFIG_PM_SLEEP */
127 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
128 int pageblock_order __read_mostly;
129 #endif
131 static void __free_pages_ok(struct page *page, unsigned int order);
134 * results with 256, 32 in the lowmem_reserve sysctl:
135 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
136 * 1G machine -> (16M dma, 784M normal, 224M high)
137 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
138 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
139 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141 * TBD: should special case ZONE_DMA32 machines here - in those we normally
142 * don't need any ZONE_NORMAL reservation
144 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
145 #ifdef CONFIG_ZONE_DMA
146 256,
147 #endif
148 #ifdef CONFIG_ZONE_DMA32
149 256,
150 #endif
151 #ifdef CONFIG_HIGHMEM
153 #endif
157 EXPORT_SYMBOL(totalram_pages);
159 static char * const zone_names[MAX_NR_ZONES] = {
160 #ifdef CONFIG_ZONE_DMA
161 "DMA",
162 #endif
163 #ifdef CONFIG_ZONE_DMA32
164 "DMA32",
165 #endif
166 "Normal",
167 #ifdef CONFIG_HIGHMEM
168 "HighMem",
169 #endif
170 "Movable",
173 int min_free_kbytes = 1024;
175 static unsigned long __meminitdata nr_kernel_pages;
176 static unsigned long __meminitdata nr_all_pages;
177 static unsigned long __meminitdata dma_reserve;
179 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
182 * ranges of memory (RAM) that may be registered with add_active_range().
183 * Ranges passed to add_active_range() will be merged if possible
184 * so the number of times add_active_range() can be called is
185 * related to the number of nodes and the number of holes
187 #ifdef CONFIG_MAX_ACTIVE_REGIONS
188 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
189 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
190 #else
191 #if MAX_NUMNODES >= 32
192 /* If there can be many nodes, allow up to 50 holes per node */
193 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
194 #else
195 /* By default, allow up to 256 distinct regions */
196 #define MAX_ACTIVE_REGIONS 256
197 #endif
198 #endif
200 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
201 static int __meminitdata nr_nodemap_entries;
202 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __initdata required_kernelcore;
205 static unsigned long __initdata required_movablecore;
206 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209 int movable_zone;
210 EXPORT_SYMBOL(movable_zone);
211 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213 #if MAX_NUMNODES > 1
214 int nr_node_ids __read_mostly = MAX_NUMNODES;
215 int nr_online_nodes __read_mostly = 1;
216 EXPORT_SYMBOL(nr_node_ids);
217 EXPORT_SYMBOL(nr_online_nodes);
218 #endif
220 int page_group_by_mobility_disabled __read_mostly;
222 static void set_pageblock_migratetype(struct page *page, int migratetype)
225 if (unlikely(page_group_by_mobility_disabled))
226 migratetype = MIGRATE_UNMOVABLE;
228 set_pageblock_flags_group(page, (unsigned long)migratetype,
229 PB_migrate, PB_migrate_end);
232 bool oom_killer_disabled __read_mostly;
234 #ifdef CONFIG_DEBUG_VM
235 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 int ret = 0;
238 unsigned seq;
239 unsigned long pfn = page_to_pfn(page);
241 do {
242 seq = zone_span_seqbegin(zone);
243 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
244 ret = 1;
245 else if (pfn < zone->zone_start_pfn)
246 ret = 1;
247 } while (zone_span_seqretry(zone, seq));
249 return ret;
252 static int page_is_consistent(struct zone *zone, struct page *page)
254 if (!pfn_valid_within(page_to_pfn(page)))
255 return 0;
256 if (zone != page_zone(page))
257 return 0;
259 return 1;
262 * Temporary debugging check for pages not lying within a given zone.
264 static int bad_range(struct zone *zone, struct page *page)
266 if (page_outside_zone_boundaries(zone, page))
267 return 1;
268 if (!page_is_consistent(zone, page))
269 return 1;
271 return 0;
273 #else
274 static inline int bad_range(struct zone *zone, struct page *page)
276 return 0;
278 #endif
280 static void bad_page(struct page *page)
282 static unsigned long resume;
283 static unsigned long nr_shown;
284 static unsigned long nr_unshown;
286 /* Don't complain about poisoned pages */
287 if (PageHWPoison(page)) {
288 __ClearPageBuddy(page);
289 return;
293 * Allow a burst of 60 reports, then keep quiet for that minute;
294 * or allow a steady drip of one report per second.
296 if (nr_shown == 60) {
297 if (time_before(jiffies, resume)) {
298 nr_unshown++;
299 goto out;
301 if (nr_unshown) {
302 printk(KERN_ALERT
303 "BUG: Bad page state: %lu messages suppressed\n",
304 nr_unshown);
305 nr_unshown = 0;
307 nr_shown = 0;
309 if (nr_shown++ == 0)
310 resume = jiffies + 60 * HZ;
312 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
313 current->comm, page_to_pfn(page));
314 dump_page(page);
316 dump_stack();
317 out:
318 /* Leave bad fields for debug, except PageBuddy could make trouble */
319 __ClearPageBuddy(page);
320 add_taint(TAINT_BAD_PAGE);
324 * Higher-order pages are called "compound pages". They are structured thusly:
326 * The first PAGE_SIZE page is called the "head page".
328 * The remaining PAGE_SIZE pages are called "tail pages".
330 * All pages have PG_compound set. All pages have their ->private pointing at
331 * the head page (even the head page has this).
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
338 static void free_compound_page(struct page *page)
340 __free_pages_ok(page, compound_order(page));
343 void prep_compound_page(struct page *page, unsigned long order)
345 int i;
346 int nr_pages = 1 << order;
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
354 __SetPageTail(p);
355 p->first_page = page;
359 static int destroy_compound_page(struct page *page, unsigned long order)
361 int i;
362 int nr_pages = 1 << order;
363 int bad = 0;
365 if (unlikely(compound_order(page) != order) ||
366 unlikely(!PageHead(page))) {
367 bad_page(page);
368 bad++;
371 __ClearPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
376 if (unlikely(!PageTail(p) || (p->first_page != page))) {
377 bad_page(page);
378 bad++;
380 __ClearPageTail(p);
383 return bad;
386 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388 int i;
391 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
392 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
395 for (i = 0; i < (1 << order); i++)
396 clear_highpage(page + i);
399 static inline void set_page_order(struct page *page, int order)
401 set_page_private(page, order);
402 __SetPageBuddy(page);
405 static inline void rmv_page_order(struct page *page)
407 __ClearPageBuddy(page);
408 set_page_private(page, 0);
412 * Locate the struct page for both the matching buddy in our
413 * pair (buddy1) and the combined O(n+1) page they form (page).
415 * 1) Any buddy B1 will have an order O twin B2 which satisfies
416 * the following equation:
417 * B2 = B1 ^ (1 << O)
418 * For example, if the starting buddy (buddy2) is #8 its order
419 * 1 buddy is #10:
420 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
422 * 2) Any buddy B will have an order O+1 parent P which
423 * satisfies the following equation:
424 * P = B & ~(1 << O)
426 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
428 static inline struct page *
429 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
431 unsigned long buddy_idx = page_idx ^ (1 << order);
433 return page + (buddy_idx - page_idx);
436 static inline unsigned long
437 __find_combined_index(unsigned long page_idx, unsigned int order)
439 return (page_idx & ~(1 << order));
443 * This function checks whether a page is free && is the buddy
444 * we can do coalesce a page and its buddy if
445 * (a) the buddy is not in a hole &&
446 * (b) the buddy is in the buddy system &&
447 * (c) a page and its buddy have the same order &&
448 * (d) a page and its buddy are in the same zone.
450 * For recording whether a page is in the buddy system, we use PG_buddy.
451 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
453 * For recording page's order, we use page_private(page).
455 static inline int page_is_buddy(struct page *page, struct page *buddy,
456 int order)
458 if (!pfn_valid_within(page_to_pfn(buddy)))
459 return 0;
461 if (page_zone_id(page) != page_zone_id(buddy))
462 return 0;
464 if (PageBuddy(buddy) && page_order(buddy) == order) {
465 VM_BUG_ON(page_count(buddy) != 0);
466 return 1;
468 return 0;
472 * Freeing function for a buddy system allocator.
474 * The concept of a buddy system is to maintain direct-mapped table
475 * (containing bit values) for memory blocks of various "orders".
476 * The bottom level table contains the map for the smallest allocatable
477 * units of memory (here, pages), and each level above it describes
478 * pairs of units from the levels below, hence, "buddies".
479 * At a high level, all that happens here is marking the table entry
480 * at the bottom level available, and propagating the changes upward
481 * as necessary, plus some accounting needed to play nicely with other
482 * parts of the VM system.
483 * At each level, we keep a list of pages, which are heads of continuous
484 * free pages of length of (1 << order) and marked with PG_buddy. Page's
485 * order is recorded in page_private(page) field.
486 * So when we are allocating or freeing one, we can derive the state of the
487 * other. That is, if we allocate a small block, and both were
488 * free, the remainder of the region must be split into blocks.
489 * If a block is freed, and its buddy is also free, then this
490 * triggers coalescing into a block of larger size.
492 * -- wli
495 static inline void __free_one_page(struct page *page,
496 struct zone *zone, unsigned int order,
497 int migratetype)
499 unsigned long page_idx;
500 unsigned long combined_idx;
501 struct page *buddy;
503 if (unlikely(PageCompound(page)))
504 if (unlikely(destroy_compound_page(page, order)))
505 return;
507 VM_BUG_ON(migratetype == -1);
509 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
511 VM_BUG_ON(page_idx & ((1 << order) - 1));
512 VM_BUG_ON(bad_range(zone, page));
514 while (order < MAX_ORDER-1) {
515 buddy = __page_find_buddy(page, page_idx, order);
516 if (!page_is_buddy(page, buddy, order))
517 break;
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy->lru);
521 zone->free_area[order].nr_free--;
522 rmv_page_order(buddy);
523 combined_idx = __find_combined_index(page_idx, order);
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
528 set_page_order(page, order);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539 struct page *higher_page, *higher_buddy;
540 combined_idx = __find_combined_index(page_idx, order);
541 higher_page = page + combined_idx - page_idx;
542 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
543 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
544 list_add_tail(&page->lru,
545 &zone->free_area[order].free_list[migratetype]);
546 goto out;
550 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
551 out:
552 zone->free_area[order].nr_free++;
556 * free_page_mlock() -- clean up attempts to free and mlocked() page.
557 * Page should not be on lru, so no need to fix that up.
558 * free_pages_check() will verify...
560 static inline void free_page_mlock(struct page *page)
562 __dec_zone_page_state(page, NR_MLOCK);
563 __count_vm_event(UNEVICTABLE_MLOCKFREED);
566 static inline int free_pages_check(struct page *page)
568 if (unlikely(page_mapcount(page) |
569 (page->mapping != NULL) |
570 (atomic_read(&page->_count) != 0) |
571 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
572 bad_page(page);
573 return 1;
575 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
576 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
577 return 0;
581 * Frees a number of pages from the PCP lists
582 * Assumes all pages on list are in same zone, and of same order.
583 * count is the number of pages to free.
585 * If the zone was previously in an "all pages pinned" state then look to
586 * see if this freeing clears that state.
588 * And clear the zone's pages_scanned counter, to hold off the "all pages are
589 * pinned" detection logic.
591 static void free_pcppages_bulk(struct zone *zone, int count,
592 struct per_cpu_pages *pcp)
594 int migratetype = 0;
595 int batch_free = 0;
596 int to_free = count;
598 spin_lock(&zone->lock);
599 zone->all_unreclaimable = 0;
600 zone->pages_scanned = 0;
602 while (to_free) {
603 struct page *page;
604 struct list_head *list;
607 * Remove pages from lists in a round-robin fashion. A
608 * batch_free count is maintained that is incremented when an
609 * empty list is encountered. This is so more pages are freed
610 * off fuller lists instead of spinning excessively around empty
611 * lists
613 do {
614 batch_free++;
615 if (++migratetype == MIGRATE_PCPTYPES)
616 migratetype = 0;
617 list = &pcp->lists[migratetype];
618 } while (list_empty(list));
620 do {
621 page = list_entry(list->prev, struct page, lru);
622 /* must delete as __free_one_page list manipulates */
623 list_del(&page->lru);
624 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
625 __free_one_page(page, zone, 0, page_private(page));
626 trace_mm_page_pcpu_drain(page, 0, page_private(page));
627 } while (--to_free && --batch_free && !list_empty(list));
629 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
630 spin_unlock(&zone->lock);
633 static void free_one_page(struct zone *zone, struct page *page, int order,
634 int migratetype)
636 spin_lock(&zone->lock);
637 zone->all_unreclaimable = 0;
638 zone->pages_scanned = 0;
640 __free_one_page(page, zone, order, migratetype);
641 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
642 spin_unlock(&zone->lock);
645 static bool free_pages_prepare(struct page *page, unsigned int order)
647 int i;
648 int bad = 0;
650 trace_mm_page_free_direct(page, order);
651 kmemcheck_free_shadow(page, order);
653 for (i = 0; i < (1 << order); i++) {
654 struct page *pg = page + i;
656 if (PageAnon(pg))
657 pg->mapping = NULL;
658 bad += free_pages_check(pg);
660 if (bad)
661 return false;
663 if (!PageHighMem(page)) {
664 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
665 debug_check_no_obj_freed(page_address(page),
666 PAGE_SIZE << order);
668 arch_free_page(page, order);
669 kernel_map_pages(page, 1 << order, 0);
671 return true;
674 static void __free_pages_ok(struct page *page, unsigned int order)
676 unsigned long flags;
677 int wasMlocked = __TestClearPageMlocked(page);
679 if (!free_pages_prepare(page, order))
680 return;
682 local_irq_save(flags);
683 if (unlikely(wasMlocked))
684 free_page_mlock(page);
685 __count_vm_events(PGFREE, 1 << order);
686 free_one_page(page_zone(page), page, order,
687 get_pageblock_migratetype(page));
688 local_irq_restore(flags);
692 * permit the bootmem allocator to evade page validation on high-order frees
694 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
696 if (order == 0) {
697 __ClearPageReserved(page);
698 set_page_count(page, 0);
699 set_page_refcounted(page);
700 __free_page(page);
701 } else {
702 int loop;
704 prefetchw(page);
705 for (loop = 0; loop < BITS_PER_LONG; loop++) {
706 struct page *p = &page[loop];
708 if (loop + 1 < BITS_PER_LONG)
709 prefetchw(p + 1);
710 __ClearPageReserved(p);
711 set_page_count(p, 0);
714 set_page_refcounted(page);
715 __free_pages(page, order);
721 * The order of subdivision here is critical for the IO subsystem.
722 * Please do not alter this order without good reasons and regression
723 * testing. Specifically, as large blocks of memory are subdivided,
724 * the order in which smaller blocks are delivered depends on the order
725 * they're subdivided in this function. This is the primary factor
726 * influencing the order in which pages are delivered to the IO
727 * subsystem according to empirical testing, and this is also justified
728 * by considering the behavior of a buddy system containing a single
729 * large block of memory acted on by a series of small allocations.
730 * This behavior is a critical factor in sglist merging's success.
732 * -- wli
734 static inline void expand(struct zone *zone, struct page *page,
735 int low, int high, struct free_area *area,
736 int migratetype)
738 unsigned long size = 1 << high;
740 while (high > low) {
741 area--;
742 high--;
743 size >>= 1;
744 VM_BUG_ON(bad_range(zone, &page[size]));
745 list_add(&page[size].lru, &area->free_list[migratetype]);
746 area->nr_free++;
747 set_page_order(&page[size], high);
752 * This page is about to be returned from the page allocator
754 static inline int check_new_page(struct page *page)
756 if (unlikely(page_mapcount(page) |
757 (page->mapping != NULL) |
758 (atomic_read(&page->_count) != 0) |
759 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
760 bad_page(page);
761 return 1;
763 return 0;
766 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
768 int i;
770 for (i = 0; i < (1 << order); i++) {
771 struct page *p = page + i;
772 if (unlikely(check_new_page(p)))
773 return 1;
776 set_page_private(page, 0);
777 set_page_refcounted(page);
779 arch_alloc_page(page, order);
780 kernel_map_pages(page, 1 << order, 1);
782 if (gfp_flags & __GFP_ZERO)
783 prep_zero_page(page, order, gfp_flags);
785 if (order && (gfp_flags & __GFP_COMP))
786 prep_compound_page(page, order);
788 return 0;
792 * Go through the free lists for the given migratetype and remove
793 * the smallest available page from the freelists
795 static inline
796 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
797 int migratetype)
799 unsigned int current_order;
800 struct free_area * area;
801 struct page *page;
803 /* Find a page of the appropriate size in the preferred list */
804 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 list_del(&page->lru);
812 rmv_page_order(page);
813 area->nr_free--;
814 expand(zone, page, order, current_order, area, migratetype);
815 return page;
818 return NULL;
823 * This array describes the order lists are fallen back to when
824 * the free lists for the desirable migrate type are depleted
826 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
827 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
828 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
834 * Move the free pages in a range to the free lists of the requested type.
835 * Note that start_page and end_pages are not aligned on a pageblock
836 * boundary. If alignment is required, use move_freepages_block()
838 static int move_freepages(struct zone *zone,
839 struct page *start_page, struct page *end_page,
840 int migratetype)
842 struct page *page;
843 unsigned long order;
844 int pages_moved = 0;
846 #ifndef CONFIG_HOLES_IN_ZONE
848 * page_zone is not safe to call in this context when
849 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
850 * anyway as we check zone boundaries in move_freepages_block().
851 * Remove at a later date when no bug reports exist related to
852 * grouping pages by mobility
854 BUG_ON(page_zone(start_page) != page_zone(end_page));
855 #endif
857 for (page = start_page; page <= end_page;) {
858 /* Make sure we are not inadvertently changing nodes */
859 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
861 if (!pfn_valid_within(page_to_pfn(page))) {
862 page++;
863 continue;
866 if (!PageBuddy(page)) {
867 page++;
868 continue;
871 order = page_order(page);
872 list_del(&page->lru);
873 list_add(&page->lru,
874 &zone->free_area[order].free_list[migratetype]);
875 page += 1 << order;
876 pages_moved += 1 << order;
879 return pages_moved;
882 static int move_freepages_block(struct zone *zone, struct page *page,
883 int migratetype)
885 unsigned long start_pfn, end_pfn;
886 struct page *start_page, *end_page;
888 start_pfn = page_to_pfn(page);
889 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
890 start_page = pfn_to_page(start_pfn);
891 end_page = start_page + pageblock_nr_pages - 1;
892 end_pfn = start_pfn + pageblock_nr_pages - 1;
894 /* Do not cross zone boundaries */
895 if (start_pfn < zone->zone_start_pfn)
896 start_page = page;
897 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
898 return 0;
900 return move_freepages(zone, start_page, end_page, migratetype);
903 static void change_pageblock_range(struct page *pageblock_page,
904 int start_order, int migratetype)
906 int nr_pageblocks = 1 << (start_order - pageblock_order);
908 while (nr_pageblocks--) {
909 set_pageblock_migratetype(pageblock_page, migratetype);
910 pageblock_page += pageblock_nr_pages;
914 /* Remove an element from the buddy allocator from the fallback list */
915 static inline struct page *
916 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
918 struct free_area * area;
919 int current_order;
920 struct page *page;
921 int migratetype, i;
923 /* Find the largest possible block of pages in the other list */
924 for (current_order = MAX_ORDER-1; current_order >= order;
925 --current_order) {
926 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
927 migratetype = fallbacks[start_migratetype][i];
929 /* MIGRATE_RESERVE handled later if necessary */
930 if (migratetype == MIGRATE_RESERVE)
931 continue;
933 area = &(zone->free_area[current_order]);
934 if (list_empty(&area->free_list[migratetype]))
935 continue;
937 page = list_entry(area->free_list[migratetype].next,
938 struct page, lru);
939 area->nr_free--;
942 * If breaking a large block of pages, move all free
943 * pages to the preferred allocation list. If falling
944 * back for a reclaimable kernel allocation, be more
945 * agressive about taking ownership of free pages
947 if (unlikely(current_order >= (pageblock_order >> 1)) ||
948 start_migratetype == MIGRATE_RECLAIMABLE ||
949 page_group_by_mobility_disabled) {
950 unsigned long pages;
951 pages = move_freepages_block(zone, page,
952 start_migratetype);
954 /* Claim the whole block if over half of it is free */
955 if (pages >= (1 << (pageblock_order-1)) ||
956 page_group_by_mobility_disabled)
957 set_pageblock_migratetype(page,
958 start_migratetype);
960 migratetype = start_migratetype;
963 /* Remove the page from the freelists */
964 list_del(&page->lru);
965 rmv_page_order(page);
967 /* Take ownership for orders >= pageblock_order */
968 if (current_order >= pageblock_order)
969 change_pageblock_range(page, current_order,
970 start_migratetype);
972 expand(zone, page, order, current_order, area, migratetype);
974 trace_mm_page_alloc_extfrag(page, order, current_order,
975 start_migratetype, migratetype);
977 return page;
981 return NULL;
985 * Do the hard work of removing an element from the buddy allocator.
986 * Call me with the zone->lock already held.
988 static struct page *__rmqueue(struct zone *zone, unsigned int order,
989 int migratetype)
991 struct page *page;
993 retry_reserve:
994 page = __rmqueue_smallest(zone, order, migratetype);
996 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
997 page = __rmqueue_fallback(zone, order, migratetype);
1000 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1001 * is used because __rmqueue_smallest is an inline function
1002 * and we want just one call site
1004 if (!page) {
1005 migratetype = MIGRATE_RESERVE;
1006 goto retry_reserve;
1010 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1011 return page;
1015 * Obtain a specified number of elements from the buddy allocator, all under
1016 * a single hold of the lock, for efficiency. Add them to the supplied list.
1017 * Returns the number of new pages which were placed at *list.
1019 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1020 unsigned long count, struct list_head *list,
1021 int migratetype, int cold)
1023 int i;
1025 spin_lock(&zone->lock);
1026 for (i = 0; i < count; ++i) {
1027 struct page *page = __rmqueue(zone, order, migratetype);
1028 if (unlikely(page == NULL))
1029 break;
1032 * Split buddy pages returned by expand() are received here
1033 * in physical page order. The page is added to the callers and
1034 * list and the list head then moves forward. From the callers
1035 * perspective, the linked list is ordered by page number in
1036 * some conditions. This is useful for IO devices that can
1037 * merge IO requests if the physical pages are ordered
1038 * properly.
1040 if (likely(cold == 0))
1041 list_add(&page->lru, list);
1042 else
1043 list_add_tail(&page->lru, list);
1044 set_page_private(page, migratetype);
1045 list = &page->lru;
1047 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1048 spin_unlock(&zone->lock);
1049 return i;
1052 #ifdef CONFIG_NUMA
1054 * Called from the vmstat counter updater to drain pagesets of this
1055 * currently executing processor on remote nodes after they have
1056 * expired.
1058 * Note that this function must be called with the thread pinned to
1059 * a single processor.
1061 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1063 unsigned long flags;
1064 int to_drain;
1066 local_irq_save(flags);
1067 if (pcp->count >= pcp->batch)
1068 to_drain = pcp->batch;
1069 else
1070 to_drain = pcp->count;
1071 free_pcppages_bulk(zone, to_drain, pcp);
1072 pcp->count -= to_drain;
1073 local_irq_restore(flags);
1075 #endif
1078 * Drain pages of the indicated processor.
1080 * The processor must either be the current processor and the
1081 * thread pinned to the current processor or a processor that
1082 * is not online.
1084 static void drain_pages(unsigned int cpu)
1086 unsigned long flags;
1087 struct zone *zone;
1089 for_each_populated_zone(zone) {
1090 struct per_cpu_pageset *pset;
1091 struct per_cpu_pages *pcp;
1093 local_irq_save(flags);
1094 pset = per_cpu_ptr(zone->pageset, cpu);
1096 pcp = &pset->pcp;
1097 free_pcppages_bulk(zone, pcp->count, pcp);
1098 pcp->count = 0;
1099 local_irq_restore(flags);
1104 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1106 void drain_local_pages(void *arg)
1108 drain_pages(smp_processor_id());
1112 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1114 void drain_all_pages(void)
1116 on_each_cpu(drain_local_pages, NULL, 1);
1119 #ifdef CONFIG_HIBERNATION
1121 void mark_free_pages(struct zone *zone)
1123 unsigned long pfn, max_zone_pfn;
1124 unsigned long flags;
1125 int order, t;
1126 struct list_head *curr;
1128 if (!zone->spanned_pages)
1129 return;
1131 spin_lock_irqsave(&zone->lock, flags);
1133 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1134 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1135 if (pfn_valid(pfn)) {
1136 struct page *page = pfn_to_page(pfn);
1138 if (!swsusp_page_is_forbidden(page))
1139 swsusp_unset_page_free(page);
1142 for_each_migratetype_order(order, t) {
1143 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1144 unsigned long i;
1146 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1147 for (i = 0; i < (1UL << order); i++)
1148 swsusp_set_page_free(pfn_to_page(pfn + i));
1151 spin_unlock_irqrestore(&zone->lock, flags);
1153 #endif /* CONFIG_PM */
1156 * Free a 0-order page
1157 * cold == 1 ? free a cold page : free a hot page
1159 void free_hot_cold_page(struct page *page, int cold)
1161 struct zone *zone = page_zone(page);
1162 struct per_cpu_pages *pcp;
1163 unsigned long flags;
1164 int migratetype;
1165 int wasMlocked = __TestClearPageMlocked(page);
1167 if (!free_pages_prepare(page, 0))
1168 return;
1170 migratetype = get_pageblock_migratetype(page);
1171 set_page_private(page, migratetype);
1172 local_irq_save(flags);
1173 if (unlikely(wasMlocked))
1174 free_page_mlock(page);
1175 __count_vm_event(PGFREE);
1178 * We only track unmovable, reclaimable and movable on pcp lists.
1179 * Free ISOLATE pages back to the allocator because they are being
1180 * offlined but treat RESERVE as movable pages so we can get those
1181 * areas back if necessary. Otherwise, we may have to free
1182 * excessively into the page allocator
1184 if (migratetype >= MIGRATE_PCPTYPES) {
1185 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1186 free_one_page(zone, page, 0, migratetype);
1187 goto out;
1189 migratetype = MIGRATE_MOVABLE;
1192 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1193 if (cold)
1194 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1195 else
1196 list_add(&page->lru, &pcp->lists[migratetype]);
1197 pcp->count++;
1198 if (pcp->count >= pcp->high) {
1199 free_pcppages_bulk(zone, pcp->batch, pcp);
1200 pcp->count -= pcp->batch;
1203 out:
1204 local_irq_restore(flags);
1208 * split_page takes a non-compound higher-order page, and splits it into
1209 * n (1<<order) sub-pages: page[0..n]
1210 * Each sub-page must be freed individually.
1212 * Note: this is probably too low level an operation for use in drivers.
1213 * Please consult with lkml before using this in your driver.
1215 void split_page(struct page *page, unsigned int order)
1217 int i;
1219 VM_BUG_ON(PageCompound(page));
1220 VM_BUG_ON(!page_count(page));
1222 #ifdef CONFIG_KMEMCHECK
1224 * Split shadow pages too, because free(page[0]) would
1225 * otherwise free the whole shadow.
1227 if (kmemcheck_page_is_tracked(page))
1228 split_page(virt_to_page(page[0].shadow), order);
1229 #endif
1231 for (i = 1; i < (1 << order); i++)
1232 set_page_refcounted(page + i);
1236 * Similar to split_page except the page is already free. As this is only
1237 * being used for migration, the migratetype of the block also changes.
1238 * As this is called with interrupts disabled, the caller is responsible
1239 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1240 * are enabled.
1242 * Note: this is probably too low level an operation for use in drivers.
1243 * Please consult with lkml before using this in your driver.
1245 int split_free_page(struct page *page)
1247 unsigned int order;
1248 unsigned long watermark;
1249 struct zone *zone;
1251 BUG_ON(!PageBuddy(page));
1253 zone = page_zone(page);
1254 order = page_order(page);
1256 /* Obey watermarks as if the page was being allocated */
1257 watermark = low_wmark_pages(zone) + (1 << order);
1258 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1259 return 0;
1261 /* Remove page from free list */
1262 list_del(&page->lru);
1263 zone->free_area[order].nr_free--;
1264 rmv_page_order(page);
1265 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1267 /* Split into individual pages */
1268 set_page_refcounted(page);
1269 split_page(page, order);
1271 if (order >= pageblock_order - 1) {
1272 struct page *endpage = page + (1 << order) - 1;
1273 for (; page < endpage; page += pageblock_nr_pages)
1274 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1277 return 1 << order;
1281 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1282 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1283 * or two.
1285 static inline
1286 struct page *buffered_rmqueue(struct zone *preferred_zone,
1287 struct zone *zone, int order, gfp_t gfp_flags,
1288 int migratetype)
1290 unsigned long flags;
1291 struct page *page;
1292 int cold = !!(gfp_flags & __GFP_COLD);
1294 again:
1295 if (likely(order == 0)) {
1296 struct per_cpu_pages *pcp;
1297 struct list_head *list;
1299 local_irq_save(flags);
1300 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1301 list = &pcp->lists[migratetype];
1302 if (list_empty(list)) {
1303 pcp->count += rmqueue_bulk(zone, 0,
1304 pcp->batch, list,
1305 migratetype, cold);
1306 if (unlikely(list_empty(list)))
1307 goto failed;
1310 if (cold)
1311 page = list_entry(list->prev, struct page, lru);
1312 else
1313 page = list_entry(list->next, struct page, lru);
1315 list_del(&page->lru);
1316 pcp->count--;
1317 } else {
1318 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1320 * __GFP_NOFAIL is not to be used in new code.
1322 * All __GFP_NOFAIL callers should be fixed so that they
1323 * properly detect and handle allocation failures.
1325 * We most definitely don't want callers attempting to
1326 * allocate greater than order-1 page units with
1327 * __GFP_NOFAIL.
1329 WARN_ON_ONCE(order > 1);
1331 spin_lock_irqsave(&zone->lock, flags);
1332 page = __rmqueue(zone, order, migratetype);
1333 spin_unlock(&zone->lock);
1334 if (!page)
1335 goto failed;
1336 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1339 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1340 zone_statistics(preferred_zone, zone);
1341 local_irq_restore(flags);
1343 VM_BUG_ON(bad_range(zone, page));
1344 if (prep_new_page(page, order, gfp_flags))
1345 goto again;
1346 return page;
1348 failed:
1349 local_irq_restore(flags);
1350 return NULL;
1353 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1354 #define ALLOC_WMARK_MIN WMARK_MIN
1355 #define ALLOC_WMARK_LOW WMARK_LOW
1356 #define ALLOC_WMARK_HIGH WMARK_HIGH
1357 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1359 /* Mask to get the watermark bits */
1360 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1362 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1363 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1364 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1366 #ifdef CONFIG_FAIL_PAGE_ALLOC
1368 static struct fail_page_alloc_attr {
1369 struct fault_attr attr;
1371 u32 ignore_gfp_highmem;
1372 u32 ignore_gfp_wait;
1373 u32 min_order;
1375 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1377 struct dentry *ignore_gfp_highmem_file;
1378 struct dentry *ignore_gfp_wait_file;
1379 struct dentry *min_order_file;
1381 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1383 } fail_page_alloc = {
1384 .attr = FAULT_ATTR_INITIALIZER,
1385 .ignore_gfp_wait = 1,
1386 .ignore_gfp_highmem = 1,
1387 .min_order = 1,
1390 static int __init setup_fail_page_alloc(char *str)
1392 return setup_fault_attr(&fail_page_alloc.attr, str);
1394 __setup("fail_page_alloc=", setup_fail_page_alloc);
1396 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1398 if (order < fail_page_alloc.min_order)
1399 return 0;
1400 if (gfp_mask & __GFP_NOFAIL)
1401 return 0;
1402 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1403 return 0;
1404 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1405 return 0;
1407 return should_fail(&fail_page_alloc.attr, 1 << order);
1410 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1412 static int __init fail_page_alloc_debugfs(void)
1414 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1415 struct dentry *dir;
1416 int err;
1418 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1419 "fail_page_alloc");
1420 if (err)
1421 return err;
1422 dir = fail_page_alloc.attr.dentries.dir;
1424 fail_page_alloc.ignore_gfp_wait_file =
1425 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1426 &fail_page_alloc.ignore_gfp_wait);
1428 fail_page_alloc.ignore_gfp_highmem_file =
1429 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1430 &fail_page_alloc.ignore_gfp_highmem);
1431 fail_page_alloc.min_order_file =
1432 debugfs_create_u32("min-order", mode, dir,
1433 &fail_page_alloc.min_order);
1435 if (!fail_page_alloc.ignore_gfp_wait_file ||
1436 !fail_page_alloc.ignore_gfp_highmem_file ||
1437 !fail_page_alloc.min_order_file) {
1438 err = -ENOMEM;
1439 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1440 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1441 debugfs_remove(fail_page_alloc.min_order_file);
1442 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1445 return err;
1448 late_initcall(fail_page_alloc_debugfs);
1450 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1452 #else /* CONFIG_FAIL_PAGE_ALLOC */
1454 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1456 return 0;
1459 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1462 * Return 1 if free pages are above 'mark'. This takes into account the order
1463 * of the allocation.
1465 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1466 int classzone_idx, int alloc_flags)
1468 /* free_pages my go negative - that's OK */
1469 long min = mark;
1470 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1471 int o;
1473 if (alloc_flags & ALLOC_HIGH)
1474 min -= min / 2;
1475 if (alloc_flags & ALLOC_HARDER)
1476 min -= min / 4;
1478 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1479 return 0;
1480 for (o = 0; o < order; o++) {
1481 /* At the next order, this order's pages become unavailable */
1482 free_pages -= z->free_area[o].nr_free << o;
1484 /* Require fewer higher order pages to be free */
1485 min >>= 1;
1487 if (free_pages <= min)
1488 return 0;
1490 return 1;
1493 #ifdef CONFIG_NUMA
1495 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1496 * skip over zones that are not allowed by the cpuset, or that have
1497 * been recently (in last second) found to be nearly full. See further
1498 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1499 * that have to skip over a lot of full or unallowed zones.
1501 * If the zonelist cache is present in the passed in zonelist, then
1502 * returns a pointer to the allowed node mask (either the current
1503 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1505 * If the zonelist cache is not available for this zonelist, does
1506 * nothing and returns NULL.
1508 * If the fullzones BITMAP in the zonelist cache is stale (more than
1509 * a second since last zap'd) then we zap it out (clear its bits.)
1511 * We hold off even calling zlc_setup, until after we've checked the
1512 * first zone in the zonelist, on the theory that most allocations will
1513 * be satisfied from that first zone, so best to examine that zone as
1514 * quickly as we can.
1516 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1518 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1519 nodemask_t *allowednodes; /* zonelist_cache approximation */
1521 zlc = zonelist->zlcache_ptr;
1522 if (!zlc)
1523 return NULL;
1525 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1526 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1527 zlc->last_full_zap = jiffies;
1530 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1531 &cpuset_current_mems_allowed :
1532 &node_states[N_HIGH_MEMORY];
1533 return allowednodes;
1537 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1538 * if it is worth looking at further for free memory:
1539 * 1) Check that the zone isn't thought to be full (doesn't have its
1540 * bit set in the zonelist_cache fullzones BITMAP).
1541 * 2) Check that the zones node (obtained from the zonelist_cache
1542 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1543 * Return true (non-zero) if zone is worth looking at further, or
1544 * else return false (zero) if it is not.
1546 * This check -ignores- the distinction between various watermarks,
1547 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1548 * found to be full for any variation of these watermarks, it will
1549 * be considered full for up to one second by all requests, unless
1550 * we are so low on memory on all allowed nodes that we are forced
1551 * into the second scan of the zonelist.
1553 * In the second scan we ignore this zonelist cache and exactly
1554 * apply the watermarks to all zones, even it is slower to do so.
1555 * We are low on memory in the second scan, and should leave no stone
1556 * unturned looking for a free page.
1558 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1559 nodemask_t *allowednodes)
1561 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1562 int i; /* index of *z in zonelist zones */
1563 int n; /* node that zone *z is on */
1565 zlc = zonelist->zlcache_ptr;
1566 if (!zlc)
1567 return 1;
1569 i = z - zonelist->_zonerefs;
1570 n = zlc->z_to_n[i];
1572 /* This zone is worth trying if it is allowed but not full */
1573 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1577 * Given 'z' scanning a zonelist, set the corresponding bit in
1578 * zlc->fullzones, so that subsequent attempts to allocate a page
1579 * from that zone don't waste time re-examining it.
1581 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1583 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1584 int i; /* index of *z in zonelist zones */
1586 zlc = zonelist->zlcache_ptr;
1587 if (!zlc)
1588 return;
1590 i = z - zonelist->_zonerefs;
1592 set_bit(i, zlc->fullzones);
1595 #else /* CONFIG_NUMA */
1597 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1599 return NULL;
1602 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1603 nodemask_t *allowednodes)
1605 return 1;
1608 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1611 #endif /* CONFIG_NUMA */
1614 * get_page_from_freelist goes through the zonelist trying to allocate
1615 * a page.
1617 static struct page *
1618 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1619 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1620 struct zone *preferred_zone, int migratetype)
1622 struct zoneref *z;
1623 struct page *page = NULL;
1624 int classzone_idx;
1625 struct zone *zone;
1626 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1627 int zlc_active = 0; /* set if using zonelist_cache */
1628 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1630 classzone_idx = zone_idx(preferred_zone);
1631 zonelist_scan:
1633 * Scan zonelist, looking for a zone with enough free.
1634 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1636 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1637 high_zoneidx, nodemask) {
1638 if (NUMA_BUILD && zlc_active &&
1639 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1640 continue;
1641 if ((alloc_flags & ALLOC_CPUSET) &&
1642 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1643 goto try_next_zone;
1645 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1646 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1647 unsigned long mark;
1648 int ret;
1650 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1651 if (zone_watermark_ok(zone, order, mark,
1652 classzone_idx, alloc_flags))
1653 goto try_this_zone;
1655 if (zone_reclaim_mode == 0)
1656 goto this_zone_full;
1658 ret = zone_reclaim(zone, gfp_mask, order);
1659 switch (ret) {
1660 case ZONE_RECLAIM_NOSCAN:
1661 /* did not scan */
1662 goto try_next_zone;
1663 case ZONE_RECLAIM_FULL:
1664 /* scanned but unreclaimable */
1665 goto this_zone_full;
1666 default:
1667 /* did we reclaim enough */
1668 if (!zone_watermark_ok(zone, order, mark,
1669 classzone_idx, alloc_flags))
1670 goto this_zone_full;
1674 try_this_zone:
1675 page = buffered_rmqueue(preferred_zone, zone, order,
1676 gfp_mask, migratetype);
1677 if (page)
1678 break;
1679 this_zone_full:
1680 if (NUMA_BUILD)
1681 zlc_mark_zone_full(zonelist, z);
1682 try_next_zone:
1683 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1685 * we do zlc_setup after the first zone is tried but only
1686 * if there are multiple nodes make it worthwhile
1688 allowednodes = zlc_setup(zonelist, alloc_flags);
1689 zlc_active = 1;
1690 did_zlc_setup = 1;
1694 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1695 /* Disable zlc cache for second zonelist scan */
1696 zlc_active = 0;
1697 goto zonelist_scan;
1699 return page;
1702 static inline int
1703 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1704 unsigned long pages_reclaimed)
1706 /* Do not loop if specifically requested */
1707 if (gfp_mask & __GFP_NORETRY)
1708 return 0;
1711 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1712 * means __GFP_NOFAIL, but that may not be true in other
1713 * implementations.
1715 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1716 return 1;
1719 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1720 * specified, then we retry until we no longer reclaim any pages
1721 * (above), or we've reclaimed an order of pages at least as
1722 * large as the allocation's order. In both cases, if the
1723 * allocation still fails, we stop retrying.
1725 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1726 return 1;
1729 * Don't let big-order allocations loop unless the caller
1730 * explicitly requests that.
1732 if (gfp_mask & __GFP_NOFAIL)
1733 return 1;
1735 return 0;
1738 static inline struct page *
1739 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1740 struct zonelist *zonelist, enum zone_type high_zoneidx,
1741 nodemask_t *nodemask, struct zone *preferred_zone,
1742 int migratetype)
1744 struct page *page;
1746 /* Acquire the OOM killer lock for the zones in zonelist */
1747 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1748 schedule_timeout_uninterruptible(1);
1749 return NULL;
1753 * Go through the zonelist yet one more time, keep very high watermark
1754 * here, this is only to catch a parallel oom killing, we must fail if
1755 * we're still under heavy pressure.
1757 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1758 order, zonelist, high_zoneidx,
1759 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1760 preferred_zone, migratetype);
1761 if (page)
1762 goto out;
1764 if (!(gfp_mask & __GFP_NOFAIL)) {
1765 /* The OOM killer will not help higher order allocs */
1766 if (order > PAGE_ALLOC_COSTLY_ORDER)
1767 goto out;
1769 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1770 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1771 * The caller should handle page allocation failure by itself if
1772 * it specifies __GFP_THISNODE.
1773 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1775 if (gfp_mask & __GFP_THISNODE)
1776 goto out;
1778 /* Exhausted what can be done so it's blamo time */
1779 out_of_memory(zonelist, gfp_mask, order, nodemask);
1781 out:
1782 clear_zonelist_oom(zonelist, gfp_mask);
1783 return page;
1786 #ifdef CONFIG_COMPACTION
1787 /* Try memory compaction for high-order allocations before reclaim */
1788 static struct page *
1789 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1790 struct zonelist *zonelist, enum zone_type high_zoneidx,
1791 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1792 int migratetype, unsigned long *did_some_progress)
1794 struct page *page;
1796 if (!order || compaction_deferred(preferred_zone))
1797 return NULL;
1799 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1800 nodemask);
1801 if (*did_some_progress != COMPACT_SKIPPED) {
1803 /* Page migration frees to the PCP lists but we want merging */
1804 drain_pages(get_cpu());
1805 put_cpu();
1807 page = get_page_from_freelist(gfp_mask, nodemask,
1808 order, zonelist, high_zoneidx,
1809 alloc_flags, preferred_zone,
1810 migratetype);
1811 if (page) {
1812 preferred_zone->compact_considered = 0;
1813 preferred_zone->compact_defer_shift = 0;
1814 count_vm_event(COMPACTSUCCESS);
1815 return page;
1819 * It's bad if compaction run occurs and fails.
1820 * The most likely reason is that pages exist,
1821 * but not enough to satisfy watermarks.
1823 count_vm_event(COMPACTFAIL);
1824 defer_compaction(preferred_zone);
1826 cond_resched();
1829 return NULL;
1831 #else
1832 static inline struct page *
1833 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1834 struct zonelist *zonelist, enum zone_type high_zoneidx,
1835 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1836 int migratetype, unsigned long *did_some_progress)
1838 return NULL;
1840 #endif /* CONFIG_COMPACTION */
1842 /* The really slow allocator path where we enter direct reclaim */
1843 static inline struct page *
1844 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1845 struct zonelist *zonelist, enum zone_type high_zoneidx,
1846 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1847 int migratetype, unsigned long *did_some_progress)
1849 struct page *page = NULL;
1850 struct reclaim_state reclaim_state;
1851 struct task_struct *p = current;
1852 bool drained = false;
1854 cond_resched();
1856 /* We now go into synchronous reclaim */
1857 cpuset_memory_pressure_bump();
1858 p->flags |= PF_MEMALLOC;
1859 lockdep_set_current_reclaim_state(gfp_mask);
1860 reclaim_state.reclaimed_slab = 0;
1861 p->reclaim_state = &reclaim_state;
1863 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1865 p->reclaim_state = NULL;
1866 lockdep_clear_current_reclaim_state();
1867 p->flags &= ~PF_MEMALLOC;
1869 cond_resched();
1871 if (unlikely(!(*did_some_progress)))
1872 return NULL;
1874 retry:
1875 page = get_page_from_freelist(gfp_mask, nodemask, order,
1876 zonelist, high_zoneidx,
1877 alloc_flags, preferred_zone,
1878 migratetype);
1881 * If an allocation failed after direct reclaim, it could be because
1882 * pages are pinned on the per-cpu lists. Drain them and try again
1884 if (!page && !drained) {
1885 drain_all_pages();
1886 drained = true;
1887 goto retry;
1890 return page;
1894 * This is called in the allocator slow-path if the allocation request is of
1895 * sufficient urgency to ignore watermarks and take other desperate measures
1897 static inline struct page *
1898 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1899 struct zonelist *zonelist, enum zone_type high_zoneidx,
1900 nodemask_t *nodemask, struct zone *preferred_zone,
1901 int migratetype)
1903 struct page *page;
1905 do {
1906 page = get_page_from_freelist(gfp_mask, nodemask, order,
1907 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1908 preferred_zone, migratetype);
1910 if (!page && gfp_mask & __GFP_NOFAIL)
1911 congestion_wait(BLK_RW_ASYNC, HZ/50);
1912 } while (!page && (gfp_mask & __GFP_NOFAIL));
1914 return page;
1917 static inline
1918 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1919 enum zone_type high_zoneidx)
1921 struct zoneref *z;
1922 struct zone *zone;
1924 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1925 wakeup_kswapd(zone, order);
1928 static inline int
1929 gfp_to_alloc_flags(gfp_t gfp_mask)
1931 struct task_struct *p = current;
1932 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1933 const gfp_t wait = gfp_mask & __GFP_WAIT;
1935 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1936 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1939 * The caller may dip into page reserves a bit more if the caller
1940 * cannot run direct reclaim, or if the caller has realtime scheduling
1941 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1942 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1944 alloc_flags |= (gfp_mask & __GFP_HIGH);
1946 if (!wait) {
1947 alloc_flags |= ALLOC_HARDER;
1949 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1950 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1952 alloc_flags &= ~ALLOC_CPUSET;
1953 } else if (unlikely(rt_task(p)) && !in_interrupt())
1954 alloc_flags |= ALLOC_HARDER;
1956 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1957 if (!in_interrupt() &&
1958 ((p->flags & PF_MEMALLOC) ||
1959 unlikely(test_thread_flag(TIF_MEMDIE))))
1960 alloc_flags |= ALLOC_NO_WATERMARKS;
1963 return alloc_flags;
1966 static inline struct page *
1967 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1968 struct zonelist *zonelist, enum zone_type high_zoneidx,
1969 nodemask_t *nodemask, struct zone *preferred_zone,
1970 int migratetype)
1972 const gfp_t wait = gfp_mask & __GFP_WAIT;
1973 struct page *page = NULL;
1974 int alloc_flags;
1975 unsigned long pages_reclaimed = 0;
1976 unsigned long did_some_progress;
1977 struct task_struct *p = current;
1980 * In the slowpath, we sanity check order to avoid ever trying to
1981 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1982 * be using allocators in order of preference for an area that is
1983 * too large.
1985 if (order >= MAX_ORDER) {
1986 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1987 return NULL;
1991 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1992 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1993 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1994 * using a larger set of nodes after it has established that the
1995 * allowed per node queues are empty and that nodes are
1996 * over allocated.
1998 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1999 goto nopage;
2001 restart:
2002 wake_all_kswapd(order, zonelist, high_zoneidx);
2005 * OK, we're below the kswapd watermark and have kicked background
2006 * reclaim. Now things get more complex, so set up alloc_flags according
2007 * to how we want to proceed.
2009 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2011 /* This is the last chance, in general, before the goto nopage. */
2012 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2013 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2014 preferred_zone, migratetype);
2015 if (page)
2016 goto got_pg;
2018 rebalance:
2019 /* Allocate without watermarks if the context allows */
2020 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2021 page = __alloc_pages_high_priority(gfp_mask, order,
2022 zonelist, high_zoneidx, nodemask,
2023 preferred_zone, migratetype);
2024 if (page)
2025 goto got_pg;
2028 /* Atomic allocations - we can't balance anything */
2029 if (!wait)
2030 goto nopage;
2032 /* Avoid recursion of direct reclaim */
2033 if (p->flags & PF_MEMALLOC)
2034 goto nopage;
2036 /* Avoid allocations with no watermarks from looping endlessly */
2037 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2038 goto nopage;
2040 /* Try direct compaction */
2041 page = __alloc_pages_direct_compact(gfp_mask, order,
2042 zonelist, high_zoneidx,
2043 nodemask,
2044 alloc_flags, preferred_zone,
2045 migratetype, &did_some_progress);
2046 if (page)
2047 goto got_pg;
2049 /* Try direct reclaim and then allocating */
2050 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2051 zonelist, high_zoneidx,
2052 nodemask,
2053 alloc_flags, preferred_zone,
2054 migratetype, &did_some_progress);
2055 if (page)
2056 goto got_pg;
2059 * If we failed to make any progress reclaiming, then we are
2060 * running out of options and have to consider going OOM
2062 if (!did_some_progress) {
2063 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2064 if (oom_killer_disabled)
2065 goto nopage;
2066 page = __alloc_pages_may_oom(gfp_mask, order,
2067 zonelist, high_zoneidx,
2068 nodemask, preferred_zone,
2069 migratetype);
2070 if (page)
2071 goto got_pg;
2074 * The OOM killer does not trigger for high-order
2075 * ~__GFP_NOFAIL allocations so if no progress is being
2076 * made, there are no other options and retrying is
2077 * unlikely to help.
2079 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2080 !(gfp_mask & __GFP_NOFAIL))
2081 goto nopage;
2083 goto restart;
2087 /* Check if we should retry the allocation */
2088 pages_reclaimed += did_some_progress;
2089 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2090 /* Wait for some write requests to complete then retry */
2091 congestion_wait(BLK_RW_ASYNC, HZ/50);
2092 goto rebalance;
2095 nopage:
2096 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2097 printk(KERN_WARNING "%s: page allocation failure."
2098 " order:%d, mode:0x%x\n",
2099 p->comm, order, gfp_mask);
2100 dump_stack();
2101 show_mem();
2103 return page;
2104 got_pg:
2105 if (kmemcheck_enabled)
2106 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2107 return page;
2112 * This is the 'heart' of the zoned buddy allocator.
2114 struct page *
2115 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2116 struct zonelist *zonelist, nodemask_t *nodemask)
2118 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2119 struct zone *preferred_zone;
2120 struct page *page;
2121 int migratetype = allocflags_to_migratetype(gfp_mask);
2123 gfp_mask &= gfp_allowed_mask;
2125 lockdep_trace_alloc(gfp_mask);
2127 might_sleep_if(gfp_mask & __GFP_WAIT);
2129 if (should_fail_alloc_page(gfp_mask, order))
2130 return NULL;
2133 * Check the zones suitable for the gfp_mask contain at least one
2134 * valid zone. It's possible to have an empty zonelist as a result
2135 * of GFP_THISNODE and a memoryless node
2137 if (unlikely(!zonelist->_zonerefs->zone))
2138 return NULL;
2140 get_mems_allowed();
2141 /* The preferred zone is used for statistics later */
2142 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2143 if (!preferred_zone) {
2144 put_mems_allowed();
2145 return NULL;
2148 /* First allocation attempt */
2149 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2150 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2151 preferred_zone, migratetype);
2152 if (unlikely(!page))
2153 page = __alloc_pages_slowpath(gfp_mask, order,
2154 zonelist, high_zoneidx, nodemask,
2155 preferred_zone, migratetype);
2156 put_mems_allowed();
2158 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2159 return page;
2161 EXPORT_SYMBOL(__alloc_pages_nodemask);
2164 * Common helper functions.
2166 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2168 struct page *page;
2171 * __get_free_pages() returns a 32-bit address, which cannot represent
2172 * a highmem page
2174 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2176 page = alloc_pages(gfp_mask, order);
2177 if (!page)
2178 return 0;
2179 return (unsigned long) page_address(page);
2181 EXPORT_SYMBOL(__get_free_pages);
2183 unsigned long get_zeroed_page(gfp_t gfp_mask)
2185 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2187 EXPORT_SYMBOL(get_zeroed_page);
2189 void __pagevec_free(struct pagevec *pvec)
2191 int i = pagevec_count(pvec);
2193 while (--i >= 0) {
2194 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2195 free_hot_cold_page(pvec->pages[i], pvec->cold);
2199 void __free_pages(struct page *page, unsigned int order)
2201 if (put_page_testzero(page)) {
2202 if (order == 0)
2203 free_hot_cold_page(page, 0);
2204 else
2205 __free_pages_ok(page, order);
2209 EXPORT_SYMBOL(__free_pages);
2211 void free_pages(unsigned long addr, unsigned int order)
2213 if (addr != 0) {
2214 VM_BUG_ON(!virt_addr_valid((void *)addr));
2215 __free_pages(virt_to_page((void *)addr), order);
2219 EXPORT_SYMBOL(free_pages);
2222 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2223 * @size: the number of bytes to allocate
2224 * @gfp_mask: GFP flags for the allocation
2226 * This function is similar to alloc_pages(), except that it allocates the
2227 * minimum number of pages to satisfy the request. alloc_pages() can only
2228 * allocate memory in power-of-two pages.
2230 * This function is also limited by MAX_ORDER.
2232 * Memory allocated by this function must be released by free_pages_exact().
2234 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2236 unsigned int order = get_order(size);
2237 unsigned long addr;
2239 addr = __get_free_pages(gfp_mask, order);
2240 if (addr) {
2241 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2242 unsigned long used = addr + PAGE_ALIGN(size);
2244 split_page(virt_to_page((void *)addr), order);
2245 while (used < alloc_end) {
2246 free_page(used);
2247 used += PAGE_SIZE;
2251 return (void *)addr;
2253 EXPORT_SYMBOL(alloc_pages_exact);
2256 * free_pages_exact - release memory allocated via alloc_pages_exact()
2257 * @virt: the value returned by alloc_pages_exact.
2258 * @size: size of allocation, same value as passed to alloc_pages_exact().
2260 * Release the memory allocated by a previous call to alloc_pages_exact.
2262 void free_pages_exact(void *virt, size_t size)
2264 unsigned long addr = (unsigned long)virt;
2265 unsigned long end = addr + PAGE_ALIGN(size);
2267 while (addr < end) {
2268 free_page(addr);
2269 addr += PAGE_SIZE;
2272 EXPORT_SYMBOL(free_pages_exact);
2274 static unsigned int nr_free_zone_pages(int offset)
2276 struct zoneref *z;
2277 struct zone *zone;
2279 /* Just pick one node, since fallback list is circular */
2280 unsigned int sum = 0;
2282 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2284 for_each_zone_zonelist(zone, z, zonelist, offset) {
2285 unsigned long size = zone->present_pages;
2286 unsigned long high = high_wmark_pages(zone);
2287 if (size > high)
2288 sum += size - high;
2291 return sum;
2295 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2297 unsigned int nr_free_buffer_pages(void)
2299 return nr_free_zone_pages(gfp_zone(GFP_USER));
2301 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2304 * Amount of free RAM allocatable within all zones
2306 unsigned int nr_free_pagecache_pages(void)
2308 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2311 static inline void show_node(struct zone *zone)
2313 if (NUMA_BUILD)
2314 printk("Node %d ", zone_to_nid(zone));
2317 void si_meminfo(struct sysinfo *val)
2319 val->totalram = totalram_pages;
2320 val->sharedram = 0;
2321 val->freeram = global_page_state(NR_FREE_PAGES);
2322 val->bufferram = nr_blockdev_pages();
2323 val->totalhigh = totalhigh_pages;
2324 val->freehigh = nr_free_highpages();
2325 val->mem_unit = PAGE_SIZE;
2328 EXPORT_SYMBOL(si_meminfo);
2330 #ifdef CONFIG_NUMA
2331 void si_meminfo_node(struct sysinfo *val, int nid)
2333 pg_data_t *pgdat = NODE_DATA(nid);
2335 val->totalram = pgdat->node_present_pages;
2336 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2337 #ifdef CONFIG_HIGHMEM
2338 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2339 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2340 NR_FREE_PAGES);
2341 #else
2342 val->totalhigh = 0;
2343 val->freehigh = 0;
2344 #endif
2345 val->mem_unit = PAGE_SIZE;
2347 #endif
2349 #define K(x) ((x) << (PAGE_SHIFT-10))
2352 * Show free area list (used inside shift_scroll-lock stuff)
2353 * We also calculate the percentage fragmentation. We do this by counting the
2354 * memory on each free list with the exception of the first item on the list.
2356 void show_free_areas(void)
2358 int cpu;
2359 struct zone *zone;
2361 for_each_populated_zone(zone) {
2362 show_node(zone);
2363 printk("%s per-cpu:\n", zone->name);
2365 for_each_online_cpu(cpu) {
2366 struct per_cpu_pageset *pageset;
2368 pageset = per_cpu_ptr(zone->pageset, cpu);
2370 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2371 cpu, pageset->pcp.high,
2372 pageset->pcp.batch, pageset->pcp.count);
2376 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2377 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2378 " unevictable:%lu"
2379 " dirty:%lu writeback:%lu unstable:%lu\n"
2380 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2381 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2382 global_page_state(NR_ACTIVE_ANON),
2383 global_page_state(NR_INACTIVE_ANON),
2384 global_page_state(NR_ISOLATED_ANON),
2385 global_page_state(NR_ACTIVE_FILE),
2386 global_page_state(NR_INACTIVE_FILE),
2387 global_page_state(NR_ISOLATED_FILE),
2388 global_page_state(NR_UNEVICTABLE),
2389 global_page_state(NR_FILE_DIRTY),
2390 global_page_state(NR_WRITEBACK),
2391 global_page_state(NR_UNSTABLE_NFS),
2392 global_page_state(NR_FREE_PAGES),
2393 global_page_state(NR_SLAB_RECLAIMABLE),
2394 global_page_state(NR_SLAB_UNRECLAIMABLE),
2395 global_page_state(NR_FILE_MAPPED),
2396 global_page_state(NR_SHMEM),
2397 global_page_state(NR_PAGETABLE),
2398 global_page_state(NR_BOUNCE));
2400 for_each_populated_zone(zone) {
2401 int i;
2403 show_node(zone);
2404 printk("%s"
2405 " free:%lukB"
2406 " min:%lukB"
2407 " low:%lukB"
2408 " high:%lukB"
2409 " active_anon:%lukB"
2410 " inactive_anon:%lukB"
2411 " active_file:%lukB"
2412 " inactive_file:%lukB"
2413 " unevictable:%lukB"
2414 " isolated(anon):%lukB"
2415 " isolated(file):%lukB"
2416 " present:%lukB"
2417 " mlocked:%lukB"
2418 " dirty:%lukB"
2419 " writeback:%lukB"
2420 " mapped:%lukB"
2421 " shmem:%lukB"
2422 " slab_reclaimable:%lukB"
2423 " slab_unreclaimable:%lukB"
2424 " kernel_stack:%lukB"
2425 " pagetables:%lukB"
2426 " unstable:%lukB"
2427 " bounce:%lukB"
2428 " writeback_tmp:%lukB"
2429 " pages_scanned:%lu"
2430 " all_unreclaimable? %s"
2431 "\n",
2432 zone->name,
2433 K(zone_nr_free_pages(zone)),
2434 K(min_wmark_pages(zone)),
2435 K(low_wmark_pages(zone)),
2436 K(high_wmark_pages(zone)),
2437 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2438 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2439 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2440 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2441 K(zone_page_state(zone, NR_UNEVICTABLE)),
2442 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2443 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2444 K(zone->present_pages),
2445 K(zone_page_state(zone, NR_MLOCK)),
2446 K(zone_page_state(zone, NR_FILE_DIRTY)),
2447 K(zone_page_state(zone, NR_WRITEBACK)),
2448 K(zone_page_state(zone, NR_FILE_MAPPED)),
2449 K(zone_page_state(zone, NR_SHMEM)),
2450 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2451 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2452 zone_page_state(zone, NR_KERNEL_STACK) *
2453 THREAD_SIZE / 1024,
2454 K(zone_page_state(zone, NR_PAGETABLE)),
2455 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2456 K(zone_page_state(zone, NR_BOUNCE)),
2457 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2458 zone->pages_scanned,
2459 (zone->all_unreclaimable ? "yes" : "no")
2461 printk("lowmem_reserve[]:");
2462 for (i = 0; i < MAX_NR_ZONES; i++)
2463 printk(" %lu", zone->lowmem_reserve[i]);
2464 printk("\n");
2467 for_each_populated_zone(zone) {
2468 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2470 show_node(zone);
2471 printk("%s: ", zone->name);
2473 spin_lock_irqsave(&zone->lock, flags);
2474 for (order = 0; order < MAX_ORDER; order++) {
2475 nr[order] = zone->free_area[order].nr_free;
2476 total += nr[order] << order;
2478 spin_unlock_irqrestore(&zone->lock, flags);
2479 for (order = 0; order < MAX_ORDER; order++)
2480 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2481 printk("= %lukB\n", K(total));
2484 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2486 show_swap_cache_info();
2489 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2491 zoneref->zone = zone;
2492 zoneref->zone_idx = zone_idx(zone);
2496 * Builds allocation fallback zone lists.
2498 * Add all populated zones of a node to the zonelist.
2500 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2501 int nr_zones, enum zone_type zone_type)
2503 struct zone *zone;
2505 BUG_ON(zone_type >= MAX_NR_ZONES);
2506 zone_type++;
2508 do {
2509 zone_type--;
2510 zone = pgdat->node_zones + zone_type;
2511 if (populated_zone(zone)) {
2512 zoneref_set_zone(zone,
2513 &zonelist->_zonerefs[nr_zones++]);
2514 check_highest_zone(zone_type);
2517 } while (zone_type);
2518 return nr_zones;
2523 * zonelist_order:
2524 * 0 = automatic detection of better ordering.
2525 * 1 = order by ([node] distance, -zonetype)
2526 * 2 = order by (-zonetype, [node] distance)
2528 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2529 * the same zonelist. So only NUMA can configure this param.
2531 #define ZONELIST_ORDER_DEFAULT 0
2532 #define ZONELIST_ORDER_NODE 1
2533 #define ZONELIST_ORDER_ZONE 2
2535 /* zonelist order in the kernel.
2536 * set_zonelist_order() will set this to NODE or ZONE.
2538 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2539 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2542 #ifdef CONFIG_NUMA
2543 /* The value user specified ....changed by config */
2544 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2545 /* string for sysctl */
2546 #define NUMA_ZONELIST_ORDER_LEN 16
2547 char numa_zonelist_order[16] = "default";
2550 * interface for configure zonelist ordering.
2551 * command line option "numa_zonelist_order"
2552 * = "[dD]efault - default, automatic configuration.
2553 * = "[nN]ode - order by node locality, then by zone within node
2554 * = "[zZ]one - order by zone, then by locality within zone
2557 static int __parse_numa_zonelist_order(char *s)
2559 if (*s == 'd' || *s == 'D') {
2560 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2561 } else if (*s == 'n' || *s == 'N') {
2562 user_zonelist_order = ZONELIST_ORDER_NODE;
2563 } else if (*s == 'z' || *s == 'Z') {
2564 user_zonelist_order = ZONELIST_ORDER_ZONE;
2565 } else {
2566 printk(KERN_WARNING
2567 "Ignoring invalid numa_zonelist_order value: "
2568 "%s\n", s);
2569 return -EINVAL;
2571 return 0;
2574 static __init int setup_numa_zonelist_order(char *s)
2576 if (s)
2577 return __parse_numa_zonelist_order(s);
2578 return 0;
2580 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2583 * sysctl handler for numa_zonelist_order
2585 int numa_zonelist_order_handler(ctl_table *table, int write,
2586 void __user *buffer, size_t *length,
2587 loff_t *ppos)
2589 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2590 int ret;
2591 static DEFINE_MUTEX(zl_order_mutex);
2593 mutex_lock(&zl_order_mutex);
2594 if (write)
2595 strcpy(saved_string, (char*)table->data);
2596 ret = proc_dostring(table, write, buffer, length, ppos);
2597 if (ret)
2598 goto out;
2599 if (write) {
2600 int oldval = user_zonelist_order;
2601 if (__parse_numa_zonelist_order((char*)table->data)) {
2603 * bogus value. restore saved string
2605 strncpy((char*)table->data, saved_string,
2606 NUMA_ZONELIST_ORDER_LEN);
2607 user_zonelist_order = oldval;
2608 } else if (oldval != user_zonelist_order) {
2609 mutex_lock(&zonelists_mutex);
2610 build_all_zonelists(NULL);
2611 mutex_unlock(&zonelists_mutex);
2614 out:
2615 mutex_unlock(&zl_order_mutex);
2616 return ret;
2620 #define MAX_NODE_LOAD (nr_online_nodes)
2621 static int node_load[MAX_NUMNODES];
2624 * find_next_best_node - find the next node that should appear in a given node's fallback list
2625 * @node: node whose fallback list we're appending
2626 * @used_node_mask: nodemask_t of already used nodes
2628 * We use a number of factors to determine which is the next node that should
2629 * appear on a given node's fallback list. The node should not have appeared
2630 * already in @node's fallback list, and it should be the next closest node
2631 * according to the distance array (which contains arbitrary distance values
2632 * from each node to each node in the system), and should also prefer nodes
2633 * with no CPUs, since presumably they'll have very little allocation pressure
2634 * on them otherwise.
2635 * It returns -1 if no node is found.
2637 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2639 int n, val;
2640 int min_val = INT_MAX;
2641 int best_node = -1;
2642 const struct cpumask *tmp = cpumask_of_node(0);
2644 /* Use the local node if we haven't already */
2645 if (!node_isset(node, *used_node_mask)) {
2646 node_set(node, *used_node_mask);
2647 return node;
2650 for_each_node_state(n, N_HIGH_MEMORY) {
2652 /* Don't want a node to appear more than once */
2653 if (node_isset(n, *used_node_mask))
2654 continue;
2656 /* Use the distance array to find the distance */
2657 val = node_distance(node, n);
2659 /* Penalize nodes under us ("prefer the next node") */
2660 val += (n < node);
2662 /* Give preference to headless and unused nodes */
2663 tmp = cpumask_of_node(n);
2664 if (!cpumask_empty(tmp))
2665 val += PENALTY_FOR_NODE_WITH_CPUS;
2667 /* Slight preference for less loaded node */
2668 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2669 val += node_load[n];
2671 if (val < min_val) {
2672 min_val = val;
2673 best_node = n;
2677 if (best_node >= 0)
2678 node_set(best_node, *used_node_mask);
2680 return best_node;
2685 * Build zonelists ordered by node and zones within node.
2686 * This results in maximum locality--normal zone overflows into local
2687 * DMA zone, if any--but risks exhausting DMA zone.
2689 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2691 int j;
2692 struct zonelist *zonelist;
2694 zonelist = &pgdat->node_zonelists[0];
2695 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2697 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2698 MAX_NR_ZONES - 1);
2699 zonelist->_zonerefs[j].zone = NULL;
2700 zonelist->_zonerefs[j].zone_idx = 0;
2704 * Build gfp_thisnode zonelists
2706 static void build_thisnode_zonelists(pg_data_t *pgdat)
2708 int j;
2709 struct zonelist *zonelist;
2711 zonelist = &pgdat->node_zonelists[1];
2712 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2713 zonelist->_zonerefs[j].zone = NULL;
2714 zonelist->_zonerefs[j].zone_idx = 0;
2718 * Build zonelists ordered by zone and nodes within zones.
2719 * This results in conserving DMA zone[s] until all Normal memory is
2720 * exhausted, but results in overflowing to remote node while memory
2721 * may still exist in local DMA zone.
2723 static int node_order[MAX_NUMNODES];
2725 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2727 int pos, j, node;
2728 int zone_type; /* needs to be signed */
2729 struct zone *z;
2730 struct zonelist *zonelist;
2732 zonelist = &pgdat->node_zonelists[0];
2733 pos = 0;
2734 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2735 for (j = 0; j < nr_nodes; j++) {
2736 node = node_order[j];
2737 z = &NODE_DATA(node)->node_zones[zone_type];
2738 if (populated_zone(z)) {
2739 zoneref_set_zone(z,
2740 &zonelist->_zonerefs[pos++]);
2741 check_highest_zone(zone_type);
2745 zonelist->_zonerefs[pos].zone = NULL;
2746 zonelist->_zonerefs[pos].zone_idx = 0;
2749 static int default_zonelist_order(void)
2751 int nid, zone_type;
2752 unsigned long low_kmem_size,total_size;
2753 struct zone *z;
2754 int average_size;
2756 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2757 * If they are really small and used heavily, the system can fall
2758 * into OOM very easily.
2759 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2761 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2762 low_kmem_size = 0;
2763 total_size = 0;
2764 for_each_online_node(nid) {
2765 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2766 z = &NODE_DATA(nid)->node_zones[zone_type];
2767 if (populated_zone(z)) {
2768 if (zone_type < ZONE_NORMAL)
2769 low_kmem_size += z->present_pages;
2770 total_size += z->present_pages;
2771 } else if (zone_type == ZONE_NORMAL) {
2773 * If any node has only lowmem, then node order
2774 * is preferred to allow kernel allocations
2775 * locally; otherwise, they can easily infringe
2776 * on other nodes when there is an abundance of
2777 * lowmem available to allocate from.
2779 return ZONELIST_ORDER_NODE;
2783 if (!low_kmem_size || /* there are no DMA area. */
2784 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2785 return ZONELIST_ORDER_NODE;
2787 * look into each node's config.
2788 * If there is a node whose DMA/DMA32 memory is very big area on
2789 * local memory, NODE_ORDER may be suitable.
2791 average_size = total_size /
2792 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2793 for_each_online_node(nid) {
2794 low_kmem_size = 0;
2795 total_size = 0;
2796 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2797 z = &NODE_DATA(nid)->node_zones[zone_type];
2798 if (populated_zone(z)) {
2799 if (zone_type < ZONE_NORMAL)
2800 low_kmem_size += z->present_pages;
2801 total_size += z->present_pages;
2804 if (low_kmem_size &&
2805 total_size > average_size && /* ignore small node */
2806 low_kmem_size > total_size * 70/100)
2807 return ZONELIST_ORDER_NODE;
2809 return ZONELIST_ORDER_ZONE;
2812 static void set_zonelist_order(void)
2814 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2815 current_zonelist_order = default_zonelist_order();
2816 else
2817 current_zonelist_order = user_zonelist_order;
2820 static void build_zonelists(pg_data_t *pgdat)
2822 int j, node, load;
2823 enum zone_type i;
2824 nodemask_t used_mask;
2825 int local_node, prev_node;
2826 struct zonelist *zonelist;
2827 int order = current_zonelist_order;
2829 /* initialize zonelists */
2830 for (i = 0; i < MAX_ZONELISTS; i++) {
2831 zonelist = pgdat->node_zonelists + i;
2832 zonelist->_zonerefs[0].zone = NULL;
2833 zonelist->_zonerefs[0].zone_idx = 0;
2836 /* NUMA-aware ordering of nodes */
2837 local_node = pgdat->node_id;
2838 load = nr_online_nodes;
2839 prev_node = local_node;
2840 nodes_clear(used_mask);
2842 memset(node_order, 0, sizeof(node_order));
2843 j = 0;
2845 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2846 int distance = node_distance(local_node, node);
2849 * If another node is sufficiently far away then it is better
2850 * to reclaim pages in a zone before going off node.
2852 if (distance > RECLAIM_DISTANCE)
2853 zone_reclaim_mode = 1;
2856 * We don't want to pressure a particular node.
2857 * So adding penalty to the first node in same
2858 * distance group to make it round-robin.
2860 if (distance != node_distance(local_node, prev_node))
2861 node_load[node] = load;
2863 prev_node = node;
2864 load--;
2865 if (order == ZONELIST_ORDER_NODE)
2866 build_zonelists_in_node_order(pgdat, node);
2867 else
2868 node_order[j++] = node; /* remember order */
2871 if (order == ZONELIST_ORDER_ZONE) {
2872 /* calculate node order -- i.e., DMA last! */
2873 build_zonelists_in_zone_order(pgdat, j);
2876 build_thisnode_zonelists(pgdat);
2879 /* Construct the zonelist performance cache - see further mmzone.h */
2880 static void build_zonelist_cache(pg_data_t *pgdat)
2882 struct zonelist *zonelist;
2883 struct zonelist_cache *zlc;
2884 struct zoneref *z;
2886 zonelist = &pgdat->node_zonelists[0];
2887 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2888 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2889 for (z = zonelist->_zonerefs; z->zone; z++)
2890 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2893 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2895 * Return node id of node used for "local" allocations.
2896 * I.e., first node id of first zone in arg node's generic zonelist.
2897 * Used for initializing percpu 'numa_mem', which is used primarily
2898 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2900 int local_memory_node(int node)
2902 struct zone *zone;
2904 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2905 gfp_zone(GFP_KERNEL),
2906 NULL,
2907 &zone);
2908 return zone->node;
2910 #endif
2912 #else /* CONFIG_NUMA */
2914 static void set_zonelist_order(void)
2916 current_zonelist_order = ZONELIST_ORDER_ZONE;
2919 static void build_zonelists(pg_data_t *pgdat)
2921 int node, local_node;
2922 enum zone_type j;
2923 struct zonelist *zonelist;
2925 local_node = pgdat->node_id;
2927 zonelist = &pgdat->node_zonelists[0];
2928 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2931 * Now we build the zonelist so that it contains the zones
2932 * of all the other nodes.
2933 * We don't want to pressure a particular node, so when
2934 * building the zones for node N, we make sure that the
2935 * zones coming right after the local ones are those from
2936 * node N+1 (modulo N)
2938 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2939 if (!node_online(node))
2940 continue;
2941 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2942 MAX_NR_ZONES - 1);
2944 for (node = 0; node < local_node; node++) {
2945 if (!node_online(node))
2946 continue;
2947 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2948 MAX_NR_ZONES - 1);
2951 zonelist->_zonerefs[j].zone = NULL;
2952 zonelist->_zonerefs[j].zone_idx = 0;
2955 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2956 static void build_zonelist_cache(pg_data_t *pgdat)
2958 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2961 #endif /* CONFIG_NUMA */
2964 * Boot pageset table. One per cpu which is going to be used for all
2965 * zones and all nodes. The parameters will be set in such a way
2966 * that an item put on a list will immediately be handed over to
2967 * the buddy list. This is safe since pageset manipulation is done
2968 * with interrupts disabled.
2970 * The boot_pagesets must be kept even after bootup is complete for
2971 * unused processors and/or zones. They do play a role for bootstrapping
2972 * hotplugged processors.
2974 * zoneinfo_show() and maybe other functions do
2975 * not check if the processor is online before following the pageset pointer.
2976 * Other parts of the kernel may not check if the zone is available.
2978 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2979 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2980 static void setup_zone_pageset(struct zone *zone);
2983 * Global mutex to protect against size modification of zonelists
2984 * as well as to serialize pageset setup for the new populated zone.
2986 DEFINE_MUTEX(zonelists_mutex);
2988 /* return values int ....just for stop_machine() */
2989 static __init_refok int __build_all_zonelists(void *data)
2991 int nid;
2992 int cpu;
2994 #ifdef CONFIG_NUMA
2995 memset(node_load, 0, sizeof(node_load));
2996 #endif
2997 for_each_online_node(nid) {
2998 pg_data_t *pgdat = NODE_DATA(nid);
3000 build_zonelists(pgdat);
3001 build_zonelist_cache(pgdat);
3004 #ifdef CONFIG_MEMORY_HOTPLUG
3005 /* Setup real pagesets for the new zone */
3006 if (data) {
3007 struct zone *zone = data;
3008 setup_zone_pageset(zone);
3010 #endif
3013 * Initialize the boot_pagesets that are going to be used
3014 * for bootstrapping processors. The real pagesets for
3015 * each zone will be allocated later when the per cpu
3016 * allocator is available.
3018 * boot_pagesets are used also for bootstrapping offline
3019 * cpus if the system is already booted because the pagesets
3020 * are needed to initialize allocators on a specific cpu too.
3021 * F.e. the percpu allocator needs the page allocator which
3022 * needs the percpu allocator in order to allocate its pagesets
3023 * (a chicken-egg dilemma).
3025 for_each_possible_cpu(cpu) {
3026 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3028 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3030 * We now know the "local memory node" for each node--
3031 * i.e., the node of the first zone in the generic zonelist.
3032 * Set up numa_mem percpu variable for on-line cpus. During
3033 * boot, only the boot cpu should be on-line; we'll init the
3034 * secondary cpus' numa_mem as they come on-line. During
3035 * node/memory hotplug, we'll fixup all on-line cpus.
3037 if (cpu_online(cpu))
3038 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3039 #endif
3042 return 0;
3046 * Called with zonelists_mutex held always
3047 * unless system_state == SYSTEM_BOOTING.
3049 void build_all_zonelists(void *data)
3051 set_zonelist_order();
3053 if (system_state == SYSTEM_BOOTING) {
3054 __build_all_zonelists(NULL);
3055 mminit_verify_zonelist();
3056 cpuset_init_current_mems_allowed();
3057 } else {
3058 /* we have to stop all cpus to guarantee there is no user
3059 of zonelist */
3060 stop_machine(__build_all_zonelists, data, NULL);
3061 /* cpuset refresh routine should be here */
3063 vm_total_pages = nr_free_pagecache_pages();
3065 * Disable grouping by mobility if the number of pages in the
3066 * system is too low to allow the mechanism to work. It would be
3067 * more accurate, but expensive to check per-zone. This check is
3068 * made on memory-hotadd so a system can start with mobility
3069 * disabled and enable it later
3071 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3072 page_group_by_mobility_disabled = 1;
3073 else
3074 page_group_by_mobility_disabled = 0;
3076 printk("Built %i zonelists in %s order, mobility grouping %s. "
3077 "Total pages: %ld\n",
3078 nr_online_nodes,
3079 zonelist_order_name[current_zonelist_order],
3080 page_group_by_mobility_disabled ? "off" : "on",
3081 vm_total_pages);
3082 #ifdef CONFIG_NUMA
3083 printk("Policy zone: %s\n", zone_names[policy_zone]);
3084 #endif
3088 * Helper functions to size the waitqueue hash table.
3089 * Essentially these want to choose hash table sizes sufficiently
3090 * large so that collisions trying to wait on pages are rare.
3091 * But in fact, the number of active page waitqueues on typical
3092 * systems is ridiculously low, less than 200. So this is even
3093 * conservative, even though it seems large.
3095 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3096 * waitqueues, i.e. the size of the waitq table given the number of pages.
3098 #define PAGES_PER_WAITQUEUE 256
3100 #ifndef CONFIG_MEMORY_HOTPLUG
3101 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3103 unsigned long size = 1;
3105 pages /= PAGES_PER_WAITQUEUE;
3107 while (size < pages)
3108 size <<= 1;
3111 * Once we have dozens or even hundreds of threads sleeping
3112 * on IO we've got bigger problems than wait queue collision.
3113 * Limit the size of the wait table to a reasonable size.
3115 size = min(size, 4096UL);
3117 return max(size, 4UL);
3119 #else
3121 * A zone's size might be changed by hot-add, so it is not possible to determine
3122 * a suitable size for its wait_table. So we use the maximum size now.
3124 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3126 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3127 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3128 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3130 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3131 * or more by the traditional way. (See above). It equals:
3133 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3134 * ia64(16K page size) : = ( 8G + 4M)byte.
3135 * powerpc (64K page size) : = (32G +16M)byte.
3137 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3139 return 4096UL;
3141 #endif
3144 * This is an integer logarithm so that shifts can be used later
3145 * to extract the more random high bits from the multiplicative
3146 * hash function before the remainder is taken.
3148 static inline unsigned long wait_table_bits(unsigned long size)
3150 return ffz(~size);
3153 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3156 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3157 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3158 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3159 * higher will lead to a bigger reserve which will get freed as contiguous
3160 * blocks as reclaim kicks in
3162 static void setup_zone_migrate_reserve(struct zone *zone)
3164 unsigned long start_pfn, pfn, end_pfn;
3165 struct page *page;
3166 unsigned long block_migratetype;
3167 int reserve;
3169 /* Get the start pfn, end pfn and the number of blocks to reserve */
3170 start_pfn = zone->zone_start_pfn;
3171 end_pfn = start_pfn + zone->spanned_pages;
3172 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3173 pageblock_order;
3176 * Reserve blocks are generally in place to help high-order atomic
3177 * allocations that are short-lived. A min_free_kbytes value that
3178 * would result in more than 2 reserve blocks for atomic allocations
3179 * is assumed to be in place to help anti-fragmentation for the
3180 * future allocation of hugepages at runtime.
3182 reserve = min(2, reserve);
3184 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3185 if (!pfn_valid(pfn))
3186 continue;
3187 page = pfn_to_page(pfn);
3189 /* Watch out for overlapping nodes */
3190 if (page_to_nid(page) != zone_to_nid(zone))
3191 continue;
3193 /* Blocks with reserved pages will never free, skip them. */
3194 if (PageReserved(page))
3195 continue;
3197 block_migratetype = get_pageblock_migratetype(page);
3199 /* If this block is reserved, account for it */
3200 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3201 reserve--;
3202 continue;
3205 /* Suitable for reserving if this block is movable */
3206 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3207 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3208 move_freepages_block(zone, page, MIGRATE_RESERVE);
3209 reserve--;
3210 continue;
3214 * If the reserve is met and this is a previous reserved block,
3215 * take it back
3217 if (block_migratetype == MIGRATE_RESERVE) {
3218 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3219 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3225 * Initially all pages are reserved - free ones are freed
3226 * up by free_all_bootmem() once the early boot process is
3227 * done. Non-atomic initialization, single-pass.
3229 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3230 unsigned long start_pfn, enum memmap_context context)
3232 struct page *page;
3233 unsigned long end_pfn = start_pfn + size;
3234 unsigned long pfn;
3235 struct zone *z;
3237 if (highest_memmap_pfn < end_pfn - 1)
3238 highest_memmap_pfn = end_pfn - 1;
3240 z = &NODE_DATA(nid)->node_zones[zone];
3241 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3243 * There can be holes in boot-time mem_map[]s
3244 * handed to this function. They do not
3245 * exist on hotplugged memory.
3247 if (context == MEMMAP_EARLY) {
3248 if (!early_pfn_valid(pfn))
3249 continue;
3250 if (!early_pfn_in_nid(pfn, nid))
3251 continue;
3253 page = pfn_to_page(pfn);
3254 set_page_links(page, zone, nid, pfn);
3255 mminit_verify_page_links(page, zone, nid, pfn);
3256 init_page_count(page);
3257 reset_page_mapcount(page);
3258 SetPageReserved(page);
3260 * Mark the block movable so that blocks are reserved for
3261 * movable at startup. This will force kernel allocations
3262 * to reserve their blocks rather than leaking throughout
3263 * the address space during boot when many long-lived
3264 * kernel allocations are made. Later some blocks near
3265 * the start are marked MIGRATE_RESERVE by
3266 * setup_zone_migrate_reserve()
3268 * bitmap is created for zone's valid pfn range. but memmap
3269 * can be created for invalid pages (for alignment)
3270 * check here not to call set_pageblock_migratetype() against
3271 * pfn out of zone.
3273 if ((z->zone_start_pfn <= pfn)
3274 && (pfn < z->zone_start_pfn + z->spanned_pages)
3275 && !(pfn & (pageblock_nr_pages - 1)))
3276 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3278 INIT_LIST_HEAD(&page->lru);
3279 #ifdef WANT_PAGE_VIRTUAL
3280 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3281 if (!is_highmem_idx(zone))
3282 set_page_address(page, __va(pfn << PAGE_SHIFT));
3283 #endif
3287 static void __meminit zone_init_free_lists(struct zone *zone)
3289 int order, t;
3290 for_each_migratetype_order(order, t) {
3291 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3292 zone->free_area[order].nr_free = 0;
3296 #ifndef __HAVE_ARCH_MEMMAP_INIT
3297 #define memmap_init(size, nid, zone, start_pfn) \
3298 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3299 #endif
3301 static int zone_batchsize(struct zone *zone)
3303 #ifdef CONFIG_MMU
3304 int batch;
3307 * The per-cpu-pages pools are set to around 1000th of the
3308 * size of the zone. But no more than 1/2 of a meg.
3310 * OK, so we don't know how big the cache is. So guess.
3312 batch = zone->present_pages / 1024;
3313 if (batch * PAGE_SIZE > 512 * 1024)
3314 batch = (512 * 1024) / PAGE_SIZE;
3315 batch /= 4; /* We effectively *= 4 below */
3316 if (batch < 1)
3317 batch = 1;
3320 * Clamp the batch to a 2^n - 1 value. Having a power
3321 * of 2 value was found to be more likely to have
3322 * suboptimal cache aliasing properties in some cases.
3324 * For example if 2 tasks are alternately allocating
3325 * batches of pages, one task can end up with a lot
3326 * of pages of one half of the possible page colors
3327 * and the other with pages of the other colors.
3329 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3331 return batch;
3333 #else
3334 /* The deferral and batching of frees should be suppressed under NOMMU
3335 * conditions.
3337 * The problem is that NOMMU needs to be able to allocate large chunks
3338 * of contiguous memory as there's no hardware page translation to
3339 * assemble apparent contiguous memory from discontiguous pages.
3341 * Queueing large contiguous runs of pages for batching, however,
3342 * causes the pages to actually be freed in smaller chunks. As there
3343 * can be a significant delay between the individual batches being
3344 * recycled, this leads to the once large chunks of space being
3345 * fragmented and becoming unavailable for high-order allocations.
3347 return 0;
3348 #endif
3351 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3353 struct per_cpu_pages *pcp;
3354 int migratetype;
3356 memset(p, 0, sizeof(*p));
3358 pcp = &p->pcp;
3359 pcp->count = 0;
3360 pcp->high = 6 * batch;
3361 pcp->batch = max(1UL, 1 * batch);
3362 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3363 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3367 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3368 * to the value high for the pageset p.
3371 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3372 unsigned long high)
3374 struct per_cpu_pages *pcp;
3376 pcp = &p->pcp;
3377 pcp->high = high;
3378 pcp->batch = max(1UL, high/4);
3379 if ((high/4) > (PAGE_SHIFT * 8))
3380 pcp->batch = PAGE_SHIFT * 8;
3383 static __meminit void setup_zone_pageset(struct zone *zone)
3385 int cpu;
3387 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3389 for_each_possible_cpu(cpu) {
3390 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3392 setup_pageset(pcp, zone_batchsize(zone));
3394 if (percpu_pagelist_fraction)
3395 setup_pagelist_highmark(pcp,
3396 (zone->present_pages /
3397 percpu_pagelist_fraction));
3402 * Allocate per cpu pagesets and initialize them.
3403 * Before this call only boot pagesets were available.
3405 void __init setup_per_cpu_pageset(void)
3407 struct zone *zone;
3409 for_each_populated_zone(zone)
3410 setup_zone_pageset(zone);
3413 static noinline __init_refok
3414 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3416 int i;
3417 struct pglist_data *pgdat = zone->zone_pgdat;
3418 size_t alloc_size;
3421 * The per-page waitqueue mechanism uses hashed waitqueues
3422 * per zone.
3424 zone->wait_table_hash_nr_entries =
3425 wait_table_hash_nr_entries(zone_size_pages);
3426 zone->wait_table_bits =
3427 wait_table_bits(zone->wait_table_hash_nr_entries);
3428 alloc_size = zone->wait_table_hash_nr_entries
3429 * sizeof(wait_queue_head_t);
3431 if (!slab_is_available()) {
3432 zone->wait_table = (wait_queue_head_t *)
3433 alloc_bootmem_node(pgdat, alloc_size);
3434 } else {
3436 * This case means that a zone whose size was 0 gets new memory
3437 * via memory hot-add.
3438 * But it may be the case that a new node was hot-added. In
3439 * this case vmalloc() will not be able to use this new node's
3440 * memory - this wait_table must be initialized to use this new
3441 * node itself as well.
3442 * To use this new node's memory, further consideration will be
3443 * necessary.
3445 zone->wait_table = vmalloc(alloc_size);
3447 if (!zone->wait_table)
3448 return -ENOMEM;
3450 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3451 init_waitqueue_head(zone->wait_table + i);
3453 return 0;
3456 static int __zone_pcp_update(void *data)
3458 struct zone *zone = data;
3459 int cpu;
3460 unsigned long batch = zone_batchsize(zone), flags;
3462 for_each_possible_cpu(cpu) {
3463 struct per_cpu_pageset *pset;
3464 struct per_cpu_pages *pcp;
3466 pset = per_cpu_ptr(zone->pageset, cpu);
3467 pcp = &pset->pcp;
3469 local_irq_save(flags);
3470 free_pcppages_bulk(zone, pcp->count, pcp);
3471 setup_pageset(pset, batch);
3472 local_irq_restore(flags);
3474 return 0;
3477 void zone_pcp_update(struct zone *zone)
3479 stop_machine(__zone_pcp_update, zone, NULL);
3482 static __meminit void zone_pcp_init(struct zone *zone)
3485 * per cpu subsystem is not up at this point. The following code
3486 * relies on the ability of the linker to provide the
3487 * offset of a (static) per cpu variable into the per cpu area.
3489 zone->pageset = &boot_pageset;
3491 if (zone->present_pages)
3492 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3493 zone->name, zone->present_pages,
3494 zone_batchsize(zone));
3497 __meminit int init_currently_empty_zone(struct zone *zone,
3498 unsigned long zone_start_pfn,
3499 unsigned long size,
3500 enum memmap_context context)
3502 struct pglist_data *pgdat = zone->zone_pgdat;
3503 int ret;
3504 ret = zone_wait_table_init(zone, size);
3505 if (ret)
3506 return ret;
3507 pgdat->nr_zones = zone_idx(zone) + 1;
3509 zone->zone_start_pfn = zone_start_pfn;
3511 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3512 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3513 pgdat->node_id,
3514 (unsigned long)zone_idx(zone),
3515 zone_start_pfn, (zone_start_pfn + size));
3517 zone_init_free_lists(zone);
3519 return 0;
3522 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3524 * Basic iterator support. Return the first range of PFNs for a node
3525 * Note: nid == MAX_NUMNODES returns first region regardless of node
3527 static int __meminit first_active_region_index_in_nid(int nid)
3529 int i;
3531 for (i = 0; i < nr_nodemap_entries; i++)
3532 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3533 return i;
3535 return -1;
3539 * Basic iterator support. Return the next active range of PFNs for a node
3540 * Note: nid == MAX_NUMNODES returns next region regardless of node
3542 static int __meminit next_active_region_index_in_nid(int index, int nid)
3544 for (index = index + 1; index < nr_nodemap_entries; index++)
3545 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3546 return index;
3548 return -1;
3551 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3553 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3554 * Architectures may implement their own version but if add_active_range()
3555 * was used and there are no special requirements, this is a convenient
3556 * alternative
3558 int __meminit __early_pfn_to_nid(unsigned long pfn)
3560 int i;
3562 for (i = 0; i < nr_nodemap_entries; i++) {
3563 unsigned long start_pfn = early_node_map[i].start_pfn;
3564 unsigned long end_pfn = early_node_map[i].end_pfn;
3566 if (start_pfn <= pfn && pfn < end_pfn)
3567 return early_node_map[i].nid;
3569 /* This is a memory hole */
3570 return -1;
3572 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3574 int __meminit early_pfn_to_nid(unsigned long pfn)
3576 int nid;
3578 nid = __early_pfn_to_nid(pfn);
3579 if (nid >= 0)
3580 return nid;
3581 /* just returns 0 */
3582 return 0;
3585 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3586 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3588 int nid;
3590 nid = __early_pfn_to_nid(pfn);
3591 if (nid >= 0 && nid != node)
3592 return false;
3593 return true;
3595 #endif
3597 /* Basic iterator support to walk early_node_map[] */
3598 #define for_each_active_range_index_in_nid(i, nid) \
3599 for (i = first_active_region_index_in_nid(nid); i != -1; \
3600 i = next_active_region_index_in_nid(i, nid))
3603 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3604 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3605 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3607 * If an architecture guarantees that all ranges registered with
3608 * add_active_ranges() contain no holes and may be freed, this
3609 * this function may be used instead of calling free_bootmem() manually.
3611 void __init free_bootmem_with_active_regions(int nid,
3612 unsigned long max_low_pfn)
3614 int i;
3616 for_each_active_range_index_in_nid(i, nid) {
3617 unsigned long size_pages = 0;
3618 unsigned long end_pfn = early_node_map[i].end_pfn;
3620 if (early_node_map[i].start_pfn >= max_low_pfn)
3621 continue;
3623 if (end_pfn > max_low_pfn)
3624 end_pfn = max_low_pfn;
3626 size_pages = end_pfn - early_node_map[i].start_pfn;
3627 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3628 PFN_PHYS(early_node_map[i].start_pfn),
3629 size_pages << PAGE_SHIFT);
3633 int __init add_from_early_node_map(struct range *range, int az,
3634 int nr_range, int nid)
3636 int i;
3637 u64 start, end;
3639 /* need to go over early_node_map to find out good range for node */
3640 for_each_active_range_index_in_nid(i, nid) {
3641 start = early_node_map[i].start_pfn;
3642 end = early_node_map[i].end_pfn;
3643 nr_range = add_range(range, az, nr_range, start, end);
3645 return nr_range;
3648 #ifdef CONFIG_NO_BOOTMEM
3649 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3650 u64 goal, u64 limit)
3652 int i;
3653 void *ptr;
3655 if (limit > get_max_mapped())
3656 limit = get_max_mapped();
3658 /* need to go over early_node_map to find out good range for node */
3659 for_each_active_range_index_in_nid(i, nid) {
3660 u64 addr;
3661 u64 ei_start, ei_last;
3663 ei_last = early_node_map[i].end_pfn;
3664 ei_last <<= PAGE_SHIFT;
3665 ei_start = early_node_map[i].start_pfn;
3666 ei_start <<= PAGE_SHIFT;
3667 addr = find_early_area(ei_start, ei_last,
3668 goal, limit, size, align);
3670 if (addr == -1ULL)
3671 continue;
3673 #if 0
3674 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3675 nid,
3676 ei_start, ei_last, goal, limit, size,
3677 align, addr);
3678 #endif
3680 ptr = phys_to_virt(addr);
3681 memset(ptr, 0, size);
3682 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3684 * The min_count is set to 0 so that bootmem allocated blocks
3685 * are never reported as leaks.
3687 kmemleak_alloc(ptr, size, 0, 0);
3688 return ptr;
3691 return NULL;
3693 #endif
3696 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3698 int i;
3699 int ret;
3701 for_each_active_range_index_in_nid(i, nid) {
3702 ret = work_fn(early_node_map[i].start_pfn,
3703 early_node_map[i].end_pfn, data);
3704 if (ret)
3705 break;
3709 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3710 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3712 * If an architecture guarantees that all ranges registered with
3713 * add_active_ranges() contain no holes and may be freed, this
3714 * function may be used instead of calling memory_present() manually.
3716 void __init sparse_memory_present_with_active_regions(int nid)
3718 int i;
3720 for_each_active_range_index_in_nid(i, nid)
3721 memory_present(early_node_map[i].nid,
3722 early_node_map[i].start_pfn,
3723 early_node_map[i].end_pfn);
3727 * get_pfn_range_for_nid - Return the start and end page frames for a node
3728 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3729 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3730 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3732 * It returns the start and end page frame of a node based on information
3733 * provided by an arch calling add_active_range(). If called for a node
3734 * with no available memory, a warning is printed and the start and end
3735 * PFNs will be 0.
3737 void __meminit get_pfn_range_for_nid(unsigned int nid,
3738 unsigned long *start_pfn, unsigned long *end_pfn)
3740 int i;
3741 *start_pfn = -1UL;
3742 *end_pfn = 0;
3744 for_each_active_range_index_in_nid(i, nid) {
3745 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3746 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3749 if (*start_pfn == -1UL)
3750 *start_pfn = 0;
3754 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3755 * assumption is made that zones within a node are ordered in monotonic
3756 * increasing memory addresses so that the "highest" populated zone is used
3758 static void __init find_usable_zone_for_movable(void)
3760 int zone_index;
3761 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3762 if (zone_index == ZONE_MOVABLE)
3763 continue;
3765 if (arch_zone_highest_possible_pfn[zone_index] >
3766 arch_zone_lowest_possible_pfn[zone_index])
3767 break;
3770 VM_BUG_ON(zone_index == -1);
3771 movable_zone = zone_index;
3775 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3776 * because it is sized independant of architecture. Unlike the other zones,
3777 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3778 * in each node depending on the size of each node and how evenly kernelcore
3779 * is distributed. This helper function adjusts the zone ranges
3780 * provided by the architecture for a given node by using the end of the
3781 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3782 * zones within a node are in order of monotonic increases memory addresses
3784 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3785 unsigned long zone_type,
3786 unsigned long node_start_pfn,
3787 unsigned long node_end_pfn,
3788 unsigned long *zone_start_pfn,
3789 unsigned long *zone_end_pfn)
3791 /* Only adjust if ZONE_MOVABLE is on this node */
3792 if (zone_movable_pfn[nid]) {
3793 /* Size ZONE_MOVABLE */
3794 if (zone_type == ZONE_MOVABLE) {
3795 *zone_start_pfn = zone_movable_pfn[nid];
3796 *zone_end_pfn = min(node_end_pfn,
3797 arch_zone_highest_possible_pfn[movable_zone]);
3799 /* Adjust for ZONE_MOVABLE starting within this range */
3800 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3801 *zone_end_pfn > zone_movable_pfn[nid]) {
3802 *zone_end_pfn = zone_movable_pfn[nid];
3804 /* Check if this whole range is within ZONE_MOVABLE */
3805 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3806 *zone_start_pfn = *zone_end_pfn;
3811 * Return the number of pages a zone spans in a node, including holes
3812 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3814 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3815 unsigned long zone_type,
3816 unsigned long *ignored)
3818 unsigned long node_start_pfn, node_end_pfn;
3819 unsigned long zone_start_pfn, zone_end_pfn;
3821 /* Get the start and end of the node and zone */
3822 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3823 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3824 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3825 adjust_zone_range_for_zone_movable(nid, zone_type,
3826 node_start_pfn, node_end_pfn,
3827 &zone_start_pfn, &zone_end_pfn);
3829 /* Check that this node has pages within the zone's required range */
3830 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3831 return 0;
3833 /* Move the zone boundaries inside the node if necessary */
3834 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3835 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3837 /* Return the spanned pages */
3838 return zone_end_pfn - zone_start_pfn;
3842 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3843 * then all holes in the requested range will be accounted for.
3845 unsigned long __meminit __absent_pages_in_range(int nid,
3846 unsigned long range_start_pfn,
3847 unsigned long range_end_pfn)
3849 int i = 0;
3850 unsigned long prev_end_pfn = 0, hole_pages = 0;
3851 unsigned long start_pfn;
3853 /* Find the end_pfn of the first active range of pfns in the node */
3854 i = first_active_region_index_in_nid(nid);
3855 if (i == -1)
3856 return 0;
3858 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3860 /* Account for ranges before physical memory on this node */
3861 if (early_node_map[i].start_pfn > range_start_pfn)
3862 hole_pages = prev_end_pfn - range_start_pfn;
3864 /* Find all holes for the zone within the node */
3865 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3867 /* No need to continue if prev_end_pfn is outside the zone */
3868 if (prev_end_pfn >= range_end_pfn)
3869 break;
3871 /* Make sure the end of the zone is not within the hole */
3872 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3873 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3875 /* Update the hole size cound and move on */
3876 if (start_pfn > range_start_pfn) {
3877 BUG_ON(prev_end_pfn > start_pfn);
3878 hole_pages += start_pfn - prev_end_pfn;
3880 prev_end_pfn = early_node_map[i].end_pfn;
3883 /* Account for ranges past physical memory on this node */
3884 if (range_end_pfn > prev_end_pfn)
3885 hole_pages += range_end_pfn -
3886 max(range_start_pfn, prev_end_pfn);
3888 return hole_pages;
3892 * absent_pages_in_range - Return number of page frames in holes within a range
3893 * @start_pfn: The start PFN to start searching for holes
3894 * @end_pfn: The end PFN to stop searching for holes
3896 * It returns the number of pages frames in memory holes within a range.
3898 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3899 unsigned long end_pfn)
3901 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3904 /* Return the number of page frames in holes in a zone on a node */
3905 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3906 unsigned long zone_type,
3907 unsigned long *ignored)
3909 unsigned long node_start_pfn, node_end_pfn;
3910 unsigned long zone_start_pfn, zone_end_pfn;
3912 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3913 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3914 node_start_pfn);
3915 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3916 node_end_pfn);
3918 adjust_zone_range_for_zone_movable(nid, zone_type,
3919 node_start_pfn, node_end_pfn,
3920 &zone_start_pfn, &zone_end_pfn);
3921 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3924 #else
3925 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3926 unsigned long zone_type,
3927 unsigned long *zones_size)
3929 return zones_size[zone_type];
3932 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3933 unsigned long zone_type,
3934 unsigned long *zholes_size)
3936 if (!zholes_size)
3937 return 0;
3939 return zholes_size[zone_type];
3942 #endif
3944 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3945 unsigned long *zones_size, unsigned long *zholes_size)
3947 unsigned long realtotalpages, totalpages = 0;
3948 enum zone_type i;
3950 for (i = 0; i < MAX_NR_ZONES; i++)
3951 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3952 zones_size);
3953 pgdat->node_spanned_pages = totalpages;
3955 realtotalpages = totalpages;
3956 for (i = 0; i < MAX_NR_ZONES; i++)
3957 realtotalpages -=
3958 zone_absent_pages_in_node(pgdat->node_id, i,
3959 zholes_size);
3960 pgdat->node_present_pages = realtotalpages;
3961 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3962 realtotalpages);
3965 #ifndef CONFIG_SPARSEMEM
3967 * Calculate the size of the zone->blockflags rounded to an unsigned long
3968 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3969 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3970 * round what is now in bits to nearest long in bits, then return it in
3971 * bytes.
3973 static unsigned long __init usemap_size(unsigned long zonesize)
3975 unsigned long usemapsize;
3977 usemapsize = roundup(zonesize, pageblock_nr_pages);
3978 usemapsize = usemapsize >> pageblock_order;
3979 usemapsize *= NR_PAGEBLOCK_BITS;
3980 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3982 return usemapsize / 8;
3985 static void __init setup_usemap(struct pglist_data *pgdat,
3986 struct zone *zone, unsigned long zonesize)
3988 unsigned long usemapsize = usemap_size(zonesize);
3989 zone->pageblock_flags = NULL;
3990 if (usemapsize)
3991 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3993 #else
3994 static void inline setup_usemap(struct pglist_data *pgdat,
3995 struct zone *zone, unsigned long zonesize) {}
3996 #endif /* CONFIG_SPARSEMEM */
3998 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4000 /* Return a sensible default order for the pageblock size. */
4001 static inline int pageblock_default_order(void)
4003 if (HPAGE_SHIFT > PAGE_SHIFT)
4004 return HUGETLB_PAGE_ORDER;
4006 return MAX_ORDER-1;
4009 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4010 static inline void __init set_pageblock_order(unsigned int order)
4012 /* Check that pageblock_nr_pages has not already been setup */
4013 if (pageblock_order)
4014 return;
4017 * Assume the largest contiguous order of interest is a huge page.
4018 * This value may be variable depending on boot parameters on IA64
4020 pageblock_order = order;
4022 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4025 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4026 * and pageblock_default_order() are unused as pageblock_order is set
4027 * at compile-time. See include/linux/pageblock-flags.h for the values of
4028 * pageblock_order based on the kernel config
4030 static inline int pageblock_default_order(unsigned int order)
4032 return MAX_ORDER-1;
4034 #define set_pageblock_order(x) do {} while (0)
4036 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4039 * Set up the zone data structures:
4040 * - mark all pages reserved
4041 * - mark all memory queues empty
4042 * - clear the memory bitmaps
4044 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4045 unsigned long *zones_size, unsigned long *zholes_size)
4047 enum zone_type j;
4048 int nid = pgdat->node_id;
4049 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4050 int ret;
4052 pgdat_resize_init(pgdat);
4053 pgdat->nr_zones = 0;
4054 init_waitqueue_head(&pgdat->kswapd_wait);
4055 pgdat->kswapd_max_order = 0;
4056 pgdat_page_cgroup_init(pgdat);
4058 for (j = 0; j < MAX_NR_ZONES; j++) {
4059 struct zone *zone = pgdat->node_zones + j;
4060 unsigned long size, realsize, memmap_pages;
4061 enum lru_list l;
4063 size = zone_spanned_pages_in_node(nid, j, zones_size);
4064 realsize = size - zone_absent_pages_in_node(nid, j,
4065 zholes_size);
4068 * Adjust realsize so that it accounts for how much memory
4069 * is used by this zone for memmap. This affects the watermark
4070 * and per-cpu initialisations
4072 memmap_pages =
4073 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4074 if (realsize >= memmap_pages) {
4075 realsize -= memmap_pages;
4076 if (memmap_pages)
4077 printk(KERN_DEBUG
4078 " %s zone: %lu pages used for memmap\n",
4079 zone_names[j], memmap_pages);
4080 } else
4081 printk(KERN_WARNING
4082 " %s zone: %lu pages exceeds realsize %lu\n",
4083 zone_names[j], memmap_pages, realsize);
4085 /* Account for reserved pages */
4086 if (j == 0 && realsize > dma_reserve) {
4087 realsize -= dma_reserve;
4088 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4089 zone_names[0], dma_reserve);
4092 if (!is_highmem_idx(j))
4093 nr_kernel_pages += realsize;
4094 nr_all_pages += realsize;
4096 zone->spanned_pages = size;
4097 zone->present_pages = realsize;
4098 #ifdef CONFIG_NUMA
4099 zone->node = nid;
4100 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4101 / 100;
4102 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4103 #endif
4104 zone->name = zone_names[j];
4105 spin_lock_init(&zone->lock);
4106 spin_lock_init(&zone->lru_lock);
4107 zone_seqlock_init(zone);
4108 zone->zone_pgdat = pgdat;
4110 zone->prev_priority = DEF_PRIORITY;
4112 zone_pcp_init(zone);
4113 for_each_lru(l) {
4114 INIT_LIST_HEAD(&zone->lru[l].list);
4115 zone->reclaim_stat.nr_saved_scan[l] = 0;
4117 zone->reclaim_stat.recent_rotated[0] = 0;
4118 zone->reclaim_stat.recent_rotated[1] = 0;
4119 zone->reclaim_stat.recent_scanned[0] = 0;
4120 zone->reclaim_stat.recent_scanned[1] = 0;
4121 zap_zone_vm_stats(zone);
4122 zone->flags = 0;
4123 if (!size)
4124 continue;
4126 set_pageblock_order(pageblock_default_order());
4127 setup_usemap(pgdat, zone, size);
4128 ret = init_currently_empty_zone(zone, zone_start_pfn,
4129 size, MEMMAP_EARLY);
4130 BUG_ON(ret);
4131 memmap_init(size, nid, j, zone_start_pfn);
4132 zone_start_pfn += size;
4136 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4138 /* Skip empty nodes */
4139 if (!pgdat->node_spanned_pages)
4140 return;
4142 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4143 /* ia64 gets its own node_mem_map, before this, without bootmem */
4144 if (!pgdat->node_mem_map) {
4145 unsigned long size, start, end;
4146 struct page *map;
4149 * The zone's endpoints aren't required to be MAX_ORDER
4150 * aligned but the node_mem_map endpoints must be in order
4151 * for the buddy allocator to function correctly.
4153 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4154 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4155 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4156 size = (end - start) * sizeof(struct page);
4157 map = alloc_remap(pgdat->node_id, size);
4158 if (!map)
4159 map = alloc_bootmem_node(pgdat, size);
4160 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4162 #ifndef CONFIG_NEED_MULTIPLE_NODES
4164 * With no DISCONTIG, the global mem_map is just set as node 0's
4166 if (pgdat == NODE_DATA(0)) {
4167 mem_map = NODE_DATA(0)->node_mem_map;
4168 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4169 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4170 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4171 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4173 #endif
4174 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4177 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4178 unsigned long node_start_pfn, unsigned long *zholes_size)
4180 pg_data_t *pgdat = NODE_DATA(nid);
4182 pgdat->node_id = nid;
4183 pgdat->node_start_pfn = node_start_pfn;
4184 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4186 alloc_node_mem_map(pgdat);
4187 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4188 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4189 nid, (unsigned long)pgdat,
4190 (unsigned long)pgdat->node_mem_map);
4191 #endif
4193 free_area_init_core(pgdat, zones_size, zholes_size);
4196 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4198 #if MAX_NUMNODES > 1
4200 * Figure out the number of possible node ids.
4202 static void __init setup_nr_node_ids(void)
4204 unsigned int node;
4205 unsigned int highest = 0;
4207 for_each_node_mask(node, node_possible_map)
4208 highest = node;
4209 nr_node_ids = highest + 1;
4211 #else
4212 static inline void setup_nr_node_ids(void)
4215 #endif
4218 * add_active_range - Register a range of PFNs backed by physical memory
4219 * @nid: The node ID the range resides on
4220 * @start_pfn: The start PFN of the available physical memory
4221 * @end_pfn: The end PFN of the available physical memory
4223 * These ranges are stored in an early_node_map[] and later used by
4224 * free_area_init_nodes() to calculate zone sizes and holes. If the
4225 * range spans a memory hole, it is up to the architecture to ensure
4226 * the memory is not freed by the bootmem allocator. If possible
4227 * the range being registered will be merged with existing ranges.
4229 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4230 unsigned long end_pfn)
4232 int i;
4234 mminit_dprintk(MMINIT_TRACE, "memory_register",
4235 "Entering add_active_range(%d, %#lx, %#lx) "
4236 "%d entries of %d used\n",
4237 nid, start_pfn, end_pfn,
4238 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4240 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4242 /* Merge with existing active regions if possible */
4243 for (i = 0; i < nr_nodemap_entries; i++) {
4244 if (early_node_map[i].nid != nid)
4245 continue;
4247 /* Skip if an existing region covers this new one */
4248 if (start_pfn >= early_node_map[i].start_pfn &&
4249 end_pfn <= early_node_map[i].end_pfn)
4250 return;
4252 /* Merge forward if suitable */
4253 if (start_pfn <= early_node_map[i].end_pfn &&
4254 end_pfn > early_node_map[i].end_pfn) {
4255 early_node_map[i].end_pfn = end_pfn;
4256 return;
4259 /* Merge backward if suitable */
4260 if (start_pfn < early_node_map[i].start_pfn &&
4261 end_pfn >= early_node_map[i].start_pfn) {
4262 early_node_map[i].start_pfn = start_pfn;
4263 return;
4267 /* Check that early_node_map is large enough */
4268 if (i >= MAX_ACTIVE_REGIONS) {
4269 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4270 MAX_ACTIVE_REGIONS);
4271 return;
4274 early_node_map[i].nid = nid;
4275 early_node_map[i].start_pfn = start_pfn;
4276 early_node_map[i].end_pfn = end_pfn;
4277 nr_nodemap_entries = i + 1;
4281 * remove_active_range - Shrink an existing registered range of PFNs
4282 * @nid: The node id the range is on that should be shrunk
4283 * @start_pfn: The new PFN of the range
4284 * @end_pfn: The new PFN of the range
4286 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4287 * The map is kept near the end physical page range that has already been
4288 * registered. This function allows an arch to shrink an existing registered
4289 * range.
4291 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4292 unsigned long end_pfn)
4294 int i, j;
4295 int removed = 0;
4297 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4298 nid, start_pfn, end_pfn);
4300 /* Find the old active region end and shrink */
4301 for_each_active_range_index_in_nid(i, nid) {
4302 if (early_node_map[i].start_pfn >= start_pfn &&
4303 early_node_map[i].end_pfn <= end_pfn) {
4304 /* clear it */
4305 early_node_map[i].start_pfn = 0;
4306 early_node_map[i].end_pfn = 0;
4307 removed = 1;
4308 continue;
4310 if (early_node_map[i].start_pfn < start_pfn &&
4311 early_node_map[i].end_pfn > start_pfn) {
4312 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4313 early_node_map[i].end_pfn = start_pfn;
4314 if (temp_end_pfn > end_pfn)
4315 add_active_range(nid, end_pfn, temp_end_pfn);
4316 continue;
4318 if (early_node_map[i].start_pfn >= start_pfn &&
4319 early_node_map[i].end_pfn > end_pfn &&
4320 early_node_map[i].start_pfn < end_pfn) {
4321 early_node_map[i].start_pfn = end_pfn;
4322 continue;
4326 if (!removed)
4327 return;
4329 /* remove the blank ones */
4330 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4331 if (early_node_map[i].nid != nid)
4332 continue;
4333 if (early_node_map[i].end_pfn)
4334 continue;
4335 /* we found it, get rid of it */
4336 for (j = i; j < nr_nodemap_entries - 1; j++)
4337 memcpy(&early_node_map[j], &early_node_map[j+1],
4338 sizeof(early_node_map[j]));
4339 j = nr_nodemap_entries - 1;
4340 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4341 nr_nodemap_entries--;
4346 * remove_all_active_ranges - Remove all currently registered regions
4348 * During discovery, it may be found that a table like SRAT is invalid
4349 * and an alternative discovery method must be used. This function removes
4350 * all currently registered regions.
4352 void __init remove_all_active_ranges(void)
4354 memset(early_node_map, 0, sizeof(early_node_map));
4355 nr_nodemap_entries = 0;
4358 /* Compare two active node_active_regions */
4359 static int __init cmp_node_active_region(const void *a, const void *b)
4361 struct node_active_region *arange = (struct node_active_region *)a;
4362 struct node_active_region *brange = (struct node_active_region *)b;
4364 /* Done this way to avoid overflows */
4365 if (arange->start_pfn > brange->start_pfn)
4366 return 1;
4367 if (arange->start_pfn < brange->start_pfn)
4368 return -1;
4370 return 0;
4373 /* sort the node_map by start_pfn */
4374 void __init sort_node_map(void)
4376 sort(early_node_map, (size_t)nr_nodemap_entries,
4377 sizeof(struct node_active_region),
4378 cmp_node_active_region, NULL);
4381 /* Find the lowest pfn for a node */
4382 static unsigned long __init find_min_pfn_for_node(int nid)
4384 int i;
4385 unsigned long min_pfn = ULONG_MAX;
4387 /* Assuming a sorted map, the first range found has the starting pfn */
4388 for_each_active_range_index_in_nid(i, nid)
4389 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4391 if (min_pfn == ULONG_MAX) {
4392 printk(KERN_WARNING
4393 "Could not find start_pfn for node %d\n", nid);
4394 return 0;
4397 return min_pfn;
4401 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4403 * It returns the minimum PFN based on information provided via
4404 * add_active_range().
4406 unsigned long __init find_min_pfn_with_active_regions(void)
4408 return find_min_pfn_for_node(MAX_NUMNODES);
4412 * early_calculate_totalpages()
4413 * Sum pages in active regions for movable zone.
4414 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4416 static unsigned long __init early_calculate_totalpages(void)
4418 int i;
4419 unsigned long totalpages = 0;
4421 for (i = 0; i < nr_nodemap_entries; i++) {
4422 unsigned long pages = early_node_map[i].end_pfn -
4423 early_node_map[i].start_pfn;
4424 totalpages += pages;
4425 if (pages)
4426 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4428 return totalpages;
4432 * Find the PFN the Movable zone begins in each node. Kernel memory
4433 * is spread evenly between nodes as long as the nodes have enough
4434 * memory. When they don't, some nodes will have more kernelcore than
4435 * others
4437 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4439 int i, nid;
4440 unsigned long usable_startpfn;
4441 unsigned long kernelcore_node, kernelcore_remaining;
4442 /* save the state before borrow the nodemask */
4443 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4444 unsigned long totalpages = early_calculate_totalpages();
4445 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4448 * If movablecore was specified, calculate what size of
4449 * kernelcore that corresponds so that memory usable for
4450 * any allocation type is evenly spread. If both kernelcore
4451 * and movablecore are specified, then the value of kernelcore
4452 * will be used for required_kernelcore if it's greater than
4453 * what movablecore would have allowed.
4455 if (required_movablecore) {
4456 unsigned long corepages;
4459 * Round-up so that ZONE_MOVABLE is at least as large as what
4460 * was requested by the user
4462 required_movablecore =
4463 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4464 corepages = totalpages - required_movablecore;
4466 required_kernelcore = max(required_kernelcore, corepages);
4469 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4470 if (!required_kernelcore)
4471 goto out;
4473 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4474 find_usable_zone_for_movable();
4475 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4477 restart:
4478 /* Spread kernelcore memory as evenly as possible throughout nodes */
4479 kernelcore_node = required_kernelcore / usable_nodes;
4480 for_each_node_state(nid, N_HIGH_MEMORY) {
4482 * Recalculate kernelcore_node if the division per node
4483 * now exceeds what is necessary to satisfy the requested
4484 * amount of memory for the kernel
4486 if (required_kernelcore < kernelcore_node)
4487 kernelcore_node = required_kernelcore / usable_nodes;
4490 * As the map is walked, we track how much memory is usable
4491 * by the kernel using kernelcore_remaining. When it is
4492 * 0, the rest of the node is usable by ZONE_MOVABLE
4494 kernelcore_remaining = kernelcore_node;
4496 /* Go through each range of PFNs within this node */
4497 for_each_active_range_index_in_nid(i, nid) {
4498 unsigned long start_pfn, end_pfn;
4499 unsigned long size_pages;
4501 start_pfn = max(early_node_map[i].start_pfn,
4502 zone_movable_pfn[nid]);
4503 end_pfn = early_node_map[i].end_pfn;
4504 if (start_pfn >= end_pfn)
4505 continue;
4507 /* Account for what is only usable for kernelcore */
4508 if (start_pfn < usable_startpfn) {
4509 unsigned long kernel_pages;
4510 kernel_pages = min(end_pfn, usable_startpfn)
4511 - start_pfn;
4513 kernelcore_remaining -= min(kernel_pages,
4514 kernelcore_remaining);
4515 required_kernelcore -= min(kernel_pages,
4516 required_kernelcore);
4518 /* Continue if range is now fully accounted */
4519 if (end_pfn <= usable_startpfn) {
4522 * Push zone_movable_pfn to the end so
4523 * that if we have to rebalance
4524 * kernelcore across nodes, we will
4525 * not double account here
4527 zone_movable_pfn[nid] = end_pfn;
4528 continue;
4530 start_pfn = usable_startpfn;
4534 * The usable PFN range for ZONE_MOVABLE is from
4535 * start_pfn->end_pfn. Calculate size_pages as the
4536 * number of pages used as kernelcore
4538 size_pages = end_pfn - start_pfn;
4539 if (size_pages > kernelcore_remaining)
4540 size_pages = kernelcore_remaining;
4541 zone_movable_pfn[nid] = start_pfn + size_pages;
4544 * Some kernelcore has been met, update counts and
4545 * break if the kernelcore for this node has been
4546 * satisified
4548 required_kernelcore -= min(required_kernelcore,
4549 size_pages);
4550 kernelcore_remaining -= size_pages;
4551 if (!kernelcore_remaining)
4552 break;
4557 * If there is still required_kernelcore, we do another pass with one
4558 * less node in the count. This will push zone_movable_pfn[nid] further
4559 * along on the nodes that still have memory until kernelcore is
4560 * satisified
4562 usable_nodes--;
4563 if (usable_nodes && required_kernelcore > usable_nodes)
4564 goto restart;
4566 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4567 for (nid = 0; nid < MAX_NUMNODES; nid++)
4568 zone_movable_pfn[nid] =
4569 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4571 out:
4572 /* restore the node_state */
4573 node_states[N_HIGH_MEMORY] = saved_node_state;
4576 /* Any regular memory on that node ? */
4577 static void check_for_regular_memory(pg_data_t *pgdat)
4579 #ifdef CONFIG_HIGHMEM
4580 enum zone_type zone_type;
4582 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4583 struct zone *zone = &pgdat->node_zones[zone_type];
4584 if (zone->present_pages)
4585 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4587 #endif
4591 * free_area_init_nodes - Initialise all pg_data_t and zone data
4592 * @max_zone_pfn: an array of max PFNs for each zone
4594 * This will call free_area_init_node() for each active node in the system.
4595 * Using the page ranges provided by add_active_range(), the size of each
4596 * zone in each node and their holes is calculated. If the maximum PFN
4597 * between two adjacent zones match, it is assumed that the zone is empty.
4598 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4599 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4600 * starts where the previous one ended. For example, ZONE_DMA32 starts
4601 * at arch_max_dma_pfn.
4603 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4605 unsigned long nid;
4606 int i;
4608 /* Sort early_node_map as initialisation assumes it is sorted */
4609 sort_node_map();
4611 /* Record where the zone boundaries are */
4612 memset(arch_zone_lowest_possible_pfn, 0,
4613 sizeof(arch_zone_lowest_possible_pfn));
4614 memset(arch_zone_highest_possible_pfn, 0,
4615 sizeof(arch_zone_highest_possible_pfn));
4616 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4617 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4618 for (i = 1; i < MAX_NR_ZONES; i++) {
4619 if (i == ZONE_MOVABLE)
4620 continue;
4621 arch_zone_lowest_possible_pfn[i] =
4622 arch_zone_highest_possible_pfn[i-1];
4623 arch_zone_highest_possible_pfn[i] =
4624 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4626 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4627 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4629 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4630 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4631 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4633 /* Print out the zone ranges */
4634 printk("Zone PFN ranges:\n");
4635 for (i = 0; i < MAX_NR_ZONES; i++) {
4636 if (i == ZONE_MOVABLE)
4637 continue;
4638 printk(" %-8s ", zone_names[i]);
4639 if (arch_zone_lowest_possible_pfn[i] ==
4640 arch_zone_highest_possible_pfn[i])
4641 printk("empty\n");
4642 else
4643 printk("%0#10lx -> %0#10lx\n",
4644 arch_zone_lowest_possible_pfn[i],
4645 arch_zone_highest_possible_pfn[i]);
4648 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4649 printk("Movable zone start PFN for each node\n");
4650 for (i = 0; i < MAX_NUMNODES; i++) {
4651 if (zone_movable_pfn[i])
4652 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4655 /* Print out the early_node_map[] */
4656 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4657 for (i = 0; i < nr_nodemap_entries; i++)
4658 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4659 early_node_map[i].start_pfn,
4660 early_node_map[i].end_pfn);
4662 /* Initialise every node */
4663 mminit_verify_pageflags_layout();
4664 setup_nr_node_ids();
4665 for_each_online_node(nid) {
4666 pg_data_t *pgdat = NODE_DATA(nid);
4667 free_area_init_node(nid, NULL,
4668 find_min_pfn_for_node(nid), NULL);
4670 /* Any memory on that node */
4671 if (pgdat->node_present_pages)
4672 node_set_state(nid, N_HIGH_MEMORY);
4673 check_for_regular_memory(pgdat);
4677 static int __init cmdline_parse_core(char *p, unsigned long *core)
4679 unsigned long long coremem;
4680 if (!p)
4681 return -EINVAL;
4683 coremem = memparse(p, &p);
4684 *core = coremem >> PAGE_SHIFT;
4686 /* Paranoid check that UL is enough for the coremem value */
4687 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4689 return 0;
4693 * kernelcore=size sets the amount of memory for use for allocations that
4694 * cannot be reclaimed or migrated.
4696 static int __init cmdline_parse_kernelcore(char *p)
4698 return cmdline_parse_core(p, &required_kernelcore);
4702 * movablecore=size sets the amount of memory for use for allocations that
4703 * can be reclaimed or migrated.
4705 static int __init cmdline_parse_movablecore(char *p)
4707 return cmdline_parse_core(p, &required_movablecore);
4710 early_param("kernelcore", cmdline_parse_kernelcore);
4711 early_param("movablecore", cmdline_parse_movablecore);
4713 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4716 * set_dma_reserve - set the specified number of pages reserved in the first zone
4717 * @new_dma_reserve: The number of pages to mark reserved
4719 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4720 * In the DMA zone, a significant percentage may be consumed by kernel image
4721 * and other unfreeable allocations which can skew the watermarks badly. This
4722 * function may optionally be used to account for unfreeable pages in the
4723 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4724 * smaller per-cpu batchsize.
4726 void __init set_dma_reserve(unsigned long new_dma_reserve)
4728 dma_reserve = new_dma_reserve;
4731 #ifndef CONFIG_NEED_MULTIPLE_NODES
4732 struct pglist_data __refdata contig_page_data = {
4733 #ifndef CONFIG_NO_BOOTMEM
4734 .bdata = &bootmem_node_data[0]
4735 #endif
4737 EXPORT_SYMBOL(contig_page_data);
4738 #endif
4740 void __init free_area_init(unsigned long *zones_size)
4742 free_area_init_node(0, zones_size,
4743 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4746 static int page_alloc_cpu_notify(struct notifier_block *self,
4747 unsigned long action, void *hcpu)
4749 int cpu = (unsigned long)hcpu;
4751 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4752 drain_pages(cpu);
4755 * Spill the event counters of the dead processor
4756 * into the current processors event counters.
4757 * This artificially elevates the count of the current
4758 * processor.
4760 vm_events_fold_cpu(cpu);
4763 * Zero the differential counters of the dead processor
4764 * so that the vm statistics are consistent.
4766 * This is only okay since the processor is dead and cannot
4767 * race with what we are doing.
4769 refresh_cpu_vm_stats(cpu);
4771 return NOTIFY_OK;
4774 void __init page_alloc_init(void)
4776 hotcpu_notifier(page_alloc_cpu_notify, 0);
4780 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4781 * or min_free_kbytes changes.
4783 static void calculate_totalreserve_pages(void)
4785 struct pglist_data *pgdat;
4786 unsigned long reserve_pages = 0;
4787 enum zone_type i, j;
4789 for_each_online_pgdat(pgdat) {
4790 for (i = 0; i < MAX_NR_ZONES; i++) {
4791 struct zone *zone = pgdat->node_zones + i;
4792 unsigned long max = 0;
4794 /* Find valid and maximum lowmem_reserve in the zone */
4795 for (j = i; j < MAX_NR_ZONES; j++) {
4796 if (zone->lowmem_reserve[j] > max)
4797 max = zone->lowmem_reserve[j];
4800 /* we treat the high watermark as reserved pages. */
4801 max += high_wmark_pages(zone);
4803 if (max > zone->present_pages)
4804 max = zone->present_pages;
4805 reserve_pages += max;
4808 totalreserve_pages = reserve_pages;
4812 * setup_per_zone_lowmem_reserve - called whenever
4813 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4814 * has a correct pages reserved value, so an adequate number of
4815 * pages are left in the zone after a successful __alloc_pages().
4817 static void setup_per_zone_lowmem_reserve(void)
4819 struct pglist_data *pgdat;
4820 enum zone_type j, idx;
4822 for_each_online_pgdat(pgdat) {
4823 for (j = 0; j < MAX_NR_ZONES; j++) {
4824 struct zone *zone = pgdat->node_zones + j;
4825 unsigned long present_pages = zone->present_pages;
4827 zone->lowmem_reserve[j] = 0;
4829 idx = j;
4830 while (idx) {
4831 struct zone *lower_zone;
4833 idx--;
4835 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4836 sysctl_lowmem_reserve_ratio[idx] = 1;
4838 lower_zone = pgdat->node_zones + idx;
4839 lower_zone->lowmem_reserve[j] = present_pages /
4840 sysctl_lowmem_reserve_ratio[idx];
4841 present_pages += lower_zone->present_pages;
4846 /* update totalreserve_pages */
4847 calculate_totalreserve_pages();
4851 * setup_per_zone_wmarks - called when min_free_kbytes changes
4852 * or when memory is hot-{added|removed}
4854 * Ensures that the watermark[min,low,high] values for each zone are set
4855 * correctly with respect to min_free_kbytes.
4857 void setup_per_zone_wmarks(void)
4859 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4860 unsigned long lowmem_pages = 0;
4861 struct zone *zone;
4862 unsigned long flags;
4864 /* Calculate total number of !ZONE_HIGHMEM pages */
4865 for_each_zone(zone) {
4866 if (!is_highmem(zone))
4867 lowmem_pages += zone->present_pages;
4870 for_each_zone(zone) {
4871 u64 tmp;
4873 spin_lock_irqsave(&zone->lock, flags);
4874 tmp = (u64)pages_min * zone->present_pages;
4875 do_div(tmp, lowmem_pages);
4876 if (is_highmem(zone)) {
4878 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4879 * need highmem pages, so cap pages_min to a small
4880 * value here.
4882 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4883 * deltas controls asynch page reclaim, and so should
4884 * not be capped for highmem.
4886 int min_pages;
4888 min_pages = zone->present_pages / 1024;
4889 if (min_pages < SWAP_CLUSTER_MAX)
4890 min_pages = SWAP_CLUSTER_MAX;
4891 if (min_pages > 128)
4892 min_pages = 128;
4893 zone->watermark[WMARK_MIN] = min_pages;
4894 } else {
4896 * If it's a lowmem zone, reserve a number of pages
4897 * proportionate to the zone's size.
4899 zone->watermark[WMARK_MIN] = tmp;
4902 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4903 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4904 setup_zone_migrate_reserve(zone);
4905 spin_unlock_irqrestore(&zone->lock, flags);
4908 /* update totalreserve_pages */
4909 calculate_totalreserve_pages();
4913 * The inactive anon list should be small enough that the VM never has to
4914 * do too much work, but large enough that each inactive page has a chance
4915 * to be referenced again before it is swapped out.
4917 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4918 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4919 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4920 * the anonymous pages are kept on the inactive list.
4922 * total target max
4923 * memory ratio inactive anon
4924 * -------------------------------------
4925 * 10MB 1 5MB
4926 * 100MB 1 50MB
4927 * 1GB 3 250MB
4928 * 10GB 10 0.9GB
4929 * 100GB 31 3GB
4930 * 1TB 101 10GB
4931 * 10TB 320 32GB
4933 void calculate_zone_inactive_ratio(struct zone *zone)
4935 unsigned int gb, ratio;
4937 /* Zone size in gigabytes */
4938 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4939 if (gb)
4940 ratio = int_sqrt(10 * gb);
4941 else
4942 ratio = 1;
4944 zone->inactive_ratio = ratio;
4947 static void __init setup_per_zone_inactive_ratio(void)
4949 struct zone *zone;
4951 for_each_zone(zone)
4952 calculate_zone_inactive_ratio(zone);
4956 * Initialise min_free_kbytes.
4958 * For small machines we want it small (128k min). For large machines
4959 * we want it large (64MB max). But it is not linear, because network
4960 * bandwidth does not increase linearly with machine size. We use
4962 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4963 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4965 * which yields
4967 * 16MB: 512k
4968 * 32MB: 724k
4969 * 64MB: 1024k
4970 * 128MB: 1448k
4971 * 256MB: 2048k
4972 * 512MB: 2896k
4973 * 1024MB: 4096k
4974 * 2048MB: 5792k
4975 * 4096MB: 8192k
4976 * 8192MB: 11584k
4977 * 16384MB: 16384k
4979 static int __init init_per_zone_wmark_min(void)
4981 unsigned long lowmem_kbytes;
4983 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4985 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4986 if (min_free_kbytes < 128)
4987 min_free_kbytes = 128;
4988 if (min_free_kbytes > 65536)
4989 min_free_kbytes = 65536;
4990 setup_per_zone_wmarks();
4991 setup_per_zone_lowmem_reserve();
4992 setup_per_zone_inactive_ratio();
4993 return 0;
4995 module_init(init_per_zone_wmark_min)
4998 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4999 * that we can call two helper functions whenever min_free_kbytes
5000 * changes.
5002 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5003 void __user *buffer, size_t *length, loff_t *ppos)
5005 proc_dointvec(table, write, buffer, length, ppos);
5006 if (write)
5007 setup_per_zone_wmarks();
5008 return 0;
5011 #ifdef CONFIG_NUMA
5012 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5013 void __user *buffer, size_t *length, loff_t *ppos)
5015 struct zone *zone;
5016 int rc;
5018 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5019 if (rc)
5020 return rc;
5022 for_each_zone(zone)
5023 zone->min_unmapped_pages = (zone->present_pages *
5024 sysctl_min_unmapped_ratio) / 100;
5025 return 0;
5028 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5029 void __user *buffer, size_t *length, loff_t *ppos)
5031 struct zone *zone;
5032 int rc;
5034 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5035 if (rc)
5036 return rc;
5038 for_each_zone(zone)
5039 zone->min_slab_pages = (zone->present_pages *
5040 sysctl_min_slab_ratio) / 100;
5041 return 0;
5043 #endif
5046 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5047 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5048 * whenever sysctl_lowmem_reserve_ratio changes.
5050 * The reserve ratio obviously has absolutely no relation with the
5051 * minimum watermarks. The lowmem reserve ratio can only make sense
5052 * if in function of the boot time zone sizes.
5054 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5055 void __user *buffer, size_t *length, loff_t *ppos)
5057 proc_dointvec_minmax(table, write, buffer, length, ppos);
5058 setup_per_zone_lowmem_reserve();
5059 return 0;
5063 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5064 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5065 * can have before it gets flushed back to buddy allocator.
5068 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5069 void __user *buffer, size_t *length, loff_t *ppos)
5071 struct zone *zone;
5072 unsigned int cpu;
5073 int ret;
5075 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5076 if (!write || (ret == -EINVAL))
5077 return ret;
5078 for_each_populated_zone(zone) {
5079 for_each_possible_cpu(cpu) {
5080 unsigned long high;
5081 high = zone->present_pages / percpu_pagelist_fraction;
5082 setup_pagelist_highmark(
5083 per_cpu_ptr(zone->pageset, cpu), high);
5086 return 0;
5089 int hashdist = HASHDIST_DEFAULT;
5091 #ifdef CONFIG_NUMA
5092 static int __init set_hashdist(char *str)
5094 if (!str)
5095 return 0;
5096 hashdist = simple_strtoul(str, &str, 0);
5097 return 1;
5099 __setup("hashdist=", set_hashdist);
5100 #endif
5103 * allocate a large system hash table from bootmem
5104 * - it is assumed that the hash table must contain an exact power-of-2
5105 * quantity of entries
5106 * - limit is the number of hash buckets, not the total allocation size
5108 void *__init alloc_large_system_hash(const char *tablename,
5109 unsigned long bucketsize,
5110 unsigned long numentries,
5111 int scale,
5112 int flags,
5113 unsigned int *_hash_shift,
5114 unsigned int *_hash_mask,
5115 unsigned long limit)
5117 unsigned long long max = limit;
5118 unsigned long log2qty, size;
5119 void *table = NULL;
5121 /* allow the kernel cmdline to have a say */
5122 if (!numentries) {
5123 /* round applicable memory size up to nearest megabyte */
5124 numentries = nr_kernel_pages;
5125 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5126 numentries >>= 20 - PAGE_SHIFT;
5127 numentries <<= 20 - PAGE_SHIFT;
5129 /* limit to 1 bucket per 2^scale bytes of low memory */
5130 if (scale > PAGE_SHIFT)
5131 numentries >>= (scale - PAGE_SHIFT);
5132 else
5133 numentries <<= (PAGE_SHIFT - scale);
5135 /* Make sure we've got at least a 0-order allocation.. */
5136 if (unlikely(flags & HASH_SMALL)) {
5137 /* Makes no sense without HASH_EARLY */
5138 WARN_ON(!(flags & HASH_EARLY));
5139 if (!(numentries >> *_hash_shift)) {
5140 numentries = 1UL << *_hash_shift;
5141 BUG_ON(!numentries);
5143 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5144 numentries = PAGE_SIZE / bucketsize;
5146 numentries = roundup_pow_of_two(numentries);
5148 /* limit allocation size to 1/16 total memory by default */
5149 if (max == 0) {
5150 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5151 do_div(max, bucketsize);
5154 if (numentries > max)
5155 numentries = max;
5157 log2qty = ilog2(numentries);
5159 do {
5160 size = bucketsize << log2qty;
5161 if (flags & HASH_EARLY)
5162 table = alloc_bootmem_nopanic(size);
5163 else if (hashdist)
5164 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5165 else {
5167 * If bucketsize is not a power-of-two, we may free
5168 * some pages at the end of hash table which
5169 * alloc_pages_exact() automatically does
5171 if (get_order(size) < MAX_ORDER) {
5172 table = alloc_pages_exact(size, GFP_ATOMIC);
5173 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5176 } while (!table && size > PAGE_SIZE && --log2qty);
5178 if (!table)
5179 panic("Failed to allocate %s hash table\n", tablename);
5181 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5182 tablename,
5183 (1U << log2qty),
5184 ilog2(size) - PAGE_SHIFT,
5185 size);
5187 if (_hash_shift)
5188 *_hash_shift = log2qty;
5189 if (_hash_mask)
5190 *_hash_mask = (1 << log2qty) - 1;
5192 return table;
5195 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5196 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5197 unsigned long pfn)
5199 #ifdef CONFIG_SPARSEMEM
5200 return __pfn_to_section(pfn)->pageblock_flags;
5201 #else
5202 return zone->pageblock_flags;
5203 #endif /* CONFIG_SPARSEMEM */
5206 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5208 #ifdef CONFIG_SPARSEMEM
5209 pfn &= (PAGES_PER_SECTION-1);
5210 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5211 #else
5212 pfn = pfn - zone->zone_start_pfn;
5213 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5214 #endif /* CONFIG_SPARSEMEM */
5218 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5219 * @page: The page within the block of interest
5220 * @start_bitidx: The first bit of interest to retrieve
5221 * @end_bitidx: The last bit of interest
5222 * returns pageblock_bits flags
5224 unsigned long get_pageblock_flags_group(struct page *page,
5225 int start_bitidx, int end_bitidx)
5227 struct zone *zone;
5228 unsigned long *bitmap;
5229 unsigned long pfn, bitidx;
5230 unsigned long flags = 0;
5231 unsigned long value = 1;
5233 zone = page_zone(page);
5234 pfn = page_to_pfn(page);
5235 bitmap = get_pageblock_bitmap(zone, pfn);
5236 bitidx = pfn_to_bitidx(zone, pfn);
5238 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5239 if (test_bit(bitidx + start_bitidx, bitmap))
5240 flags |= value;
5242 return flags;
5246 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5247 * @page: The page within the block of interest
5248 * @start_bitidx: The first bit of interest
5249 * @end_bitidx: The last bit of interest
5250 * @flags: The flags to set
5252 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5253 int start_bitidx, int end_bitidx)
5255 struct zone *zone;
5256 unsigned long *bitmap;
5257 unsigned long pfn, bitidx;
5258 unsigned long value = 1;
5260 zone = page_zone(page);
5261 pfn = page_to_pfn(page);
5262 bitmap = get_pageblock_bitmap(zone, pfn);
5263 bitidx = pfn_to_bitidx(zone, pfn);
5264 VM_BUG_ON(pfn < zone->zone_start_pfn);
5265 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5267 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5268 if (flags & value)
5269 __set_bit(bitidx + start_bitidx, bitmap);
5270 else
5271 __clear_bit(bitidx + start_bitidx, bitmap);
5275 * This is designed as sub function...plz see page_isolation.c also.
5276 * set/clear page block's type to be ISOLATE.
5277 * page allocater never alloc memory from ISOLATE block.
5280 int set_migratetype_isolate(struct page *page)
5282 struct zone *zone;
5283 struct page *curr_page;
5284 unsigned long flags, pfn, iter;
5285 unsigned long immobile = 0;
5286 struct memory_isolate_notify arg;
5287 int notifier_ret;
5288 int ret = -EBUSY;
5289 int zone_idx;
5291 zone = page_zone(page);
5292 zone_idx = zone_idx(zone);
5294 spin_lock_irqsave(&zone->lock, flags);
5295 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5296 zone_idx == ZONE_MOVABLE) {
5297 ret = 0;
5298 goto out;
5301 pfn = page_to_pfn(page);
5302 arg.start_pfn = pfn;
5303 arg.nr_pages = pageblock_nr_pages;
5304 arg.pages_found = 0;
5307 * It may be possible to isolate a pageblock even if the
5308 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5309 * notifier chain is used by balloon drivers to return the
5310 * number of pages in a range that are held by the balloon
5311 * driver to shrink memory. If all the pages are accounted for
5312 * by balloons, are free, or on the LRU, isolation can continue.
5313 * Later, for example, when memory hotplug notifier runs, these
5314 * pages reported as "can be isolated" should be isolated(freed)
5315 * by the balloon driver through the memory notifier chain.
5317 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5318 notifier_ret = notifier_to_errno(notifier_ret);
5319 if (notifier_ret || !arg.pages_found)
5320 goto out;
5322 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5323 if (!pfn_valid_within(pfn))
5324 continue;
5326 curr_page = pfn_to_page(iter);
5327 if (!page_count(curr_page) || PageLRU(curr_page))
5328 continue;
5330 immobile++;
5333 if (arg.pages_found == immobile)
5334 ret = 0;
5336 out:
5337 if (!ret) {
5338 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5339 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5342 spin_unlock_irqrestore(&zone->lock, flags);
5343 if (!ret)
5344 drain_all_pages();
5345 return ret;
5348 void unset_migratetype_isolate(struct page *page)
5350 struct zone *zone;
5351 unsigned long flags;
5352 zone = page_zone(page);
5353 spin_lock_irqsave(&zone->lock, flags);
5354 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5355 goto out;
5356 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5357 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5358 out:
5359 spin_unlock_irqrestore(&zone->lock, flags);
5362 #ifdef CONFIG_MEMORY_HOTREMOVE
5364 * All pages in the range must be isolated before calling this.
5366 void
5367 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5369 struct page *page;
5370 struct zone *zone;
5371 int order, i;
5372 unsigned long pfn;
5373 unsigned long flags;
5374 /* find the first valid pfn */
5375 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5376 if (pfn_valid(pfn))
5377 break;
5378 if (pfn == end_pfn)
5379 return;
5380 zone = page_zone(pfn_to_page(pfn));
5381 spin_lock_irqsave(&zone->lock, flags);
5382 pfn = start_pfn;
5383 while (pfn < end_pfn) {
5384 if (!pfn_valid(pfn)) {
5385 pfn++;
5386 continue;
5388 page = pfn_to_page(pfn);
5389 BUG_ON(page_count(page));
5390 BUG_ON(!PageBuddy(page));
5391 order = page_order(page);
5392 #ifdef CONFIG_DEBUG_VM
5393 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5394 pfn, 1 << order, end_pfn);
5395 #endif
5396 list_del(&page->lru);
5397 rmv_page_order(page);
5398 zone->free_area[order].nr_free--;
5399 __mod_zone_page_state(zone, NR_FREE_PAGES,
5400 - (1UL << order));
5401 for (i = 0; i < (1 << order); i++)
5402 SetPageReserved((page+i));
5403 pfn += (1 << order);
5405 spin_unlock_irqrestore(&zone->lock, flags);
5407 #endif
5409 #ifdef CONFIG_MEMORY_FAILURE
5410 bool is_free_buddy_page(struct page *page)
5412 struct zone *zone = page_zone(page);
5413 unsigned long pfn = page_to_pfn(page);
5414 unsigned long flags;
5415 int order;
5417 spin_lock_irqsave(&zone->lock, flags);
5418 for (order = 0; order < MAX_ORDER; order++) {
5419 struct page *page_head = page - (pfn & ((1 << order) - 1));
5421 if (PageBuddy(page_head) && page_order(page_head) >= order)
5422 break;
5424 spin_unlock_irqrestore(&zone->lock, flags);
5426 return order < MAX_ORDER;
5428 #endif
5430 static struct trace_print_flags pageflag_names[] = {
5431 {1UL << PG_locked, "locked" },
5432 {1UL << PG_error, "error" },
5433 {1UL << PG_referenced, "referenced" },
5434 {1UL << PG_uptodate, "uptodate" },
5435 {1UL << PG_dirty, "dirty" },
5436 {1UL << PG_lru, "lru" },
5437 {1UL << PG_active, "active" },
5438 {1UL << PG_slab, "slab" },
5439 {1UL << PG_owner_priv_1, "owner_priv_1" },
5440 {1UL << PG_arch_1, "arch_1" },
5441 {1UL << PG_reserved, "reserved" },
5442 {1UL << PG_private, "private" },
5443 {1UL << PG_private_2, "private_2" },
5444 {1UL << PG_writeback, "writeback" },
5445 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5446 {1UL << PG_head, "head" },
5447 {1UL << PG_tail, "tail" },
5448 #else
5449 {1UL << PG_compound, "compound" },
5450 #endif
5451 {1UL << PG_swapcache, "swapcache" },
5452 {1UL << PG_mappedtodisk, "mappedtodisk" },
5453 {1UL << PG_reclaim, "reclaim" },
5454 {1UL << PG_buddy, "buddy" },
5455 {1UL << PG_swapbacked, "swapbacked" },
5456 {1UL << PG_unevictable, "unevictable" },
5457 #ifdef CONFIG_MMU
5458 {1UL << PG_mlocked, "mlocked" },
5459 #endif
5460 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5461 {1UL << PG_uncached, "uncached" },
5462 #endif
5463 #ifdef CONFIG_MEMORY_FAILURE
5464 {1UL << PG_hwpoison, "hwpoison" },
5465 #endif
5466 {-1UL, NULL },
5469 static void dump_page_flags(unsigned long flags)
5471 const char *delim = "";
5472 unsigned long mask;
5473 int i;
5475 printk(KERN_ALERT "page flags: %#lx(", flags);
5477 /* remove zone id */
5478 flags &= (1UL << NR_PAGEFLAGS) - 1;
5480 for (i = 0; pageflag_names[i].name && flags; i++) {
5482 mask = pageflag_names[i].mask;
5483 if ((flags & mask) != mask)
5484 continue;
5486 flags &= ~mask;
5487 printk("%s%s", delim, pageflag_names[i].name);
5488 delim = "|";
5491 /* check for left over flags */
5492 if (flags)
5493 printk("%s%#lx", delim, flags);
5495 printk(")\n");
5498 void dump_page(struct page *page)
5500 printk(KERN_ALERT
5501 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5502 page, page_count(page), page_mapcount(page),
5503 page->mapping, page->index);
5504 dump_page_flags(page->flags);