4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak
)) sched_clock(void)
75 return (unsigned long long)jiffies
* (1000000000 / HZ
);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
143 static unsigned int static_prio_timeslice(int static_prio
)
145 if (static_prio
== NICE_TO_PRIO(19))
148 if (static_prio
< NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
151 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
154 static inline int rt_policy(int policy
)
156 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
161 static inline int task_has_rt_policy(struct task_struct
*p
)
163 return rt_policy(p
->policy
);
167 * This is the priority-queue data structure of the RT scheduling class:
169 struct rt_prio_array
{
170 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
171 struct list_head queue
[MAX_RT_PRIO
];
175 struct load_weight load
;
176 u64 load_update_start
, load_update_last
;
177 unsigned long delta_fair
, delta_exec
, delta_stat
;
180 /* CFS-related fields in a runqueue */
182 struct load_weight load
;
183 unsigned long nr_running
;
189 unsigned long wait_runtime_overruns
, wait_runtime_underruns
;
191 struct rb_root tasks_timeline
;
192 struct rb_node
*rb_leftmost
;
193 struct rb_node
*rb_load_balance_curr
;
194 #ifdef CONFIG_FAIR_GROUP_SCHED
195 /* 'curr' points to currently running entity on this cfs_rq.
196 * It is set to NULL otherwise (i.e when none are currently running).
198 struct sched_entity
*curr
;
199 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
201 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
202 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
203 * (like users, containers etc.)
205 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
206 * list is used during load balance.
208 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
212 /* Real-Time classes' related field in a runqueue: */
214 struct rt_prio_array active
;
215 int rt_load_balance_idx
;
216 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
220 * This is the main, per-CPU runqueue data structure.
222 * Locking rule: those places that want to lock multiple runqueues
223 * (such as the load balancing or the thread migration code), lock
224 * acquire operations must be ordered by ascending &runqueue.
227 spinlock_t lock
; /* runqueue lock */
230 * nr_running and cpu_load should be in the same cacheline because
231 * remote CPUs use both these fields when doing load calculation.
233 unsigned long nr_running
;
234 #define CPU_LOAD_IDX_MAX 5
235 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
236 unsigned char idle_at_tick
;
238 unsigned char in_nohz_recently
;
240 struct load_stat ls
; /* capture load from *all* tasks on this cpu */
241 unsigned long nr_load_updates
;
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
251 * This is part of a global counter where only the total sum
252 * over all CPUs matters. A task can increase this counter on
253 * one CPU and if it got migrated afterwards it may decrease
254 * it on another CPU. Always updated under the runqueue lock:
256 unsigned long nr_uninterruptible
;
258 struct task_struct
*curr
, *idle
;
259 unsigned long next_balance
;
260 struct mm_struct
*prev_mm
;
262 u64 clock
, prev_clock_raw
;
265 unsigned int clock_warps
, clock_overflows
;
267 unsigned int clock_deep_idle_events
;
273 struct sched_domain
*sd
;
275 /* For active balancing */
278 int cpu
; /* cpu of this runqueue */
280 struct task_struct
*migration_thread
;
281 struct list_head migration_queue
;
284 #ifdef CONFIG_SCHEDSTATS
286 struct sched_info rq_sched_info
;
288 /* sys_sched_yield() stats */
289 unsigned long yld_exp_empty
;
290 unsigned long yld_act_empty
;
291 unsigned long yld_both_empty
;
292 unsigned long yld_cnt
;
294 /* schedule() stats */
295 unsigned long sched_switch
;
296 unsigned long sched_cnt
;
297 unsigned long sched_goidle
;
299 /* try_to_wake_up() stats */
300 unsigned long ttwu_cnt
;
301 unsigned long ttwu_local
;
303 struct lock_class_key rq_lock_key
;
306 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
307 static DEFINE_MUTEX(sched_hotcpu_mutex
);
309 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
311 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
314 static inline int cpu_of(struct rq
*rq
)
324 * Update the per-runqueue clock, as finegrained as the platform can give
325 * us, but without assuming monotonicity, etc.:
327 static void __update_rq_clock(struct rq
*rq
)
329 u64 prev_raw
= rq
->prev_clock_raw
;
330 u64 now
= sched_clock();
331 s64 delta
= now
- prev_raw
;
332 u64 clock
= rq
->clock
;
334 #ifdef CONFIG_SCHED_DEBUG
335 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
338 * Protect against sched_clock() occasionally going backwards:
340 if (unlikely(delta
< 0)) {
345 * Catch too large forward jumps too:
347 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
348 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
349 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
352 rq
->clock_overflows
++;
354 if (unlikely(delta
> rq
->clock_max_delta
))
355 rq
->clock_max_delta
= delta
;
360 rq
->prev_clock_raw
= now
;
364 static void update_rq_clock(struct rq
*rq
)
366 if (likely(smp_processor_id() == cpu_of(rq
)))
367 __update_rq_clock(rq
);
371 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
372 * See detach_destroy_domains: synchronize_sched for details.
374 * The domain tree of any CPU may only be accessed from within
375 * preempt-disabled sections.
377 #define for_each_domain(cpu, __sd) \
378 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
380 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
381 #define this_rq() (&__get_cpu_var(runqueues))
382 #define task_rq(p) cpu_rq(task_cpu(p))
383 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
386 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
387 * clock constructed from sched_clock():
389 unsigned long long cpu_clock(int cpu
)
391 unsigned long long now
;
395 local_irq_save(flags
);
399 local_irq_restore(flags
);
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 /* Change a task's ->cfs_rq if it moves across CPUs */
406 static inline void set_task_cfs_rq(struct task_struct
*p
)
408 p
->se
.cfs_rq
= &task_rq(p
)->cfs
;
411 static inline void set_task_cfs_rq(struct task_struct
*p
)
416 #ifndef prepare_arch_switch
417 # define prepare_arch_switch(next) do { } while (0)
419 #ifndef finish_arch_switch
420 # define finish_arch_switch(prev) do { } while (0)
423 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
424 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
426 return rq
->curr
== p
;
429 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
433 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
435 #ifdef CONFIG_DEBUG_SPINLOCK
436 /* this is a valid case when another task releases the spinlock */
437 rq
->lock
.owner
= current
;
440 * If we are tracking spinlock dependencies then we have to
441 * fix up the runqueue lock - which gets 'carried over' from
444 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
446 spin_unlock_irq(&rq
->lock
);
449 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
450 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
455 return rq
->curr
== p
;
459 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
463 * We can optimise this out completely for !SMP, because the
464 * SMP rebalancing from interrupt is the only thing that cares
469 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
470 spin_unlock_irq(&rq
->lock
);
472 spin_unlock(&rq
->lock
);
476 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
480 * After ->oncpu is cleared, the task can be moved to a different CPU.
481 * We must ensure this doesn't happen until the switch is completely
487 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
491 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
494 * __task_rq_lock - lock the runqueue a given task resides on.
495 * Must be called interrupts disabled.
497 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
504 spin_lock(&rq
->lock
);
505 if (unlikely(rq
!= task_rq(p
))) {
506 spin_unlock(&rq
->lock
);
507 goto repeat_lock_task
;
513 * task_rq_lock - lock the runqueue a given task resides on and disable
514 * interrupts. Note the ordering: we can safely lookup the task_rq without
515 * explicitly disabling preemption.
517 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
523 local_irq_save(*flags
);
525 spin_lock(&rq
->lock
);
526 if (unlikely(rq
!= task_rq(p
))) {
527 spin_unlock_irqrestore(&rq
->lock
, *flags
);
528 goto repeat_lock_task
;
533 static inline void __task_rq_unlock(struct rq
*rq
)
536 spin_unlock(&rq
->lock
);
539 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
542 spin_unlock_irqrestore(&rq
->lock
, *flags
);
546 * this_rq_lock - lock this runqueue and disable interrupts.
548 static inline struct rq
*this_rq_lock(void)
555 spin_lock(&rq
->lock
);
561 * We are going deep-idle (irqs are disabled):
563 void sched_clock_idle_sleep_event(void)
565 struct rq
*rq
= cpu_rq(smp_processor_id());
567 spin_lock(&rq
->lock
);
568 __update_rq_clock(rq
);
569 spin_unlock(&rq
->lock
);
570 rq
->clock_deep_idle_events
++;
572 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
575 * We just idled delta nanoseconds (called with irqs disabled):
577 void sched_clock_idle_wakeup_event(u64 delta_ns
)
579 struct rq
*rq
= cpu_rq(smp_processor_id());
580 u64 now
= sched_clock();
582 rq
->idle_clock
+= delta_ns
;
584 * Override the previous timestamp and ignore all
585 * sched_clock() deltas that occured while we idled,
586 * and use the PM-provided delta_ns to advance the
589 spin_lock(&rq
->lock
);
590 rq
->prev_clock_raw
= now
;
591 rq
->clock
+= delta_ns
;
592 spin_unlock(&rq
->lock
);
594 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
597 * resched_task - mark a task 'to be rescheduled now'.
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
605 #ifndef tsk_is_polling
606 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
609 static void resched_task(struct task_struct
*p
)
613 assert_spin_locked(&task_rq(p
)->lock
);
615 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
618 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
621 if (cpu
== smp_processor_id())
624 /* NEED_RESCHED must be visible before we test polling */
626 if (!tsk_is_polling(p
))
627 smp_send_reschedule(cpu
);
630 static void resched_cpu(int cpu
)
632 struct rq
*rq
= cpu_rq(cpu
);
635 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
637 resched_task(cpu_curr(cpu
));
638 spin_unlock_irqrestore(&rq
->lock
, flags
);
641 static inline void resched_task(struct task_struct
*p
)
643 assert_spin_locked(&task_rq(p
)->lock
);
644 set_tsk_need_resched(p
);
648 static u64
div64_likely32(u64 divident
, unsigned long divisor
)
650 #if BITS_PER_LONG == 32
651 if (likely(divident
<= 0xffffffffULL
))
652 return (u32
)divident
/ divisor
;
653 do_div(divident
, divisor
);
657 return divident
/ divisor
;
661 #if BITS_PER_LONG == 32
662 # define WMULT_CONST (~0UL)
664 # define WMULT_CONST (1UL << 32)
667 #define WMULT_SHIFT 32
670 * Shift right and round:
672 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
675 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
676 struct load_weight
*lw
)
680 if (unlikely(!lw
->inv_weight
))
681 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
683 tmp
= (u64
)delta_exec
* weight
;
685 * Check whether we'd overflow the 64-bit multiplication:
687 if (unlikely(tmp
> WMULT_CONST
))
688 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
691 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
693 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
696 static inline unsigned long
697 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
699 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
702 static void update_load_add(struct load_weight
*lw
, unsigned long inc
)
708 static void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
715 * To aid in avoiding the subversion of "niceness" due to uneven distribution
716 * of tasks with abnormal "nice" values across CPUs the contribution that
717 * each task makes to its run queue's load is weighted according to its
718 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
719 * scaled version of the new time slice allocation that they receive on time
723 #define WEIGHT_IDLEPRIO 2
724 #define WMULT_IDLEPRIO (1 << 31)
727 * Nice levels are multiplicative, with a gentle 10% change for every
728 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
729 * nice 1, it will get ~10% less CPU time than another CPU-bound task
730 * that remained on nice 0.
732 * The "10% effect" is relative and cumulative: from _any_ nice level,
733 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
734 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
735 * If a task goes up by ~10% and another task goes down by ~10% then
736 * the relative distance between them is ~25%.)
738 static const int prio_to_weight
[40] = {
739 /* -20 */ 88761, 71755, 56483, 46273, 36291,
740 /* -15 */ 29154, 23254, 18705, 14949, 11916,
741 /* -10 */ 9548, 7620, 6100, 4904, 3906,
742 /* -5 */ 3121, 2501, 1991, 1586, 1277,
743 /* 0 */ 1024, 820, 655, 526, 423,
744 /* 5 */ 335, 272, 215, 172, 137,
745 /* 10 */ 110, 87, 70, 56, 45,
746 /* 15 */ 36, 29, 23, 18, 15,
750 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
752 * In cases where the weight does not change often, we can use the
753 * precalculated inverse to speed up arithmetics by turning divisions
754 * into multiplications:
756 static const u32 prio_to_wmult
[40] = {
757 /* -20 */ 48388, 59856, 76040, 92818, 118348,
758 /* -15 */ 147320, 184698, 229616, 287308, 360437,
759 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
760 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
761 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
762 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
763 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
764 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
767 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
770 * runqueue iterator, to support SMP load-balancing between different
771 * scheduling classes, without having to expose their internal data
772 * structures to the load-balancing proper:
776 struct task_struct
*(*start
)(void *);
777 struct task_struct
*(*next
)(void *);
780 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
781 unsigned long max_nr_move
, unsigned long max_load_move
,
782 struct sched_domain
*sd
, enum cpu_idle_type idle
,
783 int *all_pinned
, unsigned long *load_moved
,
784 int *this_best_prio
, struct rq_iterator
*iterator
);
786 #include "sched_stats.h"
787 #include "sched_rt.c"
788 #include "sched_fair.c"
789 #include "sched_idletask.c"
790 #ifdef CONFIG_SCHED_DEBUG
791 # include "sched_debug.c"
794 #define sched_class_highest (&rt_sched_class)
796 static void __update_curr_load(struct rq
*rq
, struct load_stat
*ls
)
798 if (rq
->curr
!= rq
->idle
&& ls
->load
.weight
) {
799 ls
->delta_exec
+= ls
->delta_stat
;
800 ls
->delta_fair
+= calc_delta_fair(ls
->delta_stat
, &ls
->load
);
806 * Update delta_exec, delta_fair fields for rq.
808 * delta_fair clock advances at a rate inversely proportional to
809 * total load (rq->ls.load.weight) on the runqueue, while
810 * delta_exec advances at the same rate as wall-clock (provided
813 * delta_exec / delta_fair is a measure of the (smoothened) load on this
814 * runqueue over any given interval. This (smoothened) load is used
815 * during load balance.
817 * This function is called /before/ updating rq->ls.load
818 * and when switching tasks.
820 static void update_curr_load(struct rq
*rq
)
822 struct load_stat
*ls
= &rq
->ls
;
825 start
= ls
->load_update_start
;
826 ls
->load_update_start
= rq
->clock
;
827 ls
->delta_stat
+= rq
->clock
- start
;
829 * Stagger updates to ls->delta_fair. Very frequent updates
832 if (ls
->delta_stat
>= sysctl_sched_stat_granularity
)
833 __update_curr_load(rq
, ls
);
836 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
838 update_curr_load(rq
);
839 update_load_add(&rq
->ls
.load
, p
->se
.load
.weight
);
842 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
844 update_curr_load(rq
);
845 update_load_sub(&rq
->ls
.load
, p
->se
.load
.weight
);
848 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
854 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
860 static void set_load_weight(struct task_struct
*p
)
862 p
->se
.wait_runtime
= 0;
864 if (task_has_rt_policy(p
)) {
865 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
866 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
871 * SCHED_IDLE tasks get minimal weight:
873 if (p
->policy
== SCHED_IDLE
) {
874 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
875 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
879 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
880 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
883 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
885 sched_info_queued(p
);
886 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
890 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
892 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
897 * __normal_prio - return the priority that is based on the static prio
899 static inline int __normal_prio(struct task_struct
*p
)
901 return p
->static_prio
;
905 * Calculate the expected normal priority: i.e. priority
906 * without taking RT-inheritance into account. Might be
907 * boosted by interactivity modifiers. Changes upon fork,
908 * setprio syscalls, and whenever the interactivity
909 * estimator recalculates.
911 static inline int normal_prio(struct task_struct
*p
)
915 if (task_has_rt_policy(p
))
916 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
918 prio
= __normal_prio(p
);
923 * Calculate the current priority, i.e. the priority
924 * taken into account by the scheduler. This value might
925 * be boosted by RT tasks, or might be boosted by
926 * interactivity modifiers. Will be RT if the task got
927 * RT-boosted. If not then it returns p->normal_prio.
929 static int effective_prio(struct task_struct
*p
)
931 p
->normal_prio
= normal_prio(p
);
933 * If we are RT tasks or we were boosted to RT priority,
934 * keep the priority unchanged. Otherwise, update priority
935 * to the normal priority:
937 if (!rt_prio(p
->prio
))
938 return p
->normal_prio
;
943 * activate_task - move a task to the runqueue.
945 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
947 if (p
->state
== TASK_UNINTERRUPTIBLE
)
948 rq
->nr_uninterruptible
--;
950 enqueue_task(rq
, p
, wakeup
);
951 inc_nr_running(p
, rq
);
955 * activate_idle_task - move idle task to the _front_ of runqueue.
957 static inline void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
961 if (p
->state
== TASK_UNINTERRUPTIBLE
)
962 rq
->nr_uninterruptible
--;
964 enqueue_task(rq
, p
, 0);
965 inc_nr_running(p
, rq
);
969 * deactivate_task - remove a task from the runqueue.
971 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
973 if (p
->state
== TASK_UNINTERRUPTIBLE
)
974 rq
->nr_uninterruptible
++;
976 dequeue_task(rq
, p
, sleep
);
977 dec_nr_running(p
, rq
);
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
984 inline int task_curr(const struct task_struct
*p
)
986 return cpu_curr(task_cpu(p
)) == p
;
989 /* Used instead of source_load when we know the type == 0 */
990 unsigned long weighted_cpuload(const int cpu
)
992 return cpu_rq(cpu
)->ls
.load
.weight
;
995 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
998 task_thread_info(p
)->cpu
= cpu
;
1005 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1007 int old_cpu
= task_cpu(p
);
1008 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1009 u64 clock_offset
, fair_clock_offset
;
1011 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1012 fair_clock_offset
= old_rq
->cfs
.fair_clock
- new_rq
->cfs
.fair_clock
;
1014 if (p
->se
.wait_start_fair
)
1015 p
->se
.wait_start_fair
-= fair_clock_offset
;
1016 if (p
->se
.sleep_start_fair
)
1017 p
->se
.sleep_start_fair
-= fair_clock_offset
;
1019 #ifdef CONFIG_SCHEDSTATS
1020 if (p
->se
.wait_start
)
1021 p
->se
.wait_start
-= clock_offset
;
1022 if (p
->se
.sleep_start
)
1023 p
->se
.sleep_start
-= clock_offset
;
1024 if (p
->se
.block_start
)
1025 p
->se
.block_start
-= clock_offset
;
1028 __set_task_cpu(p
, new_cpu
);
1031 struct migration_req
{
1032 struct list_head list
;
1034 struct task_struct
*task
;
1037 struct completion done
;
1041 * The task's runqueue lock must be held.
1042 * Returns true if you have to wait for migration thread.
1045 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1047 struct rq
*rq
= task_rq(p
);
1050 * If the task is not on a runqueue (and not running), then
1051 * it is sufficient to simply update the task's cpu field.
1053 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1054 set_task_cpu(p
, dest_cpu
);
1058 init_completion(&req
->done
);
1060 req
->dest_cpu
= dest_cpu
;
1061 list_add(&req
->list
, &rq
->migration_queue
);
1067 * wait_task_inactive - wait for a thread to unschedule.
1069 * The caller must ensure that the task *will* unschedule sometime soon,
1070 * else this function might spin for a *long* time. This function can't
1071 * be called with interrupts off, or it may introduce deadlock with
1072 * smp_call_function() if an IPI is sent by the same process we are
1073 * waiting to become inactive.
1075 void wait_task_inactive(struct task_struct
*p
)
1077 unsigned long flags
;
1083 * We do the initial early heuristics without holding
1084 * any task-queue locks at all. We'll only try to get
1085 * the runqueue lock when things look like they will
1091 * If the task is actively running on another CPU
1092 * still, just relax and busy-wait without holding
1095 * NOTE! Since we don't hold any locks, it's not
1096 * even sure that "rq" stays as the right runqueue!
1097 * But we don't care, since "task_running()" will
1098 * return false if the runqueue has changed and p
1099 * is actually now running somewhere else!
1101 while (task_running(rq
, p
))
1105 * Ok, time to look more closely! We need the rq
1106 * lock now, to be *sure*. If we're wrong, we'll
1107 * just go back and repeat.
1109 rq
= task_rq_lock(p
, &flags
);
1110 running
= task_running(rq
, p
);
1111 on_rq
= p
->se
.on_rq
;
1112 task_rq_unlock(rq
, &flags
);
1115 * Was it really running after all now that we
1116 * checked with the proper locks actually held?
1118 * Oops. Go back and try again..
1120 if (unlikely(running
)) {
1126 * It's not enough that it's not actively running,
1127 * it must be off the runqueue _entirely_, and not
1130 * So if it wa still runnable (but just not actively
1131 * running right now), it's preempted, and we should
1132 * yield - it could be a while.
1134 if (unlikely(on_rq
)) {
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1153 * NOTE: this function doesnt have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1159 void kick_process(struct task_struct
*p
)
1165 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1166 smp_send_reschedule(cpu
);
1171 * Return a low guess at the load of a migration-source cpu weighted
1172 * according to the scheduling class and "nice" value.
1174 * We want to under-estimate the load of migration sources, to
1175 * balance conservatively.
1177 static inline unsigned long source_load(int cpu
, int type
)
1179 struct rq
*rq
= cpu_rq(cpu
);
1180 unsigned long total
= weighted_cpuload(cpu
);
1185 return min(rq
->cpu_load
[type
-1], total
);
1189 * Return a high guess at the load of a migration-target cpu weighted
1190 * according to the scheduling class and "nice" value.
1192 static inline unsigned long target_load(int cpu
, int type
)
1194 struct rq
*rq
= cpu_rq(cpu
);
1195 unsigned long total
= weighted_cpuload(cpu
);
1200 return max(rq
->cpu_load
[type
-1], total
);
1204 * Return the average load per task on the cpu's run queue
1206 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1208 struct rq
*rq
= cpu_rq(cpu
);
1209 unsigned long total
= weighted_cpuload(cpu
);
1210 unsigned long n
= rq
->nr_running
;
1212 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1216 * find_idlest_group finds and returns the least busy CPU group within the
1219 static struct sched_group
*
1220 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1222 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1223 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1224 int load_idx
= sd
->forkexec_idx
;
1225 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1228 unsigned long load
, avg_load
;
1232 /* Skip over this group if it has no CPUs allowed */
1233 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1236 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1238 /* Tally up the load of all CPUs in the group */
1241 for_each_cpu_mask(i
, group
->cpumask
) {
1242 /* Bias balancing toward cpus of our domain */
1244 load
= source_load(i
, load_idx
);
1246 load
= target_load(i
, load_idx
);
1251 /* Adjust by relative CPU power of the group */
1252 avg_load
= sg_div_cpu_power(group
,
1253 avg_load
* SCHED_LOAD_SCALE
);
1256 this_load
= avg_load
;
1258 } else if (avg_load
< min_load
) {
1259 min_load
= avg_load
;
1263 group
= group
->next
;
1264 } while (group
!= sd
->groups
);
1266 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1272 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1275 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1278 unsigned long load
, min_load
= ULONG_MAX
;
1282 /* Traverse only the allowed CPUs */
1283 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1285 for_each_cpu_mask(i
, tmp
) {
1286 load
= weighted_cpuload(i
);
1288 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1298 * sched_balance_self: balance the current task (running on cpu) in domains
1299 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1302 * Balance, ie. select the least loaded group.
1304 * Returns the target CPU number, or the same CPU if no balancing is needed.
1306 * preempt must be disabled.
1308 static int sched_balance_self(int cpu
, int flag
)
1310 struct task_struct
*t
= current
;
1311 struct sched_domain
*tmp
, *sd
= NULL
;
1313 for_each_domain(cpu
, tmp
) {
1315 * If power savings logic is enabled for a domain, stop there.
1317 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1319 if (tmp
->flags
& flag
)
1325 struct sched_group
*group
;
1326 int new_cpu
, weight
;
1328 if (!(sd
->flags
& flag
)) {
1334 group
= find_idlest_group(sd
, t
, cpu
);
1340 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1341 if (new_cpu
== -1 || new_cpu
== cpu
) {
1342 /* Now try balancing at a lower domain level of cpu */
1347 /* Now try balancing at a lower domain level of new_cpu */
1350 weight
= cpus_weight(span
);
1351 for_each_domain(cpu
, tmp
) {
1352 if (weight
<= cpus_weight(tmp
->span
))
1354 if (tmp
->flags
& flag
)
1357 /* while loop will break here if sd == NULL */
1363 #endif /* CONFIG_SMP */
1366 * wake_idle() will wake a task on an idle cpu if task->cpu is
1367 * not idle and an idle cpu is available. The span of cpus to
1368 * search starts with cpus closest then further out as needed,
1369 * so we always favor a closer, idle cpu.
1371 * Returns the CPU we should wake onto.
1373 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1374 static int wake_idle(int cpu
, struct task_struct
*p
)
1377 struct sched_domain
*sd
;
1381 * If it is idle, then it is the best cpu to run this task.
1383 * This cpu is also the best, if it has more than one task already.
1384 * Siblings must be also busy(in most cases) as they didn't already
1385 * pickup the extra load from this cpu and hence we need not check
1386 * sibling runqueue info. This will avoid the checks and cache miss
1387 * penalities associated with that.
1389 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1392 for_each_domain(cpu
, sd
) {
1393 if (sd
->flags
& SD_WAKE_IDLE
) {
1394 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1395 for_each_cpu_mask(i
, tmp
) {
1406 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1413 * try_to_wake_up - wake up a thread
1414 * @p: the to-be-woken-up thread
1415 * @state: the mask of task states that can be woken
1416 * @sync: do a synchronous wakeup?
1418 * Put it on the run-queue if it's not already there. The "current"
1419 * thread is always on the run-queue (except when the actual
1420 * re-schedule is in progress), and as such you're allowed to do
1421 * the simpler "current->state = TASK_RUNNING" to mark yourself
1422 * runnable without the overhead of this.
1424 * returns failure only if the task is already active.
1426 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1428 int cpu
, this_cpu
, success
= 0;
1429 unsigned long flags
;
1433 struct sched_domain
*sd
, *this_sd
= NULL
;
1434 unsigned long load
, this_load
;
1438 rq
= task_rq_lock(p
, &flags
);
1439 old_state
= p
->state
;
1440 if (!(old_state
& state
))
1447 this_cpu
= smp_processor_id();
1450 if (unlikely(task_running(rq
, p
)))
1455 schedstat_inc(rq
, ttwu_cnt
);
1456 if (cpu
== this_cpu
) {
1457 schedstat_inc(rq
, ttwu_local
);
1461 for_each_domain(this_cpu
, sd
) {
1462 if (cpu_isset(cpu
, sd
->span
)) {
1463 schedstat_inc(sd
, ttwu_wake_remote
);
1469 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1473 * Check for affine wakeup and passive balancing possibilities.
1476 int idx
= this_sd
->wake_idx
;
1477 unsigned int imbalance
;
1479 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1481 load
= source_load(cpu
, idx
);
1482 this_load
= target_load(this_cpu
, idx
);
1484 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1486 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1487 unsigned long tl
= this_load
;
1488 unsigned long tl_per_task
;
1490 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1493 * If sync wakeup then subtract the (maximum possible)
1494 * effect of the currently running task from the load
1495 * of the current CPU:
1498 tl
-= current
->se
.load
.weight
;
1501 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1502 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1504 * This domain has SD_WAKE_AFFINE and
1505 * p is cache cold in this domain, and
1506 * there is no bad imbalance.
1508 schedstat_inc(this_sd
, ttwu_move_affine
);
1514 * Start passive balancing when half the imbalance_pct
1517 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1518 if (imbalance
*this_load
<= 100*load
) {
1519 schedstat_inc(this_sd
, ttwu_move_balance
);
1525 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1527 new_cpu
= wake_idle(new_cpu
, p
);
1528 if (new_cpu
!= cpu
) {
1529 set_task_cpu(p
, new_cpu
);
1530 task_rq_unlock(rq
, &flags
);
1531 /* might preempt at this point */
1532 rq
= task_rq_lock(p
, &flags
);
1533 old_state
= p
->state
;
1534 if (!(old_state
& state
))
1539 this_cpu
= smp_processor_id();
1544 #endif /* CONFIG_SMP */
1545 update_rq_clock(rq
);
1546 activate_task(rq
, p
, 1);
1548 * Sync wakeups (i.e. those types of wakeups where the waker
1549 * has indicated that it will leave the CPU in short order)
1550 * don't trigger a preemption, if the woken up task will run on
1551 * this cpu. (in this case the 'I will reschedule' promise of
1552 * the waker guarantees that the freshly woken up task is going
1553 * to be considered on this CPU.)
1555 if (!sync
|| cpu
!= this_cpu
)
1556 check_preempt_curr(rq
, p
);
1560 p
->state
= TASK_RUNNING
;
1562 task_rq_unlock(rq
, &flags
);
1567 int fastcall
wake_up_process(struct task_struct
*p
)
1569 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1570 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1572 EXPORT_SYMBOL(wake_up_process
);
1574 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1576 return try_to_wake_up(p
, state
, 0);
1580 * Perform scheduler related setup for a newly forked process p.
1581 * p is forked by current.
1583 * __sched_fork() is basic setup used by init_idle() too:
1585 static void __sched_fork(struct task_struct
*p
)
1587 p
->se
.wait_start_fair
= 0;
1588 p
->se
.exec_start
= 0;
1589 p
->se
.sum_exec_runtime
= 0;
1590 p
->se
.prev_sum_exec_runtime
= 0;
1591 p
->se
.delta_exec
= 0;
1592 p
->se
.delta_fair_run
= 0;
1593 p
->se
.delta_fair_sleep
= 0;
1594 p
->se
.wait_runtime
= 0;
1595 p
->se
.sleep_start_fair
= 0;
1597 #ifdef CONFIG_SCHEDSTATS
1598 p
->se
.wait_start
= 0;
1599 p
->se
.sum_wait_runtime
= 0;
1600 p
->se
.sum_sleep_runtime
= 0;
1601 p
->se
.sleep_start
= 0;
1602 p
->se
.block_start
= 0;
1603 p
->se
.sleep_max
= 0;
1604 p
->se
.block_max
= 0;
1607 p
->se
.wait_runtime_overruns
= 0;
1608 p
->se
.wait_runtime_underruns
= 0;
1611 INIT_LIST_HEAD(&p
->run_list
);
1614 #ifdef CONFIG_PREEMPT_NOTIFIERS
1615 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1619 * We mark the process as running here, but have not actually
1620 * inserted it onto the runqueue yet. This guarantees that
1621 * nobody will actually run it, and a signal or other external
1622 * event cannot wake it up and insert it on the runqueue either.
1624 p
->state
= TASK_RUNNING
;
1628 * fork()/clone()-time setup:
1630 void sched_fork(struct task_struct
*p
, int clone_flags
)
1632 int cpu
= get_cpu();
1637 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1639 __set_task_cpu(p
, cpu
);
1642 * Make sure we do not leak PI boosting priority to the child:
1644 p
->prio
= current
->normal_prio
;
1646 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1647 if (likely(sched_info_on()))
1648 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1650 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1653 #ifdef CONFIG_PREEMPT
1654 /* Want to start with kernel preemption disabled. */
1655 task_thread_info(p
)->preempt_count
= 1;
1661 * After fork, child runs first. (default) If set to 0 then
1662 * parent will (try to) run first.
1664 unsigned int __read_mostly sysctl_sched_child_runs_first
= 1;
1667 * wake_up_new_task - wake up a newly created task for the first time.
1669 * This function will do some initial scheduler statistics housekeeping
1670 * that must be done for every newly created context, then puts the task
1671 * on the runqueue and wakes it.
1673 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1675 unsigned long flags
;
1679 rq
= task_rq_lock(p
, &flags
);
1680 BUG_ON(p
->state
!= TASK_RUNNING
);
1681 this_cpu
= smp_processor_id(); /* parent's CPU */
1682 update_rq_clock(rq
);
1684 p
->prio
= effective_prio(p
);
1686 if (rt_prio(p
->prio
))
1687 p
->sched_class
= &rt_sched_class
;
1689 p
->sched_class
= &fair_sched_class
;
1691 if (!p
->sched_class
->task_new
|| !sysctl_sched_child_runs_first
||
1692 (clone_flags
& CLONE_VM
) || task_cpu(p
) != this_cpu
||
1693 !current
->se
.on_rq
) {
1695 activate_task(rq
, p
, 0);
1698 * Let the scheduling class do new task startup
1699 * management (if any):
1701 p
->sched_class
->task_new(rq
, p
);
1702 inc_nr_running(p
, rq
);
1704 check_preempt_curr(rq
, p
);
1705 task_rq_unlock(rq
, &flags
);
1708 #ifdef CONFIG_PREEMPT_NOTIFIERS
1711 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1712 * @notifier: notifier struct to register
1714 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1716 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1718 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1721 * preempt_notifier_unregister - no longer interested in preemption notifications
1722 * @notifier: notifier struct to unregister
1724 * This is safe to call from within a preemption notifier.
1726 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1728 hlist_del(¬ifier
->link
);
1730 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1732 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1734 struct preempt_notifier
*notifier
;
1735 struct hlist_node
*node
;
1737 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1738 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1742 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1743 struct task_struct
*next
)
1745 struct preempt_notifier
*notifier
;
1746 struct hlist_node
*node
;
1748 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1749 notifier
->ops
->sched_out(notifier
, next
);
1754 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1759 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1760 struct task_struct
*next
)
1767 * prepare_task_switch - prepare to switch tasks
1768 * @rq: the runqueue preparing to switch
1769 * @prev: the current task that is being switched out
1770 * @next: the task we are going to switch to.
1772 * This is called with the rq lock held and interrupts off. It must
1773 * be paired with a subsequent finish_task_switch after the context
1776 * prepare_task_switch sets up locking and calls architecture specific
1780 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1781 struct task_struct
*next
)
1783 fire_sched_out_preempt_notifiers(prev
, next
);
1784 prepare_lock_switch(rq
, next
);
1785 prepare_arch_switch(next
);
1789 * finish_task_switch - clean up after a task-switch
1790 * @rq: runqueue associated with task-switch
1791 * @prev: the thread we just switched away from.
1793 * finish_task_switch must be called after the context switch, paired
1794 * with a prepare_task_switch call before the context switch.
1795 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1796 * and do any other architecture-specific cleanup actions.
1798 * Note that we may have delayed dropping an mm in context_switch(). If
1799 * so, we finish that here outside of the runqueue lock. (Doing it
1800 * with the lock held can cause deadlocks; see schedule() for
1803 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1804 __releases(rq
->lock
)
1806 struct mm_struct
*mm
= rq
->prev_mm
;
1812 * A task struct has one reference for the use as "current".
1813 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1814 * schedule one last time. The schedule call will never return, and
1815 * the scheduled task must drop that reference.
1816 * The test for TASK_DEAD must occur while the runqueue locks are
1817 * still held, otherwise prev could be scheduled on another cpu, die
1818 * there before we look at prev->state, and then the reference would
1820 * Manfred Spraul <manfred@colorfullife.com>
1822 prev_state
= prev
->state
;
1823 finish_arch_switch(prev
);
1824 finish_lock_switch(rq
, prev
);
1825 fire_sched_in_preempt_notifiers(current
);
1828 if (unlikely(prev_state
== TASK_DEAD
)) {
1830 * Remove function-return probe instances associated with this
1831 * task and put them back on the free list.
1833 kprobe_flush_task(prev
);
1834 put_task_struct(prev
);
1839 * schedule_tail - first thing a freshly forked thread must call.
1840 * @prev: the thread we just switched away from.
1842 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1843 __releases(rq
->lock
)
1845 struct rq
*rq
= this_rq();
1847 finish_task_switch(rq
, prev
);
1848 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1849 /* In this case, finish_task_switch does not reenable preemption */
1852 if (current
->set_child_tid
)
1853 put_user(current
->pid
, current
->set_child_tid
);
1857 * context_switch - switch to the new MM and the new
1858 * thread's register state.
1861 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1862 struct task_struct
*next
)
1864 struct mm_struct
*mm
, *oldmm
;
1866 prepare_task_switch(rq
, prev
, next
);
1868 oldmm
= prev
->active_mm
;
1870 * For paravirt, this is coupled with an exit in switch_to to
1871 * combine the page table reload and the switch backend into
1874 arch_enter_lazy_cpu_mode();
1876 if (unlikely(!mm
)) {
1877 next
->active_mm
= oldmm
;
1878 atomic_inc(&oldmm
->mm_count
);
1879 enter_lazy_tlb(oldmm
, next
);
1881 switch_mm(oldmm
, mm
, next
);
1883 if (unlikely(!prev
->mm
)) {
1884 prev
->active_mm
= NULL
;
1885 rq
->prev_mm
= oldmm
;
1888 * Since the runqueue lock will be released by the next
1889 * task (which is an invalid locking op but in the case
1890 * of the scheduler it's an obvious special-case), so we
1891 * do an early lockdep release here:
1893 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1894 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1897 /* Here we just switch the register state and the stack. */
1898 switch_to(prev
, next
, prev
);
1902 * this_rq must be evaluated again because prev may have moved
1903 * CPUs since it called schedule(), thus the 'rq' on its stack
1904 * frame will be invalid.
1906 finish_task_switch(this_rq(), prev
);
1910 * nr_running, nr_uninterruptible and nr_context_switches:
1912 * externally visible scheduler statistics: current number of runnable
1913 * threads, current number of uninterruptible-sleeping threads, total
1914 * number of context switches performed since bootup.
1916 unsigned long nr_running(void)
1918 unsigned long i
, sum
= 0;
1920 for_each_online_cpu(i
)
1921 sum
+= cpu_rq(i
)->nr_running
;
1926 unsigned long nr_uninterruptible(void)
1928 unsigned long i
, sum
= 0;
1930 for_each_possible_cpu(i
)
1931 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1934 * Since we read the counters lockless, it might be slightly
1935 * inaccurate. Do not allow it to go below zero though:
1937 if (unlikely((long)sum
< 0))
1943 unsigned long long nr_context_switches(void)
1946 unsigned long long sum
= 0;
1948 for_each_possible_cpu(i
)
1949 sum
+= cpu_rq(i
)->nr_switches
;
1954 unsigned long nr_iowait(void)
1956 unsigned long i
, sum
= 0;
1958 for_each_possible_cpu(i
)
1959 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1964 unsigned long nr_active(void)
1966 unsigned long i
, running
= 0, uninterruptible
= 0;
1968 for_each_online_cpu(i
) {
1969 running
+= cpu_rq(i
)->nr_running
;
1970 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1973 if (unlikely((long)uninterruptible
< 0))
1974 uninterruptible
= 0;
1976 return running
+ uninterruptible
;
1980 * Update rq->cpu_load[] statistics. This function is usually called every
1981 * scheduler tick (TICK_NSEC).
1983 static void update_cpu_load(struct rq
*this_rq
)
1985 u64 fair_delta64
, exec_delta64
, idle_delta64
, sample_interval64
, tmp64
;
1986 unsigned long total_load
= this_rq
->ls
.load
.weight
;
1987 unsigned long this_load
= total_load
;
1988 struct load_stat
*ls
= &this_rq
->ls
;
1991 this_rq
->nr_load_updates
++;
1992 if (unlikely(!(sysctl_sched_features
& SCHED_FEAT_PRECISE_CPU_LOAD
)))
1995 /* Update delta_fair/delta_exec fields first */
1996 update_curr_load(this_rq
);
1998 fair_delta64
= ls
->delta_fair
+ 1;
2001 exec_delta64
= ls
->delta_exec
+ 1;
2004 sample_interval64
= this_rq
->clock
- ls
->load_update_last
;
2005 ls
->load_update_last
= this_rq
->clock
;
2007 if ((s64
)sample_interval64
< (s64
)TICK_NSEC
)
2008 sample_interval64
= TICK_NSEC
;
2010 if (exec_delta64
> sample_interval64
)
2011 exec_delta64
= sample_interval64
;
2013 idle_delta64
= sample_interval64
- exec_delta64
;
2015 tmp64
= div64_64(SCHED_LOAD_SCALE
* exec_delta64
, fair_delta64
);
2016 tmp64
= div64_64(tmp64
* exec_delta64
, sample_interval64
);
2018 this_load
= (unsigned long)tmp64
;
2022 /* Update our load: */
2023 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2024 unsigned long old_load
, new_load
;
2026 /* scale is effectively 1 << i now, and >> i divides by scale */
2028 old_load
= this_rq
->cpu_load
[i
];
2029 new_load
= this_load
;
2031 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2038 * double_rq_lock - safely lock two runqueues
2040 * Note this does not disable interrupts like task_rq_lock,
2041 * you need to do so manually before calling.
2043 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2044 __acquires(rq1
->lock
)
2045 __acquires(rq2
->lock
)
2047 BUG_ON(!irqs_disabled());
2049 spin_lock(&rq1
->lock
);
2050 __acquire(rq2
->lock
); /* Fake it out ;) */
2053 spin_lock(&rq1
->lock
);
2054 spin_lock(&rq2
->lock
);
2056 spin_lock(&rq2
->lock
);
2057 spin_lock(&rq1
->lock
);
2060 update_rq_clock(rq1
);
2061 update_rq_clock(rq2
);
2065 * double_rq_unlock - safely unlock two runqueues
2067 * Note this does not restore interrupts like task_rq_unlock,
2068 * you need to do so manually after calling.
2070 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2071 __releases(rq1
->lock
)
2072 __releases(rq2
->lock
)
2074 spin_unlock(&rq1
->lock
);
2076 spin_unlock(&rq2
->lock
);
2078 __release(rq2
->lock
);
2082 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2084 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2085 __releases(this_rq
->lock
)
2086 __acquires(busiest
->lock
)
2087 __acquires(this_rq
->lock
)
2089 if (unlikely(!irqs_disabled())) {
2090 /* printk() doesn't work good under rq->lock */
2091 spin_unlock(&this_rq
->lock
);
2094 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2095 if (busiest
< this_rq
) {
2096 spin_unlock(&this_rq
->lock
);
2097 spin_lock(&busiest
->lock
);
2098 spin_lock(&this_rq
->lock
);
2100 spin_lock(&busiest
->lock
);
2105 * If dest_cpu is allowed for this process, migrate the task to it.
2106 * This is accomplished by forcing the cpu_allowed mask to only
2107 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2108 * the cpu_allowed mask is restored.
2110 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2112 struct migration_req req
;
2113 unsigned long flags
;
2116 rq
= task_rq_lock(p
, &flags
);
2117 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2118 || unlikely(cpu_is_offline(dest_cpu
)))
2121 /* force the process onto the specified CPU */
2122 if (migrate_task(p
, dest_cpu
, &req
)) {
2123 /* Need to wait for migration thread (might exit: take ref). */
2124 struct task_struct
*mt
= rq
->migration_thread
;
2126 get_task_struct(mt
);
2127 task_rq_unlock(rq
, &flags
);
2128 wake_up_process(mt
);
2129 put_task_struct(mt
);
2130 wait_for_completion(&req
.done
);
2135 task_rq_unlock(rq
, &flags
);
2139 * sched_exec - execve() is a valuable balancing opportunity, because at
2140 * this point the task has the smallest effective memory and cache footprint.
2142 void sched_exec(void)
2144 int new_cpu
, this_cpu
= get_cpu();
2145 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2147 if (new_cpu
!= this_cpu
)
2148 sched_migrate_task(current
, new_cpu
);
2152 * pull_task - move a task from a remote runqueue to the local runqueue.
2153 * Both runqueues must be locked.
2155 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2156 struct rq
*this_rq
, int this_cpu
)
2158 deactivate_task(src_rq
, p
, 0);
2159 set_task_cpu(p
, this_cpu
);
2160 activate_task(this_rq
, p
, 0);
2162 * Note that idle threads have a prio of MAX_PRIO, for this test
2163 * to be always true for them.
2165 check_preempt_curr(this_rq
, p
);
2169 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2172 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2173 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2177 * We do not migrate tasks that are:
2178 * 1) running (obviously), or
2179 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2180 * 3) are cache-hot on their current CPU.
2182 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2186 if (task_running(rq
, p
))
2192 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2193 unsigned long max_nr_move
, unsigned long max_load_move
,
2194 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2195 int *all_pinned
, unsigned long *load_moved
,
2196 int *this_best_prio
, struct rq_iterator
*iterator
)
2198 int pulled
= 0, pinned
= 0, skip_for_load
;
2199 struct task_struct
*p
;
2200 long rem_load_move
= max_load_move
;
2202 if (max_nr_move
== 0 || max_load_move
== 0)
2208 * Start the load-balancing iterator:
2210 p
= iterator
->start(iterator
->arg
);
2215 * To help distribute high priority tasks accross CPUs we don't
2216 * skip a task if it will be the highest priority task (i.e. smallest
2217 * prio value) on its new queue regardless of its load weight
2219 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2220 SCHED_LOAD_SCALE_FUZZ
;
2221 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2222 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2223 p
= iterator
->next(iterator
->arg
);
2227 pull_task(busiest
, p
, this_rq
, this_cpu
);
2229 rem_load_move
-= p
->se
.load
.weight
;
2232 * We only want to steal up to the prescribed number of tasks
2233 * and the prescribed amount of weighted load.
2235 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2236 if (p
->prio
< *this_best_prio
)
2237 *this_best_prio
= p
->prio
;
2238 p
= iterator
->next(iterator
->arg
);
2243 * Right now, this is the only place pull_task() is called,
2244 * so we can safely collect pull_task() stats here rather than
2245 * inside pull_task().
2247 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2250 *all_pinned
= pinned
;
2251 *load_moved
= max_load_move
- rem_load_move
;
2256 * move_tasks tries to move up to max_load_move weighted load from busiest to
2257 * this_rq, as part of a balancing operation within domain "sd".
2258 * Returns 1 if successful and 0 otherwise.
2260 * Called with both runqueues locked.
2262 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2263 unsigned long max_load_move
,
2264 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2267 struct sched_class
*class = sched_class_highest
;
2268 unsigned long total_load_moved
= 0;
2269 int this_best_prio
= this_rq
->curr
->prio
;
2273 class->load_balance(this_rq
, this_cpu
, busiest
,
2274 ULONG_MAX
, max_load_move
- total_load_moved
,
2275 sd
, idle
, all_pinned
, &this_best_prio
);
2276 class = class->next
;
2277 } while (class && max_load_move
> total_load_moved
);
2279 return total_load_moved
> 0;
2283 * move_one_task tries to move exactly one task from busiest to this_rq, as
2284 * part of active balancing operations within "domain".
2285 * Returns 1 if successful and 0 otherwise.
2287 * Called with both runqueues locked.
2289 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2290 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2292 struct sched_class
*class;
2293 int this_best_prio
= MAX_PRIO
;
2295 for (class = sched_class_highest
; class; class = class->next
)
2296 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2297 1, ULONG_MAX
, sd
, idle
, NULL
,
2305 * find_busiest_group finds and returns the busiest CPU group within the
2306 * domain. It calculates and returns the amount of weighted load which
2307 * should be moved to restore balance via the imbalance parameter.
2309 static struct sched_group
*
2310 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2311 unsigned long *imbalance
, enum cpu_idle_type idle
,
2312 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2314 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2315 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2316 unsigned long max_pull
;
2317 unsigned long busiest_load_per_task
, busiest_nr_running
;
2318 unsigned long this_load_per_task
, this_nr_running
;
2320 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2321 int power_savings_balance
= 1;
2322 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2323 unsigned long min_nr_running
= ULONG_MAX
;
2324 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2327 max_load
= this_load
= total_load
= total_pwr
= 0;
2328 busiest_load_per_task
= busiest_nr_running
= 0;
2329 this_load_per_task
= this_nr_running
= 0;
2330 if (idle
== CPU_NOT_IDLE
)
2331 load_idx
= sd
->busy_idx
;
2332 else if (idle
== CPU_NEWLY_IDLE
)
2333 load_idx
= sd
->newidle_idx
;
2335 load_idx
= sd
->idle_idx
;
2338 unsigned long load
, group_capacity
;
2341 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2342 unsigned long sum_nr_running
, sum_weighted_load
;
2344 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2347 balance_cpu
= first_cpu(group
->cpumask
);
2349 /* Tally up the load of all CPUs in the group */
2350 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2352 for_each_cpu_mask(i
, group
->cpumask
) {
2355 if (!cpu_isset(i
, *cpus
))
2360 if (*sd_idle
&& rq
->nr_running
)
2363 /* Bias balancing toward cpus of our domain */
2365 if (idle_cpu(i
) && !first_idle_cpu
) {
2370 load
= target_load(i
, load_idx
);
2372 load
= source_load(i
, load_idx
);
2375 sum_nr_running
+= rq
->nr_running
;
2376 sum_weighted_load
+= weighted_cpuload(i
);
2380 * First idle cpu or the first cpu(busiest) in this sched group
2381 * is eligible for doing load balancing at this and above
2382 * domains. In the newly idle case, we will allow all the cpu's
2383 * to do the newly idle load balance.
2385 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2386 balance_cpu
!= this_cpu
&& balance
) {
2391 total_load
+= avg_load
;
2392 total_pwr
+= group
->__cpu_power
;
2394 /* Adjust by relative CPU power of the group */
2395 avg_load
= sg_div_cpu_power(group
,
2396 avg_load
* SCHED_LOAD_SCALE
);
2398 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2401 this_load
= avg_load
;
2403 this_nr_running
= sum_nr_running
;
2404 this_load_per_task
= sum_weighted_load
;
2405 } else if (avg_load
> max_load
&&
2406 sum_nr_running
> group_capacity
) {
2407 max_load
= avg_load
;
2409 busiest_nr_running
= sum_nr_running
;
2410 busiest_load_per_task
= sum_weighted_load
;
2413 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2415 * Busy processors will not participate in power savings
2418 if (idle
== CPU_NOT_IDLE
||
2419 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2423 * If the local group is idle or completely loaded
2424 * no need to do power savings balance at this domain
2426 if (local_group
&& (this_nr_running
>= group_capacity
||
2428 power_savings_balance
= 0;
2431 * If a group is already running at full capacity or idle,
2432 * don't include that group in power savings calculations
2434 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2439 * Calculate the group which has the least non-idle load.
2440 * This is the group from where we need to pick up the load
2443 if ((sum_nr_running
< min_nr_running
) ||
2444 (sum_nr_running
== min_nr_running
&&
2445 first_cpu(group
->cpumask
) <
2446 first_cpu(group_min
->cpumask
))) {
2448 min_nr_running
= sum_nr_running
;
2449 min_load_per_task
= sum_weighted_load
/
2454 * Calculate the group which is almost near its
2455 * capacity but still has some space to pick up some load
2456 * from other group and save more power
2458 if (sum_nr_running
<= group_capacity
- 1) {
2459 if (sum_nr_running
> leader_nr_running
||
2460 (sum_nr_running
== leader_nr_running
&&
2461 first_cpu(group
->cpumask
) >
2462 first_cpu(group_leader
->cpumask
))) {
2463 group_leader
= group
;
2464 leader_nr_running
= sum_nr_running
;
2469 group
= group
->next
;
2470 } while (group
!= sd
->groups
);
2472 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2475 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2477 if (this_load
>= avg_load
||
2478 100*max_load
<= sd
->imbalance_pct
*this_load
)
2481 busiest_load_per_task
/= busiest_nr_running
;
2483 * We're trying to get all the cpus to the average_load, so we don't
2484 * want to push ourselves above the average load, nor do we wish to
2485 * reduce the max loaded cpu below the average load, as either of these
2486 * actions would just result in more rebalancing later, and ping-pong
2487 * tasks around. Thus we look for the minimum possible imbalance.
2488 * Negative imbalances (*we* are more loaded than anyone else) will
2489 * be counted as no imbalance for these purposes -- we can't fix that
2490 * by pulling tasks to us. Be careful of negative numbers as they'll
2491 * appear as very large values with unsigned longs.
2493 if (max_load
<= busiest_load_per_task
)
2497 * In the presence of smp nice balancing, certain scenarios can have
2498 * max load less than avg load(as we skip the groups at or below
2499 * its cpu_power, while calculating max_load..)
2501 if (max_load
< avg_load
) {
2503 goto small_imbalance
;
2506 /* Don't want to pull so many tasks that a group would go idle */
2507 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2509 /* How much load to actually move to equalise the imbalance */
2510 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2511 (avg_load
- this_load
) * this->__cpu_power
)
2515 * if *imbalance is less than the average load per runnable task
2516 * there is no gaurantee that any tasks will be moved so we'll have
2517 * a think about bumping its value to force at least one task to be
2520 if (*imbalance
< busiest_load_per_task
) {
2521 unsigned long tmp
, pwr_now
, pwr_move
;
2525 pwr_move
= pwr_now
= 0;
2527 if (this_nr_running
) {
2528 this_load_per_task
/= this_nr_running
;
2529 if (busiest_load_per_task
> this_load_per_task
)
2532 this_load_per_task
= SCHED_LOAD_SCALE
;
2534 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2535 busiest_load_per_task
* imbn
) {
2536 *imbalance
= busiest_load_per_task
;
2541 * OK, we don't have enough imbalance to justify moving tasks,
2542 * however we may be able to increase total CPU power used by
2546 pwr_now
+= busiest
->__cpu_power
*
2547 min(busiest_load_per_task
, max_load
);
2548 pwr_now
+= this->__cpu_power
*
2549 min(this_load_per_task
, this_load
);
2550 pwr_now
/= SCHED_LOAD_SCALE
;
2552 /* Amount of load we'd subtract */
2553 tmp
= sg_div_cpu_power(busiest
,
2554 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2556 pwr_move
+= busiest
->__cpu_power
*
2557 min(busiest_load_per_task
, max_load
- tmp
);
2559 /* Amount of load we'd add */
2560 if (max_load
* busiest
->__cpu_power
<
2561 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2562 tmp
= sg_div_cpu_power(this,
2563 max_load
* busiest
->__cpu_power
);
2565 tmp
= sg_div_cpu_power(this,
2566 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2567 pwr_move
+= this->__cpu_power
*
2568 min(this_load_per_task
, this_load
+ tmp
);
2569 pwr_move
/= SCHED_LOAD_SCALE
;
2571 /* Move if we gain throughput */
2572 if (pwr_move
> pwr_now
)
2573 *imbalance
= busiest_load_per_task
;
2579 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2580 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2583 if (this == group_leader
&& group_leader
!= group_min
) {
2584 *imbalance
= min_load_per_task
;
2594 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2597 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2598 unsigned long imbalance
, cpumask_t
*cpus
)
2600 struct rq
*busiest
= NULL
, *rq
;
2601 unsigned long max_load
= 0;
2604 for_each_cpu_mask(i
, group
->cpumask
) {
2607 if (!cpu_isset(i
, *cpus
))
2611 wl
= weighted_cpuload(i
);
2613 if (rq
->nr_running
== 1 && wl
> imbalance
)
2616 if (wl
> max_load
) {
2626 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2627 * so long as it is large enough.
2629 #define MAX_PINNED_INTERVAL 512
2632 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2633 * tasks if there is an imbalance.
2635 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2636 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2639 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2640 struct sched_group
*group
;
2641 unsigned long imbalance
;
2643 cpumask_t cpus
= CPU_MASK_ALL
;
2644 unsigned long flags
;
2647 * When power savings policy is enabled for the parent domain, idle
2648 * sibling can pick up load irrespective of busy siblings. In this case,
2649 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2650 * portraying it as CPU_NOT_IDLE.
2652 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2653 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2656 schedstat_inc(sd
, lb_cnt
[idle
]);
2659 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2666 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2670 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2672 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2676 BUG_ON(busiest
== this_rq
);
2678 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2681 if (busiest
->nr_running
> 1) {
2683 * Attempt to move tasks. If find_busiest_group has found
2684 * an imbalance but busiest->nr_running <= 1, the group is
2685 * still unbalanced. ld_moved simply stays zero, so it is
2686 * correctly treated as an imbalance.
2688 local_irq_save(flags
);
2689 double_rq_lock(this_rq
, busiest
);
2690 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2691 imbalance
, sd
, idle
, &all_pinned
);
2692 double_rq_unlock(this_rq
, busiest
);
2693 local_irq_restore(flags
);
2696 * some other cpu did the load balance for us.
2698 if (ld_moved
&& this_cpu
!= smp_processor_id())
2699 resched_cpu(this_cpu
);
2701 /* All tasks on this runqueue were pinned by CPU affinity */
2702 if (unlikely(all_pinned
)) {
2703 cpu_clear(cpu_of(busiest
), cpus
);
2704 if (!cpus_empty(cpus
))
2711 schedstat_inc(sd
, lb_failed
[idle
]);
2712 sd
->nr_balance_failed
++;
2714 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2716 spin_lock_irqsave(&busiest
->lock
, flags
);
2718 /* don't kick the migration_thread, if the curr
2719 * task on busiest cpu can't be moved to this_cpu
2721 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2722 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2724 goto out_one_pinned
;
2727 if (!busiest
->active_balance
) {
2728 busiest
->active_balance
= 1;
2729 busiest
->push_cpu
= this_cpu
;
2732 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2734 wake_up_process(busiest
->migration_thread
);
2737 * We've kicked active balancing, reset the failure
2740 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2743 sd
->nr_balance_failed
= 0;
2745 if (likely(!active_balance
)) {
2746 /* We were unbalanced, so reset the balancing interval */
2747 sd
->balance_interval
= sd
->min_interval
;
2750 * If we've begun active balancing, start to back off. This
2751 * case may not be covered by the all_pinned logic if there
2752 * is only 1 task on the busy runqueue (because we don't call
2755 if (sd
->balance_interval
< sd
->max_interval
)
2756 sd
->balance_interval
*= 2;
2759 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2760 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2765 schedstat_inc(sd
, lb_balanced
[idle
]);
2767 sd
->nr_balance_failed
= 0;
2770 /* tune up the balancing interval */
2771 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2772 (sd
->balance_interval
< sd
->max_interval
))
2773 sd
->balance_interval
*= 2;
2775 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2776 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2782 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2783 * tasks if there is an imbalance.
2785 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2786 * this_rq is locked.
2789 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2791 struct sched_group
*group
;
2792 struct rq
*busiest
= NULL
;
2793 unsigned long imbalance
;
2797 cpumask_t cpus
= CPU_MASK_ALL
;
2800 * When power savings policy is enabled for the parent domain, idle
2801 * sibling can pick up load irrespective of busy siblings. In this case,
2802 * let the state of idle sibling percolate up as IDLE, instead of
2803 * portraying it as CPU_NOT_IDLE.
2805 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2806 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2809 schedstat_inc(sd
, lb_cnt
[CPU_NEWLY_IDLE
]);
2811 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2812 &sd_idle
, &cpus
, NULL
);
2814 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2818 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2821 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2825 BUG_ON(busiest
== this_rq
);
2827 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2830 if (busiest
->nr_running
> 1) {
2831 /* Attempt to move tasks */
2832 double_lock_balance(this_rq
, busiest
);
2833 /* this_rq->clock is already updated */
2834 update_rq_clock(busiest
);
2835 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2836 imbalance
, sd
, CPU_NEWLY_IDLE
,
2838 spin_unlock(&busiest
->lock
);
2840 if (unlikely(all_pinned
)) {
2841 cpu_clear(cpu_of(busiest
), cpus
);
2842 if (!cpus_empty(cpus
))
2848 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2849 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2850 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2853 sd
->nr_balance_failed
= 0;
2858 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2859 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2860 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2862 sd
->nr_balance_failed
= 0;
2868 * idle_balance is called by schedule() if this_cpu is about to become
2869 * idle. Attempts to pull tasks from other CPUs.
2871 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2873 struct sched_domain
*sd
;
2874 int pulled_task
= -1;
2875 unsigned long next_balance
= jiffies
+ HZ
;
2877 for_each_domain(this_cpu
, sd
) {
2878 unsigned long interval
;
2880 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2883 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2884 /* If we've pulled tasks over stop searching: */
2885 pulled_task
= load_balance_newidle(this_cpu
,
2888 interval
= msecs_to_jiffies(sd
->balance_interval
);
2889 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2890 next_balance
= sd
->last_balance
+ interval
;
2894 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2896 * We are going idle. next_balance may be set based on
2897 * a busy processor. So reset next_balance.
2899 this_rq
->next_balance
= next_balance
;
2904 * active_load_balance is run by migration threads. It pushes running tasks
2905 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2906 * running on each physical CPU where possible, and avoids physical /
2907 * logical imbalances.
2909 * Called with busiest_rq locked.
2911 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2913 int target_cpu
= busiest_rq
->push_cpu
;
2914 struct sched_domain
*sd
;
2915 struct rq
*target_rq
;
2917 /* Is there any task to move? */
2918 if (busiest_rq
->nr_running
<= 1)
2921 target_rq
= cpu_rq(target_cpu
);
2924 * This condition is "impossible", if it occurs
2925 * we need to fix it. Originally reported by
2926 * Bjorn Helgaas on a 128-cpu setup.
2928 BUG_ON(busiest_rq
== target_rq
);
2930 /* move a task from busiest_rq to target_rq */
2931 double_lock_balance(busiest_rq
, target_rq
);
2932 update_rq_clock(busiest_rq
);
2933 update_rq_clock(target_rq
);
2935 /* Search for an sd spanning us and the target CPU. */
2936 for_each_domain(target_cpu
, sd
) {
2937 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2938 cpu_isset(busiest_cpu
, sd
->span
))
2943 schedstat_inc(sd
, alb_cnt
);
2945 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2947 schedstat_inc(sd
, alb_pushed
);
2949 schedstat_inc(sd
, alb_failed
);
2951 spin_unlock(&target_rq
->lock
);
2956 atomic_t load_balancer
;
2958 } nohz ____cacheline_aligned
= {
2959 .load_balancer
= ATOMIC_INIT(-1),
2960 .cpu_mask
= CPU_MASK_NONE
,
2964 * This routine will try to nominate the ilb (idle load balancing)
2965 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2966 * load balancing on behalf of all those cpus. If all the cpus in the system
2967 * go into this tickless mode, then there will be no ilb owner (as there is
2968 * no need for one) and all the cpus will sleep till the next wakeup event
2971 * For the ilb owner, tick is not stopped. And this tick will be used
2972 * for idle load balancing. ilb owner will still be part of
2975 * While stopping the tick, this cpu will become the ilb owner if there
2976 * is no other owner. And will be the owner till that cpu becomes busy
2977 * or if all cpus in the system stop their ticks at which point
2978 * there is no need for ilb owner.
2980 * When the ilb owner becomes busy, it nominates another owner, during the
2981 * next busy scheduler_tick()
2983 int select_nohz_load_balancer(int stop_tick
)
2985 int cpu
= smp_processor_id();
2988 cpu_set(cpu
, nohz
.cpu_mask
);
2989 cpu_rq(cpu
)->in_nohz_recently
= 1;
2992 * If we are going offline and still the leader, give up!
2994 if (cpu_is_offline(cpu
) &&
2995 atomic_read(&nohz
.load_balancer
) == cpu
) {
2996 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3001 /* time for ilb owner also to sleep */
3002 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3003 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3004 atomic_set(&nohz
.load_balancer
, -1);
3008 if (atomic_read(&nohz
.load_balancer
) == -1) {
3009 /* make me the ilb owner */
3010 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3012 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3015 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3018 cpu_clear(cpu
, nohz
.cpu_mask
);
3020 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3021 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3028 static DEFINE_SPINLOCK(balancing
);
3031 * It checks each scheduling domain to see if it is due to be balanced,
3032 * and initiates a balancing operation if so.
3034 * Balancing parameters are set up in arch_init_sched_domains.
3036 static inline void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3039 struct rq
*rq
= cpu_rq(cpu
);
3040 unsigned long interval
;
3041 struct sched_domain
*sd
;
3042 /* Earliest time when we have to do rebalance again */
3043 unsigned long next_balance
= jiffies
+ 60*HZ
;
3044 int update_next_balance
= 0;
3046 for_each_domain(cpu
, sd
) {
3047 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3050 interval
= sd
->balance_interval
;
3051 if (idle
!= CPU_IDLE
)
3052 interval
*= sd
->busy_factor
;
3054 /* scale ms to jiffies */
3055 interval
= msecs_to_jiffies(interval
);
3056 if (unlikely(!interval
))
3058 if (interval
> HZ
*NR_CPUS
/10)
3059 interval
= HZ
*NR_CPUS
/10;
3062 if (sd
->flags
& SD_SERIALIZE
) {
3063 if (!spin_trylock(&balancing
))
3067 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3068 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3070 * We've pulled tasks over so either we're no
3071 * longer idle, or one of our SMT siblings is
3074 idle
= CPU_NOT_IDLE
;
3076 sd
->last_balance
= jiffies
;
3078 if (sd
->flags
& SD_SERIALIZE
)
3079 spin_unlock(&balancing
);
3081 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3082 next_balance
= sd
->last_balance
+ interval
;
3083 update_next_balance
= 1;
3087 * Stop the load balance at this level. There is another
3088 * CPU in our sched group which is doing load balancing more
3096 * next_balance will be updated only when there is a need.
3097 * When the cpu is attached to null domain for ex, it will not be
3100 if (likely(update_next_balance
))
3101 rq
->next_balance
= next_balance
;
3105 * run_rebalance_domains is triggered when needed from the scheduler tick.
3106 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3107 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3109 static void run_rebalance_domains(struct softirq_action
*h
)
3111 int this_cpu
= smp_processor_id();
3112 struct rq
*this_rq
= cpu_rq(this_cpu
);
3113 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3114 CPU_IDLE
: CPU_NOT_IDLE
;
3116 rebalance_domains(this_cpu
, idle
);
3120 * If this cpu is the owner for idle load balancing, then do the
3121 * balancing on behalf of the other idle cpus whose ticks are
3124 if (this_rq
->idle_at_tick
&&
3125 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3126 cpumask_t cpus
= nohz
.cpu_mask
;
3130 cpu_clear(this_cpu
, cpus
);
3131 for_each_cpu_mask(balance_cpu
, cpus
) {
3133 * If this cpu gets work to do, stop the load balancing
3134 * work being done for other cpus. Next load
3135 * balancing owner will pick it up.
3140 rebalance_domains(balance_cpu
, CPU_IDLE
);
3142 rq
= cpu_rq(balance_cpu
);
3143 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3144 this_rq
->next_balance
= rq
->next_balance
;
3151 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3153 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3154 * idle load balancing owner or decide to stop the periodic load balancing,
3155 * if the whole system is idle.
3157 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3161 * If we were in the nohz mode recently and busy at the current
3162 * scheduler tick, then check if we need to nominate new idle
3165 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3166 rq
->in_nohz_recently
= 0;
3168 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3169 cpu_clear(cpu
, nohz
.cpu_mask
);
3170 atomic_set(&nohz
.load_balancer
, -1);
3173 if (atomic_read(&nohz
.load_balancer
) == -1) {
3175 * simple selection for now: Nominate the
3176 * first cpu in the nohz list to be the next
3179 * TBD: Traverse the sched domains and nominate
3180 * the nearest cpu in the nohz.cpu_mask.
3182 int ilb
= first_cpu(nohz
.cpu_mask
);
3190 * If this cpu is idle and doing idle load balancing for all the
3191 * cpus with ticks stopped, is it time for that to stop?
3193 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3194 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3200 * If this cpu is idle and the idle load balancing is done by
3201 * someone else, then no need raise the SCHED_SOFTIRQ
3203 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3204 cpu_isset(cpu
, nohz
.cpu_mask
))
3207 if (time_after_eq(jiffies
, rq
->next_balance
))
3208 raise_softirq(SCHED_SOFTIRQ
);
3211 #else /* CONFIG_SMP */
3214 * on UP we do not need to balance between CPUs:
3216 static inline void idle_balance(int cpu
, struct rq
*rq
)
3220 /* Avoid "used but not defined" warning on UP */
3221 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3222 unsigned long max_nr_move
, unsigned long max_load_move
,
3223 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3224 int *all_pinned
, unsigned long *load_moved
,
3225 int *this_best_prio
, struct rq_iterator
*iterator
)
3234 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3236 EXPORT_PER_CPU_SYMBOL(kstat
);
3239 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3240 * that have not yet been banked in case the task is currently running.
3242 unsigned long long task_sched_runtime(struct task_struct
*p
)
3244 unsigned long flags
;
3248 rq
= task_rq_lock(p
, &flags
);
3249 ns
= p
->se
.sum_exec_runtime
;
3250 if (rq
->curr
== p
) {
3251 update_rq_clock(rq
);
3252 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3253 if ((s64
)delta_exec
> 0)
3256 task_rq_unlock(rq
, &flags
);
3262 * Account user cpu time to a process.
3263 * @p: the process that the cpu time gets accounted to
3264 * @hardirq_offset: the offset to subtract from hardirq_count()
3265 * @cputime: the cpu time spent in user space since the last update
3267 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3269 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3272 p
->utime
= cputime_add(p
->utime
, cputime
);
3274 /* Add user time to cpustat. */
3275 tmp
= cputime_to_cputime64(cputime
);
3276 if (TASK_NICE(p
) > 0)
3277 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3279 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3283 * Account system cpu time to a process.
3284 * @p: the process that the cpu time gets accounted to
3285 * @hardirq_offset: the offset to subtract from hardirq_count()
3286 * @cputime: the cpu time spent in kernel space since the last update
3288 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3291 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3292 struct rq
*rq
= this_rq();
3295 p
->stime
= cputime_add(p
->stime
, cputime
);
3297 /* Add system time to cpustat. */
3298 tmp
= cputime_to_cputime64(cputime
);
3299 if (hardirq_count() - hardirq_offset
)
3300 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3301 else if (softirq_count())
3302 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3303 else if (p
!= rq
->idle
)
3304 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3305 else if (atomic_read(&rq
->nr_iowait
) > 0)
3306 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3308 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3309 /* Account for system time used */
3310 acct_update_integrals(p
);
3314 * Account for involuntary wait time.
3315 * @p: the process from which the cpu time has been stolen
3316 * @steal: the cpu time spent in involuntary wait
3318 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3320 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3321 cputime64_t tmp
= cputime_to_cputime64(steal
);
3322 struct rq
*rq
= this_rq();
3324 if (p
== rq
->idle
) {
3325 p
->stime
= cputime_add(p
->stime
, steal
);
3326 if (atomic_read(&rq
->nr_iowait
) > 0)
3327 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3329 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3331 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3335 * This function gets called by the timer code, with HZ frequency.
3336 * We call it with interrupts disabled.
3338 * It also gets called by the fork code, when changing the parent's
3341 void scheduler_tick(void)
3343 int cpu
= smp_processor_id();
3344 struct rq
*rq
= cpu_rq(cpu
);
3345 struct task_struct
*curr
= rq
->curr
;
3346 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3348 spin_lock(&rq
->lock
);
3349 __update_rq_clock(rq
);
3351 * Let rq->clock advance by at least TICK_NSEC:
3353 if (unlikely(rq
->clock
< next_tick
))
3354 rq
->clock
= next_tick
;
3355 rq
->tick_timestamp
= rq
->clock
;
3356 update_cpu_load(rq
);
3357 if (curr
!= rq
->idle
) /* FIXME: needed? */
3358 curr
->sched_class
->task_tick(rq
, curr
);
3359 spin_unlock(&rq
->lock
);
3362 rq
->idle_at_tick
= idle_cpu(cpu
);
3363 trigger_load_balance(rq
, cpu
);
3367 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3369 void fastcall
add_preempt_count(int val
)
3374 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3376 preempt_count() += val
;
3378 * Spinlock count overflowing soon?
3380 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3383 EXPORT_SYMBOL(add_preempt_count
);
3385 void fastcall
sub_preempt_count(int val
)
3390 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3393 * Is the spinlock portion underflowing?
3395 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3396 !(preempt_count() & PREEMPT_MASK
)))
3399 preempt_count() -= val
;
3401 EXPORT_SYMBOL(sub_preempt_count
);
3406 * Print scheduling while atomic bug:
3408 static noinline
void __schedule_bug(struct task_struct
*prev
)
3410 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3411 prev
->comm
, preempt_count(), prev
->pid
);
3412 debug_show_held_locks(prev
);
3413 if (irqs_disabled())
3414 print_irqtrace_events(prev
);
3419 * Various schedule()-time debugging checks and statistics:
3421 static inline void schedule_debug(struct task_struct
*prev
)
3424 * Test if we are atomic. Since do_exit() needs to call into
3425 * schedule() atomically, we ignore that path for now.
3426 * Otherwise, whine if we are scheduling when we should not be.
3428 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3429 __schedule_bug(prev
);
3431 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3433 schedstat_inc(this_rq(), sched_cnt
);
3437 * Pick up the highest-prio task:
3439 static inline struct task_struct
*
3440 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3442 struct sched_class
*class;
3443 struct task_struct
*p
;
3446 * Optimization: we know that if all tasks are in
3447 * the fair class we can call that function directly:
3449 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3450 p
= fair_sched_class
.pick_next_task(rq
);
3455 class = sched_class_highest
;
3457 p
= class->pick_next_task(rq
);
3461 * Will never be NULL as the idle class always
3462 * returns a non-NULL p:
3464 class = class->next
;
3469 * schedule() is the main scheduler function.
3471 asmlinkage
void __sched
schedule(void)
3473 struct task_struct
*prev
, *next
;
3480 cpu
= smp_processor_id();
3484 switch_count
= &prev
->nivcsw
;
3486 release_kernel_lock(prev
);
3487 need_resched_nonpreemptible
:
3489 schedule_debug(prev
);
3491 spin_lock_irq(&rq
->lock
);
3492 clear_tsk_need_resched(prev
);
3493 __update_rq_clock(rq
);
3495 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3496 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3497 unlikely(signal_pending(prev
)))) {
3498 prev
->state
= TASK_RUNNING
;
3500 deactivate_task(rq
, prev
, 1);
3502 switch_count
= &prev
->nvcsw
;
3505 if (unlikely(!rq
->nr_running
))
3506 idle_balance(cpu
, rq
);
3508 prev
->sched_class
->put_prev_task(rq
, prev
);
3509 next
= pick_next_task(rq
, prev
);
3511 sched_info_switch(prev
, next
);
3513 if (likely(prev
!= next
)) {
3518 context_switch(rq
, prev
, next
); /* unlocks the rq */
3520 spin_unlock_irq(&rq
->lock
);
3522 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3523 cpu
= smp_processor_id();
3525 goto need_resched_nonpreemptible
;
3527 preempt_enable_no_resched();
3528 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3531 EXPORT_SYMBOL(schedule
);
3533 #ifdef CONFIG_PREEMPT
3535 * this is the entry point to schedule() from in-kernel preemption
3536 * off of preempt_enable. Kernel preemptions off return from interrupt
3537 * occur there and call schedule directly.
3539 asmlinkage
void __sched
preempt_schedule(void)
3541 struct thread_info
*ti
= current_thread_info();
3542 #ifdef CONFIG_PREEMPT_BKL
3543 struct task_struct
*task
= current
;
3544 int saved_lock_depth
;
3547 * If there is a non-zero preempt_count or interrupts are disabled,
3548 * we do not want to preempt the current task. Just return..
3550 if (likely(ti
->preempt_count
|| irqs_disabled()))
3554 add_preempt_count(PREEMPT_ACTIVE
);
3556 * We keep the big kernel semaphore locked, but we
3557 * clear ->lock_depth so that schedule() doesnt
3558 * auto-release the semaphore:
3560 #ifdef CONFIG_PREEMPT_BKL
3561 saved_lock_depth
= task
->lock_depth
;
3562 task
->lock_depth
= -1;
3565 #ifdef CONFIG_PREEMPT_BKL
3566 task
->lock_depth
= saved_lock_depth
;
3568 sub_preempt_count(PREEMPT_ACTIVE
);
3570 /* we could miss a preemption opportunity between schedule and now */
3572 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3575 EXPORT_SYMBOL(preempt_schedule
);
3578 * this is the entry point to schedule() from kernel preemption
3579 * off of irq context.
3580 * Note, that this is called and return with irqs disabled. This will
3581 * protect us against recursive calling from irq.
3583 asmlinkage
void __sched
preempt_schedule_irq(void)
3585 struct thread_info
*ti
= current_thread_info();
3586 #ifdef CONFIG_PREEMPT_BKL
3587 struct task_struct
*task
= current
;
3588 int saved_lock_depth
;
3590 /* Catch callers which need to be fixed */
3591 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3594 add_preempt_count(PREEMPT_ACTIVE
);
3596 * We keep the big kernel semaphore locked, but we
3597 * clear ->lock_depth so that schedule() doesnt
3598 * auto-release the semaphore:
3600 #ifdef CONFIG_PREEMPT_BKL
3601 saved_lock_depth
= task
->lock_depth
;
3602 task
->lock_depth
= -1;
3606 local_irq_disable();
3607 #ifdef CONFIG_PREEMPT_BKL
3608 task
->lock_depth
= saved_lock_depth
;
3610 sub_preempt_count(PREEMPT_ACTIVE
);
3612 /* we could miss a preemption opportunity between schedule and now */
3614 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3618 #endif /* CONFIG_PREEMPT */
3620 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3623 return try_to_wake_up(curr
->private, mode
, sync
);
3625 EXPORT_SYMBOL(default_wake_function
);
3628 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3629 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3630 * number) then we wake all the non-exclusive tasks and one exclusive task.
3632 * There are circumstances in which we can try to wake a task which has already
3633 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3634 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3636 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3637 int nr_exclusive
, int sync
, void *key
)
3639 struct list_head
*tmp
, *next
;
3641 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3642 wait_queue_t
*curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3643 unsigned flags
= curr
->flags
;
3645 if (curr
->func(curr
, mode
, sync
, key
) &&
3646 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3652 * __wake_up - wake up threads blocked on a waitqueue.
3654 * @mode: which threads
3655 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3656 * @key: is directly passed to the wakeup function
3658 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3659 int nr_exclusive
, void *key
)
3661 unsigned long flags
;
3663 spin_lock_irqsave(&q
->lock
, flags
);
3664 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3665 spin_unlock_irqrestore(&q
->lock
, flags
);
3667 EXPORT_SYMBOL(__wake_up
);
3670 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3672 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3674 __wake_up_common(q
, mode
, 1, 0, NULL
);
3678 * __wake_up_sync - wake up threads blocked on a waitqueue.
3680 * @mode: which threads
3681 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3683 * The sync wakeup differs that the waker knows that it will schedule
3684 * away soon, so while the target thread will be woken up, it will not
3685 * be migrated to another CPU - ie. the two threads are 'synchronized'
3686 * with each other. This can prevent needless bouncing between CPUs.
3688 * On UP it can prevent extra preemption.
3691 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3693 unsigned long flags
;
3699 if (unlikely(!nr_exclusive
))
3702 spin_lock_irqsave(&q
->lock
, flags
);
3703 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3704 spin_unlock_irqrestore(&q
->lock
, flags
);
3706 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3708 void fastcall
complete(struct completion
*x
)
3710 unsigned long flags
;
3712 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3714 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3716 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3718 EXPORT_SYMBOL(complete
);
3720 void fastcall
complete_all(struct completion
*x
)
3722 unsigned long flags
;
3724 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3725 x
->done
+= UINT_MAX
/2;
3726 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3728 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3730 EXPORT_SYMBOL(complete_all
);
3732 void fastcall __sched
wait_for_completion(struct completion
*x
)
3736 spin_lock_irq(&x
->wait
.lock
);
3738 DECLARE_WAITQUEUE(wait
, current
);
3740 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3741 __add_wait_queue_tail(&x
->wait
, &wait
);
3743 __set_current_state(TASK_UNINTERRUPTIBLE
);
3744 spin_unlock_irq(&x
->wait
.lock
);
3746 spin_lock_irq(&x
->wait
.lock
);
3748 __remove_wait_queue(&x
->wait
, &wait
);
3751 spin_unlock_irq(&x
->wait
.lock
);
3753 EXPORT_SYMBOL(wait_for_completion
);
3755 unsigned long fastcall __sched
3756 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3760 spin_lock_irq(&x
->wait
.lock
);
3762 DECLARE_WAITQUEUE(wait
, current
);
3764 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3765 __add_wait_queue_tail(&x
->wait
, &wait
);
3767 __set_current_state(TASK_UNINTERRUPTIBLE
);
3768 spin_unlock_irq(&x
->wait
.lock
);
3769 timeout
= schedule_timeout(timeout
);
3770 spin_lock_irq(&x
->wait
.lock
);
3772 __remove_wait_queue(&x
->wait
, &wait
);
3776 __remove_wait_queue(&x
->wait
, &wait
);
3780 spin_unlock_irq(&x
->wait
.lock
);
3783 EXPORT_SYMBOL(wait_for_completion_timeout
);
3785 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3791 spin_lock_irq(&x
->wait
.lock
);
3793 DECLARE_WAITQUEUE(wait
, current
);
3795 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3796 __add_wait_queue_tail(&x
->wait
, &wait
);
3798 if (signal_pending(current
)) {
3800 __remove_wait_queue(&x
->wait
, &wait
);
3803 __set_current_state(TASK_INTERRUPTIBLE
);
3804 spin_unlock_irq(&x
->wait
.lock
);
3806 spin_lock_irq(&x
->wait
.lock
);
3808 __remove_wait_queue(&x
->wait
, &wait
);
3812 spin_unlock_irq(&x
->wait
.lock
);
3816 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3818 unsigned long fastcall __sched
3819 wait_for_completion_interruptible_timeout(struct completion
*x
,
3820 unsigned long timeout
)
3824 spin_lock_irq(&x
->wait
.lock
);
3826 DECLARE_WAITQUEUE(wait
, current
);
3828 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3829 __add_wait_queue_tail(&x
->wait
, &wait
);
3831 if (signal_pending(current
)) {
3832 timeout
= -ERESTARTSYS
;
3833 __remove_wait_queue(&x
->wait
, &wait
);
3836 __set_current_state(TASK_INTERRUPTIBLE
);
3837 spin_unlock_irq(&x
->wait
.lock
);
3838 timeout
= schedule_timeout(timeout
);
3839 spin_lock_irq(&x
->wait
.lock
);
3841 __remove_wait_queue(&x
->wait
, &wait
);
3845 __remove_wait_queue(&x
->wait
, &wait
);
3849 spin_unlock_irq(&x
->wait
.lock
);
3852 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3855 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3857 spin_lock_irqsave(&q
->lock
, *flags
);
3858 __add_wait_queue(q
, wait
);
3859 spin_unlock(&q
->lock
);
3863 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3865 spin_lock_irq(&q
->lock
);
3866 __remove_wait_queue(q
, wait
);
3867 spin_unlock_irqrestore(&q
->lock
, *flags
);
3870 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3872 unsigned long flags
;
3875 init_waitqueue_entry(&wait
, current
);
3877 current
->state
= TASK_INTERRUPTIBLE
;
3879 sleep_on_head(q
, &wait
, &flags
);
3881 sleep_on_tail(q
, &wait
, &flags
);
3883 EXPORT_SYMBOL(interruptible_sleep_on
);
3886 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3888 unsigned long flags
;
3891 init_waitqueue_entry(&wait
, current
);
3893 current
->state
= TASK_INTERRUPTIBLE
;
3895 sleep_on_head(q
, &wait
, &flags
);
3896 timeout
= schedule_timeout(timeout
);
3897 sleep_on_tail(q
, &wait
, &flags
);
3901 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3903 void __sched
sleep_on(wait_queue_head_t
*q
)
3905 unsigned long flags
;
3908 init_waitqueue_entry(&wait
, current
);
3910 current
->state
= TASK_UNINTERRUPTIBLE
;
3912 sleep_on_head(q
, &wait
, &flags
);
3914 sleep_on_tail(q
, &wait
, &flags
);
3916 EXPORT_SYMBOL(sleep_on
);
3918 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3920 unsigned long flags
;
3923 init_waitqueue_entry(&wait
, current
);
3925 current
->state
= TASK_UNINTERRUPTIBLE
;
3927 sleep_on_head(q
, &wait
, &flags
);
3928 timeout
= schedule_timeout(timeout
);
3929 sleep_on_tail(q
, &wait
, &flags
);
3933 EXPORT_SYMBOL(sleep_on_timeout
);
3935 #ifdef CONFIG_RT_MUTEXES
3938 * rt_mutex_setprio - set the current priority of a task
3940 * @prio: prio value (kernel-internal form)
3942 * This function changes the 'effective' priority of a task. It does
3943 * not touch ->normal_prio like __setscheduler().
3945 * Used by the rt_mutex code to implement priority inheritance logic.
3947 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3949 unsigned long flags
;
3953 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3955 rq
= task_rq_lock(p
, &flags
);
3956 update_rq_clock(rq
);
3959 on_rq
= p
->se
.on_rq
;
3961 dequeue_task(rq
, p
, 0);
3964 p
->sched_class
= &rt_sched_class
;
3966 p
->sched_class
= &fair_sched_class
;
3971 enqueue_task(rq
, p
, 0);
3973 * Reschedule if we are currently running on this runqueue and
3974 * our priority decreased, or if we are not currently running on
3975 * this runqueue and our priority is higher than the current's
3977 if (task_running(rq
, p
)) {
3978 if (p
->prio
> oldprio
)
3979 resched_task(rq
->curr
);
3981 check_preempt_curr(rq
, p
);
3984 task_rq_unlock(rq
, &flags
);
3989 void set_user_nice(struct task_struct
*p
, long nice
)
3991 int old_prio
, delta
, on_rq
;
3992 unsigned long flags
;
3995 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3998 * We have to be careful, if called from sys_setpriority(),
3999 * the task might be in the middle of scheduling on another CPU.
4001 rq
= task_rq_lock(p
, &flags
);
4002 update_rq_clock(rq
);
4004 * The RT priorities are set via sched_setscheduler(), but we still
4005 * allow the 'normal' nice value to be set - but as expected
4006 * it wont have any effect on scheduling until the task is
4007 * SCHED_FIFO/SCHED_RR:
4009 if (task_has_rt_policy(p
)) {
4010 p
->static_prio
= NICE_TO_PRIO(nice
);
4013 on_rq
= p
->se
.on_rq
;
4015 dequeue_task(rq
, p
, 0);
4019 p
->static_prio
= NICE_TO_PRIO(nice
);
4022 p
->prio
= effective_prio(p
);
4023 delta
= p
->prio
- old_prio
;
4026 enqueue_task(rq
, p
, 0);
4029 * If the task increased its priority or is running and
4030 * lowered its priority, then reschedule its CPU:
4032 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4033 resched_task(rq
->curr
);
4036 task_rq_unlock(rq
, &flags
);
4038 EXPORT_SYMBOL(set_user_nice
);
4041 * can_nice - check if a task can reduce its nice value
4045 int can_nice(const struct task_struct
*p
, const int nice
)
4047 /* convert nice value [19,-20] to rlimit style value [1,40] */
4048 int nice_rlim
= 20 - nice
;
4050 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4051 capable(CAP_SYS_NICE
));
4054 #ifdef __ARCH_WANT_SYS_NICE
4057 * sys_nice - change the priority of the current process.
4058 * @increment: priority increment
4060 * sys_setpriority is a more generic, but much slower function that
4061 * does similar things.
4063 asmlinkage
long sys_nice(int increment
)
4068 * Setpriority might change our priority at the same moment.
4069 * We don't have to worry. Conceptually one call occurs first
4070 * and we have a single winner.
4072 if (increment
< -40)
4077 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4083 if (increment
< 0 && !can_nice(current
, nice
))
4086 retval
= security_task_setnice(current
, nice
);
4090 set_user_nice(current
, nice
);
4097 * task_prio - return the priority value of a given task.
4098 * @p: the task in question.
4100 * This is the priority value as seen by users in /proc.
4101 * RT tasks are offset by -200. Normal tasks are centered
4102 * around 0, value goes from -16 to +15.
4104 int task_prio(const struct task_struct
*p
)
4106 return p
->prio
- MAX_RT_PRIO
;
4110 * task_nice - return the nice value of a given task.
4111 * @p: the task in question.
4113 int task_nice(const struct task_struct
*p
)
4115 return TASK_NICE(p
);
4117 EXPORT_SYMBOL_GPL(task_nice
);
4120 * idle_cpu - is a given cpu idle currently?
4121 * @cpu: the processor in question.
4123 int idle_cpu(int cpu
)
4125 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4129 * idle_task - return the idle task for a given cpu.
4130 * @cpu: the processor in question.
4132 struct task_struct
*idle_task(int cpu
)
4134 return cpu_rq(cpu
)->idle
;
4138 * find_process_by_pid - find a process with a matching PID value.
4139 * @pid: the pid in question.
4141 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4143 return pid
? find_task_by_pid(pid
) : current
;
4146 /* Actually do priority change: must hold rq lock. */
4148 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4150 BUG_ON(p
->se
.on_rq
);
4153 switch (p
->policy
) {
4157 p
->sched_class
= &fair_sched_class
;
4161 p
->sched_class
= &rt_sched_class
;
4165 p
->rt_priority
= prio
;
4166 p
->normal_prio
= normal_prio(p
);
4167 /* we are holding p->pi_lock already */
4168 p
->prio
= rt_mutex_getprio(p
);
4173 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4174 * @p: the task in question.
4175 * @policy: new policy.
4176 * @param: structure containing the new RT priority.
4178 * NOTE that the task may be already dead.
4180 int sched_setscheduler(struct task_struct
*p
, int policy
,
4181 struct sched_param
*param
)
4183 int retval
, oldprio
, oldpolicy
= -1, on_rq
;
4184 unsigned long flags
;
4187 /* may grab non-irq protected spin_locks */
4188 BUG_ON(in_interrupt());
4190 /* double check policy once rq lock held */
4192 policy
= oldpolicy
= p
->policy
;
4193 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4194 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4195 policy
!= SCHED_IDLE
)
4198 * Valid priorities for SCHED_FIFO and SCHED_RR are
4199 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4200 * SCHED_BATCH and SCHED_IDLE is 0.
4202 if (param
->sched_priority
< 0 ||
4203 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4204 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4206 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4210 * Allow unprivileged RT tasks to decrease priority:
4212 if (!capable(CAP_SYS_NICE
)) {
4213 if (rt_policy(policy
)) {
4214 unsigned long rlim_rtprio
;
4216 if (!lock_task_sighand(p
, &flags
))
4218 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4219 unlock_task_sighand(p
, &flags
);
4221 /* can't set/change the rt policy */
4222 if (policy
!= p
->policy
&& !rlim_rtprio
)
4225 /* can't increase priority */
4226 if (param
->sched_priority
> p
->rt_priority
&&
4227 param
->sched_priority
> rlim_rtprio
)
4231 * Like positive nice levels, dont allow tasks to
4232 * move out of SCHED_IDLE either:
4234 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4237 /* can't change other user's priorities */
4238 if ((current
->euid
!= p
->euid
) &&
4239 (current
->euid
!= p
->uid
))
4243 retval
= security_task_setscheduler(p
, policy
, param
);
4247 * make sure no PI-waiters arrive (or leave) while we are
4248 * changing the priority of the task:
4250 spin_lock_irqsave(&p
->pi_lock
, flags
);
4252 * To be able to change p->policy safely, the apropriate
4253 * runqueue lock must be held.
4255 rq
= __task_rq_lock(p
);
4256 /* recheck policy now with rq lock held */
4257 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4258 policy
= oldpolicy
= -1;
4259 __task_rq_unlock(rq
);
4260 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4263 update_rq_clock(rq
);
4264 on_rq
= p
->se
.on_rq
;
4266 deactivate_task(rq
, p
, 0);
4268 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4270 activate_task(rq
, p
, 0);
4272 * Reschedule if we are currently running on this runqueue and
4273 * our priority decreased, or if we are not currently running on
4274 * this runqueue and our priority is higher than the current's
4276 if (task_running(rq
, p
)) {
4277 if (p
->prio
> oldprio
)
4278 resched_task(rq
->curr
);
4280 check_preempt_curr(rq
, p
);
4283 __task_rq_unlock(rq
);
4284 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4286 rt_mutex_adjust_pi(p
);
4290 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4293 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4295 struct sched_param lparam
;
4296 struct task_struct
*p
;
4299 if (!param
|| pid
< 0)
4301 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4306 p
= find_process_by_pid(pid
);
4308 retval
= sched_setscheduler(p
, policy
, &lparam
);
4315 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4316 * @pid: the pid in question.
4317 * @policy: new policy.
4318 * @param: structure containing the new RT priority.
4320 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4321 struct sched_param __user
*param
)
4323 /* negative values for policy are not valid */
4327 return do_sched_setscheduler(pid
, policy
, param
);
4331 * sys_sched_setparam - set/change the RT priority of a thread
4332 * @pid: the pid in question.
4333 * @param: structure containing the new RT priority.
4335 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4337 return do_sched_setscheduler(pid
, -1, param
);
4341 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4342 * @pid: the pid in question.
4344 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4346 struct task_struct
*p
;
4347 int retval
= -EINVAL
;
4353 read_lock(&tasklist_lock
);
4354 p
= find_process_by_pid(pid
);
4356 retval
= security_task_getscheduler(p
);
4360 read_unlock(&tasklist_lock
);
4367 * sys_sched_getscheduler - get the RT priority of a thread
4368 * @pid: the pid in question.
4369 * @param: structure containing the RT priority.
4371 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4373 struct sched_param lp
;
4374 struct task_struct
*p
;
4375 int retval
= -EINVAL
;
4377 if (!param
|| pid
< 0)
4380 read_lock(&tasklist_lock
);
4381 p
= find_process_by_pid(pid
);
4386 retval
= security_task_getscheduler(p
);
4390 lp
.sched_priority
= p
->rt_priority
;
4391 read_unlock(&tasklist_lock
);
4394 * This one might sleep, we cannot do it with a spinlock held ...
4396 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4402 read_unlock(&tasklist_lock
);
4406 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4408 cpumask_t cpus_allowed
;
4409 struct task_struct
*p
;
4412 mutex_lock(&sched_hotcpu_mutex
);
4413 read_lock(&tasklist_lock
);
4415 p
= find_process_by_pid(pid
);
4417 read_unlock(&tasklist_lock
);
4418 mutex_unlock(&sched_hotcpu_mutex
);
4423 * It is not safe to call set_cpus_allowed with the
4424 * tasklist_lock held. We will bump the task_struct's
4425 * usage count and then drop tasklist_lock.
4428 read_unlock(&tasklist_lock
);
4431 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4432 !capable(CAP_SYS_NICE
))
4435 retval
= security_task_setscheduler(p
, 0, NULL
);
4439 cpus_allowed
= cpuset_cpus_allowed(p
);
4440 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4441 retval
= set_cpus_allowed(p
, new_mask
);
4445 mutex_unlock(&sched_hotcpu_mutex
);
4449 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4450 cpumask_t
*new_mask
)
4452 if (len
< sizeof(cpumask_t
)) {
4453 memset(new_mask
, 0, sizeof(cpumask_t
));
4454 } else if (len
> sizeof(cpumask_t
)) {
4455 len
= sizeof(cpumask_t
);
4457 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4461 * sys_sched_setaffinity - set the cpu affinity of a process
4462 * @pid: pid of the process
4463 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4464 * @user_mask_ptr: user-space pointer to the new cpu mask
4466 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4467 unsigned long __user
*user_mask_ptr
)
4472 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4476 return sched_setaffinity(pid
, new_mask
);
4480 * Represents all cpu's present in the system
4481 * In systems capable of hotplug, this map could dynamically grow
4482 * as new cpu's are detected in the system via any platform specific
4483 * method, such as ACPI for e.g.
4486 cpumask_t cpu_present_map __read_mostly
;
4487 EXPORT_SYMBOL(cpu_present_map
);
4490 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4491 EXPORT_SYMBOL(cpu_online_map
);
4493 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4494 EXPORT_SYMBOL(cpu_possible_map
);
4497 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4499 struct task_struct
*p
;
4502 mutex_lock(&sched_hotcpu_mutex
);
4503 read_lock(&tasklist_lock
);
4506 p
= find_process_by_pid(pid
);
4510 retval
= security_task_getscheduler(p
);
4514 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4517 read_unlock(&tasklist_lock
);
4518 mutex_unlock(&sched_hotcpu_mutex
);
4524 * sys_sched_getaffinity - get the cpu affinity of a process
4525 * @pid: pid of the process
4526 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4527 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4529 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4530 unsigned long __user
*user_mask_ptr
)
4535 if (len
< sizeof(cpumask_t
))
4538 ret
= sched_getaffinity(pid
, &mask
);
4542 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4545 return sizeof(cpumask_t
);
4549 * sys_sched_yield - yield the current processor to other threads.
4551 * This function yields the current CPU to other tasks. If there are no
4552 * other threads running on this CPU then this function will return.
4554 asmlinkage
long sys_sched_yield(void)
4556 struct rq
*rq
= this_rq_lock();
4558 schedstat_inc(rq
, yld_cnt
);
4559 current
->sched_class
->yield_task(rq
, current
);
4562 * Since we are going to call schedule() anyway, there's
4563 * no need to preempt or enable interrupts:
4565 __release(rq
->lock
);
4566 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4567 _raw_spin_unlock(&rq
->lock
);
4568 preempt_enable_no_resched();
4575 static void __cond_resched(void)
4577 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4578 __might_sleep(__FILE__
, __LINE__
);
4581 * The BKS might be reacquired before we have dropped
4582 * PREEMPT_ACTIVE, which could trigger a second
4583 * cond_resched() call.
4586 add_preempt_count(PREEMPT_ACTIVE
);
4588 sub_preempt_count(PREEMPT_ACTIVE
);
4589 } while (need_resched());
4592 int __sched
cond_resched(void)
4594 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4595 system_state
== SYSTEM_RUNNING
) {
4601 EXPORT_SYMBOL(cond_resched
);
4604 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4605 * call schedule, and on return reacquire the lock.
4607 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4608 * operations here to prevent schedule() from being called twice (once via
4609 * spin_unlock(), once by hand).
4611 int cond_resched_lock(spinlock_t
*lock
)
4615 if (need_lockbreak(lock
)) {
4621 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4622 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4623 _raw_spin_unlock(lock
);
4624 preempt_enable_no_resched();
4631 EXPORT_SYMBOL(cond_resched_lock
);
4633 int __sched
cond_resched_softirq(void)
4635 BUG_ON(!in_softirq());
4637 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4645 EXPORT_SYMBOL(cond_resched_softirq
);
4648 * yield - yield the current processor to other threads.
4650 * This is a shortcut for kernel-space yielding - it marks the
4651 * thread runnable and calls sys_sched_yield().
4653 void __sched
yield(void)
4655 set_current_state(TASK_RUNNING
);
4658 EXPORT_SYMBOL(yield
);
4661 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4662 * that process accounting knows that this is a task in IO wait state.
4664 * But don't do that if it is a deliberate, throttling IO wait (this task
4665 * has set its backing_dev_info: the queue against which it should throttle)
4667 void __sched
io_schedule(void)
4669 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4671 delayacct_blkio_start();
4672 atomic_inc(&rq
->nr_iowait
);
4674 atomic_dec(&rq
->nr_iowait
);
4675 delayacct_blkio_end();
4677 EXPORT_SYMBOL(io_schedule
);
4679 long __sched
io_schedule_timeout(long timeout
)
4681 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4684 delayacct_blkio_start();
4685 atomic_inc(&rq
->nr_iowait
);
4686 ret
= schedule_timeout(timeout
);
4687 atomic_dec(&rq
->nr_iowait
);
4688 delayacct_blkio_end();
4693 * sys_sched_get_priority_max - return maximum RT priority.
4694 * @policy: scheduling class.
4696 * this syscall returns the maximum rt_priority that can be used
4697 * by a given scheduling class.
4699 asmlinkage
long sys_sched_get_priority_max(int policy
)
4706 ret
= MAX_USER_RT_PRIO
-1;
4718 * sys_sched_get_priority_min - return minimum RT priority.
4719 * @policy: scheduling class.
4721 * this syscall returns the minimum rt_priority that can be used
4722 * by a given scheduling class.
4724 asmlinkage
long sys_sched_get_priority_min(int policy
)
4742 * sys_sched_rr_get_interval - return the default timeslice of a process.
4743 * @pid: pid of the process.
4744 * @interval: userspace pointer to the timeslice value.
4746 * this syscall writes the default timeslice value of a given process
4747 * into the user-space timespec buffer. A value of '0' means infinity.
4750 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4752 struct task_struct
*p
;
4753 int retval
= -EINVAL
;
4760 read_lock(&tasklist_lock
);
4761 p
= find_process_by_pid(pid
);
4765 retval
= security_task_getscheduler(p
);
4769 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4770 0 : static_prio_timeslice(p
->static_prio
), &t
);
4771 read_unlock(&tasklist_lock
);
4772 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4776 read_unlock(&tasklist_lock
);
4780 static const char stat_nam
[] = "RSDTtZX";
4782 static void show_task(struct task_struct
*p
)
4784 unsigned long free
= 0;
4787 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4788 printk("%-13.13s %c", p
->comm
,
4789 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4790 #if BITS_PER_LONG == 32
4791 if (state
== TASK_RUNNING
)
4792 printk(" running ");
4794 printk(" %08lx ", thread_saved_pc(p
));
4796 if (state
== TASK_RUNNING
)
4797 printk(" running task ");
4799 printk(" %016lx ", thread_saved_pc(p
));
4801 #ifdef CONFIG_DEBUG_STACK_USAGE
4803 unsigned long *n
= end_of_stack(p
);
4806 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4809 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4811 if (state
!= TASK_RUNNING
)
4812 show_stack(p
, NULL
);
4815 void show_state_filter(unsigned long state_filter
)
4817 struct task_struct
*g
, *p
;
4819 #if BITS_PER_LONG == 32
4821 " task PC stack pid father\n");
4824 " task PC stack pid father\n");
4826 read_lock(&tasklist_lock
);
4827 do_each_thread(g
, p
) {
4829 * reset the NMI-timeout, listing all files on a slow
4830 * console might take alot of time:
4832 touch_nmi_watchdog();
4833 if (!state_filter
|| (p
->state
& state_filter
))
4835 } while_each_thread(g
, p
);
4837 touch_all_softlockup_watchdogs();
4839 #ifdef CONFIG_SCHED_DEBUG
4840 sysrq_sched_debug_show();
4842 read_unlock(&tasklist_lock
);
4844 * Only show locks if all tasks are dumped:
4846 if (state_filter
== -1)
4847 debug_show_all_locks();
4850 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4852 idle
->sched_class
= &idle_sched_class
;
4856 * init_idle - set up an idle thread for a given CPU
4857 * @idle: task in question
4858 * @cpu: cpu the idle task belongs to
4860 * NOTE: this function does not set the idle thread's NEED_RESCHED
4861 * flag, to make booting more robust.
4863 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4865 struct rq
*rq
= cpu_rq(cpu
);
4866 unsigned long flags
;
4869 idle
->se
.exec_start
= sched_clock();
4871 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4872 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4873 __set_task_cpu(idle
, cpu
);
4875 spin_lock_irqsave(&rq
->lock
, flags
);
4876 rq
->curr
= rq
->idle
= idle
;
4877 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4880 spin_unlock_irqrestore(&rq
->lock
, flags
);
4882 /* Set the preempt count _outside_ the spinlocks! */
4883 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4884 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4886 task_thread_info(idle
)->preempt_count
= 0;
4889 * The idle tasks have their own, simple scheduling class:
4891 idle
->sched_class
= &idle_sched_class
;
4895 * In a system that switches off the HZ timer nohz_cpu_mask
4896 * indicates which cpus entered this state. This is used
4897 * in the rcu update to wait only for active cpus. For system
4898 * which do not switch off the HZ timer nohz_cpu_mask should
4899 * always be CPU_MASK_NONE.
4901 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4904 * Increase the granularity value when there are more CPUs,
4905 * because with more CPUs the 'effective latency' as visible
4906 * to users decreases. But the relationship is not linear,
4907 * so pick a second-best guess by going with the log2 of the
4910 * This idea comes from the SD scheduler of Con Kolivas:
4912 static inline void sched_init_granularity(void)
4914 unsigned int factor
= 1 + ilog2(num_online_cpus());
4915 const unsigned long limit
= 100000000;
4917 sysctl_sched_min_granularity
*= factor
;
4918 if (sysctl_sched_min_granularity
> limit
)
4919 sysctl_sched_min_granularity
= limit
;
4921 sysctl_sched_latency
*= factor
;
4922 if (sysctl_sched_latency
> limit
)
4923 sysctl_sched_latency
= limit
;
4925 sysctl_sched_runtime_limit
= sysctl_sched_latency
;
4926 sysctl_sched_wakeup_granularity
= sysctl_sched_min_granularity
/ 2;
4931 * This is how migration works:
4933 * 1) we queue a struct migration_req structure in the source CPU's
4934 * runqueue and wake up that CPU's migration thread.
4935 * 2) we down() the locked semaphore => thread blocks.
4936 * 3) migration thread wakes up (implicitly it forces the migrated
4937 * thread off the CPU)
4938 * 4) it gets the migration request and checks whether the migrated
4939 * task is still in the wrong runqueue.
4940 * 5) if it's in the wrong runqueue then the migration thread removes
4941 * it and puts it into the right queue.
4942 * 6) migration thread up()s the semaphore.
4943 * 7) we wake up and the migration is done.
4947 * Change a given task's CPU affinity. Migrate the thread to a
4948 * proper CPU and schedule it away if the CPU it's executing on
4949 * is removed from the allowed bitmask.
4951 * NOTE: the caller must have a valid reference to the task, the
4952 * task must not exit() & deallocate itself prematurely. The
4953 * call is not atomic; no spinlocks may be held.
4955 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4957 struct migration_req req
;
4958 unsigned long flags
;
4962 rq
= task_rq_lock(p
, &flags
);
4963 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4968 p
->cpus_allowed
= new_mask
;
4969 /* Can the task run on the task's current CPU? If so, we're done */
4970 if (cpu_isset(task_cpu(p
), new_mask
))
4973 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4974 /* Need help from migration thread: drop lock and wait. */
4975 task_rq_unlock(rq
, &flags
);
4976 wake_up_process(rq
->migration_thread
);
4977 wait_for_completion(&req
.done
);
4978 tlb_migrate_finish(p
->mm
);
4982 task_rq_unlock(rq
, &flags
);
4986 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4989 * Move (not current) task off this cpu, onto dest cpu. We're doing
4990 * this because either it can't run here any more (set_cpus_allowed()
4991 * away from this CPU, or CPU going down), or because we're
4992 * attempting to rebalance this task on exec (sched_exec).
4994 * So we race with normal scheduler movements, but that's OK, as long
4995 * as the task is no longer on this CPU.
4997 * Returns non-zero if task was successfully migrated.
4999 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5001 struct rq
*rq_dest
, *rq_src
;
5004 if (unlikely(cpu_is_offline(dest_cpu
)))
5007 rq_src
= cpu_rq(src_cpu
);
5008 rq_dest
= cpu_rq(dest_cpu
);
5010 double_rq_lock(rq_src
, rq_dest
);
5011 /* Already moved. */
5012 if (task_cpu(p
) != src_cpu
)
5014 /* Affinity changed (again). */
5015 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5018 on_rq
= p
->se
.on_rq
;
5020 deactivate_task(rq_src
, p
, 0);
5022 set_task_cpu(p
, dest_cpu
);
5024 activate_task(rq_dest
, p
, 0);
5025 check_preempt_curr(rq_dest
, p
);
5029 double_rq_unlock(rq_src
, rq_dest
);
5034 * migration_thread - this is a highprio system thread that performs
5035 * thread migration by bumping thread off CPU then 'pushing' onto
5038 static int migration_thread(void *data
)
5040 int cpu
= (long)data
;
5044 BUG_ON(rq
->migration_thread
!= current
);
5046 set_current_state(TASK_INTERRUPTIBLE
);
5047 while (!kthread_should_stop()) {
5048 struct migration_req
*req
;
5049 struct list_head
*head
;
5051 spin_lock_irq(&rq
->lock
);
5053 if (cpu_is_offline(cpu
)) {
5054 spin_unlock_irq(&rq
->lock
);
5058 if (rq
->active_balance
) {
5059 active_load_balance(rq
, cpu
);
5060 rq
->active_balance
= 0;
5063 head
= &rq
->migration_queue
;
5065 if (list_empty(head
)) {
5066 spin_unlock_irq(&rq
->lock
);
5068 set_current_state(TASK_INTERRUPTIBLE
);
5071 req
= list_entry(head
->next
, struct migration_req
, list
);
5072 list_del_init(head
->next
);
5074 spin_unlock(&rq
->lock
);
5075 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5078 complete(&req
->done
);
5080 __set_current_state(TASK_RUNNING
);
5084 /* Wait for kthread_stop */
5085 set_current_state(TASK_INTERRUPTIBLE
);
5086 while (!kthread_should_stop()) {
5088 set_current_state(TASK_INTERRUPTIBLE
);
5090 __set_current_state(TASK_RUNNING
);
5094 #ifdef CONFIG_HOTPLUG_CPU
5096 * Figure out where task on dead CPU should go, use force if neccessary.
5097 * NOTE: interrupts should be disabled by the caller
5099 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5101 unsigned long flags
;
5108 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5109 cpus_and(mask
, mask
, p
->cpus_allowed
);
5110 dest_cpu
= any_online_cpu(mask
);
5112 /* On any allowed CPU? */
5113 if (dest_cpu
== NR_CPUS
)
5114 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5116 /* No more Mr. Nice Guy. */
5117 if (dest_cpu
== NR_CPUS
) {
5118 rq
= task_rq_lock(p
, &flags
);
5119 cpus_setall(p
->cpus_allowed
);
5120 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5121 task_rq_unlock(rq
, &flags
);
5124 * Don't tell them about moving exiting tasks or
5125 * kernel threads (both mm NULL), since they never
5128 if (p
->mm
&& printk_ratelimit())
5129 printk(KERN_INFO
"process %d (%s) no "
5130 "longer affine to cpu%d\n",
5131 p
->pid
, p
->comm
, dead_cpu
);
5133 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5138 * While a dead CPU has no uninterruptible tasks queued at this point,
5139 * it might still have a nonzero ->nr_uninterruptible counter, because
5140 * for performance reasons the counter is not stricly tracking tasks to
5141 * their home CPUs. So we just add the counter to another CPU's counter,
5142 * to keep the global sum constant after CPU-down:
5144 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5146 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5147 unsigned long flags
;
5149 local_irq_save(flags
);
5150 double_rq_lock(rq_src
, rq_dest
);
5151 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5152 rq_src
->nr_uninterruptible
= 0;
5153 double_rq_unlock(rq_src
, rq_dest
);
5154 local_irq_restore(flags
);
5157 /* Run through task list and migrate tasks from the dead cpu. */
5158 static void migrate_live_tasks(int src_cpu
)
5160 struct task_struct
*p
, *t
;
5162 write_lock_irq(&tasklist_lock
);
5164 do_each_thread(t
, p
) {
5168 if (task_cpu(p
) == src_cpu
)
5169 move_task_off_dead_cpu(src_cpu
, p
);
5170 } while_each_thread(t
, p
);
5172 write_unlock_irq(&tasklist_lock
);
5176 * Schedules idle task to be the next runnable task on current CPU.
5177 * It does so by boosting its priority to highest possible and adding it to
5178 * the _front_ of the runqueue. Used by CPU offline code.
5180 void sched_idle_next(void)
5182 int this_cpu
= smp_processor_id();
5183 struct rq
*rq
= cpu_rq(this_cpu
);
5184 struct task_struct
*p
= rq
->idle
;
5185 unsigned long flags
;
5187 /* cpu has to be offline */
5188 BUG_ON(cpu_online(this_cpu
));
5191 * Strictly not necessary since rest of the CPUs are stopped by now
5192 * and interrupts disabled on the current cpu.
5194 spin_lock_irqsave(&rq
->lock
, flags
);
5196 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5198 /* Add idle task to the _front_ of its priority queue: */
5199 activate_idle_task(p
, rq
);
5201 spin_unlock_irqrestore(&rq
->lock
, flags
);
5205 * Ensures that the idle task is using init_mm right before its cpu goes
5208 void idle_task_exit(void)
5210 struct mm_struct
*mm
= current
->active_mm
;
5212 BUG_ON(cpu_online(smp_processor_id()));
5215 switch_mm(mm
, &init_mm
, current
);
5219 /* called under rq->lock with disabled interrupts */
5220 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5222 struct rq
*rq
= cpu_rq(dead_cpu
);
5224 /* Must be exiting, otherwise would be on tasklist. */
5225 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5227 /* Cannot have done final schedule yet: would have vanished. */
5228 BUG_ON(p
->state
== TASK_DEAD
);
5233 * Drop lock around migration; if someone else moves it,
5234 * that's OK. No task can be added to this CPU, so iteration is
5236 * NOTE: interrupts should be left disabled --dev@
5238 spin_unlock(&rq
->lock
);
5239 move_task_off_dead_cpu(dead_cpu
, p
);
5240 spin_lock(&rq
->lock
);
5245 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5246 static void migrate_dead_tasks(unsigned int dead_cpu
)
5248 struct rq
*rq
= cpu_rq(dead_cpu
);
5249 struct task_struct
*next
;
5252 if (!rq
->nr_running
)
5254 update_rq_clock(rq
);
5255 next
= pick_next_task(rq
, rq
->curr
);
5258 migrate_dead(dead_cpu
, next
);
5262 #endif /* CONFIG_HOTPLUG_CPU */
5264 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5266 static struct ctl_table sd_ctl_dir
[] = {
5268 .procname
= "sched_domain",
5274 static struct ctl_table sd_ctl_root
[] = {
5276 .ctl_name
= CTL_KERN
,
5277 .procname
= "kernel",
5279 .child
= sd_ctl_dir
,
5284 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5286 struct ctl_table
*entry
=
5287 kmalloc(n
* sizeof(struct ctl_table
), GFP_KERNEL
);
5290 memset(entry
, 0, n
* sizeof(struct ctl_table
));
5296 set_table_entry(struct ctl_table
*entry
,
5297 const char *procname
, void *data
, int maxlen
,
5298 mode_t mode
, proc_handler
*proc_handler
)
5300 entry
->procname
= procname
;
5302 entry
->maxlen
= maxlen
;
5304 entry
->proc_handler
= proc_handler
;
5307 static struct ctl_table
*
5308 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5310 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5312 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5313 sizeof(long), 0644, proc_doulongvec_minmax
);
5314 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5315 sizeof(long), 0644, proc_doulongvec_minmax
);
5316 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5317 sizeof(int), 0644, proc_dointvec_minmax
);
5318 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5319 sizeof(int), 0644, proc_dointvec_minmax
);
5320 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5321 sizeof(int), 0644, proc_dointvec_minmax
);
5322 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5323 sizeof(int), 0644, proc_dointvec_minmax
);
5324 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5325 sizeof(int), 0644, proc_dointvec_minmax
);
5326 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5327 sizeof(int), 0644, proc_dointvec_minmax
);
5328 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5329 sizeof(int), 0644, proc_dointvec_minmax
);
5330 set_table_entry(&table
[10], "cache_nice_tries",
5331 &sd
->cache_nice_tries
,
5332 sizeof(int), 0644, proc_dointvec_minmax
);
5333 set_table_entry(&table
[12], "flags", &sd
->flags
,
5334 sizeof(int), 0644, proc_dointvec_minmax
);
5339 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5341 struct ctl_table
*entry
, *table
;
5342 struct sched_domain
*sd
;
5343 int domain_num
= 0, i
;
5346 for_each_domain(cpu
, sd
)
5348 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5351 for_each_domain(cpu
, sd
) {
5352 snprintf(buf
, 32, "domain%d", i
);
5353 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5355 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5362 static struct ctl_table_header
*sd_sysctl_header
;
5363 static void init_sched_domain_sysctl(void)
5365 int i
, cpu_num
= num_online_cpus();
5366 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5369 sd_ctl_dir
[0].child
= entry
;
5371 for (i
= 0; i
< cpu_num
; i
++, entry
++) {
5372 snprintf(buf
, 32, "cpu%d", i
);
5373 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5375 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5377 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5380 static void init_sched_domain_sysctl(void)
5386 * migration_call - callback that gets triggered when a CPU is added.
5387 * Here we can start up the necessary migration thread for the new CPU.
5389 static int __cpuinit
5390 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5392 struct task_struct
*p
;
5393 int cpu
= (long)hcpu
;
5394 unsigned long flags
;
5398 case CPU_LOCK_ACQUIRE
:
5399 mutex_lock(&sched_hotcpu_mutex
);
5402 case CPU_UP_PREPARE
:
5403 case CPU_UP_PREPARE_FROZEN
:
5404 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5407 kthread_bind(p
, cpu
);
5408 /* Must be high prio: stop_machine expects to yield to it. */
5409 rq
= task_rq_lock(p
, &flags
);
5410 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5411 task_rq_unlock(rq
, &flags
);
5412 cpu_rq(cpu
)->migration_thread
= p
;
5416 case CPU_ONLINE_FROZEN
:
5417 /* Strictly unneccessary, as first user will wake it. */
5418 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5421 #ifdef CONFIG_HOTPLUG_CPU
5422 case CPU_UP_CANCELED
:
5423 case CPU_UP_CANCELED_FROZEN
:
5424 if (!cpu_rq(cpu
)->migration_thread
)
5426 /* Unbind it from offline cpu so it can run. Fall thru. */
5427 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5428 any_online_cpu(cpu_online_map
));
5429 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5430 cpu_rq(cpu
)->migration_thread
= NULL
;
5434 case CPU_DEAD_FROZEN
:
5435 migrate_live_tasks(cpu
);
5437 kthread_stop(rq
->migration_thread
);
5438 rq
->migration_thread
= NULL
;
5439 /* Idle task back to normal (off runqueue, low prio) */
5440 rq
= task_rq_lock(rq
->idle
, &flags
);
5441 update_rq_clock(rq
);
5442 deactivate_task(rq
, rq
->idle
, 0);
5443 rq
->idle
->static_prio
= MAX_PRIO
;
5444 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5445 rq
->idle
->sched_class
= &idle_sched_class
;
5446 migrate_dead_tasks(cpu
);
5447 task_rq_unlock(rq
, &flags
);
5448 migrate_nr_uninterruptible(rq
);
5449 BUG_ON(rq
->nr_running
!= 0);
5451 /* No need to migrate the tasks: it was best-effort if
5452 * they didn't take sched_hotcpu_mutex. Just wake up
5453 * the requestors. */
5454 spin_lock_irq(&rq
->lock
);
5455 while (!list_empty(&rq
->migration_queue
)) {
5456 struct migration_req
*req
;
5458 req
= list_entry(rq
->migration_queue
.next
,
5459 struct migration_req
, list
);
5460 list_del_init(&req
->list
);
5461 complete(&req
->done
);
5463 spin_unlock_irq(&rq
->lock
);
5466 case CPU_LOCK_RELEASE
:
5467 mutex_unlock(&sched_hotcpu_mutex
);
5473 /* Register at highest priority so that task migration (migrate_all_tasks)
5474 * happens before everything else.
5476 static struct notifier_block __cpuinitdata migration_notifier
= {
5477 .notifier_call
= migration_call
,
5481 int __init
migration_init(void)
5483 void *cpu
= (void *)(long)smp_processor_id();
5486 /* Start one for the boot CPU: */
5487 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5488 BUG_ON(err
== NOTIFY_BAD
);
5489 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5490 register_cpu_notifier(&migration_notifier
);
5498 /* Number of possible processor ids */
5499 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5500 EXPORT_SYMBOL(nr_cpu_ids
);
5502 #undef SCHED_DOMAIN_DEBUG
5503 #ifdef SCHED_DOMAIN_DEBUG
5504 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5509 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5513 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5518 struct sched_group
*group
= sd
->groups
;
5519 cpumask_t groupmask
;
5521 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5522 cpus_clear(groupmask
);
5525 for (i
= 0; i
< level
+ 1; i
++)
5527 printk("domain %d: ", level
);
5529 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5530 printk("does not load-balance\n");
5532 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5537 printk("span %s\n", str
);
5539 if (!cpu_isset(cpu
, sd
->span
))
5540 printk(KERN_ERR
"ERROR: domain->span does not contain "
5542 if (!cpu_isset(cpu
, group
->cpumask
))
5543 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5547 for (i
= 0; i
< level
+ 2; i
++)
5553 printk(KERN_ERR
"ERROR: group is NULL\n");
5557 if (!group
->__cpu_power
) {
5559 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5563 if (!cpus_weight(group
->cpumask
)) {
5565 printk(KERN_ERR
"ERROR: empty group\n");
5568 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5570 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5573 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5575 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5578 group
= group
->next
;
5579 } while (group
!= sd
->groups
);
5582 if (!cpus_equal(sd
->span
, groupmask
))
5583 printk(KERN_ERR
"ERROR: groups don't span "
5591 if (!cpus_subset(groupmask
, sd
->span
))
5592 printk(KERN_ERR
"ERROR: parent span is not a superset "
5593 "of domain->span\n");
5598 # define sched_domain_debug(sd, cpu) do { } while (0)
5601 static int sd_degenerate(struct sched_domain
*sd
)
5603 if (cpus_weight(sd
->span
) == 1)
5606 /* Following flags need at least 2 groups */
5607 if (sd
->flags
& (SD_LOAD_BALANCE
|
5608 SD_BALANCE_NEWIDLE
|
5612 SD_SHARE_PKG_RESOURCES
)) {
5613 if (sd
->groups
!= sd
->groups
->next
)
5617 /* Following flags don't use groups */
5618 if (sd
->flags
& (SD_WAKE_IDLE
|
5627 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5629 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5631 if (sd_degenerate(parent
))
5634 if (!cpus_equal(sd
->span
, parent
->span
))
5637 /* Does parent contain flags not in child? */
5638 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5639 if (cflags
& SD_WAKE_AFFINE
)
5640 pflags
&= ~SD_WAKE_BALANCE
;
5641 /* Flags needing groups don't count if only 1 group in parent */
5642 if (parent
->groups
== parent
->groups
->next
) {
5643 pflags
&= ~(SD_LOAD_BALANCE
|
5644 SD_BALANCE_NEWIDLE
|
5648 SD_SHARE_PKG_RESOURCES
);
5650 if (~cflags
& pflags
)
5657 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5658 * hold the hotplug lock.
5660 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5662 struct rq
*rq
= cpu_rq(cpu
);
5663 struct sched_domain
*tmp
;
5665 /* Remove the sched domains which do not contribute to scheduling. */
5666 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5667 struct sched_domain
*parent
= tmp
->parent
;
5670 if (sd_parent_degenerate(tmp
, parent
)) {
5671 tmp
->parent
= parent
->parent
;
5673 parent
->parent
->child
= tmp
;
5677 if (sd
&& sd_degenerate(sd
)) {
5683 sched_domain_debug(sd
, cpu
);
5685 rcu_assign_pointer(rq
->sd
, sd
);
5688 /* cpus with isolated domains */
5689 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5691 /* Setup the mask of cpus configured for isolated domains */
5692 static int __init
isolated_cpu_setup(char *str
)
5694 int ints
[NR_CPUS
], i
;
5696 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5697 cpus_clear(cpu_isolated_map
);
5698 for (i
= 1; i
<= ints
[0]; i
++)
5699 if (ints
[i
] < NR_CPUS
)
5700 cpu_set(ints
[i
], cpu_isolated_map
);
5704 __setup ("isolcpus=", isolated_cpu_setup
);
5707 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5708 * to a function which identifies what group(along with sched group) a CPU
5709 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5710 * (due to the fact that we keep track of groups covered with a cpumask_t).
5712 * init_sched_build_groups will build a circular linked list of the groups
5713 * covered by the given span, and will set each group's ->cpumask correctly,
5714 * and ->cpu_power to 0.
5717 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5718 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5719 struct sched_group
**sg
))
5721 struct sched_group
*first
= NULL
, *last
= NULL
;
5722 cpumask_t covered
= CPU_MASK_NONE
;
5725 for_each_cpu_mask(i
, span
) {
5726 struct sched_group
*sg
;
5727 int group
= group_fn(i
, cpu_map
, &sg
);
5730 if (cpu_isset(i
, covered
))
5733 sg
->cpumask
= CPU_MASK_NONE
;
5734 sg
->__cpu_power
= 0;
5736 for_each_cpu_mask(j
, span
) {
5737 if (group_fn(j
, cpu_map
, NULL
) != group
)
5740 cpu_set(j
, covered
);
5741 cpu_set(j
, sg
->cpumask
);
5752 #define SD_NODES_PER_DOMAIN 16
5757 * find_next_best_node - find the next node to include in a sched_domain
5758 * @node: node whose sched_domain we're building
5759 * @used_nodes: nodes already in the sched_domain
5761 * Find the next node to include in a given scheduling domain. Simply
5762 * finds the closest node not already in the @used_nodes map.
5764 * Should use nodemask_t.
5766 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5768 int i
, n
, val
, min_val
, best_node
= 0;
5772 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5773 /* Start at @node */
5774 n
= (node
+ i
) % MAX_NUMNODES
;
5776 if (!nr_cpus_node(n
))
5779 /* Skip already used nodes */
5780 if (test_bit(n
, used_nodes
))
5783 /* Simple min distance search */
5784 val
= node_distance(node
, n
);
5786 if (val
< min_val
) {
5792 set_bit(best_node
, used_nodes
);
5797 * sched_domain_node_span - get a cpumask for a node's sched_domain
5798 * @node: node whose cpumask we're constructing
5799 * @size: number of nodes to include in this span
5801 * Given a node, construct a good cpumask for its sched_domain to span. It
5802 * should be one that prevents unnecessary balancing, but also spreads tasks
5805 static cpumask_t
sched_domain_node_span(int node
)
5807 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5808 cpumask_t span
, nodemask
;
5812 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5814 nodemask
= node_to_cpumask(node
);
5815 cpus_or(span
, span
, nodemask
);
5816 set_bit(node
, used_nodes
);
5818 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5819 int next_node
= find_next_best_node(node
, used_nodes
);
5821 nodemask
= node_to_cpumask(next_node
);
5822 cpus_or(span
, span
, nodemask
);
5829 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5832 * SMT sched-domains:
5834 #ifdef CONFIG_SCHED_SMT
5835 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5836 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5838 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5839 struct sched_group
**sg
)
5842 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5848 * multi-core sched-domains:
5850 #ifdef CONFIG_SCHED_MC
5851 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5852 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5855 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5856 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5857 struct sched_group
**sg
)
5860 cpumask_t mask
= cpu_sibling_map
[cpu
];
5861 cpus_and(mask
, mask
, *cpu_map
);
5862 group
= first_cpu(mask
);
5864 *sg
= &per_cpu(sched_group_core
, group
);
5867 #elif defined(CONFIG_SCHED_MC)
5868 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5869 struct sched_group
**sg
)
5872 *sg
= &per_cpu(sched_group_core
, cpu
);
5877 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5878 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5880 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5881 struct sched_group
**sg
)
5884 #ifdef CONFIG_SCHED_MC
5885 cpumask_t mask
= cpu_coregroup_map(cpu
);
5886 cpus_and(mask
, mask
, *cpu_map
);
5887 group
= first_cpu(mask
);
5888 #elif defined(CONFIG_SCHED_SMT)
5889 cpumask_t mask
= cpu_sibling_map
[cpu
];
5890 cpus_and(mask
, mask
, *cpu_map
);
5891 group
= first_cpu(mask
);
5896 *sg
= &per_cpu(sched_group_phys
, group
);
5902 * The init_sched_build_groups can't handle what we want to do with node
5903 * groups, so roll our own. Now each node has its own list of groups which
5904 * gets dynamically allocated.
5906 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5907 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5909 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5910 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5912 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5913 struct sched_group
**sg
)
5915 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5918 cpus_and(nodemask
, nodemask
, *cpu_map
);
5919 group
= first_cpu(nodemask
);
5922 *sg
= &per_cpu(sched_group_allnodes
, group
);
5926 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5928 struct sched_group
*sg
= group_head
;
5934 for_each_cpu_mask(j
, sg
->cpumask
) {
5935 struct sched_domain
*sd
;
5937 sd
= &per_cpu(phys_domains
, j
);
5938 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5940 * Only add "power" once for each
5946 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5949 if (sg
!= group_head
)
5955 /* Free memory allocated for various sched_group structures */
5956 static void free_sched_groups(const cpumask_t
*cpu_map
)
5960 for_each_cpu_mask(cpu
, *cpu_map
) {
5961 struct sched_group
**sched_group_nodes
5962 = sched_group_nodes_bycpu
[cpu
];
5964 if (!sched_group_nodes
)
5967 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5968 cpumask_t nodemask
= node_to_cpumask(i
);
5969 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5971 cpus_and(nodemask
, nodemask
, *cpu_map
);
5972 if (cpus_empty(nodemask
))
5982 if (oldsg
!= sched_group_nodes
[i
])
5985 kfree(sched_group_nodes
);
5986 sched_group_nodes_bycpu
[cpu
] = NULL
;
5990 static void free_sched_groups(const cpumask_t
*cpu_map
)
5996 * Initialize sched groups cpu_power.
5998 * cpu_power indicates the capacity of sched group, which is used while
5999 * distributing the load between different sched groups in a sched domain.
6000 * Typically cpu_power for all the groups in a sched domain will be same unless
6001 * there are asymmetries in the topology. If there are asymmetries, group
6002 * having more cpu_power will pickup more load compared to the group having
6005 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6006 * the maximum number of tasks a group can handle in the presence of other idle
6007 * or lightly loaded groups in the same sched domain.
6009 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6011 struct sched_domain
*child
;
6012 struct sched_group
*group
;
6014 WARN_ON(!sd
|| !sd
->groups
);
6016 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6021 sd
->groups
->__cpu_power
= 0;
6024 * For perf policy, if the groups in child domain share resources
6025 * (for example cores sharing some portions of the cache hierarchy
6026 * or SMT), then set this domain groups cpu_power such that each group
6027 * can handle only one task, when there are other idle groups in the
6028 * same sched domain.
6030 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6032 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6033 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6038 * add cpu_power of each child group to this groups cpu_power
6040 group
= child
->groups
;
6042 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6043 group
= group
->next
;
6044 } while (group
!= child
->groups
);
6048 * Build sched domains for a given set of cpus and attach the sched domains
6049 * to the individual cpus
6051 static int build_sched_domains(const cpumask_t
*cpu_map
)
6055 struct sched_group
**sched_group_nodes
= NULL
;
6056 int sd_allnodes
= 0;
6059 * Allocate the per-node list of sched groups
6061 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6063 if (!sched_group_nodes
) {
6064 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6067 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6071 * Set up domains for cpus specified by the cpu_map.
6073 for_each_cpu_mask(i
, *cpu_map
) {
6074 struct sched_domain
*sd
= NULL
, *p
;
6075 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6077 cpus_and(nodemask
, nodemask
, *cpu_map
);
6080 if (cpus_weight(*cpu_map
) >
6081 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6082 sd
= &per_cpu(allnodes_domains
, i
);
6083 *sd
= SD_ALLNODES_INIT
;
6084 sd
->span
= *cpu_map
;
6085 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6091 sd
= &per_cpu(node_domains
, i
);
6093 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6097 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6101 sd
= &per_cpu(phys_domains
, i
);
6103 sd
->span
= nodemask
;
6107 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6109 #ifdef CONFIG_SCHED_MC
6111 sd
= &per_cpu(core_domains
, i
);
6113 sd
->span
= cpu_coregroup_map(i
);
6114 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6117 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6120 #ifdef CONFIG_SCHED_SMT
6122 sd
= &per_cpu(cpu_domains
, i
);
6123 *sd
= SD_SIBLING_INIT
;
6124 sd
->span
= cpu_sibling_map
[i
];
6125 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6128 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6132 #ifdef CONFIG_SCHED_SMT
6133 /* Set up CPU (sibling) groups */
6134 for_each_cpu_mask(i
, *cpu_map
) {
6135 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6136 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6137 if (i
!= first_cpu(this_sibling_map
))
6140 init_sched_build_groups(this_sibling_map
, cpu_map
,
6145 #ifdef CONFIG_SCHED_MC
6146 /* Set up multi-core groups */
6147 for_each_cpu_mask(i
, *cpu_map
) {
6148 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6149 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6150 if (i
!= first_cpu(this_core_map
))
6152 init_sched_build_groups(this_core_map
, cpu_map
,
6153 &cpu_to_core_group
);
6157 /* Set up physical groups */
6158 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6159 cpumask_t nodemask
= node_to_cpumask(i
);
6161 cpus_and(nodemask
, nodemask
, *cpu_map
);
6162 if (cpus_empty(nodemask
))
6165 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6169 /* Set up node groups */
6171 init_sched_build_groups(*cpu_map
, cpu_map
,
6172 &cpu_to_allnodes_group
);
6174 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6175 /* Set up node groups */
6176 struct sched_group
*sg
, *prev
;
6177 cpumask_t nodemask
= node_to_cpumask(i
);
6178 cpumask_t domainspan
;
6179 cpumask_t covered
= CPU_MASK_NONE
;
6182 cpus_and(nodemask
, nodemask
, *cpu_map
);
6183 if (cpus_empty(nodemask
)) {
6184 sched_group_nodes
[i
] = NULL
;
6188 domainspan
= sched_domain_node_span(i
);
6189 cpus_and(domainspan
, domainspan
, *cpu_map
);
6191 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6193 printk(KERN_WARNING
"Can not alloc domain group for "
6197 sched_group_nodes
[i
] = sg
;
6198 for_each_cpu_mask(j
, nodemask
) {
6199 struct sched_domain
*sd
;
6201 sd
= &per_cpu(node_domains
, j
);
6204 sg
->__cpu_power
= 0;
6205 sg
->cpumask
= nodemask
;
6207 cpus_or(covered
, covered
, nodemask
);
6210 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6211 cpumask_t tmp
, notcovered
;
6212 int n
= (i
+ j
) % MAX_NUMNODES
;
6214 cpus_complement(notcovered
, covered
);
6215 cpus_and(tmp
, notcovered
, *cpu_map
);
6216 cpus_and(tmp
, tmp
, domainspan
);
6217 if (cpus_empty(tmp
))
6220 nodemask
= node_to_cpumask(n
);
6221 cpus_and(tmp
, tmp
, nodemask
);
6222 if (cpus_empty(tmp
))
6225 sg
= kmalloc_node(sizeof(struct sched_group
),
6229 "Can not alloc domain group for node %d\n", j
);
6232 sg
->__cpu_power
= 0;
6234 sg
->next
= prev
->next
;
6235 cpus_or(covered
, covered
, tmp
);
6242 /* Calculate CPU power for physical packages and nodes */
6243 #ifdef CONFIG_SCHED_SMT
6244 for_each_cpu_mask(i
, *cpu_map
) {
6245 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6247 init_sched_groups_power(i
, sd
);
6250 #ifdef CONFIG_SCHED_MC
6251 for_each_cpu_mask(i
, *cpu_map
) {
6252 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6254 init_sched_groups_power(i
, sd
);
6258 for_each_cpu_mask(i
, *cpu_map
) {
6259 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6261 init_sched_groups_power(i
, sd
);
6265 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6266 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6269 struct sched_group
*sg
;
6271 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6272 init_numa_sched_groups_power(sg
);
6276 /* Attach the domains */
6277 for_each_cpu_mask(i
, *cpu_map
) {
6278 struct sched_domain
*sd
;
6279 #ifdef CONFIG_SCHED_SMT
6280 sd
= &per_cpu(cpu_domains
, i
);
6281 #elif defined(CONFIG_SCHED_MC)
6282 sd
= &per_cpu(core_domains
, i
);
6284 sd
= &per_cpu(phys_domains
, i
);
6286 cpu_attach_domain(sd
, i
);
6293 free_sched_groups(cpu_map
);
6298 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6300 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6302 cpumask_t cpu_default_map
;
6306 * Setup mask for cpus without special case scheduling requirements.
6307 * For now this just excludes isolated cpus, but could be used to
6308 * exclude other special cases in the future.
6310 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6312 err
= build_sched_domains(&cpu_default_map
);
6317 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6319 free_sched_groups(cpu_map
);
6323 * Detach sched domains from a group of cpus specified in cpu_map
6324 * These cpus will now be attached to the NULL domain
6326 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6330 for_each_cpu_mask(i
, *cpu_map
)
6331 cpu_attach_domain(NULL
, i
);
6332 synchronize_sched();
6333 arch_destroy_sched_domains(cpu_map
);
6337 * Partition sched domains as specified by the cpumasks below.
6338 * This attaches all cpus from the cpumasks to the NULL domain,
6339 * waits for a RCU quiescent period, recalculates sched
6340 * domain information and then attaches them back to the
6341 * correct sched domains
6342 * Call with hotplug lock held
6344 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6346 cpumask_t change_map
;
6349 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6350 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6351 cpus_or(change_map
, *partition1
, *partition2
);
6353 /* Detach sched domains from all of the affected cpus */
6354 detach_destroy_domains(&change_map
);
6355 if (!cpus_empty(*partition1
))
6356 err
= build_sched_domains(partition1
);
6357 if (!err
&& !cpus_empty(*partition2
))
6358 err
= build_sched_domains(partition2
);
6363 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6364 static int arch_reinit_sched_domains(void)
6368 mutex_lock(&sched_hotcpu_mutex
);
6369 detach_destroy_domains(&cpu_online_map
);
6370 err
= arch_init_sched_domains(&cpu_online_map
);
6371 mutex_unlock(&sched_hotcpu_mutex
);
6376 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6380 if (buf
[0] != '0' && buf
[0] != '1')
6384 sched_smt_power_savings
= (buf
[0] == '1');
6386 sched_mc_power_savings
= (buf
[0] == '1');
6388 ret
= arch_reinit_sched_domains();
6390 return ret
? ret
: count
;
6393 #ifdef CONFIG_SCHED_MC
6394 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6396 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6398 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6399 const char *buf
, size_t count
)
6401 return sched_power_savings_store(buf
, count
, 0);
6403 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6404 sched_mc_power_savings_store
);
6407 #ifdef CONFIG_SCHED_SMT
6408 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6410 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6412 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6413 const char *buf
, size_t count
)
6415 return sched_power_savings_store(buf
, count
, 1);
6417 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6418 sched_smt_power_savings_store
);
6421 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6425 #ifdef CONFIG_SCHED_SMT
6427 err
= sysfs_create_file(&cls
->kset
.kobj
,
6428 &attr_sched_smt_power_savings
.attr
);
6430 #ifdef CONFIG_SCHED_MC
6431 if (!err
&& mc_capable())
6432 err
= sysfs_create_file(&cls
->kset
.kobj
,
6433 &attr_sched_mc_power_savings
.attr
);
6440 * Force a reinitialization of the sched domains hierarchy. The domains
6441 * and groups cannot be updated in place without racing with the balancing
6442 * code, so we temporarily attach all running cpus to the NULL domain
6443 * which will prevent rebalancing while the sched domains are recalculated.
6445 static int update_sched_domains(struct notifier_block
*nfb
,
6446 unsigned long action
, void *hcpu
)
6449 case CPU_UP_PREPARE
:
6450 case CPU_UP_PREPARE_FROZEN
:
6451 case CPU_DOWN_PREPARE
:
6452 case CPU_DOWN_PREPARE_FROZEN
:
6453 detach_destroy_domains(&cpu_online_map
);
6456 case CPU_UP_CANCELED
:
6457 case CPU_UP_CANCELED_FROZEN
:
6458 case CPU_DOWN_FAILED
:
6459 case CPU_DOWN_FAILED_FROZEN
:
6461 case CPU_ONLINE_FROZEN
:
6463 case CPU_DEAD_FROZEN
:
6465 * Fall through and re-initialise the domains.
6472 /* The hotplug lock is already held by cpu_up/cpu_down */
6473 arch_init_sched_domains(&cpu_online_map
);
6478 void __init
sched_init_smp(void)
6480 cpumask_t non_isolated_cpus
;
6482 mutex_lock(&sched_hotcpu_mutex
);
6483 arch_init_sched_domains(&cpu_online_map
);
6484 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6485 if (cpus_empty(non_isolated_cpus
))
6486 cpu_set(smp_processor_id(), non_isolated_cpus
);
6487 mutex_unlock(&sched_hotcpu_mutex
);
6488 /* XXX: Theoretical race here - CPU may be hotplugged now */
6489 hotcpu_notifier(update_sched_domains
, 0);
6491 init_sched_domain_sysctl();
6493 /* Move init over to a non-isolated CPU */
6494 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6496 sched_init_granularity();
6499 void __init
sched_init_smp(void)
6501 sched_init_granularity();
6503 #endif /* CONFIG_SMP */
6505 int in_sched_functions(unsigned long addr
)
6507 /* Linker adds these: start and end of __sched functions */
6508 extern char __sched_text_start
[], __sched_text_end
[];
6510 return in_lock_functions(addr
) ||
6511 (addr
>= (unsigned long)__sched_text_start
6512 && addr
< (unsigned long)__sched_text_end
);
6515 static inline void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6517 cfs_rq
->tasks_timeline
= RB_ROOT
;
6518 cfs_rq
->fair_clock
= 1;
6519 #ifdef CONFIG_FAIR_GROUP_SCHED
6524 void __init
sched_init(void)
6526 u64 now
= sched_clock();
6527 int highest_cpu
= 0;
6531 * Link up the scheduling class hierarchy:
6533 rt_sched_class
.next
= &fair_sched_class
;
6534 fair_sched_class
.next
= &idle_sched_class
;
6535 idle_sched_class
.next
= NULL
;
6537 for_each_possible_cpu(i
) {
6538 struct rt_prio_array
*array
;
6542 spin_lock_init(&rq
->lock
);
6543 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6546 init_cfs_rq(&rq
->cfs
, rq
);
6547 #ifdef CONFIG_FAIR_GROUP_SCHED
6548 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6549 list_add(&rq
->cfs
.leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6551 rq
->ls
.load_update_last
= now
;
6552 rq
->ls
.load_update_start
= now
;
6554 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6555 rq
->cpu_load
[j
] = 0;
6558 rq
->active_balance
= 0;
6559 rq
->next_balance
= jiffies
;
6562 rq
->migration_thread
= NULL
;
6563 INIT_LIST_HEAD(&rq
->migration_queue
);
6565 atomic_set(&rq
->nr_iowait
, 0);
6567 array
= &rq
->rt
.active
;
6568 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6569 INIT_LIST_HEAD(array
->queue
+ j
);
6570 __clear_bit(j
, array
->bitmap
);
6573 /* delimiter for bitsearch: */
6574 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6577 set_load_weight(&init_task
);
6579 #ifdef CONFIG_PREEMPT_NOTIFIERS
6580 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6584 nr_cpu_ids
= highest_cpu
+ 1;
6585 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6588 #ifdef CONFIG_RT_MUTEXES
6589 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6593 * The boot idle thread does lazy MMU switching as well:
6595 atomic_inc(&init_mm
.mm_count
);
6596 enter_lazy_tlb(&init_mm
, current
);
6599 * Make us the idle thread. Technically, schedule() should not be
6600 * called from this thread, however somewhere below it might be,
6601 * but because we are the idle thread, we just pick up running again
6602 * when this runqueue becomes "idle".
6604 init_idle(current
, smp_processor_id());
6606 * During early bootup we pretend to be a normal task:
6608 current
->sched_class
= &fair_sched_class
;
6611 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6612 void __might_sleep(char *file
, int line
)
6615 static unsigned long prev_jiffy
; /* ratelimiting */
6617 if ((in_atomic() || irqs_disabled()) &&
6618 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6619 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6621 prev_jiffy
= jiffies
;
6622 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6623 " context at %s:%d\n", file
, line
);
6624 printk("in_atomic():%d, irqs_disabled():%d\n",
6625 in_atomic(), irqs_disabled());
6626 debug_show_held_locks(current
);
6627 if (irqs_disabled())
6628 print_irqtrace_events(current
);
6633 EXPORT_SYMBOL(__might_sleep
);
6636 #ifdef CONFIG_MAGIC_SYSRQ
6637 void normalize_rt_tasks(void)
6639 struct task_struct
*g
, *p
;
6640 unsigned long flags
;
6644 read_lock_irq(&tasklist_lock
);
6645 do_each_thread(g
, p
) {
6647 p
->se
.wait_runtime
= 0;
6648 p
->se
.exec_start
= 0;
6649 p
->se
.wait_start_fair
= 0;
6650 p
->se
.sleep_start_fair
= 0;
6651 #ifdef CONFIG_SCHEDSTATS
6652 p
->se
.wait_start
= 0;
6653 p
->se
.sleep_start
= 0;
6654 p
->se
.block_start
= 0;
6656 task_rq(p
)->cfs
.fair_clock
= 0;
6657 task_rq(p
)->clock
= 0;
6661 * Renice negative nice level userspace
6664 if (TASK_NICE(p
) < 0 && p
->mm
)
6665 set_user_nice(p
, 0);
6669 spin_lock_irqsave(&p
->pi_lock
, flags
);
6670 rq
= __task_rq_lock(p
);
6673 * Do not touch the migration thread:
6675 if (p
== rq
->migration_thread
)
6679 update_rq_clock(rq
);
6680 on_rq
= p
->se
.on_rq
;
6682 deactivate_task(rq
, p
, 0);
6683 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6685 activate_task(rq
, p
, 0);
6686 resched_task(rq
->curr
);
6691 __task_rq_unlock(rq
);
6692 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6693 } while_each_thread(g
, p
);
6695 read_unlock_irq(&tasklist_lock
);
6698 #endif /* CONFIG_MAGIC_SYSRQ */
6702 * These functions are only useful for the IA64 MCA handling.
6704 * They can only be called when the whole system has been
6705 * stopped - every CPU needs to be quiescent, and no scheduling
6706 * activity can take place. Using them for anything else would
6707 * be a serious bug, and as a result, they aren't even visible
6708 * under any other configuration.
6712 * curr_task - return the current task for a given cpu.
6713 * @cpu: the processor in question.
6715 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6717 struct task_struct
*curr_task(int cpu
)
6719 return cpu_curr(cpu
);
6723 * set_curr_task - set the current task for a given cpu.
6724 * @cpu: the processor in question.
6725 * @p: the task pointer to set.
6727 * Description: This function must only be used when non-maskable interrupts
6728 * are serviced on a separate stack. It allows the architecture to switch the
6729 * notion of the current task on a cpu in a non-blocking manner. This function
6730 * must be called with all CPU's synchronized, and interrupts disabled, the
6731 * and caller must save the original value of the current task (see
6732 * curr_task() above) and restore that value before reenabling interrupts and
6733 * re-starting the system.
6735 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6737 void set_curr_task(int cpu
, struct task_struct
*p
)