MAINTAINERS: remove stale reference to Chris Wright's LSM tree
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / lib / flex_array.c
blobcab7621f98aa1130f99de9b9949851e56b4cdc4d
1 /*
2 * Flexible array managed in PAGE_SIZE parts
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2009
20 * Author: Dave Hansen <dave@linux.vnet.ibm.com>
23 #include <linux/flex_array.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/module.h>
28 struct flex_array_part {
29 char elements[FLEX_ARRAY_PART_SIZE];
33 * If a user requests an allocation which is small
34 * enough, we may simply use the space in the
35 * flex_array->parts[] array to store the user
36 * data.
38 static inline int elements_fit_in_base(struct flex_array *fa)
40 int data_size = fa->element_size * fa->total_nr_elements;
41 if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
42 return 1;
43 return 0;
46 /**
47 * flex_array_alloc - allocate a new flexible array
48 * @element_size: the size of individual elements in the array
49 * @total: total number of elements that this should hold
50 * @flags: page allocation flags to use for base array
52 * Note: all locking must be provided by the caller.
54 * @total is used to size internal structures. If the user ever
55 * accesses any array indexes >=@total, it will produce errors.
57 * The maximum number of elements is defined as: the number of
58 * elements that can be stored in a page times the number of
59 * page pointers that we can fit in the base structure or (using
60 * integer math):
62 * (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
64 * Here's a table showing example capacities. Note that the maximum
65 * index that the get/put() functions is just nr_objects-1. This
66 * basically means that you get 4MB of storage on 32-bit and 2MB on
67 * 64-bit.
70 * Element size | Objects | Objects |
71 * PAGE_SIZE=4k | 32-bit | 64-bit |
72 * ---------------------------------|
73 * 1 bytes | 4186112 | 2093056 |
74 * 2 bytes | 2093056 | 1046528 |
75 * 3 bytes | 1395030 | 697515 |
76 * 4 bytes | 1046528 | 523264 |
77 * 32 bytes | 130816 | 65408 |
78 * 33 bytes | 126728 | 63364 |
79 * 2048 bytes | 2044 | 1022 |
80 * 2049 bytes | 1022 | 511 |
81 * void * | 1046528 | 261632 |
83 * Since 64-bit pointers are twice the size, we lose half the
84 * capacity in the base structure. Also note that no effort is made
85 * to efficiently pack objects across page boundaries.
87 struct flex_array *flex_array_alloc(int element_size, unsigned int total,
88 gfp_t flags)
90 struct flex_array *ret;
91 int max_size = 0;
93 if (element_size)
94 max_size = FLEX_ARRAY_NR_BASE_PTRS *
95 FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
97 /* max_size will end up 0 if element_size > PAGE_SIZE */
98 if (total > max_size)
99 return NULL;
100 ret = kzalloc(sizeof(struct flex_array), flags);
101 if (!ret)
102 return NULL;
103 ret->element_size = element_size;
104 ret->total_nr_elements = total;
105 if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
106 memset(&ret->parts[0], FLEX_ARRAY_FREE,
107 FLEX_ARRAY_BASE_BYTES_LEFT);
108 return ret;
110 EXPORT_SYMBOL(flex_array_alloc);
112 static int fa_element_to_part_nr(struct flex_array *fa,
113 unsigned int element_nr)
115 return element_nr / FLEX_ARRAY_ELEMENTS_PER_PART(fa->element_size);
119 * flex_array_free_parts - just free the second-level pages
120 * @fa: the flex array from which to free parts
122 * This is to be used in cases where the base 'struct flex_array'
123 * has been statically allocated and should not be free.
125 void flex_array_free_parts(struct flex_array *fa)
127 int part_nr;
129 if (elements_fit_in_base(fa))
130 return;
131 for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
132 kfree(fa->parts[part_nr]);
134 EXPORT_SYMBOL(flex_array_free_parts);
136 void flex_array_free(struct flex_array *fa)
138 flex_array_free_parts(fa);
139 kfree(fa);
141 EXPORT_SYMBOL(flex_array_free);
143 static unsigned int index_inside_part(struct flex_array *fa,
144 unsigned int element_nr)
146 unsigned int part_offset;
148 part_offset = element_nr %
149 FLEX_ARRAY_ELEMENTS_PER_PART(fa->element_size);
150 return part_offset * fa->element_size;
153 static struct flex_array_part *
154 __fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
156 struct flex_array_part *part = fa->parts[part_nr];
157 if (!part) {
158 part = kmalloc(sizeof(struct flex_array_part), flags);
159 if (!part)
160 return NULL;
161 if (!(flags & __GFP_ZERO))
162 memset(part, FLEX_ARRAY_FREE,
163 sizeof(struct flex_array_part));
164 fa->parts[part_nr] = part;
166 return part;
170 * flex_array_put - copy data into the array at @element_nr
171 * @fa: the flex array to copy data into
172 * @element_nr: index of the position in which to insert
173 * the new element.
174 * @src: address of data to copy into the array
175 * @flags: page allocation flags to use for array expansion
178 * Note that this *copies* the contents of @src into
179 * the array. If you are trying to store an array of
180 * pointers, make sure to pass in &ptr instead of ptr.
181 * You may instead wish to use the flex_array_put_ptr()
182 * helper function.
184 * Locking must be provided by the caller.
186 int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
187 gfp_t flags)
189 int part_nr;
190 struct flex_array_part *part;
191 void *dst;
193 if (element_nr >= fa->total_nr_elements)
194 return -ENOSPC;
195 if (!fa->element_size)
196 return 0;
197 if (elements_fit_in_base(fa))
198 part = (struct flex_array_part *)&fa->parts[0];
199 else {
200 part_nr = fa_element_to_part_nr(fa, element_nr);
201 part = __fa_get_part(fa, part_nr, flags);
202 if (!part)
203 return -ENOMEM;
205 dst = &part->elements[index_inside_part(fa, element_nr)];
206 memcpy(dst, src, fa->element_size);
207 return 0;
209 EXPORT_SYMBOL(flex_array_put);
212 * flex_array_clear - clear element in array at @element_nr
213 * @fa: the flex array of the element.
214 * @element_nr: index of the position to clear.
216 * Locking must be provided by the caller.
218 int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
220 int part_nr;
221 struct flex_array_part *part;
222 void *dst;
224 if (element_nr >= fa->total_nr_elements)
225 return -ENOSPC;
226 if (!fa->element_size)
227 return 0;
228 if (elements_fit_in_base(fa))
229 part = (struct flex_array_part *)&fa->parts[0];
230 else {
231 part_nr = fa_element_to_part_nr(fa, element_nr);
232 part = fa->parts[part_nr];
233 if (!part)
234 return -EINVAL;
236 dst = &part->elements[index_inside_part(fa, element_nr)];
237 memset(dst, FLEX_ARRAY_FREE, fa->element_size);
238 return 0;
240 EXPORT_SYMBOL(flex_array_clear);
243 * flex_array_prealloc - guarantee that array space exists
244 * @fa: the flex array for which to preallocate parts
245 * @start: index of first array element for which space is allocated
246 * @nr_elements: number of elements for which space is allocated
247 * @flags: page allocation flags
249 * This will guarantee that no future calls to flex_array_put()
250 * will allocate memory. It can be used if you are expecting to
251 * be holding a lock or in some atomic context while writing
252 * data into the array.
254 * Locking must be provided by the caller.
256 int flex_array_prealloc(struct flex_array *fa, unsigned int start,
257 unsigned int nr_elements, gfp_t flags)
259 int start_part;
260 int end_part;
261 int part_nr;
262 unsigned int end;
263 struct flex_array_part *part;
265 if (!start && !nr_elements)
266 return 0;
267 if (start >= fa->total_nr_elements)
268 return -ENOSPC;
269 if (!nr_elements)
270 return 0;
272 end = start + nr_elements - 1;
274 if (end >= fa->total_nr_elements)
275 return -ENOSPC;
276 if (!fa->element_size)
277 return 0;
278 if (elements_fit_in_base(fa))
279 return 0;
280 start_part = fa_element_to_part_nr(fa, start);
281 end_part = fa_element_to_part_nr(fa, end);
282 for (part_nr = start_part; part_nr <= end_part; part_nr++) {
283 part = __fa_get_part(fa, part_nr, flags);
284 if (!part)
285 return -ENOMEM;
287 return 0;
289 EXPORT_SYMBOL(flex_array_prealloc);
292 * flex_array_get - pull data back out of the array
293 * @fa: the flex array from which to extract data
294 * @element_nr: index of the element to fetch from the array
296 * Returns a pointer to the data at index @element_nr. Note
297 * that this is a copy of the data that was passed in. If you
298 * are using this to store pointers, you'll get back &ptr. You
299 * may instead wish to use the flex_array_get_ptr helper.
301 * Locking must be provided by the caller.
303 void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
305 int part_nr;
306 struct flex_array_part *part;
308 if (!fa->element_size)
309 return NULL;
310 if (element_nr >= fa->total_nr_elements)
311 return NULL;
312 if (elements_fit_in_base(fa))
313 part = (struct flex_array_part *)&fa->parts[0];
314 else {
315 part_nr = fa_element_to_part_nr(fa, element_nr);
316 part = fa->parts[part_nr];
317 if (!part)
318 return NULL;
320 return &part->elements[index_inside_part(fa, element_nr)];
322 EXPORT_SYMBOL(flex_array_get);
325 * flex_array_get_ptr - pull a ptr back out of the array
326 * @fa: the flex array from which to extract data
327 * @element_nr: index of the element to fetch from the array
329 * Returns the pointer placed in the flex array at element_nr using
330 * flex_array_put_ptr(). This function should not be called if the
331 * element in question was not set using the _put_ptr() helper.
333 void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
335 void **tmp;
337 tmp = flex_array_get(fa, element_nr);
338 if (!tmp)
339 return NULL;
341 return *tmp;
343 EXPORT_SYMBOL(flex_array_get_ptr);
345 static int part_is_free(struct flex_array_part *part)
347 int i;
349 for (i = 0; i < sizeof(struct flex_array_part); i++)
350 if (part->elements[i] != FLEX_ARRAY_FREE)
351 return 0;
352 return 1;
356 * flex_array_shrink - free unused second-level pages
357 * @fa: the flex array to shrink
359 * Frees all second-level pages that consist solely of unused
360 * elements. Returns the number of pages freed.
362 * Locking must be provided by the caller.
364 int flex_array_shrink(struct flex_array *fa)
366 struct flex_array_part *part;
367 int part_nr;
368 int ret = 0;
370 if (!fa->total_nr_elements || !fa->element_size)
371 return 0;
372 if (elements_fit_in_base(fa))
373 return ret;
374 for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
375 part = fa->parts[part_nr];
376 if (!part)
377 continue;
378 if (part_is_free(part)) {
379 fa->parts[part_nr] = NULL;
380 kfree(part);
381 ret++;
384 return ret;
386 EXPORT_SYMBOL(flex_array_shrink);