KVM: VMX: Move rmode structure to vmx-specific code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / vmx.c
blobae682929a6428e9c4d67441af22442067f1eba64
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "mmu.h"
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
35 #include <asm/mce.h>
37 #define __ex(x) __kvm_handle_fault_on_reboot(x)
39 MODULE_AUTHOR("Qumranet");
40 MODULE_LICENSE("GPL");
42 static int __read_mostly bypass_guest_pf = 1;
43 module_param(bypass_guest_pf, bool, S_IRUGO);
45 static int __read_mostly enable_vpid = 1;
46 module_param_named(vpid, enable_vpid, bool, 0444);
48 static int __read_mostly flexpriority_enabled = 1;
49 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
51 static int __read_mostly enable_ept = 1;
52 module_param_named(ept, enable_ept, bool, S_IRUGO);
54 static int __read_mostly enable_unrestricted_guest = 1;
55 module_param_named(unrestricted_guest,
56 enable_unrestricted_guest, bool, S_IRUGO);
58 static int __read_mostly emulate_invalid_guest_state = 0;
59 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
61 struct vmcs {
62 u32 revision_id;
63 u32 abort;
64 char data[0];
67 struct vcpu_vmx {
68 struct kvm_vcpu vcpu;
69 struct list_head local_vcpus_link;
70 unsigned long host_rsp;
71 int launched;
72 u8 fail;
73 u32 idt_vectoring_info;
74 struct kvm_msr_entry *guest_msrs;
75 struct kvm_msr_entry *host_msrs;
76 int nmsrs;
77 int save_nmsrs;
78 int msr_offset_efer;
79 #ifdef CONFIG_X86_64
80 int msr_offset_kernel_gs_base;
81 #endif
82 struct vmcs *vmcs;
83 struct {
84 int loaded;
85 u16 fs_sel, gs_sel, ldt_sel;
86 int gs_ldt_reload_needed;
87 int fs_reload_needed;
88 int guest_efer_loaded;
89 } host_state;
90 struct {
91 int vm86_active;
92 u8 save_iopl;
93 struct kvm_save_segment {
94 u16 selector;
95 unsigned long base;
96 u32 limit;
97 u32 ar;
98 } tr, es, ds, fs, gs;
99 struct {
100 bool pending;
101 u8 vector;
102 unsigned rip;
103 } irq;
104 } rmode;
105 int vpid;
106 bool emulation_required;
107 enum emulation_result invalid_state_emulation_result;
109 /* Support for vnmi-less CPUs */
110 int soft_vnmi_blocked;
111 ktime_t entry_time;
112 s64 vnmi_blocked_time;
113 u32 exit_reason;
116 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
118 return container_of(vcpu, struct vcpu_vmx, vcpu);
121 static int init_rmode(struct kvm *kvm);
122 static u64 construct_eptp(unsigned long root_hpa);
124 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
125 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
126 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
128 static unsigned long *vmx_io_bitmap_a;
129 static unsigned long *vmx_io_bitmap_b;
130 static unsigned long *vmx_msr_bitmap_legacy;
131 static unsigned long *vmx_msr_bitmap_longmode;
133 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
134 static DEFINE_SPINLOCK(vmx_vpid_lock);
136 static struct vmcs_config {
137 int size;
138 int order;
139 u32 revision_id;
140 u32 pin_based_exec_ctrl;
141 u32 cpu_based_exec_ctrl;
142 u32 cpu_based_2nd_exec_ctrl;
143 u32 vmexit_ctrl;
144 u32 vmentry_ctrl;
145 } vmcs_config;
147 static struct vmx_capability {
148 u32 ept;
149 u32 vpid;
150 } vmx_capability;
152 #define VMX_SEGMENT_FIELD(seg) \
153 [VCPU_SREG_##seg] = { \
154 .selector = GUEST_##seg##_SELECTOR, \
155 .base = GUEST_##seg##_BASE, \
156 .limit = GUEST_##seg##_LIMIT, \
157 .ar_bytes = GUEST_##seg##_AR_BYTES, \
160 static struct kvm_vmx_segment_field {
161 unsigned selector;
162 unsigned base;
163 unsigned limit;
164 unsigned ar_bytes;
165 } kvm_vmx_segment_fields[] = {
166 VMX_SEGMENT_FIELD(CS),
167 VMX_SEGMENT_FIELD(DS),
168 VMX_SEGMENT_FIELD(ES),
169 VMX_SEGMENT_FIELD(FS),
170 VMX_SEGMENT_FIELD(GS),
171 VMX_SEGMENT_FIELD(SS),
172 VMX_SEGMENT_FIELD(TR),
173 VMX_SEGMENT_FIELD(LDTR),
176 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
179 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
180 * away by decrementing the array size.
182 static const u32 vmx_msr_index[] = {
183 #ifdef CONFIG_X86_64
184 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
185 #endif
186 MSR_EFER, MSR_K6_STAR,
188 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
190 static void load_msrs(struct kvm_msr_entry *e, int n)
192 int i;
194 for (i = 0; i < n; ++i)
195 wrmsrl(e[i].index, e[i].data);
198 static void save_msrs(struct kvm_msr_entry *e, int n)
200 int i;
202 for (i = 0; i < n; ++i)
203 rdmsrl(e[i].index, e[i].data);
206 static inline int is_page_fault(u32 intr_info)
208 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
209 INTR_INFO_VALID_MASK)) ==
210 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
213 static inline int is_no_device(u32 intr_info)
215 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
216 INTR_INFO_VALID_MASK)) ==
217 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
220 static inline int is_invalid_opcode(u32 intr_info)
222 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
223 INTR_INFO_VALID_MASK)) ==
224 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
227 static inline int is_external_interrupt(u32 intr_info)
229 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
230 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
233 static inline int is_machine_check(u32 intr_info)
235 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
236 INTR_INFO_VALID_MASK)) ==
237 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
240 static inline int cpu_has_vmx_msr_bitmap(void)
242 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
245 static inline int cpu_has_vmx_tpr_shadow(void)
247 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
250 static inline int vm_need_tpr_shadow(struct kvm *kvm)
252 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
255 static inline int cpu_has_secondary_exec_ctrls(void)
257 return vmcs_config.cpu_based_exec_ctrl &
258 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
261 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
263 return vmcs_config.cpu_based_2nd_exec_ctrl &
264 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
267 static inline bool cpu_has_vmx_flexpriority(void)
269 return cpu_has_vmx_tpr_shadow() &&
270 cpu_has_vmx_virtualize_apic_accesses();
273 static inline int cpu_has_vmx_invept_individual_addr(void)
275 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
278 static inline int cpu_has_vmx_invept_context(void)
280 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
283 static inline int cpu_has_vmx_invept_global(void)
285 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
288 static inline int cpu_has_vmx_ept(void)
290 return vmcs_config.cpu_based_2nd_exec_ctrl &
291 SECONDARY_EXEC_ENABLE_EPT;
294 static inline int cpu_has_vmx_unrestricted_guest(void)
296 return vmcs_config.cpu_based_2nd_exec_ctrl &
297 SECONDARY_EXEC_UNRESTRICTED_GUEST;
300 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
302 return flexpriority_enabled &&
303 (cpu_has_vmx_virtualize_apic_accesses()) &&
304 (irqchip_in_kernel(kvm));
307 static inline int cpu_has_vmx_vpid(void)
309 return vmcs_config.cpu_based_2nd_exec_ctrl &
310 SECONDARY_EXEC_ENABLE_VPID;
313 static inline int cpu_has_virtual_nmis(void)
315 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
318 static inline bool report_flexpriority(void)
320 return flexpriority_enabled;
323 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
325 int i;
327 for (i = 0; i < vmx->nmsrs; ++i)
328 if (vmx->guest_msrs[i].index == msr)
329 return i;
330 return -1;
333 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
335 struct {
336 u64 vpid : 16;
337 u64 rsvd : 48;
338 u64 gva;
339 } operand = { vpid, 0, gva };
341 asm volatile (__ex(ASM_VMX_INVVPID)
342 /* CF==1 or ZF==1 --> rc = -1 */
343 "; ja 1f ; ud2 ; 1:"
344 : : "a"(&operand), "c"(ext) : "cc", "memory");
347 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
349 struct {
350 u64 eptp, gpa;
351 } operand = {eptp, gpa};
353 asm volatile (__ex(ASM_VMX_INVEPT)
354 /* CF==1 or ZF==1 --> rc = -1 */
355 "; ja 1f ; ud2 ; 1:\n"
356 : : "a" (&operand), "c" (ext) : "cc", "memory");
359 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
361 int i;
363 i = __find_msr_index(vmx, msr);
364 if (i >= 0)
365 return &vmx->guest_msrs[i];
366 return NULL;
369 static void vmcs_clear(struct vmcs *vmcs)
371 u64 phys_addr = __pa(vmcs);
372 u8 error;
374 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
375 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
376 : "cc", "memory");
377 if (error)
378 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
379 vmcs, phys_addr);
382 static void __vcpu_clear(void *arg)
384 struct vcpu_vmx *vmx = arg;
385 int cpu = raw_smp_processor_id();
387 if (vmx->vcpu.cpu == cpu)
388 vmcs_clear(vmx->vmcs);
389 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
390 per_cpu(current_vmcs, cpu) = NULL;
391 rdtscll(vmx->vcpu.arch.host_tsc);
392 list_del(&vmx->local_vcpus_link);
393 vmx->vcpu.cpu = -1;
394 vmx->launched = 0;
397 static void vcpu_clear(struct vcpu_vmx *vmx)
399 if (vmx->vcpu.cpu == -1)
400 return;
401 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
404 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
406 if (vmx->vpid == 0)
407 return;
409 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
412 static inline void ept_sync_global(void)
414 if (cpu_has_vmx_invept_global())
415 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
418 static inline void ept_sync_context(u64 eptp)
420 if (enable_ept) {
421 if (cpu_has_vmx_invept_context())
422 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
423 else
424 ept_sync_global();
428 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
430 if (enable_ept) {
431 if (cpu_has_vmx_invept_individual_addr())
432 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
433 eptp, gpa);
434 else
435 ept_sync_context(eptp);
439 static unsigned long vmcs_readl(unsigned long field)
441 unsigned long value;
443 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
444 : "=a"(value) : "d"(field) : "cc");
445 return value;
448 static u16 vmcs_read16(unsigned long field)
450 return vmcs_readl(field);
453 static u32 vmcs_read32(unsigned long field)
455 return vmcs_readl(field);
458 static u64 vmcs_read64(unsigned long field)
460 #ifdef CONFIG_X86_64
461 return vmcs_readl(field);
462 #else
463 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
464 #endif
467 static noinline void vmwrite_error(unsigned long field, unsigned long value)
469 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
470 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
471 dump_stack();
474 static void vmcs_writel(unsigned long field, unsigned long value)
476 u8 error;
478 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
479 : "=q"(error) : "a"(value), "d"(field) : "cc");
480 if (unlikely(error))
481 vmwrite_error(field, value);
484 static void vmcs_write16(unsigned long field, u16 value)
486 vmcs_writel(field, value);
489 static void vmcs_write32(unsigned long field, u32 value)
491 vmcs_writel(field, value);
494 static void vmcs_write64(unsigned long field, u64 value)
496 vmcs_writel(field, value);
497 #ifndef CONFIG_X86_64
498 asm volatile ("");
499 vmcs_writel(field+1, value >> 32);
500 #endif
503 static void vmcs_clear_bits(unsigned long field, u32 mask)
505 vmcs_writel(field, vmcs_readl(field) & ~mask);
508 static void vmcs_set_bits(unsigned long field, u32 mask)
510 vmcs_writel(field, vmcs_readl(field) | mask);
513 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
515 u32 eb;
517 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
518 if (!vcpu->fpu_active)
519 eb |= 1u << NM_VECTOR;
520 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
521 if (vcpu->guest_debug &
522 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
523 eb |= 1u << DB_VECTOR;
524 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
525 eb |= 1u << BP_VECTOR;
527 if (to_vmx(vcpu)->rmode.vm86_active)
528 eb = ~0;
529 if (enable_ept)
530 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
531 vmcs_write32(EXCEPTION_BITMAP, eb);
534 static void reload_tss(void)
537 * VT restores TR but not its size. Useless.
539 struct descriptor_table gdt;
540 struct desc_struct *descs;
542 kvm_get_gdt(&gdt);
543 descs = (void *)gdt.base;
544 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
545 load_TR_desc();
548 static void load_transition_efer(struct vcpu_vmx *vmx)
550 int efer_offset = vmx->msr_offset_efer;
551 u64 host_efer = vmx->host_msrs[efer_offset].data;
552 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
553 u64 ignore_bits;
555 if (efer_offset < 0)
556 return;
558 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
559 * outside long mode
561 ignore_bits = EFER_NX | EFER_SCE;
562 #ifdef CONFIG_X86_64
563 ignore_bits |= EFER_LMA | EFER_LME;
564 /* SCE is meaningful only in long mode on Intel */
565 if (guest_efer & EFER_LMA)
566 ignore_bits &= ~(u64)EFER_SCE;
567 #endif
568 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
569 return;
571 vmx->host_state.guest_efer_loaded = 1;
572 guest_efer &= ~ignore_bits;
573 guest_efer |= host_efer & ignore_bits;
574 wrmsrl(MSR_EFER, guest_efer);
575 vmx->vcpu.stat.efer_reload++;
578 static void reload_host_efer(struct vcpu_vmx *vmx)
580 if (vmx->host_state.guest_efer_loaded) {
581 vmx->host_state.guest_efer_loaded = 0;
582 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
586 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
588 struct vcpu_vmx *vmx = to_vmx(vcpu);
590 if (vmx->host_state.loaded)
591 return;
593 vmx->host_state.loaded = 1;
595 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
596 * allow segment selectors with cpl > 0 or ti == 1.
598 vmx->host_state.ldt_sel = kvm_read_ldt();
599 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
600 vmx->host_state.fs_sel = kvm_read_fs();
601 if (!(vmx->host_state.fs_sel & 7)) {
602 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
603 vmx->host_state.fs_reload_needed = 0;
604 } else {
605 vmcs_write16(HOST_FS_SELECTOR, 0);
606 vmx->host_state.fs_reload_needed = 1;
608 vmx->host_state.gs_sel = kvm_read_gs();
609 if (!(vmx->host_state.gs_sel & 7))
610 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
611 else {
612 vmcs_write16(HOST_GS_SELECTOR, 0);
613 vmx->host_state.gs_ldt_reload_needed = 1;
616 #ifdef CONFIG_X86_64
617 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
618 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
619 #else
620 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
621 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
622 #endif
624 #ifdef CONFIG_X86_64
625 if (is_long_mode(&vmx->vcpu))
626 save_msrs(vmx->host_msrs +
627 vmx->msr_offset_kernel_gs_base, 1);
629 #endif
630 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
631 load_transition_efer(vmx);
634 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
636 unsigned long flags;
638 if (!vmx->host_state.loaded)
639 return;
641 ++vmx->vcpu.stat.host_state_reload;
642 vmx->host_state.loaded = 0;
643 if (vmx->host_state.fs_reload_needed)
644 kvm_load_fs(vmx->host_state.fs_sel);
645 if (vmx->host_state.gs_ldt_reload_needed) {
646 kvm_load_ldt(vmx->host_state.ldt_sel);
648 * If we have to reload gs, we must take care to
649 * preserve our gs base.
651 local_irq_save(flags);
652 kvm_load_gs(vmx->host_state.gs_sel);
653 #ifdef CONFIG_X86_64
654 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
655 #endif
656 local_irq_restore(flags);
658 reload_tss();
659 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
660 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
661 reload_host_efer(vmx);
664 static void vmx_load_host_state(struct vcpu_vmx *vmx)
666 preempt_disable();
667 __vmx_load_host_state(vmx);
668 preempt_enable();
672 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
673 * vcpu mutex is already taken.
675 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
677 struct vcpu_vmx *vmx = to_vmx(vcpu);
678 u64 phys_addr = __pa(vmx->vmcs);
679 u64 tsc_this, delta, new_offset;
681 if (vcpu->cpu != cpu) {
682 vcpu_clear(vmx);
683 kvm_migrate_timers(vcpu);
684 vpid_sync_vcpu_all(vmx);
685 local_irq_disable();
686 list_add(&vmx->local_vcpus_link,
687 &per_cpu(vcpus_on_cpu, cpu));
688 local_irq_enable();
691 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
692 u8 error;
694 per_cpu(current_vmcs, cpu) = vmx->vmcs;
695 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
696 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
697 : "cc");
698 if (error)
699 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
700 vmx->vmcs, phys_addr);
703 if (vcpu->cpu != cpu) {
704 struct descriptor_table dt;
705 unsigned long sysenter_esp;
707 vcpu->cpu = cpu;
709 * Linux uses per-cpu TSS and GDT, so set these when switching
710 * processors.
712 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
713 kvm_get_gdt(&dt);
714 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
716 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
717 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
720 * Make sure the time stamp counter is monotonous.
722 rdtscll(tsc_this);
723 if (tsc_this < vcpu->arch.host_tsc) {
724 delta = vcpu->arch.host_tsc - tsc_this;
725 new_offset = vmcs_read64(TSC_OFFSET) + delta;
726 vmcs_write64(TSC_OFFSET, new_offset);
731 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
733 __vmx_load_host_state(to_vmx(vcpu));
736 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
738 if (vcpu->fpu_active)
739 return;
740 vcpu->fpu_active = 1;
741 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
742 if (vcpu->arch.cr0 & X86_CR0_TS)
743 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
744 update_exception_bitmap(vcpu);
747 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
749 if (!vcpu->fpu_active)
750 return;
751 vcpu->fpu_active = 0;
752 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
753 update_exception_bitmap(vcpu);
756 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
758 return vmcs_readl(GUEST_RFLAGS);
761 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
763 if (to_vmx(vcpu)->rmode.vm86_active)
764 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
765 vmcs_writel(GUEST_RFLAGS, rflags);
768 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
770 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
771 int ret = 0;
773 if (interruptibility & GUEST_INTR_STATE_STI)
774 ret |= X86_SHADOW_INT_STI;
775 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
776 ret |= X86_SHADOW_INT_MOV_SS;
778 return ret & mask;
781 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
783 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
784 u32 interruptibility = interruptibility_old;
786 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
788 if (mask & X86_SHADOW_INT_MOV_SS)
789 interruptibility |= GUEST_INTR_STATE_MOV_SS;
790 if (mask & X86_SHADOW_INT_STI)
791 interruptibility |= GUEST_INTR_STATE_STI;
793 if ((interruptibility != interruptibility_old))
794 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
797 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
799 unsigned long rip;
801 rip = kvm_rip_read(vcpu);
802 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
803 kvm_rip_write(vcpu, rip);
805 /* skipping an emulated instruction also counts */
806 vmx_set_interrupt_shadow(vcpu, 0);
809 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
810 bool has_error_code, u32 error_code)
812 struct vcpu_vmx *vmx = to_vmx(vcpu);
813 u32 intr_info = nr | INTR_INFO_VALID_MASK;
815 if (has_error_code) {
816 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
817 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
820 if (vmx->rmode.vm86_active) {
821 vmx->rmode.irq.pending = true;
822 vmx->rmode.irq.vector = nr;
823 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
824 if (kvm_exception_is_soft(nr))
825 vmx->rmode.irq.rip +=
826 vmx->vcpu.arch.event_exit_inst_len;
827 intr_info |= INTR_TYPE_SOFT_INTR;
828 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
829 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
830 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
831 return;
834 if (kvm_exception_is_soft(nr)) {
835 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
836 vmx->vcpu.arch.event_exit_inst_len);
837 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
838 } else
839 intr_info |= INTR_TYPE_HARD_EXCEPTION;
841 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
845 * Swap MSR entry in host/guest MSR entry array.
847 #ifdef CONFIG_X86_64
848 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
850 struct kvm_msr_entry tmp;
852 tmp = vmx->guest_msrs[to];
853 vmx->guest_msrs[to] = vmx->guest_msrs[from];
854 vmx->guest_msrs[from] = tmp;
855 tmp = vmx->host_msrs[to];
856 vmx->host_msrs[to] = vmx->host_msrs[from];
857 vmx->host_msrs[from] = tmp;
859 #endif
862 * Set up the vmcs to automatically save and restore system
863 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
864 * mode, as fiddling with msrs is very expensive.
866 static void setup_msrs(struct vcpu_vmx *vmx)
868 int save_nmsrs;
869 unsigned long *msr_bitmap;
871 vmx_load_host_state(vmx);
872 save_nmsrs = 0;
873 #ifdef CONFIG_X86_64
874 if (is_long_mode(&vmx->vcpu)) {
875 int index;
877 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
878 if (index >= 0)
879 move_msr_up(vmx, index, save_nmsrs++);
880 index = __find_msr_index(vmx, MSR_LSTAR);
881 if (index >= 0)
882 move_msr_up(vmx, index, save_nmsrs++);
883 index = __find_msr_index(vmx, MSR_CSTAR);
884 if (index >= 0)
885 move_msr_up(vmx, index, save_nmsrs++);
886 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
887 if (index >= 0)
888 move_msr_up(vmx, index, save_nmsrs++);
890 * MSR_K6_STAR is only needed on long mode guests, and only
891 * if efer.sce is enabled.
893 index = __find_msr_index(vmx, MSR_K6_STAR);
894 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
895 move_msr_up(vmx, index, save_nmsrs++);
897 #endif
898 vmx->save_nmsrs = save_nmsrs;
900 #ifdef CONFIG_X86_64
901 vmx->msr_offset_kernel_gs_base =
902 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
903 #endif
904 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
906 if (cpu_has_vmx_msr_bitmap()) {
907 if (is_long_mode(&vmx->vcpu))
908 msr_bitmap = vmx_msr_bitmap_longmode;
909 else
910 msr_bitmap = vmx_msr_bitmap_legacy;
912 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
917 * reads and returns guest's timestamp counter "register"
918 * guest_tsc = host_tsc + tsc_offset -- 21.3
920 static u64 guest_read_tsc(void)
922 u64 host_tsc, tsc_offset;
924 rdtscll(host_tsc);
925 tsc_offset = vmcs_read64(TSC_OFFSET);
926 return host_tsc + tsc_offset;
930 * writes 'guest_tsc' into guest's timestamp counter "register"
931 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
933 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
935 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
939 * Reads an msr value (of 'msr_index') into 'pdata'.
940 * Returns 0 on success, non-0 otherwise.
941 * Assumes vcpu_load() was already called.
943 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
945 u64 data;
946 struct kvm_msr_entry *msr;
948 if (!pdata) {
949 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
950 return -EINVAL;
953 switch (msr_index) {
954 #ifdef CONFIG_X86_64
955 case MSR_FS_BASE:
956 data = vmcs_readl(GUEST_FS_BASE);
957 break;
958 case MSR_GS_BASE:
959 data = vmcs_readl(GUEST_GS_BASE);
960 break;
961 case MSR_EFER:
962 return kvm_get_msr_common(vcpu, msr_index, pdata);
963 #endif
964 case MSR_IA32_TSC:
965 data = guest_read_tsc();
966 break;
967 case MSR_IA32_SYSENTER_CS:
968 data = vmcs_read32(GUEST_SYSENTER_CS);
969 break;
970 case MSR_IA32_SYSENTER_EIP:
971 data = vmcs_readl(GUEST_SYSENTER_EIP);
972 break;
973 case MSR_IA32_SYSENTER_ESP:
974 data = vmcs_readl(GUEST_SYSENTER_ESP);
975 break;
976 default:
977 vmx_load_host_state(to_vmx(vcpu));
978 msr = find_msr_entry(to_vmx(vcpu), msr_index);
979 if (msr) {
980 data = msr->data;
981 break;
983 return kvm_get_msr_common(vcpu, msr_index, pdata);
986 *pdata = data;
987 return 0;
991 * Writes msr value into into the appropriate "register".
992 * Returns 0 on success, non-0 otherwise.
993 * Assumes vcpu_load() was already called.
995 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
997 struct vcpu_vmx *vmx = to_vmx(vcpu);
998 struct kvm_msr_entry *msr;
999 u64 host_tsc;
1000 int ret = 0;
1002 switch (msr_index) {
1003 case MSR_EFER:
1004 vmx_load_host_state(vmx);
1005 ret = kvm_set_msr_common(vcpu, msr_index, data);
1006 break;
1007 #ifdef CONFIG_X86_64
1008 case MSR_FS_BASE:
1009 vmcs_writel(GUEST_FS_BASE, data);
1010 break;
1011 case MSR_GS_BASE:
1012 vmcs_writel(GUEST_GS_BASE, data);
1013 break;
1014 #endif
1015 case MSR_IA32_SYSENTER_CS:
1016 vmcs_write32(GUEST_SYSENTER_CS, data);
1017 break;
1018 case MSR_IA32_SYSENTER_EIP:
1019 vmcs_writel(GUEST_SYSENTER_EIP, data);
1020 break;
1021 case MSR_IA32_SYSENTER_ESP:
1022 vmcs_writel(GUEST_SYSENTER_ESP, data);
1023 break;
1024 case MSR_IA32_TSC:
1025 rdtscll(host_tsc);
1026 guest_write_tsc(data, host_tsc);
1027 break;
1028 case MSR_P6_PERFCTR0:
1029 case MSR_P6_PERFCTR1:
1030 case MSR_P6_EVNTSEL0:
1031 case MSR_P6_EVNTSEL1:
1033 * Just discard all writes to the performance counters; this
1034 * should keep both older linux and windows 64-bit guests
1035 * happy
1037 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
1039 break;
1040 case MSR_IA32_CR_PAT:
1041 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1042 vmcs_write64(GUEST_IA32_PAT, data);
1043 vcpu->arch.pat = data;
1044 break;
1046 /* Otherwise falls through to kvm_set_msr_common */
1047 default:
1048 vmx_load_host_state(vmx);
1049 msr = find_msr_entry(vmx, msr_index);
1050 if (msr) {
1051 msr->data = data;
1052 break;
1054 ret = kvm_set_msr_common(vcpu, msr_index, data);
1057 return ret;
1060 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1062 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1063 switch (reg) {
1064 case VCPU_REGS_RSP:
1065 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1066 break;
1067 case VCPU_REGS_RIP:
1068 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1069 break;
1070 case VCPU_EXREG_PDPTR:
1071 if (enable_ept)
1072 ept_save_pdptrs(vcpu);
1073 break;
1074 default:
1075 break;
1079 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1081 int old_debug = vcpu->guest_debug;
1082 unsigned long flags;
1084 vcpu->guest_debug = dbg->control;
1085 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1086 vcpu->guest_debug = 0;
1088 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1089 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1090 else
1091 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1093 flags = vmcs_readl(GUEST_RFLAGS);
1094 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1095 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1096 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1097 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1098 vmcs_writel(GUEST_RFLAGS, flags);
1100 update_exception_bitmap(vcpu);
1102 return 0;
1105 static __init int cpu_has_kvm_support(void)
1107 return cpu_has_vmx();
1110 static __init int vmx_disabled_by_bios(void)
1112 u64 msr;
1114 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1115 return (msr & (FEATURE_CONTROL_LOCKED |
1116 FEATURE_CONTROL_VMXON_ENABLED))
1117 == FEATURE_CONTROL_LOCKED;
1118 /* locked but not enabled */
1121 static void hardware_enable(void *garbage)
1123 int cpu = raw_smp_processor_id();
1124 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1125 u64 old;
1127 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1128 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1129 if ((old & (FEATURE_CONTROL_LOCKED |
1130 FEATURE_CONTROL_VMXON_ENABLED))
1131 != (FEATURE_CONTROL_LOCKED |
1132 FEATURE_CONTROL_VMXON_ENABLED))
1133 /* enable and lock */
1134 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1135 FEATURE_CONTROL_LOCKED |
1136 FEATURE_CONTROL_VMXON_ENABLED);
1137 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1138 asm volatile (ASM_VMX_VMXON_RAX
1139 : : "a"(&phys_addr), "m"(phys_addr)
1140 : "memory", "cc");
1143 static void vmclear_local_vcpus(void)
1145 int cpu = raw_smp_processor_id();
1146 struct vcpu_vmx *vmx, *n;
1148 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1149 local_vcpus_link)
1150 __vcpu_clear(vmx);
1154 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1155 * tricks.
1157 static void kvm_cpu_vmxoff(void)
1159 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1160 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1163 static void hardware_disable(void *garbage)
1165 vmclear_local_vcpus();
1166 kvm_cpu_vmxoff();
1169 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1170 u32 msr, u32 *result)
1172 u32 vmx_msr_low, vmx_msr_high;
1173 u32 ctl = ctl_min | ctl_opt;
1175 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1177 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1178 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1180 /* Ensure minimum (required) set of control bits are supported. */
1181 if (ctl_min & ~ctl)
1182 return -EIO;
1184 *result = ctl;
1185 return 0;
1188 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1190 u32 vmx_msr_low, vmx_msr_high;
1191 u32 min, opt, min2, opt2;
1192 u32 _pin_based_exec_control = 0;
1193 u32 _cpu_based_exec_control = 0;
1194 u32 _cpu_based_2nd_exec_control = 0;
1195 u32 _vmexit_control = 0;
1196 u32 _vmentry_control = 0;
1198 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1199 opt = PIN_BASED_VIRTUAL_NMIS;
1200 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1201 &_pin_based_exec_control) < 0)
1202 return -EIO;
1204 min = CPU_BASED_HLT_EXITING |
1205 #ifdef CONFIG_X86_64
1206 CPU_BASED_CR8_LOAD_EXITING |
1207 CPU_BASED_CR8_STORE_EXITING |
1208 #endif
1209 CPU_BASED_CR3_LOAD_EXITING |
1210 CPU_BASED_CR3_STORE_EXITING |
1211 CPU_BASED_USE_IO_BITMAPS |
1212 CPU_BASED_MOV_DR_EXITING |
1213 CPU_BASED_USE_TSC_OFFSETING |
1214 CPU_BASED_INVLPG_EXITING;
1215 opt = CPU_BASED_TPR_SHADOW |
1216 CPU_BASED_USE_MSR_BITMAPS |
1217 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1218 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1219 &_cpu_based_exec_control) < 0)
1220 return -EIO;
1221 #ifdef CONFIG_X86_64
1222 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1223 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1224 ~CPU_BASED_CR8_STORE_EXITING;
1225 #endif
1226 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1227 min2 = 0;
1228 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1229 SECONDARY_EXEC_WBINVD_EXITING |
1230 SECONDARY_EXEC_ENABLE_VPID |
1231 SECONDARY_EXEC_ENABLE_EPT |
1232 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1233 if (adjust_vmx_controls(min2, opt2,
1234 MSR_IA32_VMX_PROCBASED_CTLS2,
1235 &_cpu_based_2nd_exec_control) < 0)
1236 return -EIO;
1238 #ifndef CONFIG_X86_64
1239 if (!(_cpu_based_2nd_exec_control &
1240 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1241 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1242 #endif
1243 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1244 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1245 enabled */
1246 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1247 CPU_BASED_CR3_STORE_EXITING |
1248 CPU_BASED_INVLPG_EXITING);
1249 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1250 &_cpu_based_exec_control) < 0)
1251 return -EIO;
1252 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1253 vmx_capability.ept, vmx_capability.vpid);
1256 min = 0;
1257 #ifdef CONFIG_X86_64
1258 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1259 #endif
1260 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1261 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1262 &_vmexit_control) < 0)
1263 return -EIO;
1265 min = 0;
1266 opt = VM_ENTRY_LOAD_IA32_PAT;
1267 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1268 &_vmentry_control) < 0)
1269 return -EIO;
1271 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1273 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1274 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1275 return -EIO;
1277 #ifdef CONFIG_X86_64
1278 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1279 if (vmx_msr_high & (1u<<16))
1280 return -EIO;
1281 #endif
1283 /* Require Write-Back (WB) memory type for VMCS accesses. */
1284 if (((vmx_msr_high >> 18) & 15) != 6)
1285 return -EIO;
1287 vmcs_conf->size = vmx_msr_high & 0x1fff;
1288 vmcs_conf->order = get_order(vmcs_config.size);
1289 vmcs_conf->revision_id = vmx_msr_low;
1291 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1292 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1293 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1294 vmcs_conf->vmexit_ctrl = _vmexit_control;
1295 vmcs_conf->vmentry_ctrl = _vmentry_control;
1297 return 0;
1300 static struct vmcs *alloc_vmcs_cpu(int cpu)
1302 int node = cpu_to_node(cpu);
1303 struct page *pages;
1304 struct vmcs *vmcs;
1306 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1307 if (!pages)
1308 return NULL;
1309 vmcs = page_address(pages);
1310 memset(vmcs, 0, vmcs_config.size);
1311 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1312 return vmcs;
1315 static struct vmcs *alloc_vmcs(void)
1317 return alloc_vmcs_cpu(raw_smp_processor_id());
1320 static void free_vmcs(struct vmcs *vmcs)
1322 free_pages((unsigned long)vmcs, vmcs_config.order);
1325 static void free_kvm_area(void)
1327 int cpu;
1329 for_each_online_cpu(cpu)
1330 free_vmcs(per_cpu(vmxarea, cpu));
1333 static __init int alloc_kvm_area(void)
1335 int cpu;
1337 for_each_online_cpu(cpu) {
1338 struct vmcs *vmcs;
1340 vmcs = alloc_vmcs_cpu(cpu);
1341 if (!vmcs) {
1342 free_kvm_area();
1343 return -ENOMEM;
1346 per_cpu(vmxarea, cpu) = vmcs;
1348 return 0;
1351 static __init int hardware_setup(void)
1353 if (setup_vmcs_config(&vmcs_config) < 0)
1354 return -EIO;
1356 if (boot_cpu_has(X86_FEATURE_NX))
1357 kvm_enable_efer_bits(EFER_NX);
1359 if (!cpu_has_vmx_vpid())
1360 enable_vpid = 0;
1362 if (!cpu_has_vmx_ept()) {
1363 enable_ept = 0;
1364 enable_unrestricted_guest = 0;
1367 if (!cpu_has_vmx_unrestricted_guest())
1368 enable_unrestricted_guest = 0;
1370 if (!cpu_has_vmx_flexpriority())
1371 flexpriority_enabled = 0;
1373 if (!cpu_has_vmx_tpr_shadow())
1374 kvm_x86_ops->update_cr8_intercept = NULL;
1376 return alloc_kvm_area();
1379 static __exit void hardware_unsetup(void)
1381 free_kvm_area();
1384 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1386 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1388 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1389 vmcs_write16(sf->selector, save->selector);
1390 vmcs_writel(sf->base, save->base);
1391 vmcs_write32(sf->limit, save->limit);
1392 vmcs_write32(sf->ar_bytes, save->ar);
1393 } else {
1394 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1395 << AR_DPL_SHIFT;
1396 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1400 static void enter_pmode(struct kvm_vcpu *vcpu)
1402 unsigned long flags;
1403 struct vcpu_vmx *vmx = to_vmx(vcpu);
1405 vmx->emulation_required = 1;
1406 vmx->rmode.vm86_active = 0;
1408 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1409 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1410 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1412 flags = vmcs_readl(GUEST_RFLAGS);
1413 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1414 flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1415 vmcs_writel(GUEST_RFLAGS, flags);
1417 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1418 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1420 update_exception_bitmap(vcpu);
1422 if (emulate_invalid_guest_state)
1423 return;
1425 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1426 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1427 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1428 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1430 vmcs_write16(GUEST_SS_SELECTOR, 0);
1431 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1433 vmcs_write16(GUEST_CS_SELECTOR,
1434 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1435 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1438 static gva_t rmode_tss_base(struct kvm *kvm)
1440 if (!kvm->arch.tss_addr) {
1441 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1442 kvm->memslots[0].npages - 3;
1443 return base_gfn << PAGE_SHIFT;
1445 return kvm->arch.tss_addr;
1448 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1450 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1452 save->selector = vmcs_read16(sf->selector);
1453 save->base = vmcs_readl(sf->base);
1454 save->limit = vmcs_read32(sf->limit);
1455 save->ar = vmcs_read32(sf->ar_bytes);
1456 vmcs_write16(sf->selector, save->base >> 4);
1457 vmcs_write32(sf->base, save->base & 0xfffff);
1458 vmcs_write32(sf->limit, 0xffff);
1459 vmcs_write32(sf->ar_bytes, 0xf3);
1462 static void enter_rmode(struct kvm_vcpu *vcpu)
1464 unsigned long flags;
1465 struct vcpu_vmx *vmx = to_vmx(vcpu);
1467 if (enable_unrestricted_guest)
1468 return;
1470 vmx->emulation_required = 1;
1471 vmx->rmode.vm86_active = 1;
1473 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1474 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1476 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1477 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1479 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1480 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1482 flags = vmcs_readl(GUEST_RFLAGS);
1483 vmx->rmode.save_iopl
1484 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1486 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1488 vmcs_writel(GUEST_RFLAGS, flags);
1489 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1490 update_exception_bitmap(vcpu);
1492 if (emulate_invalid_guest_state)
1493 goto continue_rmode;
1495 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1496 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1497 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1499 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1500 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1501 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1502 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1503 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1505 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1506 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1507 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1508 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1510 continue_rmode:
1511 kvm_mmu_reset_context(vcpu);
1512 init_rmode(vcpu->kvm);
1515 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1517 struct vcpu_vmx *vmx = to_vmx(vcpu);
1518 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1520 vcpu->arch.shadow_efer = efer;
1521 if (!msr)
1522 return;
1523 if (efer & EFER_LMA) {
1524 vmcs_write32(VM_ENTRY_CONTROLS,
1525 vmcs_read32(VM_ENTRY_CONTROLS) |
1526 VM_ENTRY_IA32E_MODE);
1527 msr->data = efer;
1528 } else {
1529 vmcs_write32(VM_ENTRY_CONTROLS,
1530 vmcs_read32(VM_ENTRY_CONTROLS) &
1531 ~VM_ENTRY_IA32E_MODE);
1533 msr->data = efer & ~EFER_LME;
1535 setup_msrs(vmx);
1538 #ifdef CONFIG_X86_64
1540 static void enter_lmode(struct kvm_vcpu *vcpu)
1542 u32 guest_tr_ar;
1544 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1545 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1546 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1547 __func__);
1548 vmcs_write32(GUEST_TR_AR_BYTES,
1549 (guest_tr_ar & ~AR_TYPE_MASK)
1550 | AR_TYPE_BUSY_64_TSS);
1552 vcpu->arch.shadow_efer |= EFER_LMA;
1553 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1556 static void exit_lmode(struct kvm_vcpu *vcpu)
1558 vcpu->arch.shadow_efer &= ~EFER_LMA;
1560 vmcs_write32(VM_ENTRY_CONTROLS,
1561 vmcs_read32(VM_ENTRY_CONTROLS)
1562 & ~VM_ENTRY_IA32E_MODE);
1565 #endif
1567 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1569 vpid_sync_vcpu_all(to_vmx(vcpu));
1570 if (enable_ept)
1571 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1574 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1576 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1577 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1580 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1582 if (!test_bit(VCPU_EXREG_PDPTR,
1583 (unsigned long *)&vcpu->arch.regs_dirty))
1584 return;
1586 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1587 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1588 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1589 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1590 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1594 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1596 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1597 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1598 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1599 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1600 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1603 __set_bit(VCPU_EXREG_PDPTR,
1604 (unsigned long *)&vcpu->arch.regs_avail);
1605 __set_bit(VCPU_EXREG_PDPTR,
1606 (unsigned long *)&vcpu->arch.regs_dirty);
1609 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1611 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1612 unsigned long cr0,
1613 struct kvm_vcpu *vcpu)
1615 if (!(cr0 & X86_CR0_PG)) {
1616 /* From paging/starting to nonpaging */
1617 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1618 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1619 (CPU_BASED_CR3_LOAD_EXITING |
1620 CPU_BASED_CR3_STORE_EXITING));
1621 vcpu->arch.cr0 = cr0;
1622 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1623 *hw_cr0 &= ~X86_CR0_WP;
1624 } else if (!is_paging(vcpu)) {
1625 /* From nonpaging to paging */
1626 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1627 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1628 ~(CPU_BASED_CR3_LOAD_EXITING |
1629 CPU_BASED_CR3_STORE_EXITING));
1630 vcpu->arch.cr0 = cr0;
1631 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1632 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1633 *hw_cr0 &= ~X86_CR0_WP;
1637 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1638 struct kvm_vcpu *vcpu)
1640 if (!is_paging(vcpu)) {
1641 *hw_cr4 &= ~X86_CR4_PAE;
1642 *hw_cr4 |= X86_CR4_PSE;
1643 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1644 *hw_cr4 &= ~X86_CR4_PAE;
1647 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1649 struct vcpu_vmx *vmx = to_vmx(vcpu);
1650 unsigned long hw_cr0;
1652 if (enable_unrestricted_guest)
1653 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1654 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1655 else
1656 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1658 vmx_fpu_deactivate(vcpu);
1660 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1661 enter_pmode(vcpu);
1663 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1664 enter_rmode(vcpu);
1666 #ifdef CONFIG_X86_64
1667 if (vcpu->arch.shadow_efer & EFER_LME) {
1668 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1669 enter_lmode(vcpu);
1670 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1671 exit_lmode(vcpu);
1673 #endif
1675 if (enable_ept)
1676 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1678 vmcs_writel(CR0_READ_SHADOW, cr0);
1679 vmcs_writel(GUEST_CR0, hw_cr0);
1680 vcpu->arch.cr0 = cr0;
1682 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1683 vmx_fpu_activate(vcpu);
1686 static u64 construct_eptp(unsigned long root_hpa)
1688 u64 eptp;
1690 /* TODO write the value reading from MSR */
1691 eptp = VMX_EPT_DEFAULT_MT |
1692 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1693 eptp |= (root_hpa & PAGE_MASK);
1695 return eptp;
1698 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1700 unsigned long guest_cr3;
1701 u64 eptp;
1703 guest_cr3 = cr3;
1704 if (enable_ept) {
1705 eptp = construct_eptp(cr3);
1706 vmcs_write64(EPT_POINTER, eptp);
1707 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1708 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1711 vmx_flush_tlb(vcpu);
1712 vmcs_writel(GUEST_CR3, guest_cr3);
1713 if (vcpu->arch.cr0 & X86_CR0_PE)
1714 vmx_fpu_deactivate(vcpu);
1717 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1719 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1720 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1722 vcpu->arch.cr4 = cr4;
1723 if (enable_ept)
1724 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1726 vmcs_writel(CR4_READ_SHADOW, cr4);
1727 vmcs_writel(GUEST_CR4, hw_cr4);
1730 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1732 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1734 return vmcs_readl(sf->base);
1737 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1738 struct kvm_segment *var, int seg)
1740 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1741 u32 ar;
1743 var->base = vmcs_readl(sf->base);
1744 var->limit = vmcs_read32(sf->limit);
1745 var->selector = vmcs_read16(sf->selector);
1746 ar = vmcs_read32(sf->ar_bytes);
1747 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1748 ar = 0;
1749 var->type = ar & 15;
1750 var->s = (ar >> 4) & 1;
1751 var->dpl = (ar >> 5) & 3;
1752 var->present = (ar >> 7) & 1;
1753 var->avl = (ar >> 12) & 1;
1754 var->l = (ar >> 13) & 1;
1755 var->db = (ar >> 14) & 1;
1756 var->g = (ar >> 15) & 1;
1757 var->unusable = (ar >> 16) & 1;
1760 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1762 struct kvm_segment kvm_seg;
1764 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1765 return 0;
1767 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1768 return 3;
1770 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1771 return kvm_seg.selector & 3;
1774 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1776 u32 ar;
1778 if (var->unusable)
1779 ar = 1 << 16;
1780 else {
1781 ar = var->type & 15;
1782 ar |= (var->s & 1) << 4;
1783 ar |= (var->dpl & 3) << 5;
1784 ar |= (var->present & 1) << 7;
1785 ar |= (var->avl & 1) << 12;
1786 ar |= (var->l & 1) << 13;
1787 ar |= (var->db & 1) << 14;
1788 ar |= (var->g & 1) << 15;
1790 if (ar == 0) /* a 0 value means unusable */
1791 ar = AR_UNUSABLE_MASK;
1793 return ar;
1796 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1797 struct kvm_segment *var, int seg)
1799 struct vcpu_vmx *vmx = to_vmx(vcpu);
1800 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1801 u32 ar;
1803 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1804 vmx->rmode.tr.selector = var->selector;
1805 vmx->rmode.tr.base = var->base;
1806 vmx->rmode.tr.limit = var->limit;
1807 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1808 return;
1810 vmcs_writel(sf->base, var->base);
1811 vmcs_write32(sf->limit, var->limit);
1812 vmcs_write16(sf->selector, var->selector);
1813 if (vmx->rmode.vm86_active && var->s) {
1815 * Hack real-mode segments into vm86 compatibility.
1817 if (var->base == 0xffff0000 && var->selector == 0xf000)
1818 vmcs_writel(sf->base, 0xf0000);
1819 ar = 0xf3;
1820 } else
1821 ar = vmx_segment_access_rights(var);
1824 * Fix the "Accessed" bit in AR field of segment registers for older
1825 * qemu binaries.
1826 * IA32 arch specifies that at the time of processor reset the
1827 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1828 * is setting it to 0 in the usedland code. This causes invalid guest
1829 * state vmexit when "unrestricted guest" mode is turned on.
1830 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1831 * tree. Newer qemu binaries with that qemu fix would not need this
1832 * kvm hack.
1834 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1835 ar |= 0x1; /* Accessed */
1837 vmcs_write32(sf->ar_bytes, ar);
1840 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1842 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1844 *db = (ar >> 14) & 1;
1845 *l = (ar >> 13) & 1;
1848 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1850 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1851 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1854 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1856 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1857 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1860 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1862 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1863 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1866 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1868 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1869 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1872 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1874 struct kvm_segment var;
1875 u32 ar;
1877 vmx_get_segment(vcpu, &var, seg);
1878 ar = vmx_segment_access_rights(&var);
1880 if (var.base != (var.selector << 4))
1881 return false;
1882 if (var.limit != 0xffff)
1883 return false;
1884 if (ar != 0xf3)
1885 return false;
1887 return true;
1890 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1892 struct kvm_segment cs;
1893 unsigned int cs_rpl;
1895 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1896 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1898 if (cs.unusable)
1899 return false;
1900 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1901 return false;
1902 if (!cs.s)
1903 return false;
1904 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1905 if (cs.dpl > cs_rpl)
1906 return false;
1907 } else {
1908 if (cs.dpl != cs_rpl)
1909 return false;
1911 if (!cs.present)
1912 return false;
1914 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1915 return true;
1918 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1920 struct kvm_segment ss;
1921 unsigned int ss_rpl;
1923 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1924 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1926 if (ss.unusable)
1927 return true;
1928 if (ss.type != 3 && ss.type != 7)
1929 return false;
1930 if (!ss.s)
1931 return false;
1932 if (ss.dpl != ss_rpl) /* DPL != RPL */
1933 return false;
1934 if (!ss.present)
1935 return false;
1937 return true;
1940 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1942 struct kvm_segment var;
1943 unsigned int rpl;
1945 vmx_get_segment(vcpu, &var, seg);
1946 rpl = var.selector & SELECTOR_RPL_MASK;
1948 if (var.unusable)
1949 return true;
1950 if (!var.s)
1951 return false;
1952 if (!var.present)
1953 return false;
1954 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1955 if (var.dpl < rpl) /* DPL < RPL */
1956 return false;
1959 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1960 * rights flags
1962 return true;
1965 static bool tr_valid(struct kvm_vcpu *vcpu)
1967 struct kvm_segment tr;
1969 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1971 if (tr.unusable)
1972 return false;
1973 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1974 return false;
1975 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1976 return false;
1977 if (!tr.present)
1978 return false;
1980 return true;
1983 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1985 struct kvm_segment ldtr;
1987 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1989 if (ldtr.unusable)
1990 return true;
1991 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1992 return false;
1993 if (ldtr.type != 2)
1994 return false;
1995 if (!ldtr.present)
1996 return false;
1998 return true;
2001 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2003 struct kvm_segment cs, ss;
2005 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2006 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2008 return ((cs.selector & SELECTOR_RPL_MASK) ==
2009 (ss.selector & SELECTOR_RPL_MASK));
2013 * Check if guest state is valid. Returns true if valid, false if
2014 * not.
2015 * We assume that registers are always usable
2017 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2019 /* real mode guest state checks */
2020 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2021 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2022 return false;
2023 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2024 return false;
2025 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2026 return false;
2027 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2028 return false;
2029 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2030 return false;
2031 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2032 return false;
2033 } else {
2034 /* protected mode guest state checks */
2035 if (!cs_ss_rpl_check(vcpu))
2036 return false;
2037 if (!code_segment_valid(vcpu))
2038 return false;
2039 if (!stack_segment_valid(vcpu))
2040 return false;
2041 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2042 return false;
2043 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2044 return false;
2045 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2046 return false;
2047 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2048 return false;
2049 if (!tr_valid(vcpu))
2050 return false;
2051 if (!ldtr_valid(vcpu))
2052 return false;
2054 /* TODO:
2055 * - Add checks on RIP
2056 * - Add checks on RFLAGS
2059 return true;
2062 static int init_rmode_tss(struct kvm *kvm)
2064 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2065 u16 data = 0;
2066 int ret = 0;
2067 int r;
2069 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2070 if (r < 0)
2071 goto out;
2072 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2073 r = kvm_write_guest_page(kvm, fn++, &data,
2074 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2075 if (r < 0)
2076 goto out;
2077 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2078 if (r < 0)
2079 goto out;
2080 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2081 if (r < 0)
2082 goto out;
2083 data = ~0;
2084 r = kvm_write_guest_page(kvm, fn, &data,
2085 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2086 sizeof(u8));
2087 if (r < 0)
2088 goto out;
2090 ret = 1;
2091 out:
2092 return ret;
2095 static int init_rmode_identity_map(struct kvm *kvm)
2097 int i, r, ret;
2098 pfn_t identity_map_pfn;
2099 u32 tmp;
2101 if (!enable_ept)
2102 return 1;
2103 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2104 printk(KERN_ERR "EPT: identity-mapping pagetable "
2105 "haven't been allocated!\n");
2106 return 0;
2108 if (likely(kvm->arch.ept_identity_pagetable_done))
2109 return 1;
2110 ret = 0;
2111 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2112 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2113 if (r < 0)
2114 goto out;
2115 /* Set up identity-mapping pagetable for EPT in real mode */
2116 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2117 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2118 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2119 r = kvm_write_guest_page(kvm, identity_map_pfn,
2120 &tmp, i * sizeof(tmp), sizeof(tmp));
2121 if (r < 0)
2122 goto out;
2124 kvm->arch.ept_identity_pagetable_done = true;
2125 ret = 1;
2126 out:
2127 return ret;
2130 static void seg_setup(int seg)
2132 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2133 unsigned int ar;
2135 vmcs_write16(sf->selector, 0);
2136 vmcs_writel(sf->base, 0);
2137 vmcs_write32(sf->limit, 0xffff);
2138 if (enable_unrestricted_guest) {
2139 ar = 0x93;
2140 if (seg == VCPU_SREG_CS)
2141 ar |= 0x08; /* code segment */
2142 } else
2143 ar = 0xf3;
2145 vmcs_write32(sf->ar_bytes, ar);
2148 static int alloc_apic_access_page(struct kvm *kvm)
2150 struct kvm_userspace_memory_region kvm_userspace_mem;
2151 int r = 0;
2153 down_write(&kvm->slots_lock);
2154 if (kvm->arch.apic_access_page)
2155 goto out;
2156 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2157 kvm_userspace_mem.flags = 0;
2158 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2159 kvm_userspace_mem.memory_size = PAGE_SIZE;
2160 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2161 if (r)
2162 goto out;
2164 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2165 out:
2166 up_write(&kvm->slots_lock);
2167 return r;
2170 static int alloc_identity_pagetable(struct kvm *kvm)
2172 struct kvm_userspace_memory_region kvm_userspace_mem;
2173 int r = 0;
2175 down_write(&kvm->slots_lock);
2176 if (kvm->arch.ept_identity_pagetable)
2177 goto out;
2178 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2179 kvm_userspace_mem.flags = 0;
2180 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2181 kvm_userspace_mem.memory_size = PAGE_SIZE;
2182 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2183 if (r)
2184 goto out;
2186 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2187 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2188 out:
2189 up_write(&kvm->slots_lock);
2190 return r;
2193 static void allocate_vpid(struct vcpu_vmx *vmx)
2195 int vpid;
2197 vmx->vpid = 0;
2198 if (!enable_vpid)
2199 return;
2200 spin_lock(&vmx_vpid_lock);
2201 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2202 if (vpid < VMX_NR_VPIDS) {
2203 vmx->vpid = vpid;
2204 __set_bit(vpid, vmx_vpid_bitmap);
2206 spin_unlock(&vmx_vpid_lock);
2209 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2211 int f = sizeof(unsigned long);
2213 if (!cpu_has_vmx_msr_bitmap())
2214 return;
2217 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2218 * have the write-low and read-high bitmap offsets the wrong way round.
2219 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2221 if (msr <= 0x1fff) {
2222 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2223 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2224 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2225 msr &= 0x1fff;
2226 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2227 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2231 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2233 if (!longmode_only)
2234 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2235 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2239 * Sets up the vmcs for emulated real mode.
2241 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2243 u32 host_sysenter_cs, msr_low, msr_high;
2244 u32 junk;
2245 u64 host_pat, tsc_this, tsc_base;
2246 unsigned long a;
2247 struct descriptor_table dt;
2248 int i;
2249 unsigned long kvm_vmx_return;
2250 u32 exec_control;
2252 /* I/O */
2253 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2254 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2256 if (cpu_has_vmx_msr_bitmap())
2257 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2259 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2261 /* Control */
2262 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2263 vmcs_config.pin_based_exec_ctrl);
2265 exec_control = vmcs_config.cpu_based_exec_ctrl;
2266 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2267 exec_control &= ~CPU_BASED_TPR_SHADOW;
2268 #ifdef CONFIG_X86_64
2269 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2270 CPU_BASED_CR8_LOAD_EXITING;
2271 #endif
2273 if (!enable_ept)
2274 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2275 CPU_BASED_CR3_LOAD_EXITING |
2276 CPU_BASED_INVLPG_EXITING;
2277 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2279 if (cpu_has_secondary_exec_ctrls()) {
2280 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2281 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2282 exec_control &=
2283 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2284 if (vmx->vpid == 0)
2285 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2286 if (!enable_ept)
2287 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2288 if (!enable_unrestricted_guest)
2289 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2290 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2293 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2294 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2295 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2297 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2298 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2299 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2301 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2302 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2303 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2304 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2305 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2306 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2307 #ifdef CONFIG_X86_64
2308 rdmsrl(MSR_FS_BASE, a);
2309 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2310 rdmsrl(MSR_GS_BASE, a);
2311 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2312 #else
2313 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2314 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2315 #endif
2317 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2319 kvm_get_idt(&dt);
2320 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2322 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2323 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2324 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2325 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2326 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2328 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2329 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2330 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2331 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2332 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2333 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2335 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2336 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2337 host_pat = msr_low | ((u64) msr_high << 32);
2338 vmcs_write64(HOST_IA32_PAT, host_pat);
2340 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2341 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2342 host_pat = msr_low | ((u64) msr_high << 32);
2343 /* Write the default value follow host pat */
2344 vmcs_write64(GUEST_IA32_PAT, host_pat);
2345 /* Keep arch.pat sync with GUEST_IA32_PAT */
2346 vmx->vcpu.arch.pat = host_pat;
2349 for (i = 0; i < NR_VMX_MSR; ++i) {
2350 u32 index = vmx_msr_index[i];
2351 u32 data_low, data_high;
2352 u64 data;
2353 int j = vmx->nmsrs;
2355 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2356 continue;
2357 if (wrmsr_safe(index, data_low, data_high) < 0)
2358 continue;
2359 data = data_low | ((u64)data_high << 32);
2360 vmx->host_msrs[j].index = index;
2361 vmx->host_msrs[j].reserved = 0;
2362 vmx->host_msrs[j].data = data;
2363 vmx->guest_msrs[j] = vmx->host_msrs[j];
2364 ++vmx->nmsrs;
2367 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2369 /* 22.2.1, 20.8.1 */
2370 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2372 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2373 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2375 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2376 rdtscll(tsc_this);
2377 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2378 tsc_base = tsc_this;
2380 guest_write_tsc(0, tsc_base);
2382 return 0;
2385 static int init_rmode(struct kvm *kvm)
2387 if (!init_rmode_tss(kvm))
2388 return 0;
2389 if (!init_rmode_identity_map(kvm))
2390 return 0;
2391 return 1;
2394 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2396 struct vcpu_vmx *vmx = to_vmx(vcpu);
2397 u64 msr;
2398 int ret;
2400 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2401 down_read(&vcpu->kvm->slots_lock);
2402 if (!init_rmode(vmx->vcpu.kvm)) {
2403 ret = -ENOMEM;
2404 goto out;
2407 vmx->rmode.vm86_active = 0;
2409 vmx->soft_vnmi_blocked = 0;
2411 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2412 kvm_set_cr8(&vmx->vcpu, 0);
2413 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2414 if (vmx->vcpu.vcpu_id == 0)
2415 msr |= MSR_IA32_APICBASE_BSP;
2416 kvm_set_apic_base(&vmx->vcpu, msr);
2418 fx_init(&vmx->vcpu);
2420 seg_setup(VCPU_SREG_CS);
2422 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2423 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2425 if (vmx->vcpu.vcpu_id == 0) {
2426 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2427 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2428 } else {
2429 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2430 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2433 seg_setup(VCPU_SREG_DS);
2434 seg_setup(VCPU_SREG_ES);
2435 seg_setup(VCPU_SREG_FS);
2436 seg_setup(VCPU_SREG_GS);
2437 seg_setup(VCPU_SREG_SS);
2439 vmcs_write16(GUEST_TR_SELECTOR, 0);
2440 vmcs_writel(GUEST_TR_BASE, 0);
2441 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2442 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2444 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2445 vmcs_writel(GUEST_LDTR_BASE, 0);
2446 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2447 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2449 vmcs_write32(GUEST_SYSENTER_CS, 0);
2450 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2451 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2453 vmcs_writel(GUEST_RFLAGS, 0x02);
2454 if (vmx->vcpu.vcpu_id == 0)
2455 kvm_rip_write(vcpu, 0xfff0);
2456 else
2457 kvm_rip_write(vcpu, 0);
2458 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2460 vmcs_writel(GUEST_DR7, 0x400);
2462 vmcs_writel(GUEST_GDTR_BASE, 0);
2463 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2465 vmcs_writel(GUEST_IDTR_BASE, 0);
2466 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2468 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2469 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2470 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2472 /* Special registers */
2473 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2475 setup_msrs(vmx);
2477 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2479 if (cpu_has_vmx_tpr_shadow()) {
2480 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2481 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2482 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2483 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2484 vmcs_write32(TPR_THRESHOLD, 0);
2487 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2488 vmcs_write64(APIC_ACCESS_ADDR,
2489 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2491 if (vmx->vpid != 0)
2492 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2494 vmx->vcpu.arch.cr0 = 0x60000010;
2495 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2496 vmx_set_cr4(&vmx->vcpu, 0);
2497 vmx_set_efer(&vmx->vcpu, 0);
2498 vmx_fpu_activate(&vmx->vcpu);
2499 update_exception_bitmap(&vmx->vcpu);
2501 vpid_sync_vcpu_all(vmx);
2503 ret = 0;
2505 /* HACK: Don't enable emulation on guest boot/reset */
2506 vmx->emulation_required = 0;
2508 out:
2509 up_read(&vcpu->kvm->slots_lock);
2510 return ret;
2513 static void enable_irq_window(struct kvm_vcpu *vcpu)
2515 u32 cpu_based_vm_exec_control;
2517 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2518 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2519 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2522 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2524 u32 cpu_based_vm_exec_control;
2526 if (!cpu_has_virtual_nmis()) {
2527 enable_irq_window(vcpu);
2528 return;
2531 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2532 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2533 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2536 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2538 struct vcpu_vmx *vmx = to_vmx(vcpu);
2539 uint32_t intr;
2540 int irq = vcpu->arch.interrupt.nr;
2542 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2544 ++vcpu->stat.irq_injections;
2545 if (vmx->rmode.vm86_active) {
2546 vmx->rmode.irq.pending = true;
2547 vmx->rmode.irq.vector = irq;
2548 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2549 if (vcpu->arch.interrupt.soft)
2550 vmx->rmode.irq.rip +=
2551 vmx->vcpu.arch.event_exit_inst_len;
2552 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2553 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2554 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2555 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2556 return;
2558 intr = irq | INTR_INFO_VALID_MASK;
2559 if (vcpu->arch.interrupt.soft) {
2560 intr |= INTR_TYPE_SOFT_INTR;
2561 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2562 vmx->vcpu.arch.event_exit_inst_len);
2563 } else
2564 intr |= INTR_TYPE_EXT_INTR;
2565 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2568 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2570 struct vcpu_vmx *vmx = to_vmx(vcpu);
2572 if (!cpu_has_virtual_nmis()) {
2574 * Tracking the NMI-blocked state in software is built upon
2575 * finding the next open IRQ window. This, in turn, depends on
2576 * well-behaving guests: They have to keep IRQs disabled at
2577 * least as long as the NMI handler runs. Otherwise we may
2578 * cause NMI nesting, maybe breaking the guest. But as this is
2579 * highly unlikely, we can live with the residual risk.
2581 vmx->soft_vnmi_blocked = 1;
2582 vmx->vnmi_blocked_time = 0;
2585 ++vcpu->stat.nmi_injections;
2586 if (vmx->rmode.vm86_active) {
2587 vmx->rmode.irq.pending = true;
2588 vmx->rmode.irq.vector = NMI_VECTOR;
2589 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2590 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2591 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2592 INTR_INFO_VALID_MASK);
2593 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2594 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2595 return;
2597 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2598 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2601 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2603 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2604 return 0;
2606 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2607 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2608 GUEST_INTR_STATE_NMI));
2611 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2613 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2614 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2615 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2618 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2620 int ret;
2621 struct kvm_userspace_memory_region tss_mem = {
2622 .slot = TSS_PRIVATE_MEMSLOT,
2623 .guest_phys_addr = addr,
2624 .memory_size = PAGE_SIZE * 3,
2625 .flags = 0,
2628 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2629 if (ret)
2630 return ret;
2631 kvm->arch.tss_addr = addr;
2632 return 0;
2635 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2636 int vec, u32 err_code)
2639 * Instruction with address size override prefix opcode 0x67
2640 * Cause the #SS fault with 0 error code in VM86 mode.
2642 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2643 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2644 return 1;
2646 * Forward all other exceptions that are valid in real mode.
2647 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2648 * the required debugging infrastructure rework.
2650 switch (vec) {
2651 case DB_VECTOR:
2652 if (vcpu->guest_debug &
2653 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2654 return 0;
2655 kvm_queue_exception(vcpu, vec);
2656 return 1;
2657 case BP_VECTOR:
2658 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2659 return 0;
2660 /* fall through */
2661 case DE_VECTOR:
2662 case OF_VECTOR:
2663 case BR_VECTOR:
2664 case UD_VECTOR:
2665 case DF_VECTOR:
2666 case SS_VECTOR:
2667 case GP_VECTOR:
2668 case MF_VECTOR:
2669 kvm_queue_exception(vcpu, vec);
2670 return 1;
2672 return 0;
2676 * Trigger machine check on the host. We assume all the MSRs are already set up
2677 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2678 * We pass a fake environment to the machine check handler because we want
2679 * the guest to be always treated like user space, no matter what context
2680 * it used internally.
2682 static void kvm_machine_check(void)
2684 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2685 struct pt_regs regs = {
2686 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2687 .flags = X86_EFLAGS_IF,
2690 do_machine_check(&regs, 0);
2691 #endif
2694 static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2696 /* already handled by vcpu_run */
2697 return 1;
2700 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2702 struct vcpu_vmx *vmx = to_vmx(vcpu);
2703 u32 intr_info, ex_no, error_code;
2704 unsigned long cr2, rip, dr6;
2705 u32 vect_info;
2706 enum emulation_result er;
2708 vect_info = vmx->idt_vectoring_info;
2709 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2711 if (is_machine_check(intr_info))
2712 return handle_machine_check(vcpu, kvm_run);
2714 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2715 !is_page_fault(intr_info))
2716 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2717 "intr info 0x%x\n", __func__, vect_info, intr_info);
2719 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2720 return 1; /* already handled by vmx_vcpu_run() */
2722 if (is_no_device(intr_info)) {
2723 vmx_fpu_activate(vcpu);
2724 return 1;
2727 if (is_invalid_opcode(intr_info)) {
2728 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2729 if (er != EMULATE_DONE)
2730 kvm_queue_exception(vcpu, UD_VECTOR);
2731 return 1;
2734 error_code = 0;
2735 rip = kvm_rip_read(vcpu);
2736 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2737 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2738 if (is_page_fault(intr_info)) {
2739 /* EPT won't cause page fault directly */
2740 if (enable_ept)
2741 BUG();
2742 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2743 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2744 (u32)((u64)cr2 >> 32), handler);
2745 if (kvm_event_needs_reinjection(vcpu))
2746 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2747 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2750 if (vmx->rmode.vm86_active &&
2751 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2752 error_code)) {
2753 if (vcpu->arch.halt_request) {
2754 vcpu->arch.halt_request = 0;
2755 return kvm_emulate_halt(vcpu);
2757 return 1;
2760 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2761 switch (ex_no) {
2762 case DB_VECTOR:
2763 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2764 if (!(vcpu->guest_debug &
2765 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2766 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2767 kvm_queue_exception(vcpu, DB_VECTOR);
2768 return 1;
2770 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2771 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2772 /* fall through */
2773 case BP_VECTOR:
2774 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2775 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2776 kvm_run->debug.arch.exception = ex_no;
2777 break;
2778 default:
2779 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2780 kvm_run->ex.exception = ex_no;
2781 kvm_run->ex.error_code = error_code;
2782 break;
2784 return 0;
2787 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2788 struct kvm_run *kvm_run)
2790 ++vcpu->stat.irq_exits;
2791 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2792 return 1;
2795 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2797 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2798 return 0;
2801 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2803 unsigned long exit_qualification;
2804 int size, in, string;
2805 unsigned port;
2807 ++vcpu->stat.io_exits;
2808 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2809 string = (exit_qualification & 16) != 0;
2811 if (string) {
2812 if (emulate_instruction(vcpu,
2813 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2814 return 0;
2815 return 1;
2818 size = (exit_qualification & 7) + 1;
2819 in = (exit_qualification & 8) != 0;
2820 port = exit_qualification >> 16;
2822 skip_emulated_instruction(vcpu);
2823 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2826 static void
2827 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2830 * Patch in the VMCALL instruction:
2832 hypercall[0] = 0x0f;
2833 hypercall[1] = 0x01;
2834 hypercall[2] = 0xc1;
2837 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2839 unsigned long exit_qualification;
2840 int cr;
2841 int reg;
2843 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2844 cr = exit_qualification & 15;
2845 reg = (exit_qualification >> 8) & 15;
2846 switch ((exit_qualification >> 4) & 3) {
2847 case 0: /* mov to cr */
2848 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2849 (u32)kvm_register_read(vcpu, reg),
2850 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2851 handler);
2852 switch (cr) {
2853 case 0:
2854 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2855 skip_emulated_instruction(vcpu);
2856 return 1;
2857 case 3:
2858 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2859 skip_emulated_instruction(vcpu);
2860 return 1;
2861 case 4:
2862 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2863 skip_emulated_instruction(vcpu);
2864 return 1;
2865 case 8: {
2866 u8 cr8_prev = kvm_get_cr8(vcpu);
2867 u8 cr8 = kvm_register_read(vcpu, reg);
2868 kvm_set_cr8(vcpu, cr8);
2869 skip_emulated_instruction(vcpu);
2870 if (irqchip_in_kernel(vcpu->kvm))
2871 return 1;
2872 if (cr8_prev <= cr8)
2873 return 1;
2874 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2875 return 0;
2878 break;
2879 case 2: /* clts */
2880 vmx_fpu_deactivate(vcpu);
2881 vcpu->arch.cr0 &= ~X86_CR0_TS;
2882 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2883 vmx_fpu_activate(vcpu);
2884 KVMTRACE_0D(CLTS, vcpu, handler);
2885 skip_emulated_instruction(vcpu);
2886 return 1;
2887 case 1: /*mov from cr*/
2888 switch (cr) {
2889 case 3:
2890 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2891 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2892 (u32)kvm_register_read(vcpu, reg),
2893 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2894 handler);
2895 skip_emulated_instruction(vcpu);
2896 return 1;
2897 case 8:
2898 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2899 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2900 (u32)kvm_register_read(vcpu, reg), handler);
2901 skip_emulated_instruction(vcpu);
2902 return 1;
2904 break;
2905 case 3: /* lmsw */
2906 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2908 skip_emulated_instruction(vcpu);
2909 return 1;
2910 default:
2911 break;
2913 kvm_run->exit_reason = 0;
2914 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2915 (int)(exit_qualification >> 4) & 3, cr);
2916 return 0;
2919 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2921 unsigned long exit_qualification;
2922 unsigned long val;
2923 int dr, reg;
2925 dr = vmcs_readl(GUEST_DR7);
2926 if (dr & DR7_GD) {
2928 * As the vm-exit takes precedence over the debug trap, we
2929 * need to emulate the latter, either for the host or the
2930 * guest debugging itself.
2932 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2933 kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2934 kvm_run->debug.arch.dr7 = dr;
2935 kvm_run->debug.arch.pc =
2936 vmcs_readl(GUEST_CS_BASE) +
2937 vmcs_readl(GUEST_RIP);
2938 kvm_run->debug.arch.exception = DB_VECTOR;
2939 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2940 return 0;
2941 } else {
2942 vcpu->arch.dr7 &= ~DR7_GD;
2943 vcpu->arch.dr6 |= DR6_BD;
2944 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2945 kvm_queue_exception(vcpu, DB_VECTOR);
2946 return 1;
2950 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2951 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2952 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2953 if (exit_qualification & TYPE_MOV_FROM_DR) {
2954 switch (dr) {
2955 case 0 ... 3:
2956 val = vcpu->arch.db[dr];
2957 break;
2958 case 6:
2959 val = vcpu->arch.dr6;
2960 break;
2961 case 7:
2962 val = vcpu->arch.dr7;
2963 break;
2964 default:
2965 val = 0;
2967 kvm_register_write(vcpu, reg, val);
2968 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2969 } else {
2970 val = vcpu->arch.regs[reg];
2971 switch (dr) {
2972 case 0 ... 3:
2973 vcpu->arch.db[dr] = val;
2974 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2975 vcpu->arch.eff_db[dr] = val;
2976 break;
2977 case 4 ... 5:
2978 if (vcpu->arch.cr4 & X86_CR4_DE)
2979 kvm_queue_exception(vcpu, UD_VECTOR);
2980 break;
2981 case 6:
2982 if (val & 0xffffffff00000000ULL) {
2983 kvm_queue_exception(vcpu, GP_VECTOR);
2984 break;
2986 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2987 break;
2988 case 7:
2989 if (val & 0xffffffff00000000ULL) {
2990 kvm_queue_exception(vcpu, GP_VECTOR);
2991 break;
2993 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2994 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2995 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2996 vcpu->arch.switch_db_regs =
2997 (val & DR7_BP_EN_MASK);
2999 break;
3001 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
3003 skip_emulated_instruction(vcpu);
3004 return 1;
3007 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3009 kvm_emulate_cpuid(vcpu);
3010 return 1;
3013 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3015 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3016 u64 data;
3018 if (vmx_get_msr(vcpu, ecx, &data)) {
3019 kvm_inject_gp(vcpu, 0);
3020 return 1;
3023 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
3024 handler);
3026 /* FIXME: handling of bits 32:63 of rax, rdx */
3027 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3028 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3029 skip_emulated_instruction(vcpu);
3030 return 1;
3033 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3035 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3036 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3037 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3039 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
3040 handler);
3042 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3043 kvm_inject_gp(vcpu, 0);
3044 return 1;
3047 skip_emulated_instruction(vcpu);
3048 return 1;
3051 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
3052 struct kvm_run *kvm_run)
3054 return 1;
3057 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
3058 struct kvm_run *kvm_run)
3060 u32 cpu_based_vm_exec_control;
3062 /* clear pending irq */
3063 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3064 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3065 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3067 KVMTRACE_0D(PEND_INTR, vcpu, handler);
3068 ++vcpu->stat.irq_window_exits;
3071 * If the user space waits to inject interrupts, exit as soon as
3072 * possible
3074 if (!irqchip_in_kernel(vcpu->kvm) &&
3075 kvm_run->request_interrupt_window &&
3076 !kvm_cpu_has_interrupt(vcpu)) {
3077 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3078 return 0;
3080 return 1;
3083 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3085 skip_emulated_instruction(vcpu);
3086 return kvm_emulate_halt(vcpu);
3089 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3091 skip_emulated_instruction(vcpu);
3092 kvm_emulate_hypercall(vcpu);
3093 return 1;
3096 static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3098 kvm_queue_exception(vcpu, UD_VECTOR);
3099 return 1;
3102 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3104 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3106 kvm_mmu_invlpg(vcpu, exit_qualification);
3107 skip_emulated_instruction(vcpu);
3108 return 1;
3111 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3113 skip_emulated_instruction(vcpu);
3114 /* TODO: Add support for VT-d/pass-through device */
3115 return 1;
3118 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3120 unsigned long exit_qualification;
3121 enum emulation_result er;
3122 unsigned long offset;
3124 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3125 offset = exit_qualification & 0xffful;
3127 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3129 if (er != EMULATE_DONE) {
3130 printk(KERN_ERR
3131 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3132 offset);
3133 return -ENOTSUPP;
3135 return 1;
3138 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3140 struct vcpu_vmx *vmx = to_vmx(vcpu);
3141 unsigned long exit_qualification;
3142 u16 tss_selector;
3143 int reason, type, idt_v;
3145 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3146 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3148 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3150 reason = (u32)exit_qualification >> 30;
3151 if (reason == TASK_SWITCH_GATE && idt_v) {
3152 switch (type) {
3153 case INTR_TYPE_NMI_INTR:
3154 vcpu->arch.nmi_injected = false;
3155 if (cpu_has_virtual_nmis())
3156 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3157 GUEST_INTR_STATE_NMI);
3158 break;
3159 case INTR_TYPE_EXT_INTR:
3160 case INTR_TYPE_SOFT_INTR:
3161 kvm_clear_interrupt_queue(vcpu);
3162 break;
3163 case INTR_TYPE_HARD_EXCEPTION:
3164 case INTR_TYPE_SOFT_EXCEPTION:
3165 kvm_clear_exception_queue(vcpu);
3166 break;
3167 default:
3168 break;
3171 tss_selector = exit_qualification;
3173 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3174 type != INTR_TYPE_EXT_INTR &&
3175 type != INTR_TYPE_NMI_INTR))
3176 skip_emulated_instruction(vcpu);
3178 if (!kvm_task_switch(vcpu, tss_selector, reason))
3179 return 0;
3181 /* clear all local breakpoint enable flags */
3182 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3185 * TODO: What about debug traps on tss switch?
3186 * Are we supposed to inject them and update dr6?
3189 return 1;
3192 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3194 unsigned long exit_qualification;
3195 gpa_t gpa;
3196 int gla_validity;
3198 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3200 if (exit_qualification & (1 << 6)) {
3201 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3202 return -ENOTSUPP;
3205 gla_validity = (exit_qualification >> 7) & 0x3;
3206 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3207 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3208 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3209 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3210 vmcs_readl(GUEST_LINEAR_ADDRESS));
3211 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3212 (long unsigned int)exit_qualification);
3213 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3214 kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3215 return 0;
3218 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3219 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3222 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3224 u32 cpu_based_vm_exec_control;
3226 /* clear pending NMI */
3227 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3228 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3229 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3230 ++vcpu->stat.nmi_window_exits;
3232 return 1;
3235 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3236 struct kvm_run *kvm_run)
3238 struct vcpu_vmx *vmx = to_vmx(vcpu);
3239 enum emulation_result err = EMULATE_DONE;
3241 local_irq_enable();
3242 preempt_enable();
3244 while (!guest_state_valid(vcpu)) {
3245 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3247 if (err == EMULATE_DO_MMIO)
3248 break;
3250 if (err != EMULATE_DONE) {
3251 kvm_report_emulation_failure(vcpu, "emulation failure");
3252 break;
3255 if (signal_pending(current))
3256 break;
3257 if (need_resched())
3258 schedule();
3261 preempt_disable();
3262 local_irq_disable();
3264 vmx->invalid_state_emulation_result = err;
3268 * The exit handlers return 1 if the exit was handled fully and guest execution
3269 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3270 * to be done to userspace and return 0.
3272 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3273 struct kvm_run *kvm_run) = {
3274 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3275 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3276 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3277 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3278 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3279 [EXIT_REASON_CR_ACCESS] = handle_cr,
3280 [EXIT_REASON_DR_ACCESS] = handle_dr,
3281 [EXIT_REASON_CPUID] = handle_cpuid,
3282 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3283 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3284 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3285 [EXIT_REASON_HLT] = handle_halt,
3286 [EXIT_REASON_INVLPG] = handle_invlpg,
3287 [EXIT_REASON_VMCALL] = handle_vmcall,
3288 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3289 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3290 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3291 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3292 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3293 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3294 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3295 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3296 [EXIT_REASON_VMON] = handle_vmx_insn,
3297 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3298 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3299 [EXIT_REASON_WBINVD] = handle_wbinvd,
3300 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3301 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3302 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3305 static const int kvm_vmx_max_exit_handlers =
3306 ARRAY_SIZE(kvm_vmx_exit_handlers);
3309 * The guest has exited. See if we can fix it or if we need userspace
3310 * assistance.
3312 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3314 struct vcpu_vmx *vmx = to_vmx(vcpu);
3315 u32 exit_reason = vmx->exit_reason;
3316 u32 vectoring_info = vmx->idt_vectoring_info;
3318 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3319 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3321 /* If we need to emulate an MMIO from handle_invalid_guest_state
3322 * we just return 0 */
3323 if (vmx->emulation_required && emulate_invalid_guest_state) {
3324 if (guest_state_valid(vcpu))
3325 vmx->emulation_required = 0;
3326 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3329 /* Access CR3 don't cause VMExit in paging mode, so we need
3330 * to sync with guest real CR3. */
3331 if (enable_ept && is_paging(vcpu))
3332 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3334 if (unlikely(vmx->fail)) {
3335 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3336 kvm_run->fail_entry.hardware_entry_failure_reason
3337 = vmcs_read32(VM_INSTRUCTION_ERROR);
3338 return 0;
3341 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3342 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3343 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3344 exit_reason != EXIT_REASON_TASK_SWITCH))
3345 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3346 "(0x%x) and exit reason is 0x%x\n",
3347 __func__, vectoring_info, exit_reason);
3349 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3350 if (vmx_interrupt_allowed(vcpu)) {
3351 vmx->soft_vnmi_blocked = 0;
3352 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3353 vcpu->arch.nmi_pending) {
3355 * This CPU don't support us in finding the end of an
3356 * NMI-blocked window if the guest runs with IRQs
3357 * disabled. So we pull the trigger after 1 s of
3358 * futile waiting, but inform the user about this.
3360 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3361 "state on VCPU %d after 1 s timeout\n",
3362 __func__, vcpu->vcpu_id);
3363 vmx->soft_vnmi_blocked = 0;
3367 if (exit_reason < kvm_vmx_max_exit_handlers
3368 && kvm_vmx_exit_handlers[exit_reason])
3369 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3370 else {
3371 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3372 kvm_run->hw.hardware_exit_reason = exit_reason;
3374 return 0;
3377 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3379 if (irr == -1 || tpr < irr) {
3380 vmcs_write32(TPR_THRESHOLD, 0);
3381 return;
3384 vmcs_write32(TPR_THRESHOLD, irr);
3387 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3389 u32 exit_intr_info;
3390 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3391 bool unblock_nmi;
3392 u8 vector;
3393 int type;
3394 bool idtv_info_valid;
3396 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3398 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3400 /* Handle machine checks before interrupts are enabled */
3401 if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3402 || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3403 && is_machine_check(exit_intr_info)))
3404 kvm_machine_check();
3406 /* We need to handle NMIs before interrupts are enabled */
3407 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3408 (exit_intr_info & INTR_INFO_VALID_MASK)) {
3409 KVMTRACE_0D(NMI, &vmx->vcpu, handler);
3410 asm("int $2");
3413 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3415 if (cpu_has_virtual_nmis()) {
3416 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3417 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3419 * SDM 3: 27.7.1.2 (September 2008)
3420 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3421 * a guest IRET fault.
3422 * SDM 3: 23.2.2 (September 2008)
3423 * Bit 12 is undefined in any of the following cases:
3424 * If the VM exit sets the valid bit in the IDT-vectoring
3425 * information field.
3426 * If the VM exit is due to a double fault.
3428 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3429 vector != DF_VECTOR && !idtv_info_valid)
3430 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3431 GUEST_INTR_STATE_NMI);
3432 } else if (unlikely(vmx->soft_vnmi_blocked))
3433 vmx->vnmi_blocked_time +=
3434 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3436 vmx->vcpu.arch.nmi_injected = false;
3437 kvm_clear_exception_queue(&vmx->vcpu);
3438 kvm_clear_interrupt_queue(&vmx->vcpu);
3440 if (!idtv_info_valid)
3441 return;
3443 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3444 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3446 switch (type) {
3447 case INTR_TYPE_NMI_INTR:
3448 vmx->vcpu.arch.nmi_injected = true;
3450 * SDM 3: 27.7.1.2 (September 2008)
3451 * Clear bit "block by NMI" before VM entry if a NMI
3452 * delivery faulted.
3454 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3455 GUEST_INTR_STATE_NMI);
3456 break;
3457 case INTR_TYPE_SOFT_EXCEPTION:
3458 vmx->vcpu.arch.event_exit_inst_len =
3459 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3460 /* fall through */
3461 case INTR_TYPE_HARD_EXCEPTION:
3462 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3463 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3464 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3465 } else
3466 kvm_queue_exception(&vmx->vcpu, vector);
3467 break;
3468 case INTR_TYPE_SOFT_INTR:
3469 vmx->vcpu.arch.event_exit_inst_len =
3470 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3471 /* fall through */
3472 case INTR_TYPE_EXT_INTR:
3473 kvm_queue_interrupt(&vmx->vcpu, vector,
3474 type == INTR_TYPE_SOFT_INTR);
3475 break;
3476 default:
3477 break;
3482 * Failure to inject an interrupt should give us the information
3483 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3484 * when fetching the interrupt redirection bitmap in the real-mode
3485 * tss, this doesn't happen. So we do it ourselves.
3487 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3489 vmx->rmode.irq.pending = 0;
3490 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3491 return;
3492 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3493 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3494 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3495 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3496 return;
3498 vmx->idt_vectoring_info =
3499 VECTORING_INFO_VALID_MASK
3500 | INTR_TYPE_EXT_INTR
3501 | vmx->rmode.irq.vector;
3504 #ifdef CONFIG_X86_64
3505 #define R "r"
3506 #define Q "q"
3507 #else
3508 #define R "e"
3509 #define Q "l"
3510 #endif
3512 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3514 struct vcpu_vmx *vmx = to_vmx(vcpu);
3516 if (enable_ept && is_paging(vcpu)) {
3517 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3518 ept_load_pdptrs(vcpu);
3520 /* Record the guest's net vcpu time for enforced NMI injections. */
3521 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3522 vmx->entry_time = ktime_get();
3524 /* Handle invalid guest state instead of entering VMX */
3525 if (vmx->emulation_required && emulate_invalid_guest_state) {
3526 handle_invalid_guest_state(vcpu, kvm_run);
3527 return;
3530 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3531 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3532 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3533 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3535 /* When single-stepping over STI and MOV SS, we must clear the
3536 * corresponding interruptibility bits in the guest state. Otherwise
3537 * vmentry fails as it then expects bit 14 (BS) in pending debug
3538 * exceptions being set, but that's not correct for the guest debugging
3539 * case. */
3540 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3541 vmx_set_interrupt_shadow(vcpu, 0);
3544 * Loading guest fpu may have cleared host cr0.ts
3546 vmcs_writel(HOST_CR0, read_cr0());
3548 set_debugreg(vcpu->arch.dr6, 6);
3550 asm(
3551 /* Store host registers */
3552 "push %%"R"dx; push %%"R"bp;"
3553 "push %%"R"cx \n\t"
3554 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3555 "je 1f \n\t"
3556 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3557 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3558 "1: \n\t"
3559 /* Check if vmlaunch of vmresume is needed */
3560 "cmpl $0, %c[launched](%0) \n\t"
3561 /* Load guest registers. Don't clobber flags. */
3562 "mov %c[cr2](%0), %%"R"ax \n\t"
3563 "mov %%"R"ax, %%cr2 \n\t"
3564 "mov %c[rax](%0), %%"R"ax \n\t"
3565 "mov %c[rbx](%0), %%"R"bx \n\t"
3566 "mov %c[rdx](%0), %%"R"dx \n\t"
3567 "mov %c[rsi](%0), %%"R"si \n\t"
3568 "mov %c[rdi](%0), %%"R"di \n\t"
3569 "mov %c[rbp](%0), %%"R"bp \n\t"
3570 #ifdef CONFIG_X86_64
3571 "mov %c[r8](%0), %%r8 \n\t"
3572 "mov %c[r9](%0), %%r9 \n\t"
3573 "mov %c[r10](%0), %%r10 \n\t"
3574 "mov %c[r11](%0), %%r11 \n\t"
3575 "mov %c[r12](%0), %%r12 \n\t"
3576 "mov %c[r13](%0), %%r13 \n\t"
3577 "mov %c[r14](%0), %%r14 \n\t"
3578 "mov %c[r15](%0), %%r15 \n\t"
3579 #endif
3580 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3582 /* Enter guest mode */
3583 "jne .Llaunched \n\t"
3584 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3585 "jmp .Lkvm_vmx_return \n\t"
3586 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3587 ".Lkvm_vmx_return: "
3588 /* Save guest registers, load host registers, keep flags */
3589 "xchg %0, (%%"R"sp) \n\t"
3590 "mov %%"R"ax, %c[rax](%0) \n\t"
3591 "mov %%"R"bx, %c[rbx](%0) \n\t"
3592 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3593 "mov %%"R"dx, %c[rdx](%0) \n\t"
3594 "mov %%"R"si, %c[rsi](%0) \n\t"
3595 "mov %%"R"di, %c[rdi](%0) \n\t"
3596 "mov %%"R"bp, %c[rbp](%0) \n\t"
3597 #ifdef CONFIG_X86_64
3598 "mov %%r8, %c[r8](%0) \n\t"
3599 "mov %%r9, %c[r9](%0) \n\t"
3600 "mov %%r10, %c[r10](%0) \n\t"
3601 "mov %%r11, %c[r11](%0) \n\t"
3602 "mov %%r12, %c[r12](%0) \n\t"
3603 "mov %%r13, %c[r13](%0) \n\t"
3604 "mov %%r14, %c[r14](%0) \n\t"
3605 "mov %%r15, %c[r15](%0) \n\t"
3606 #endif
3607 "mov %%cr2, %%"R"ax \n\t"
3608 "mov %%"R"ax, %c[cr2](%0) \n\t"
3610 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3611 "setbe %c[fail](%0) \n\t"
3612 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3613 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3614 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3615 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3616 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3617 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3618 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3619 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3620 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3621 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3622 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3623 #ifdef CONFIG_X86_64
3624 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3625 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3626 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3627 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3628 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3629 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3630 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3631 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3632 #endif
3633 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3634 : "cc", "memory"
3635 , R"bx", R"di", R"si"
3636 #ifdef CONFIG_X86_64
3637 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3638 #endif
3641 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3642 | (1 << VCPU_EXREG_PDPTR));
3643 vcpu->arch.regs_dirty = 0;
3645 get_debugreg(vcpu->arch.dr6, 6);
3647 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3648 if (vmx->rmode.irq.pending)
3649 fixup_rmode_irq(vmx);
3651 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3652 vmx->launched = 1;
3654 vmx_complete_interrupts(vmx);
3657 #undef R
3658 #undef Q
3660 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3662 struct vcpu_vmx *vmx = to_vmx(vcpu);
3664 if (vmx->vmcs) {
3665 vcpu_clear(vmx);
3666 free_vmcs(vmx->vmcs);
3667 vmx->vmcs = NULL;
3671 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3673 struct vcpu_vmx *vmx = to_vmx(vcpu);
3675 spin_lock(&vmx_vpid_lock);
3676 if (vmx->vpid != 0)
3677 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3678 spin_unlock(&vmx_vpid_lock);
3679 vmx_free_vmcs(vcpu);
3680 kfree(vmx->host_msrs);
3681 kfree(vmx->guest_msrs);
3682 kvm_vcpu_uninit(vcpu);
3683 kmem_cache_free(kvm_vcpu_cache, vmx);
3686 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3688 int err;
3689 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3690 int cpu;
3692 if (!vmx)
3693 return ERR_PTR(-ENOMEM);
3695 allocate_vpid(vmx);
3697 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3698 if (err)
3699 goto free_vcpu;
3701 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3702 if (!vmx->guest_msrs) {
3703 err = -ENOMEM;
3704 goto uninit_vcpu;
3707 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3708 if (!vmx->host_msrs)
3709 goto free_guest_msrs;
3711 vmx->vmcs = alloc_vmcs();
3712 if (!vmx->vmcs)
3713 goto free_msrs;
3715 vmcs_clear(vmx->vmcs);
3717 cpu = get_cpu();
3718 vmx_vcpu_load(&vmx->vcpu, cpu);
3719 err = vmx_vcpu_setup(vmx);
3720 vmx_vcpu_put(&vmx->vcpu);
3721 put_cpu();
3722 if (err)
3723 goto free_vmcs;
3724 if (vm_need_virtualize_apic_accesses(kvm))
3725 if (alloc_apic_access_page(kvm) != 0)
3726 goto free_vmcs;
3728 if (enable_ept)
3729 if (alloc_identity_pagetable(kvm) != 0)
3730 goto free_vmcs;
3732 return &vmx->vcpu;
3734 free_vmcs:
3735 free_vmcs(vmx->vmcs);
3736 free_msrs:
3737 kfree(vmx->host_msrs);
3738 free_guest_msrs:
3739 kfree(vmx->guest_msrs);
3740 uninit_vcpu:
3741 kvm_vcpu_uninit(&vmx->vcpu);
3742 free_vcpu:
3743 kmem_cache_free(kvm_vcpu_cache, vmx);
3744 return ERR_PTR(err);
3747 static void __init vmx_check_processor_compat(void *rtn)
3749 struct vmcs_config vmcs_conf;
3751 *(int *)rtn = 0;
3752 if (setup_vmcs_config(&vmcs_conf) < 0)
3753 *(int *)rtn = -EIO;
3754 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3755 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3756 smp_processor_id());
3757 *(int *)rtn = -EIO;
3761 static int get_ept_level(void)
3763 return VMX_EPT_DEFAULT_GAW + 1;
3766 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3768 u64 ret;
3770 /* For VT-d and EPT combination
3771 * 1. MMIO: always map as UC
3772 * 2. EPT with VT-d:
3773 * a. VT-d without snooping control feature: can't guarantee the
3774 * result, try to trust guest.
3775 * b. VT-d with snooping control feature: snooping control feature of
3776 * VT-d engine can guarantee the cache correctness. Just set it
3777 * to WB to keep consistent with host. So the same as item 3.
3778 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3779 * consistent with host MTRR
3781 if (is_mmio)
3782 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3783 else if (vcpu->kvm->arch.iommu_domain &&
3784 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3785 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3786 VMX_EPT_MT_EPTE_SHIFT;
3787 else
3788 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3789 | VMX_EPT_IGMT_BIT;
3791 return ret;
3794 static struct kvm_x86_ops vmx_x86_ops = {
3795 .cpu_has_kvm_support = cpu_has_kvm_support,
3796 .disabled_by_bios = vmx_disabled_by_bios,
3797 .hardware_setup = hardware_setup,
3798 .hardware_unsetup = hardware_unsetup,
3799 .check_processor_compatibility = vmx_check_processor_compat,
3800 .hardware_enable = hardware_enable,
3801 .hardware_disable = hardware_disable,
3802 .cpu_has_accelerated_tpr = report_flexpriority,
3804 .vcpu_create = vmx_create_vcpu,
3805 .vcpu_free = vmx_free_vcpu,
3806 .vcpu_reset = vmx_vcpu_reset,
3808 .prepare_guest_switch = vmx_save_host_state,
3809 .vcpu_load = vmx_vcpu_load,
3810 .vcpu_put = vmx_vcpu_put,
3812 .set_guest_debug = set_guest_debug,
3813 .get_msr = vmx_get_msr,
3814 .set_msr = vmx_set_msr,
3815 .get_segment_base = vmx_get_segment_base,
3816 .get_segment = vmx_get_segment,
3817 .set_segment = vmx_set_segment,
3818 .get_cpl = vmx_get_cpl,
3819 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3820 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3821 .set_cr0 = vmx_set_cr0,
3822 .set_cr3 = vmx_set_cr3,
3823 .set_cr4 = vmx_set_cr4,
3824 .set_efer = vmx_set_efer,
3825 .get_idt = vmx_get_idt,
3826 .set_idt = vmx_set_idt,
3827 .get_gdt = vmx_get_gdt,
3828 .set_gdt = vmx_set_gdt,
3829 .cache_reg = vmx_cache_reg,
3830 .get_rflags = vmx_get_rflags,
3831 .set_rflags = vmx_set_rflags,
3833 .tlb_flush = vmx_flush_tlb,
3835 .run = vmx_vcpu_run,
3836 .handle_exit = vmx_handle_exit,
3837 .skip_emulated_instruction = skip_emulated_instruction,
3838 .set_interrupt_shadow = vmx_set_interrupt_shadow,
3839 .get_interrupt_shadow = vmx_get_interrupt_shadow,
3840 .patch_hypercall = vmx_patch_hypercall,
3841 .set_irq = vmx_inject_irq,
3842 .set_nmi = vmx_inject_nmi,
3843 .queue_exception = vmx_queue_exception,
3844 .interrupt_allowed = vmx_interrupt_allowed,
3845 .nmi_allowed = vmx_nmi_allowed,
3846 .enable_nmi_window = enable_nmi_window,
3847 .enable_irq_window = enable_irq_window,
3848 .update_cr8_intercept = update_cr8_intercept,
3850 .set_tss_addr = vmx_set_tss_addr,
3851 .get_tdp_level = get_ept_level,
3852 .get_mt_mask = vmx_get_mt_mask,
3855 static int __init vmx_init(void)
3857 int r;
3859 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3860 if (!vmx_io_bitmap_a)
3861 return -ENOMEM;
3863 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3864 if (!vmx_io_bitmap_b) {
3865 r = -ENOMEM;
3866 goto out;
3869 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3870 if (!vmx_msr_bitmap_legacy) {
3871 r = -ENOMEM;
3872 goto out1;
3875 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3876 if (!vmx_msr_bitmap_longmode) {
3877 r = -ENOMEM;
3878 goto out2;
3882 * Allow direct access to the PC debug port (it is often used for I/O
3883 * delays, but the vmexits simply slow things down).
3885 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3886 clear_bit(0x80, vmx_io_bitmap_a);
3888 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3890 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3891 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3893 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3895 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3896 if (r)
3897 goto out3;
3899 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3900 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3901 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3902 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3903 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3904 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3906 if (enable_ept) {
3907 bypass_guest_pf = 0;
3908 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3909 VMX_EPT_WRITABLE_MASK);
3910 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3911 VMX_EPT_EXECUTABLE_MASK);
3912 kvm_enable_tdp();
3913 } else
3914 kvm_disable_tdp();
3916 if (bypass_guest_pf)
3917 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3919 ept_sync_global();
3921 return 0;
3923 out3:
3924 free_page((unsigned long)vmx_msr_bitmap_longmode);
3925 out2:
3926 free_page((unsigned long)vmx_msr_bitmap_legacy);
3927 out1:
3928 free_page((unsigned long)vmx_io_bitmap_b);
3929 out:
3930 free_page((unsigned long)vmx_io_bitmap_a);
3931 return r;
3934 static void __exit vmx_exit(void)
3936 free_page((unsigned long)vmx_msr_bitmap_legacy);
3937 free_page((unsigned long)vmx_msr_bitmap_longmode);
3938 free_page((unsigned long)vmx_io_bitmap_b);
3939 free_page((unsigned long)vmx_io_bitmap_a);
3941 kvm_exit();
3944 module_init(vmx_init)
3945 module_exit(vmx_exit)