drm/i915: fix PCH eDP SSC support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmscan.c
blobc5dfabf25f115a34df8f9111843af28a8d58d906
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
49 #include "internal.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
54 struct scan_control {
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
64 unsigned long hibernation_mode;
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
69 int may_writepage;
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
77 int swappiness;
79 int order;
82 * Intend to reclaim enough contenious memory rather than to reclaim
83 * enough amount memory. I.e, it's the mode for high order allocation.
85 bool lumpy_reclaim_mode;
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
94 nodemask_t *nodemask;
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
148 return &zone->reclaim_stat;
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
157 return zone_page_state(zone, NR_LRU_BASE + lru);
162 * Add a shrinker callback to be called from the vm
164 void register_shrinker(struct shrinker *shrinker)
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
171 EXPORT_SYMBOL(register_shrinker);
174 * Remove one
176 void unregister_shrinker(struct shrinker *shrinker)
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
182 EXPORT_SYMBOL(unregister_shrinker);
184 #define SHRINK_BATCH 128
186 * Call the shrink functions to age shrinkable caches
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
202 * Returns the number of slab objects which we shrunk.
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass;
221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
222 delta = (4 * scanned) / shrinker->seeks;
223 delta *= max_pass;
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
226 if (shrinker->nr < 0) {
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
230 shrinker->nr = max_pass;
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
247 int nr_before;
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
252 if (shrink_ret == -1)
253 break;
254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
256 count_vm_events(SLABS_SCANNED, this_scan);
257 total_scan -= this_scan;
259 cond_resched();
262 shrinker->nr += total_scan;
264 up_read(&shrinker_rwsem);
265 return ret;
268 static inline int is_page_cache_freeable(struct page *page)
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
275 return page_count(page) - page_has_private(page) == 2;
278 static int may_write_to_queue(struct backing_dev_info *bdi)
280 if (current->flags & PF_SWAPWRITE)
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
301 static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
304 lock_page_nosync(page);
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
307 unlock_page(page);
310 /* Request for sync pageout. */
311 enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
316 /* possible outcome of pageout() */
317 typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326 } pageout_t;
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
332 static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
342 * If this process is currently in __generic_file_aio_write() against
343 * this page's queue, we can perform writeback even if that
344 * will block.
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
358 if (page_has_private(page)) {
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
361 printk("%s: orphaned page\n", __func__);
362 return PAGE_CLEAN;
365 return PAGE_KEEP;
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
377 .range_start = 0,
378 .range_end = LLONG_MAX,
379 .nonblocking = 1,
380 .for_reclaim = 1,
383 SetPageReclaim(page);
384 res = mapping->a_ops->writepage(page, &wbc);
385 if (res < 0)
386 handle_write_error(mapping, page, res);
387 if (res == AOP_WRITEPAGE_ACTIVATE) {
388 ClearPageReclaim(page);
389 return PAGE_ACTIVATE;
393 * Wait on writeback if requested to. This happens when
394 * direct reclaiming a large contiguous area and the
395 * first attempt to free a range of pages fails.
397 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
398 wait_on_page_writeback(page);
400 if (!PageWriteback(page)) {
401 /* synchronous write or broken a_ops? */
402 ClearPageReclaim(page);
404 trace_mm_vmscan_writepage(page,
405 trace_reclaim_flags(page, sync_writeback));
406 inc_zone_page_state(page, NR_VMSCAN_WRITE);
407 return PAGE_SUCCESS;
410 return PAGE_CLEAN;
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
417 static int __remove_mapping(struct address_space *mapping, struct page *page)
419 BUG_ON(!PageLocked(page));
420 BUG_ON(mapping != page_mapping(page));
422 spin_lock_irq(&mapping->tree_lock);
424 * The non racy check for a busy page.
426 * Must be careful with the order of the tests. When someone has
427 * a ref to the page, it may be possible that they dirty it then
428 * drop the reference. So if PageDirty is tested before page_count
429 * here, then the following race may occur:
431 * get_user_pages(&page);
432 * [user mapping goes away]
433 * write_to(page);
434 * !PageDirty(page) [good]
435 * SetPageDirty(page);
436 * put_page(page);
437 * !page_count(page) [good, discard it]
439 * [oops, our write_to data is lost]
441 * Reversing the order of the tests ensures such a situation cannot
442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443 * load is not satisfied before that of page->_count.
445 * Note that if SetPageDirty is always performed via set_page_dirty,
446 * and thus under tree_lock, then this ordering is not required.
448 if (!page_freeze_refs(page, 2))
449 goto cannot_free;
450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451 if (unlikely(PageDirty(page))) {
452 page_unfreeze_refs(page, 2);
453 goto cannot_free;
456 if (PageSwapCache(page)) {
457 swp_entry_t swap = { .val = page_private(page) };
458 __delete_from_swap_cache(page);
459 spin_unlock_irq(&mapping->tree_lock);
460 swapcache_free(swap, page);
461 } else {
462 __remove_from_page_cache(page);
463 spin_unlock_irq(&mapping->tree_lock);
464 mem_cgroup_uncharge_cache_page(page);
467 return 1;
469 cannot_free:
470 spin_unlock_irq(&mapping->tree_lock);
471 return 0;
475 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
476 * someone else has a ref on the page, abort and return 0. If it was
477 * successfully detached, return 1. Assumes the caller has a single ref on
478 * this page.
480 int remove_mapping(struct address_space *mapping, struct page *page)
482 if (__remove_mapping(mapping, page)) {
484 * Unfreezing the refcount with 1 rather than 2 effectively
485 * drops the pagecache ref for us without requiring another
486 * atomic operation.
488 page_unfreeze_refs(page, 1);
489 return 1;
491 return 0;
495 * putback_lru_page - put previously isolated page onto appropriate LRU list
496 * @page: page to be put back to appropriate lru list
498 * Add previously isolated @page to appropriate LRU list.
499 * Page may still be unevictable for other reasons.
501 * lru_lock must not be held, interrupts must be enabled.
503 void putback_lru_page(struct page *page)
505 int lru;
506 int active = !!TestClearPageActive(page);
507 int was_unevictable = PageUnevictable(page);
509 VM_BUG_ON(PageLRU(page));
511 redo:
512 ClearPageUnevictable(page);
514 if (page_evictable(page, NULL)) {
516 * For evictable pages, we can use the cache.
517 * In event of a race, worst case is we end up with an
518 * unevictable page on [in]active list.
519 * We know how to handle that.
521 lru = active + page_lru_base_type(page);
522 lru_cache_add_lru(page, lru);
523 } else {
525 * Put unevictable pages directly on zone's unevictable
526 * list.
528 lru = LRU_UNEVICTABLE;
529 add_page_to_unevictable_list(page);
531 * When racing with an mlock clearing (page is
532 * unlocked), make sure that if the other thread does
533 * not observe our setting of PG_lru and fails
534 * isolation, we see PG_mlocked cleared below and move
535 * the page back to the evictable list.
537 * The other side is TestClearPageMlocked().
539 smp_mb();
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
547 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548 if (!isolate_lru_page(page)) {
549 put_page(page);
550 goto redo;
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
558 if (was_unevictable && lru != LRU_UNEVICTABLE)
559 count_vm_event(UNEVICTABLE_PGRESCUED);
560 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561 count_vm_event(UNEVICTABLE_PGCULLED);
563 put_page(page); /* drop ref from isolate */
566 enum page_references {
567 PAGEREF_RECLAIM,
568 PAGEREF_RECLAIM_CLEAN,
569 PAGEREF_KEEP,
570 PAGEREF_ACTIVATE,
573 static enum page_references page_check_references(struct page *page,
574 struct scan_control *sc)
576 int referenced_ptes, referenced_page;
577 unsigned long vm_flags;
579 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
580 referenced_page = TestClearPageReferenced(page);
582 /* Lumpy reclaim - ignore references */
583 if (sc->lumpy_reclaim_mode)
584 return PAGEREF_RECLAIM;
587 * Mlock lost the isolation race with us. Let try_to_unmap()
588 * move the page to the unevictable list.
590 if (vm_flags & VM_LOCKED)
591 return PAGEREF_RECLAIM;
593 if (referenced_ptes) {
594 if (PageAnon(page))
595 return PAGEREF_ACTIVATE;
597 * All mapped pages start out with page table
598 * references from the instantiating fault, so we need
599 * to look twice if a mapped file page is used more
600 * than once.
602 * Mark it and spare it for another trip around the
603 * inactive list. Another page table reference will
604 * lead to its activation.
606 * Note: the mark is set for activated pages as well
607 * so that recently deactivated but used pages are
608 * quickly recovered.
610 SetPageReferenced(page);
612 if (referenced_page)
613 return PAGEREF_ACTIVATE;
615 return PAGEREF_KEEP;
618 /* Reclaim if clean, defer dirty pages to writeback */
619 if (referenced_page)
620 return PAGEREF_RECLAIM_CLEAN;
622 return PAGEREF_RECLAIM;
625 static noinline_for_stack void free_page_list(struct list_head *free_pages)
627 struct pagevec freed_pvec;
628 struct page *page, *tmp;
630 pagevec_init(&freed_pvec, 1);
632 list_for_each_entry_safe(page, tmp, free_pages, lru) {
633 list_del(&page->lru);
634 if (!pagevec_add(&freed_pvec, page)) {
635 __pagevec_free(&freed_pvec);
636 pagevec_reinit(&freed_pvec);
640 pagevec_free(&freed_pvec);
644 * shrink_page_list() returns the number of reclaimed pages
646 static unsigned long shrink_page_list(struct list_head *page_list,
647 struct scan_control *sc,
648 enum pageout_io sync_writeback)
650 LIST_HEAD(ret_pages);
651 LIST_HEAD(free_pages);
652 int pgactivate = 0;
653 unsigned long nr_reclaimed = 0;
655 cond_resched();
657 while (!list_empty(page_list)) {
658 enum page_references references;
659 struct address_space *mapping;
660 struct page *page;
661 int may_enter_fs;
663 cond_resched();
665 page = lru_to_page(page_list);
666 list_del(&page->lru);
668 if (!trylock_page(page))
669 goto keep;
671 VM_BUG_ON(PageActive(page));
673 sc->nr_scanned++;
675 if (unlikely(!page_evictable(page, NULL)))
676 goto cull_mlocked;
678 if (!sc->may_unmap && page_mapped(page))
679 goto keep_locked;
681 /* Double the slab pressure for mapped and swapcache pages */
682 if (page_mapped(page) || PageSwapCache(page))
683 sc->nr_scanned++;
685 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
686 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
688 if (PageWriteback(page)) {
690 * Synchronous reclaim is performed in two passes,
691 * first an asynchronous pass over the list to
692 * start parallel writeback, and a second synchronous
693 * pass to wait for the IO to complete. Wait here
694 * for any page for which writeback has already
695 * started.
697 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
698 wait_on_page_writeback(page);
699 else
700 goto keep_locked;
703 references = page_check_references(page, sc);
704 switch (references) {
705 case PAGEREF_ACTIVATE:
706 goto activate_locked;
707 case PAGEREF_KEEP:
708 goto keep_locked;
709 case PAGEREF_RECLAIM:
710 case PAGEREF_RECLAIM_CLEAN:
711 ; /* try to reclaim the page below */
715 * Anonymous process memory has backing store?
716 * Try to allocate it some swap space here.
718 if (PageAnon(page) && !PageSwapCache(page)) {
719 if (!(sc->gfp_mask & __GFP_IO))
720 goto keep_locked;
721 if (!add_to_swap(page))
722 goto activate_locked;
723 may_enter_fs = 1;
726 mapping = page_mapping(page);
729 * The page is mapped into the page tables of one or more
730 * processes. Try to unmap it here.
732 if (page_mapped(page) && mapping) {
733 switch (try_to_unmap(page, TTU_UNMAP)) {
734 case SWAP_FAIL:
735 goto activate_locked;
736 case SWAP_AGAIN:
737 goto keep_locked;
738 case SWAP_MLOCK:
739 goto cull_mlocked;
740 case SWAP_SUCCESS:
741 ; /* try to free the page below */
745 if (PageDirty(page)) {
746 if (references == PAGEREF_RECLAIM_CLEAN)
747 goto keep_locked;
748 if (!may_enter_fs)
749 goto keep_locked;
750 if (!sc->may_writepage)
751 goto keep_locked;
753 /* Page is dirty, try to write it out here */
754 switch (pageout(page, mapping, sync_writeback)) {
755 case PAGE_KEEP:
756 goto keep_locked;
757 case PAGE_ACTIVATE:
758 goto activate_locked;
759 case PAGE_SUCCESS:
760 if (PageWriteback(page) || PageDirty(page))
761 goto keep;
763 * A synchronous write - probably a ramdisk. Go
764 * ahead and try to reclaim the page.
766 if (!trylock_page(page))
767 goto keep;
768 if (PageDirty(page) || PageWriteback(page))
769 goto keep_locked;
770 mapping = page_mapping(page);
771 case PAGE_CLEAN:
772 ; /* try to free the page below */
777 * If the page has buffers, try to free the buffer mappings
778 * associated with this page. If we succeed we try to free
779 * the page as well.
781 * We do this even if the page is PageDirty().
782 * try_to_release_page() does not perform I/O, but it is
783 * possible for a page to have PageDirty set, but it is actually
784 * clean (all its buffers are clean). This happens if the
785 * buffers were written out directly, with submit_bh(). ext3
786 * will do this, as well as the blockdev mapping.
787 * try_to_release_page() will discover that cleanness and will
788 * drop the buffers and mark the page clean - it can be freed.
790 * Rarely, pages can have buffers and no ->mapping. These are
791 * the pages which were not successfully invalidated in
792 * truncate_complete_page(). We try to drop those buffers here
793 * and if that worked, and the page is no longer mapped into
794 * process address space (page_count == 1) it can be freed.
795 * Otherwise, leave the page on the LRU so it is swappable.
797 if (page_has_private(page)) {
798 if (!try_to_release_page(page, sc->gfp_mask))
799 goto activate_locked;
800 if (!mapping && page_count(page) == 1) {
801 unlock_page(page);
802 if (put_page_testzero(page))
803 goto free_it;
804 else {
806 * rare race with speculative reference.
807 * the speculative reference will free
808 * this page shortly, so we may
809 * increment nr_reclaimed here (and
810 * leave it off the LRU).
812 nr_reclaimed++;
813 continue;
818 if (!mapping || !__remove_mapping(mapping, page))
819 goto keep_locked;
822 * At this point, we have no other references and there is
823 * no way to pick any more up (removed from LRU, removed
824 * from pagecache). Can use non-atomic bitops now (and
825 * we obviously don't have to worry about waking up a process
826 * waiting on the page lock, because there are no references.
828 __clear_page_locked(page);
829 free_it:
830 nr_reclaimed++;
833 * Is there need to periodically free_page_list? It would
834 * appear not as the counts should be low
836 list_add(&page->lru, &free_pages);
837 continue;
839 cull_mlocked:
840 if (PageSwapCache(page))
841 try_to_free_swap(page);
842 unlock_page(page);
843 putback_lru_page(page);
844 continue;
846 activate_locked:
847 /* Not a candidate for swapping, so reclaim swap space. */
848 if (PageSwapCache(page) && vm_swap_full())
849 try_to_free_swap(page);
850 VM_BUG_ON(PageActive(page));
851 SetPageActive(page);
852 pgactivate++;
853 keep_locked:
854 unlock_page(page);
855 keep:
856 list_add(&page->lru, &ret_pages);
857 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
860 free_page_list(&free_pages);
862 list_splice(&ret_pages, page_list);
863 count_vm_events(PGACTIVATE, pgactivate);
864 return nr_reclaimed;
868 * Attempt to remove the specified page from its LRU. Only take this page
869 * if it is of the appropriate PageActive status. Pages which are being
870 * freed elsewhere are also ignored.
872 * page: page to consider
873 * mode: one of the LRU isolation modes defined above
875 * returns 0 on success, -ve errno on failure.
877 int __isolate_lru_page(struct page *page, int mode, int file)
879 int ret = -EINVAL;
881 /* Only take pages on the LRU. */
882 if (!PageLRU(page))
883 return ret;
886 * When checking the active state, we need to be sure we are
887 * dealing with comparible boolean values. Take the logical not
888 * of each.
890 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
891 return ret;
893 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
894 return ret;
897 * When this function is being called for lumpy reclaim, we
898 * initially look into all LRU pages, active, inactive and
899 * unevictable; only give shrink_page_list evictable pages.
901 if (PageUnevictable(page))
902 return ret;
904 ret = -EBUSY;
906 if (likely(get_page_unless_zero(page))) {
908 * Be careful not to clear PageLRU until after we're
909 * sure the page is not being freed elsewhere -- the
910 * page release code relies on it.
912 ClearPageLRU(page);
913 ret = 0;
916 return ret;
920 * zone->lru_lock is heavily contended. Some of the functions that
921 * shrink the lists perform better by taking out a batch of pages
922 * and working on them outside the LRU lock.
924 * For pagecache intensive workloads, this function is the hottest
925 * spot in the kernel (apart from copy_*_user functions).
927 * Appropriate locks must be held before calling this function.
929 * @nr_to_scan: The number of pages to look through on the list.
930 * @src: The LRU list to pull pages off.
931 * @dst: The temp list to put pages on to.
932 * @scanned: The number of pages that were scanned.
933 * @order: The caller's attempted allocation order
934 * @mode: One of the LRU isolation modes
935 * @file: True [1] if isolating file [!anon] pages
937 * returns how many pages were moved onto *@dst.
939 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
940 struct list_head *src, struct list_head *dst,
941 unsigned long *scanned, int order, int mode, int file)
943 unsigned long nr_taken = 0;
944 unsigned long nr_lumpy_taken = 0;
945 unsigned long nr_lumpy_dirty = 0;
946 unsigned long nr_lumpy_failed = 0;
947 unsigned long scan;
949 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
950 struct page *page;
951 unsigned long pfn;
952 unsigned long end_pfn;
953 unsigned long page_pfn;
954 int zone_id;
956 page = lru_to_page(src);
957 prefetchw_prev_lru_page(page, src, flags);
959 VM_BUG_ON(!PageLRU(page));
961 switch (__isolate_lru_page(page, mode, file)) {
962 case 0:
963 list_move(&page->lru, dst);
964 mem_cgroup_del_lru(page);
965 nr_taken++;
966 break;
968 case -EBUSY:
969 /* else it is being freed elsewhere */
970 list_move(&page->lru, src);
971 mem_cgroup_rotate_lru_list(page, page_lru(page));
972 continue;
974 default:
975 BUG();
978 if (!order)
979 continue;
982 * Attempt to take all pages in the order aligned region
983 * surrounding the tag page. Only take those pages of
984 * the same active state as that tag page. We may safely
985 * round the target page pfn down to the requested order
986 * as the mem_map is guarenteed valid out to MAX_ORDER,
987 * where that page is in a different zone we will detect
988 * it from its zone id and abort this block scan.
990 zone_id = page_zone_id(page);
991 page_pfn = page_to_pfn(page);
992 pfn = page_pfn & ~((1 << order) - 1);
993 end_pfn = pfn + (1 << order);
994 for (; pfn < end_pfn; pfn++) {
995 struct page *cursor_page;
997 /* The target page is in the block, ignore it. */
998 if (unlikely(pfn == page_pfn))
999 continue;
1001 /* Avoid holes within the zone. */
1002 if (unlikely(!pfn_valid_within(pfn)))
1003 break;
1005 cursor_page = pfn_to_page(pfn);
1007 /* Check that we have not crossed a zone boundary. */
1008 if (unlikely(page_zone_id(cursor_page) != zone_id))
1009 continue;
1012 * If we don't have enough swap space, reclaiming of
1013 * anon page which don't already have a swap slot is
1014 * pointless.
1016 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1017 !PageSwapCache(cursor_page))
1018 continue;
1020 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1021 list_move(&cursor_page->lru, dst);
1022 mem_cgroup_del_lru(cursor_page);
1023 nr_taken++;
1024 nr_lumpy_taken++;
1025 if (PageDirty(cursor_page))
1026 nr_lumpy_dirty++;
1027 scan++;
1028 } else {
1029 if (mode == ISOLATE_BOTH &&
1030 page_count(cursor_page))
1031 nr_lumpy_failed++;
1036 *scanned = scan;
1038 trace_mm_vmscan_lru_isolate(order,
1039 nr_to_scan, scan,
1040 nr_taken,
1041 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1042 mode);
1043 return nr_taken;
1046 static unsigned long isolate_pages_global(unsigned long nr,
1047 struct list_head *dst,
1048 unsigned long *scanned, int order,
1049 int mode, struct zone *z,
1050 int active, int file)
1052 int lru = LRU_BASE;
1053 if (active)
1054 lru += LRU_ACTIVE;
1055 if (file)
1056 lru += LRU_FILE;
1057 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1058 mode, file);
1062 * clear_active_flags() is a helper for shrink_active_list(), clearing
1063 * any active bits from the pages in the list.
1065 static unsigned long clear_active_flags(struct list_head *page_list,
1066 unsigned int *count)
1068 int nr_active = 0;
1069 int lru;
1070 struct page *page;
1072 list_for_each_entry(page, page_list, lru) {
1073 lru = page_lru_base_type(page);
1074 if (PageActive(page)) {
1075 lru += LRU_ACTIVE;
1076 ClearPageActive(page);
1077 nr_active++;
1079 if (count)
1080 count[lru]++;
1083 return nr_active;
1087 * isolate_lru_page - tries to isolate a page from its LRU list
1088 * @page: page to isolate from its LRU list
1090 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1091 * vmstat statistic corresponding to whatever LRU list the page was on.
1093 * Returns 0 if the page was removed from an LRU list.
1094 * Returns -EBUSY if the page was not on an LRU list.
1096 * The returned page will have PageLRU() cleared. If it was found on
1097 * the active list, it will have PageActive set. If it was found on
1098 * the unevictable list, it will have the PageUnevictable bit set. That flag
1099 * may need to be cleared by the caller before letting the page go.
1101 * The vmstat statistic corresponding to the list on which the page was
1102 * found will be decremented.
1104 * Restrictions:
1105 * (1) Must be called with an elevated refcount on the page. This is a
1106 * fundamentnal difference from isolate_lru_pages (which is called
1107 * without a stable reference).
1108 * (2) the lru_lock must not be held.
1109 * (3) interrupts must be enabled.
1111 int isolate_lru_page(struct page *page)
1113 int ret = -EBUSY;
1115 if (PageLRU(page)) {
1116 struct zone *zone = page_zone(page);
1118 spin_lock_irq(&zone->lru_lock);
1119 if (PageLRU(page) && get_page_unless_zero(page)) {
1120 int lru = page_lru(page);
1121 ret = 0;
1122 ClearPageLRU(page);
1124 del_page_from_lru_list(zone, page, lru);
1126 spin_unlock_irq(&zone->lru_lock);
1128 return ret;
1132 * Are there way too many processes in the direct reclaim path already?
1134 static int too_many_isolated(struct zone *zone, int file,
1135 struct scan_control *sc)
1137 unsigned long inactive, isolated;
1139 if (current_is_kswapd())
1140 return 0;
1142 if (!scanning_global_lru(sc))
1143 return 0;
1145 if (file) {
1146 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1147 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1148 } else {
1149 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1150 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1153 return isolated > inactive;
1157 * TODO: Try merging with migrations version of putback_lru_pages
1159 static noinline_for_stack void
1160 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1161 unsigned long nr_anon, unsigned long nr_file,
1162 struct list_head *page_list)
1164 struct page *page;
1165 struct pagevec pvec;
1166 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1168 pagevec_init(&pvec, 1);
1171 * Put back any unfreeable pages.
1173 spin_lock(&zone->lru_lock);
1174 while (!list_empty(page_list)) {
1175 int lru;
1176 page = lru_to_page(page_list);
1177 VM_BUG_ON(PageLRU(page));
1178 list_del(&page->lru);
1179 if (unlikely(!page_evictable(page, NULL))) {
1180 spin_unlock_irq(&zone->lru_lock);
1181 putback_lru_page(page);
1182 spin_lock_irq(&zone->lru_lock);
1183 continue;
1185 SetPageLRU(page);
1186 lru = page_lru(page);
1187 add_page_to_lru_list(zone, page, lru);
1188 if (is_active_lru(lru)) {
1189 int file = is_file_lru(lru);
1190 reclaim_stat->recent_rotated[file]++;
1192 if (!pagevec_add(&pvec, page)) {
1193 spin_unlock_irq(&zone->lru_lock);
1194 __pagevec_release(&pvec);
1195 spin_lock_irq(&zone->lru_lock);
1198 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1199 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1201 spin_unlock_irq(&zone->lru_lock);
1202 pagevec_release(&pvec);
1205 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1206 struct scan_control *sc,
1207 unsigned long *nr_anon,
1208 unsigned long *nr_file,
1209 struct list_head *isolated_list)
1211 unsigned long nr_active;
1212 unsigned int count[NR_LRU_LISTS] = { 0, };
1213 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1215 nr_active = clear_active_flags(isolated_list, count);
1216 __count_vm_events(PGDEACTIVATE, nr_active);
1218 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1219 -count[LRU_ACTIVE_FILE]);
1220 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1221 -count[LRU_INACTIVE_FILE]);
1222 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1223 -count[LRU_ACTIVE_ANON]);
1224 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1225 -count[LRU_INACTIVE_ANON]);
1227 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1228 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1229 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1230 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1232 reclaim_stat->recent_scanned[0] += *nr_anon;
1233 reclaim_stat->recent_scanned[1] += *nr_file;
1237 * Returns true if the caller should wait to clean dirty/writeback pages.
1239 * If we are direct reclaiming for contiguous pages and we do not reclaim
1240 * everything in the list, try again and wait for writeback IO to complete.
1241 * This will stall high-order allocations noticeably. Only do that when really
1242 * need to free the pages under high memory pressure.
1244 static inline bool should_reclaim_stall(unsigned long nr_taken,
1245 unsigned long nr_freed,
1246 int priority,
1247 struct scan_control *sc)
1249 int lumpy_stall_priority;
1251 /* kswapd should not stall on sync IO */
1252 if (current_is_kswapd())
1253 return false;
1255 /* Only stall on lumpy reclaim */
1256 if (!sc->lumpy_reclaim_mode)
1257 return false;
1259 /* If we have relaimed everything on the isolated list, no stall */
1260 if (nr_freed == nr_taken)
1261 return false;
1264 * For high-order allocations, there are two stall thresholds.
1265 * High-cost allocations stall immediately where as lower
1266 * order allocations such as stacks require the scanning
1267 * priority to be much higher before stalling.
1269 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1270 lumpy_stall_priority = DEF_PRIORITY;
1271 else
1272 lumpy_stall_priority = DEF_PRIORITY / 3;
1274 return priority <= lumpy_stall_priority;
1278 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1279 * of reclaimed pages
1281 static noinline_for_stack unsigned long
1282 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1283 struct scan_control *sc, int priority, int file)
1285 LIST_HEAD(page_list);
1286 unsigned long nr_scanned;
1287 unsigned long nr_reclaimed = 0;
1288 unsigned long nr_taken;
1289 unsigned long nr_active;
1290 unsigned long nr_anon;
1291 unsigned long nr_file;
1293 while (unlikely(too_many_isolated(zone, file, sc))) {
1294 congestion_wait(BLK_RW_ASYNC, HZ/10);
1296 /* We are about to die and free our memory. Return now. */
1297 if (fatal_signal_pending(current))
1298 return SWAP_CLUSTER_MAX;
1302 lru_add_drain();
1303 spin_lock_irq(&zone->lru_lock);
1305 if (scanning_global_lru(sc)) {
1306 nr_taken = isolate_pages_global(nr_to_scan,
1307 &page_list, &nr_scanned, sc->order,
1308 sc->lumpy_reclaim_mode ?
1309 ISOLATE_BOTH : ISOLATE_INACTIVE,
1310 zone, 0, file);
1311 zone->pages_scanned += nr_scanned;
1312 if (current_is_kswapd())
1313 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1314 nr_scanned);
1315 else
1316 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1317 nr_scanned);
1318 } else {
1319 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1320 &page_list, &nr_scanned, sc->order,
1321 sc->lumpy_reclaim_mode ?
1322 ISOLATE_BOTH : ISOLATE_INACTIVE,
1323 zone, sc->mem_cgroup,
1324 0, file);
1326 * mem_cgroup_isolate_pages() keeps track of
1327 * scanned pages on its own.
1331 if (nr_taken == 0) {
1332 spin_unlock_irq(&zone->lru_lock);
1333 return 0;
1336 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1338 spin_unlock_irq(&zone->lru_lock);
1340 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1342 /* Check if we should syncronously wait for writeback */
1343 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1344 congestion_wait(BLK_RW_ASYNC, HZ/10);
1347 * The attempt at page out may have made some
1348 * of the pages active, mark them inactive again.
1350 nr_active = clear_active_flags(&page_list, NULL);
1351 count_vm_events(PGDEACTIVATE, nr_active);
1353 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1356 local_irq_disable();
1357 if (current_is_kswapd())
1358 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1359 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1361 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1362 return nr_reclaimed;
1366 * This moves pages from the active list to the inactive list.
1368 * We move them the other way if the page is referenced by one or more
1369 * processes, from rmap.
1371 * If the pages are mostly unmapped, the processing is fast and it is
1372 * appropriate to hold zone->lru_lock across the whole operation. But if
1373 * the pages are mapped, the processing is slow (page_referenced()) so we
1374 * should drop zone->lru_lock around each page. It's impossible to balance
1375 * this, so instead we remove the pages from the LRU while processing them.
1376 * It is safe to rely on PG_active against the non-LRU pages in here because
1377 * nobody will play with that bit on a non-LRU page.
1379 * The downside is that we have to touch page->_count against each page.
1380 * But we had to alter page->flags anyway.
1383 static void move_active_pages_to_lru(struct zone *zone,
1384 struct list_head *list,
1385 enum lru_list lru)
1387 unsigned long pgmoved = 0;
1388 struct pagevec pvec;
1389 struct page *page;
1391 pagevec_init(&pvec, 1);
1393 while (!list_empty(list)) {
1394 page = lru_to_page(list);
1396 VM_BUG_ON(PageLRU(page));
1397 SetPageLRU(page);
1399 list_move(&page->lru, &zone->lru[lru].list);
1400 mem_cgroup_add_lru_list(page, lru);
1401 pgmoved++;
1403 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1404 spin_unlock_irq(&zone->lru_lock);
1405 if (buffer_heads_over_limit)
1406 pagevec_strip(&pvec);
1407 __pagevec_release(&pvec);
1408 spin_lock_irq(&zone->lru_lock);
1411 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1412 if (!is_active_lru(lru))
1413 __count_vm_events(PGDEACTIVATE, pgmoved);
1416 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1417 struct scan_control *sc, int priority, int file)
1419 unsigned long nr_taken;
1420 unsigned long pgscanned;
1421 unsigned long vm_flags;
1422 LIST_HEAD(l_hold); /* The pages which were snipped off */
1423 LIST_HEAD(l_active);
1424 LIST_HEAD(l_inactive);
1425 struct page *page;
1426 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1427 unsigned long nr_rotated = 0;
1429 lru_add_drain();
1430 spin_lock_irq(&zone->lru_lock);
1431 if (scanning_global_lru(sc)) {
1432 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1433 &pgscanned, sc->order,
1434 ISOLATE_ACTIVE, zone,
1435 1, file);
1436 zone->pages_scanned += pgscanned;
1437 } else {
1438 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1439 &pgscanned, sc->order,
1440 ISOLATE_ACTIVE, zone,
1441 sc->mem_cgroup, 1, file);
1443 * mem_cgroup_isolate_pages() keeps track of
1444 * scanned pages on its own.
1448 reclaim_stat->recent_scanned[file] += nr_taken;
1450 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1451 if (file)
1452 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1453 else
1454 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1455 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1456 spin_unlock_irq(&zone->lru_lock);
1458 while (!list_empty(&l_hold)) {
1459 cond_resched();
1460 page = lru_to_page(&l_hold);
1461 list_del(&page->lru);
1463 if (unlikely(!page_evictable(page, NULL))) {
1464 putback_lru_page(page);
1465 continue;
1468 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1469 nr_rotated++;
1471 * Identify referenced, file-backed active pages and
1472 * give them one more trip around the active list. So
1473 * that executable code get better chances to stay in
1474 * memory under moderate memory pressure. Anon pages
1475 * are not likely to be evicted by use-once streaming
1476 * IO, plus JVM can create lots of anon VM_EXEC pages,
1477 * so we ignore them here.
1479 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1480 list_add(&page->lru, &l_active);
1481 continue;
1485 ClearPageActive(page); /* we are de-activating */
1486 list_add(&page->lru, &l_inactive);
1490 * Move pages back to the lru list.
1492 spin_lock_irq(&zone->lru_lock);
1494 * Count referenced pages from currently used mappings as rotated,
1495 * even though only some of them are actually re-activated. This
1496 * helps balance scan pressure between file and anonymous pages in
1497 * get_scan_ratio.
1499 reclaim_stat->recent_rotated[file] += nr_rotated;
1501 move_active_pages_to_lru(zone, &l_active,
1502 LRU_ACTIVE + file * LRU_FILE);
1503 move_active_pages_to_lru(zone, &l_inactive,
1504 LRU_BASE + file * LRU_FILE);
1505 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1506 spin_unlock_irq(&zone->lru_lock);
1509 static int inactive_anon_is_low_global(struct zone *zone)
1511 unsigned long active, inactive;
1513 active = zone_page_state(zone, NR_ACTIVE_ANON);
1514 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1516 if (inactive * zone->inactive_ratio < active)
1517 return 1;
1519 return 0;
1523 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1524 * @zone: zone to check
1525 * @sc: scan control of this context
1527 * Returns true if the zone does not have enough inactive anon pages,
1528 * meaning some active anon pages need to be deactivated.
1530 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1532 int low;
1534 if (scanning_global_lru(sc))
1535 low = inactive_anon_is_low_global(zone);
1536 else
1537 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1538 return low;
1541 static int inactive_file_is_low_global(struct zone *zone)
1543 unsigned long active, inactive;
1545 active = zone_page_state(zone, NR_ACTIVE_FILE);
1546 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1548 return (active > inactive);
1552 * inactive_file_is_low - check if file pages need to be deactivated
1553 * @zone: zone to check
1554 * @sc: scan control of this context
1556 * When the system is doing streaming IO, memory pressure here
1557 * ensures that active file pages get deactivated, until more
1558 * than half of the file pages are on the inactive list.
1560 * Once we get to that situation, protect the system's working
1561 * set from being evicted by disabling active file page aging.
1563 * This uses a different ratio than the anonymous pages, because
1564 * the page cache uses a use-once replacement algorithm.
1566 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1568 int low;
1570 if (scanning_global_lru(sc))
1571 low = inactive_file_is_low_global(zone);
1572 else
1573 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1574 return low;
1577 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1578 int file)
1580 if (file)
1581 return inactive_file_is_low(zone, sc);
1582 else
1583 return inactive_anon_is_low(zone, sc);
1586 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1587 struct zone *zone, struct scan_control *sc, int priority)
1589 int file = is_file_lru(lru);
1591 if (is_active_lru(lru)) {
1592 if (inactive_list_is_low(zone, sc, file))
1593 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1594 return 0;
1597 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1601 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1602 * until we collected @swap_cluster_max pages to scan.
1604 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1605 unsigned long *nr_saved_scan)
1607 unsigned long nr;
1609 *nr_saved_scan += nr_to_scan;
1610 nr = *nr_saved_scan;
1612 if (nr >= SWAP_CLUSTER_MAX)
1613 *nr_saved_scan = 0;
1614 else
1615 nr = 0;
1617 return nr;
1621 * Determine how aggressively the anon and file LRU lists should be
1622 * scanned. The relative value of each set of LRU lists is determined
1623 * by looking at the fraction of the pages scanned we did rotate back
1624 * onto the active list instead of evict.
1626 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1628 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1629 unsigned long *nr, int priority)
1631 unsigned long anon, file, free;
1632 unsigned long anon_prio, file_prio;
1633 unsigned long ap, fp;
1634 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1635 u64 fraction[2], denominator;
1636 enum lru_list l;
1637 int noswap = 0;
1639 /* If we have no swap space, do not bother scanning anon pages. */
1640 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1641 noswap = 1;
1642 fraction[0] = 0;
1643 fraction[1] = 1;
1644 denominator = 1;
1645 goto out;
1648 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1649 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1650 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1651 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1653 if (scanning_global_lru(sc)) {
1654 free = zone_page_state(zone, NR_FREE_PAGES);
1655 /* If we have very few page cache pages,
1656 force-scan anon pages. */
1657 if (unlikely(file + free <= high_wmark_pages(zone))) {
1658 fraction[0] = 1;
1659 fraction[1] = 0;
1660 denominator = 1;
1661 goto out;
1666 * With swappiness at 100, anonymous and file have the same priority.
1667 * This scanning priority is essentially the inverse of IO cost.
1669 anon_prio = sc->swappiness;
1670 file_prio = 200 - sc->swappiness;
1673 * OK, so we have swap space and a fair amount of page cache
1674 * pages. We use the recently rotated / recently scanned
1675 * ratios to determine how valuable each cache is.
1677 * Because workloads change over time (and to avoid overflow)
1678 * we keep these statistics as a floating average, which ends
1679 * up weighing recent references more than old ones.
1681 * anon in [0], file in [1]
1683 spin_lock_irq(&zone->lru_lock);
1684 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1685 reclaim_stat->recent_scanned[0] /= 2;
1686 reclaim_stat->recent_rotated[0] /= 2;
1689 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1690 reclaim_stat->recent_scanned[1] /= 2;
1691 reclaim_stat->recent_rotated[1] /= 2;
1695 * The amount of pressure on anon vs file pages is inversely
1696 * proportional to the fraction of recently scanned pages on
1697 * each list that were recently referenced and in active use.
1699 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1700 ap /= reclaim_stat->recent_rotated[0] + 1;
1702 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1703 fp /= reclaim_stat->recent_rotated[1] + 1;
1704 spin_unlock_irq(&zone->lru_lock);
1706 fraction[0] = ap;
1707 fraction[1] = fp;
1708 denominator = ap + fp + 1;
1709 out:
1710 for_each_evictable_lru(l) {
1711 int file = is_file_lru(l);
1712 unsigned long scan;
1714 scan = zone_nr_lru_pages(zone, sc, l);
1715 if (priority || noswap) {
1716 scan >>= priority;
1717 scan = div64_u64(scan * fraction[file], denominator);
1719 nr[l] = nr_scan_try_batch(scan,
1720 &reclaim_stat->nr_saved_scan[l]);
1724 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1727 * If we need a large contiguous chunk of memory, or have
1728 * trouble getting a small set of contiguous pages, we
1729 * will reclaim both active and inactive pages.
1731 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1732 sc->lumpy_reclaim_mode = 1;
1733 else if (sc->order && priority < DEF_PRIORITY - 2)
1734 sc->lumpy_reclaim_mode = 1;
1735 else
1736 sc->lumpy_reclaim_mode = 0;
1740 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1742 static void shrink_zone(int priority, struct zone *zone,
1743 struct scan_control *sc)
1745 unsigned long nr[NR_LRU_LISTS];
1746 unsigned long nr_to_scan;
1747 enum lru_list l;
1748 unsigned long nr_reclaimed = sc->nr_reclaimed;
1749 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1751 get_scan_count(zone, sc, nr, priority);
1753 set_lumpy_reclaim_mode(priority, sc);
1755 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1756 nr[LRU_INACTIVE_FILE]) {
1757 for_each_evictable_lru(l) {
1758 if (nr[l]) {
1759 nr_to_scan = min_t(unsigned long,
1760 nr[l], SWAP_CLUSTER_MAX);
1761 nr[l] -= nr_to_scan;
1763 nr_reclaimed += shrink_list(l, nr_to_scan,
1764 zone, sc, priority);
1768 * On large memory systems, scan >> priority can become
1769 * really large. This is fine for the starting priority;
1770 * we want to put equal scanning pressure on each zone.
1771 * However, if the VM has a harder time of freeing pages,
1772 * with multiple processes reclaiming pages, the total
1773 * freeing target can get unreasonably large.
1775 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1776 break;
1779 sc->nr_reclaimed = nr_reclaimed;
1782 * Even if we did not try to evict anon pages at all, we want to
1783 * rebalance the anon lru active/inactive ratio.
1785 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1786 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1788 throttle_vm_writeout(sc->gfp_mask);
1792 * This is the direct reclaim path, for page-allocating processes. We only
1793 * try to reclaim pages from zones which will satisfy the caller's allocation
1794 * request.
1796 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1797 * Because:
1798 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1799 * allocation or
1800 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1801 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1802 * zone defense algorithm.
1804 * If a zone is deemed to be full of pinned pages then just give it a light
1805 * scan then give up on it.
1807 static void shrink_zones(int priority, struct zonelist *zonelist,
1808 struct scan_control *sc)
1810 struct zoneref *z;
1811 struct zone *zone;
1813 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1814 gfp_zone(sc->gfp_mask), sc->nodemask) {
1815 if (!populated_zone(zone))
1816 continue;
1818 * Take care memory controller reclaiming has small influence
1819 * to global LRU.
1821 if (scanning_global_lru(sc)) {
1822 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1823 continue;
1824 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1825 continue; /* Let kswapd poll it */
1828 shrink_zone(priority, zone, sc);
1832 static bool zone_reclaimable(struct zone *zone)
1834 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1838 * As hibernation is going on, kswapd is freezed so that it can't mark
1839 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1840 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1842 static bool all_unreclaimable(struct zonelist *zonelist,
1843 struct scan_control *sc)
1845 struct zoneref *z;
1846 struct zone *zone;
1847 bool all_unreclaimable = true;
1849 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1850 gfp_zone(sc->gfp_mask), sc->nodemask) {
1851 if (!populated_zone(zone))
1852 continue;
1853 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1854 continue;
1855 if (zone_reclaimable(zone)) {
1856 all_unreclaimable = false;
1857 break;
1861 return all_unreclaimable;
1865 * This is the main entry point to direct page reclaim.
1867 * If a full scan of the inactive list fails to free enough memory then we
1868 * are "out of memory" and something needs to be killed.
1870 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1871 * high - the zone may be full of dirty or under-writeback pages, which this
1872 * caller can't do much about. We kick the writeback threads and take explicit
1873 * naps in the hope that some of these pages can be written. But if the
1874 * allocating task holds filesystem locks which prevent writeout this might not
1875 * work, and the allocation attempt will fail.
1877 * returns: 0, if no pages reclaimed
1878 * else, the number of pages reclaimed
1880 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1881 struct scan_control *sc)
1883 int priority;
1884 unsigned long total_scanned = 0;
1885 struct reclaim_state *reclaim_state = current->reclaim_state;
1886 struct zoneref *z;
1887 struct zone *zone;
1888 unsigned long writeback_threshold;
1890 get_mems_allowed();
1891 delayacct_freepages_start();
1893 if (scanning_global_lru(sc))
1894 count_vm_event(ALLOCSTALL);
1896 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1897 sc->nr_scanned = 0;
1898 if (!priority)
1899 disable_swap_token();
1900 shrink_zones(priority, zonelist, sc);
1902 * Don't shrink slabs when reclaiming memory from
1903 * over limit cgroups
1905 if (scanning_global_lru(sc)) {
1906 unsigned long lru_pages = 0;
1907 for_each_zone_zonelist(zone, z, zonelist,
1908 gfp_zone(sc->gfp_mask)) {
1909 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1910 continue;
1912 lru_pages += zone_reclaimable_pages(zone);
1915 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1916 if (reclaim_state) {
1917 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1918 reclaim_state->reclaimed_slab = 0;
1921 total_scanned += sc->nr_scanned;
1922 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1923 goto out;
1926 * Try to write back as many pages as we just scanned. This
1927 * tends to cause slow streaming writers to write data to the
1928 * disk smoothly, at the dirtying rate, which is nice. But
1929 * that's undesirable in laptop mode, where we *want* lumpy
1930 * writeout. So in laptop mode, write out the whole world.
1932 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1933 if (total_scanned > writeback_threshold) {
1934 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1935 sc->may_writepage = 1;
1938 /* Take a nap, wait for some writeback to complete */
1939 if (!sc->hibernation_mode && sc->nr_scanned &&
1940 priority < DEF_PRIORITY - 2)
1941 congestion_wait(BLK_RW_ASYNC, HZ/10);
1944 out:
1946 * Now that we've scanned all the zones at this priority level, note
1947 * that level within the zone so that the next thread which performs
1948 * scanning of this zone will immediately start out at this priority
1949 * level. This affects only the decision whether or not to bring
1950 * mapped pages onto the inactive list.
1952 if (priority < 0)
1953 priority = 0;
1955 delayacct_freepages_end();
1956 put_mems_allowed();
1958 if (sc->nr_reclaimed)
1959 return sc->nr_reclaimed;
1961 /* top priority shrink_zones still had more to do? don't OOM, then */
1962 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
1963 return 1;
1965 return 0;
1968 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1969 gfp_t gfp_mask, nodemask_t *nodemask)
1971 unsigned long nr_reclaimed;
1972 struct scan_control sc = {
1973 .gfp_mask = gfp_mask,
1974 .may_writepage = !laptop_mode,
1975 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1976 .may_unmap = 1,
1977 .may_swap = 1,
1978 .swappiness = vm_swappiness,
1979 .order = order,
1980 .mem_cgroup = NULL,
1981 .nodemask = nodemask,
1984 trace_mm_vmscan_direct_reclaim_begin(order,
1985 sc.may_writepage,
1986 gfp_mask);
1988 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1990 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1992 return nr_reclaimed;
1995 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1997 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1998 gfp_t gfp_mask, bool noswap,
1999 unsigned int swappiness,
2000 struct zone *zone)
2002 struct scan_control sc = {
2003 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2004 .may_writepage = !laptop_mode,
2005 .may_unmap = 1,
2006 .may_swap = !noswap,
2007 .swappiness = swappiness,
2008 .order = 0,
2009 .mem_cgroup = mem,
2011 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2012 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2014 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2015 sc.may_writepage,
2016 sc.gfp_mask);
2019 * NOTE: Although we can get the priority field, using it
2020 * here is not a good idea, since it limits the pages we can scan.
2021 * if we don't reclaim here, the shrink_zone from balance_pgdat
2022 * will pick up pages from other mem cgroup's as well. We hack
2023 * the priority and make it zero.
2025 shrink_zone(0, zone, &sc);
2027 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2029 return sc.nr_reclaimed;
2032 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2033 gfp_t gfp_mask,
2034 bool noswap,
2035 unsigned int swappiness)
2037 struct zonelist *zonelist;
2038 unsigned long nr_reclaimed;
2039 struct scan_control sc = {
2040 .may_writepage = !laptop_mode,
2041 .may_unmap = 1,
2042 .may_swap = !noswap,
2043 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2044 .swappiness = swappiness,
2045 .order = 0,
2046 .mem_cgroup = mem_cont,
2047 .nodemask = NULL, /* we don't care the placement */
2050 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2051 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2052 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2054 trace_mm_vmscan_memcg_reclaim_begin(0,
2055 sc.may_writepage,
2056 sc.gfp_mask);
2058 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2060 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2062 return nr_reclaimed;
2064 #endif
2066 /* is kswapd sleeping prematurely? */
2067 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2069 int i;
2071 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2072 if (remaining)
2073 return 1;
2075 /* If after HZ/10, a zone is below the high mark, it's premature */
2076 for (i = 0; i < pgdat->nr_zones; i++) {
2077 struct zone *zone = pgdat->node_zones + i;
2079 if (!populated_zone(zone))
2080 continue;
2082 if (zone->all_unreclaimable)
2083 continue;
2085 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2086 0, 0))
2087 return 1;
2090 return 0;
2094 * For kswapd, balance_pgdat() will work across all this node's zones until
2095 * they are all at high_wmark_pages(zone).
2097 * Returns the number of pages which were actually freed.
2099 * There is special handling here for zones which are full of pinned pages.
2100 * This can happen if the pages are all mlocked, or if they are all used by
2101 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2102 * What we do is to detect the case where all pages in the zone have been
2103 * scanned twice and there has been zero successful reclaim. Mark the zone as
2104 * dead and from now on, only perform a short scan. Basically we're polling
2105 * the zone for when the problem goes away.
2107 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2108 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2109 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2110 * lower zones regardless of the number of free pages in the lower zones. This
2111 * interoperates with the page allocator fallback scheme to ensure that aging
2112 * of pages is balanced across the zones.
2114 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2116 int all_zones_ok;
2117 int priority;
2118 int i;
2119 unsigned long total_scanned;
2120 struct reclaim_state *reclaim_state = current->reclaim_state;
2121 struct scan_control sc = {
2122 .gfp_mask = GFP_KERNEL,
2123 .may_unmap = 1,
2124 .may_swap = 1,
2126 * kswapd doesn't want to be bailed out while reclaim. because
2127 * we want to put equal scanning pressure on each zone.
2129 .nr_to_reclaim = ULONG_MAX,
2130 .swappiness = vm_swappiness,
2131 .order = order,
2132 .mem_cgroup = NULL,
2134 loop_again:
2135 total_scanned = 0;
2136 sc.nr_reclaimed = 0;
2137 sc.may_writepage = !laptop_mode;
2138 count_vm_event(PAGEOUTRUN);
2140 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2141 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2142 unsigned long lru_pages = 0;
2143 int has_under_min_watermark_zone = 0;
2145 /* The swap token gets in the way of swapout... */
2146 if (!priority)
2147 disable_swap_token();
2149 all_zones_ok = 1;
2152 * Scan in the highmem->dma direction for the highest
2153 * zone which needs scanning
2155 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2156 struct zone *zone = pgdat->node_zones + i;
2158 if (!populated_zone(zone))
2159 continue;
2161 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2162 continue;
2165 * Do some background aging of the anon list, to give
2166 * pages a chance to be referenced before reclaiming.
2168 if (inactive_anon_is_low(zone, &sc))
2169 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2170 &sc, priority, 0);
2172 if (!zone_watermark_ok(zone, order,
2173 high_wmark_pages(zone), 0, 0)) {
2174 end_zone = i;
2175 break;
2178 if (i < 0)
2179 goto out;
2181 for (i = 0; i <= end_zone; i++) {
2182 struct zone *zone = pgdat->node_zones + i;
2184 lru_pages += zone_reclaimable_pages(zone);
2188 * Now scan the zone in the dma->highmem direction, stopping
2189 * at the last zone which needs scanning.
2191 * We do this because the page allocator works in the opposite
2192 * direction. This prevents the page allocator from allocating
2193 * pages behind kswapd's direction of progress, which would
2194 * cause too much scanning of the lower zones.
2196 for (i = 0; i <= end_zone; i++) {
2197 struct zone *zone = pgdat->node_zones + i;
2198 int nr_slab;
2200 if (!populated_zone(zone))
2201 continue;
2203 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2204 continue;
2206 sc.nr_scanned = 0;
2209 * Call soft limit reclaim before calling shrink_zone.
2210 * For now we ignore the return value
2212 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2215 * We put equal pressure on every zone, unless one
2216 * zone has way too many pages free already.
2218 if (!zone_watermark_ok(zone, order,
2219 8*high_wmark_pages(zone), end_zone, 0))
2220 shrink_zone(priority, zone, &sc);
2221 reclaim_state->reclaimed_slab = 0;
2222 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2223 lru_pages);
2224 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2225 total_scanned += sc.nr_scanned;
2226 if (zone->all_unreclaimable)
2227 continue;
2228 if (nr_slab == 0 && !zone_reclaimable(zone))
2229 zone->all_unreclaimable = 1;
2231 * If we've done a decent amount of scanning and
2232 * the reclaim ratio is low, start doing writepage
2233 * even in laptop mode
2235 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2236 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2237 sc.may_writepage = 1;
2239 if (!zone_watermark_ok(zone, order,
2240 high_wmark_pages(zone), end_zone, 0)) {
2241 all_zones_ok = 0;
2243 * We are still under min water mark. This
2244 * means that we have a GFP_ATOMIC allocation
2245 * failure risk. Hurry up!
2247 if (!zone_watermark_ok(zone, order,
2248 min_wmark_pages(zone), end_zone, 0))
2249 has_under_min_watermark_zone = 1;
2253 if (all_zones_ok)
2254 break; /* kswapd: all done */
2256 * OK, kswapd is getting into trouble. Take a nap, then take
2257 * another pass across the zones.
2259 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2260 if (has_under_min_watermark_zone)
2261 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2262 else
2263 congestion_wait(BLK_RW_ASYNC, HZ/10);
2267 * We do this so kswapd doesn't build up large priorities for
2268 * example when it is freeing in parallel with allocators. It
2269 * matches the direct reclaim path behaviour in terms of impact
2270 * on zone->*_priority.
2272 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2273 break;
2275 out:
2276 if (!all_zones_ok) {
2277 cond_resched();
2279 try_to_freeze();
2282 * Fragmentation may mean that the system cannot be
2283 * rebalanced for high-order allocations in all zones.
2284 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2285 * it means the zones have been fully scanned and are still
2286 * not balanced. For high-order allocations, there is
2287 * little point trying all over again as kswapd may
2288 * infinite loop.
2290 * Instead, recheck all watermarks at order-0 as they
2291 * are the most important. If watermarks are ok, kswapd will go
2292 * back to sleep. High-order users can still perform direct
2293 * reclaim if they wish.
2295 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2296 order = sc.order = 0;
2298 goto loop_again;
2301 return sc.nr_reclaimed;
2305 * The background pageout daemon, started as a kernel thread
2306 * from the init process.
2308 * This basically trickles out pages so that we have _some_
2309 * free memory available even if there is no other activity
2310 * that frees anything up. This is needed for things like routing
2311 * etc, where we otherwise might have all activity going on in
2312 * asynchronous contexts that cannot page things out.
2314 * If there are applications that are active memory-allocators
2315 * (most normal use), this basically shouldn't matter.
2317 static int kswapd(void *p)
2319 unsigned long order;
2320 pg_data_t *pgdat = (pg_data_t*)p;
2321 struct task_struct *tsk = current;
2322 DEFINE_WAIT(wait);
2323 struct reclaim_state reclaim_state = {
2324 .reclaimed_slab = 0,
2326 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2328 lockdep_set_current_reclaim_state(GFP_KERNEL);
2330 if (!cpumask_empty(cpumask))
2331 set_cpus_allowed_ptr(tsk, cpumask);
2332 current->reclaim_state = &reclaim_state;
2335 * Tell the memory management that we're a "memory allocator",
2336 * and that if we need more memory we should get access to it
2337 * regardless (see "__alloc_pages()"). "kswapd" should
2338 * never get caught in the normal page freeing logic.
2340 * (Kswapd normally doesn't need memory anyway, but sometimes
2341 * you need a small amount of memory in order to be able to
2342 * page out something else, and this flag essentially protects
2343 * us from recursively trying to free more memory as we're
2344 * trying to free the first piece of memory in the first place).
2346 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2347 set_freezable();
2349 order = 0;
2350 for ( ; ; ) {
2351 unsigned long new_order;
2352 int ret;
2354 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2355 new_order = pgdat->kswapd_max_order;
2356 pgdat->kswapd_max_order = 0;
2357 if (order < new_order) {
2359 * Don't sleep if someone wants a larger 'order'
2360 * allocation
2362 order = new_order;
2363 } else {
2364 if (!freezing(current) && !kthread_should_stop()) {
2365 long remaining = 0;
2367 /* Try to sleep for a short interval */
2368 if (!sleeping_prematurely(pgdat, order, remaining)) {
2369 remaining = schedule_timeout(HZ/10);
2370 finish_wait(&pgdat->kswapd_wait, &wait);
2371 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2375 * After a short sleep, check if it was a
2376 * premature sleep. If not, then go fully
2377 * to sleep until explicitly woken up
2379 if (!sleeping_prematurely(pgdat, order, remaining)) {
2380 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2381 schedule();
2382 } else {
2383 if (remaining)
2384 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2385 else
2386 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2390 order = pgdat->kswapd_max_order;
2392 finish_wait(&pgdat->kswapd_wait, &wait);
2394 ret = try_to_freeze();
2395 if (kthread_should_stop())
2396 break;
2399 * We can speed up thawing tasks if we don't call balance_pgdat
2400 * after returning from the refrigerator
2402 if (!ret) {
2403 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2404 balance_pgdat(pgdat, order);
2407 return 0;
2411 * A zone is low on free memory, so wake its kswapd task to service it.
2413 void wakeup_kswapd(struct zone *zone, int order)
2415 pg_data_t *pgdat;
2417 if (!populated_zone(zone))
2418 return;
2420 pgdat = zone->zone_pgdat;
2421 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2422 return;
2423 if (pgdat->kswapd_max_order < order)
2424 pgdat->kswapd_max_order = order;
2425 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2426 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2427 return;
2428 if (!waitqueue_active(&pgdat->kswapd_wait))
2429 return;
2430 wake_up_interruptible(&pgdat->kswapd_wait);
2434 * The reclaimable count would be mostly accurate.
2435 * The less reclaimable pages may be
2436 * - mlocked pages, which will be moved to unevictable list when encountered
2437 * - mapped pages, which may require several travels to be reclaimed
2438 * - dirty pages, which is not "instantly" reclaimable
2440 unsigned long global_reclaimable_pages(void)
2442 int nr;
2444 nr = global_page_state(NR_ACTIVE_FILE) +
2445 global_page_state(NR_INACTIVE_FILE);
2447 if (nr_swap_pages > 0)
2448 nr += global_page_state(NR_ACTIVE_ANON) +
2449 global_page_state(NR_INACTIVE_ANON);
2451 return nr;
2454 unsigned long zone_reclaimable_pages(struct zone *zone)
2456 int nr;
2458 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2459 zone_page_state(zone, NR_INACTIVE_FILE);
2461 if (nr_swap_pages > 0)
2462 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2463 zone_page_state(zone, NR_INACTIVE_ANON);
2465 return nr;
2468 #ifdef CONFIG_HIBERNATION
2470 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2471 * freed pages.
2473 * Rather than trying to age LRUs the aim is to preserve the overall
2474 * LRU order by reclaiming preferentially
2475 * inactive > active > active referenced > active mapped
2477 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2479 struct reclaim_state reclaim_state;
2480 struct scan_control sc = {
2481 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2482 .may_swap = 1,
2483 .may_unmap = 1,
2484 .may_writepage = 1,
2485 .nr_to_reclaim = nr_to_reclaim,
2486 .hibernation_mode = 1,
2487 .swappiness = vm_swappiness,
2488 .order = 0,
2490 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2491 struct task_struct *p = current;
2492 unsigned long nr_reclaimed;
2494 p->flags |= PF_MEMALLOC;
2495 lockdep_set_current_reclaim_state(sc.gfp_mask);
2496 reclaim_state.reclaimed_slab = 0;
2497 p->reclaim_state = &reclaim_state;
2499 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2501 p->reclaim_state = NULL;
2502 lockdep_clear_current_reclaim_state();
2503 p->flags &= ~PF_MEMALLOC;
2505 return nr_reclaimed;
2507 #endif /* CONFIG_HIBERNATION */
2509 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2510 not required for correctness. So if the last cpu in a node goes
2511 away, we get changed to run anywhere: as the first one comes back,
2512 restore their cpu bindings. */
2513 static int __devinit cpu_callback(struct notifier_block *nfb,
2514 unsigned long action, void *hcpu)
2516 int nid;
2518 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2519 for_each_node_state(nid, N_HIGH_MEMORY) {
2520 pg_data_t *pgdat = NODE_DATA(nid);
2521 const struct cpumask *mask;
2523 mask = cpumask_of_node(pgdat->node_id);
2525 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2526 /* One of our CPUs online: restore mask */
2527 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2530 return NOTIFY_OK;
2534 * This kswapd start function will be called by init and node-hot-add.
2535 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2537 int kswapd_run(int nid)
2539 pg_data_t *pgdat = NODE_DATA(nid);
2540 int ret = 0;
2542 if (pgdat->kswapd)
2543 return 0;
2545 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2546 if (IS_ERR(pgdat->kswapd)) {
2547 /* failure at boot is fatal */
2548 BUG_ON(system_state == SYSTEM_BOOTING);
2549 printk("Failed to start kswapd on node %d\n",nid);
2550 ret = -1;
2552 return ret;
2556 * Called by memory hotplug when all memory in a node is offlined.
2558 void kswapd_stop(int nid)
2560 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2562 if (kswapd)
2563 kthread_stop(kswapd);
2566 static int __init kswapd_init(void)
2568 int nid;
2570 swap_setup();
2571 for_each_node_state(nid, N_HIGH_MEMORY)
2572 kswapd_run(nid);
2573 hotcpu_notifier(cpu_callback, 0);
2574 return 0;
2577 module_init(kswapd_init)
2579 #ifdef CONFIG_NUMA
2581 * Zone reclaim mode
2583 * If non-zero call zone_reclaim when the number of free pages falls below
2584 * the watermarks.
2586 int zone_reclaim_mode __read_mostly;
2588 #define RECLAIM_OFF 0
2589 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2590 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2591 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2594 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2595 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2596 * a zone.
2598 #define ZONE_RECLAIM_PRIORITY 4
2601 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2602 * occur.
2604 int sysctl_min_unmapped_ratio = 1;
2607 * If the number of slab pages in a zone grows beyond this percentage then
2608 * slab reclaim needs to occur.
2610 int sysctl_min_slab_ratio = 5;
2612 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2614 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2615 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2616 zone_page_state(zone, NR_ACTIVE_FILE);
2619 * It's possible for there to be more file mapped pages than
2620 * accounted for by the pages on the file LRU lists because
2621 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2623 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2626 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2627 static long zone_pagecache_reclaimable(struct zone *zone)
2629 long nr_pagecache_reclaimable;
2630 long delta = 0;
2633 * If RECLAIM_SWAP is set, then all file pages are considered
2634 * potentially reclaimable. Otherwise, we have to worry about
2635 * pages like swapcache and zone_unmapped_file_pages() provides
2636 * a better estimate
2638 if (zone_reclaim_mode & RECLAIM_SWAP)
2639 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2640 else
2641 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2643 /* If we can't clean pages, remove dirty pages from consideration */
2644 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2645 delta += zone_page_state(zone, NR_FILE_DIRTY);
2647 /* Watch for any possible underflows due to delta */
2648 if (unlikely(delta > nr_pagecache_reclaimable))
2649 delta = nr_pagecache_reclaimable;
2651 return nr_pagecache_reclaimable - delta;
2655 * Try to free up some pages from this zone through reclaim.
2657 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2659 /* Minimum pages needed in order to stay on node */
2660 const unsigned long nr_pages = 1 << order;
2661 struct task_struct *p = current;
2662 struct reclaim_state reclaim_state;
2663 int priority;
2664 struct scan_control sc = {
2665 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2666 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2667 .may_swap = 1,
2668 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2669 SWAP_CLUSTER_MAX),
2670 .gfp_mask = gfp_mask,
2671 .swappiness = vm_swappiness,
2672 .order = order,
2674 unsigned long nr_slab_pages0, nr_slab_pages1;
2676 cond_resched();
2678 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2679 * and we also need to be able to write out pages for RECLAIM_WRITE
2680 * and RECLAIM_SWAP.
2682 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2683 lockdep_set_current_reclaim_state(gfp_mask);
2684 reclaim_state.reclaimed_slab = 0;
2685 p->reclaim_state = &reclaim_state;
2687 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2689 * Free memory by calling shrink zone with increasing
2690 * priorities until we have enough memory freed.
2692 priority = ZONE_RECLAIM_PRIORITY;
2693 do {
2694 shrink_zone(priority, zone, &sc);
2695 priority--;
2696 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2699 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2700 if (nr_slab_pages0 > zone->min_slab_pages) {
2702 * shrink_slab() does not currently allow us to determine how
2703 * many pages were freed in this zone. So we take the current
2704 * number of slab pages and shake the slab until it is reduced
2705 * by the same nr_pages that we used for reclaiming unmapped
2706 * pages.
2708 * Note that shrink_slab will free memory on all zones and may
2709 * take a long time.
2711 for (;;) {
2712 unsigned long lru_pages = zone_reclaimable_pages(zone);
2714 /* No reclaimable slab or very low memory pressure */
2715 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2716 break;
2718 /* Freed enough memory */
2719 nr_slab_pages1 = zone_page_state(zone,
2720 NR_SLAB_RECLAIMABLE);
2721 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2722 break;
2726 * Update nr_reclaimed by the number of slab pages we
2727 * reclaimed from this zone.
2729 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2730 if (nr_slab_pages1 < nr_slab_pages0)
2731 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2734 p->reclaim_state = NULL;
2735 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2736 lockdep_clear_current_reclaim_state();
2737 return sc.nr_reclaimed >= nr_pages;
2740 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2742 int node_id;
2743 int ret;
2746 * Zone reclaim reclaims unmapped file backed pages and
2747 * slab pages if we are over the defined limits.
2749 * A small portion of unmapped file backed pages is needed for
2750 * file I/O otherwise pages read by file I/O will be immediately
2751 * thrown out if the zone is overallocated. So we do not reclaim
2752 * if less than a specified percentage of the zone is used by
2753 * unmapped file backed pages.
2755 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2756 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2757 return ZONE_RECLAIM_FULL;
2759 if (zone->all_unreclaimable)
2760 return ZONE_RECLAIM_FULL;
2763 * Do not scan if the allocation should not be delayed.
2765 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2766 return ZONE_RECLAIM_NOSCAN;
2769 * Only run zone reclaim on the local zone or on zones that do not
2770 * have associated processors. This will favor the local processor
2771 * over remote processors and spread off node memory allocations
2772 * as wide as possible.
2774 node_id = zone_to_nid(zone);
2775 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2776 return ZONE_RECLAIM_NOSCAN;
2778 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2779 return ZONE_RECLAIM_NOSCAN;
2781 ret = __zone_reclaim(zone, gfp_mask, order);
2782 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2784 if (!ret)
2785 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2787 return ret;
2789 #endif
2792 * page_evictable - test whether a page is evictable
2793 * @page: the page to test
2794 * @vma: the VMA in which the page is or will be mapped, may be NULL
2796 * Test whether page is evictable--i.e., should be placed on active/inactive
2797 * lists vs unevictable list. The vma argument is !NULL when called from the
2798 * fault path to determine how to instantate a new page.
2800 * Reasons page might not be evictable:
2801 * (1) page's mapping marked unevictable
2802 * (2) page is part of an mlocked VMA
2805 int page_evictable(struct page *page, struct vm_area_struct *vma)
2808 if (mapping_unevictable(page_mapping(page)))
2809 return 0;
2811 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2812 return 0;
2814 return 1;
2818 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2819 * @page: page to check evictability and move to appropriate lru list
2820 * @zone: zone page is in
2822 * Checks a page for evictability and moves the page to the appropriate
2823 * zone lru list.
2825 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2826 * have PageUnevictable set.
2828 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2830 VM_BUG_ON(PageActive(page));
2832 retry:
2833 ClearPageUnevictable(page);
2834 if (page_evictable(page, NULL)) {
2835 enum lru_list l = page_lru_base_type(page);
2837 __dec_zone_state(zone, NR_UNEVICTABLE);
2838 list_move(&page->lru, &zone->lru[l].list);
2839 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2840 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2841 __count_vm_event(UNEVICTABLE_PGRESCUED);
2842 } else {
2844 * rotate unevictable list
2846 SetPageUnevictable(page);
2847 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2848 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2849 if (page_evictable(page, NULL))
2850 goto retry;
2855 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2856 * @mapping: struct address_space to scan for evictable pages
2858 * Scan all pages in mapping. Check unevictable pages for
2859 * evictability and move them to the appropriate zone lru list.
2861 void scan_mapping_unevictable_pages(struct address_space *mapping)
2863 pgoff_t next = 0;
2864 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2865 PAGE_CACHE_SHIFT;
2866 struct zone *zone;
2867 struct pagevec pvec;
2869 if (mapping->nrpages == 0)
2870 return;
2872 pagevec_init(&pvec, 0);
2873 while (next < end &&
2874 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2875 int i;
2876 int pg_scanned = 0;
2878 zone = NULL;
2880 for (i = 0; i < pagevec_count(&pvec); i++) {
2881 struct page *page = pvec.pages[i];
2882 pgoff_t page_index = page->index;
2883 struct zone *pagezone = page_zone(page);
2885 pg_scanned++;
2886 if (page_index > next)
2887 next = page_index;
2888 next++;
2890 if (pagezone != zone) {
2891 if (zone)
2892 spin_unlock_irq(&zone->lru_lock);
2893 zone = pagezone;
2894 spin_lock_irq(&zone->lru_lock);
2897 if (PageLRU(page) && PageUnevictable(page))
2898 check_move_unevictable_page(page, zone);
2900 if (zone)
2901 spin_unlock_irq(&zone->lru_lock);
2902 pagevec_release(&pvec);
2904 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2910 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2911 * @zone - zone of which to scan the unevictable list
2913 * Scan @zone's unevictable LRU lists to check for pages that have become
2914 * evictable. Move those that have to @zone's inactive list where they
2915 * become candidates for reclaim, unless shrink_inactive_zone() decides
2916 * to reactivate them. Pages that are still unevictable are rotated
2917 * back onto @zone's unevictable list.
2919 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2920 static void scan_zone_unevictable_pages(struct zone *zone)
2922 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2923 unsigned long scan;
2924 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2926 while (nr_to_scan > 0) {
2927 unsigned long batch_size = min(nr_to_scan,
2928 SCAN_UNEVICTABLE_BATCH_SIZE);
2930 spin_lock_irq(&zone->lru_lock);
2931 for (scan = 0; scan < batch_size; scan++) {
2932 struct page *page = lru_to_page(l_unevictable);
2934 if (!trylock_page(page))
2935 continue;
2937 prefetchw_prev_lru_page(page, l_unevictable, flags);
2939 if (likely(PageLRU(page) && PageUnevictable(page)))
2940 check_move_unevictable_page(page, zone);
2942 unlock_page(page);
2944 spin_unlock_irq(&zone->lru_lock);
2946 nr_to_scan -= batch_size;
2952 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2954 * A really big hammer: scan all zones' unevictable LRU lists to check for
2955 * pages that have become evictable. Move those back to the zones'
2956 * inactive list where they become candidates for reclaim.
2957 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2958 * and we add swap to the system. As such, it runs in the context of a task
2959 * that has possibly/probably made some previously unevictable pages
2960 * evictable.
2962 static void scan_all_zones_unevictable_pages(void)
2964 struct zone *zone;
2966 for_each_zone(zone) {
2967 scan_zone_unevictable_pages(zone);
2972 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2973 * all nodes' unevictable lists for evictable pages
2975 unsigned long scan_unevictable_pages;
2977 int scan_unevictable_handler(struct ctl_table *table, int write,
2978 void __user *buffer,
2979 size_t *length, loff_t *ppos)
2981 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2983 if (write && *(unsigned long *)table->data)
2984 scan_all_zones_unevictable_pages();
2986 scan_unevictable_pages = 0;
2987 return 0;
2991 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2992 * a specified node's per zone unevictable lists for evictable pages.
2995 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2996 struct sysdev_attribute *attr,
2997 char *buf)
2999 return sprintf(buf, "0\n"); /* always zero; should fit... */
3002 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3003 struct sysdev_attribute *attr,
3004 const char *buf, size_t count)
3006 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3007 struct zone *zone;
3008 unsigned long res;
3009 unsigned long req = strict_strtoul(buf, 10, &res);
3011 if (!req)
3012 return 1; /* zero is no-op */
3014 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3015 if (!populated_zone(zone))
3016 continue;
3017 scan_zone_unevictable_pages(zone);
3019 return 1;
3023 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3024 read_scan_unevictable_node,
3025 write_scan_unevictable_node);
3027 int scan_unevictable_register_node(struct node *node)
3029 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3032 void scan_unevictable_unregister_node(struct node *node)
3034 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);