ACPI: thinkpad-acpi: remove all uneeded initializers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / buffer.c
blob05c5d02e0007601d2d64954d2e43e2df4d0af841
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
54 bh->b_end_io = handler;
55 bh->b_private = private;
58 static int sync_buffer(void *word)
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
64 smp_mb();
65 bd = bh->b_bdev;
66 if (bd)
67 blk_run_address_space(bd->bd_inode->i_mapping);
68 io_schedule();
69 return 0;
72 void fastcall __lock_buffer(struct buffer_head *bh)
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
77 EXPORT_SYMBOL(__lock_buffer);
79 void fastcall unlock_buffer(struct buffer_head *bh)
81 smp_mb__before_clear_bit();
82 clear_buffer_locked(bh);
83 smp_mb__after_clear_bit();
84 wake_up_bit(&bh->b_state, BH_Lock);
88 * Block until a buffer comes unlocked. This doesn't stop it
89 * from becoming locked again - you have to lock it yourself
90 * if you want to preserve its state.
92 void __wait_on_buffer(struct buffer_head * bh)
94 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
97 static void
98 __clear_page_buffers(struct page *page)
100 ClearPagePrivate(page);
101 set_page_private(page, 0);
102 page_cache_release(page);
105 static void buffer_io_error(struct buffer_head *bh)
107 char b[BDEVNAME_SIZE];
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
115 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
116 * unlock the buffer. This is what ll_rw_block uses too.
118 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
120 if (uptodate) {
121 set_buffer_uptodate(bh);
122 } else {
123 /* This happens, due to failed READA attempts. */
124 clear_buffer_uptodate(bh);
126 unlock_buffer(bh);
127 put_bh(bh);
130 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
132 char b[BDEVNAME_SIZE];
134 if (uptodate) {
135 set_buffer_uptodate(bh);
136 } else {
137 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
138 buffer_io_error(bh);
139 printk(KERN_WARNING "lost page write due to "
140 "I/O error on %s\n",
141 bdevname(bh->b_bdev, b));
143 set_buffer_write_io_error(bh);
144 clear_buffer_uptodate(bh);
146 unlock_buffer(bh);
147 put_bh(bh);
151 * Write out and wait upon all the dirty data associated with a block
152 * device via its mapping. Does not take the superblock lock.
154 int sync_blockdev(struct block_device *bdev)
156 int ret = 0;
158 if (bdev)
159 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160 return ret;
162 EXPORT_SYMBOL(sync_blockdev);
165 * Write out and wait upon all dirty data associated with this
166 * device. Filesystem data as well as the underlying block
167 * device. Takes the superblock lock.
169 int fsync_bdev(struct block_device *bdev)
171 struct super_block *sb = get_super(bdev);
172 if (sb) {
173 int res = fsync_super(sb);
174 drop_super(sb);
175 return res;
177 return sync_blockdev(bdev);
181 * freeze_bdev -- lock a filesystem and force it into a consistent state
182 * @bdev: blockdevice to lock
184 * This takes the block device bd_mount_sem to make sure no new mounts
185 * happen on bdev until thaw_bdev() is called.
186 * If a superblock is found on this device, we take the s_umount semaphore
187 * on it to make sure nobody unmounts until the snapshot creation is done.
189 struct super_block *freeze_bdev(struct block_device *bdev)
191 struct super_block *sb;
193 down(&bdev->bd_mount_sem);
194 sb = get_super(bdev);
195 if (sb && !(sb->s_flags & MS_RDONLY)) {
196 sb->s_frozen = SB_FREEZE_WRITE;
197 smp_wmb();
199 __fsync_super(sb);
201 sb->s_frozen = SB_FREEZE_TRANS;
202 smp_wmb();
204 sync_blockdev(sb->s_bdev);
206 if (sb->s_op->write_super_lockfs)
207 sb->s_op->write_super_lockfs(sb);
210 sync_blockdev(bdev);
211 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
213 EXPORT_SYMBOL(freeze_bdev);
216 * thaw_bdev -- unlock filesystem
217 * @bdev: blockdevice to unlock
218 * @sb: associated superblock
220 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
222 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
224 if (sb) {
225 BUG_ON(sb->s_bdev != bdev);
227 if (sb->s_op->unlockfs)
228 sb->s_op->unlockfs(sb);
229 sb->s_frozen = SB_UNFROZEN;
230 smp_wmb();
231 wake_up(&sb->s_wait_unfrozen);
232 drop_super(sb);
235 up(&bdev->bd_mount_sem);
237 EXPORT_SYMBOL(thaw_bdev);
240 * Various filesystems appear to want __find_get_block to be non-blocking.
241 * But it's the page lock which protects the buffers. To get around this,
242 * we get exclusion from try_to_free_buffers with the blockdev mapping's
243 * private_lock.
245 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
246 * may be quite high. This code could TryLock the page, and if that
247 * succeeds, there is no need to take private_lock. (But if
248 * private_lock is contended then so is mapping->tree_lock).
250 static struct buffer_head *
251 __find_get_block_slow(struct block_device *bdev, sector_t block)
253 struct inode *bd_inode = bdev->bd_inode;
254 struct address_space *bd_mapping = bd_inode->i_mapping;
255 struct buffer_head *ret = NULL;
256 pgoff_t index;
257 struct buffer_head *bh;
258 struct buffer_head *head;
259 struct page *page;
260 int all_mapped = 1;
262 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
263 page = find_get_page(bd_mapping, index);
264 if (!page)
265 goto out;
267 spin_lock(&bd_mapping->private_lock);
268 if (!page_has_buffers(page))
269 goto out_unlock;
270 head = page_buffers(page);
271 bh = head;
272 do {
273 if (bh->b_blocknr == block) {
274 ret = bh;
275 get_bh(bh);
276 goto out_unlock;
278 if (!buffer_mapped(bh))
279 all_mapped = 0;
280 bh = bh->b_this_page;
281 } while (bh != head);
283 /* we might be here because some of the buffers on this page are
284 * not mapped. This is due to various races between
285 * file io on the block device and getblk. It gets dealt with
286 * elsewhere, don't buffer_error if we had some unmapped buffers
288 if (all_mapped) {
289 printk("__find_get_block_slow() failed. "
290 "block=%llu, b_blocknr=%llu\n",
291 (unsigned long long)block,
292 (unsigned long long)bh->b_blocknr);
293 printk("b_state=0x%08lx, b_size=%zu\n",
294 bh->b_state, bh->b_size);
295 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
297 out_unlock:
298 spin_unlock(&bd_mapping->private_lock);
299 page_cache_release(page);
300 out:
301 return ret;
304 /* If invalidate_buffers() will trash dirty buffers, it means some kind
305 of fs corruption is going on. Trashing dirty data always imply losing
306 information that was supposed to be just stored on the physical layer
307 by the user.
309 Thus invalidate_buffers in general usage is not allwowed to trash
310 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
311 be preserved. These buffers are simply skipped.
313 We also skip buffers which are still in use. For example this can
314 happen if a userspace program is reading the block device.
316 NOTE: In the case where the user removed a removable-media-disk even if
317 there's still dirty data not synced on disk (due a bug in the device driver
318 or due an error of the user), by not destroying the dirty buffers we could
319 generate corruption also on the next media inserted, thus a parameter is
320 necessary to handle this case in the most safe way possible (trying
321 to not corrupt also the new disk inserted with the data belonging to
322 the old now corrupted disk). Also for the ramdisk the natural thing
323 to do in order to release the ramdisk memory is to destroy dirty buffers.
325 These are two special cases. Normal usage imply the device driver
326 to issue a sync on the device (without waiting I/O completion) and
327 then an invalidate_buffers call that doesn't trash dirty buffers.
329 For handling cache coherency with the blkdev pagecache the 'update' case
330 is been introduced. It is needed to re-read from disk any pinned
331 buffer. NOTE: re-reading from disk is destructive so we can do it only
332 when we assume nobody is changing the buffercache under our I/O and when
333 we think the disk contains more recent information than the buffercache.
334 The update == 1 pass marks the buffers we need to update, the update == 2
335 pass does the actual I/O. */
336 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
338 struct address_space *mapping = bdev->bd_inode->i_mapping;
340 if (mapping->nrpages == 0)
341 return;
343 invalidate_bh_lrus();
345 * FIXME: what about destroy_dirty_buffers?
346 * We really want to use invalidate_inode_pages2() for
347 * that, but not until that's cleaned up.
349 invalidate_inode_pages(mapping);
353 * Kick pdflush then try to free up some ZONE_NORMAL memory.
355 static void free_more_memory(void)
357 struct zone **zones;
358 pg_data_t *pgdat;
360 wakeup_pdflush(1024);
361 yield();
363 for_each_online_pgdat(pgdat) {
364 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
365 if (*zones)
366 try_to_free_pages(zones, GFP_NOFS);
371 * I/O completion handler for block_read_full_page() - pages
372 * which come unlocked at the end of I/O.
374 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
376 unsigned long flags;
377 struct buffer_head *first;
378 struct buffer_head *tmp;
379 struct page *page;
380 int page_uptodate = 1;
382 BUG_ON(!buffer_async_read(bh));
384 page = bh->b_page;
385 if (uptodate) {
386 set_buffer_uptodate(bh);
387 } else {
388 clear_buffer_uptodate(bh);
389 if (printk_ratelimit())
390 buffer_io_error(bh);
391 SetPageError(page);
395 * Be _very_ careful from here on. Bad things can happen if
396 * two buffer heads end IO at almost the same time and both
397 * decide that the page is now completely done.
399 first = page_buffers(page);
400 local_irq_save(flags);
401 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
402 clear_buffer_async_read(bh);
403 unlock_buffer(bh);
404 tmp = bh;
405 do {
406 if (!buffer_uptodate(tmp))
407 page_uptodate = 0;
408 if (buffer_async_read(tmp)) {
409 BUG_ON(!buffer_locked(tmp));
410 goto still_busy;
412 tmp = tmp->b_this_page;
413 } while (tmp != bh);
414 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
415 local_irq_restore(flags);
418 * If none of the buffers had errors and they are all
419 * uptodate then we can set the page uptodate.
421 if (page_uptodate && !PageError(page))
422 SetPageUptodate(page);
423 unlock_page(page);
424 return;
426 still_busy:
427 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
428 local_irq_restore(flags);
429 return;
433 * Completion handler for block_write_full_page() - pages which are unlocked
434 * during I/O, and which have PageWriteback cleared upon I/O completion.
436 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
438 char b[BDEVNAME_SIZE];
439 unsigned long flags;
440 struct buffer_head *first;
441 struct buffer_head *tmp;
442 struct page *page;
444 BUG_ON(!buffer_async_write(bh));
446 page = bh->b_page;
447 if (uptodate) {
448 set_buffer_uptodate(bh);
449 } else {
450 if (printk_ratelimit()) {
451 buffer_io_error(bh);
452 printk(KERN_WARNING "lost page write due to "
453 "I/O error on %s\n",
454 bdevname(bh->b_bdev, b));
456 set_bit(AS_EIO, &page->mapping->flags);
457 set_buffer_write_io_error(bh);
458 clear_buffer_uptodate(bh);
459 SetPageError(page);
462 first = page_buffers(page);
463 local_irq_save(flags);
464 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
466 clear_buffer_async_write(bh);
467 unlock_buffer(bh);
468 tmp = bh->b_this_page;
469 while (tmp != bh) {
470 if (buffer_async_write(tmp)) {
471 BUG_ON(!buffer_locked(tmp));
472 goto still_busy;
474 tmp = tmp->b_this_page;
476 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
477 local_irq_restore(flags);
478 end_page_writeback(page);
479 return;
481 still_busy:
482 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483 local_irq_restore(flags);
484 return;
488 * If a page's buffers are under async readin (end_buffer_async_read
489 * completion) then there is a possibility that another thread of
490 * control could lock one of the buffers after it has completed
491 * but while some of the other buffers have not completed. This
492 * locked buffer would confuse end_buffer_async_read() into not unlocking
493 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
494 * that this buffer is not under async I/O.
496 * The page comes unlocked when it has no locked buffer_async buffers
497 * left.
499 * PageLocked prevents anyone starting new async I/O reads any of
500 * the buffers.
502 * PageWriteback is used to prevent simultaneous writeout of the same
503 * page.
505 * PageLocked prevents anyone from starting writeback of a page which is
506 * under read I/O (PageWriteback is only ever set against a locked page).
508 static void mark_buffer_async_read(struct buffer_head *bh)
510 bh->b_end_io = end_buffer_async_read;
511 set_buffer_async_read(bh);
514 void mark_buffer_async_write(struct buffer_head *bh)
516 bh->b_end_io = end_buffer_async_write;
517 set_buffer_async_write(bh);
519 EXPORT_SYMBOL(mark_buffer_async_write);
523 * fs/buffer.c contains helper functions for buffer-backed address space's
524 * fsync functions. A common requirement for buffer-based filesystems is
525 * that certain data from the backing blockdev needs to be written out for
526 * a successful fsync(). For example, ext2 indirect blocks need to be
527 * written back and waited upon before fsync() returns.
529 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
530 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
531 * management of a list of dependent buffers at ->i_mapping->private_list.
533 * Locking is a little subtle: try_to_free_buffers() will remove buffers
534 * from their controlling inode's queue when they are being freed. But
535 * try_to_free_buffers() will be operating against the *blockdev* mapping
536 * at the time, not against the S_ISREG file which depends on those buffers.
537 * So the locking for private_list is via the private_lock in the address_space
538 * which backs the buffers. Which is different from the address_space
539 * against which the buffers are listed. So for a particular address_space,
540 * mapping->private_lock does *not* protect mapping->private_list! In fact,
541 * mapping->private_list will always be protected by the backing blockdev's
542 * ->private_lock.
544 * Which introduces a requirement: all buffers on an address_space's
545 * ->private_list must be from the same address_space: the blockdev's.
547 * address_spaces which do not place buffers at ->private_list via these
548 * utility functions are free to use private_lock and private_list for
549 * whatever they want. The only requirement is that list_empty(private_list)
550 * be true at clear_inode() time.
552 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
553 * filesystems should do that. invalidate_inode_buffers() should just go
554 * BUG_ON(!list_empty).
556 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
557 * take an address_space, not an inode. And it should be called
558 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
559 * queued up.
561 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
562 * list if it is already on a list. Because if the buffer is on a list,
563 * it *must* already be on the right one. If not, the filesystem is being
564 * silly. This will save a ton of locking. But first we have to ensure
565 * that buffers are taken *off* the old inode's list when they are freed
566 * (presumably in truncate). That requires careful auditing of all
567 * filesystems (do it inside bforget()). It could also be done by bringing
568 * b_inode back.
572 * The buffer's backing address_space's private_lock must be held
574 static inline void __remove_assoc_queue(struct buffer_head *bh)
576 list_del_init(&bh->b_assoc_buffers);
577 WARN_ON(!bh->b_assoc_map);
578 if (buffer_write_io_error(bh))
579 set_bit(AS_EIO, &bh->b_assoc_map->flags);
580 bh->b_assoc_map = NULL;
583 int inode_has_buffers(struct inode *inode)
585 return !list_empty(&inode->i_data.private_list);
589 * osync is designed to support O_SYNC io. It waits synchronously for
590 * all already-submitted IO to complete, but does not queue any new
591 * writes to the disk.
593 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
594 * you dirty the buffers, and then use osync_inode_buffers to wait for
595 * completion. Any other dirty buffers which are not yet queued for
596 * write will not be flushed to disk by the osync.
598 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
600 struct buffer_head *bh;
601 struct list_head *p;
602 int err = 0;
604 spin_lock(lock);
605 repeat:
606 list_for_each_prev(p, list) {
607 bh = BH_ENTRY(p);
608 if (buffer_locked(bh)) {
609 get_bh(bh);
610 spin_unlock(lock);
611 wait_on_buffer(bh);
612 if (!buffer_uptodate(bh))
613 err = -EIO;
614 brelse(bh);
615 spin_lock(lock);
616 goto repeat;
619 spin_unlock(lock);
620 return err;
624 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
625 * buffers
626 * @mapping: the mapping which wants those buffers written
628 * Starts I/O against the buffers at mapping->private_list, and waits upon
629 * that I/O.
631 * Basically, this is a convenience function for fsync().
632 * @mapping is a file or directory which needs those buffers to be written for
633 * a successful fsync().
635 int sync_mapping_buffers(struct address_space *mapping)
637 struct address_space *buffer_mapping = mapping->assoc_mapping;
639 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
640 return 0;
642 return fsync_buffers_list(&buffer_mapping->private_lock,
643 &mapping->private_list);
645 EXPORT_SYMBOL(sync_mapping_buffers);
648 * Called when we've recently written block `bblock', and it is known that
649 * `bblock' was for a buffer_boundary() buffer. This means that the block at
650 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
651 * dirty, schedule it for IO. So that indirects merge nicely with their data.
653 void write_boundary_block(struct block_device *bdev,
654 sector_t bblock, unsigned blocksize)
656 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
657 if (bh) {
658 if (buffer_dirty(bh))
659 ll_rw_block(WRITE, 1, &bh);
660 put_bh(bh);
664 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
666 struct address_space *mapping = inode->i_mapping;
667 struct address_space *buffer_mapping = bh->b_page->mapping;
669 mark_buffer_dirty(bh);
670 if (!mapping->assoc_mapping) {
671 mapping->assoc_mapping = buffer_mapping;
672 } else {
673 BUG_ON(mapping->assoc_mapping != buffer_mapping);
675 if (list_empty(&bh->b_assoc_buffers)) {
676 spin_lock(&buffer_mapping->private_lock);
677 list_move_tail(&bh->b_assoc_buffers,
678 &mapping->private_list);
679 bh->b_assoc_map = mapping;
680 spin_unlock(&buffer_mapping->private_lock);
683 EXPORT_SYMBOL(mark_buffer_dirty_inode);
686 * Add a page to the dirty page list.
688 * It is a sad fact of life that this function is called from several places
689 * deeply under spinlocking. It may not sleep.
691 * If the page has buffers, the uptodate buffers are set dirty, to preserve
692 * dirty-state coherency between the page and the buffers. It the page does
693 * not have buffers then when they are later attached they will all be set
694 * dirty.
696 * The buffers are dirtied before the page is dirtied. There's a small race
697 * window in which a writepage caller may see the page cleanness but not the
698 * buffer dirtiness. That's fine. If this code were to set the page dirty
699 * before the buffers, a concurrent writepage caller could clear the page dirty
700 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
701 * page on the dirty page list.
703 * We use private_lock to lock against try_to_free_buffers while using the
704 * page's buffer list. Also use this to protect against clean buffers being
705 * added to the page after it was set dirty.
707 * FIXME: may need to call ->reservepage here as well. That's rather up to the
708 * address_space though.
710 int __set_page_dirty_buffers(struct page *page)
712 struct address_space * const mapping = page_mapping(page);
714 if (unlikely(!mapping))
715 return !TestSetPageDirty(page);
717 spin_lock(&mapping->private_lock);
718 if (page_has_buffers(page)) {
719 struct buffer_head *head = page_buffers(page);
720 struct buffer_head *bh = head;
722 do {
723 set_buffer_dirty(bh);
724 bh = bh->b_this_page;
725 } while (bh != head);
727 spin_unlock(&mapping->private_lock);
729 if (TestSetPageDirty(page))
730 return 0;
732 write_lock_irq(&mapping->tree_lock);
733 if (page->mapping) { /* Race with truncate? */
734 if (mapping_cap_account_dirty(mapping)) {
735 __inc_zone_page_state(page, NR_FILE_DIRTY);
736 task_io_account_write(PAGE_CACHE_SIZE);
738 radix_tree_tag_set(&mapping->page_tree,
739 page_index(page), PAGECACHE_TAG_DIRTY);
741 write_unlock_irq(&mapping->tree_lock);
742 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
743 return 1;
745 EXPORT_SYMBOL(__set_page_dirty_buffers);
748 * Write out and wait upon a list of buffers.
750 * We have conflicting pressures: we want to make sure that all
751 * initially dirty buffers get waited on, but that any subsequently
752 * dirtied buffers don't. After all, we don't want fsync to last
753 * forever if somebody is actively writing to the file.
755 * Do this in two main stages: first we copy dirty buffers to a
756 * temporary inode list, queueing the writes as we go. Then we clean
757 * up, waiting for those writes to complete.
759 * During this second stage, any subsequent updates to the file may end
760 * up refiling the buffer on the original inode's dirty list again, so
761 * there is a chance we will end up with a buffer queued for write but
762 * not yet completed on that list. So, as a final cleanup we go through
763 * the osync code to catch these locked, dirty buffers without requeuing
764 * any newly dirty buffers for write.
766 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
768 struct buffer_head *bh;
769 struct list_head tmp;
770 int err = 0, err2;
772 INIT_LIST_HEAD(&tmp);
774 spin_lock(lock);
775 while (!list_empty(list)) {
776 bh = BH_ENTRY(list->next);
777 __remove_assoc_queue(bh);
778 if (buffer_dirty(bh) || buffer_locked(bh)) {
779 list_add(&bh->b_assoc_buffers, &tmp);
780 if (buffer_dirty(bh)) {
781 get_bh(bh);
782 spin_unlock(lock);
784 * Ensure any pending I/O completes so that
785 * ll_rw_block() actually writes the current
786 * contents - it is a noop if I/O is still in
787 * flight on potentially older contents.
789 ll_rw_block(SWRITE, 1, &bh);
790 brelse(bh);
791 spin_lock(lock);
796 while (!list_empty(&tmp)) {
797 bh = BH_ENTRY(tmp.prev);
798 list_del_init(&bh->b_assoc_buffers);
799 get_bh(bh);
800 spin_unlock(lock);
801 wait_on_buffer(bh);
802 if (!buffer_uptodate(bh))
803 err = -EIO;
804 brelse(bh);
805 spin_lock(lock);
808 spin_unlock(lock);
809 err2 = osync_buffers_list(lock, list);
810 if (err)
811 return err;
812 else
813 return err2;
817 * Invalidate any and all dirty buffers on a given inode. We are
818 * probably unmounting the fs, but that doesn't mean we have already
819 * done a sync(). Just drop the buffers from the inode list.
821 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
822 * assumes that all the buffers are against the blockdev. Not true
823 * for reiserfs.
825 void invalidate_inode_buffers(struct inode *inode)
827 if (inode_has_buffers(inode)) {
828 struct address_space *mapping = &inode->i_data;
829 struct list_head *list = &mapping->private_list;
830 struct address_space *buffer_mapping = mapping->assoc_mapping;
832 spin_lock(&buffer_mapping->private_lock);
833 while (!list_empty(list))
834 __remove_assoc_queue(BH_ENTRY(list->next));
835 spin_unlock(&buffer_mapping->private_lock);
840 * Remove any clean buffers from the inode's buffer list. This is called
841 * when we're trying to free the inode itself. Those buffers can pin it.
843 * Returns true if all buffers were removed.
845 int remove_inode_buffers(struct inode *inode)
847 int ret = 1;
849 if (inode_has_buffers(inode)) {
850 struct address_space *mapping = &inode->i_data;
851 struct list_head *list = &mapping->private_list;
852 struct address_space *buffer_mapping = mapping->assoc_mapping;
854 spin_lock(&buffer_mapping->private_lock);
855 while (!list_empty(list)) {
856 struct buffer_head *bh = BH_ENTRY(list->next);
857 if (buffer_dirty(bh)) {
858 ret = 0;
859 break;
861 __remove_assoc_queue(bh);
863 spin_unlock(&buffer_mapping->private_lock);
865 return ret;
869 * Create the appropriate buffers when given a page for data area and
870 * the size of each buffer.. Use the bh->b_this_page linked list to
871 * follow the buffers created. Return NULL if unable to create more
872 * buffers.
874 * The retry flag is used to differentiate async IO (paging, swapping)
875 * which may not fail from ordinary buffer allocations.
877 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
878 int retry)
880 struct buffer_head *bh, *head;
881 long offset;
883 try_again:
884 head = NULL;
885 offset = PAGE_SIZE;
886 while ((offset -= size) >= 0) {
887 bh = alloc_buffer_head(GFP_NOFS);
888 if (!bh)
889 goto no_grow;
891 bh->b_bdev = NULL;
892 bh->b_this_page = head;
893 bh->b_blocknr = -1;
894 head = bh;
896 bh->b_state = 0;
897 atomic_set(&bh->b_count, 0);
898 bh->b_private = NULL;
899 bh->b_size = size;
901 /* Link the buffer to its page */
902 set_bh_page(bh, page, offset);
904 init_buffer(bh, NULL, NULL);
906 return head;
908 * In case anything failed, we just free everything we got.
910 no_grow:
911 if (head) {
912 do {
913 bh = head;
914 head = head->b_this_page;
915 free_buffer_head(bh);
916 } while (head);
920 * Return failure for non-async IO requests. Async IO requests
921 * are not allowed to fail, so we have to wait until buffer heads
922 * become available. But we don't want tasks sleeping with
923 * partially complete buffers, so all were released above.
925 if (!retry)
926 return NULL;
928 /* We're _really_ low on memory. Now we just
929 * wait for old buffer heads to become free due to
930 * finishing IO. Since this is an async request and
931 * the reserve list is empty, we're sure there are
932 * async buffer heads in use.
934 free_more_memory();
935 goto try_again;
937 EXPORT_SYMBOL_GPL(alloc_page_buffers);
939 static inline void
940 link_dev_buffers(struct page *page, struct buffer_head *head)
942 struct buffer_head *bh, *tail;
944 bh = head;
945 do {
946 tail = bh;
947 bh = bh->b_this_page;
948 } while (bh);
949 tail->b_this_page = head;
950 attach_page_buffers(page, head);
954 * Initialise the state of a blockdev page's buffers.
956 static void
957 init_page_buffers(struct page *page, struct block_device *bdev,
958 sector_t block, int size)
960 struct buffer_head *head = page_buffers(page);
961 struct buffer_head *bh = head;
962 int uptodate = PageUptodate(page);
964 do {
965 if (!buffer_mapped(bh)) {
966 init_buffer(bh, NULL, NULL);
967 bh->b_bdev = bdev;
968 bh->b_blocknr = block;
969 if (uptodate)
970 set_buffer_uptodate(bh);
971 set_buffer_mapped(bh);
973 block++;
974 bh = bh->b_this_page;
975 } while (bh != head);
979 * Create the page-cache page that contains the requested block.
981 * This is user purely for blockdev mappings.
983 static struct page *
984 grow_dev_page(struct block_device *bdev, sector_t block,
985 pgoff_t index, int size)
987 struct inode *inode = bdev->bd_inode;
988 struct page *page;
989 struct buffer_head *bh;
991 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
992 if (!page)
993 return NULL;
995 BUG_ON(!PageLocked(page));
997 if (page_has_buffers(page)) {
998 bh = page_buffers(page);
999 if (bh->b_size == size) {
1000 init_page_buffers(page, bdev, block, size);
1001 return page;
1003 if (!try_to_free_buffers(page))
1004 goto failed;
1008 * Allocate some buffers for this page
1010 bh = alloc_page_buffers(page, size, 0);
1011 if (!bh)
1012 goto failed;
1015 * Link the page to the buffers and initialise them. Take the
1016 * lock to be atomic wrt __find_get_block(), which does not
1017 * run under the page lock.
1019 spin_lock(&inode->i_mapping->private_lock);
1020 link_dev_buffers(page, bh);
1021 init_page_buffers(page, bdev, block, size);
1022 spin_unlock(&inode->i_mapping->private_lock);
1023 return page;
1025 failed:
1026 BUG();
1027 unlock_page(page);
1028 page_cache_release(page);
1029 return NULL;
1033 * Create buffers for the specified block device block's page. If
1034 * that page was dirty, the buffers are set dirty also.
1036 * Except that's a bug. Attaching dirty buffers to a dirty
1037 * blockdev's page can result in filesystem corruption, because
1038 * some of those buffers may be aliases of filesystem data.
1039 * grow_dev_page() will go BUG() if this happens.
1041 static int
1042 grow_buffers(struct block_device *bdev, sector_t block, int size)
1044 struct page *page;
1045 pgoff_t index;
1046 int sizebits;
1048 sizebits = -1;
1049 do {
1050 sizebits++;
1051 } while ((size << sizebits) < PAGE_SIZE);
1053 index = block >> sizebits;
1056 * Check for a block which wants to lie outside our maximum possible
1057 * pagecache index. (this comparison is done using sector_t types).
1059 if (unlikely(index != block >> sizebits)) {
1060 char b[BDEVNAME_SIZE];
1062 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063 "device %s\n",
1064 __FUNCTION__, (unsigned long long)block,
1065 bdevname(bdev, b));
1066 return -EIO;
1068 block = index << sizebits;
1069 /* Create a page with the proper size buffers.. */
1070 page = grow_dev_page(bdev, block, index, size);
1071 if (!page)
1072 return 0;
1073 unlock_page(page);
1074 page_cache_release(page);
1075 return 1;
1078 static struct buffer_head *
1079 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1081 /* Size must be multiple of hard sectorsize */
1082 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1083 (size < 512 || size > PAGE_SIZE))) {
1084 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1085 size);
1086 printk(KERN_ERR "hardsect size: %d\n",
1087 bdev_hardsect_size(bdev));
1089 dump_stack();
1090 return NULL;
1093 for (;;) {
1094 struct buffer_head * bh;
1095 int ret;
1097 bh = __find_get_block(bdev, block, size);
1098 if (bh)
1099 return bh;
1101 ret = grow_buffers(bdev, block, size);
1102 if (ret < 0)
1103 return NULL;
1104 if (ret == 0)
1105 free_more_memory();
1110 * The relationship between dirty buffers and dirty pages:
1112 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1113 * the page is tagged dirty in its radix tree.
1115 * At all times, the dirtiness of the buffers represents the dirtiness of
1116 * subsections of the page. If the page has buffers, the page dirty bit is
1117 * merely a hint about the true dirty state.
1119 * When a page is set dirty in its entirety, all its buffers are marked dirty
1120 * (if the page has buffers).
1122 * When a buffer is marked dirty, its page is dirtied, but the page's other
1123 * buffers are not.
1125 * Also. When blockdev buffers are explicitly read with bread(), they
1126 * individually become uptodate. But their backing page remains not
1127 * uptodate - even if all of its buffers are uptodate. A subsequent
1128 * block_read_full_page() against that page will discover all the uptodate
1129 * buffers, will set the page uptodate and will perform no I/O.
1133 * mark_buffer_dirty - mark a buffer_head as needing writeout
1134 * @bh: the buffer_head to mark dirty
1136 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1137 * backing page dirty, then tag the page as dirty in its address_space's radix
1138 * tree and then attach the address_space's inode to its superblock's dirty
1139 * inode list.
1141 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1142 * mapping->tree_lock and the global inode_lock.
1144 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1146 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1147 __set_page_dirty_nobuffers(bh->b_page);
1151 * Decrement a buffer_head's reference count. If all buffers against a page
1152 * have zero reference count, are clean and unlocked, and if the page is clean
1153 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1154 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1155 * a page but it ends up not being freed, and buffers may later be reattached).
1157 void __brelse(struct buffer_head * buf)
1159 if (atomic_read(&buf->b_count)) {
1160 put_bh(buf);
1161 return;
1163 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1164 WARN_ON(1);
1168 * bforget() is like brelse(), except it discards any
1169 * potentially dirty data.
1171 void __bforget(struct buffer_head *bh)
1173 clear_buffer_dirty(bh);
1174 if (!list_empty(&bh->b_assoc_buffers)) {
1175 struct address_space *buffer_mapping = bh->b_page->mapping;
1177 spin_lock(&buffer_mapping->private_lock);
1178 list_del_init(&bh->b_assoc_buffers);
1179 bh->b_assoc_map = NULL;
1180 spin_unlock(&buffer_mapping->private_lock);
1182 __brelse(bh);
1185 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1187 lock_buffer(bh);
1188 if (buffer_uptodate(bh)) {
1189 unlock_buffer(bh);
1190 return bh;
1191 } else {
1192 get_bh(bh);
1193 bh->b_end_io = end_buffer_read_sync;
1194 submit_bh(READ, bh);
1195 wait_on_buffer(bh);
1196 if (buffer_uptodate(bh))
1197 return bh;
1199 brelse(bh);
1200 return NULL;
1204 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1205 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1206 * refcount elevated by one when they're in an LRU. A buffer can only appear
1207 * once in a particular CPU's LRU. A single buffer can be present in multiple
1208 * CPU's LRUs at the same time.
1210 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1211 * sb_find_get_block().
1213 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1214 * a local interrupt disable for that.
1217 #define BH_LRU_SIZE 8
1219 struct bh_lru {
1220 struct buffer_head *bhs[BH_LRU_SIZE];
1223 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1225 #ifdef CONFIG_SMP
1226 #define bh_lru_lock() local_irq_disable()
1227 #define bh_lru_unlock() local_irq_enable()
1228 #else
1229 #define bh_lru_lock() preempt_disable()
1230 #define bh_lru_unlock() preempt_enable()
1231 #endif
1233 static inline void check_irqs_on(void)
1235 #ifdef irqs_disabled
1236 BUG_ON(irqs_disabled());
1237 #endif
1241 * The LRU management algorithm is dopey-but-simple. Sorry.
1243 static void bh_lru_install(struct buffer_head *bh)
1245 struct buffer_head *evictee = NULL;
1246 struct bh_lru *lru;
1248 check_irqs_on();
1249 bh_lru_lock();
1250 lru = &__get_cpu_var(bh_lrus);
1251 if (lru->bhs[0] != bh) {
1252 struct buffer_head *bhs[BH_LRU_SIZE];
1253 int in;
1254 int out = 0;
1256 get_bh(bh);
1257 bhs[out++] = bh;
1258 for (in = 0; in < BH_LRU_SIZE; in++) {
1259 struct buffer_head *bh2 = lru->bhs[in];
1261 if (bh2 == bh) {
1262 __brelse(bh2);
1263 } else {
1264 if (out >= BH_LRU_SIZE) {
1265 BUG_ON(evictee != NULL);
1266 evictee = bh2;
1267 } else {
1268 bhs[out++] = bh2;
1272 while (out < BH_LRU_SIZE)
1273 bhs[out++] = NULL;
1274 memcpy(lru->bhs, bhs, sizeof(bhs));
1276 bh_lru_unlock();
1278 if (evictee)
1279 __brelse(evictee);
1283 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1285 static struct buffer_head *
1286 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1288 struct buffer_head *ret = NULL;
1289 struct bh_lru *lru;
1290 int i;
1292 check_irqs_on();
1293 bh_lru_lock();
1294 lru = &__get_cpu_var(bh_lrus);
1295 for (i = 0; i < BH_LRU_SIZE; i++) {
1296 struct buffer_head *bh = lru->bhs[i];
1298 if (bh && bh->b_bdev == bdev &&
1299 bh->b_blocknr == block && bh->b_size == size) {
1300 if (i) {
1301 while (i) {
1302 lru->bhs[i] = lru->bhs[i - 1];
1303 i--;
1305 lru->bhs[0] = bh;
1307 get_bh(bh);
1308 ret = bh;
1309 break;
1312 bh_lru_unlock();
1313 return ret;
1317 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1318 * it in the LRU and mark it as accessed. If it is not present then return
1319 * NULL
1321 struct buffer_head *
1322 __find_get_block(struct block_device *bdev, sector_t block, int size)
1324 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1326 if (bh == NULL) {
1327 bh = __find_get_block_slow(bdev, block);
1328 if (bh)
1329 bh_lru_install(bh);
1331 if (bh)
1332 touch_buffer(bh);
1333 return bh;
1335 EXPORT_SYMBOL(__find_get_block);
1338 * __getblk will locate (and, if necessary, create) the buffer_head
1339 * which corresponds to the passed block_device, block and size. The
1340 * returned buffer has its reference count incremented.
1342 * __getblk() cannot fail - it just keeps trying. If you pass it an
1343 * illegal block number, __getblk() will happily return a buffer_head
1344 * which represents the non-existent block. Very weird.
1346 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1347 * attempt is failing. FIXME, perhaps?
1349 struct buffer_head *
1350 __getblk(struct block_device *bdev, sector_t block, int size)
1352 struct buffer_head *bh = __find_get_block(bdev, block, size);
1354 might_sleep();
1355 if (bh == NULL)
1356 bh = __getblk_slow(bdev, block, size);
1357 return bh;
1359 EXPORT_SYMBOL(__getblk);
1362 * Do async read-ahead on a buffer..
1364 void __breadahead(struct block_device *bdev, sector_t block, int size)
1366 struct buffer_head *bh = __getblk(bdev, block, size);
1367 if (likely(bh)) {
1368 ll_rw_block(READA, 1, &bh);
1369 brelse(bh);
1372 EXPORT_SYMBOL(__breadahead);
1375 * __bread() - reads a specified block and returns the bh
1376 * @bdev: the block_device to read from
1377 * @block: number of block
1378 * @size: size (in bytes) to read
1380 * Reads a specified block, and returns buffer head that contains it.
1381 * It returns NULL if the block was unreadable.
1383 struct buffer_head *
1384 __bread(struct block_device *bdev, sector_t block, int size)
1386 struct buffer_head *bh = __getblk(bdev, block, size);
1388 if (likely(bh) && !buffer_uptodate(bh))
1389 bh = __bread_slow(bh);
1390 return bh;
1392 EXPORT_SYMBOL(__bread);
1395 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1396 * This doesn't race because it runs in each cpu either in irq
1397 * or with preempt disabled.
1399 static void invalidate_bh_lru(void *arg)
1401 struct bh_lru *b = &get_cpu_var(bh_lrus);
1402 int i;
1404 for (i = 0; i < BH_LRU_SIZE; i++) {
1405 brelse(b->bhs[i]);
1406 b->bhs[i] = NULL;
1408 put_cpu_var(bh_lrus);
1411 static void invalidate_bh_lrus(void)
1413 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1416 void set_bh_page(struct buffer_head *bh,
1417 struct page *page, unsigned long offset)
1419 bh->b_page = page;
1420 BUG_ON(offset >= PAGE_SIZE);
1421 if (PageHighMem(page))
1423 * This catches illegal uses and preserves the offset:
1425 bh->b_data = (char *)(0 + offset);
1426 else
1427 bh->b_data = page_address(page) + offset;
1429 EXPORT_SYMBOL(set_bh_page);
1432 * Called when truncating a buffer on a page completely.
1434 static void discard_buffer(struct buffer_head * bh)
1436 lock_buffer(bh);
1437 clear_buffer_dirty(bh);
1438 bh->b_bdev = NULL;
1439 clear_buffer_mapped(bh);
1440 clear_buffer_req(bh);
1441 clear_buffer_new(bh);
1442 clear_buffer_delay(bh);
1443 unlock_buffer(bh);
1447 * block_invalidatepage - invalidate part of all of a buffer-backed page
1449 * @page: the page which is affected
1450 * @offset: the index of the truncation point
1452 * block_invalidatepage() is called when all or part of the page has become
1453 * invalidatedby a truncate operation.
1455 * block_invalidatepage() does not have to release all buffers, but it must
1456 * ensure that no dirty buffer is left outside @offset and that no I/O
1457 * is underway against any of the blocks which are outside the truncation
1458 * point. Because the caller is about to free (and possibly reuse) those
1459 * blocks on-disk.
1461 void block_invalidatepage(struct page *page, unsigned long offset)
1463 struct buffer_head *head, *bh, *next;
1464 unsigned int curr_off = 0;
1466 BUG_ON(!PageLocked(page));
1467 if (!page_has_buffers(page))
1468 goto out;
1470 head = page_buffers(page);
1471 bh = head;
1472 do {
1473 unsigned int next_off = curr_off + bh->b_size;
1474 next = bh->b_this_page;
1477 * is this block fully invalidated?
1479 if (offset <= curr_off)
1480 discard_buffer(bh);
1481 curr_off = next_off;
1482 bh = next;
1483 } while (bh != head);
1486 * We release buffers only if the entire page is being invalidated.
1487 * The get_block cached value has been unconditionally invalidated,
1488 * so real IO is not possible anymore.
1490 if (offset == 0)
1491 try_to_release_page(page, 0);
1492 out:
1493 return;
1495 EXPORT_SYMBOL(block_invalidatepage);
1498 * We attach and possibly dirty the buffers atomically wrt
1499 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1500 * is already excluded via the page lock.
1502 void create_empty_buffers(struct page *page,
1503 unsigned long blocksize, unsigned long b_state)
1505 struct buffer_head *bh, *head, *tail;
1507 head = alloc_page_buffers(page, blocksize, 1);
1508 bh = head;
1509 do {
1510 bh->b_state |= b_state;
1511 tail = bh;
1512 bh = bh->b_this_page;
1513 } while (bh);
1514 tail->b_this_page = head;
1516 spin_lock(&page->mapping->private_lock);
1517 if (PageUptodate(page) || PageDirty(page)) {
1518 bh = head;
1519 do {
1520 if (PageDirty(page))
1521 set_buffer_dirty(bh);
1522 if (PageUptodate(page))
1523 set_buffer_uptodate(bh);
1524 bh = bh->b_this_page;
1525 } while (bh != head);
1527 attach_page_buffers(page, head);
1528 spin_unlock(&page->mapping->private_lock);
1530 EXPORT_SYMBOL(create_empty_buffers);
1533 * We are taking a block for data and we don't want any output from any
1534 * buffer-cache aliases starting from return from that function and
1535 * until the moment when something will explicitly mark the buffer
1536 * dirty (hopefully that will not happen until we will free that block ;-)
1537 * We don't even need to mark it not-uptodate - nobody can expect
1538 * anything from a newly allocated buffer anyway. We used to used
1539 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1540 * don't want to mark the alias unmapped, for example - it would confuse
1541 * anyone who might pick it with bread() afterwards...
1543 * Also.. Note that bforget() doesn't lock the buffer. So there can
1544 * be writeout I/O going on against recently-freed buffers. We don't
1545 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1546 * only if we really need to. That happens here.
1548 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1550 struct buffer_head *old_bh;
1552 might_sleep();
1554 old_bh = __find_get_block_slow(bdev, block);
1555 if (old_bh) {
1556 clear_buffer_dirty(old_bh);
1557 wait_on_buffer(old_bh);
1558 clear_buffer_req(old_bh);
1559 __brelse(old_bh);
1562 EXPORT_SYMBOL(unmap_underlying_metadata);
1565 * NOTE! All mapped/uptodate combinations are valid:
1567 * Mapped Uptodate Meaning
1569 * No No "unknown" - must do get_block()
1570 * No Yes "hole" - zero-filled
1571 * Yes No "allocated" - allocated on disk, not read in
1572 * Yes Yes "valid" - allocated and up-to-date in memory.
1574 * "Dirty" is valid only with the last case (mapped+uptodate).
1578 * While block_write_full_page is writing back the dirty buffers under
1579 * the page lock, whoever dirtied the buffers may decide to clean them
1580 * again at any time. We handle that by only looking at the buffer
1581 * state inside lock_buffer().
1583 * If block_write_full_page() is called for regular writeback
1584 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1585 * locked buffer. This only can happen if someone has written the buffer
1586 * directly, with submit_bh(). At the address_space level PageWriteback
1587 * prevents this contention from occurring.
1589 static int __block_write_full_page(struct inode *inode, struct page *page,
1590 get_block_t *get_block, struct writeback_control *wbc)
1592 int err;
1593 sector_t block;
1594 sector_t last_block;
1595 struct buffer_head *bh, *head;
1596 const unsigned blocksize = 1 << inode->i_blkbits;
1597 int nr_underway = 0;
1599 BUG_ON(!PageLocked(page));
1601 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1603 if (!page_has_buffers(page)) {
1604 create_empty_buffers(page, blocksize,
1605 (1 << BH_Dirty)|(1 << BH_Uptodate));
1609 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1610 * here, and the (potentially unmapped) buffers may become dirty at
1611 * any time. If a buffer becomes dirty here after we've inspected it
1612 * then we just miss that fact, and the page stays dirty.
1614 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1615 * handle that here by just cleaning them.
1618 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1619 head = page_buffers(page);
1620 bh = head;
1623 * Get all the dirty buffers mapped to disk addresses and
1624 * handle any aliases from the underlying blockdev's mapping.
1626 do {
1627 if (block > last_block) {
1629 * mapped buffers outside i_size will occur, because
1630 * this page can be outside i_size when there is a
1631 * truncate in progress.
1634 * The buffer was zeroed by block_write_full_page()
1636 clear_buffer_dirty(bh);
1637 set_buffer_uptodate(bh);
1638 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1639 WARN_ON(bh->b_size != blocksize);
1640 err = get_block(inode, block, bh, 1);
1641 if (err)
1642 goto recover;
1643 if (buffer_new(bh)) {
1644 /* blockdev mappings never come here */
1645 clear_buffer_new(bh);
1646 unmap_underlying_metadata(bh->b_bdev,
1647 bh->b_blocknr);
1650 bh = bh->b_this_page;
1651 block++;
1652 } while (bh != head);
1654 do {
1655 if (!buffer_mapped(bh))
1656 continue;
1658 * If it's a fully non-blocking write attempt and we cannot
1659 * lock the buffer then redirty the page. Note that this can
1660 * potentially cause a busy-wait loop from pdflush and kswapd
1661 * activity, but those code paths have their own higher-level
1662 * throttling.
1664 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1665 lock_buffer(bh);
1666 } else if (test_set_buffer_locked(bh)) {
1667 redirty_page_for_writepage(wbc, page);
1668 continue;
1670 if (test_clear_buffer_dirty(bh)) {
1671 mark_buffer_async_write(bh);
1672 } else {
1673 unlock_buffer(bh);
1675 } while ((bh = bh->b_this_page) != head);
1678 * The page and its buffers are protected by PageWriteback(), so we can
1679 * drop the bh refcounts early.
1681 BUG_ON(PageWriteback(page));
1682 set_page_writeback(page);
1684 do {
1685 struct buffer_head *next = bh->b_this_page;
1686 if (buffer_async_write(bh)) {
1687 submit_bh(WRITE, bh);
1688 nr_underway++;
1690 bh = next;
1691 } while (bh != head);
1692 unlock_page(page);
1694 err = 0;
1695 done:
1696 if (nr_underway == 0) {
1698 * The page was marked dirty, but the buffers were
1699 * clean. Someone wrote them back by hand with
1700 * ll_rw_block/submit_bh. A rare case.
1702 int uptodate = 1;
1703 do {
1704 if (!buffer_uptodate(bh)) {
1705 uptodate = 0;
1706 break;
1708 bh = bh->b_this_page;
1709 } while (bh != head);
1710 if (uptodate)
1711 SetPageUptodate(page);
1712 end_page_writeback(page);
1714 * The page and buffer_heads can be released at any time from
1715 * here on.
1717 wbc->pages_skipped++; /* We didn't write this page */
1719 return err;
1721 recover:
1723 * ENOSPC, or some other error. We may already have added some
1724 * blocks to the file, so we need to write these out to avoid
1725 * exposing stale data.
1726 * The page is currently locked and not marked for writeback
1728 bh = head;
1729 /* Recovery: lock and submit the mapped buffers */
1730 do {
1731 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1732 lock_buffer(bh);
1733 mark_buffer_async_write(bh);
1734 } else {
1736 * The buffer may have been set dirty during
1737 * attachment to a dirty page.
1739 clear_buffer_dirty(bh);
1741 } while ((bh = bh->b_this_page) != head);
1742 SetPageError(page);
1743 BUG_ON(PageWriteback(page));
1744 set_page_writeback(page);
1745 unlock_page(page);
1746 do {
1747 struct buffer_head *next = bh->b_this_page;
1748 if (buffer_async_write(bh)) {
1749 clear_buffer_dirty(bh);
1750 submit_bh(WRITE, bh);
1751 nr_underway++;
1753 bh = next;
1754 } while (bh != head);
1755 goto done;
1758 static int __block_prepare_write(struct inode *inode, struct page *page,
1759 unsigned from, unsigned to, get_block_t *get_block)
1761 unsigned block_start, block_end;
1762 sector_t block;
1763 int err = 0;
1764 unsigned blocksize, bbits;
1765 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1767 BUG_ON(!PageLocked(page));
1768 BUG_ON(from > PAGE_CACHE_SIZE);
1769 BUG_ON(to > PAGE_CACHE_SIZE);
1770 BUG_ON(from > to);
1772 blocksize = 1 << inode->i_blkbits;
1773 if (!page_has_buffers(page))
1774 create_empty_buffers(page, blocksize, 0);
1775 head = page_buffers(page);
1777 bbits = inode->i_blkbits;
1778 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1780 for(bh = head, block_start = 0; bh != head || !block_start;
1781 block++, block_start=block_end, bh = bh->b_this_page) {
1782 block_end = block_start + blocksize;
1783 if (block_end <= from || block_start >= to) {
1784 if (PageUptodate(page)) {
1785 if (!buffer_uptodate(bh))
1786 set_buffer_uptodate(bh);
1788 continue;
1790 if (buffer_new(bh))
1791 clear_buffer_new(bh);
1792 if (!buffer_mapped(bh)) {
1793 WARN_ON(bh->b_size != blocksize);
1794 err = get_block(inode, block, bh, 1);
1795 if (err)
1796 break;
1797 if (buffer_new(bh)) {
1798 unmap_underlying_metadata(bh->b_bdev,
1799 bh->b_blocknr);
1800 if (PageUptodate(page)) {
1801 set_buffer_uptodate(bh);
1802 continue;
1804 if (block_end > to || block_start < from) {
1805 void *kaddr;
1807 kaddr = kmap_atomic(page, KM_USER0);
1808 if (block_end > to)
1809 memset(kaddr+to, 0,
1810 block_end-to);
1811 if (block_start < from)
1812 memset(kaddr+block_start,
1813 0, from-block_start);
1814 flush_dcache_page(page);
1815 kunmap_atomic(kaddr, KM_USER0);
1817 continue;
1820 if (PageUptodate(page)) {
1821 if (!buffer_uptodate(bh))
1822 set_buffer_uptodate(bh);
1823 continue;
1825 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1826 (block_start < from || block_end > to)) {
1827 ll_rw_block(READ, 1, &bh);
1828 *wait_bh++=bh;
1832 * If we issued read requests - let them complete.
1834 while(wait_bh > wait) {
1835 wait_on_buffer(*--wait_bh);
1836 if (!buffer_uptodate(*wait_bh))
1837 err = -EIO;
1839 if (!err) {
1840 bh = head;
1841 do {
1842 if (buffer_new(bh))
1843 clear_buffer_new(bh);
1844 } while ((bh = bh->b_this_page) != head);
1845 return 0;
1847 /* Error case: */
1849 * Zero out any newly allocated blocks to avoid exposing stale
1850 * data. If BH_New is set, we know that the block was newly
1851 * allocated in the above loop.
1853 bh = head;
1854 block_start = 0;
1855 do {
1856 block_end = block_start+blocksize;
1857 if (block_end <= from)
1858 goto next_bh;
1859 if (block_start >= to)
1860 break;
1861 if (buffer_new(bh)) {
1862 void *kaddr;
1864 clear_buffer_new(bh);
1865 kaddr = kmap_atomic(page, KM_USER0);
1866 memset(kaddr+block_start, 0, bh->b_size);
1867 flush_dcache_page(page);
1868 kunmap_atomic(kaddr, KM_USER0);
1869 set_buffer_uptodate(bh);
1870 mark_buffer_dirty(bh);
1872 next_bh:
1873 block_start = block_end;
1874 bh = bh->b_this_page;
1875 } while (bh != head);
1876 return err;
1879 static int __block_commit_write(struct inode *inode, struct page *page,
1880 unsigned from, unsigned to)
1882 unsigned block_start, block_end;
1883 int partial = 0;
1884 unsigned blocksize;
1885 struct buffer_head *bh, *head;
1887 blocksize = 1 << inode->i_blkbits;
1889 for(bh = head = page_buffers(page), block_start = 0;
1890 bh != head || !block_start;
1891 block_start=block_end, bh = bh->b_this_page) {
1892 block_end = block_start + blocksize;
1893 if (block_end <= from || block_start >= to) {
1894 if (!buffer_uptodate(bh))
1895 partial = 1;
1896 } else {
1897 set_buffer_uptodate(bh);
1898 mark_buffer_dirty(bh);
1903 * If this is a partial write which happened to make all buffers
1904 * uptodate then we can optimize away a bogus readpage() for
1905 * the next read(). Here we 'discover' whether the page went
1906 * uptodate as a result of this (potentially partial) write.
1908 if (!partial)
1909 SetPageUptodate(page);
1910 return 0;
1914 * Generic "read page" function for block devices that have the normal
1915 * get_block functionality. This is most of the block device filesystems.
1916 * Reads the page asynchronously --- the unlock_buffer() and
1917 * set/clear_buffer_uptodate() functions propagate buffer state into the
1918 * page struct once IO has completed.
1920 int block_read_full_page(struct page *page, get_block_t *get_block)
1922 struct inode *inode = page->mapping->host;
1923 sector_t iblock, lblock;
1924 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1925 unsigned int blocksize;
1926 int nr, i;
1927 int fully_mapped = 1;
1929 BUG_ON(!PageLocked(page));
1930 blocksize = 1 << inode->i_blkbits;
1931 if (!page_has_buffers(page))
1932 create_empty_buffers(page, blocksize, 0);
1933 head = page_buffers(page);
1935 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1936 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1937 bh = head;
1938 nr = 0;
1939 i = 0;
1941 do {
1942 if (buffer_uptodate(bh))
1943 continue;
1945 if (!buffer_mapped(bh)) {
1946 int err = 0;
1948 fully_mapped = 0;
1949 if (iblock < lblock) {
1950 WARN_ON(bh->b_size != blocksize);
1951 err = get_block(inode, iblock, bh, 0);
1952 if (err)
1953 SetPageError(page);
1955 if (!buffer_mapped(bh)) {
1956 void *kaddr = kmap_atomic(page, KM_USER0);
1957 memset(kaddr + i * blocksize, 0, blocksize);
1958 flush_dcache_page(page);
1959 kunmap_atomic(kaddr, KM_USER0);
1960 if (!err)
1961 set_buffer_uptodate(bh);
1962 continue;
1965 * get_block() might have updated the buffer
1966 * synchronously
1968 if (buffer_uptodate(bh))
1969 continue;
1971 arr[nr++] = bh;
1972 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1974 if (fully_mapped)
1975 SetPageMappedToDisk(page);
1977 if (!nr) {
1979 * All buffers are uptodate - we can set the page uptodate
1980 * as well. But not if get_block() returned an error.
1982 if (!PageError(page))
1983 SetPageUptodate(page);
1984 unlock_page(page);
1985 return 0;
1988 /* Stage two: lock the buffers */
1989 for (i = 0; i < nr; i++) {
1990 bh = arr[i];
1991 lock_buffer(bh);
1992 mark_buffer_async_read(bh);
1996 * Stage 3: start the IO. Check for uptodateness
1997 * inside the buffer lock in case another process reading
1998 * the underlying blockdev brought it uptodate (the sct fix).
2000 for (i = 0; i < nr; i++) {
2001 bh = arr[i];
2002 if (buffer_uptodate(bh))
2003 end_buffer_async_read(bh, 1);
2004 else
2005 submit_bh(READ, bh);
2007 return 0;
2010 /* utility function for filesystems that need to do work on expanding
2011 * truncates. Uses prepare/commit_write to allow the filesystem to
2012 * deal with the hole.
2014 static int __generic_cont_expand(struct inode *inode, loff_t size,
2015 pgoff_t index, unsigned int offset)
2017 struct address_space *mapping = inode->i_mapping;
2018 struct page *page;
2019 unsigned long limit;
2020 int err;
2022 err = -EFBIG;
2023 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2024 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2025 send_sig(SIGXFSZ, current, 0);
2026 goto out;
2028 if (size > inode->i_sb->s_maxbytes)
2029 goto out;
2031 err = -ENOMEM;
2032 page = grab_cache_page(mapping, index);
2033 if (!page)
2034 goto out;
2035 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2036 if (err) {
2038 * ->prepare_write() may have instantiated a few blocks
2039 * outside i_size. Trim these off again.
2041 unlock_page(page);
2042 page_cache_release(page);
2043 vmtruncate(inode, inode->i_size);
2044 goto out;
2047 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2049 unlock_page(page);
2050 page_cache_release(page);
2051 if (err > 0)
2052 err = 0;
2053 out:
2054 return err;
2057 int generic_cont_expand(struct inode *inode, loff_t size)
2059 pgoff_t index;
2060 unsigned int offset;
2062 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2064 /* ugh. in prepare/commit_write, if from==to==start of block, we
2065 ** skip the prepare. make sure we never send an offset for the start
2066 ** of a block
2068 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2069 /* caller must handle this extra byte. */
2070 offset++;
2072 index = size >> PAGE_CACHE_SHIFT;
2074 return __generic_cont_expand(inode, size, index, offset);
2077 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2079 loff_t pos = size - 1;
2080 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2081 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2083 /* prepare/commit_write can handle even if from==to==start of block. */
2084 return __generic_cont_expand(inode, size, index, offset);
2088 * For moronic filesystems that do not allow holes in file.
2089 * We may have to extend the file.
2092 int cont_prepare_write(struct page *page, unsigned offset,
2093 unsigned to, get_block_t *get_block, loff_t *bytes)
2095 struct address_space *mapping = page->mapping;
2096 struct inode *inode = mapping->host;
2097 struct page *new_page;
2098 pgoff_t pgpos;
2099 long status;
2100 unsigned zerofrom;
2101 unsigned blocksize = 1 << inode->i_blkbits;
2102 void *kaddr;
2104 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2105 status = -ENOMEM;
2106 new_page = grab_cache_page(mapping, pgpos);
2107 if (!new_page)
2108 goto out;
2109 /* we might sleep */
2110 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2111 unlock_page(new_page);
2112 page_cache_release(new_page);
2113 continue;
2115 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2116 if (zerofrom & (blocksize-1)) {
2117 *bytes |= (blocksize-1);
2118 (*bytes)++;
2120 status = __block_prepare_write(inode, new_page, zerofrom,
2121 PAGE_CACHE_SIZE, get_block);
2122 if (status)
2123 goto out_unmap;
2124 kaddr = kmap_atomic(new_page, KM_USER0);
2125 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2126 flush_dcache_page(new_page);
2127 kunmap_atomic(kaddr, KM_USER0);
2128 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2129 unlock_page(new_page);
2130 page_cache_release(new_page);
2133 if (page->index < pgpos) {
2134 /* completely inside the area */
2135 zerofrom = offset;
2136 } else {
2137 /* page covers the boundary, find the boundary offset */
2138 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2140 /* if we will expand the thing last block will be filled */
2141 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2142 *bytes |= (blocksize-1);
2143 (*bytes)++;
2146 /* starting below the boundary? Nothing to zero out */
2147 if (offset <= zerofrom)
2148 zerofrom = offset;
2150 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2151 if (status)
2152 goto out1;
2153 if (zerofrom < offset) {
2154 kaddr = kmap_atomic(page, KM_USER0);
2155 memset(kaddr+zerofrom, 0, offset-zerofrom);
2156 flush_dcache_page(page);
2157 kunmap_atomic(kaddr, KM_USER0);
2158 __block_commit_write(inode, page, zerofrom, offset);
2160 return 0;
2161 out1:
2162 ClearPageUptodate(page);
2163 return status;
2165 out_unmap:
2166 ClearPageUptodate(new_page);
2167 unlock_page(new_page);
2168 page_cache_release(new_page);
2169 out:
2170 return status;
2173 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2174 get_block_t *get_block)
2176 struct inode *inode = page->mapping->host;
2177 int err = __block_prepare_write(inode, page, from, to, get_block);
2178 if (err)
2179 ClearPageUptodate(page);
2180 return err;
2183 int block_commit_write(struct page *page, unsigned from, unsigned to)
2185 struct inode *inode = page->mapping->host;
2186 __block_commit_write(inode,page,from,to);
2187 return 0;
2190 int generic_commit_write(struct file *file, struct page *page,
2191 unsigned from, unsigned to)
2193 struct inode *inode = page->mapping->host;
2194 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2195 __block_commit_write(inode,page,from,to);
2197 * No need to use i_size_read() here, the i_size
2198 * cannot change under us because we hold i_mutex.
2200 if (pos > inode->i_size) {
2201 i_size_write(inode, pos);
2202 mark_inode_dirty(inode);
2204 return 0;
2209 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2210 * immediately, while under the page lock. So it needs a special end_io
2211 * handler which does not touch the bh after unlocking it.
2213 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2214 * a race there is benign: unlock_buffer() only use the bh's address for
2215 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2216 * itself.
2218 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2220 if (uptodate) {
2221 set_buffer_uptodate(bh);
2222 } else {
2223 /* This happens, due to failed READA attempts. */
2224 clear_buffer_uptodate(bh);
2226 unlock_buffer(bh);
2230 * On entry, the page is fully not uptodate.
2231 * On exit the page is fully uptodate in the areas outside (from,to)
2233 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2234 get_block_t *get_block)
2236 struct inode *inode = page->mapping->host;
2237 const unsigned blkbits = inode->i_blkbits;
2238 const unsigned blocksize = 1 << blkbits;
2239 struct buffer_head map_bh;
2240 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2241 unsigned block_in_page;
2242 unsigned block_start;
2243 sector_t block_in_file;
2244 char *kaddr;
2245 int nr_reads = 0;
2246 int i;
2247 int ret = 0;
2248 int is_mapped_to_disk = 1;
2249 int dirtied_it = 0;
2251 if (PageMappedToDisk(page))
2252 return 0;
2254 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2255 map_bh.b_page = page;
2258 * We loop across all blocks in the page, whether or not they are
2259 * part of the affected region. This is so we can discover if the
2260 * page is fully mapped-to-disk.
2262 for (block_start = 0, block_in_page = 0;
2263 block_start < PAGE_CACHE_SIZE;
2264 block_in_page++, block_start += blocksize) {
2265 unsigned block_end = block_start + blocksize;
2266 int create;
2268 map_bh.b_state = 0;
2269 create = 1;
2270 if (block_start >= to)
2271 create = 0;
2272 map_bh.b_size = blocksize;
2273 ret = get_block(inode, block_in_file + block_in_page,
2274 &map_bh, create);
2275 if (ret)
2276 goto failed;
2277 if (!buffer_mapped(&map_bh))
2278 is_mapped_to_disk = 0;
2279 if (buffer_new(&map_bh))
2280 unmap_underlying_metadata(map_bh.b_bdev,
2281 map_bh.b_blocknr);
2282 if (PageUptodate(page))
2283 continue;
2284 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2285 kaddr = kmap_atomic(page, KM_USER0);
2286 if (block_start < from) {
2287 memset(kaddr+block_start, 0, from-block_start);
2288 dirtied_it = 1;
2290 if (block_end > to) {
2291 memset(kaddr + to, 0, block_end - to);
2292 dirtied_it = 1;
2294 flush_dcache_page(page);
2295 kunmap_atomic(kaddr, KM_USER0);
2296 continue;
2298 if (buffer_uptodate(&map_bh))
2299 continue; /* reiserfs does this */
2300 if (block_start < from || block_end > to) {
2301 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2303 if (!bh) {
2304 ret = -ENOMEM;
2305 goto failed;
2307 bh->b_state = map_bh.b_state;
2308 atomic_set(&bh->b_count, 0);
2309 bh->b_this_page = NULL;
2310 bh->b_page = page;
2311 bh->b_blocknr = map_bh.b_blocknr;
2312 bh->b_size = blocksize;
2313 bh->b_data = (char *)(long)block_start;
2314 bh->b_bdev = map_bh.b_bdev;
2315 bh->b_private = NULL;
2316 read_bh[nr_reads++] = bh;
2320 if (nr_reads) {
2321 struct buffer_head *bh;
2324 * The page is locked, so these buffers are protected from
2325 * any VM or truncate activity. Hence we don't need to care
2326 * for the buffer_head refcounts.
2328 for (i = 0; i < nr_reads; i++) {
2329 bh = read_bh[i];
2330 lock_buffer(bh);
2331 bh->b_end_io = end_buffer_read_nobh;
2332 submit_bh(READ, bh);
2334 for (i = 0; i < nr_reads; i++) {
2335 bh = read_bh[i];
2336 wait_on_buffer(bh);
2337 if (!buffer_uptodate(bh))
2338 ret = -EIO;
2339 free_buffer_head(bh);
2340 read_bh[i] = NULL;
2342 if (ret)
2343 goto failed;
2346 if (is_mapped_to_disk)
2347 SetPageMappedToDisk(page);
2348 SetPageUptodate(page);
2351 * Setting the page dirty here isn't necessary for the prepare_write
2352 * function - commit_write will do that. But if/when this function is
2353 * used within the pagefault handler to ensure that all mmapped pages
2354 * have backing space in the filesystem, we will need to dirty the page
2355 * if its contents were altered.
2357 if (dirtied_it)
2358 set_page_dirty(page);
2360 return 0;
2362 failed:
2363 for (i = 0; i < nr_reads; i++) {
2364 if (read_bh[i])
2365 free_buffer_head(read_bh[i]);
2369 * Error recovery is pretty slack. Clear the page and mark it dirty
2370 * so we'll later zero out any blocks which _were_ allocated.
2372 kaddr = kmap_atomic(page, KM_USER0);
2373 memset(kaddr, 0, PAGE_CACHE_SIZE);
2374 flush_dcache_page(page);
2375 kunmap_atomic(kaddr, KM_USER0);
2376 SetPageUptodate(page);
2377 set_page_dirty(page);
2378 return ret;
2380 EXPORT_SYMBOL(nobh_prepare_write);
2382 int nobh_commit_write(struct file *file, struct page *page,
2383 unsigned from, unsigned to)
2385 struct inode *inode = page->mapping->host;
2386 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2388 set_page_dirty(page);
2389 if (pos > inode->i_size) {
2390 i_size_write(inode, pos);
2391 mark_inode_dirty(inode);
2393 return 0;
2395 EXPORT_SYMBOL(nobh_commit_write);
2398 * nobh_writepage() - based on block_full_write_page() except
2399 * that it tries to operate without attaching bufferheads to
2400 * the page.
2402 int nobh_writepage(struct page *page, get_block_t *get_block,
2403 struct writeback_control *wbc)
2405 struct inode * const inode = page->mapping->host;
2406 loff_t i_size = i_size_read(inode);
2407 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2408 unsigned offset;
2409 void *kaddr;
2410 int ret;
2412 /* Is the page fully inside i_size? */
2413 if (page->index < end_index)
2414 goto out;
2416 /* Is the page fully outside i_size? (truncate in progress) */
2417 offset = i_size & (PAGE_CACHE_SIZE-1);
2418 if (page->index >= end_index+1 || !offset) {
2420 * The page may have dirty, unmapped buffers. For example,
2421 * they may have been added in ext3_writepage(). Make them
2422 * freeable here, so the page does not leak.
2424 #if 0
2425 /* Not really sure about this - do we need this ? */
2426 if (page->mapping->a_ops->invalidatepage)
2427 page->mapping->a_ops->invalidatepage(page, offset);
2428 #endif
2429 unlock_page(page);
2430 return 0; /* don't care */
2434 * The page straddles i_size. It must be zeroed out on each and every
2435 * writepage invocation because it may be mmapped. "A file is mapped
2436 * in multiples of the page size. For a file that is not a multiple of
2437 * the page size, the remaining memory is zeroed when mapped, and
2438 * writes to that region are not written out to the file."
2440 kaddr = kmap_atomic(page, KM_USER0);
2441 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2442 flush_dcache_page(page);
2443 kunmap_atomic(kaddr, KM_USER0);
2444 out:
2445 ret = mpage_writepage(page, get_block, wbc);
2446 if (ret == -EAGAIN)
2447 ret = __block_write_full_page(inode, page, get_block, wbc);
2448 return ret;
2450 EXPORT_SYMBOL(nobh_writepage);
2453 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2455 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2457 struct inode *inode = mapping->host;
2458 unsigned blocksize = 1 << inode->i_blkbits;
2459 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2460 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2461 unsigned to;
2462 struct page *page;
2463 const struct address_space_operations *a_ops = mapping->a_ops;
2464 char *kaddr;
2465 int ret = 0;
2467 if ((offset & (blocksize - 1)) == 0)
2468 goto out;
2470 ret = -ENOMEM;
2471 page = grab_cache_page(mapping, index);
2472 if (!page)
2473 goto out;
2475 to = (offset + blocksize) & ~(blocksize - 1);
2476 ret = a_ops->prepare_write(NULL, page, offset, to);
2477 if (ret == 0) {
2478 kaddr = kmap_atomic(page, KM_USER0);
2479 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2480 flush_dcache_page(page);
2481 kunmap_atomic(kaddr, KM_USER0);
2482 set_page_dirty(page);
2484 unlock_page(page);
2485 page_cache_release(page);
2486 out:
2487 return ret;
2489 EXPORT_SYMBOL(nobh_truncate_page);
2491 int block_truncate_page(struct address_space *mapping,
2492 loff_t from, get_block_t *get_block)
2494 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2495 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2496 unsigned blocksize;
2497 sector_t iblock;
2498 unsigned length, pos;
2499 struct inode *inode = mapping->host;
2500 struct page *page;
2501 struct buffer_head *bh;
2502 void *kaddr;
2503 int err;
2505 blocksize = 1 << inode->i_blkbits;
2506 length = offset & (blocksize - 1);
2508 /* Block boundary? Nothing to do */
2509 if (!length)
2510 return 0;
2512 length = blocksize - length;
2513 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2515 page = grab_cache_page(mapping, index);
2516 err = -ENOMEM;
2517 if (!page)
2518 goto out;
2520 if (!page_has_buffers(page))
2521 create_empty_buffers(page, blocksize, 0);
2523 /* Find the buffer that contains "offset" */
2524 bh = page_buffers(page);
2525 pos = blocksize;
2526 while (offset >= pos) {
2527 bh = bh->b_this_page;
2528 iblock++;
2529 pos += blocksize;
2532 err = 0;
2533 if (!buffer_mapped(bh)) {
2534 WARN_ON(bh->b_size != blocksize);
2535 err = get_block(inode, iblock, bh, 0);
2536 if (err)
2537 goto unlock;
2538 /* unmapped? It's a hole - nothing to do */
2539 if (!buffer_mapped(bh))
2540 goto unlock;
2543 /* Ok, it's mapped. Make sure it's up-to-date */
2544 if (PageUptodate(page))
2545 set_buffer_uptodate(bh);
2547 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2548 err = -EIO;
2549 ll_rw_block(READ, 1, &bh);
2550 wait_on_buffer(bh);
2551 /* Uhhuh. Read error. Complain and punt. */
2552 if (!buffer_uptodate(bh))
2553 goto unlock;
2556 kaddr = kmap_atomic(page, KM_USER0);
2557 memset(kaddr + offset, 0, length);
2558 flush_dcache_page(page);
2559 kunmap_atomic(kaddr, KM_USER0);
2561 mark_buffer_dirty(bh);
2562 err = 0;
2564 unlock:
2565 unlock_page(page);
2566 page_cache_release(page);
2567 out:
2568 return err;
2572 * The generic ->writepage function for buffer-backed address_spaces
2574 int block_write_full_page(struct page *page, get_block_t *get_block,
2575 struct writeback_control *wbc)
2577 struct inode * const inode = page->mapping->host;
2578 loff_t i_size = i_size_read(inode);
2579 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2580 unsigned offset;
2581 void *kaddr;
2583 /* Is the page fully inside i_size? */
2584 if (page->index < end_index)
2585 return __block_write_full_page(inode, page, get_block, wbc);
2587 /* Is the page fully outside i_size? (truncate in progress) */
2588 offset = i_size & (PAGE_CACHE_SIZE-1);
2589 if (page->index >= end_index+1 || !offset) {
2591 * The page may have dirty, unmapped buffers. For example,
2592 * they may have been added in ext3_writepage(). Make them
2593 * freeable here, so the page does not leak.
2595 do_invalidatepage(page, 0);
2596 unlock_page(page);
2597 return 0; /* don't care */
2601 * The page straddles i_size. It must be zeroed out on each and every
2602 * writepage invokation because it may be mmapped. "A file is mapped
2603 * in multiples of the page size. For a file that is not a multiple of
2604 * the page size, the remaining memory is zeroed when mapped, and
2605 * writes to that region are not written out to the file."
2607 kaddr = kmap_atomic(page, KM_USER0);
2608 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2609 flush_dcache_page(page);
2610 kunmap_atomic(kaddr, KM_USER0);
2611 return __block_write_full_page(inode, page, get_block, wbc);
2614 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2615 get_block_t *get_block)
2617 struct buffer_head tmp;
2618 struct inode *inode = mapping->host;
2619 tmp.b_state = 0;
2620 tmp.b_blocknr = 0;
2621 tmp.b_size = 1 << inode->i_blkbits;
2622 get_block(inode, block, &tmp, 0);
2623 return tmp.b_blocknr;
2626 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2628 struct buffer_head *bh = bio->bi_private;
2630 if (bio->bi_size)
2631 return 1;
2633 if (err == -EOPNOTSUPP) {
2634 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2635 set_bit(BH_Eopnotsupp, &bh->b_state);
2638 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2639 bio_put(bio);
2640 return 0;
2643 int submit_bh(int rw, struct buffer_head * bh)
2645 struct bio *bio;
2646 int ret = 0;
2648 BUG_ON(!buffer_locked(bh));
2649 BUG_ON(!buffer_mapped(bh));
2650 BUG_ON(!bh->b_end_io);
2652 if (buffer_ordered(bh) && (rw == WRITE))
2653 rw = WRITE_BARRIER;
2656 * Only clear out a write error when rewriting, should this
2657 * include WRITE_SYNC as well?
2659 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2660 clear_buffer_write_io_error(bh);
2663 * from here on down, it's all bio -- do the initial mapping,
2664 * submit_bio -> generic_make_request may further map this bio around
2666 bio = bio_alloc(GFP_NOIO, 1);
2668 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2669 bio->bi_bdev = bh->b_bdev;
2670 bio->bi_io_vec[0].bv_page = bh->b_page;
2671 bio->bi_io_vec[0].bv_len = bh->b_size;
2672 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2674 bio->bi_vcnt = 1;
2675 bio->bi_idx = 0;
2676 bio->bi_size = bh->b_size;
2678 bio->bi_end_io = end_bio_bh_io_sync;
2679 bio->bi_private = bh;
2681 bio_get(bio);
2682 submit_bio(rw, bio);
2684 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2685 ret = -EOPNOTSUPP;
2687 bio_put(bio);
2688 return ret;
2692 * ll_rw_block: low-level access to block devices (DEPRECATED)
2693 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2694 * @nr: number of &struct buffer_heads in the array
2695 * @bhs: array of pointers to &struct buffer_head
2697 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2698 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2699 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2700 * are sent to disk. The fourth %READA option is described in the documentation
2701 * for generic_make_request() which ll_rw_block() calls.
2703 * This function drops any buffer that it cannot get a lock on (with the
2704 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2705 * clean when doing a write request, and any buffer that appears to be
2706 * up-to-date when doing read request. Further it marks as clean buffers that
2707 * are processed for writing (the buffer cache won't assume that they are
2708 * actually clean until the buffer gets unlocked).
2710 * ll_rw_block sets b_end_io to simple completion handler that marks
2711 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2712 * any waiters.
2714 * All of the buffers must be for the same device, and must also be a
2715 * multiple of the current approved size for the device.
2717 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2719 int i;
2721 for (i = 0; i < nr; i++) {
2722 struct buffer_head *bh = bhs[i];
2724 if (rw == SWRITE)
2725 lock_buffer(bh);
2726 else if (test_set_buffer_locked(bh))
2727 continue;
2729 if (rw == WRITE || rw == SWRITE) {
2730 if (test_clear_buffer_dirty(bh)) {
2731 bh->b_end_io = end_buffer_write_sync;
2732 get_bh(bh);
2733 submit_bh(WRITE, bh);
2734 continue;
2736 } else {
2737 if (!buffer_uptodate(bh)) {
2738 bh->b_end_io = end_buffer_read_sync;
2739 get_bh(bh);
2740 submit_bh(rw, bh);
2741 continue;
2744 unlock_buffer(bh);
2749 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2750 * and then start new I/O and then wait upon it. The caller must have a ref on
2751 * the buffer_head.
2753 int sync_dirty_buffer(struct buffer_head *bh)
2755 int ret = 0;
2757 WARN_ON(atomic_read(&bh->b_count) < 1);
2758 lock_buffer(bh);
2759 if (test_clear_buffer_dirty(bh)) {
2760 get_bh(bh);
2761 bh->b_end_io = end_buffer_write_sync;
2762 ret = submit_bh(WRITE, bh);
2763 wait_on_buffer(bh);
2764 if (buffer_eopnotsupp(bh)) {
2765 clear_buffer_eopnotsupp(bh);
2766 ret = -EOPNOTSUPP;
2768 if (!ret && !buffer_uptodate(bh))
2769 ret = -EIO;
2770 } else {
2771 unlock_buffer(bh);
2773 return ret;
2777 * try_to_free_buffers() checks if all the buffers on this particular page
2778 * are unused, and releases them if so.
2780 * Exclusion against try_to_free_buffers may be obtained by either
2781 * locking the page or by holding its mapping's private_lock.
2783 * If the page is dirty but all the buffers are clean then we need to
2784 * be sure to mark the page clean as well. This is because the page
2785 * may be against a block device, and a later reattachment of buffers
2786 * to a dirty page will set *all* buffers dirty. Which would corrupt
2787 * filesystem data on the same device.
2789 * The same applies to regular filesystem pages: if all the buffers are
2790 * clean then we set the page clean and proceed. To do that, we require
2791 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2792 * private_lock.
2794 * try_to_free_buffers() is non-blocking.
2796 static inline int buffer_busy(struct buffer_head *bh)
2798 return atomic_read(&bh->b_count) |
2799 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2802 static int
2803 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2805 struct buffer_head *head = page_buffers(page);
2806 struct buffer_head *bh;
2808 bh = head;
2809 do {
2810 if (buffer_write_io_error(bh) && page->mapping)
2811 set_bit(AS_EIO, &page->mapping->flags);
2812 if (buffer_busy(bh))
2813 goto failed;
2814 bh = bh->b_this_page;
2815 } while (bh != head);
2817 do {
2818 struct buffer_head *next = bh->b_this_page;
2820 if (!list_empty(&bh->b_assoc_buffers))
2821 __remove_assoc_queue(bh);
2822 bh = next;
2823 } while (bh != head);
2824 *buffers_to_free = head;
2825 __clear_page_buffers(page);
2826 return 1;
2827 failed:
2828 return 0;
2831 int try_to_free_buffers(struct page *page)
2833 struct address_space * const mapping = page->mapping;
2834 struct buffer_head *buffers_to_free = NULL;
2835 int ret = 0;
2837 BUG_ON(!PageLocked(page));
2838 if (PageWriteback(page))
2839 return 0;
2841 if (mapping == NULL) { /* can this still happen? */
2842 ret = drop_buffers(page, &buffers_to_free);
2843 goto out;
2846 spin_lock(&mapping->private_lock);
2847 ret = drop_buffers(page, &buffers_to_free);
2850 * If the filesystem writes its buffers by hand (eg ext3)
2851 * then we can have clean buffers against a dirty page. We
2852 * clean the page here; otherwise the VM will never notice
2853 * that the filesystem did any IO at all.
2855 * Also, during truncate, discard_buffer will have marked all
2856 * the page's buffers clean. We discover that here and clean
2857 * the page also.
2859 * private_lock must be held over this entire operation in order
2860 * to synchronise against __set_page_dirty_buffers and prevent the
2861 * dirty bit from being lost.
2863 if (ret)
2864 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2865 spin_unlock(&mapping->private_lock);
2866 out:
2867 if (buffers_to_free) {
2868 struct buffer_head *bh = buffers_to_free;
2870 do {
2871 struct buffer_head *next = bh->b_this_page;
2872 free_buffer_head(bh);
2873 bh = next;
2874 } while (bh != buffers_to_free);
2876 return ret;
2878 EXPORT_SYMBOL(try_to_free_buffers);
2880 void block_sync_page(struct page *page)
2882 struct address_space *mapping;
2884 smp_mb();
2885 mapping = page_mapping(page);
2886 if (mapping)
2887 blk_run_backing_dev(mapping->backing_dev_info, page);
2891 * There are no bdflush tunables left. But distributions are
2892 * still running obsolete flush daemons, so we terminate them here.
2894 * Use of bdflush() is deprecated and will be removed in a future kernel.
2895 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2897 asmlinkage long sys_bdflush(int func, long data)
2899 static int msg_count;
2901 if (!capable(CAP_SYS_ADMIN))
2902 return -EPERM;
2904 if (msg_count < 5) {
2905 msg_count++;
2906 printk(KERN_INFO
2907 "warning: process `%s' used the obsolete bdflush"
2908 " system call\n", current->comm);
2909 printk(KERN_INFO "Fix your initscripts?\n");
2912 if (func == 1)
2913 do_exit(0);
2914 return 0;
2918 * Buffer-head allocation
2920 static struct kmem_cache *bh_cachep;
2923 * Once the number of bh's in the machine exceeds this level, we start
2924 * stripping them in writeback.
2926 static int max_buffer_heads;
2928 int buffer_heads_over_limit;
2930 struct bh_accounting {
2931 int nr; /* Number of live bh's */
2932 int ratelimit; /* Limit cacheline bouncing */
2935 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2937 static void recalc_bh_state(void)
2939 int i;
2940 int tot = 0;
2942 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2943 return;
2944 __get_cpu_var(bh_accounting).ratelimit = 0;
2945 for_each_online_cpu(i)
2946 tot += per_cpu(bh_accounting, i).nr;
2947 buffer_heads_over_limit = (tot > max_buffer_heads);
2950 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2952 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2953 if (ret) {
2954 get_cpu_var(bh_accounting).nr++;
2955 recalc_bh_state();
2956 put_cpu_var(bh_accounting);
2958 return ret;
2960 EXPORT_SYMBOL(alloc_buffer_head);
2962 void free_buffer_head(struct buffer_head *bh)
2964 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2965 kmem_cache_free(bh_cachep, bh);
2966 get_cpu_var(bh_accounting).nr--;
2967 recalc_bh_state();
2968 put_cpu_var(bh_accounting);
2970 EXPORT_SYMBOL(free_buffer_head);
2972 static void
2973 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2975 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2976 SLAB_CTOR_CONSTRUCTOR) {
2977 struct buffer_head * bh = (struct buffer_head *)data;
2979 memset(bh, 0, sizeof(*bh));
2980 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2984 static void buffer_exit_cpu(int cpu)
2986 int i;
2987 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2989 for (i = 0; i < BH_LRU_SIZE; i++) {
2990 brelse(b->bhs[i]);
2991 b->bhs[i] = NULL;
2993 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2994 per_cpu(bh_accounting, cpu).nr = 0;
2995 put_cpu_var(bh_accounting);
2998 static int buffer_cpu_notify(struct notifier_block *self,
2999 unsigned long action, void *hcpu)
3001 if (action == CPU_DEAD)
3002 buffer_exit_cpu((unsigned long)hcpu);
3003 return NOTIFY_OK;
3006 void __init buffer_init(void)
3008 int nrpages;
3010 bh_cachep = kmem_cache_create("buffer_head",
3011 sizeof(struct buffer_head), 0,
3012 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3013 SLAB_MEM_SPREAD),
3014 init_buffer_head,
3015 NULL);
3018 * Limit the bh occupancy to 10% of ZONE_NORMAL
3020 nrpages = (nr_free_buffer_pages() * 10) / 100;
3021 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3022 hotcpu_notifier(buffer_cpu_notify, 0);
3025 EXPORT_SYMBOL(__bforget);
3026 EXPORT_SYMBOL(__brelse);
3027 EXPORT_SYMBOL(__wait_on_buffer);
3028 EXPORT_SYMBOL(block_commit_write);
3029 EXPORT_SYMBOL(block_prepare_write);
3030 EXPORT_SYMBOL(block_read_full_page);
3031 EXPORT_SYMBOL(block_sync_page);
3032 EXPORT_SYMBOL(block_truncate_page);
3033 EXPORT_SYMBOL(block_write_full_page);
3034 EXPORT_SYMBOL(cont_prepare_write);
3035 EXPORT_SYMBOL(end_buffer_read_sync);
3036 EXPORT_SYMBOL(end_buffer_write_sync);
3037 EXPORT_SYMBOL(file_fsync);
3038 EXPORT_SYMBOL(fsync_bdev);
3039 EXPORT_SYMBOL(generic_block_bmap);
3040 EXPORT_SYMBOL(generic_commit_write);
3041 EXPORT_SYMBOL(generic_cont_expand);
3042 EXPORT_SYMBOL(generic_cont_expand_simple);
3043 EXPORT_SYMBOL(init_buffer);
3044 EXPORT_SYMBOL(invalidate_bdev);
3045 EXPORT_SYMBOL(ll_rw_block);
3046 EXPORT_SYMBOL(mark_buffer_dirty);
3047 EXPORT_SYMBOL(submit_bh);
3048 EXPORT_SYMBOL(sync_dirty_buffer);
3049 EXPORT_SYMBOL(unlock_buffer);