ext4: change s_mount_opt to be an unsigned int
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobf8325a2bc8973746b9c1db724a1ff43545844e5f
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62 * Test whether an inode is a fast symlink.
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 (inode->i_sb->s_blocksize >> 9) : 0;
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
81 * If the handle isn't valid we're not journaling so there's nothing to do.
83 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
84 struct buffer_head *bh, ext4_fsblk_t blocknr)
86 int err;
88 if (!ext4_handle_valid(handle))
89 return 0;
91 might_sleep();
93 BUFFER_TRACE(bh, "enter");
95 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96 "data mode %x\n",
97 bh, is_metadata, inode->i_mode,
98 test_opt(inode->i_sb, DATA_FLAGS));
100 /* Never use the revoke function if we are doing full data
101 * journaling: there is no need to, and a V1 superblock won't
102 * support it. Otherwise, only skip the revoke on un-journaled
103 * data blocks. */
105 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
106 (!is_metadata && !ext4_should_journal_data(inode))) {
107 if (bh) {
108 BUFFER_TRACE(bh, "call jbd2_journal_forget");
109 return ext4_journal_forget(handle, bh);
111 return 0;
115 * data!=journal && (is_metadata || should_journal_data(inode))
117 BUFFER_TRACE(bh, "call ext4_journal_revoke");
118 err = ext4_journal_revoke(handle, blocknr, bh);
119 if (err)
120 ext4_abort(inode->i_sb, __func__,
121 "error %d when attempting revoke", err);
122 BUFFER_TRACE(bh, "exit");
123 return err;
127 * Work out how many blocks we need to proceed with the next chunk of a
128 * truncate transaction.
130 static unsigned long blocks_for_truncate(struct inode *inode)
132 ext4_lblk_t needed;
134 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
136 /* Give ourselves just enough room to cope with inodes in which
137 * i_blocks is corrupt: we've seen disk corruptions in the past
138 * which resulted in random data in an inode which looked enough
139 * like a regular file for ext4 to try to delete it. Things
140 * will go a bit crazy if that happens, but at least we should
141 * try not to panic the whole kernel. */
142 if (needed < 2)
143 needed = 2;
145 /* But we need to bound the transaction so we don't overflow the
146 * journal. */
147 if (needed > EXT4_MAX_TRANS_DATA)
148 needed = EXT4_MAX_TRANS_DATA;
150 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
154 * Truncate transactions can be complex and absolutely huge. So we need to
155 * be able to restart the transaction at a conventient checkpoint to make
156 * sure we don't overflow the journal.
158 * start_transaction gets us a new handle for a truncate transaction,
159 * and extend_transaction tries to extend the existing one a bit. If
160 * extend fails, we need to propagate the failure up and restart the
161 * transaction in the top-level truncate loop. --sct
163 static handle_t *start_transaction(struct inode *inode)
165 handle_t *result;
167 result = ext4_journal_start(inode, blocks_for_truncate(inode));
168 if (!IS_ERR(result))
169 return result;
171 ext4_std_error(inode->i_sb, PTR_ERR(result));
172 return result;
176 * Try to extend this transaction for the purposes of truncation.
178 * Returns 0 if we managed to create more room. If we can't create more
179 * room, and the transaction must be restarted we return 1.
181 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
183 if (!ext4_handle_valid(handle))
184 return 0;
185 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
186 return 0;
187 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
188 return 0;
189 return 1;
193 * Restart the transaction associated with *handle. This does a commit,
194 * so before we call here everything must be consistently dirtied against
195 * this transaction.
197 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
199 BUG_ON(EXT4_JOURNAL(inode) == NULL);
200 jbd_debug(2, "restarting handle %p\n", handle);
201 return ext4_journal_restart(handle, blocks_for_truncate(inode));
205 * Called at the last iput() if i_nlink is zero.
207 void ext4_delete_inode(struct inode *inode)
209 handle_t *handle;
210 int err;
212 if (ext4_should_order_data(inode))
213 ext4_begin_ordered_truncate(inode, 0);
214 truncate_inode_pages(&inode->i_data, 0);
216 if (is_bad_inode(inode))
217 goto no_delete;
219 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
220 if (IS_ERR(handle)) {
221 ext4_std_error(inode->i_sb, PTR_ERR(handle));
223 * If we're going to skip the normal cleanup, we still need to
224 * make sure that the in-core orphan linked list is properly
225 * cleaned up.
227 ext4_orphan_del(NULL, inode);
228 goto no_delete;
231 if (IS_SYNC(inode))
232 ext4_handle_sync(handle);
233 inode->i_size = 0;
234 err = ext4_mark_inode_dirty(handle, inode);
235 if (err) {
236 ext4_warning(inode->i_sb, __func__,
237 "couldn't mark inode dirty (err %d)", err);
238 goto stop_handle;
240 if (inode->i_blocks)
241 ext4_truncate(inode);
244 * ext4_ext_truncate() doesn't reserve any slop when it
245 * restarts journal transactions; therefore there may not be
246 * enough credits left in the handle to remove the inode from
247 * the orphan list and set the dtime field.
249 if (!ext4_handle_has_enough_credits(handle, 3)) {
250 err = ext4_journal_extend(handle, 3);
251 if (err > 0)
252 err = ext4_journal_restart(handle, 3);
253 if (err != 0) {
254 ext4_warning(inode->i_sb, __func__,
255 "couldn't extend journal (err %d)", err);
256 stop_handle:
257 ext4_journal_stop(handle);
258 goto no_delete;
263 * Kill off the orphan record which ext4_truncate created.
264 * AKPM: I think this can be inside the above `if'.
265 * Note that ext4_orphan_del() has to be able to cope with the
266 * deletion of a non-existent orphan - this is because we don't
267 * know if ext4_truncate() actually created an orphan record.
268 * (Well, we could do this if we need to, but heck - it works)
270 ext4_orphan_del(handle, inode);
271 EXT4_I(inode)->i_dtime = get_seconds();
274 * One subtle ordering requirement: if anything has gone wrong
275 * (transaction abort, IO errors, whatever), then we can still
276 * do these next steps (the fs will already have been marked as
277 * having errors), but we can't free the inode if the mark_dirty
278 * fails.
280 if (ext4_mark_inode_dirty(handle, inode))
281 /* If that failed, just do the required in-core inode clear. */
282 clear_inode(inode);
283 else
284 ext4_free_inode(handle, inode);
285 ext4_journal_stop(handle);
286 return;
287 no_delete:
288 clear_inode(inode); /* We must guarantee clearing of inode... */
291 typedef struct {
292 __le32 *p;
293 __le32 key;
294 struct buffer_head *bh;
295 } Indirect;
297 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
299 p->key = *(p->p = v);
300 p->bh = bh;
304 * ext4_block_to_path - parse the block number into array of offsets
305 * @inode: inode in question (we are only interested in its superblock)
306 * @i_block: block number to be parsed
307 * @offsets: array to store the offsets in
308 * @boundary: set this non-zero if the referred-to block is likely to be
309 * followed (on disk) by an indirect block.
311 * To store the locations of file's data ext4 uses a data structure common
312 * for UNIX filesystems - tree of pointers anchored in the inode, with
313 * data blocks at leaves and indirect blocks in intermediate nodes.
314 * This function translates the block number into path in that tree -
315 * return value is the path length and @offsets[n] is the offset of
316 * pointer to (n+1)th node in the nth one. If @block is out of range
317 * (negative or too large) warning is printed and zero returned.
319 * Note: function doesn't find node addresses, so no IO is needed. All
320 * we need to know is the capacity of indirect blocks (taken from the
321 * inode->i_sb).
325 * Portability note: the last comparison (check that we fit into triple
326 * indirect block) is spelled differently, because otherwise on an
327 * architecture with 32-bit longs and 8Kb pages we might get into trouble
328 * if our filesystem had 8Kb blocks. We might use long long, but that would
329 * kill us on x86. Oh, well, at least the sign propagation does not matter -
330 * i_block would have to be negative in the very beginning, so we would not
331 * get there at all.
334 static int ext4_block_to_path(struct inode *inode,
335 ext4_lblk_t i_block,
336 ext4_lblk_t offsets[4], int *boundary)
338 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
339 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
340 const long direct_blocks = EXT4_NDIR_BLOCKS,
341 indirect_blocks = ptrs,
342 double_blocks = (1 << (ptrs_bits * 2));
343 int n = 0;
344 int final = 0;
346 if (i_block < 0) {
347 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
348 } else if (i_block < direct_blocks) {
349 offsets[n++] = i_block;
350 final = direct_blocks;
351 } else if ((i_block -= direct_blocks) < indirect_blocks) {
352 offsets[n++] = EXT4_IND_BLOCK;
353 offsets[n++] = i_block;
354 final = ptrs;
355 } else if ((i_block -= indirect_blocks) < double_blocks) {
356 offsets[n++] = EXT4_DIND_BLOCK;
357 offsets[n++] = i_block >> ptrs_bits;
358 offsets[n++] = i_block & (ptrs - 1);
359 final = ptrs;
360 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
361 offsets[n++] = EXT4_TIND_BLOCK;
362 offsets[n++] = i_block >> (ptrs_bits * 2);
363 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
364 offsets[n++] = i_block & (ptrs - 1);
365 final = ptrs;
366 } else {
367 ext4_warning(inode->i_sb, "ext4_block_to_path",
368 "block %lu > max in inode %lu",
369 i_block + direct_blocks +
370 indirect_blocks + double_blocks, inode->i_ino);
372 if (boundary)
373 *boundary = final - 1 - (i_block & (ptrs - 1));
374 return n;
377 static int __ext4_check_blockref(const char *function, struct inode *inode,
378 __le32 *p, unsigned int max)
380 __le32 *bref = p;
381 unsigned int blk;
383 while (bref < p+max) {
384 blk = le32_to_cpu(*bref++);
385 if (blk &&
386 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
387 blk, 1))) {
388 ext4_error(inode->i_sb, function,
389 "invalid block reference %u "
390 "in inode #%lu", blk, inode->i_ino);
391 return -EIO;
394 return 0;
398 #define ext4_check_indirect_blockref(inode, bh) \
399 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
400 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
402 #define ext4_check_inode_blockref(inode) \
403 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
404 EXT4_NDIR_BLOCKS)
407 * ext4_get_branch - read the chain of indirect blocks leading to data
408 * @inode: inode in question
409 * @depth: depth of the chain (1 - direct pointer, etc.)
410 * @offsets: offsets of pointers in inode/indirect blocks
411 * @chain: place to store the result
412 * @err: here we store the error value
414 * Function fills the array of triples <key, p, bh> and returns %NULL
415 * if everything went OK or the pointer to the last filled triple
416 * (incomplete one) otherwise. Upon the return chain[i].key contains
417 * the number of (i+1)-th block in the chain (as it is stored in memory,
418 * i.e. little-endian 32-bit), chain[i].p contains the address of that
419 * number (it points into struct inode for i==0 and into the bh->b_data
420 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
421 * block for i>0 and NULL for i==0. In other words, it holds the block
422 * numbers of the chain, addresses they were taken from (and where we can
423 * verify that chain did not change) and buffer_heads hosting these
424 * numbers.
426 * Function stops when it stumbles upon zero pointer (absent block)
427 * (pointer to last triple returned, *@err == 0)
428 * or when it gets an IO error reading an indirect block
429 * (ditto, *@err == -EIO)
430 * or when it reads all @depth-1 indirect blocks successfully and finds
431 * the whole chain, all way to the data (returns %NULL, *err == 0).
433 * Need to be called with
434 * down_read(&EXT4_I(inode)->i_data_sem)
436 static Indirect *ext4_get_branch(struct inode *inode, int depth,
437 ext4_lblk_t *offsets,
438 Indirect chain[4], int *err)
440 struct super_block *sb = inode->i_sb;
441 Indirect *p = chain;
442 struct buffer_head *bh;
444 *err = 0;
445 /* i_data is not going away, no lock needed */
446 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
447 if (!p->key)
448 goto no_block;
449 while (--depth) {
450 bh = sb_getblk(sb, le32_to_cpu(p->key));
451 if (unlikely(!bh))
452 goto failure;
454 if (!bh_uptodate_or_lock(bh)) {
455 if (bh_submit_read(bh) < 0) {
456 put_bh(bh);
457 goto failure;
459 /* validate block references */
460 if (ext4_check_indirect_blockref(inode, bh)) {
461 put_bh(bh);
462 goto failure;
466 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
467 /* Reader: end */
468 if (!p->key)
469 goto no_block;
471 return NULL;
473 failure:
474 *err = -EIO;
475 no_block:
476 return p;
480 * ext4_find_near - find a place for allocation with sufficient locality
481 * @inode: owner
482 * @ind: descriptor of indirect block.
484 * This function returns the preferred place for block allocation.
485 * It is used when heuristic for sequential allocation fails.
486 * Rules are:
487 * + if there is a block to the left of our position - allocate near it.
488 * + if pointer will live in indirect block - allocate near that block.
489 * + if pointer will live in inode - allocate in the same
490 * cylinder group.
492 * In the latter case we colour the starting block by the callers PID to
493 * prevent it from clashing with concurrent allocations for a different inode
494 * in the same block group. The PID is used here so that functionally related
495 * files will be close-by on-disk.
497 * Caller must make sure that @ind is valid and will stay that way.
499 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
501 struct ext4_inode_info *ei = EXT4_I(inode);
502 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
503 __le32 *p;
504 ext4_fsblk_t bg_start;
505 ext4_fsblk_t last_block;
506 ext4_grpblk_t colour;
507 ext4_group_t block_group;
508 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
510 /* Try to find previous block */
511 for (p = ind->p - 1; p >= start; p--) {
512 if (*p)
513 return le32_to_cpu(*p);
516 /* No such thing, so let's try location of indirect block */
517 if (ind->bh)
518 return ind->bh->b_blocknr;
521 * It is going to be referred to from the inode itself? OK, just put it
522 * into the same cylinder group then.
524 block_group = ei->i_block_group;
525 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
526 block_group &= ~(flex_size-1);
527 if (S_ISREG(inode->i_mode))
528 block_group++;
530 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
531 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
534 * If we are doing delayed allocation, we don't need take
535 * colour into account.
537 if (test_opt(inode->i_sb, DELALLOC))
538 return bg_start;
540 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
541 colour = (current->pid % 16) *
542 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
543 else
544 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
545 return bg_start + colour;
549 * ext4_find_goal - find a preferred place for allocation.
550 * @inode: owner
551 * @block: block we want
552 * @partial: pointer to the last triple within a chain
554 * Normally this function find the preferred place for block allocation,
555 * returns it.
557 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
558 Indirect *partial)
561 * XXX need to get goal block from mballoc's data structures
564 return ext4_find_near(inode, partial);
568 * ext4_blks_to_allocate: Look up the block map and count the number
569 * of direct blocks need to be allocated for the given branch.
571 * @branch: chain of indirect blocks
572 * @k: number of blocks need for indirect blocks
573 * @blks: number of data blocks to be mapped.
574 * @blocks_to_boundary: the offset in the indirect block
576 * return the total number of blocks to be allocate, including the
577 * direct and indirect blocks.
579 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
580 int blocks_to_boundary)
582 unsigned int count = 0;
585 * Simple case, [t,d]Indirect block(s) has not allocated yet
586 * then it's clear blocks on that path have not allocated
588 if (k > 0) {
589 /* right now we don't handle cross boundary allocation */
590 if (blks < blocks_to_boundary + 1)
591 count += blks;
592 else
593 count += blocks_to_boundary + 1;
594 return count;
597 count++;
598 while (count < blks && count <= blocks_to_boundary &&
599 le32_to_cpu(*(branch[0].p + count)) == 0) {
600 count++;
602 return count;
606 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
607 * @indirect_blks: the number of blocks need to allocate for indirect
608 * blocks
610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block,
612 * @blks: on return it will store the total number of allocated
613 * direct blocks
615 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
616 ext4_lblk_t iblock, ext4_fsblk_t goal,
617 int indirect_blks, int blks,
618 ext4_fsblk_t new_blocks[4], int *err)
620 struct ext4_allocation_request ar;
621 int target, i;
622 unsigned long count = 0, blk_allocated = 0;
623 int index = 0;
624 ext4_fsblk_t current_block = 0;
625 int ret = 0;
628 * Here we try to allocate the requested multiple blocks at once,
629 * on a best-effort basis.
630 * To build a branch, we should allocate blocks for
631 * the indirect blocks(if not allocated yet), and at least
632 * the first direct block of this branch. That's the
633 * minimum number of blocks need to allocate(required)
635 /* first we try to allocate the indirect blocks */
636 target = indirect_blks;
637 while (target > 0) {
638 count = target;
639 /* allocating blocks for indirect blocks and direct blocks */
640 current_block = ext4_new_meta_blocks(handle, inode,
641 goal, &count, err);
642 if (*err)
643 goto failed_out;
645 target -= count;
646 /* allocate blocks for indirect blocks */
647 while (index < indirect_blks && count) {
648 new_blocks[index++] = current_block++;
649 count--;
651 if (count > 0) {
653 * save the new block number
654 * for the first direct block
656 new_blocks[index] = current_block;
657 printk(KERN_INFO "%s returned more blocks than "
658 "requested\n", __func__);
659 WARN_ON(1);
660 break;
664 target = blks - count ;
665 blk_allocated = count;
666 if (!target)
667 goto allocated;
668 /* Now allocate data blocks */
669 memset(&ar, 0, sizeof(ar));
670 ar.inode = inode;
671 ar.goal = goal;
672 ar.len = target;
673 ar.logical = iblock;
674 if (S_ISREG(inode->i_mode))
675 /* enable in-core preallocation only for regular files */
676 ar.flags = EXT4_MB_HINT_DATA;
678 current_block = ext4_mb_new_blocks(handle, &ar, err);
680 if (*err && (target == blks)) {
682 * if the allocation failed and we didn't allocate
683 * any blocks before
685 goto failed_out;
687 if (!*err) {
688 if (target == blks) {
690 * save the new block number
691 * for the first direct block
693 new_blocks[index] = current_block;
695 blk_allocated += ar.len;
697 allocated:
698 /* total number of blocks allocated for direct blocks */
699 ret = blk_allocated;
700 *err = 0;
701 return ret;
702 failed_out:
703 for (i = 0; i < index; i++)
704 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
705 return ret;
709 * ext4_alloc_branch - allocate and set up a chain of blocks.
710 * @inode: owner
711 * @indirect_blks: number of allocated indirect blocks
712 * @blks: number of allocated direct blocks
713 * @offsets: offsets (in the blocks) to store the pointers to next.
714 * @branch: place to store the chain in.
716 * This function allocates blocks, zeroes out all but the last one,
717 * links them into chain and (if we are synchronous) writes them to disk.
718 * In other words, it prepares a branch that can be spliced onto the
719 * inode. It stores the information about that chain in the branch[], in
720 * the same format as ext4_get_branch() would do. We are calling it after
721 * we had read the existing part of chain and partial points to the last
722 * triple of that (one with zero ->key). Upon the exit we have the same
723 * picture as after the successful ext4_get_block(), except that in one
724 * place chain is disconnected - *branch->p is still zero (we did not
725 * set the last link), but branch->key contains the number that should
726 * be placed into *branch->p to fill that gap.
728 * If allocation fails we free all blocks we've allocated (and forget
729 * their buffer_heads) and return the error value the from failed
730 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
731 * as described above and return 0.
733 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
734 ext4_lblk_t iblock, int indirect_blks,
735 int *blks, ext4_fsblk_t goal,
736 ext4_lblk_t *offsets, Indirect *branch)
738 int blocksize = inode->i_sb->s_blocksize;
739 int i, n = 0;
740 int err = 0;
741 struct buffer_head *bh;
742 int num;
743 ext4_fsblk_t new_blocks[4];
744 ext4_fsblk_t current_block;
746 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
747 *blks, new_blocks, &err);
748 if (err)
749 return err;
751 branch[0].key = cpu_to_le32(new_blocks[0]);
753 * metadata blocks and data blocks are allocated.
755 for (n = 1; n <= indirect_blks; n++) {
757 * Get buffer_head for parent block, zero it out
758 * and set the pointer to new one, then send
759 * parent to disk.
761 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
762 branch[n].bh = bh;
763 lock_buffer(bh);
764 BUFFER_TRACE(bh, "call get_create_access");
765 err = ext4_journal_get_create_access(handle, bh);
766 if (err) {
767 unlock_buffer(bh);
768 brelse(bh);
769 goto failed;
772 memset(bh->b_data, 0, blocksize);
773 branch[n].p = (__le32 *) bh->b_data + offsets[n];
774 branch[n].key = cpu_to_le32(new_blocks[n]);
775 *branch[n].p = branch[n].key;
776 if (n == indirect_blks) {
777 current_block = new_blocks[n];
779 * End of chain, update the last new metablock of
780 * the chain to point to the new allocated
781 * data blocks numbers
783 for (i=1; i < num; i++)
784 *(branch[n].p + i) = cpu_to_le32(++current_block);
786 BUFFER_TRACE(bh, "marking uptodate");
787 set_buffer_uptodate(bh);
788 unlock_buffer(bh);
790 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
791 err = ext4_handle_dirty_metadata(handle, inode, bh);
792 if (err)
793 goto failed;
795 *blks = num;
796 return err;
797 failed:
798 /* Allocation failed, free what we already allocated */
799 for (i = 1; i <= n ; i++) {
800 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
801 ext4_journal_forget(handle, branch[i].bh);
803 for (i = 0; i < indirect_blks; i++)
804 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
806 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
808 return err;
812 * ext4_splice_branch - splice the allocated branch onto inode.
813 * @inode: owner
814 * @block: (logical) number of block we are adding
815 * @chain: chain of indirect blocks (with a missing link - see
816 * ext4_alloc_branch)
817 * @where: location of missing link
818 * @num: number of indirect blocks we are adding
819 * @blks: number of direct blocks we are adding
821 * This function fills the missing link and does all housekeeping needed in
822 * inode (->i_blocks, etc.). In case of success we end up with the full
823 * chain to new block and return 0.
825 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
826 ext4_lblk_t block, Indirect *where, int num, int blks)
828 int i;
829 int err = 0;
830 ext4_fsblk_t current_block;
833 * If we're splicing into a [td]indirect block (as opposed to the
834 * inode) then we need to get write access to the [td]indirect block
835 * before the splice.
837 if (where->bh) {
838 BUFFER_TRACE(where->bh, "get_write_access");
839 err = ext4_journal_get_write_access(handle, where->bh);
840 if (err)
841 goto err_out;
843 /* That's it */
845 *where->p = where->key;
848 * Update the host buffer_head or inode to point to more just allocated
849 * direct blocks blocks
851 if (num == 0 && blks > 1) {
852 current_block = le32_to_cpu(where->key) + 1;
853 for (i = 1; i < blks; i++)
854 *(where->p + i) = cpu_to_le32(current_block++);
857 /* We are done with atomic stuff, now do the rest of housekeeping */
859 inode->i_ctime = ext4_current_time(inode);
860 ext4_mark_inode_dirty(handle, inode);
862 /* had we spliced it onto indirect block? */
863 if (where->bh) {
865 * If we spliced it onto an indirect block, we haven't
866 * altered the inode. Note however that if it is being spliced
867 * onto an indirect block at the very end of the file (the
868 * file is growing) then we *will* alter the inode to reflect
869 * the new i_size. But that is not done here - it is done in
870 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
872 jbd_debug(5, "splicing indirect only\n");
873 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
874 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
875 if (err)
876 goto err_out;
877 } else {
879 * OK, we spliced it into the inode itself on a direct block.
880 * Inode was dirtied above.
882 jbd_debug(5, "splicing direct\n");
884 return err;
886 err_out:
887 for (i = 1; i <= num; i++) {
888 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
889 ext4_journal_forget(handle, where[i].bh);
890 ext4_free_blocks(handle, inode,
891 le32_to_cpu(where[i-1].key), 1, 0);
893 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
895 return err;
899 * The ext4_ind_get_blocks() function handles non-extents inodes
900 * (i.e., using the traditional indirect/double-indirect i_blocks
901 * scheme) for ext4_get_blocks().
903 * Allocation strategy is simple: if we have to allocate something, we will
904 * have to go the whole way to leaf. So let's do it before attaching anything
905 * to tree, set linkage between the newborn blocks, write them if sync is
906 * required, recheck the path, free and repeat if check fails, otherwise
907 * set the last missing link (that will protect us from any truncate-generated
908 * removals - all blocks on the path are immune now) and possibly force the
909 * write on the parent block.
910 * That has a nice additional property: no special recovery from the failed
911 * allocations is needed - we simply release blocks and do not touch anything
912 * reachable from inode.
914 * `handle' can be NULL if create == 0.
916 * return > 0, # of blocks mapped or allocated.
917 * return = 0, if plain lookup failed.
918 * return < 0, error case.
920 * The ext4_ind_get_blocks() function should be called with
921 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
922 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
923 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
924 * blocks.
926 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
927 ext4_lblk_t iblock, unsigned int maxblocks,
928 struct buffer_head *bh_result,
929 int flags)
931 int err = -EIO;
932 ext4_lblk_t offsets[4];
933 Indirect chain[4];
934 Indirect *partial;
935 ext4_fsblk_t goal;
936 int indirect_blks;
937 int blocks_to_boundary = 0;
938 int depth;
939 int count = 0;
940 ext4_fsblk_t first_block = 0;
942 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
943 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
944 depth = ext4_block_to_path(inode, iblock, offsets,
945 &blocks_to_boundary);
947 if (depth == 0)
948 goto out;
950 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
952 /* Simplest case - block found, no allocation needed */
953 if (!partial) {
954 first_block = le32_to_cpu(chain[depth - 1].key);
955 clear_buffer_new(bh_result);
956 count++;
957 /*map more blocks*/
958 while (count < maxblocks && count <= blocks_to_boundary) {
959 ext4_fsblk_t blk;
961 blk = le32_to_cpu(*(chain[depth-1].p + count));
963 if (blk == first_block + count)
964 count++;
965 else
966 break;
968 goto got_it;
971 /* Next simple case - plain lookup or failed read of indirect block */
972 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
973 goto cleanup;
976 * Okay, we need to do block allocation.
978 goal = ext4_find_goal(inode, iblock, partial);
980 /* the number of blocks need to allocate for [d,t]indirect blocks */
981 indirect_blks = (chain + depth) - partial - 1;
984 * Next look up the indirect map to count the totoal number of
985 * direct blocks to allocate for this branch.
987 count = ext4_blks_to_allocate(partial, indirect_blks,
988 maxblocks, blocks_to_boundary);
990 * Block out ext4_truncate while we alter the tree
992 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
993 &count, goal,
994 offsets + (partial - chain), partial);
997 * The ext4_splice_branch call will free and forget any buffers
998 * on the new chain if there is a failure, but that risks using
999 * up transaction credits, especially for bitmaps where the
1000 * credits cannot be returned. Can we handle this somehow? We
1001 * may need to return -EAGAIN upwards in the worst case. --sct
1003 if (!err)
1004 err = ext4_splice_branch(handle, inode, iblock,
1005 partial, indirect_blks, count);
1006 else
1007 goto cleanup;
1009 set_buffer_new(bh_result);
1010 got_it:
1011 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1012 if (count > blocks_to_boundary)
1013 set_buffer_boundary(bh_result);
1014 err = count;
1015 /* Clean up and exit */
1016 partial = chain + depth - 1; /* the whole chain */
1017 cleanup:
1018 while (partial > chain) {
1019 BUFFER_TRACE(partial->bh, "call brelse");
1020 brelse(partial->bh);
1021 partial--;
1023 BUFFER_TRACE(bh_result, "returned");
1024 out:
1025 return err;
1028 qsize_t ext4_get_reserved_space(struct inode *inode)
1030 unsigned long long total;
1032 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1033 total = EXT4_I(inode)->i_reserved_data_blocks +
1034 EXT4_I(inode)->i_reserved_meta_blocks;
1035 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1037 return total;
1040 * Calculate the number of metadata blocks need to reserve
1041 * to allocate @blocks for non extent file based file
1043 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1045 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1046 int ind_blks, dind_blks, tind_blks;
1048 /* number of new indirect blocks needed */
1049 ind_blks = (blocks + icap - 1) / icap;
1051 dind_blks = (ind_blks + icap - 1) / icap;
1053 tind_blks = 1;
1055 return ind_blks + dind_blks + tind_blks;
1059 * Calculate the number of metadata blocks need to reserve
1060 * to allocate given number of blocks
1062 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1064 if (!blocks)
1065 return 0;
1067 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1068 return ext4_ext_calc_metadata_amount(inode, blocks);
1070 return ext4_indirect_calc_metadata_amount(inode, blocks);
1073 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1076 int total, mdb, mdb_free;
1078 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1079 /* recalculate the number of metablocks still need to be reserved */
1080 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1081 mdb = ext4_calc_metadata_amount(inode, total);
1083 /* figure out how many metablocks to release */
1084 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1085 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1087 if (mdb_free) {
1088 /* Account for allocated meta_blocks */
1089 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1091 /* update fs dirty blocks counter */
1092 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1093 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1094 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1097 /* update per-inode reservations */
1098 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1099 EXT4_I(inode)->i_reserved_data_blocks -= used;
1100 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1103 * free those over-booking quota for metadata blocks
1105 if (mdb_free)
1106 vfs_dq_release_reservation_block(inode, mdb_free);
1109 * If we have done all the pending block allocations and if
1110 * there aren't any writers on the inode, we can discard the
1111 * inode's preallocations.
1113 if (!total && (atomic_read(&inode->i_writecount) == 0))
1114 ext4_discard_preallocations(inode);
1117 static int check_block_validity(struct inode *inode, sector_t logical,
1118 sector_t phys, int len)
1120 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1121 ext4_error(inode->i_sb, "check_block_validity",
1122 "inode #%lu logical block %llu mapped to %llu "
1123 "(size %d)", inode->i_ino,
1124 (unsigned long long) logical,
1125 (unsigned long long) phys, len);
1126 WARN_ON(1);
1127 return -EIO;
1129 return 0;
1133 * The ext4_get_blocks() function tries to look up the requested blocks,
1134 * and returns if the blocks are already mapped.
1136 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1137 * and store the allocated blocks in the result buffer head and mark it
1138 * mapped.
1140 * If file type is extents based, it will call ext4_ext_get_blocks(),
1141 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1142 * based files
1144 * On success, it returns the number of blocks being mapped or allocate.
1145 * if create==0 and the blocks are pre-allocated and uninitialized block,
1146 * the result buffer head is unmapped. If the create ==1, it will make sure
1147 * the buffer head is mapped.
1149 * It returns 0 if plain look up failed (blocks have not been allocated), in
1150 * that casem, buffer head is unmapped
1152 * It returns the error in case of allocation failure.
1154 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1155 unsigned int max_blocks, struct buffer_head *bh,
1156 int flags)
1158 int retval;
1160 clear_buffer_mapped(bh);
1161 clear_buffer_unwritten(bh);
1164 * Try to see if we can get the block without requesting a new
1165 * file system block.
1167 down_read((&EXT4_I(inode)->i_data_sem));
1168 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1169 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1170 bh, 0);
1171 } else {
1172 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1173 bh, 0);
1175 up_read((&EXT4_I(inode)->i_data_sem));
1177 if (retval > 0 && buffer_mapped(bh)) {
1178 int ret = check_block_validity(inode, block,
1179 bh->b_blocknr, retval);
1180 if (ret != 0)
1181 return ret;
1184 /* If it is only a block(s) look up */
1185 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1186 return retval;
1189 * Returns if the blocks have already allocated
1191 * Note that if blocks have been preallocated
1192 * ext4_ext_get_block() returns th create = 0
1193 * with buffer head unmapped.
1195 if (retval > 0 && buffer_mapped(bh))
1196 return retval;
1199 * When we call get_blocks without the create flag, the
1200 * BH_Unwritten flag could have gotten set if the blocks
1201 * requested were part of a uninitialized extent. We need to
1202 * clear this flag now that we are committed to convert all or
1203 * part of the uninitialized extent to be an initialized
1204 * extent. This is because we need to avoid the combination
1205 * of BH_Unwritten and BH_Mapped flags being simultaneously
1206 * set on the buffer_head.
1208 clear_buffer_unwritten(bh);
1211 * New blocks allocate and/or writing to uninitialized extent
1212 * will possibly result in updating i_data, so we take
1213 * the write lock of i_data_sem, and call get_blocks()
1214 * with create == 1 flag.
1216 down_write((&EXT4_I(inode)->i_data_sem));
1219 * if the caller is from delayed allocation writeout path
1220 * we have already reserved fs blocks for allocation
1221 * let the underlying get_block() function know to
1222 * avoid double accounting
1224 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1225 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1227 * We need to check for EXT4 here because migrate
1228 * could have changed the inode type in between
1230 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1231 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1232 bh, flags);
1233 } else {
1234 retval = ext4_ind_get_blocks(handle, inode, block,
1235 max_blocks, bh, flags);
1237 if (retval > 0 && buffer_new(bh)) {
1239 * We allocated new blocks which will result in
1240 * i_data's format changing. Force the migrate
1241 * to fail by clearing migrate flags
1243 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1244 ~EXT4_EXT_MIGRATE;
1248 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1249 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1252 * Update reserved blocks/metadata blocks after successful
1253 * block allocation which had been deferred till now.
1255 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1256 ext4_da_update_reserve_space(inode, retval);
1258 up_write((&EXT4_I(inode)->i_data_sem));
1259 if (retval > 0 && buffer_mapped(bh)) {
1260 int ret = check_block_validity(inode, block,
1261 bh->b_blocknr, retval);
1262 if (ret != 0)
1263 return ret;
1265 return retval;
1268 /* Maximum number of blocks we map for direct IO at once. */
1269 #define DIO_MAX_BLOCKS 4096
1271 int ext4_get_block(struct inode *inode, sector_t iblock,
1272 struct buffer_head *bh_result, int create)
1274 handle_t *handle = ext4_journal_current_handle();
1275 int ret = 0, started = 0;
1276 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1277 int dio_credits;
1279 if (create && !handle) {
1280 /* Direct IO write... */
1281 if (max_blocks > DIO_MAX_BLOCKS)
1282 max_blocks = DIO_MAX_BLOCKS;
1283 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1284 handle = ext4_journal_start(inode, dio_credits);
1285 if (IS_ERR(handle)) {
1286 ret = PTR_ERR(handle);
1287 goto out;
1289 started = 1;
1292 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1293 create ? EXT4_GET_BLOCKS_CREATE : 0);
1294 if (ret > 0) {
1295 bh_result->b_size = (ret << inode->i_blkbits);
1296 ret = 0;
1298 if (started)
1299 ext4_journal_stop(handle);
1300 out:
1301 return ret;
1305 * `handle' can be NULL if create is zero
1307 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1308 ext4_lblk_t block, int create, int *errp)
1310 struct buffer_head dummy;
1311 int fatal = 0, err;
1312 int flags = 0;
1314 J_ASSERT(handle != NULL || create == 0);
1316 dummy.b_state = 0;
1317 dummy.b_blocknr = -1000;
1318 buffer_trace_init(&dummy.b_history);
1319 if (create)
1320 flags |= EXT4_GET_BLOCKS_CREATE;
1321 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1323 * ext4_get_blocks() returns number of blocks mapped. 0 in
1324 * case of a HOLE.
1326 if (err > 0) {
1327 if (err > 1)
1328 WARN_ON(1);
1329 err = 0;
1331 *errp = err;
1332 if (!err && buffer_mapped(&dummy)) {
1333 struct buffer_head *bh;
1334 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1335 if (!bh) {
1336 *errp = -EIO;
1337 goto err;
1339 if (buffer_new(&dummy)) {
1340 J_ASSERT(create != 0);
1341 J_ASSERT(handle != NULL);
1344 * Now that we do not always journal data, we should
1345 * keep in mind whether this should always journal the
1346 * new buffer as metadata. For now, regular file
1347 * writes use ext4_get_block instead, so it's not a
1348 * problem.
1350 lock_buffer(bh);
1351 BUFFER_TRACE(bh, "call get_create_access");
1352 fatal = ext4_journal_get_create_access(handle, bh);
1353 if (!fatal && !buffer_uptodate(bh)) {
1354 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1355 set_buffer_uptodate(bh);
1357 unlock_buffer(bh);
1358 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1359 err = ext4_handle_dirty_metadata(handle, inode, bh);
1360 if (!fatal)
1361 fatal = err;
1362 } else {
1363 BUFFER_TRACE(bh, "not a new buffer");
1365 if (fatal) {
1366 *errp = fatal;
1367 brelse(bh);
1368 bh = NULL;
1370 return bh;
1372 err:
1373 return NULL;
1376 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1377 ext4_lblk_t block, int create, int *err)
1379 struct buffer_head *bh;
1381 bh = ext4_getblk(handle, inode, block, create, err);
1382 if (!bh)
1383 return bh;
1384 if (buffer_uptodate(bh))
1385 return bh;
1386 ll_rw_block(READ_META, 1, &bh);
1387 wait_on_buffer(bh);
1388 if (buffer_uptodate(bh))
1389 return bh;
1390 put_bh(bh);
1391 *err = -EIO;
1392 return NULL;
1395 static int walk_page_buffers(handle_t *handle,
1396 struct buffer_head *head,
1397 unsigned from,
1398 unsigned to,
1399 int *partial,
1400 int (*fn)(handle_t *handle,
1401 struct buffer_head *bh))
1403 struct buffer_head *bh;
1404 unsigned block_start, block_end;
1405 unsigned blocksize = head->b_size;
1406 int err, ret = 0;
1407 struct buffer_head *next;
1409 for (bh = head, block_start = 0;
1410 ret == 0 && (bh != head || !block_start);
1411 block_start = block_end, bh = next)
1413 next = bh->b_this_page;
1414 block_end = block_start + blocksize;
1415 if (block_end <= from || block_start >= to) {
1416 if (partial && !buffer_uptodate(bh))
1417 *partial = 1;
1418 continue;
1420 err = (*fn)(handle, bh);
1421 if (!ret)
1422 ret = err;
1424 return ret;
1428 * To preserve ordering, it is essential that the hole instantiation and
1429 * the data write be encapsulated in a single transaction. We cannot
1430 * close off a transaction and start a new one between the ext4_get_block()
1431 * and the commit_write(). So doing the jbd2_journal_start at the start of
1432 * prepare_write() is the right place.
1434 * Also, this function can nest inside ext4_writepage() ->
1435 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1436 * has generated enough buffer credits to do the whole page. So we won't
1437 * block on the journal in that case, which is good, because the caller may
1438 * be PF_MEMALLOC.
1440 * By accident, ext4 can be reentered when a transaction is open via
1441 * quota file writes. If we were to commit the transaction while thus
1442 * reentered, there can be a deadlock - we would be holding a quota
1443 * lock, and the commit would never complete if another thread had a
1444 * transaction open and was blocking on the quota lock - a ranking
1445 * violation.
1447 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1448 * will _not_ run commit under these circumstances because handle->h_ref
1449 * is elevated. We'll still have enough credits for the tiny quotafile
1450 * write.
1452 static int do_journal_get_write_access(handle_t *handle,
1453 struct buffer_head *bh)
1455 if (!buffer_mapped(bh) || buffer_freed(bh))
1456 return 0;
1457 return ext4_journal_get_write_access(handle, bh);
1460 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1461 loff_t pos, unsigned len, unsigned flags,
1462 struct page **pagep, void **fsdata)
1464 struct inode *inode = mapping->host;
1465 int ret, needed_blocks;
1466 handle_t *handle;
1467 int retries = 0;
1468 struct page *page;
1469 pgoff_t index;
1470 unsigned from, to;
1472 trace_ext4_write_begin(inode, pos, len, flags);
1474 * Reserve one block more for addition to orphan list in case
1475 * we allocate blocks but write fails for some reason
1477 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1478 index = pos >> PAGE_CACHE_SHIFT;
1479 from = pos & (PAGE_CACHE_SIZE - 1);
1480 to = from + len;
1482 retry:
1483 handle = ext4_journal_start(inode, needed_blocks);
1484 if (IS_ERR(handle)) {
1485 ret = PTR_ERR(handle);
1486 goto out;
1489 /* We cannot recurse into the filesystem as the transaction is already
1490 * started */
1491 flags |= AOP_FLAG_NOFS;
1493 page = grab_cache_page_write_begin(mapping, index, flags);
1494 if (!page) {
1495 ext4_journal_stop(handle);
1496 ret = -ENOMEM;
1497 goto out;
1499 *pagep = page;
1501 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1502 ext4_get_block);
1504 if (!ret && ext4_should_journal_data(inode)) {
1505 ret = walk_page_buffers(handle, page_buffers(page),
1506 from, to, NULL, do_journal_get_write_access);
1509 if (ret) {
1510 unlock_page(page);
1511 page_cache_release(page);
1513 * block_write_begin may have instantiated a few blocks
1514 * outside i_size. Trim these off again. Don't need
1515 * i_size_read because we hold i_mutex.
1517 * Add inode to orphan list in case we crash before
1518 * truncate finishes
1520 if (pos + len > inode->i_size)
1521 ext4_orphan_add(handle, inode);
1523 ext4_journal_stop(handle);
1524 if (pos + len > inode->i_size) {
1525 vmtruncate(inode, inode->i_size);
1527 * If vmtruncate failed early the inode might
1528 * still be on the orphan list; we need to
1529 * make sure the inode is removed from the
1530 * orphan list in that case.
1532 if (inode->i_nlink)
1533 ext4_orphan_del(NULL, inode);
1537 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1538 goto retry;
1539 out:
1540 return ret;
1543 /* For write_end() in data=journal mode */
1544 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1546 if (!buffer_mapped(bh) || buffer_freed(bh))
1547 return 0;
1548 set_buffer_uptodate(bh);
1549 return ext4_handle_dirty_metadata(handle, NULL, bh);
1552 static int ext4_generic_write_end(struct file *file,
1553 struct address_space *mapping,
1554 loff_t pos, unsigned len, unsigned copied,
1555 struct page *page, void *fsdata)
1557 int i_size_changed = 0;
1558 struct inode *inode = mapping->host;
1559 handle_t *handle = ext4_journal_current_handle();
1561 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1564 * No need to use i_size_read() here, the i_size
1565 * cannot change under us because we hold i_mutex.
1567 * But it's important to update i_size while still holding page lock:
1568 * page writeout could otherwise come in and zero beyond i_size.
1570 if (pos + copied > inode->i_size) {
1571 i_size_write(inode, pos + copied);
1572 i_size_changed = 1;
1575 if (pos + copied > EXT4_I(inode)->i_disksize) {
1576 /* We need to mark inode dirty even if
1577 * new_i_size is less that inode->i_size
1578 * bu greater than i_disksize.(hint delalloc)
1580 ext4_update_i_disksize(inode, (pos + copied));
1581 i_size_changed = 1;
1583 unlock_page(page);
1584 page_cache_release(page);
1587 * Don't mark the inode dirty under page lock. First, it unnecessarily
1588 * makes the holding time of page lock longer. Second, it forces lock
1589 * ordering of page lock and transaction start for journaling
1590 * filesystems.
1592 if (i_size_changed)
1593 ext4_mark_inode_dirty(handle, inode);
1595 return copied;
1599 * We need to pick up the new inode size which generic_commit_write gave us
1600 * `file' can be NULL - eg, when called from page_symlink().
1602 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1603 * buffers are managed internally.
1605 static int ext4_ordered_write_end(struct file *file,
1606 struct address_space *mapping,
1607 loff_t pos, unsigned len, unsigned copied,
1608 struct page *page, void *fsdata)
1610 handle_t *handle = ext4_journal_current_handle();
1611 struct inode *inode = mapping->host;
1612 int ret = 0, ret2;
1614 trace_ext4_ordered_write_end(inode, pos, len, copied);
1615 ret = ext4_jbd2_file_inode(handle, inode);
1617 if (ret == 0) {
1618 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1619 page, fsdata);
1620 copied = ret2;
1621 if (pos + len > inode->i_size)
1622 /* if we have allocated more blocks and copied
1623 * less. We will have blocks allocated outside
1624 * inode->i_size. So truncate them
1626 ext4_orphan_add(handle, inode);
1627 if (ret2 < 0)
1628 ret = ret2;
1630 ret2 = ext4_journal_stop(handle);
1631 if (!ret)
1632 ret = ret2;
1634 if (pos + len > inode->i_size) {
1635 vmtruncate(inode, inode->i_size);
1637 * If vmtruncate failed early the inode might still be
1638 * on the orphan list; we need to make sure the inode
1639 * is removed from the orphan list in that case.
1641 if (inode->i_nlink)
1642 ext4_orphan_del(NULL, inode);
1646 return ret ? ret : copied;
1649 static int ext4_writeback_write_end(struct file *file,
1650 struct address_space *mapping,
1651 loff_t pos, unsigned len, unsigned copied,
1652 struct page *page, void *fsdata)
1654 handle_t *handle = ext4_journal_current_handle();
1655 struct inode *inode = mapping->host;
1656 int ret = 0, ret2;
1658 trace_ext4_writeback_write_end(inode, pos, len, copied);
1659 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1660 page, fsdata);
1661 copied = ret2;
1662 if (pos + len > inode->i_size)
1663 /* if we have allocated more blocks and copied
1664 * less. We will have blocks allocated outside
1665 * inode->i_size. So truncate them
1667 ext4_orphan_add(handle, inode);
1669 if (ret2 < 0)
1670 ret = ret2;
1672 ret2 = ext4_journal_stop(handle);
1673 if (!ret)
1674 ret = ret2;
1676 if (pos + len > inode->i_size) {
1677 vmtruncate(inode, inode->i_size);
1679 * If vmtruncate failed early the inode might still be
1680 * on the orphan list; we need to make sure the inode
1681 * is removed from the orphan list in that case.
1683 if (inode->i_nlink)
1684 ext4_orphan_del(NULL, inode);
1687 return ret ? ret : copied;
1690 static int ext4_journalled_write_end(struct file *file,
1691 struct address_space *mapping,
1692 loff_t pos, unsigned len, unsigned copied,
1693 struct page *page, void *fsdata)
1695 handle_t *handle = ext4_journal_current_handle();
1696 struct inode *inode = mapping->host;
1697 int ret = 0, ret2;
1698 int partial = 0;
1699 unsigned from, to;
1700 loff_t new_i_size;
1702 trace_ext4_journalled_write_end(inode, pos, len, copied);
1703 from = pos & (PAGE_CACHE_SIZE - 1);
1704 to = from + len;
1706 if (copied < len) {
1707 if (!PageUptodate(page))
1708 copied = 0;
1709 page_zero_new_buffers(page, from+copied, to);
1712 ret = walk_page_buffers(handle, page_buffers(page), from,
1713 to, &partial, write_end_fn);
1714 if (!partial)
1715 SetPageUptodate(page);
1716 new_i_size = pos + copied;
1717 if (new_i_size > inode->i_size)
1718 i_size_write(inode, pos+copied);
1719 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1720 if (new_i_size > EXT4_I(inode)->i_disksize) {
1721 ext4_update_i_disksize(inode, new_i_size);
1722 ret2 = ext4_mark_inode_dirty(handle, inode);
1723 if (!ret)
1724 ret = ret2;
1727 unlock_page(page);
1728 page_cache_release(page);
1729 if (pos + len > inode->i_size)
1730 /* if we have allocated more blocks and copied
1731 * less. We will have blocks allocated outside
1732 * inode->i_size. So truncate them
1734 ext4_orphan_add(handle, inode);
1736 ret2 = ext4_journal_stop(handle);
1737 if (!ret)
1738 ret = ret2;
1739 if (pos + len > inode->i_size) {
1740 vmtruncate(inode, inode->i_size);
1742 * If vmtruncate failed early the inode might still be
1743 * on the orphan list; we need to make sure the inode
1744 * is removed from the orphan list in that case.
1746 if (inode->i_nlink)
1747 ext4_orphan_del(NULL, inode);
1750 return ret ? ret : copied;
1753 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1755 int retries = 0;
1756 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757 unsigned long md_needed, mdblocks, total = 0;
1760 * recalculate the amount of metadata blocks to reserve
1761 * in order to allocate nrblocks
1762 * worse case is one extent per block
1764 repeat:
1765 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1766 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1767 mdblocks = ext4_calc_metadata_amount(inode, total);
1768 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1770 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1771 total = md_needed + nrblocks;
1774 * Make quota reservation here to prevent quota overflow
1775 * later. Real quota accounting is done at pages writeout
1776 * time.
1778 if (vfs_dq_reserve_block(inode, total)) {
1779 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1780 return -EDQUOT;
1783 if (ext4_claim_free_blocks(sbi, total)) {
1784 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1785 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1786 yield();
1787 goto repeat;
1789 vfs_dq_release_reservation_block(inode, total);
1790 return -ENOSPC;
1792 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1793 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1795 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1796 return 0; /* success */
1799 static void ext4_da_release_space(struct inode *inode, int to_free)
1801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1802 int total, mdb, mdb_free, release;
1804 if (!to_free)
1805 return; /* Nothing to release, exit */
1807 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1809 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1811 * if there is no reserved blocks, but we try to free some
1812 * then the counter is messed up somewhere.
1813 * but since this function is called from invalidate
1814 * page, it's harmless to return without any action
1816 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1817 "blocks for inode %lu, but there is no reserved "
1818 "data blocks\n", to_free, inode->i_ino);
1819 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1820 return;
1823 /* recalculate the number of metablocks still need to be reserved */
1824 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1825 mdb = ext4_calc_metadata_amount(inode, total);
1827 /* figure out how many metablocks to release */
1828 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1829 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1831 release = to_free + mdb_free;
1833 /* update fs dirty blocks counter for truncate case */
1834 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1836 /* update per-inode reservations */
1837 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1838 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1840 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1841 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1842 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1844 vfs_dq_release_reservation_block(inode, release);
1847 static void ext4_da_page_release_reservation(struct page *page,
1848 unsigned long offset)
1850 int to_release = 0;
1851 struct buffer_head *head, *bh;
1852 unsigned int curr_off = 0;
1854 head = page_buffers(page);
1855 bh = head;
1856 do {
1857 unsigned int next_off = curr_off + bh->b_size;
1859 if ((offset <= curr_off) && (buffer_delay(bh))) {
1860 to_release++;
1861 clear_buffer_delay(bh);
1863 curr_off = next_off;
1864 } while ((bh = bh->b_this_page) != head);
1865 ext4_da_release_space(page->mapping->host, to_release);
1869 * Delayed allocation stuff
1872 struct mpage_da_data {
1873 struct inode *inode;
1874 sector_t b_blocknr; /* start block number of extent */
1875 size_t b_size; /* size of extent */
1876 unsigned long b_state; /* state of the extent */
1877 unsigned long first_page, next_page; /* extent of pages */
1878 struct writeback_control *wbc;
1879 int io_done;
1880 int pages_written;
1881 int retval;
1885 * mpage_da_submit_io - walks through extent of pages and try to write
1886 * them with writepage() call back
1888 * @mpd->inode: inode
1889 * @mpd->first_page: first page of the extent
1890 * @mpd->next_page: page after the last page of the extent
1892 * By the time mpage_da_submit_io() is called we expect all blocks
1893 * to be allocated. this may be wrong if allocation failed.
1895 * As pages are already locked by write_cache_pages(), we can't use it
1897 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1899 long pages_skipped;
1900 struct pagevec pvec;
1901 unsigned long index, end;
1902 int ret = 0, err, nr_pages, i;
1903 struct inode *inode = mpd->inode;
1904 struct address_space *mapping = inode->i_mapping;
1906 BUG_ON(mpd->next_page <= mpd->first_page);
1908 * We need to start from the first_page to the next_page - 1
1909 * to make sure we also write the mapped dirty buffer_heads.
1910 * If we look at mpd->b_blocknr we would only be looking
1911 * at the currently mapped buffer_heads.
1913 index = mpd->first_page;
1914 end = mpd->next_page - 1;
1916 pagevec_init(&pvec, 0);
1917 while (index <= end) {
1918 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1919 if (nr_pages == 0)
1920 break;
1921 for (i = 0; i < nr_pages; i++) {
1922 struct page *page = pvec.pages[i];
1924 index = page->index;
1925 if (index > end)
1926 break;
1927 index++;
1929 BUG_ON(!PageLocked(page));
1930 BUG_ON(PageWriteback(page));
1932 pages_skipped = mpd->wbc->pages_skipped;
1933 err = mapping->a_ops->writepage(page, mpd->wbc);
1934 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1936 * have successfully written the page
1937 * without skipping the same
1939 mpd->pages_written++;
1941 * In error case, we have to continue because
1942 * remaining pages are still locked
1943 * XXX: unlock and re-dirty them?
1945 if (ret == 0)
1946 ret = err;
1948 pagevec_release(&pvec);
1950 return ret;
1954 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1956 * @mpd->inode - inode to walk through
1957 * @exbh->b_blocknr - first block on a disk
1958 * @exbh->b_size - amount of space in bytes
1959 * @logical - first logical block to start assignment with
1961 * the function goes through all passed space and put actual disk
1962 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1964 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1965 struct buffer_head *exbh)
1967 struct inode *inode = mpd->inode;
1968 struct address_space *mapping = inode->i_mapping;
1969 int blocks = exbh->b_size >> inode->i_blkbits;
1970 sector_t pblock = exbh->b_blocknr, cur_logical;
1971 struct buffer_head *head, *bh;
1972 pgoff_t index, end;
1973 struct pagevec pvec;
1974 int nr_pages, i;
1976 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1977 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1978 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1980 pagevec_init(&pvec, 0);
1982 while (index <= end) {
1983 /* XXX: optimize tail */
1984 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1985 if (nr_pages == 0)
1986 break;
1987 for (i = 0; i < nr_pages; i++) {
1988 struct page *page = pvec.pages[i];
1990 index = page->index;
1991 if (index > end)
1992 break;
1993 index++;
1995 BUG_ON(!PageLocked(page));
1996 BUG_ON(PageWriteback(page));
1997 BUG_ON(!page_has_buffers(page));
1999 bh = page_buffers(page);
2000 head = bh;
2002 /* skip blocks out of the range */
2003 do {
2004 if (cur_logical >= logical)
2005 break;
2006 cur_logical++;
2007 } while ((bh = bh->b_this_page) != head);
2009 do {
2010 if (cur_logical >= logical + blocks)
2011 break;
2013 if (buffer_delay(bh) ||
2014 buffer_unwritten(bh)) {
2016 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2018 if (buffer_delay(bh)) {
2019 clear_buffer_delay(bh);
2020 bh->b_blocknr = pblock;
2021 } else {
2023 * unwritten already should have
2024 * blocknr assigned. Verify that
2026 clear_buffer_unwritten(bh);
2027 BUG_ON(bh->b_blocknr != pblock);
2030 } else if (buffer_mapped(bh))
2031 BUG_ON(bh->b_blocknr != pblock);
2033 cur_logical++;
2034 pblock++;
2035 } while ((bh = bh->b_this_page) != head);
2037 pagevec_release(&pvec);
2043 * __unmap_underlying_blocks - just a helper function to unmap
2044 * set of blocks described by @bh
2046 static inline void __unmap_underlying_blocks(struct inode *inode,
2047 struct buffer_head *bh)
2049 struct block_device *bdev = inode->i_sb->s_bdev;
2050 int blocks, i;
2052 blocks = bh->b_size >> inode->i_blkbits;
2053 for (i = 0; i < blocks; i++)
2054 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2057 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2058 sector_t logical, long blk_cnt)
2060 int nr_pages, i;
2061 pgoff_t index, end;
2062 struct pagevec pvec;
2063 struct inode *inode = mpd->inode;
2064 struct address_space *mapping = inode->i_mapping;
2066 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067 end = (logical + blk_cnt - 1) >>
2068 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069 while (index <= end) {
2070 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2071 if (nr_pages == 0)
2072 break;
2073 for (i = 0; i < nr_pages; i++) {
2074 struct page *page = pvec.pages[i];
2075 index = page->index;
2076 if (index > end)
2077 break;
2078 index++;
2080 BUG_ON(!PageLocked(page));
2081 BUG_ON(PageWriteback(page));
2082 block_invalidatepage(page, 0);
2083 ClearPageUptodate(page);
2084 unlock_page(page);
2087 return;
2090 static void ext4_print_free_blocks(struct inode *inode)
2092 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2093 printk(KERN_EMERG "Total free blocks count %lld\n",
2094 ext4_count_free_blocks(inode->i_sb));
2095 printk(KERN_EMERG "Free/Dirty block details\n");
2096 printk(KERN_EMERG "free_blocks=%lld\n",
2097 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2098 printk(KERN_EMERG "dirty_blocks=%lld\n",
2099 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2100 printk(KERN_EMERG "Block reservation details\n");
2101 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2102 EXT4_I(inode)->i_reserved_data_blocks);
2103 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2104 EXT4_I(inode)->i_reserved_meta_blocks);
2105 return;
2109 * mpage_da_map_blocks - go through given space
2111 * @mpd - bh describing space
2113 * The function skips space we know is already mapped to disk blocks.
2116 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2118 int err, blks, get_blocks_flags;
2119 struct buffer_head new;
2120 sector_t next = mpd->b_blocknr;
2121 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2122 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2123 handle_t *handle = NULL;
2126 * We consider only non-mapped and non-allocated blocks
2128 if ((mpd->b_state & (1 << BH_Mapped)) &&
2129 !(mpd->b_state & (1 << BH_Delay)) &&
2130 !(mpd->b_state & (1 << BH_Unwritten)))
2131 return 0;
2134 * If we didn't accumulate anything to write simply return
2136 if (!mpd->b_size)
2137 return 0;
2139 handle = ext4_journal_current_handle();
2140 BUG_ON(!handle);
2143 * Call ext4_get_blocks() to allocate any delayed allocation
2144 * blocks, or to convert an uninitialized extent to be
2145 * initialized (in the case where we have written into
2146 * one or more preallocated blocks).
2148 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2149 * indicate that we are on the delayed allocation path. This
2150 * affects functions in many different parts of the allocation
2151 * call path. This flag exists primarily because we don't
2152 * want to change *many* call functions, so ext4_get_blocks()
2153 * will set the magic i_delalloc_reserved_flag once the
2154 * inode's allocation semaphore is taken.
2156 * If the blocks in questions were delalloc blocks, set
2157 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2158 * variables are updated after the blocks have been allocated.
2160 new.b_state = 0;
2161 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2162 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2163 if (mpd->b_state & (1 << BH_Delay))
2164 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2165 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2166 &new, get_blocks_flags);
2167 if (blks < 0) {
2168 err = blks;
2170 * If get block returns with error we simply
2171 * return. Later writepage will redirty the page and
2172 * writepages will find the dirty page again
2174 if (err == -EAGAIN)
2175 return 0;
2177 if (err == -ENOSPC &&
2178 ext4_count_free_blocks(mpd->inode->i_sb)) {
2179 mpd->retval = err;
2180 return 0;
2184 * get block failure will cause us to loop in
2185 * writepages, because a_ops->writepage won't be able
2186 * to make progress. The page will be redirtied by
2187 * writepage and writepages will again try to write
2188 * the same.
2190 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2191 "at logical offset %llu with max blocks "
2192 "%zd with error %d\n",
2193 __func__, mpd->inode->i_ino,
2194 (unsigned long long)next,
2195 mpd->b_size >> mpd->inode->i_blkbits, err);
2196 printk(KERN_EMERG "This should not happen.!! "
2197 "Data will be lost\n");
2198 if (err == -ENOSPC) {
2199 ext4_print_free_blocks(mpd->inode);
2201 /* invalidate all the pages */
2202 ext4_da_block_invalidatepages(mpd, next,
2203 mpd->b_size >> mpd->inode->i_blkbits);
2204 return err;
2206 BUG_ON(blks == 0);
2208 new.b_size = (blks << mpd->inode->i_blkbits);
2210 if (buffer_new(&new))
2211 __unmap_underlying_blocks(mpd->inode, &new);
2214 * If blocks are delayed marked, we need to
2215 * put actual blocknr and drop delayed bit
2217 if ((mpd->b_state & (1 << BH_Delay)) ||
2218 (mpd->b_state & (1 << BH_Unwritten)))
2219 mpage_put_bnr_to_bhs(mpd, next, &new);
2221 if (ext4_should_order_data(mpd->inode)) {
2222 err = ext4_jbd2_file_inode(handle, mpd->inode);
2223 if (err)
2224 return err;
2228 * Update on-disk size along with block allocation.
2230 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2231 if (disksize > i_size_read(mpd->inode))
2232 disksize = i_size_read(mpd->inode);
2233 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2234 ext4_update_i_disksize(mpd->inode, disksize);
2235 return ext4_mark_inode_dirty(handle, mpd->inode);
2238 return 0;
2241 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2242 (1 << BH_Delay) | (1 << BH_Unwritten))
2245 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2247 * @mpd->lbh - extent of blocks
2248 * @logical - logical number of the block in the file
2249 * @bh - bh of the block (used to access block's state)
2251 * the function is used to collect contig. blocks in same state
2253 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2254 sector_t logical, size_t b_size,
2255 unsigned long b_state)
2257 sector_t next;
2258 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2260 /* check if thereserved journal credits might overflow */
2261 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2262 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2264 * With non-extent format we are limited by the journal
2265 * credit available. Total credit needed to insert
2266 * nrblocks contiguous blocks is dependent on the
2267 * nrblocks. So limit nrblocks.
2269 goto flush_it;
2270 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2271 EXT4_MAX_TRANS_DATA) {
2273 * Adding the new buffer_head would make it cross the
2274 * allowed limit for which we have journal credit
2275 * reserved. So limit the new bh->b_size
2277 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2278 mpd->inode->i_blkbits;
2279 /* we will do mpage_da_submit_io in the next loop */
2283 * First block in the extent
2285 if (mpd->b_size == 0) {
2286 mpd->b_blocknr = logical;
2287 mpd->b_size = b_size;
2288 mpd->b_state = b_state & BH_FLAGS;
2289 return;
2292 next = mpd->b_blocknr + nrblocks;
2294 * Can we merge the block to our big extent?
2296 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2297 mpd->b_size += b_size;
2298 return;
2301 flush_it:
2303 * We couldn't merge the block to our extent, so we
2304 * need to flush current extent and start new one
2306 if (mpage_da_map_blocks(mpd) == 0)
2307 mpage_da_submit_io(mpd);
2308 mpd->io_done = 1;
2309 return;
2312 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2315 * unmapped buffer is possible for holes.
2316 * delay buffer is possible with delayed allocation.
2317 * We also need to consider unwritten buffer as unmapped.
2319 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2320 buffer_unwritten(bh)) && buffer_dirty(bh);
2324 * __mpage_da_writepage - finds extent of pages and blocks
2326 * @page: page to consider
2327 * @wbc: not used, we just follow rules
2328 * @data: context
2330 * The function finds extents of pages and scan them for all blocks.
2332 static int __mpage_da_writepage(struct page *page,
2333 struct writeback_control *wbc, void *data)
2335 struct mpage_da_data *mpd = data;
2336 struct inode *inode = mpd->inode;
2337 struct buffer_head *bh, *head;
2338 sector_t logical;
2340 if (mpd->io_done) {
2342 * Rest of the page in the page_vec
2343 * redirty then and skip then. We will
2344 * try to to write them again after
2345 * starting a new transaction
2347 redirty_page_for_writepage(wbc, page);
2348 unlock_page(page);
2349 return MPAGE_DA_EXTENT_TAIL;
2352 * Can we merge this page to current extent?
2354 if (mpd->next_page != page->index) {
2356 * Nope, we can't. So, we map non-allocated blocks
2357 * and start IO on them using writepage()
2359 if (mpd->next_page != mpd->first_page) {
2360 if (mpage_da_map_blocks(mpd) == 0)
2361 mpage_da_submit_io(mpd);
2363 * skip rest of the page in the page_vec
2365 mpd->io_done = 1;
2366 redirty_page_for_writepage(wbc, page);
2367 unlock_page(page);
2368 return MPAGE_DA_EXTENT_TAIL;
2372 * Start next extent of pages ...
2374 mpd->first_page = page->index;
2377 * ... and blocks
2379 mpd->b_size = 0;
2380 mpd->b_state = 0;
2381 mpd->b_blocknr = 0;
2384 mpd->next_page = page->index + 1;
2385 logical = (sector_t) page->index <<
2386 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2388 if (!page_has_buffers(page)) {
2389 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2390 (1 << BH_Dirty) | (1 << BH_Uptodate));
2391 if (mpd->io_done)
2392 return MPAGE_DA_EXTENT_TAIL;
2393 } else {
2395 * Page with regular buffer heads, just add all dirty ones
2397 head = page_buffers(page);
2398 bh = head;
2399 do {
2400 BUG_ON(buffer_locked(bh));
2402 * We need to try to allocate
2403 * unmapped blocks in the same page.
2404 * Otherwise we won't make progress
2405 * with the page in ext4_da_writepage
2407 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2408 mpage_add_bh_to_extent(mpd, logical,
2409 bh->b_size,
2410 bh->b_state);
2411 if (mpd->io_done)
2412 return MPAGE_DA_EXTENT_TAIL;
2413 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2415 * mapped dirty buffer. We need to update
2416 * the b_state because we look at
2417 * b_state in mpage_da_map_blocks. We don't
2418 * update b_size because if we find an
2419 * unmapped buffer_head later we need to
2420 * use the b_state flag of that buffer_head.
2422 if (mpd->b_size == 0)
2423 mpd->b_state = bh->b_state & BH_FLAGS;
2425 logical++;
2426 } while ((bh = bh->b_this_page) != head);
2429 return 0;
2433 * This is a special get_blocks_t callback which is used by
2434 * ext4_da_write_begin(). It will either return mapped block or
2435 * reserve space for a single block.
2437 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2438 * We also have b_blocknr = -1 and b_bdev initialized properly
2440 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2441 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2442 * initialized properly.
2444 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2445 struct buffer_head *bh_result, int create)
2447 int ret = 0;
2448 sector_t invalid_block = ~((sector_t) 0xffff);
2450 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2451 invalid_block = ~0;
2453 BUG_ON(create == 0);
2454 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2457 * first, we need to know whether the block is allocated already
2458 * preallocated blocks are unmapped but should treated
2459 * the same as allocated blocks.
2461 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2462 if ((ret == 0) && !buffer_delay(bh_result)) {
2463 /* the block isn't (pre)allocated yet, let's reserve space */
2465 * XXX: __block_prepare_write() unmaps passed block,
2466 * is it OK?
2468 ret = ext4_da_reserve_space(inode, 1);
2469 if (ret)
2470 /* not enough space to reserve */
2471 return ret;
2473 map_bh(bh_result, inode->i_sb, invalid_block);
2474 set_buffer_new(bh_result);
2475 set_buffer_delay(bh_result);
2476 } else if (ret > 0) {
2477 bh_result->b_size = (ret << inode->i_blkbits);
2478 if (buffer_unwritten(bh_result)) {
2479 /* A delayed write to unwritten bh should
2480 * be marked new and mapped. Mapped ensures
2481 * that we don't do get_block multiple times
2482 * when we write to the same offset and new
2483 * ensures that we do proper zero out for
2484 * partial write.
2486 set_buffer_new(bh_result);
2487 set_buffer_mapped(bh_result);
2489 ret = 0;
2492 return ret;
2496 * This function is used as a standard get_block_t calback function
2497 * when there is no desire to allocate any blocks. It is used as a
2498 * callback function for block_prepare_write(), nobh_writepage(), and
2499 * block_write_full_page(). These functions should only try to map a
2500 * single block at a time.
2502 * Since this function doesn't do block allocations even if the caller
2503 * requests it by passing in create=1, it is critically important that
2504 * any caller checks to make sure that any buffer heads are returned
2505 * by this function are either all already mapped or marked for
2506 * delayed allocation before calling nobh_writepage() or
2507 * block_write_full_page(). Otherwise, b_blocknr could be left
2508 * unitialized, and the page write functions will be taken by
2509 * surprise.
2511 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2512 struct buffer_head *bh_result, int create)
2514 int ret = 0;
2515 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2517 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2520 * we don't want to do block allocation in writepage
2521 * so call get_block_wrap with create = 0
2523 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2524 BUG_ON(create && ret == 0);
2525 if (ret > 0) {
2526 bh_result->b_size = (ret << inode->i_blkbits);
2527 ret = 0;
2529 return ret;
2533 * This function can get called via...
2534 * - ext4_da_writepages after taking page lock (have journal handle)
2535 * - journal_submit_inode_data_buffers (no journal handle)
2536 * - shrink_page_list via pdflush (no journal handle)
2537 * - grab_page_cache when doing write_begin (have journal handle)
2539 static int ext4_da_writepage(struct page *page,
2540 struct writeback_control *wbc)
2542 int ret = 0;
2543 loff_t size;
2544 unsigned int len;
2545 struct buffer_head *page_bufs;
2546 struct inode *inode = page->mapping->host;
2548 trace_ext4_da_writepage(inode, page);
2549 size = i_size_read(inode);
2550 if (page->index == size >> PAGE_CACHE_SHIFT)
2551 len = size & ~PAGE_CACHE_MASK;
2552 else
2553 len = PAGE_CACHE_SIZE;
2555 if (page_has_buffers(page)) {
2556 page_bufs = page_buffers(page);
2557 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2558 ext4_bh_unmapped_or_delay)) {
2560 * We don't want to do block allocation
2561 * So redirty the page and return
2562 * We may reach here when we do a journal commit
2563 * via journal_submit_inode_data_buffers.
2564 * If we don't have mapping block we just ignore
2565 * them. We can also reach here via shrink_page_list
2567 redirty_page_for_writepage(wbc, page);
2568 unlock_page(page);
2569 return 0;
2571 } else {
2573 * The test for page_has_buffers() is subtle:
2574 * We know the page is dirty but it lost buffers. That means
2575 * that at some moment in time after write_begin()/write_end()
2576 * has been called all buffers have been clean and thus they
2577 * must have been written at least once. So they are all
2578 * mapped and we can happily proceed with mapping them
2579 * and writing the page.
2581 * Try to initialize the buffer_heads and check whether
2582 * all are mapped and non delay. We don't want to
2583 * do block allocation here.
2585 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2586 noalloc_get_block_write);
2587 if (!ret) {
2588 page_bufs = page_buffers(page);
2589 /* check whether all are mapped and non delay */
2590 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2591 ext4_bh_unmapped_or_delay)) {
2592 redirty_page_for_writepage(wbc, page);
2593 unlock_page(page);
2594 return 0;
2596 } else {
2598 * We can't do block allocation here
2599 * so just redity the page and unlock
2600 * and return
2602 redirty_page_for_writepage(wbc, page);
2603 unlock_page(page);
2604 return 0;
2606 /* now mark the buffer_heads as dirty and uptodate */
2607 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2610 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2611 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2612 else
2613 ret = block_write_full_page(page, noalloc_get_block_write,
2614 wbc);
2616 return ret;
2620 * This is called via ext4_da_writepages() to
2621 * calulate the total number of credits to reserve to fit
2622 * a single extent allocation into a single transaction,
2623 * ext4_da_writpeages() will loop calling this before
2624 * the block allocation.
2627 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2629 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2632 * With non-extent format the journal credit needed to
2633 * insert nrblocks contiguous block is dependent on
2634 * number of contiguous block. So we will limit
2635 * number of contiguous block to a sane value
2637 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2638 (max_blocks > EXT4_MAX_TRANS_DATA))
2639 max_blocks = EXT4_MAX_TRANS_DATA;
2641 return ext4_chunk_trans_blocks(inode, max_blocks);
2644 static int ext4_da_writepages(struct address_space *mapping,
2645 struct writeback_control *wbc)
2647 pgoff_t index;
2648 int range_whole = 0;
2649 handle_t *handle = NULL;
2650 struct mpage_da_data mpd;
2651 struct inode *inode = mapping->host;
2652 int no_nrwrite_index_update;
2653 int pages_written = 0;
2654 long pages_skipped;
2655 int range_cyclic, cycled = 1, io_done = 0;
2656 int needed_blocks, ret = 0, nr_to_writebump = 0;
2657 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2659 trace_ext4_da_writepages(inode, wbc);
2662 * No pages to write? This is mainly a kludge to avoid starting
2663 * a transaction for special inodes like journal inode on last iput()
2664 * because that could violate lock ordering on umount
2666 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2667 return 0;
2670 * If the filesystem has aborted, it is read-only, so return
2671 * right away instead of dumping stack traces later on that
2672 * will obscure the real source of the problem. We test
2673 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2674 * the latter could be true if the filesystem is mounted
2675 * read-only, and in that case, ext4_da_writepages should
2676 * *never* be called, so if that ever happens, we would want
2677 * the stack trace.
2679 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2680 return -EROFS;
2683 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2684 * This make sure small files blocks are allocated in
2685 * single attempt. This ensure that small files
2686 * get less fragmented.
2688 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2689 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2690 wbc->nr_to_write = sbi->s_mb_stream_request;
2692 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2693 range_whole = 1;
2695 range_cyclic = wbc->range_cyclic;
2696 if (wbc->range_cyclic) {
2697 index = mapping->writeback_index;
2698 if (index)
2699 cycled = 0;
2700 wbc->range_start = index << PAGE_CACHE_SHIFT;
2701 wbc->range_end = LLONG_MAX;
2702 wbc->range_cyclic = 0;
2703 } else
2704 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2706 mpd.wbc = wbc;
2707 mpd.inode = mapping->host;
2710 * we don't want write_cache_pages to update
2711 * nr_to_write and writeback_index
2713 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2714 wbc->no_nrwrite_index_update = 1;
2715 pages_skipped = wbc->pages_skipped;
2717 retry:
2718 while (!ret && wbc->nr_to_write > 0) {
2721 * we insert one extent at a time. So we need
2722 * credit needed for single extent allocation.
2723 * journalled mode is currently not supported
2724 * by delalloc
2726 BUG_ON(ext4_should_journal_data(inode));
2727 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2729 /* start a new transaction*/
2730 handle = ext4_journal_start(inode, needed_blocks);
2731 if (IS_ERR(handle)) {
2732 ret = PTR_ERR(handle);
2733 printk(KERN_CRIT "%s: jbd2_start: "
2734 "%ld pages, ino %lu; err %d\n", __func__,
2735 wbc->nr_to_write, inode->i_ino, ret);
2736 dump_stack();
2737 goto out_writepages;
2741 * Now call __mpage_da_writepage to find the next
2742 * contiguous region of logical blocks that need
2743 * blocks to be allocated by ext4. We don't actually
2744 * submit the blocks for I/O here, even though
2745 * write_cache_pages thinks it will, and will set the
2746 * pages as clean for write before calling
2747 * __mpage_da_writepage().
2749 mpd.b_size = 0;
2750 mpd.b_state = 0;
2751 mpd.b_blocknr = 0;
2752 mpd.first_page = 0;
2753 mpd.next_page = 0;
2754 mpd.io_done = 0;
2755 mpd.pages_written = 0;
2756 mpd.retval = 0;
2757 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2758 &mpd);
2760 * If we have a contigous extent of pages and we
2761 * haven't done the I/O yet, map the blocks and submit
2762 * them for I/O.
2764 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2765 if (mpage_da_map_blocks(&mpd) == 0)
2766 mpage_da_submit_io(&mpd);
2767 mpd.io_done = 1;
2768 ret = MPAGE_DA_EXTENT_TAIL;
2770 wbc->nr_to_write -= mpd.pages_written;
2772 ext4_journal_stop(handle);
2774 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2775 /* commit the transaction which would
2776 * free blocks released in the transaction
2777 * and try again
2779 jbd2_journal_force_commit_nested(sbi->s_journal);
2780 wbc->pages_skipped = pages_skipped;
2781 ret = 0;
2782 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2784 * got one extent now try with
2785 * rest of the pages
2787 pages_written += mpd.pages_written;
2788 wbc->pages_skipped = pages_skipped;
2789 ret = 0;
2790 io_done = 1;
2791 } else if (wbc->nr_to_write)
2793 * There is no more writeout needed
2794 * or we requested for a noblocking writeout
2795 * and we found the device congested
2797 break;
2799 if (!io_done && !cycled) {
2800 cycled = 1;
2801 index = 0;
2802 wbc->range_start = index << PAGE_CACHE_SHIFT;
2803 wbc->range_end = mapping->writeback_index - 1;
2804 goto retry;
2806 if (pages_skipped != wbc->pages_skipped)
2807 printk(KERN_EMERG "This should not happen leaving %s "
2808 "with nr_to_write = %ld ret = %d\n",
2809 __func__, wbc->nr_to_write, ret);
2811 /* Update index */
2812 index += pages_written;
2813 wbc->range_cyclic = range_cyclic;
2814 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2816 * set the writeback_index so that range_cyclic
2817 * mode will write it back later
2819 mapping->writeback_index = index;
2821 out_writepages:
2822 if (!no_nrwrite_index_update)
2823 wbc->no_nrwrite_index_update = 0;
2824 wbc->nr_to_write -= nr_to_writebump;
2825 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2826 return ret;
2829 #define FALL_BACK_TO_NONDELALLOC 1
2830 static int ext4_nonda_switch(struct super_block *sb)
2832 s64 free_blocks, dirty_blocks;
2833 struct ext4_sb_info *sbi = EXT4_SB(sb);
2836 * switch to non delalloc mode if we are running low
2837 * on free block. The free block accounting via percpu
2838 * counters can get slightly wrong with percpu_counter_batch getting
2839 * accumulated on each CPU without updating global counters
2840 * Delalloc need an accurate free block accounting. So switch
2841 * to non delalloc when we are near to error range.
2843 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2844 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2845 if (2 * free_blocks < 3 * dirty_blocks ||
2846 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2848 * free block count is less that 150% of dirty blocks
2849 * or free blocks is less that watermark
2851 return 1;
2853 return 0;
2856 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2857 loff_t pos, unsigned len, unsigned flags,
2858 struct page **pagep, void **fsdata)
2860 int ret, retries = 0;
2861 struct page *page;
2862 pgoff_t index;
2863 unsigned from, to;
2864 struct inode *inode = mapping->host;
2865 handle_t *handle;
2867 index = pos >> PAGE_CACHE_SHIFT;
2868 from = pos & (PAGE_CACHE_SIZE - 1);
2869 to = from + len;
2871 if (ext4_nonda_switch(inode->i_sb)) {
2872 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2873 return ext4_write_begin(file, mapping, pos,
2874 len, flags, pagep, fsdata);
2876 *fsdata = (void *)0;
2877 trace_ext4_da_write_begin(inode, pos, len, flags);
2878 retry:
2880 * With delayed allocation, we don't log the i_disksize update
2881 * if there is delayed block allocation. But we still need
2882 * to journalling the i_disksize update if writes to the end
2883 * of file which has an already mapped buffer.
2885 handle = ext4_journal_start(inode, 1);
2886 if (IS_ERR(handle)) {
2887 ret = PTR_ERR(handle);
2888 goto out;
2890 /* We cannot recurse into the filesystem as the transaction is already
2891 * started */
2892 flags |= AOP_FLAG_NOFS;
2894 page = grab_cache_page_write_begin(mapping, index, flags);
2895 if (!page) {
2896 ext4_journal_stop(handle);
2897 ret = -ENOMEM;
2898 goto out;
2900 *pagep = page;
2902 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2903 ext4_da_get_block_prep);
2904 if (ret < 0) {
2905 unlock_page(page);
2906 ext4_journal_stop(handle);
2907 page_cache_release(page);
2909 * block_write_begin may have instantiated a few blocks
2910 * outside i_size. Trim these off again. Don't need
2911 * i_size_read because we hold i_mutex.
2913 if (pos + len > inode->i_size)
2914 vmtruncate(inode, inode->i_size);
2917 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2918 goto retry;
2919 out:
2920 return ret;
2924 * Check if we should update i_disksize
2925 * when write to the end of file but not require block allocation
2927 static int ext4_da_should_update_i_disksize(struct page *page,
2928 unsigned long offset)
2930 struct buffer_head *bh;
2931 struct inode *inode = page->mapping->host;
2932 unsigned int idx;
2933 int i;
2935 bh = page_buffers(page);
2936 idx = offset >> inode->i_blkbits;
2938 for (i = 0; i < idx; i++)
2939 bh = bh->b_this_page;
2941 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2942 return 0;
2943 return 1;
2946 static int ext4_da_write_end(struct file *file,
2947 struct address_space *mapping,
2948 loff_t pos, unsigned len, unsigned copied,
2949 struct page *page, void *fsdata)
2951 struct inode *inode = mapping->host;
2952 int ret = 0, ret2;
2953 handle_t *handle = ext4_journal_current_handle();
2954 loff_t new_i_size;
2955 unsigned long start, end;
2956 int write_mode = (int)(unsigned long)fsdata;
2958 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2959 if (ext4_should_order_data(inode)) {
2960 return ext4_ordered_write_end(file, mapping, pos,
2961 len, copied, page, fsdata);
2962 } else if (ext4_should_writeback_data(inode)) {
2963 return ext4_writeback_write_end(file, mapping, pos,
2964 len, copied, page, fsdata);
2965 } else {
2966 BUG();
2970 trace_ext4_da_write_end(inode, pos, len, copied);
2971 start = pos & (PAGE_CACHE_SIZE - 1);
2972 end = start + copied - 1;
2975 * generic_write_end() will run mark_inode_dirty() if i_size
2976 * changes. So let's piggyback the i_disksize mark_inode_dirty
2977 * into that.
2980 new_i_size = pos + copied;
2981 if (new_i_size > EXT4_I(inode)->i_disksize) {
2982 if (ext4_da_should_update_i_disksize(page, end)) {
2983 down_write(&EXT4_I(inode)->i_data_sem);
2984 if (new_i_size > EXT4_I(inode)->i_disksize) {
2986 * Updating i_disksize when extending file
2987 * without needing block allocation
2989 if (ext4_should_order_data(inode))
2990 ret = ext4_jbd2_file_inode(handle,
2991 inode);
2993 EXT4_I(inode)->i_disksize = new_i_size;
2995 up_write(&EXT4_I(inode)->i_data_sem);
2996 /* We need to mark inode dirty even if
2997 * new_i_size is less that inode->i_size
2998 * bu greater than i_disksize.(hint delalloc)
3000 ext4_mark_inode_dirty(handle, inode);
3003 ret2 = generic_write_end(file, mapping, pos, len, copied,
3004 page, fsdata);
3005 copied = ret2;
3006 if (ret2 < 0)
3007 ret = ret2;
3008 ret2 = ext4_journal_stop(handle);
3009 if (!ret)
3010 ret = ret2;
3012 return ret ? ret : copied;
3015 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3018 * Drop reserved blocks
3020 BUG_ON(!PageLocked(page));
3021 if (!page_has_buffers(page))
3022 goto out;
3024 ext4_da_page_release_reservation(page, offset);
3026 out:
3027 ext4_invalidatepage(page, offset);
3029 return;
3033 * Force all delayed allocation blocks to be allocated for a given inode.
3035 int ext4_alloc_da_blocks(struct inode *inode)
3037 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3038 !EXT4_I(inode)->i_reserved_meta_blocks)
3039 return 0;
3042 * We do something simple for now. The filemap_flush() will
3043 * also start triggering a write of the data blocks, which is
3044 * not strictly speaking necessary (and for users of
3045 * laptop_mode, not even desirable). However, to do otherwise
3046 * would require replicating code paths in:
3048 * ext4_da_writepages() ->
3049 * write_cache_pages() ---> (via passed in callback function)
3050 * __mpage_da_writepage() -->
3051 * mpage_add_bh_to_extent()
3052 * mpage_da_map_blocks()
3054 * The problem is that write_cache_pages(), located in
3055 * mm/page-writeback.c, marks pages clean in preparation for
3056 * doing I/O, which is not desirable if we're not planning on
3057 * doing I/O at all.
3059 * We could call write_cache_pages(), and then redirty all of
3060 * the pages by calling redirty_page_for_writeback() but that
3061 * would be ugly in the extreme. So instead we would need to
3062 * replicate parts of the code in the above functions,
3063 * simplifying them becuase we wouldn't actually intend to
3064 * write out the pages, but rather only collect contiguous
3065 * logical block extents, call the multi-block allocator, and
3066 * then update the buffer heads with the block allocations.
3068 * For now, though, we'll cheat by calling filemap_flush(),
3069 * which will map the blocks, and start the I/O, but not
3070 * actually wait for the I/O to complete.
3072 return filemap_flush(inode->i_mapping);
3076 * bmap() is special. It gets used by applications such as lilo and by
3077 * the swapper to find the on-disk block of a specific piece of data.
3079 * Naturally, this is dangerous if the block concerned is still in the
3080 * journal. If somebody makes a swapfile on an ext4 data-journaling
3081 * filesystem and enables swap, then they may get a nasty shock when the
3082 * data getting swapped to that swapfile suddenly gets overwritten by
3083 * the original zero's written out previously to the journal and
3084 * awaiting writeback in the kernel's buffer cache.
3086 * So, if we see any bmap calls here on a modified, data-journaled file,
3087 * take extra steps to flush any blocks which might be in the cache.
3089 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3091 struct inode *inode = mapping->host;
3092 journal_t *journal;
3093 int err;
3095 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3096 test_opt(inode->i_sb, DELALLOC)) {
3098 * With delalloc we want to sync the file
3099 * so that we can make sure we allocate
3100 * blocks for file
3102 filemap_write_and_wait(mapping);
3105 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3107 * This is a REALLY heavyweight approach, but the use of
3108 * bmap on dirty files is expected to be extremely rare:
3109 * only if we run lilo or swapon on a freshly made file
3110 * do we expect this to happen.
3112 * (bmap requires CAP_SYS_RAWIO so this does not
3113 * represent an unprivileged user DOS attack --- we'd be
3114 * in trouble if mortal users could trigger this path at
3115 * will.)
3117 * NB. EXT4_STATE_JDATA is not set on files other than
3118 * regular files. If somebody wants to bmap a directory
3119 * or symlink and gets confused because the buffer
3120 * hasn't yet been flushed to disk, they deserve
3121 * everything they get.
3124 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3125 journal = EXT4_JOURNAL(inode);
3126 jbd2_journal_lock_updates(journal);
3127 err = jbd2_journal_flush(journal);
3128 jbd2_journal_unlock_updates(journal);
3130 if (err)
3131 return 0;
3134 return generic_block_bmap(mapping, block, ext4_get_block);
3137 static int bget_one(handle_t *handle, struct buffer_head *bh)
3139 get_bh(bh);
3140 return 0;
3143 static int bput_one(handle_t *handle, struct buffer_head *bh)
3145 put_bh(bh);
3146 return 0;
3150 * Note that we don't need to start a transaction unless we're journaling data
3151 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3152 * need to file the inode to the transaction's list in ordered mode because if
3153 * we are writing back data added by write(), the inode is already there and if
3154 * we are writing back data modified via mmap(), noone guarantees in which
3155 * transaction the data will hit the disk. In case we are journaling data, we
3156 * cannot start transaction directly because transaction start ranks above page
3157 * lock so we have to do some magic.
3159 * In all journaling modes block_write_full_page() will start the I/O.
3161 * Problem:
3163 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3164 * ext4_writepage()
3166 * Similar for:
3168 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3170 * Same applies to ext4_get_block(). We will deadlock on various things like
3171 * lock_journal and i_data_sem
3173 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3174 * allocations fail.
3176 * 16May01: If we're reentered then journal_current_handle() will be
3177 * non-zero. We simply *return*.
3179 * 1 July 2001: @@@ FIXME:
3180 * In journalled data mode, a data buffer may be metadata against the
3181 * current transaction. But the same file is part of a shared mapping
3182 * and someone does a writepage() on it.
3184 * We will move the buffer onto the async_data list, but *after* it has
3185 * been dirtied. So there's a small window where we have dirty data on
3186 * BJ_Metadata.
3188 * Note that this only applies to the last partial page in the file. The
3189 * bit which block_write_full_page() uses prepare/commit for. (That's
3190 * broken code anyway: it's wrong for msync()).
3192 * It's a rare case: affects the final partial page, for journalled data
3193 * where the file is subject to bith write() and writepage() in the same
3194 * transction. To fix it we'll need a custom block_write_full_page().
3195 * We'll probably need that anyway for journalling writepage() output.
3197 * We don't honour synchronous mounts for writepage(). That would be
3198 * disastrous. Any write() or metadata operation will sync the fs for
3199 * us.
3202 static int __ext4_normal_writepage(struct page *page,
3203 struct writeback_control *wbc)
3205 struct inode *inode = page->mapping->host;
3207 if (test_opt(inode->i_sb, NOBH))
3208 return nobh_writepage(page, noalloc_get_block_write, wbc);
3209 else
3210 return block_write_full_page(page, noalloc_get_block_write,
3211 wbc);
3214 static int ext4_normal_writepage(struct page *page,
3215 struct writeback_control *wbc)
3217 struct inode *inode = page->mapping->host;
3218 loff_t size = i_size_read(inode);
3219 loff_t len;
3221 trace_ext4_normal_writepage(inode, page);
3222 J_ASSERT(PageLocked(page));
3223 if (page->index == size >> PAGE_CACHE_SHIFT)
3224 len = size & ~PAGE_CACHE_MASK;
3225 else
3226 len = PAGE_CACHE_SIZE;
3228 if (page_has_buffers(page)) {
3229 /* if page has buffers it should all be mapped
3230 * and allocated. If there are not buffers attached
3231 * to the page we know the page is dirty but it lost
3232 * buffers. That means that at some moment in time
3233 * after write_begin() / write_end() has been called
3234 * all buffers have been clean and thus they must have been
3235 * written at least once. So they are all mapped and we can
3236 * happily proceed with mapping them and writing the page.
3238 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3239 ext4_bh_unmapped_or_delay));
3242 if (!ext4_journal_current_handle())
3243 return __ext4_normal_writepage(page, wbc);
3245 redirty_page_for_writepage(wbc, page);
3246 unlock_page(page);
3247 return 0;
3250 static int __ext4_journalled_writepage(struct page *page,
3251 struct writeback_control *wbc)
3253 struct address_space *mapping = page->mapping;
3254 struct inode *inode = mapping->host;
3255 struct buffer_head *page_bufs;
3256 handle_t *handle = NULL;
3257 int ret = 0;
3258 int err;
3260 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3261 noalloc_get_block_write);
3262 if (ret != 0)
3263 goto out_unlock;
3265 page_bufs = page_buffers(page);
3266 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3267 bget_one);
3268 /* As soon as we unlock the page, it can go away, but we have
3269 * references to buffers so we are safe */
3270 unlock_page(page);
3272 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3273 if (IS_ERR(handle)) {
3274 ret = PTR_ERR(handle);
3275 goto out;
3278 ret = walk_page_buffers(handle, page_bufs, 0,
3279 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3281 err = walk_page_buffers(handle, page_bufs, 0,
3282 PAGE_CACHE_SIZE, NULL, write_end_fn);
3283 if (ret == 0)
3284 ret = err;
3285 err = ext4_journal_stop(handle);
3286 if (!ret)
3287 ret = err;
3289 walk_page_buffers(handle, page_bufs, 0,
3290 PAGE_CACHE_SIZE, NULL, bput_one);
3291 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3292 goto out;
3294 out_unlock:
3295 unlock_page(page);
3296 out:
3297 return ret;
3300 static int ext4_journalled_writepage(struct page *page,
3301 struct writeback_control *wbc)
3303 struct inode *inode = page->mapping->host;
3304 loff_t size = i_size_read(inode);
3305 loff_t len;
3307 trace_ext4_journalled_writepage(inode, page);
3308 J_ASSERT(PageLocked(page));
3309 if (page->index == size >> PAGE_CACHE_SHIFT)
3310 len = size & ~PAGE_CACHE_MASK;
3311 else
3312 len = PAGE_CACHE_SIZE;
3314 if (page_has_buffers(page)) {
3315 /* if page has buffers it should all be mapped
3316 * and allocated. If there are not buffers attached
3317 * to the page we know the page is dirty but it lost
3318 * buffers. That means that at some moment in time
3319 * after write_begin() / write_end() has been called
3320 * all buffers have been clean and thus they must have been
3321 * written at least once. So they are all mapped and we can
3322 * happily proceed with mapping them and writing the page.
3324 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3325 ext4_bh_unmapped_or_delay));
3328 if (ext4_journal_current_handle())
3329 goto no_write;
3331 if (PageChecked(page)) {
3333 * It's mmapped pagecache. Add buffers and journal it. There
3334 * doesn't seem much point in redirtying the page here.
3336 ClearPageChecked(page);
3337 return __ext4_journalled_writepage(page, wbc);
3338 } else {
3340 * It may be a page full of checkpoint-mode buffers. We don't
3341 * really know unless we go poke around in the buffer_heads.
3342 * But block_write_full_page will do the right thing.
3344 return block_write_full_page(page, noalloc_get_block_write,
3345 wbc);
3347 no_write:
3348 redirty_page_for_writepage(wbc, page);
3349 unlock_page(page);
3350 return 0;
3353 static int ext4_readpage(struct file *file, struct page *page)
3355 return mpage_readpage(page, ext4_get_block);
3358 static int
3359 ext4_readpages(struct file *file, struct address_space *mapping,
3360 struct list_head *pages, unsigned nr_pages)
3362 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3365 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3367 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3370 * If it's a full truncate we just forget about the pending dirtying
3372 if (offset == 0)
3373 ClearPageChecked(page);
3375 if (journal)
3376 jbd2_journal_invalidatepage(journal, page, offset);
3377 else
3378 block_invalidatepage(page, offset);
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385 WARN_ON(PageChecked(page));
3386 if (!page_has_buffers(page))
3387 return 0;
3388 if (journal)
3389 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3390 else
3391 return try_to_free_buffers(page);
3395 * If the O_DIRECT write will extend the file then add this inode to the
3396 * orphan list. So recovery will truncate it back to the original size
3397 * if the machine crashes during the write.
3399 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3400 * crashes then stale disk data _may_ be exposed inside the file. But current
3401 * VFS code falls back into buffered path in that case so we are safe.
3403 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3404 const struct iovec *iov, loff_t offset,
3405 unsigned long nr_segs)
3407 struct file *file = iocb->ki_filp;
3408 struct inode *inode = file->f_mapping->host;
3409 struct ext4_inode_info *ei = EXT4_I(inode);
3410 handle_t *handle;
3411 ssize_t ret;
3412 int orphan = 0;
3413 size_t count = iov_length(iov, nr_segs);
3415 if (rw == WRITE) {
3416 loff_t final_size = offset + count;
3418 if (final_size > inode->i_size) {
3419 /* Credits for sb + inode write */
3420 handle = ext4_journal_start(inode, 2);
3421 if (IS_ERR(handle)) {
3422 ret = PTR_ERR(handle);
3423 goto out;
3425 ret = ext4_orphan_add(handle, inode);
3426 if (ret) {
3427 ext4_journal_stop(handle);
3428 goto out;
3430 orphan = 1;
3431 ei->i_disksize = inode->i_size;
3432 ext4_journal_stop(handle);
3436 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3437 offset, nr_segs,
3438 ext4_get_block, NULL);
3440 if (orphan) {
3441 int err;
3443 /* Credits for sb + inode write */
3444 handle = ext4_journal_start(inode, 2);
3445 if (IS_ERR(handle)) {
3446 /* This is really bad luck. We've written the data
3447 * but cannot extend i_size. Bail out and pretend
3448 * the write failed... */
3449 ret = PTR_ERR(handle);
3450 goto out;
3452 if (inode->i_nlink)
3453 ext4_orphan_del(handle, inode);
3454 if (ret > 0) {
3455 loff_t end = offset + ret;
3456 if (end > inode->i_size) {
3457 ei->i_disksize = end;
3458 i_size_write(inode, end);
3460 * We're going to return a positive `ret'
3461 * here due to non-zero-length I/O, so there's
3462 * no way of reporting error returns from
3463 * ext4_mark_inode_dirty() to userspace. So
3464 * ignore it.
3466 ext4_mark_inode_dirty(handle, inode);
3469 err = ext4_journal_stop(handle);
3470 if (ret == 0)
3471 ret = err;
3473 out:
3474 return ret;
3478 * Pages can be marked dirty completely asynchronously from ext4's journalling
3479 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3480 * much here because ->set_page_dirty is called under VFS locks. The page is
3481 * not necessarily locked.
3483 * We cannot just dirty the page and leave attached buffers clean, because the
3484 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3485 * or jbddirty because all the journalling code will explode.
3487 * So what we do is to mark the page "pending dirty" and next time writepage
3488 * is called, propagate that into the buffers appropriately.
3490 static int ext4_journalled_set_page_dirty(struct page *page)
3492 SetPageChecked(page);
3493 return __set_page_dirty_nobuffers(page);
3496 static const struct address_space_operations ext4_ordered_aops = {
3497 .readpage = ext4_readpage,
3498 .readpages = ext4_readpages,
3499 .writepage = ext4_normal_writepage,
3500 .sync_page = block_sync_page,
3501 .write_begin = ext4_write_begin,
3502 .write_end = ext4_ordered_write_end,
3503 .bmap = ext4_bmap,
3504 .invalidatepage = ext4_invalidatepage,
3505 .releasepage = ext4_releasepage,
3506 .direct_IO = ext4_direct_IO,
3507 .migratepage = buffer_migrate_page,
3508 .is_partially_uptodate = block_is_partially_uptodate,
3511 static const struct address_space_operations ext4_writeback_aops = {
3512 .readpage = ext4_readpage,
3513 .readpages = ext4_readpages,
3514 .writepage = ext4_normal_writepage,
3515 .sync_page = block_sync_page,
3516 .write_begin = ext4_write_begin,
3517 .write_end = ext4_writeback_write_end,
3518 .bmap = ext4_bmap,
3519 .invalidatepage = ext4_invalidatepage,
3520 .releasepage = ext4_releasepage,
3521 .direct_IO = ext4_direct_IO,
3522 .migratepage = buffer_migrate_page,
3523 .is_partially_uptodate = block_is_partially_uptodate,
3526 static const struct address_space_operations ext4_journalled_aops = {
3527 .readpage = ext4_readpage,
3528 .readpages = ext4_readpages,
3529 .writepage = ext4_journalled_writepage,
3530 .sync_page = block_sync_page,
3531 .write_begin = ext4_write_begin,
3532 .write_end = ext4_journalled_write_end,
3533 .set_page_dirty = ext4_journalled_set_page_dirty,
3534 .bmap = ext4_bmap,
3535 .invalidatepage = ext4_invalidatepage,
3536 .releasepage = ext4_releasepage,
3537 .is_partially_uptodate = block_is_partially_uptodate,
3540 static const struct address_space_operations ext4_da_aops = {
3541 .readpage = ext4_readpage,
3542 .readpages = ext4_readpages,
3543 .writepage = ext4_da_writepage,
3544 .writepages = ext4_da_writepages,
3545 .sync_page = block_sync_page,
3546 .write_begin = ext4_da_write_begin,
3547 .write_end = ext4_da_write_end,
3548 .bmap = ext4_bmap,
3549 .invalidatepage = ext4_da_invalidatepage,
3550 .releasepage = ext4_releasepage,
3551 .direct_IO = ext4_direct_IO,
3552 .migratepage = buffer_migrate_page,
3553 .is_partially_uptodate = block_is_partially_uptodate,
3556 void ext4_set_aops(struct inode *inode)
3558 if (ext4_should_order_data(inode) &&
3559 test_opt(inode->i_sb, DELALLOC))
3560 inode->i_mapping->a_ops = &ext4_da_aops;
3561 else if (ext4_should_order_data(inode))
3562 inode->i_mapping->a_ops = &ext4_ordered_aops;
3563 else if (ext4_should_writeback_data(inode) &&
3564 test_opt(inode->i_sb, DELALLOC))
3565 inode->i_mapping->a_ops = &ext4_da_aops;
3566 else if (ext4_should_writeback_data(inode))
3567 inode->i_mapping->a_ops = &ext4_writeback_aops;
3568 else
3569 inode->i_mapping->a_ops = &ext4_journalled_aops;
3573 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3574 * up to the end of the block which corresponds to `from'.
3575 * This required during truncate. We need to physically zero the tail end
3576 * of that block so it doesn't yield old data if the file is later grown.
3578 int ext4_block_truncate_page(handle_t *handle,
3579 struct address_space *mapping, loff_t from)
3581 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3582 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3583 unsigned blocksize, length, pos;
3584 ext4_lblk_t iblock;
3585 struct inode *inode = mapping->host;
3586 struct buffer_head *bh;
3587 struct page *page;
3588 int err = 0;
3590 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3591 if (!page)
3592 return -EINVAL;
3594 blocksize = inode->i_sb->s_blocksize;
3595 length = blocksize - (offset & (blocksize - 1));
3596 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3599 * For "nobh" option, we can only work if we don't need to
3600 * read-in the page - otherwise we create buffers to do the IO.
3602 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3603 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3604 zero_user(page, offset, length);
3605 set_page_dirty(page);
3606 goto unlock;
3609 if (!page_has_buffers(page))
3610 create_empty_buffers(page, blocksize, 0);
3612 /* Find the buffer that contains "offset" */
3613 bh = page_buffers(page);
3614 pos = blocksize;
3615 while (offset >= pos) {
3616 bh = bh->b_this_page;
3617 iblock++;
3618 pos += blocksize;
3621 err = 0;
3622 if (buffer_freed(bh)) {
3623 BUFFER_TRACE(bh, "freed: skip");
3624 goto unlock;
3627 if (!buffer_mapped(bh)) {
3628 BUFFER_TRACE(bh, "unmapped");
3629 ext4_get_block(inode, iblock, bh, 0);
3630 /* unmapped? It's a hole - nothing to do */
3631 if (!buffer_mapped(bh)) {
3632 BUFFER_TRACE(bh, "still unmapped");
3633 goto unlock;
3637 /* Ok, it's mapped. Make sure it's up-to-date */
3638 if (PageUptodate(page))
3639 set_buffer_uptodate(bh);
3641 if (!buffer_uptodate(bh)) {
3642 err = -EIO;
3643 ll_rw_block(READ, 1, &bh);
3644 wait_on_buffer(bh);
3645 /* Uhhuh. Read error. Complain and punt. */
3646 if (!buffer_uptodate(bh))
3647 goto unlock;
3650 if (ext4_should_journal_data(inode)) {
3651 BUFFER_TRACE(bh, "get write access");
3652 err = ext4_journal_get_write_access(handle, bh);
3653 if (err)
3654 goto unlock;
3657 zero_user(page, offset, length);
3659 BUFFER_TRACE(bh, "zeroed end of block");
3661 err = 0;
3662 if (ext4_should_journal_data(inode)) {
3663 err = ext4_handle_dirty_metadata(handle, inode, bh);
3664 } else {
3665 if (ext4_should_order_data(inode))
3666 err = ext4_jbd2_file_inode(handle, inode);
3667 mark_buffer_dirty(bh);
3670 unlock:
3671 unlock_page(page);
3672 page_cache_release(page);
3673 return err;
3677 * Probably it should be a library function... search for first non-zero word
3678 * or memcmp with zero_page, whatever is better for particular architecture.
3679 * Linus?
3681 static inline int all_zeroes(__le32 *p, __le32 *q)
3683 while (p < q)
3684 if (*p++)
3685 return 0;
3686 return 1;
3690 * ext4_find_shared - find the indirect blocks for partial truncation.
3691 * @inode: inode in question
3692 * @depth: depth of the affected branch
3693 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3694 * @chain: place to store the pointers to partial indirect blocks
3695 * @top: place to the (detached) top of branch
3697 * This is a helper function used by ext4_truncate().
3699 * When we do truncate() we may have to clean the ends of several
3700 * indirect blocks but leave the blocks themselves alive. Block is
3701 * partially truncated if some data below the new i_size is refered
3702 * from it (and it is on the path to the first completely truncated
3703 * data block, indeed). We have to free the top of that path along
3704 * with everything to the right of the path. Since no allocation
3705 * past the truncation point is possible until ext4_truncate()
3706 * finishes, we may safely do the latter, but top of branch may
3707 * require special attention - pageout below the truncation point
3708 * might try to populate it.
3710 * We atomically detach the top of branch from the tree, store the
3711 * block number of its root in *@top, pointers to buffer_heads of
3712 * partially truncated blocks - in @chain[].bh and pointers to
3713 * their last elements that should not be removed - in
3714 * @chain[].p. Return value is the pointer to last filled element
3715 * of @chain.
3717 * The work left to caller to do the actual freeing of subtrees:
3718 * a) free the subtree starting from *@top
3719 * b) free the subtrees whose roots are stored in
3720 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3721 * c) free the subtrees growing from the inode past the @chain[0].
3722 * (no partially truncated stuff there). */
3724 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3725 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3727 Indirect *partial, *p;
3728 int k, err;
3730 *top = 0;
3731 /* Make k index the deepest non-null offest + 1 */
3732 for (k = depth; k > 1 && !offsets[k-1]; k--)
3734 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3735 /* Writer: pointers */
3736 if (!partial)
3737 partial = chain + k-1;
3739 * If the branch acquired continuation since we've looked at it -
3740 * fine, it should all survive and (new) top doesn't belong to us.
3742 if (!partial->key && *partial->p)
3743 /* Writer: end */
3744 goto no_top;
3745 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3748 * OK, we've found the last block that must survive. The rest of our
3749 * branch should be detached before unlocking. However, if that rest
3750 * of branch is all ours and does not grow immediately from the inode
3751 * it's easier to cheat and just decrement partial->p.
3753 if (p == chain + k - 1 && p > chain) {
3754 p->p--;
3755 } else {
3756 *top = *p->p;
3757 /* Nope, don't do this in ext4. Must leave the tree intact */
3758 #if 0
3759 *p->p = 0;
3760 #endif
3762 /* Writer: end */
3764 while (partial > p) {
3765 brelse(partial->bh);
3766 partial--;
3768 no_top:
3769 return partial;
3773 * Zero a number of block pointers in either an inode or an indirect block.
3774 * If we restart the transaction we must again get write access to the
3775 * indirect block for further modification.
3777 * We release `count' blocks on disk, but (last - first) may be greater
3778 * than `count' because there can be holes in there.
3780 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3781 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3782 unsigned long count, __le32 *first, __le32 *last)
3784 __le32 *p;
3785 if (try_to_extend_transaction(handle, inode)) {
3786 if (bh) {
3787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3788 ext4_handle_dirty_metadata(handle, inode, bh);
3790 ext4_mark_inode_dirty(handle, inode);
3791 ext4_journal_test_restart(handle, inode);
3792 if (bh) {
3793 BUFFER_TRACE(bh, "retaking write access");
3794 ext4_journal_get_write_access(handle, bh);
3799 * Any buffers which are on the journal will be in memory. We find
3800 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3801 * on them. We've already detached each block from the file, so
3802 * bforget() in jbd2_journal_forget() should be safe.
3804 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3806 for (p = first; p < last; p++) {
3807 u32 nr = le32_to_cpu(*p);
3808 if (nr) {
3809 struct buffer_head *tbh;
3811 *p = 0;
3812 tbh = sb_find_get_block(inode->i_sb, nr);
3813 ext4_forget(handle, 0, inode, tbh, nr);
3817 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3821 * ext4_free_data - free a list of data blocks
3822 * @handle: handle for this transaction
3823 * @inode: inode we are dealing with
3824 * @this_bh: indirect buffer_head which contains *@first and *@last
3825 * @first: array of block numbers
3826 * @last: points immediately past the end of array
3828 * We are freeing all blocks refered from that array (numbers are stored as
3829 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3831 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3832 * blocks are contiguous then releasing them at one time will only affect one
3833 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3834 * actually use a lot of journal space.
3836 * @this_bh will be %NULL if @first and @last point into the inode's direct
3837 * block pointers.
3839 static void ext4_free_data(handle_t *handle, struct inode *inode,
3840 struct buffer_head *this_bh,
3841 __le32 *first, __le32 *last)
3843 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3844 unsigned long count = 0; /* Number of blocks in the run */
3845 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3846 corresponding to
3847 block_to_free */
3848 ext4_fsblk_t nr; /* Current block # */
3849 __le32 *p; /* Pointer into inode/ind
3850 for current block */
3851 int err;
3853 if (this_bh) { /* For indirect block */
3854 BUFFER_TRACE(this_bh, "get_write_access");
3855 err = ext4_journal_get_write_access(handle, this_bh);
3856 /* Important: if we can't update the indirect pointers
3857 * to the blocks, we can't free them. */
3858 if (err)
3859 return;
3862 for (p = first; p < last; p++) {
3863 nr = le32_to_cpu(*p);
3864 if (nr) {
3865 /* accumulate blocks to free if they're contiguous */
3866 if (count == 0) {
3867 block_to_free = nr;
3868 block_to_free_p = p;
3869 count = 1;
3870 } else if (nr == block_to_free + count) {
3871 count++;
3872 } else {
3873 ext4_clear_blocks(handle, inode, this_bh,
3874 block_to_free,
3875 count, block_to_free_p, p);
3876 block_to_free = nr;
3877 block_to_free_p = p;
3878 count = 1;
3883 if (count > 0)
3884 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3885 count, block_to_free_p, p);
3887 if (this_bh) {
3888 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3891 * The buffer head should have an attached journal head at this
3892 * point. However, if the data is corrupted and an indirect
3893 * block pointed to itself, it would have been detached when
3894 * the block was cleared. Check for this instead of OOPSing.
3896 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3897 ext4_handle_dirty_metadata(handle, inode, this_bh);
3898 else
3899 ext4_error(inode->i_sb, __func__,
3900 "circular indirect block detected, "
3901 "inode=%lu, block=%llu",
3902 inode->i_ino,
3903 (unsigned long long) this_bh->b_blocknr);
3908 * ext4_free_branches - free an array of branches
3909 * @handle: JBD handle for this transaction
3910 * @inode: inode we are dealing with
3911 * @parent_bh: the buffer_head which contains *@first and *@last
3912 * @first: array of block numbers
3913 * @last: pointer immediately past the end of array
3914 * @depth: depth of the branches to free
3916 * We are freeing all blocks refered from these branches (numbers are
3917 * stored as little-endian 32-bit) and updating @inode->i_blocks
3918 * appropriately.
3920 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3921 struct buffer_head *parent_bh,
3922 __le32 *first, __le32 *last, int depth)
3924 ext4_fsblk_t nr;
3925 __le32 *p;
3927 if (ext4_handle_is_aborted(handle))
3928 return;
3930 if (depth--) {
3931 struct buffer_head *bh;
3932 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3933 p = last;
3934 while (--p >= first) {
3935 nr = le32_to_cpu(*p);
3936 if (!nr)
3937 continue; /* A hole */
3939 /* Go read the buffer for the next level down */
3940 bh = sb_bread(inode->i_sb, nr);
3943 * A read failure? Report error and clear slot
3944 * (should be rare).
3946 if (!bh) {
3947 ext4_error(inode->i_sb, "ext4_free_branches",
3948 "Read failure, inode=%lu, block=%llu",
3949 inode->i_ino, nr);
3950 continue;
3953 /* This zaps the entire block. Bottom up. */
3954 BUFFER_TRACE(bh, "free child branches");
3955 ext4_free_branches(handle, inode, bh,
3956 (__le32 *) bh->b_data,
3957 (__le32 *) bh->b_data + addr_per_block,
3958 depth);
3961 * We've probably journalled the indirect block several
3962 * times during the truncate. But it's no longer
3963 * needed and we now drop it from the transaction via
3964 * jbd2_journal_revoke().
3966 * That's easy if it's exclusively part of this
3967 * transaction. But if it's part of the committing
3968 * transaction then jbd2_journal_forget() will simply
3969 * brelse() it. That means that if the underlying
3970 * block is reallocated in ext4_get_block(),
3971 * unmap_underlying_metadata() will find this block
3972 * and will try to get rid of it. damn, damn.
3974 * If this block has already been committed to the
3975 * journal, a revoke record will be written. And
3976 * revoke records must be emitted *before* clearing
3977 * this block's bit in the bitmaps.
3979 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3982 * Everything below this this pointer has been
3983 * released. Now let this top-of-subtree go.
3985 * We want the freeing of this indirect block to be
3986 * atomic in the journal with the updating of the
3987 * bitmap block which owns it. So make some room in
3988 * the journal.
3990 * We zero the parent pointer *after* freeing its
3991 * pointee in the bitmaps, so if extend_transaction()
3992 * for some reason fails to put the bitmap changes and
3993 * the release into the same transaction, recovery
3994 * will merely complain about releasing a free block,
3995 * rather than leaking blocks.
3997 if (ext4_handle_is_aborted(handle))
3998 return;
3999 if (try_to_extend_transaction(handle, inode)) {
4000 ext4_mark_inode_dirty(handle, inode);
4001 ext4_journal_test_restart(handle, inode);
4004 ext4_free_blocks(handle, inode, nr, 1, 1);
4006 if (parent_bh) {
4008 * The block which we have just freed is
4009 * pointed to by an indirect block: journal it
4011 BUFFER_TRACE(parent_bh, "get_write_access");
4012 if (!ext4_journal_get_write_access(handle,
4013 parent_bh)){
4014 *p = 0;
4015 BUFFER_TRACE(parent_bh,
4016 "call ext4_handle_dirty_metadata");
4017 ext4_handle_dirty_metadata(handle,
4018 inode,
4019 parent_bh);
4023 } else {
4024 /* We have reached the bottom of the tree. */
4025 BUFFER_TRACE(parent_bh, "free data blocks");
4026 ext4_free_data(handle, inode, parent_bh, first, last);
4030 int ext4_can_truncate(struct inode *inode)
4032 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4033 return 0;
4034 if (S_ISREG(inode->i_mode))
4035 return 1;
4036 if (S_ISDIR(inode->i_mode))
4037 return 1;
4038 if (S_ISLNK(inode->i_mode))
4039 return !ext4_inode_is_fast_symlink(inode);
4040 return 0;
4044 * ext4_truncate()
4046 * We block out ext4_get_block() block instantiations across the entire
4047 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4048 * simultaneously on behalf of the same inode.
4050 * As we work through the truncate and commmit bits of it to the journal there
4051 * is one core, guiding principle: the file's tree must always be consistent on
4052 * disk. We must be able to restart the truncate after a crash.
4054 * The file's tree may be transiently inconsistent in memory (although it
4055 * probably isn't), but whenever we close off and commit a journal transaction,
4056 * the contents of (the filesystem + the journal) must be consistent and
4057 * restartable. It's pretty simple, really: bottom up, right to left (although
4058 * left-to-right works OK too).
4060 * Note that at recovery time, journal replay occurs *before* the restart of
4061 * truncate against the orphan inode list.
4063 * The committed inode has the new, desired i_size (which is the same as
4064 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4065 * that this inode's truncate did not complete and it will again call
4066 * ext4_truncate() to have another go. So there will be instantiated blocks
4067 * to the right of the truncation point in a crashed ext4 filesystem. But
4068 * that's fine - as long as they are linked from the inode, the post-crash
4069 * ext4_truncate() run will find them and release them.
4071 void ext4_truncate(struct inode *inode)
4073 handle_t *handle;
4074 struct ext4_inode_info *ei = EXT4_I(inode);
4075 __le32 *i_data = ei->i_data;
4076 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4077 struct address_space *mapping = inode->i_mapping;
4078 ext4_lblk_t offsets[4];
4079 Indirect chain[4];
4080 Indirect *partial;
4081 __le32 nr = 0;
4082 int n;
4083 ext4_lblk_t last_block;
4084 unsigned blocksize = inode->i_sb->s_blocksize;
4086 if (!ext4_can_truncate(inode))
4087 return;
4089 if (ei->i_disksize && inode->i_size == 0 &&
4090 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4091 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4093 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4094 ext4_ext_truncate(inode);
4095 return;
4098 handle = start_transaction(inode);
4099 if (IS_ERR(handle))
4100 return; /* AKPM: return what? */
4102 last_block = (inode->i_size + blocksize-1)
4103 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4105 if (inode->i_size & (blocksize - 1))
4106 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4107 goto out_stop;
4109 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4110 if (n == 0)
4111 goto out_stop; /* error */
4114 * OK. This truncate is going to happen. We add the inode to the
4115 * orphan list, so that if this truncate spans multiple transactions,
4116 * and we crash, we will resume the truncate when the filesystem
4117 * recovers. It also marks the inode dirty, to catch the new size.
4119 * Implication: the file must always be in a sane, consistent
4120 * truncatable state while each transaction commits.
4122 if (ext4_orphan_add(handle, inode))
4123 goto out_stop;
4126 * From here we block out all ext4_get_block() callers who want to
4127 * modify the block allocation tree.
4129 down_write(&ei->i_data_sem);
4131 ext4_discard_preallocations(inode);
4134 * The orphan list entry will now protect us from any crash which
4135 * occurs before the truncate completes, so it is now safe to propagate
4136 * the new, shorter inode size (held for now in i_size) into the
4137 * on-disk inode. We do this via i_disksize, which is the value which
4138 * ext4 *really* writes onto the disk inode.
4140 ei->i_disksize = inode->i_size;
4142 if (n == 1) { /* direct blocks */
4143 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4144 i_data + EXT4_NDIR_BLOCKS);
4145 goto do_indirects;
4148 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4149 /* Kill the top of shared branch (not detached) */
4150 if (nr) {
4151 if (partial == chain) {
4152 /* Shared branch grows from the inode */
4153 ext4_free_branches(handle, inode, NULL,
4154 &nr, &nr+1, (chain+n-1) - partial);
4155 *partial->p = 0;
4157 * We mark the inode dirty prior to restart,
4158 * and prior to stop. No need for it here.
4160 } else {
4161 /* Shared branch grows from an indirect block */
4162 BUFFER_TRACE(partial->bh, "get_write_access");
4163 ext4_free_branches(handle, inode, partial->bh,
4164 partial->p,
4165 partial->p+1, (chain+n-1) - partial);
4168 /* Clear the ends of indirect blocks on the shared branch */
4169 while (partial > chain) {
4170 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4171 (__le32*)partial->bh->b_data+addr_per_block,
4172 (chain+n-1) - partial);
4173 BUFFER_TRACE(partial->bh, "call brelse");
4174 brelse (partial->bh);
4175 partial--;
4177 do_indirects:
4178 /* Kill the remaining (whole) subtrees */
4179 switch (offsets[0]) {
4180 default:
4181 nr = i_data[EXT4_IND_BLOCK];
4182 if (nr) {
4183 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4184 i_data[EXT4_IND_BLOCK] = 0;
4186 case EXT4_IND_BLOCK:
4187 nr = i_data[EXT4_DIND_BLOCK];
4188 if (nr) {
4189 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4190 i_data[EXT4_DIND_BLOCK] = 0;
4192 case EXT4_DIND_BLOCK:
4193 nr = i_data[EXT4_TIND_BLOCK];
4194 if (nr) {
4195 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4196 i_data[EXT4_TIND_BLOCK] = 0;
4198 case EXT4_TIND_BLOCK:
4202 up_write(&ei->i_data_sem);
4203 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4204 ext4_mark_inode_dirty(handle, inode);
4207 * In a multi-transaction truncate, we only make the final transaction
4208 * synchronous
4210 if (IS_SYNC(inode))
4211 ext4_handle_sync(handle);
4212 out_stop:
4214 * If this was a simple ftruncate(), and the file will remain alive
4215 * then we need to clear up the orphan record which we created above.
4216 * However, if this was a real unlink then we were called by
4217 * ext4_delete_inode(), and we allow that function to clean up the
4218 * orphan info for us.
4220 if (inode->i_nlink)
4221 ext4_orphan_del(handle, inode);
4223 ext4_journal_stop(handle);
4227 * ext4_get_inode_loc returns with an extra refcount against the inode's
4228 * underlying buffer_head on success. If 'in_mem' is true, we have all
4229 * data in memory that is needed to recreate the on-disk version of this
4230 * inode.
4232 static int __ext4_get_inode_loc(struct inode *inode,
4233 struct ext4_iloc *iloc, int in_mem)
4235 struct ext4_group_desc *gdp;
4236 struct buffer_head *bh;
4237 struct super_block *sb = inode->i_sb;
4238 ext4_fsblk_t block;
4239 int inodes_per_block, inode_offset;
4241 iloc->bh = NULL;
4242 if (!ext4_valid_inum(sb, inode->i_ino))
4243 return -EIO;
4245 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4246 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4247 if (!gdp)
4248 return -EIO;
4251 * Figure out the offset within the block group inode table
4253 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4254 inode_offset = ((inode->i_ino - 1) %
4255 EXT4_INODES_PER_GROUP(sb));
4256 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4257 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4259 bh = sb_getblk(sb, block);
4260 if (!bh) {
4261 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4262 "inode block - inode=%lu, block=%llu",
4263 inode->i_ino, block);
4264 return -EIO;
4266 if (!buffer_uptodate(bh)) {
4267 lock_buffer(bh);
4270 * If the buffer has the write error flag, we have failed
4271 * to write out another inode in the same block. In this
4272 * case, we don't have to read the block because we may
4273 * read the old inode data successfully.
4275 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4276 set_buffer_uptodate(bh);
4278 if (buffer_uptodate(bh)) {
4279 /* someone brought it uptodate while we waited */
4280 unlock_buffer(bh);
4281 goto has_buffer;
4285 * If we have all information of the inode in memory and this
4286 * is the only valid inode in the block, we need not read the
4287 * block.
4289 if (in_mem) {
4290 struct buffer_head *bitmap_bh;
4291 int i, start;
4293 start = inode_offset & ~(inodes_per_block - 1);
4295 /* Is the inode bitmap in cache? */
4296 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4297 if (!bitmap_bh)
4298 goto make_io;
4301 * If the inode bitmap isn't in cache then the
4302 * optimisation may end up performing two reads instead
4303 * of one, so skip it.
4305 if (!buffer_uptodate(bitmap_bh)) {
4306 brelse(bitmap_bh);
4307 goto make_io;
4309 for (i = start; i < start + inodes_per_block; i++) {
4310 if (i == inode_offset)
4311 continue;
4312 if (ext4_test_bit(i, bitmap_bh->b_data))
4313 break;
4315 brelse(bitmap_bh);
4316 if (i == start + inodes_per_block) {
4317 /* all other inodes are free, so skip I/O */
4318 memset(bh->b_data, 0, bh->b_size);
4319 set_buffer_uptodate(bh);
4320 unlock_buffer(bh);
4321 goto has_buffer;
4325 make_io:
4327 * If we need to do any I/O, try to pre-readahead extra
4328 * blocks from the inode table.
4330 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4331 ext4_fsblk_t b, end, table;
4332 unsigned num;
4334 table = ext4_inode_table(sb, gdp);
4335 /* s_inode_readahead_blks is always a power of 2 */
4336 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4337 if (table > b)
4338 b = table;
4339 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4340 num = EXT4_INODES_PER_GROUP(sb);
4341 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4342 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4343 num -= ext4_itable_unused_count(sb, gdp);
4344 table += num / inodes_per_block;
4345 if (end > table)
4346 end = table;
4347 while (b <= end)
4348 sb_breadahead(sb, b++);
4352 * There are other valid inodes in the buffer, this inode
4353 * has in-inode xattrs, or we don't have this inode in memory.
4354 * Read the block from disk.
4356 get_bh(bh);
4357 bh->b_end_io = end_buffer_read_sync;
4358 submit_bh(READ_META, bh);
4359 wait_on_buffer(bh);
4360 if (!buffer_uptodate(bh)) {
4361 ext4_error(sb, __func__,
4362 "unable to read inode block - inode=%lu, "
4363 "block=%llu", inode->i_ino, block);
4364 brelse(bh);
4365 return -EIO;
4368 has_buffer:
4369 iloc->bh = bh;
4370 return 0;
4373 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4375 /* We have all inode data except xattrs in memory here. */
4376 return __ext4_get_inode_loc(inode, iloc,
4377 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4380 void ext4_set_inode_flags(struct inode *inode)
4382 unsigned int flags = EXT4_I(inode)->i_flags;
4384 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4385 if (flags & EXT4_SYNC_FL)
4386 inode->i_flags |= S_SYNC;
4387 if (flags & EXT4_APPEND_FL)
4388 inode->i_flags |= S_APPEND;
4389 if (flags & EXT4_IMMUTABLE_FL)
4390 inode->i_flags |= S_IMMUTABLE;
4391 if (flags & EXT4_NOATIME_FL)
4392 inode->i_flags |= S_NOATIME;
4393 if (flags & EXT4_DIRSYNC_FL)
4394 inode->i_flags |= S_DIRSYNC;
4397 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4398 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4400 unsigned int flags = ei->vfs_inode.i_flags;
4402 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4403 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4404 if (flags & S_SYNC)
4405 ei->i_flags |= EXT4_SYNC_FL;
4406 if (flags & S_APPEND)
4407 ei->i_flags |= EXT4_APPEND_FL;
4408 if (flags & S_IMMUTABLE)
4409 ei->i_flags |= EXT4_IMMUTABLE_FL;
4410 if (flags & S_NOATIME)
4411 ei->i_flags |= EXT4_NOATIME_FL;
4412 if (flags & S_DIRSYNC)
4413 ei->i_flags |= EXT4_DIRSYNC_FL;
4415 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4416 struct ext4_inode_info *ei)
4418 blkcnt_t i_blocks ;
4419 struct inode *inode = &(ei->vfs_inode);
4420 struct super_block *sb = inode->i_sb;
4422 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4423 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4424 /* we are using combined 48 bit field */
4425 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4426 le32_to_cpu(raw_inode->i_blocks_lo);
4427 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4428 /* i_blocks represent file system block size */
4429 return i_blocks << (inode->i_blkbits - 9);
4430 } else {
4431 return i_blocks;
4433 } else {
4434 return le32_to_cpu(raw_inode->i_blocks_lo);
4438 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4440 struct ext4_iloc iloc;
4441 struct ext4_inode *raw_inode;
4442 struct ext4_inode_info *ei;
4443 struct buffer_head *bh;
4444 struct inode *inode;
4445 long ret;
4446 int block;
4448 inode = iget_locked(sb, ino);
4449 if (!inode)
4450 return ERR_PTR(-ENOMEM);
4451 if (!(inode->i_state & I_NEW))
4452 return inode;
4454 ei = EXT4_I(inode);
4455 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4456 ei->i_acl = EXT4_ACL_NOT_CACHED;
4457 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4458 #endif
4460 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4461 if (ret < 0)
4462 goto bad_inode;
4463 bh = iloc.bh;
4464 raw_inode = ext4_raw_inode(&iloc);
4465 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4466 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4467 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4468 if (!(test_opt(inode->i_sb, NO_UID32))) {
4469 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4470 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4472 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4474 ei->i_state = 0;
4475 ei->i_dir_start_lookup = 0;
4476 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4477 /* We now have enough fields to check if the inode was active or not.
4478 * This is needed because nfsd might try to access dead inodes
4479 * the test is that same one that e2fsck uses
4480 * NeilBrown 1999oct15
4482 if (inode->i_nlink == 0) {
4483 if (inode->i_mode == 0 ||
4484 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4485 /* this inode is deleted */
4486 brelse(bh);
4487 ret = -ESTALE;
4488 goto bad_inode;
4490 /* The only unlinked inodes we let through here have
4491 * valid i_mode and are being read by the orphan
4492 * recovery code: that's fine, we're about to complete
4493 * the process of deleting those. */
4495 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4496 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4497 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4498 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4499 ei->i_file_acl |=
4500 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4501 inode->i_size = ext4_isize(raw_inode);
4502 ei->i_disksize = inode->i_size;
4503 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4504 ei->i_block_group = iloc.block_group;
4505 ei->i_last_alloc_group = ~0;
4507 * NOTE! The in-memory inode i_data array is in little-endian order
4508 * even on big-endian machines: we do NOT byteswap the block numbers!
4510 for (block = 0; block < EXT4_N_BLOCKS; block++)
4511 ei->i_data[block] = raw_inode->i_block[block];
4512 INIT_LIST_HEAD(&ei->i_orphan);
4514 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4515 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4516 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4517 EXT4_INODE_SIZE(inode->i_sb)) {
4518 brelse(bh);
4519 ret = -EIO;
4520 goto bad_inode;
4522 if (ei->i_extra_isize == 0) {
4523 /* The extra space is currently unused. Use it. */
4524 ei->i_extra_isize = sizeof(struct ext4_inode) -
4525 EXT4_GOOD_OLD_INODE_SIZE;
4526 } else {
4527 __le32 *magic = (void *)raw_inode +
4528 EXT4_GOOD_OLD_INODE_SIZE +
4529 ei->i_extra_isize;
4530 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4531 ei->i_state |= EXT4_STATE_XATTR;
4533 } else
4534 ei->i_extra_isize = 0;
4536 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4537 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4538 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4539 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4541 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4542 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4543 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4544 inode->i_version |=
4545 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4548 ret = 0;
4549 if (ei->i_file_acl &&
4550 ((ei->i_file_acl <
4551 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4552 EXT4_SB(sb)->s_gdb_count)) ||
4553 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4554 ext4_error(sb, __func__,
4555 "bad extended attribute block %llu in inode #%lu",
4556 ei->i_file_acl, inode->i_ino);
4557 ret = -EIO;
4558 goto bad_inode;
4559 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4560 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4561 (S_ISLNK(inode->i_mode) &&
4562 !ext4_inode_is_fast_symlink(inode)))
4563 /* Validate extent which is part of inode */
4564 ret = ext4_ext_check_inode(inode);
4565 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4566 (S_ISLNK(inode->i_mode) &&
4567 !ext4_inode_is_fast_symlink(inode))) {
4568 /* Validate block references which are part of inode */
4569 ret = ext4_check_inode_blockref(inode);
4571 if (ret) {
4572 brelse(bh);
4573 goto bad_inode;
4576 if (S_ISREG(inode->i_mode)) {
4577 inode->i_op = &ext4_file_inode_operations;
4578 inode->i_fop = &ext4_file_operations;
4579 ext4_set_aops(inode);
4580 } else if (S_ISDIR(inode->i_mode)) {
4581 inode->i_op = &ext4_dir_inode_operations;
4582 inode->i_fop = &ext4_dir_operations;
4583 } else if (S_ISLNK(inode->i_mode)) {
4584 if (ext4_inode_is_fast_symlink(inode)) {
4585 inode->i_op = &ext4_fast_symlink_inode_operations;
4586 nd_terminate_link(ei->i_data, inode->i_size,
4587 sizeof(ei->i_data) - 1);
4588 } else {
4589 inode->i_op = &ext4_symlink_inode_operations;
4590 ext4_set_aops(inode);
4592 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4593 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4594 inode->i_op = &ext4_special_inode_operations;
4595 if (raw_inode->i_block[0])
4596 init_special_inode(inode, inode->i_mode,
4597 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4598 else
4599 init_special_inode(inode, inode->i_mode,
4600 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4601 } else {
4602 brelse(bh);
4603 ret = -EIO;
4604 ext4_error(inode->i_sb, __func__,
4605 "bogus i_mode (%o) for inode=%lu",
4606 inode->i_mode, inode->i_ino);
4607 goto bad_inode;
4609 brelse(iloc.bh);
4610 ext4_set_inode_flags(inode);
4611 unlock_new_inode(inode);
4612 return inode;
4614 bad_inode:
4615 iget_failed(inode);
4616 return ERR_PTR(ret);
4619 static int ext4_inode_blocks_set(handle_t *handle,
4620 struct ext4_inode *raw_inode,
4621 struct ext4_inode_info *ei)
4623 struct inode *inode = &(ei->vfs_inode);
4624 u64 i_blocks = inode->i_blocks;
4625 struct super_block *sb = inode->i_sb;
4627 if (i_blocks <= ~0U) {
4629 * i_blocks can be represnted in a 32 bit variable
4630 * as multiple of 512 bytes
4632 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4633 raw_inode->i_blocks_high = 0;
4634 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4635 return 0;
4637 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4638 return -EFBIG;
4640 if (i_blocks <= 0xffffffffffffULL) {
4642 * i_blocks can be represented in a 48 bit variable
4643 * as multiple of 512 bytes
4645 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4646 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4647 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4648 } else {
4649 ei->i_flags |= EXT4_HUGE_FILE_FL;
4650 /* i_block is stored in file system block size */
4651 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4652 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4653 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4655 return 0;
4659 * Post the struct inode info into an on-disk inode location in the
4660 * buffer-cache. This gobbles the caller's reference to the
4661 * buffer_head in the inode location struct.
4663 * The caller must have write access to iloc->bh.
4665 static int ext4_do_update_inode(handle_t *handle,
4666 struct inode *inode,
4667 struct ext4_iloc *iloc)
4669 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4670 struct ext4_inode_info *ei = EXT4_I(inode);
4671 struct buffer_head *bh = iloc->bh;
4672 int err = 0, rc, block;
4674 /* For fields not not tracking in the in-memory inode,
4675 * initialise them to zero for new inodes. */
4676 if (ei->i_state & EXT4_STATE_NEW)
4677 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4679 ext4_get_inode_flags(ei);
4680 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4681 if (!(test_opt(inode->i_sb, NO_UID32))) {
4682 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4683 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4685 * Fix up interoperability with old kernels. Otherwise, old inodes get
4686 * re-used with the upper 16 bits of the uid/gid intact
4688 if (!ei->i_dtime) {
4689 raw_inode->i_uid_high =
4690 cpu_to_le16(high_16_bits(inode->i_uid));
4691 raw_inode->i_gid_high =
4692 cpu_to_le16(high_16_bits(inode->i_gid));
4693 } else {
4694 raw_inode->i_uid_high = 0;
4695 raw_inode->i_gid_high = 0;
4697 } else {
4698 raw_inode->i_uid_low =
4699 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4700 raw_inode->i_gid_low =
4701 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4702 raw_inode->i_uid_high = 0;
4703 raw_inode->i_gid_high = 0;
4705 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4707 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4708 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4709 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4710 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4712 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4713 goto out_brelse;
4714 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4715 /* clear the migrate flag in the raw_inode */
4716 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4717 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4718 cpu_to_le32(EXT4_OS_HURD))
4719 raw_inode->i_file_acl_high =
4720 cpu_to_le16(ei->i_file_acl >> 32);
4721 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4722 ext4_isize_set(raw_inode, ei->i_disksize);
4723 if (ei->i_disksize > 0x7fffffffULL) {
4724 struct super_block *sb = inode->i_sb;
4725 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4726 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4727 EXT4_SB(sb)->s_es->s_rev_level ==
4728 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4729 /* If this is the first large file
4730 * created, add a flag to the superblock.
4732 err = ext4_journal_get_write_access(handle,
4733 EXT4_SB(sb)->s_sbh);
4734 if (err)
4735 goto out_brelse;
4736 ext4_update_dynamic_rev(sb);
4737 EXT4_SET_RO_COMPAT_FEATURE(sb,
4738 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4739 sb->s_dirt = 1;
4740 ext4_handle_sync(handle);
4741 err = ext4_handle_dirty_metadata(handle, inode,
4742 EXT4_SB(sb)->s_sbh);
4745 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4746 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4747 if (old_valid_dev(inode->i_rdev)) {
4748 raw_inode->i_block[0] =
4749 cpu_to_le32(old_encode_dev(inode->i_rdev));
4750 raw_inode->i_block[1] = 0;
4751 } else {
4752 raw_inode->i_block[0] = 0;
4753 raw_inode->i_block[1] =
4754 cpu_to_le32(new_encode_dev(inode->i_rdev));
4755 raw_inode->i_block[2] = 0;
4757 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4758 raw_inode->i_block[block] = ei->i_data[block];
4760 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4761 if (ei->i_extra_isize) {
4762 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4763 raw_inode->i_version_hi =
4764 cpu_to_le32(inode->i_version >> 32);
4765 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4768 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4769 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4770 if (!err)
4771 err = rc;
4772 ei->i_state &= ~EXT4_STATE_NEW;
4774 out_brelse:
4775 brelse(bh);
4776 ext4_std_error(inode->i_sb, err);
4777 return err;
4781 * ext4_write_inode()
4783 * We are called from a few places:
4785 * - Within generic_file_write() for O_SYNC files.
4786 * Here, there will be no transaction running. We wait for any running
4787 * trasnaction to commit.
4789 * - Within sys_sync(), kupdate and such.
4790 * We wait on commit, if tol to.
4792 * - Within prune_icache() (PF_MEMALLOC == true)
4793 * Here we simply return. We can't afford to block kswapd on the
4794 * journal commit.
4796 * In all cases it is actually safe for us to return without doing anything,
4797 * because the inode has been copied into a raw inode buffer in
4798 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4799 * knfsd.
4801 * Note that we are absolutely dependent upon all inode dirtiers doing the
4802 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4803 * which we are interested.
4805 * It would be a bug for them to not do this. The code:
4807 * mark_inode_dirty(inode)
4808 * stuff();
4809 * inode->i_size = expr;
4811 * is in error because a kswapd-driven write_inode() could occur while
4812 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4813 * will no longer be on the superblock's dirty inode list.
4815 int ext4_write_inode(struct inode *inode, int wait)
4817 if (current->flags & PF_MEMALLOC)
4818 return 0;
4820 if (ext4_journal_current_handle()) {
4821 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4822 dump_stack();
4823 return -EIO;
4826 if (!wait)
4827 return 0;
4829 return ext4_force_commit(inode->i_sb);
4833 * ext4_setattr()
4835 * Called from notify_change.
4837 * We want to trap VFS attempts to truncate the file as soon as
4838 * possible. In particular, we want to make sure that when the VFS
4839 * shrinks i_size, we put the inode on the orphan list and modify
4840 * i_disksize immediately, so that during the subsequent flushing of
4841 * dirty pages and freeing of disk blocks, we can guarantee that any
4842 * commit will leave the blocks being flushed in an unused state on
4843 * disk. (On recovery, the inode will get truncated and the blocks will
4844 * be freed, so we have a strong guarantee that no future commit will
4845 * leave these blocks visible to the user.)
4847 * Another thing we have to assure is that if we are in ordered mode
4848 * and inode is still attached to the committing transaction, we must
4849 * we start writeout of all the dirty pages which are being truncated.
4850 * This way we are sure that all the data written in the previous
4851 * transaction are already on disk (truncate waits for pages under
4852 * writeback).
4854 * Called with inode->i_mutex down.
4856 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4858 struct inode *inode = dentry->d_inode;
4859 int error, rc = 0;
4860 const unsigned int ia_valid = attr->ia_valid;
4862 error = inode_change_ok(inode, attr);
4863 if (error)
4864 return error;
4866 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4867 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4868 handle_t *handle;
4870 /* (user+group)*(old+new) structure, inode write (sb,
4871 * inode block, ? - but truncate inode update has it) */
4872 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4873 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4874 if (IS_ERR(handle)) {
4875 error = PTR_ERR(handle);
4876 goto err_out;
4878 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4879 if (error) {
4880 ext4_journal_stop(handle);
4881 return error;
4883 /* Update corresponding info in inode so that everything is in
4884 * one transaction */
4885 if (attr->ia_valid & ATTR_UID)
4886 inode->i_uid = attr->ia_uid;
4887 if (attr->ia_valid & ATTR_GID)
4888 inode->i_gid = attr->ia_gid;
4889 error = ext4_mark_inode_dirty(handle, inode);
4890 ext4_journal_stop(handle);
4893 if (attr->ia_valid & ATTR_SIZE) {
4894 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4895 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4897 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4898 error = -EFBIG;
4899 goto err_out;
4904 if (S_ISREG(inode->i_mode) &&
4905 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4906 handle_t *handle;
4908 handle = ext4_journal_start(inode, 3);
4909 if (IS_ERR(handle)) {
4910 error = PTR_ERR(handle);
4911 goto err_out;
4914 error = ext4_orphan_add(handle, inode);
4915 EXT4_I(inode)->i_disksize = attr->ia_size;
4916 rc = ext4_mark_inode_dirty(handle, inode);
4917 if (!error)
4918 error = rc;
4919 ext4_journal_stop(handle);
4921 if (ext4_should_order_data(inode)) {
4922 error = ext4_begin_ordered_truncate(inode,
4923 attr->ia_size);
4924 if (error) {
4925 /* Do as much error cleanup as possible */
4926 handle = ext4_journal_start(inode, 3);
4927 if (IS_ERR(handle)) {
4928 ext4_orphan_del(NULL, inode);
4929 goto err_out;
4931 ext4_orphan_del(handle, inode);
4932 ext4_journal_stop(handle);
4933 goto err_out;
4938 rc = inode_setattr(inode, attr);
4940 /* If inode_setattr's call to ext4_truncate failed to get a
4941 * transaction handle at all, we need to clean up the in-core
4942 * orphan list manually. */
4943 if (inode->i_nlink)
4944 ext4_orphan_del(NULL, inode);
4946 if (!rc && (ia_valid & ATTR_MODE))
4947 rc = ext4_acl_chmod(inode);
4949 err_out:
4950 ext4_std_error(inode->i_sb, error);
4951 if (!error)
4952 error = rc;
4953 return error;
4956 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4957 struct kstat *stat)
4959 struct inode *inode;
4960 unsigned long delalloc_blocks;
4962 inode = dentry->d_inode;
4963 generic_fillattr(inode, stat);
4966 * We can't update i_blocks if the block allocation is delayed
4967 * otherwise in the case of system crash before the real block
4968 * allocation is done, we will have i_blocks inconsistent with
4969 * on-disk file blocks.
4970 * We always keep i_blocks updated together with real
4971 * allocation. But to not confuse with user, stat
4972 * will return the blocks that include the delayed allocation
4973 * blocks for this file.
4975 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4976 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4977 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4979 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4980 return 0;
4983 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4984 int chunk)
4986 int indirects;
4988 /* if nrblocks are contiguous */
4989 if (chunk) {
4991 * With N contiguous data blocks, it need at most
4992 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4993 * 2 dindirect blocks
4994 * 1 tindirect block
4996 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4997 return indirects + 3;
5000 * if nrblocks are not contiguous, worse case, each block touch
5001 * a indirect block, and each indirect block touch a double indirect
5002 * block, plus a triple indirect block
5004 indirects = nrblocks * 2 + 1;
5005 return indirects;
5008 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5010 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5011 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5012 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5016 * Account for index blocks, block groups bitmaps and block group
5017 * descriptor blocks if modify datablocks and index blocks
5018 * worse case, the indexs blocks spread over different block groups
5020 * If datablocks are discontiguous, they are possible to spread over
5021 * different block groups too. If they are contiugous, with flexbg,
5022 * they could still across block group boundary.
5024 * Also account for superblock, inode, quota and xattr blocks
5026 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5028 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5029 int gdpblocks;
5030 int idxblocks;
5031 int ret = 0;
5034 * How many index blocks need to touch to modify nrblocks?
5035 * The "Chunk" flag indicating whether the nrblocks is
5036 * physically contiguous on disk
5038 * For Direct IO and fallocate, they calls get_block to allocate
5039 * one single extent at a time, so they could set the "Chunk" flag
5041 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5043 ret = idxblocks;
5046 * Now let's see how many group bitmaps and group descriptors need
5047 * to account
5049 groups = idxblocks;
5050 if (chunk)
5051 groups += 1;
5052 else
5053 groups += nrblocks;
5055 gdpblocks = groups;
5056 if (groups > ngroups)
5057 groups = ngroups;
5058 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5059 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5061 /* bitmaps and block group descriptor blocks */
5062 ret += groups + gdpblocks;
5064 /* Blocks for super block, inode, quota and xattr blocks */
5065 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5067 return ret;
5071 * Calulate the total number of credits to reserve to fit
5072 * the modification of a single pages into a single transaction,
5073 * which may include multiple chunks of block allocations.
5075 * This could be called via ext4_write_begin()
5077 * We need to consider the worse case, when
5078 * one new block per extent.
5080 int ext4_writepage_trans_blocks(struct inode *inode)
5082 int bpp = ext4_journal_blocks_per_page(inode);
5083 int ret;
5085 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5087 /* Account for data blocks for journalled mode */
5088 if (ext4_should_journal_data(inode))
5089 ret += bpp;
5090 return ret;
5094 * Calculate the journal credits for a chunk of data modification.
5096 * This is called from DIO, fallocate or whoever calling
5097 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5099 * journal buffers for data blocks are not included here, as DIO
5100 * and fallocate do no need to journal data buffers.
5102 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5104 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5108 * The caller must have previously called ext4_reserve_inode_write().
5109 * Give this, we know that the caller already has write access to iloc->bh.
5111 int ext4_mark_iloc_dirty(handle_t *handle,
5112 struct inode *inode, struct ext4_iloc *iloc)
5114 int err = 0;
5116 if (test_opt(inode->i_sb, I_VERSION))
5117 inode_inc_iversion(inode);
5119 /* the do_update_inode consumes one bh->b_count */
5120 get_bh(iloc->bh);
5122 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5123 err = ext4_do_update_inode(handle, inode, iloc);
5124 put_bh(iloc->bh);
5125 return err;
5129 * On success, We end up with an outstanding reference count against
5130 * iloc->bh. This _must_ be cleaned up later.
5134 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5135 struct ext4_iloc *iloc)
5137 int err;
5139 err = ext4_get_inode_loc(inode, iloc);
5140 if (!err) {
5141 BUFFER_TRACE(iloc->bh, "get_write_access");
5142 err = ext4_journal_get_write_access(handle, iloc->bh);
5143 if (err) {
5144 brelse(iloc->bh);
5145 iloc->bh = NULL;
5148 ext4_std_error(inode->i_sb, err);
5149 return err;
5153 * Expand an inode by new_extra_isize bytes.
5154 * Returns 0 on success or negative error number on failure.
5156 static int ext4_expand_extra_isize(struct inode *inode,
5157 unsigned int new_extra_isize,
5158 struct ext4_iloc iloc,
5159 handle_t *handle)
5161 struct ext4_inode *raw_inode;
5162 struct ext4_xattr_ibody_header *header;
5163 struct ext4_xattr_entry *entry;
5165 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5166 return 0;
5168 raw_inode = ext4_raw_inode(&iloc);
5170 header = IHDR(inode, raw_inode);
5171 entry = IFIRST(header);
5173 /* No extended attributes present */
5174 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5175 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5176 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5177 new_extra_isize);
5178 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5179 return 0;
5182 /* try to expand with EAs present */
5183 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5184 raw_inode, handle);
5188 * What we do here is to mark the in-core inode as clean with respect to inode
5189 * dirtiness (it may still be data-dirty).
5190 * This means that the in-core inode may be reaped by prune_icache
5191 * without having to perform any I/O. This is a very good thing,
5192 * because *any* task may call prune_icache - even ones which
5193 * have a transaction open against a different journal.
5195 * Is this cheating? Not really. Sure, we haven't written the
5196 * inode out, but prune_icache isn't a user-visible syncing function.
5197 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5198 * we start and wait on commits.
5200 * Is this efficient/effective? Well, we're being nice to the system
5201 * by cleaning up our inodes proactively so they can be reaped
5202 * without I/O. But we are potentially leaving up to five seconds'
5203 * worth of inodes floating about which prune_icache wants us to
5204 * write out. One way to fix that would be to get prune_icache()
5205 * to do a write_super() to free up some memory. It has the desired
5206 * effect.
5208 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5210 struct ext4_iloc iloc;
5211 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5212 static unsigned int mnt_count;
5213 int err, ret;
5215 might_sleep();
5216 err = ext4_reserve_inode_write(handle, inode, &iloc);
5217 if (ext4_handle_valid(handle) &&
5218 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5219 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5221 * We need extra buffer credits since we may write into EA block
5222 * with this same handle. If journal_extend fails, then it will
5223 * only result in a minor loss of functionality for that inode.
5224 * If this is felt to be critical, then e2fsck should be run to
5225 * force a large enough s_min_extra_isize.
5227 if ((jbd2_journal_extend(handle,
5228 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5229 ret = ext4_expand_extra_isize(inode,
5230 sbi->s_want_extra_isize,
5231 iloc, handle);
5232 if (ret) {
5233 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5234 if (mnt_count !=
5235 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5236 ext4_warning(inode->i_sb, __func__,
5237 "Unable to expand inode %lu. Delete"
5238 " some EAs or run e2fsck.",
5239 inode->i_ino);
5240 mnt_count =
5241 le16_to_cpu(sbi->s_es->s_mnt_count);
5246 if (!err)
5247 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5248 return err;
5252 * ext4_dirty_inode() is called from __mark_inode_dirty()
5254 * We're really interested in the case where a file is being extended.
5255 * i_size has been changed by generic_commit_write() and we thus need
5256 * to include the updated inode in the current transaction.
5258 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5259 * are allocated to the file.
5261 * If the inode is marked synchronous, we don't honour that here - doing
5262 * so would cause a commit on atime updates, which we don't bother doing.
5263 * We handle synchronous inodes at the highest possible level.
5265 void ext4_dirty_inode(struct inode *inode)
5267 handle_t *current_handle = ext4_journal_current_handle();
5268 handle_t *handle;
5270 if (!ext4_handle_valid(current_handle)) {
5271 ext4_mark_inode_dirty(current_handle, inode);
5272 return;
5275 handle = ext4_journal_start(inode, 2);
5276 if (IS_ERR(handle))
5277 goto out;
5278 if (current_handle &&
5279 current_handle->h_transaction != handle->h_transaction) {
5280 /* This task has a transaction open against a different fs */
5281 printk(KERN_EMERG "%s: transactions do not match!\n",
5282 __func__);
5283 } else {
5284 jbd_debug(5, "marking dirty. outer handle=%p\n",
5285 current_handle);
5286 ext4_mark_inode_dirty(handle, inode);
5288 ext4_journal_stop(handle);
5289 out:
5290 return;
5293 #if 0
5295 * Bind an inode's backing buffer_head into this transaction, to prevent
5296 * it from being flushed to disk early. Unlike
5297 * ext4_reserve_inode_write, this leaves behind no bh reference and
5298 * returns no iloc structure, so the caller needs to repeat the iloc
5299 * lookup to mark the inode dirty later.
5301 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5303 struct ext4_iloc iloc;
5305 int err = 0;
5306 if (handle) {
5307 err = ext4_get_inode_loc(inode, &iloc);
5308 if (!err) {
5309 BUFFER_TRACE(iloc.bh, "get_write_access");
5310 err = jbd2_journal_get_write_access(handle, iloc.bh);
5311 if (!err)
5312 err = ext4_handle_dirty_metadata(handle,
5313 inode,
5314 iloc.bh);
5315 brelse(iloc.bh);
5318 ext4_std_error(inode->i_sb, err);
5319 return err;
5321 #endif
5323 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5325 journal_t *journal;
5326 handle_t *handle;
5327 int err;
5330 * We have to be very careful here: changing a data block's
5331 * journaling status dynamically is dangerous. If we write a
5332 * data block to the journal, change the status and then delete
5333 * that block, we risk forgetting to revoke the old log record
5334 * from the journal and so a subsequent replay can corrupt data.
5335 * So, first we make sure that the journal is empty and that
5336 * nobody is changing anything.
5339 journal = EXT4_JOURNAL(inode);
5340 if (!journal)
5341 return 0;
5342 if (is_journal_aborted(journal))
5343 return -EROFS;
5345 jbd2_journal_lock_updates(journal);
5346 jbd2_journal_flush(journal);
5349 * OK, there are no updates running now, and all cached data is
5350 * synced to disk. We are now in a completely consistent state
5351 * which doesn't have anything in the journal, and we know that
5352 * no filesystem updates are running, so it is safe to modify
5353 * the inode's in-core data-journaling state flag now.
5356 if (val)
5357 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5358 else
5359 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5360 ext4_set_aops(inode);
5362 jbd2_journal_unlock_updates(journal);
5364 /* Finally we can mark the inode as dirty. */
5366 handle = ext4_journal_start(inode, 1);
5367 if (IS_ERR(handle))
5368 return PTR_ERR(handle);
5370 err = ext4_mark_inode_dirty(handle, inode);
5371 ext4_handle_sync(handle);
5372 ext4_journal_stop(handle);
5373 ext4_std_error(inode->i_sb, err);
5375 return err;
5378 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5380 return !buffer_mapped(bh);
5383 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5385 struct page *page = vmf->page;
5386 loff_t size;
5387 unsigned long len;
5388 int ret = -EINVAL;
5389 void *fsdata;
5390 struct file *file = vma->vm_file;
5391 struct inode *inode = file->f_path.dentry->d_inode;
5392 struct address_space *mapping = inode->i_mapping;
5395 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5396 * get i_mutex because we are already holding mmap_sem.
5398 down_read(&inode->i_alloc_sem);
5399 size = i_size_read(inode);
5400 if (page->mapping != mapping || size <= page_offset(page)
5401 || !PageUptodate(page)) {
5402 /* page got truncated from under us? */
5403 goto out_unlock;
5405 ret = 0;
5406 if (PageMappedToDisk(page))
5407 goto out_unlock;
5409 if (page->index == size >> PAGE_CACHE_SHIFT)
5410 len = size & ~PAGE_CACHE_MASK;
5411 else
5412 len = PAGE_CACHE_SIZE;
5414 if (page_has_buffers(page)) {
5415 /* return if we have all the buffers mapped */
5416 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5417 ext4_bh_unmapped))
5418 goto out_unlock;
5421 * OK, we need to fill the hole... Do write_begin write_end
5422 * to do block allocation/reservation.We are not holding
5423 * inode.i__mutex here. That allow * parallel write_begin,
5424 * write_end call. lock_page prevent this from happening
5425 * on the same page though
5427 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5428 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5429 if (ret < 0)
5430 goto out_unlock;
5431 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5432 len, len, page, fsdata);
5433 if (ret < 0)
5434 goto out_unlock;
5435 ret = 0;
5436 out_unlock:
5437 if (ret)
5438 ret = VM_FAULT_SIGBUS;
5439 up_read(&inode->i_alloc_sem);
5440 return ret;