2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
62 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
68 .index
= CLOCK_REALTIME
,
69 .get_time
= &ktime_get_real
,
70 .resolution
= KTIME_LOW_RES
,
73 .index
= CLOCK_MONOTONIC
,
74 .get_time
= &ktime_get
,
75 .resolution
= KTIME_LOW_RES
,
81 * Get the coarse grained time at the softirq based on xtime and
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
87 struct timespec xts
, tom
;
91 seq
= read_seqbegin(&xtime_lock
);
92 xts
= current_kernel_time();
93 tom
= wall_to_monotonic
;
94 } while (read_seqretry(&xtime_lock
, seq
));
96 xtim
= timespec_to_ktime(xts
);
97 tomono
= timespec_to_ktime(tom
);
98 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
99 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
100 ktime_add(xtim
, tomono
);
104 * Functions and macros which are different for UP/SMP systems are kept in a
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
122 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
123 unsigned long *flags
)
125 struct hrtimer_clock_base
*base
;
129 if (likely(base
!= NULL
)) {
130 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
131 if (likely(base
== timer
->base
))
133 /* The timer has migrated to another CPU: */
134 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
142 * Get the preferred target CPU for NOHZ
144 static int hrtimer_get_target(int this_cpu
, int pinned
)
147 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
)) {
148 int preferred_cpu
= get_nohz_load_balancer();
150 if (preferred_cpu
>= 0)
151 return preferred_cpu
;
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
162 * Called with cpu_base->lock of target cpu held.
165 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
167 #ifdef CONFIG_HIGH_RES_TIMERS
170 if (!new_base
->cpu_base
->hres_active
)
173 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
174 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
181 * Switch the timer base to the current CPU when possible.
183 static inline struct hrtimer_clock_base
*
184 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
187 struct hrtimer_clock_base
*new_base
;
188 struct hrtimer_cpu_base
*new_cpu_base
;
189 int this_cpu
= smp_processor_id();
190 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
193 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
194 new_base
= &new_cpu_base
->clock_base
[base
->index
];
196 if (base
!= new_base
) {
198 * We are trying to move timer to new_base.
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
206 if (unlikely(hrtimer_callback_running(timer
)))
209 /* See the comment in lock_timer_base() */
211 raw_spin_unlock(&base
->cpu_base
->lock
);
212 raw_spin_lock(&new_base
->cpu_base
->lock
);
214 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
216 raw_spin_unlock(&new_base
->cpu_base
->lock
);
217 raw_spin_lock(&base
->cpu_base
->lock
);
221 timer
->base
= new_base
;
226 #else /* CONFIG_SMP */
228 static inline struct hrtimer_clock_base
*
229 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
231 struct hrtimer_clock_base
*base
= timer
->base
;
233 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
238 # define switch_hrtimer_base(t, b, p) (b)
240 #endif /* !CONFIG_SMP */
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
251 * @nsec: the scalar nsec value to add
253 * Returns the sum of kt and nsec in ktime_t format
255 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
259 if (likely(nsec
< NSEC_PER_SEC
)) {
262 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
264 tmp
= ktime_set((long)nsec
, rem
);
267 return ktime_add(kt
, tmp
);
270 EXPORT_SYMBOL_GPL(ktime_add_ns
);
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
275 * @nsec: the scalar nsec value to subtract
277 * Returns the subtraction of @nsec from @kt in ktime_t format
279 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
283 if (likely(nsec
< NSEC_PER_SEC
)) {
286 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
288 tmp
= ktime_set((long)nsec
, rem
);
291 return ktime_sub(kt
, tmp
);
294 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
295 # endif /* !CONFIG_KTIME_SCALAR */
298 * Divide a ktime value by a nanosecond value
300 u64
ktime_divns(const ktime_t kt
, s64 div
)
305 dclc
= ktime_to_ns(kt
);
306 /* Make sure the divisor is less than 2^32: */
312 do_div(dclc
, (unsigned long) div
);
316 #endif /* BITS_PER_LONG >= 64 */
319 * Add two ktime values and do a safety check for overflow:
321 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
323 ktime_t res
= ktime_add(lhs
, rhs
);
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
329 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
330 res
= ktime_set(KTIME_SEC_MAX
, 0);
335 EXPORT_SYMBOL_GPL(ktime_add_safe
);
337 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
339 static struct debug_obj_descr hrtimer_debug_descr
;
342 * fixup_init is called when:
343 * - an active object is initialized
345 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
347 struct hrtimer
*timer
= addr
;
350 case ODEBUG_STATE_ACTIVE
:
351 hrtimer_cancel(timer
);
352 debug_object_init(timer
, &hrtimer_debug_descr
);
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
364 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
368 case ODEBUG_STATE_NOTAVAILABLE
:
372 case ODEBUG_STATE_ACTIVE
:
381 * fixup_free is called when:
382 * - an active object is freed
384 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
386 struct hrtimer
*timer
= addr
;
389 case ODEBUG_STATE_ACTIVE
:
390 hrtimer_cancel(timer
);
391 debug_object_free(timer
, &hrtimer_debug_descr
);
398 static struct debug_obj_descr hrtimer_debug_descr
= {
400 .fixup_init
= hrtimer_fixup_init
,
401 .fixup_activate
= hrtimer_fixup_activate
,
402 .fixup_free
= hrtimer_fixup_free
,
405 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
407 debug_object_init(timer
, &hrtimer_debug_descr
);
410 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
412 debug_object_activate(timer
, &hrtimer_debug_descr
);
415 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
417 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
420 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
422 debug_object_free(timer
, &hrtimer_debug_descr
);
425 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
426 enum hrtimer_mode mode
);
428 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
429 enum hrtimer_mode mode
)
431 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
432 __hrtimer_init(timer
, clock_id
, mode
);
434 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
436 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
438 debug_object_free(timer
, &hrtimer_debug_descr
);
442 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
443 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
444 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
448 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
449 enum hrtimer_mode mode
)
451 debug_hrtimer_init(timer
);
452 trace_hrtimer_init(timer
, clockid
, mode
);
455 static inline void debug_activate(struct hrtimer
*timer
)
457 debug_hrtimer_activate(timer
);
458 trace_hrtimer_start(timer
);
461 static inline void debug_deactivate(struct hrtimer
*timer
)
463 debug_hrtimer_deactivate(timer
);
464 trace_hrtimer_cancel(timer
);
467 /* High resolution timer related functions */
468 #ifdef CONFIG_HIGH_RES_TIMERS
471 * High resolution timer enabled ?
473 static int hrtimer_hres_enabled __read_mostly
= 1;
476 * Enable / Disable high resolution mode
478 static int __init
setup_hrtimer_hres(char *str
)
480 if (!strcmp(str
, "off"))
481 hrtimer_hres_enabled
= 0;
482 else if (!strcmp(str
, "on"))
483 hrtimer_hres_enabled
= 1;
489 __setup("highres=", setup_hrtimer_hres
);
492 * hrtimer_high_res_enabled - query, if the highres mode is enabled
494 static inline int hrtimer_is_hres_enabled(void)
496 return hrtimer_hres_enabled
;
500 * Is the high resolution mode active ?
502 static inline int hrtimer_hres_active(void)
504 return __get_cpu_var(hrtimer_bases
).hres_active
;
508 * Reprogram the event source with checking both queues for the
510 * Called with interrupts disabled and base->lock held
513 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
516 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
517 ktime_t expires
, expires_next
;
519 expires_next
.tv64
= KTIME_MAX
;
521 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
522 struct hrtimer
*timer
;
526 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
527 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
529 * clock_was_set() has changed base->offset so the
530 * result might be negative. Fix it up to prevent a
531 * false positive in clockevents_program_event()
533 if (expires
.tv64
< 0)
535 if (expires
.tv64
< expires_next
.tv64
)
536 expires_next
= expires
;
539 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
542 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
544 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
545 tick_program_event(cpu_base
->expires_next
, 1);
549 * Shared reprogramming for clock_realtime and clock_monotonic
551 * When a timer is enqueued and expires earlier than the already enqueued
552 * timers, we have to check, whether it expires earlier than the timer for
553 * which the clock event device was armed.
555 * Called with interrupts disabled and base->cpu_base.lock held
557 static int hrtimer_reprogram(struct hrtimer
*timer
,
558 struct hrtimer_clock_base
*base
)
560 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
561 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
564 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
567 * When the callback is running, we do not reprogram the clock event
568 * device. The timer callback is either running on a different CPU or
569 * the callback is executed in the hrtimer_interrupt context. The
570 * reprogramming is handled either by the softirq, which called the
571 * callback or at the end of the hrtimer_interrupt.
573 if (hrtimer_callback_running(timer
))
577 * CLOCK_REALTIME timer might be requested with an absolute
578 * expiry time which is less than base->offset. Nothing wrong
579 * about that, just avoid to call into the tick code, which
580 * has now objections against negative expiry values.
582 if (expires
.tv64
< 0)
585 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
589 * If a hang was detected in the last timer interrupt then we
590 * do not schedule a timer which is earlier than the expiry
591 * which we enforced in the hang detection. We want the system
594 if (cpu_base
->hang_detected
)
598 * Clockevents returns -ETIME, when the event was in the past.
600 res
= tick_program_event(expires
, 0);
601 if (!IS_ERR_VALUE(res
))
602 cpu_base
->expires_next
= expires
;
608 * Retrigger next event is called after clock was set
610 * Called with interrupts disabled via on_each_cpu()
612 static void retrigger_next_event(void *arg
)
614 struct hrtimer_cpu_base
*base
;
615 struct timespec realtime_offset
;
618 if (!hrtimer_hres_active())
622 seq
= read_seqbegin(&xtime_lock
);
623 set_normalized_timespec(&realtime_offset
,
624 -wall_to_monotonic
.tv_sec
,
625 -wall_to_monotonic
.tv_nsec
);
626 } while (read_seqretry(&xtime_lock
, seq
));
628 base
= &__get_cpu_var(hrtimer_bases
);
630 /* Adjust CLOCK_REALTIME offset */
631 raw_spin_lock(&base
->lock
);
632 base
->clock_base
[CLOCK_REALTIME
].offset
=
633 timespec_to_ktime(realtime_offset
);
635 hrtimer_force_reprogram(base
, 0);
636 raw_spin_unlock(&base
->lock
);
640 * Clock realtime was set
642 * Change the offset of the realtime clock vs. the monotonic
645 * We might have to reprogram the high resolution timer interrupt. On
646 * SMP we call the architecture specific code to retrigger _all_ high
647 * resolution timer interrupts. On UP we just disable interrupts and
648 * call the high resolution interrupt code.
650 void clock_was_set(void)
652 /* Retrigger the CPU local events everywhere */
653 on_each_cpu(retrigger_next_event
, NULL
, 1);
657 * During resume we might have to reprogram the high resolution timer
658 * interrupt (on the local CPU):
660 void hres_timers_resume(void)
662 WARN_ONCE(!irqs_disabled(),
663 KERN_INFO
"hres_timers_resume() called with IRQs enabled!");
665 retrigger_next_event(NULL
);
669 * Initialize the high resolution related parts of cpu_base
671 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
673 base
->expires_next
.tv64
= KTIME_MAX
;
674 base
->hres_active
= 0;
678 * Initialize the high resolution related parts of a hrtimer
680 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
686 * When High resolution timers are active, try to reprogram. Note, that in case
687 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
688 * check happens. The timer gets enqueued into the rbtree. The reprogramming
689 * and expiry check is done in the hrtimer_interrupt or in the softirq.
691 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
692 struct hrtimer_clock_base
*base
,
695 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
697 raw_spin_unlock(&base
->cpu_base
->lock
);
698 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
699 raw_spin_lock(&base
->cpu_base
->lock
);
701 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
710 * Switch to high resolution mode
712 static int hrtimer_switch_to_hres(void)
714 int cpu
= smp_processor_id();
715 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
718 if (base
->hres_active
)
721 local_irq_save(flags
);
723 if (tick_init_highres()) {
724 local_irq_restore(flags
);
725 printk(KERN_WARNING
"Could not switch to high resolution "
726 "mode on CPU %d\n", cpu
);
729 base
->hres_active
= 1;
730 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
731 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
733 tick_setup_sched_timer();
735 /* "Retrigger" the interrupt to get things going */
736 retrigger_next_event(NULL
);
737 local_irq_restore(flags
);
743 static inline int hrtimer_hres_active(void) { return 0; }
744 static inline int hrtimer_is_hres_enabled(void) { return 0; }
745 static inline int hrtimer_switch_to_hres(void) { return 0; }
747 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
748 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
749 struct hrtimer_clock_base
*base
,
754 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
755 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
757 #endif /* CONFIG_HIGH_RES_TIMERS */
759 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
761 #ifdef CONFIG_TIMER_STATS
762 if (timer
->start_site
)
764 timer
->start_site
= __builtin_return_address(0);
765 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
766 timer
->start_pid
= current
->pid
;
770 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
772 #ifdef CONFIG_TIMER_STATS
773 timer
->start_site
= NULL
;
777 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
779 #ifdef CONFIG_TIMER_STATS
780 if (likely(!timer_stats_active
))
782 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
783 timer
->function
, timer
->start_comm
, 0);
788 * Counterpart to lock_hrtimer_base above:
791 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
793 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
797 * hrtimer_forward - forward the timer expiry
798 * @timer: hrtimer to forward
799 * @now: forward past this time
800 * @interval: the interval to forward
802 * Forward the timer expiry so it will expire in the future.
803 * Returns the number of overruns.
805 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
810 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
815 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
816 interval
.tv64
= timer
->base
->resolution
.tv64
;
818 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
819 s64 incr
= ktime_to_ns(interval
);
821 orun
= ktime_divns(delta
, incr
);
822 hrtimer_add_expires_ns(timer
, incr
* orun
);
823 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
826 * This (and the ktime_add() below) is the
827 * correction for exact:
831 hrtimer_add_expires(timer
, interval
);
835 EXPORT_SYMBOL_GPL(hrtimer_forward
);
838 * enqueue_hrtimer - internal function to (re)start a timer
840 * The timer is inserted in expiry order. Insertion into the
841 * red black tree is O(log(n)). Must hold the base lock.
843 * Returns 1 when the new timer is the leftmost timer in the tree.
845 static int enqueue_hrtimer(struct hrtimer
*timer
,
846 struct hrtimer_clock_base
*base
)
848 struct rb_node
**link
= &base
->active
.rb_node
;
849 struct rb_node
*parent
= NULL
;
850 struct hrtimer
*entry
;
853 debug_activate(timer
);
856 * Find the right place in the rbtree:
860 entry
= rb_entry(parent
, struct hrtimer
, node
);
862 * We dont care about collisions. Nodes with
863 * the same expiry time stay together.
865 if (hrtimer_get_expires_tv64(timer
) <
866 hrtimer_get_expires_tv64(entry
)) {
867 link
= &(*link
)->rb_left
;
869 link
= &(*link
)->rb_right
;
875 * Insert the timer to the rbtree and check whether it
876 * replaces the first pending timer
879 base
->first
= &timer
->node
;
881 rb_link_node(&timer
->node
, parent
, link
);
882 rb_insert_color(&timer
->node
, &base
->active
);
884 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
885 * state of a possibly running callback.
887 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
893 * __remove_hrtimer - internal function to remove a timer
895 * Caller must hold the base lock.
897 * High resolution timer mode reprograms the clock event device when the
898 * timer is the one which expires next. The caller can disable this by setting
899 * reprogram to zero. This is useful, when the context does a reprogramming
900 * anyway (e.g. timer interrupt)
902 static void __remove_hrtimer(struct hrtimer
*timer
,
903 struct hrtimer_clock_base
*base
,
904 unsigned long newstate
, int reprogram
)
906 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
910 * Remove the timer from the rbtree and replace the first
911 * entry pointer if necessary.
913 if (base
->first
== &timer
->node
) {
914 base
->first
= rb_next(&timer
->node
);
915 #ifdef CONFIG_HIGH_RES_TIMERS
916 /* Reprogram the clock event device. if enabled */
917 if (reprogram
&& hrtimer_hres_active()) {
920 expires
= ktime_sub(hrtimer_get_expires(timer
),
922 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
923 hrtimer_force_reprogram(base
->cpu_base
, 1);
927 rb_erase(&timer
->node
, &base
->active
);
929 timer
->state
= newstate
;
933 * remove hrtimer, called with base lock held
936 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
938 if (hrtimer_is_queued(timer
)) {
942 * Remove the timer and force reprogramming when high
943 * resolution mode is active and the timer is on the current
944 * CPU. If we remove a timer on another CPU, reprogramming is
945 * skipped. The interrupt event on this CPU is fired and
946 * reprogramming happens in the interrupt handler. This is a
947 * rare case and less expensive than a smp call.
949 debug_deactivate(timer
);
950 timer_stats_hrtimer_clear_start_info(timer
);
951 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
952 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
959 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
960 unsigned long delta_ns
, const enum hrtimer_mode mode
,
963 struct hrtimer_clock_base
*base
, *new_base
;
967 base
= lock_hrtimer_base(timer
, &flags
);
969 /* Remove an active timer from the queue: */
970 ret
= remove_hrtimer(timer
, base
);
972 /* Switch the timer base, if necessary: */
973 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
975 if (mode
& HRTIMER_MODE_REL
) {
976 tim
= ktime_add_safe(tim
, new_base
->get_time());
978 * CONFIG_TIME_LOW_RES is a temporary way for architectures
979 * to signal that they simply return xtime in
980 * do_gettimeoffset(). In this case we want to round up by
981 * resolution when starting a relative timer, to avoid short
982 * timeouts. This will go away with the GTOD framework.
984 #ifdef CONFIG_TIME_LOW_RES
985 tim
= ktime_add_safe(tim
, base
->resolution
);
989 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
991 timer_stats_hrtimer_set_start_info(timer
);
993 leftmost
= enqueue_hrtimer(timer
, new_base
);
996 * Only allow reprogramming if the new base is on this CPU.
997 * (it might still be on another CPU if the timer was pending)
999 * XXX send_remote_softirq() ?
1001 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
))
1002 hrtimer_enqueue_reprogram(timer
, new_base
, wakeup
);
1004 unlock_hrtimer_base(timer
, &flags
);
1010 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1011 * @timer: the timer to be added
1013 * @delta_ns: "slack" range for the timer
1014 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1018 * 1 when the timer was active
1020 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1021 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1023 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1025 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1028 * hrtimer_start - (re)start an hrtimer on the current CPU
1029 * @timer: the timer to be added
1031 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1035 * 1 when the timer was active
1038 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1040 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1042 EXPORT_SYMBOL_GPL(hrtimer_start
);
1046 * hrtimer_try_to_cancel - try to deactivate a timer
1047 * @timer: hrtimer to stop
1050 * 0 when the timer was not active
1051 * 1 when the timer was active
1052 * -1 when the timer is currently excuting the callback function and
1055 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1057 struct hrtimer_clock_base
*base
;
1058 unsigned long flags
;
1061 base
= lock_hrtimer_base(timer
, &flags
);
1063 if (!hrtimer_callback_running(timer
))
1064 ret
= remove_hrtimer(timer
, base
);
1066 unlock_hrtimer_base(timer
, &flags
);
1071 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1074 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1075 * @timer: the timer to be cancelled
1078 * 0 when the timer was not active
1079 * 1 when the timer was active
1081 int hrtimer_cancel(struct hrtimer
*timer
)
1084 int ret
= hrtimer_try_to_cancel(timer
);
1091 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1094 * hrtimer_get_remaining - get remaining time for the timer
1095 * @timer: the timer to read
1097 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1099 struct hrtimer_clock_base
*base
;
1100 unsigned long flags
;
1103 base
= lock_hrtimer_base(timer
, &flags
);
1104 rem
= hrtimer_expires_remaining(timer
);
1105 unlock_hrtimer_base(timer
, &flags
);
1109 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1113 * hrtimer_get_next_event - get the time until next expiry event
1115 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1118 ktime_t
hrtimer_get_next_event(void)
1120 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1121 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1122 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1123 unsigned long flags
;
1126 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1128 if (!hrtimer_hres_active()) {
1129 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1130 struct hrtimer
*timer
;
1135 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1136 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1137 delta
= ktime_sub(delta
, base
->get_time());
1138 if (delta
.tv64
< mindelta
.tv64
)
1139 mindelta
.tv64
= delta
.tv64
;
1143 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1145 if (mindelta
.tv64
< 0)
1151 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1152 enum hrtimer_mode mode
)
1154 struct hrtimer_cpu_base
*cpu_base
;
1156 memset(timer
, 0, sizeof(struct hrtimer
));
1158 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1160 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1161 clock_id
= CLOCK_MONOTONIC
;
1163 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1164 hrtimer_init_timer_hres(timer
);
1166 #ifdef CONFIG_TIMER_STATS
1167 timer
->start_site
= NULL
;
1168 timer
->start_pid
= -1;
1169 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1174 * hrtimer_init - initialize a timer to the given clock
1175 * @timer: the timer to be initialized
1176 * @clock_id: the clock to be used
1177 * @mode: timer mode abs/rel
1179 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1180 enum hrtimer_mode mode
)
1182 debug_init(timer
, clock_id
, mode
);
1183 __hrtimer_init(timer
, clock_id
, mode
);
1185 EXPORT_SYMBOL_GPL(hrtimer_init
);
1188 * hrtimer_get_res - get the timer resolution for a clock
1189 * @which_clock: which clock to query
1190 * @tp: pointer to timespec variable to store the resolution
1192 * Store the resolution of the clock selected by @which_clock in the
1193 * variable pointed to by @tp.
1195 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1197 struct hrtimer_cpu_base
*cpu_base
;
1199 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1200 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1204 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1206 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1208 struct hrtimer_clock_base
*base
= timer
->base
;
1209 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1210 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1213 WARN_ON(!irqs_disabled());
1215 debug_deactivate(timer
);
1216 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1217 timer_stats_account_hrtimer(timer
);
1218 fn
= timer
->function
;
1221 * Because we run timers from hardirq context, there is no chance
1222 * they get migrated to another cpu, therefore its safe to unlock
1225 raw_spin_unlock(&cpu_base
->lock
);
1226 trace_hrtimer_expire_entry(timer
, now
);
1227 restart
= fn(timer
);
1228 trace_hrtimer_expire_exit(timer
);
1229 raw_spin_lock(&cpu_base
->lock
);
1232 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1233 * we do not reprogramm the event hardware. Happens either in
1234 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1236 if (restart
!= HRTIMER_NORESTART
) {
1237 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1238 enqueue_hrtimer(timer
, base
);
1240 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1243 #ifdef CONFIG_HIGH_RES_TIMERS
1246 * High resolution timer interrupt
1247 * Called with interrupts disabled
1249 void hrtimer_interrupt(struct clock_event_device
*dev
)
1251 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1252 struct hrtimer_clock_base
*base
;
1253 ktime_t expires_next
, now
, entry_time
, delta
;
1256 BUG_ON(!cpu_base
->hres_active
);
1257 cpu_base
->nr_events
++;
1258 dev
->next_event
.tv64
= KTIME_MAX
;
1260 entry_time
= now
= ktime_get();
1262 expires_next
.tv64
= KTIME_MAX
;
1264 raw_spin_lock(&cpu_base
->lock
);
1266 * We set expires_next to KTIME_MAX here with cpu_base->lock
1267 * held to prevent that a timer is enqueued in our queue via
1268 * the migration code. This does not affect enqueueing of
1269 * timers which run their callback and need to be requeued on
1272 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1274 base
= cpu_base
->clock_base
;
1276 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1278 struct rb_node
*node
;
1280 basenow
= ktime_add(now
, base
->offset
);
1282 while ((node
= base
->first
)) {
1283 struct hrtimer
*timer
;
1285 timer
= rb_entry(node
, struct hrtimer
, node
);
1288 * The immediate goal for using the softexpires is
1289 * minimizing wakeups, not running timers at the
1290 * earliest interrupt after their soft expiration.
1291 * This allows us to avoid using a Priority Search
1292 * Tree, which can answer a stabbing querry for
1293 * overlapping intervals and instead use the simple
1294 * BST we already have.
1295 * We don't add extra wakeups by delaying timers that
1296 * are right-of a not yet expired timer, because that
1297 * timer will have to trigger a wakeup anyway.
1300 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1303 expires
= ktime_sub(hrtimer_get_expires(timer
),
1305 if (expires
.tv64
< expires_next
.tv64
)
1306 expires_next
= expires
;
1310 __run_hrtimer(timer
, &basenow
);
1316 * Store the new expiry value so the migration code can verify
1319 cpu_base
->expires_next
= expires_next
;
1320 raw_spin_unlock(&cpu_base
->lock
);
1322 /* Reprogramming necessary ? */
1323 if (expires_next
.tv64
== KTIME_MAX
||
1324 !tick_program_event(expires_next
, 0)) {
1325 cpu_base
->hang_detected
= 0;
1330 * The next timer was already expired due to:
1332 * - long lasting callbacks
1333 * - being scheduled away when running in a VM
1335 * We need to prevent that we loop forever in the hrtimer
1336 * interrupt routine. We give it 3 attempts to avoid
1337 * overreacting on some spurious event.
1340 cpu_base
->nr_retries
++;
1344 * Give the system a chance to do something else than looping
1345 * here. We stored the entry time, so we know exactly how long
1346 * we spent here. We schedule the next event this amount of
1349 cpu_base
->nr_hangs
++;
1350 cpu_base
->hang_detected
= 1;
1351 delta
= ktime_sub(now
, entry_time
);
1352 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1353 cpu_base
->max_hang_time
= delta
;
1355 * Limit it to a sensible value as we enforce a longer
1356 * delay. Give the CPU at least 100ms to catch up.
1358 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1359 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1361 expires_next
= ktime_add(now
, delta
);
1362 tick_program_event(expires_next
, 1);
1363 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1364 ktime_to_ns(delta
));
1368 * local version of hrtimer_peek_ahead_timers() called with interrupts
1371 static void __hrtimer_peek_ahead_timers(void)
1373 struct tick_device
*td
;
1375 if (!hrtimer_hres_active())
1378 td
= &__get_cpu_var(tick_cpu_device
);
1379 if (td
&& td
->evtdev
)
1380 hrtimer_interrupt(td
->evtdev
);
1384 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1386 * hrtimer_peek_ahead_timers will peek at the timer queue of
1387 * the current cpu and check if there are any timers for which
1388 * the soft expires time has passed. If any such timers exist,
1389 * they are run immediately and then removed from the timer queue.
1392 void hrtimer_peek_ahead_timers(void)
1394 unsigned long flags
;
1396 local_irq_save(flags
);
1397 __hrtimer_peek_ahead_timers();
1398 local_irq_restore(flags
);
1401 static void run_hrtimer_softirq(struct softirq_action
*h
)
1403 hrtimer_peek_ahead_timers();
1406 #else /* CONFIG_HIGH_RES_TIMERS */
1408 static inline void __hrtimer_peek_ahead_timers(void) { }
1410 #endif /* !CONFIG_HIGH_RES_TIMERS */
1413 * Called from timer softirq every jiffy, expire hrtimers:
1415 * For HRT its the fall back code to run the softirq in the timer
1416 * softirq context in case the hrtimer initialization failed or has
1417 * not been done yet.
1419 void hrtimer_run_pending(void)
1421 if (hrtimer_hres_active())
1425 * This _is_ ugly: We have to check in the softirq context,
1426 * whether we can switch to highres and / or nohz mode. The
1427 * clocksource switch happens in the timer interrupt with
1428 * xtime_lock held. Notification from there only sets the
1429 * check bit in the tick_oneshot code, otherwise we might
1430 * deadlock vs. xtime_lock.
1432 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1433 hrtimer_switch_to_hres();
1437 * Called from hardirq context every jiffy
1439 void hrtimer_run_queues(void)
1441 struct rb_node
*node
;
1442 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1443 struct hrtimer_clock_base
*base
;
1444 int index
, gettime
= 1;
1446 if (hrtimer_hres_active())
1449 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1450 base
= &cpu_base
->clock_base
[index
];
1456 hrtimer_get_softirq_time(cpu_base
);
1460 raw_spin_lock(&cpu_base
->lock
);
1462 while ((node
= base
->first
)) {
1463 struct hrtimer
*timer
;
1465 timer
= rb_entry(node
, struct hrtimer
, node
);
1466 if (base
->softirq_time
.tv64
<=
1467 hrtimer_get_expires_tv64(timer
))
1470 __run_hrtimer(timer
, &base
->softirq_time
);
1472 raw_spin_unlock(&cpu_base
->lock
);
1477 * Sleep related functions:
1479 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1481 struct hrtimer_sleeper
*t
=
1482 container_of(timer
, struct hrtimer_sleeper
, timer
);
1483 struct task_struct
*task
= t
->task
;
1487 wake_up_process(task
);
1489 return HRTIMER_NORESTART
;
1492 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1494 sl
->timer
.function
= hrtimer_wakeup
;
1497 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1499 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1501 hrtimer_init_sleeper(t
, current
);
1504 set_current_state(TASK_INTERRUPTIBLE
);
1505 hrtimer_start_expires(&t
->timer
, mode
);
1506 if (!hrtimer_active(&t
->timer
))
1509 if (likely(t
->task
))
1512 hrtimer_cancel(&t
->timer
);
1513 mode
= HRTIMER_MODE_ABS
;
1515 } while (t
->task
&& !signal_pending(current
));
1517 __set_current_state(TASK_RUNNING
);
1519 return t
->task
== NULL
;
1522 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1524 struct timespec rmt
;
1527 rem
= hrtimer_expires_remaining(timer
);
1530 rmt
= ktime_to_timespec(rem
);
1532 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1538 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1540 struct hrtimer_sleeper t
;
1541 struct timespec __user
*rmtp
;
1544 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1546 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1548 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1551 rmtp
= restart
->nanosleep
.rmtp
;
1553 ret
= update_rmtp(&t
.timer
, rmtp
);
1558 /* The other values in restart are already filled in */
1559 ret
= -ERESTART_RESTARTBLOCK
;
1561 destroy_hrtimer_on_stack(&t
.timer
);
1565 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1566 const enum hrtimer_mode mode
, const clockid_t clockid
)
1568 struct restart_block
*restart
;
1569 struct hrtimer_sleeper t
;
1571 unsigned long slack
;
1573 slack
= current
->timer_slack_ns
;
1574 if (rt_task(current
))
1577 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1578 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1579 if (do_nanosleep(&t
, mode
))
1582 /* Absolute timers do not update the rmtp value and restart: */
1583 if (mode
== HRTIMER_MODE_ABS
) {
1584 ret
= -ERESTARTNOHAND
;
1589 ret
= update_rmtp(&t
.timer
, rmtp
);
1594 restart
= ¤t_thread_info()->restart_block
;
1595 restart
->fn
= hrtimer_nanosleep_restart
;
1596 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1597 restart
->nanosleep
.rmtp
= rmtp
;
1598 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1600 ret
= -ERESTART_RESTARTBLOCK
;
1602 destroy_hrtimer_on_stack(&t
.timer
);
1606 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1607 struct timespec __user
*, rmtp
)
1611 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1614 if (!timespec_valid(&tu
))
1617 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1621 * Functions related to boot-time initialization:
1623 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1625 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1628 raw_spin_lock_init(&cpu_base
->lock
);
1630 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1631 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1633 hrtimer_init_hres(cpu_base
);
1636 #ifdef CONFIG_HOTPLUG_CPU
1638 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1639 struct hrtimer_clock_base
*new_base
)
1641 struct hrtimer
*timer
;
1642 struct rb_node
*node
;
1644 while ((node
= rb_first(&old_base
->active
))) {
1645 timer
= rb_entry(node
, struct hrtimer
, node
);
1646 BUG_ON(hrtimer_callback_running(timer
));
1647 debug_deactivate(timer
);
1650 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1651 * timer could be seen as !active and just vanish away
1652 * under us on another CPU
1654 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1655 timer
->base
= new_base
;
1657 * Enqueue the timers on the new cpu. This does not
1658 * reprogram the event device in case the timer
1659 * expires before the earliest on this CPU, but we run
1660 * hrtimer_interrupt after we migrated everything to
1661 * sort out already expired timers and reprogram the
1664 enqueue_hrtimer(timer
, new_base
);
1666 /* Clear the migration state bit */
1667 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1671 static void migrate_hrtimers(int scpu
)
1673 struct hrtimer_cpu_base
*old_base
, *new_base
;
1676 BUG_ON(cpu_online(scpu
));
1677 tick_cancel_sched_timer(scpu
);
1679 local_irq_disable();
1680 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1681 new_base
= &__get_cpu_var(hrtimer_bases
);
1683 * The caller is globally serialized and nobody else
1684 * takes two locks at once, deadlock is not possible.
1686 raw_spin_lock(&new_base
->lock
);
1687 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1689 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1690 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1691 &new_base
->clock_base
[i
]);
1694 raw_spin_unlock(&old_base
->lock
);
1695 raw_spin_unlock(&new_base
->lock
);
1697 /* Check, if we got expired work to do */
1698 __hrtimer_peek_ahead_timers();
1702 #endif /* CONFIG_HOTPLUG_CPU */
1704 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1705 unsigned long action
, void *hcpu
)
1707 int scpu
= (long)hcpu
;
1711 case CPU_UP_PREPARE
:
1712 case CPU_UP_PREPARE_FROZEN
:
1713 init_hrtimers_cpu(scpu
);
1716 #ifdef CONFIG_HOTPLUG_CPU
1718 case CPU_DYING_FROZEN
:
1719 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1722 case CPU_DEAD_FROZEN
:
1724 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1725 migrate_hrtimers(scpu
);
1737 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1738 .notifier_call
= hrtimer_cpu_notify
,
1741 void __init
hrtimers_init(void)
1743 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1744 (void *)(long)smp_processor_id());
1745 register_cpu_notifier(&hrtimers_nb
);
1746 #ifdef CONFIG_HIGH_RES_TIMERS
1747 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1752 * schedule_hrtimeout_range - sleep until timeout
1753 * @expires: timeout value (ktime_t)
1754 * @delta: slack in expires timeout (ktime_t)
1755 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1757 * Make the current task sleep until the given expiry time has
1758 * elapsed. The routine will return immediately unless
1759 * the current task state has been set (see set_current_state()).
1761 * The @delta argument gives the kernel the freedom to schedule the
1762 * actual wakeup to a time that is both power and performance friendly.
1763 * The kernel give the normal best effort behavior for "@expires+@delta",
1764 * but may decide to fire the timer earlier, but no earlier than @expires.
1766 * You can set the task state as follows -
1768 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1769 * pass before the routine returns.
1771 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1772 * delivered to the current task.
1774 * The current task state is guaranteed to be TASK_RUNNING when this
1777 * Returns 0 when the timer has expired otherwise -EINTR
1779 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1780 const enum hrtimer_mode mode
)
1782 struct hrtimer_sleeper t
;
1785 * Optimize when a zero timeout value is given. It does not
1786 * matter whether this is an absolute or a relative time.
1788 if (expires
&& !expires
->tv64
) {
1789 __set_current_state(TASK_RUNNING
);
1794 * A NULL parameter means "inifinte"
1798 __set_current_state(TASK_RUNNING
);
1802 hrtimer_init_on_stack(&t
.timer
, CLOCK_MONOTONIC
, mode
);
1803 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1805 hrtimer_init_sleeper(&t
, current
);
1807 hrtimer_start_expires(&t
.timer
, mode
);
1808 if (!hrtimer_active(&t
.timer
))
1814 hrtimer_cancel(&t
.timer
);
1815 destroy_hrtimer_on_stack(&t
.timer
);
1817 __set_current_state(TASK_RUNNING
);
1819 return !t
.task
? 0 : -EINTR
;
1821 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1824 * schedule_hrtimeout - sleep until timeout
1825 * @expires: timeout value (ktime_t)
1826 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1828 * Make the current task sleep until the given expiry time has
1829 * elapsed. The routine will return immediately unless
1830 * the current task state has been set (see set_current_state()).
1832 * You can set the task state as follows -
1834 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1835 * pass before the routine returns.
1837 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1838 * delivered to the current task.
1840 * The current task state is guaranteed to be TASK_RUNNING when this
1843 * Returns 0 when the timer has expired otherwise -EINTR
1845 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1846 const enum hrtimer_mode mode
)
1848 return schedule_hrtimeout_range(expires
, 0, mode
);
1850 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);