md/raid5: enhance raid5_size to work correctly with negative delta_disks
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blob5694eb8941b673937176ad4c28c43d1c2f727697
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include "md.h"
52 #include "raid5.h"
53 #include "bitmap.h"
56 * Stripe cache
59 #define NR_STRIPES 256
60 #define STRIPE_SIZE PAGE_SIZE
61 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD 1
64 #define BYPASS_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
83 #define RAID5_PARANOIA 1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 static inline int raid5_bi_phys_segments(struct bio *bio)
103 return bio->bi_phys_segments & 0xffff;
106 static inline int raid5_bi_hw_segments(struct bio *bio)
108 return (bio->bi_phys_segments >> 16) & 0xffff;
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 --bio->bi_phys_segments;
114 return raid5_bi_phys_segments(bio);
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 unsigned short val = raid5_bi_hw_segments(bio);
121 --val;
122 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123 return val;
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
134 if (sh->ddf_layout)
135 /* ddf always start from first device */
136 return 0;
137 /* md starts just after Q block */
138 if (sh->qd_idx == sh->disks - 1)
139 return 0;
140 else
141 return sh->qd_idx + 1;
143 static inline int raid6_next_disk(int disk, int raid_disks)
145 disk++;
146 return (disk < raid_disks) ? disk : 0;
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 int *count, int syndrome_disks)
157 int slot;
159 if (idx == sh->pd_idx)
160 return syndrome_disks;
161 if (idx == sh->qd_idx)
162 return syndrome_disks + 1;
163 slot = (*count)++;
164 return slot;
167 static void return_io(struct bio *return_bi)
169 struct bio *bi = return_bi;
170 while (bi) {
172 return_bi = bi->bi_next;
173 bi->bi_next = NULL;
174 bi->bi_size = 0;
175 bio_endio(bi, 0);
176 bi = return_bi;
180 static void print_raid5_conf (raid5_conf_t *conf);
182 static int stripe_operations_active(struct stripe_head *sh)
184 return sh->check_state || sh->reconstruct_state ||
185 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
189 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
191 if (atomic_dec_and_test(&sh->count)) {
192 BUG_ON(!list_empty(&sh->lru));
193 BUG_ON(atomic_read(&conf->active_stripes)==0);
194 if (test_bit(STRIPE_HANDLE, &sh->state)) {
195 if (test_bit(STRIPE_DELAYED, &sh->state)) {
196 list_add_tail(&sh->lru, &conf->delayed_list);
197 blk_plug_device(conf->mddev->queue);
198 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199 sh->bm_seq - conf->seq_write > 0) {
200 list_add_tail(&sh->lru, &conf->bitmap_list);
201 blk_plug_device(conf->mddev->queue);
202 } else {
203 clear_bit(STRIPE_BIT_DELAY, &sh->state);
204 list_add_tail(&sh->lru, &conf->handle_list);
206 md_wakeup_thread(conf->mddev->thread);
207 } else {
208 BUG_ON(stripe_operations_active(sh));
209 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210 atomic_dec(&conf->preread_active_stripes);
211 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212 md_wakeup_thread(conf->mddev->thread);
214 atomic_dec(&conf->active_stripes);
215 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216 list_add_tail(&sh->lru, &conf->inactive_list);
217 wake_up(&conf->wait_for_stripe);
218 if (conf->retry_read_aligned)
219 md_wakeup_thread(conf->mddev->thread);
225 static void release_stripe(struct stripe_head *sh)
227 raid5_conf_t *conf = sh->raid_conf;
228 unsigned long flags;
230 spin_lock_irqsave(&conf->device_lock, flags);
231 __release_stripe(conf, sh);
232 spin_unlock_irqrestore(&conf->device_lock, flags);
235 static inline void remove_hash(struct stripe_head *sh)
237 pr_debug("remove_hash(), stripe %llu\n",
238 (unsigned long long)sh->sector);
240 hlist_del_init(&sh->hash);
243 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
245 struct hlist_head *hp = stripe_hash(conf, sh->sector);
247 pr_debug("insert_hash(), stripe %llu\n",
248 (unsigned long long)sh->sector);
250 CHECK_DEVLOCK();
251 hlist_add_head(&sh->hash, hp);
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
261 CHECK_DEVLOCK();
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269 out:
270 return sh;
273 static void shrink_buffers(struct stripe_head *sh, int num)
275 struct page *p;
276 int i;
278 for (i=0; i<num ; i++) {
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
283 put_page(p);
287 static int grow_buffers(struct stripe_head *sh, int num)
289 int i;
291 for (i=0; i<num; i++) {
292 struct page *page;
294 if (!(page = alloc_page(GFP_KERNEL))) {
295 return 1;
297 sh->dev[i].page = page;
299 return 0;
302 static void raid5_build_block(struct stripe_head *sh, int i);
303 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304 struct stripe_head *sh);
306 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 raid5_conf_t *conf = sh->raid_conf;
309 int i;
311 BUG_ON(atomic_read(&sh->count) != 0);
312 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313 BUG_ON(stripe_operations_active(sh));
315 CHECK_DEVLOCK();
316 pr_debug("init_stripe called, stripe %llu\n",
317 (unsigned long long)sh->sector);
319 remove_hash(sh);
321 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
322 sh->sector = sector;
323 stripe_set_idx(sector, conf, previous, sh);
324 sh->state = 0;
327 for (i = sh->disks; i--; ) {
328 struct r5dev *dev = &sh->dev[i];
330 if (dev->toread || dev->read || dev->towrite || dev->written ||
331 test_bit(R5_LOCKED, &dev->flags)) {
332 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
333 (unsigned long long)sh->sector, i, dev->toread,
334 dev->read, dev->towrite, dev->written,
335 test_bit(R5_LOCKED, &dev->flags));
336 BUG();
338 dev->flags = 0;
339 raid5_build_block(sh, i);
341 insert_hash(conf, sh);
344 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
346 struct stripe_head *sh;
347 struct hlist_node *hn;
349 CHECK_DEVLOCK();
350 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
351 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
352 if (sh->sector == sector && sh->disks == disks)
353 return sh;
354 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
355 return NULL;
358 static void unplug_slaves(mddev_t *mddev);
359 static void raid5_unplug_device(struct request_queue *q);
361 static struct stripe_head *
362 get_active_stripe(raid5_conf_t *conf, sector_t sector,
363 int previous, int noblock)
365 struct stripe_head *sh;
366 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
368 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370 spin_lock_irq(&conf->device_lock);
372 do {
373 wait_event_lock_irq(conf->wait_for_stripe,
374 conf->quiesce == 0,
375 conf->device_lock, /* nothing */);
376 sh = __find_stripe(conf, sector, disks);
377 if (!sh) {
378 if (!conf->inactive_blocked)
379 sh = get_free_stripe(conf);
380 if (noblock && sh == NULL)
381 break;
382 if (!sh) {
383 conf->inactive_blocked = 1;
384 wait_event_lock_irq(conf->wait_for_stripe,
385 !list_empty(&conf->inactive_list) &&
386 (atomic_read(&conf->active_stripes)
387 < (conf->max_nr_stripes *3/4)
388 || !conf->inactive_blocked),
389 conf->device_lock,
390 raid5_unplug_device(conf->mddev->queue)
392 conf->inactive_blocked = 0;
393 } else
394 init_stripe(sh, sector, previous);
395 } else {
396 if (atomic_read(&sh->count)) {
397 BUG_ON(!list_empty(&sh->lru));
398 } else {
399 if (!test_bit(STRIPE_HANDLE, &sh->state))
400 atomic_inc(&conf->active_stripes);
401 if (list_empty(&sh->lru) &&
402 !test_bit(STRIPE_EXPANDING, &sh->state))
403 BUG();
404 list_del_init(&sh->lru);
407 } while (sh == NULL);
409 if (sh)
410 atomic_inc(&sh->count);
412 spin_unlock_irq(&conf->device_lock);
413 return sh;
416 static void
417 raid5_end_read_request(struct bio *bi, int error);
418 static void
419 raid5_end_write_request(struct bio *bi, int error);
421 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
423 raid5_conf_t *conf = sh->raid_conf;
424 int i, disks = sh->disks;
426 might_sleep();
428 for (i = disks; i--; ) {
429 int rw;
430 struct bio *bi;
431 mdk_rdev_t *rdev;
432 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
433 rw = WRITE;
434 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
435 rw = READ;
436 else
437 continue;
439 bi = &sh->dev[i].req;
441 bi->bi_rw = rw;
442 if (rw == WRITE)
443 bi->bi_end_io = raid5_end_write_request;
444 else
445 bi->bi_end_io = raid5_end_read_request;
447 rcu_read_lock();
448 rdev = rcu_dereference(conf->disks[i].rdev);
449 if (rdev && test_bit(Faulty, &rdev->flags))
450 rdev = NULL;
451 if (rdev)
452 atomic_inc(&rdev->nr_pending);
453 rcu_read_unlock();
455 if (rdev) {
456 if (s->syncing || s->expanding || s->expanded)
457 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
459 set_bit(STRIPE_IO_STARTED, &sh->state);
461 bi->bi_bdev = rdev->bdev;
462 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
463 __func__, (unsigned long long)sh->sector,
464 bi->bi_rw, i);
465 atomic_inc(&sh->count);
466 bi->bi_sector = sh->sector + rdev->data_offset;
467 bi->bi_flags = 1 << BIO_UPTODATE;
468 bi->bi_vcnt = 1;
469 bi->bi_max_vecs = 1;
470 bi->bi_idx = 0;
471 bi->bi_io_vec = &sh->dev[i].vec;
472 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
473 bi->bi_io_vec[0].bv_offset = 0;
474 bi->bi_size = STRIPE_SIZE;
475 bi->bi_next = NULL;
476 if (rw == WRITE &&
477 test_bit(R5_ReWrite, &sh->dev[i].flags))
478 atomic_add(STRIPE_SECTORS,
479 &rdev->corrected_errors);
480 generic_make_request(bi);
481 } else {
482 if (rw == WRITE)
483 set_bit(STRIPE_DEGRADED, &sh->state);
484 pr_debug("skip op %ld on disc %d for sector %llu\n",
485 bi->bi_rw, i, (unsigned long long)sh->sector);
486 clear_bit(R5_LOCKED, &sh->dev[i].flags);
487 set_bit(STRIPE_HANDLE, &sh->state);
492 static struct dma_async_tx_descriptor *
493 async_copy_data(int frombio, struct bio *bio, struct page *page,
494 sector_t sector, struct dma_async_tx_descriptor *tx)
496 struct bio_vec *bvl;
497 struct page *bio_page;
498 int i;
499 int page_offset;
501 if (bio->bi_sector >= sector)
502 page_offset = (signed)(bio->bi_sector - sector) * 512;
503 else
504 page_offset = (signed)(sector - bio->bi_sector) * -512;
505 bio_for_each_segment(bvl, bio, i) {
506 int len = bio_iovec_idx(bio, i)->bv_len;
507 int clen;
508 int b_offset = 0;
510 if (page_offset < 0) {
511 b_offset = -page_offset;
512 page_offset += b_offset;
513 len -= b_offset;
516 if (len > 0 && page_offset + len > STRIPE_SIZE)
517 clen = STRIPE_SIZE - page_offset;
518 else
519 clen = len;
521 if (clen > 0) {
522 b_offset += bio_iovec_idx(bio, i)->bv_offset;
523 bio_page = bio_iovec_idx(bio, i)->bv_page;
524 if (frombio)
525 tx = async_memcpy(page, bio_page, page_offset,
526 b_offset, clen,
527 ASYNC_TX_DEP_ACK,
528 tx, NULL, NULL);
529 else
530 tx = async_memcpy(bio_page, page, b_offset,
531 page_offset, clen,
532 ASYNC_TX_DEP_ACK,
533 tx, NULL, NULL);
535 if (clen < len) /* hit end of page */
536 break;
537 page_offset += len;
540 return tx;
543 static void ops_complete_biofill(void *stripe_head_ref)
545 struct stripe_head *sh = stripe_head_ref;
546 struct bio *return_bi = NULL;
547 raid5_conf_t *conf = sh->raid_conf;
548 int i;
550 pr_debug("%s: stripe %llu\n", __func__,
551 (unsigned long long)sh->sector);
553 /* clear completed biofills */
554 spin_lock_irq(&conf->device_lock);
555 for (i = sh->disks; i--; ) {
556 struct r5dev *dev = &sh->dev[i];
558 /* acknowledge completion of a biofill operation */
559 /* and check if we need to reply to a read request,
560 * new R5_Wantfill requests are held off until
561 * !STRIPE_BIOFILL_RUN
563 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
564 struct bio *rbi, *rbi2;
566 BUG_ON(!dev->read);
567 rbi = dev->read;
568 dev->read = NULL;
569 while (rbi && rbi->bi_sector <
570 dev->sector + STRIPE_SECTORS) {
571 rbi2 = r5_next_bio(rbi, dev->sector);
572 if (!raid5_dec_bi_phys_segments(rbi)) {
573 rbi->bi_next = return_bi;
574 return_bi = rbi;
576 rbi = rbi2;
580 spin_unlock_irq(&conf->device_lock);
581 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
583 return_io(return_bi);
585 set_bit(STRIPE_HANDLE, &sh->state);
586 release_stripe(sh);
589 static void ops_run_biofill(struct stripe_head *sh)
591 struct dma_async_tx_descriptor *tx = NULL;
592 raid5_conf_t *conf = sh->raid_conf;
593 int i;
595 pr_debug("%s: stripe %llu\n", __func__,
596 (unsigned long long)sh->sector);
598 for (i = sh->disks; i--; ) {
599 struct r5dev *dev = &sh->dev[i];
600 if (test_bit(R5_Wantfill, &dev->flags)) {
601 struct bio *rbi;
602 spin_lock_irq(&conf->device_lock);
603 dev->read = rbi = dev->toread;
604 dev->toread = NULL;
605 spin_unlock_irq(&conf->device_lock);
606 while (rbi && rbi->bi_sector <
607 dev->sector + STRIPE_SECTORS) {
608 tx = async_copy_data(0, rbi, dev->page,
609 dev->sector, tx);
610 rbi = r5_next_bio(rbi, dev->sector);
615 atomic_inc(&sh->count);
616 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
617 ops_complete_biofill, sh);
620 static void ops_complete_compute5(void *stripe_head_ref)
622 struct stripe_head *sh = stripe_head_ref;
623 int target = sh->ops.target;
624 struct r5dev *tgt = &sh->dev[target];
626 pr_debug("%s: stripe %llu\n", __func__,
627 (unsigned long long)sh->sector);
629 set_bit(R5_UPTODATE, &tgt->flags);
630 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
631 clear_bit(R5_Wantcompute, &tgt->flags);
632 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
633 if (sh->check_state == check_state_compute_run)
634 sh->check_state = check_state_compute_result;
635 set_bit(STRIPE_HANDLE, &sh->state);
636 release_stripe(sh);
639 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
641 /* kernel stack size limits the total number of disks */
642 int disks = sh->disks;
643 struct page *xor_srcs[disks];
644 int target = sh->ops.target;
645 struct r5dev *tgt = &sh->dev[target];
646 struct page *xor_dest = tgt->page;
647 int count = 0;
648 struct dma_async_tx_descriptor *tx;
649 int i;
651 pr_debug("%s: stripe %llu block: %d\n",
652 __func__, (unsigned long long)sh->sector, target);
653 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
655 for (i = disks; i--; )
656 if (i != target)
657 xor_srcs[count++] = sh->dev[i].page;
659 atomic_inc(&sh->count);
661 if (unlikely(count == 1))
662 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
663 0, NULL, ops_complete_compute5, sh);
664 else
665 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
666 ASYNC_TX_XOR_ZERO_DST, NULL,
667 ops_complete_compute5, sh);
669 return tx;
672 static void ops_complete_prexor(void *stripe_head_ref)
674 struct stripe_head *sh = stripe_head_ref;
676 pr_debug("%s: stripe %llu\n", __func__,
677 (unsigned long long)sh->sector);
680 static struct dma_async_tx_descriptor *
681 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
683 /* kernel stack size limits the total number of disks */
684 int disks = sh->disks;
685 struct page *xor_srcs[disks];
686 int count = 0, pd_idx = sh->pd_idx, i;
688 /* existing parity data subtracted */
689 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
691 pr_debug("%s: stripe %llu\n", __func__,
692 (unsigned long long)sh->sector);
694 for (i = disks; i--; ) {
695 struct r5dev *dev = &sh->dev[i];
696 /* Only process blocks that are known to be uptodate */
697 if (test_bit(R5_Wantdrain, &dev->flags))
698 xor_srcs[count++] = dev->page;
701 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
702 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
703 ops_complete_prexor, sh);
705 return tx;
708 static struct dma_async_tx_descriptor *
709 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
711 int disks = sh->disks;
712 int i;
714 pr_debug("%s: stripe %llu\n", __func__,
715 (unsigned long long)sh->sector);
717 for (i = disks; i--; ) {
718 struct r5dev *dev = &sh->dev[i];
719 struct bio *chosen;
721 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
722 struct bio *wbi;
724 spin_lock(&sh->lock);
725 chosen = dev->towrite;
726 dev->towrite = NULL;
727 BUG_ON(dev->written);
728 wbi = dev->written = chosen;
729 spin_unlock(&sh->lock);
731 while (wbi && wbi->bi_sector <
732 dev->sector + STRIPE_SECTORS) {
733 tx = async_copy_data(1, wbi, dev->page,
734 dev->sector, tx);
735 wbi = r5_next_bio(wbi, dev->sector);
740 return tx;
743 static void ops_complete_postxor(void *stripe_head_ref)
745 struct stripe_head *sh = stripe_head_ref;
746 int disks = sh->disks, i, pd_idx = sh->pd_idx;
748 pr_debug("%s: stripe %llu\n", __func__,
749 (unsigned long long)sh->sector);
751 for (i = disks; i--; ) {
752 struct r5dev *dev = &sh->dev[i];
753 if (dev->written || i == pd_idx)
754 set_bit(R5_UPTODATE, &dev->flags);
757 if (sh->reconstruct_state == reconstruct_state_drain_run)
758 sh->reconstruct_state = reconstruct_state_drain_result;
759 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
760 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
761 else {
762 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
763 sh->reconstruct_state = reconstruct_state_result;
766 set_bit(STRIPE_HANDLE, &sh->state);
767 release_stripe(sh);
770 static void
771 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
773 /* kernel stack size limits the total number of disks */
774 int disks = sh->disks;
775 struct page *xor_srcs[disks];
777 int count = 0, pd_idx = sh->pd_idx, i;
778 struct page *xor_dest;
779 int prexor = 0;
780 unsigned long flags;
782 pr_debug("%s: stripe %llu\n", __func__,
783 (unsigned long long)sh->sector);
785 /* check if prexor is active which means only process blocks
786 * that are part of a read-modify-write (written)
788 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
789 prexor = 1;
790 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
791 for (i = disks; i--; ) {
792 struct r5dev *dev = &sh->dev[i];
793 if (dev->written)
794 xor_srcs[count++] = dev->page;
796 } else {
797 xor_dest = sh->dev[pd_idx].page;
798 for (i = disks; i--; ) {
799 struct r5dev *dev = &sh->dev[i];
800 if (i != pd_idx)
801 xor_srcs[count++] = dev->page;
805 /* 1/ if we prexor'd then the dest is reused as a source
806 * 2/ if we did not prexor then we are redoing the parity
807 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
808 * for the synchronous xor case
810 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
811 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
813 atomic_inc(&sh->count);
815 if (unlikely(count == 1)) {
816 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
817 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
818 flags, tx, ops_complete_postxor, sh);
819 } else
820 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
821 flags, tx, ops_complete_postxor, sh);
824 static void ops_complete_check(void *stripe_head_ref)
826 struct stripe_head *sh = stripe_head_ref;
828 pr_debug("%s: stripe %llu\n", __func__,
829 (unsigned long long)sh->sector);
831 sh->check_state = check_state_check_result;
832 set_bit(STRIPE_HANDLE, &sh->state);
833 release_stripe(sh);
836 static void ops_run_check(struct stripe_head *sh)
838 /* kernel stack size limits the total number of disks */
839 int disks = sh->disks;
840 struct page *xor_srcs[disks];
841 struct dma_async_tx_descriptor *tx;
843 int count = 0, pd_idx = sh->pd_idx, i;
844 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
846 pr_debug("%s: stripe %llu\n", __func__,
847 (unsigned long long)sh->sector);
849 for (i = disks; i--; ) {
850 struct r5dev *dev = &sh->dev[i];
851 if (i != pd_idx)
852 xor_srcs[count++] = dev->page;
855 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
856 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
858 atomic_inc(&sh->count);
859 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
860 ops_complete_check, sh);
863 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
865 int overlap_clear = 0, i, disks = sh->disks;
866 struct dma_async_tx_descriptor *tx = NULL;
868 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
869 ops_run_biofill(sh);
870 overlap_clear++;
873 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
874 tx = ops_run_compute5(sh);
875 /* terminate the chain if postxor is not set to be run */
876 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
877 async_tx_ack(tx);
880 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
881 tx = ops_run_prexor(sh, tx);
883 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
884 tx = ops_run_biodrain(sh, tx);
885 overlap_clear++;
888 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
889 ops_run_postxor(sh, tx);
891 if (test_bit(STRIPE_OP_CHECK, &ops_request))
892 ops_run_check(sh);
894 if (overlap_clear)
895 for (i = disks; i--; ) {
896 struct r5dev *dev = &sh->dev[i];
897 if (test_and_clear_bit(R5_Overlap, &dev->flags))
898 wake_up(&sh->raid_conf->wait_for_overlap);
902 static int grow_one_stripe(raid5_conf_t *conf)
904 struct stripe_head *sh;
905 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
906 if (!sh)
907 return 0;
908 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
909 sh->raid_conf = conf;
910 spin_lock_init(&sh->lock);
912 if (grow_buffers(sh, conf->raid_disks)) {
913 shrink_buffers(sh, conf->raid_disks);
914 kmem_cache_free(conf->slab_cache, sh);
915 return 0;
917 sh->disks = conf->raid_disks;
918 /* we just created an active stripe so... */
919 atomic_set(&sh->count, 1);
920 atomic_inc(&conf->active_stripes);
921 INIT_LIST_HEAD(&sh->lru);
922 release_stripe(sh);
923 return 1;
926 static int grow_stripes(raid5_conf_t *conf, int num)
928 struct kmem_cache *sc;
929 int devs = conf->raid_disks;
931 sprintf(conf->cache_name[0],
932 "raid%d-%s", conf->level, mdname(conf->mddev));
933 sprintf(conf->cache_name[1],
934 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
935 conf->active_name = 0;
936 sc = kmem_cache_create(conf->cache_name[conf->active_name],
937 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
938 0, 0, NULL);
939 if (!sc)
940 return 1;
941 conf->slab_cache = sc;
942 conf->pool_size = devs;
943 while (num--)
944 if (!grow_one_stripe(conf))
945 return 1;
946 return 0;
949 #ifdef CONFIG_MD_RAID5_RESHAPE
950 static int resize_stripes(raid5_conf_t *conf, int newsize)
952 /* Make all the stripes able to hold 'newsize' devices.
953 * New slots in each stripe get 'page' set to a new page.
955 * This happens in stages:
956 * 1/ create a new kmem_cache and allocate the required number of
957 * stripe_heads.
958 * 2/ gather all the old stripe_heads and tranfer the pages across
959 * to the new stripe_heads. This will have the side effect of
960 * freezing the array as once all stripe_heads have been collected,
961 * no IO will be possible. Old stripe heads are freed once their
962 * pages have been transferred over, and the old kmem_cache is
963 * freed when all stripes are done.
964 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
965 * we simple return a failre status - no need to clean anything up.
966 * 4/ allocate new pages for the new slots in the new stripe_heads.
967 * If this fails, we don't bother trying the shrink the
968 * stripe_heads down again, we just leave them as they are.
969 * As each stripe_head is processed the new one is released into
970 * active service.
972 * Once step2 is started, we cannot afford to wait for a write,
973 * so we use GFP_NOIO allocations.
975 struct stripe_head *osh, *nsh;
976 LIST_HEAD(newstripes);
977 struct disk_info *ndisks;
978 int err;
979 struct kmem_cache *sc;
980 int i;
982 if (newsize <= conf->pool_size)
983 return 0; /* never bother to shrink */
985 err = md_allow_write(conf->mddev);
986 if (err)
987 return err;
989 /* Step 1 */
990 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
991 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
992 0, 0, NULL);
993 if (!sc)
994 return -ENOMEM;
996 for (i = conf->max_nr_stripes; i; i--) {
997 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
998 if (!nsh)
999 break;
1001 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003 nsh->raid_conf = conf;
1004 spin_lock_init(&nsh->lock);
1006 list_add(&nsh->lru, &newstripes);
1008 if (i) {
1009 /* didn't get enough, give up */
1010 while (!list_empty(&newstripes)) {
1011 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1012 list_del(&nsh->lru);
1013 kmem_cache_free(sc, nsh);
1015 kmem_cache_destroy(sc);
1016 return -ENOMEM;
1018 /* Step 2 - Must use GFP_NOIO now.
1019 * OK, we have enough stripes, start collecting inactive
1020 * stripes and copying them over
1022 list_for_each_entry(nsh, &newstripes, lru) {
1023 spin_lock_irq(&conf->device_lock);
1024 wait_event_lock_irq(conf->wait_for_stripe,
1025 !list_empty(&conf->inactive_list),
1026 conf->device_lock,
1027 unplug_slaves(conf->mddev)
1029 osh = get_free_stripe(conf);
1030 spin_unlock_irq(&conf->device_lock);
1031 atomic_set(&nsh->count, 1);
1032 for(i=0; i<conf->pool_size; i++)
1033 nsh->dev[i].page = osh->dev[i].page;
1034 for( ; i<newsize; i++)
1035 nsh->dev[i].page = NULL;
1036 kmem_cache_free(conf->slab_cache, osh);
1038 kmem_cache_destroy(conf->slab_cache);
1040 /* Step 3.
1041 * At this point, we are holding all the stripes so the array
1042 * is completely stalled, so now is a good time to resize
1043 * conf->disks.
1045 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1046 if (ndisks) {
1047 for (i=0; i<conf->raid_disks; i++)
1048 ndisks[i] = conf->disks[i];
1049 kfree(conf->disks);
1050 conf->disks = ndisks;
1051 } else
1052 err = -ENOMEM;
1054 /* Step 4, return new stripes to service */
1055 while(!list_empty(&newstripes)) {
1056 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1057 list_del_init(&nsh->lru);
1058 for (i=conf->raid_disks; i < newsize; i++)
1059 if (nsh->dev[i].page == NULL) {
1060 struct page *p = alloc_page(GFP_NOIO);
1061 nsh->dev[i].page = p;
1062 if (!p)
1063 err = -ENOMEM;
1065 release_stripe(nsh);
1067 /* critical section pass, GFP_NOIO no longer needed */
1069 conf->slab_cache = sc;
1070 conf->active_name = 1-conf->active_name;
1071 conf->pool_size = newsize;
1072 return err;
1074 #endif
1076 static int drop_one_stripe(raid5_conf_t *conf)
1078 struct stripe_head *sh;
1080 spin_lock_irq(&conf->device_lock);
1081 sh = get_free_stripe(conf);
1082 spin_unlock_irq(&conf->device_lock);
1083 if (!sh)
1084 return 0;
1085 BUG_ON(atomic_read(&sh->count));
1086 shrink_buffers(sh, conf->pool_size);
1087 kmem_cache_free(conf->slab_cache, sh);
1088 atomic_dec(&conf->active_stripes);
1089 return 1;
1092 static void shrink_stripes(raid5_conf_t *conf)
1094 while (drop_one_stripe(conf))
1097 if (conf->slab_cache)
1098 kmem_cache_destroy(conf->slab_cache);
1099 conf->slab_cache = NULL;
1102 static void raid5_end_read_request(struct bio * bi, int error)
1104 struct stripe_head *sh = bi->bi_private;
1105 raid5_conf_t *conf = sh->raid_conf;
1106 int disks = sh->disks, i;
1107 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1108 char b[BDEVNAME_SIZE];
1109 mdk_rdev_t *rdev;
1112 for (i=0 ; i<disks; i++)
1113 if (bi == &sh->dev[i].req)
1114 break;
1116 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1118 uptodate);
1119 if (i == disks) {
1120 BUG();
1121 return;
1124 if (uptodate) {
1125 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1126 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1127 rdev = conf->disks[i].rdev;
1128 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1129 " (%lu sectors at %llu on %s)\n",
1130 mdname(conf->mddev), STRIPE_SECTORS,
1131 (unsigned long long)(sh->sector
1132 + rdev->data_offset),
1133 bdevname(rdev->bdev, b));
1134 clear_bit(R5_ReadError, &sh->dev[i].flags);
1135 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1137 if (atomic_read(&conf->disks[i].rdev->read_errors))
1138 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1139 } else {
1140 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1141 int retry = 0;
1142 rdev = conf->disks[i].rdev;
1144 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1145 atomic_inc(&rdev->read_errors);
1146 if (conf->mddev->degraded)
1147 printk_rl(KERN_WARNING
1148 "raid5:%s: read error not correctable "
1149 "(sector %llu on %s).\n",
1150 mdname(conf->mddev),
1151 (unsigned long long)(sh->sector
1152 + rdev->data_offset),
1153 bdn);
1154 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1155 /* Oh, no!!! */
1156 printk_rl(KERN_WARNING
1157 "raid5:%s: read error NOT corrected!! "
1158 "(sector %llu on %s).\n",
1159 mdname(conf->mddev),
1160 (unsigned long long)(sh->sector
1161 + rdev->data_offset),
1162 bdn);
1163 else if (atomic_read(&rdev->read_errors)
1164 > conf->max_nr_stripes)
1165 printk(KERN_WARNING
1166 "raid5:%s: Too many read errors, failing device %s.\n",
1167 mdname(conf->mddev), bdn);
1168 else
1169 retry = 1;
1170 if (retry)
1171 set_bit(R5_ReadError, &sh->dev[i].flags);
1172 else {
1173 clear_bit(R5_ReadError, &sh->dev[i].flags);
1174 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1175 md_error(conf->mddev, rdev);
1178 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1179 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1180 set_bit(STRIPE_HANDLE, &sh->state);
1181 release_stripe(sh);
1184 static void raid5_end_write_request(struct bio *bi, int error)
1186 struct stripe_head *sh = bi->bi_private;
1187 raid5_conf_t *conf = sh->raid_conf;
1188 int disks = sh->disks, i;
1189 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1191 for (i=0 ; i<disks; i++)
1192 if (bi == &sh->dev[i].req)
1193 break;
1195 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1196 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1197 uptodate);
1198 if (i == disks) {
1199 BUG();
1200 return;
1203 if (!uptodate)
1204 md_error(conf->mddev, conf->disks[i].rdev);
1206 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1208 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209 set_bit(STRIPE_HANDLE, &sh->state);
1210 release_stripe(sh);
1214 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1216 static void raid5_build_block(struct stripe_head *sh, int i)
1218 struct r5dev *dev = &sh->dev[i];
1220 bio_init(&dev->req);
1221 dev->req.bi_io_vec = &dev->vec;
1222 dev->req.bi_vcnt++;
1223 dev->req.bi_max_vecs++;
1224 dev->vec.bv_page = dev->page;
1225 dev->vec.bv_len = STRIPE_SIZE;
1226 dev->vec.bv_offset = 0;
1228 dev->req.bi_sector = sh->sector;
1229 dev->req.bi_private = sh;
1231 dev->flags = 0;
1232 dev->sector = compute_blocknr(sh, i);
1235 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1237 char b[BDEVNAME_SIZE];
1238 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1239 pr_debug("raid5: error called\n");
1241 if (!test_bit(Faulty, &rdev->flags)) {
1242 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1243 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1244 unsigned long flags;
1245 spin_lock_irqsave(&conf->device_lock, flags);
1246 mddev->degraded++;
1247 spin_unlock_irqrestore(&conf->device_lock, flags);
1249 * if recovery was running, make sure it aborts.
1251 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1253 set_bit(Faulty, &rdev->flags);
1254 printk(KERN_ALERT
1255 "raid5: Disk failure on %s, disabling device.\n"
1256 "raid5: Operation continuing on %d devices.\n",
1257 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1262 * Input: a 'big' sector number,
1263 * Output: index of the data and parity disk, and the sector # in them.
1265 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1266 int previous, int *dd_idx,
1267 struct stripe_head *sh)
1269 long stripe;
1270 unsigned long chunk_number;
1271 unsigned int chunk_offset;
1272 int pd_idx, qd_idx;
1273 int ddf_layout = 0;
1274 sector_t new_sector;
1275 int sectors_per_chunk = conf->chunk_size >> 9;
1276 int raid_disks = previous ? conf->previous_raid_disks
1277 : conf->raid_disks;
1278 int data_disks = raid_disks - conf->max_degraded;
1280 /* First compute the information on this sector */
1283 * Compute the chunk number and the sector offset inside the chunk
1285 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1286 chunk_number = r_sector;
1287 BUG_ON(r_sector != chunk_number);
1290 * Compute the stripe number
1292 stripe = chunk_number / data_disks;
1295 * Compute the data disk and parity disk indexes inside the stripe
1297 *dd_idx = chunk_number % data_disks;
1300 * Select the parity disk based on the user selected algorithm.
1302 pd_idx = qd_idx = ~0;
1303 switch(conf->level) {
1304 case 4:
1305 pd_idx = data_disks;
1306 break;
1307 case 5:
1308 switch (conf->algorithm) {
1309 case ALGORITHM_LEFT_ASYMMETRIC:
1310 pd_idx = data_disks - stripe % raid_disks;
1311 if (*dd_idx >= pd_idx)
1312 (*dd_idx)++;
1313 break;
1314 case ALGORITHM_RIGHT_ASYMMETRIC:
1315 pd_idx = stripe % raid_disks;
1316 if (*dd_idx >= pd_idx)
1317 (*dd_idx)++;
1318 break;
1319 case ALGORITHM_LEFT_SYMMETRIC:
1320 pd_idx = data_disks - stripe % raid_disks;
1321 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1322 break;
1323 case ALGORITHM_RIGHT_SYMMETRIC:
1324 pd_idx = stripe % raid_disks;
1325 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1326 break;
1327 case ALGORITHM_PARITY_0:
1328 pd_idx = 0;
1329 (*dd_idx)++;
1330 break;
1331 case ALGORITHM_PARITY_N:
1332 pd_idx = data_disks;
1333 break;
1334 default:
1335 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1336 conf->algorithm);
1337 BUG();
1339 break;
1340 case 6:
1342 switch (conf->algorithm) {
1343 case ALGORITHM_LEFT_ASYMMETRIC:
1344 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1345 qd_idx = pd_idx + 1;
1346 if (pd_idx == raid_disks-1) {
1347 (*dd_idx)++; /* Q D D D P */
1348 qd_idx = 0;
1349 } else if (*dd_idx >= pd_idx)
1350 (*dd_idx) += 2; /* D D P Q D */
1351 break;
1352 case ALGORITHM_RIGHT_ASYMMETRIC:
1353 pd_idx = stripe % raid_disks;
1354 qd_idx = pd_idx + 1;
1355 if (pd_idx == raid_disks-1) {
1356 (*dd_idx)++; /* Q D D D P */
1357 qd_idx = 0;
1358 } else if (*dd_idx >= pd_idx)
1359 (*dd_idx) += 2; /* D D P Q D */
1360 break;
1361 case ALGORITHM_LEFT_SYMMETRIC:
1362 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1363 qd_idx = (pd_idx + 1) % raid_disks;
1364 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1365 break;
1366 case ALGORITHM_RIGHT_SYMMETRIC:
1367 pd_idx = stripe % raid_disks;
1368 qd_idx = (pd_idx + 1) % raid_disks;
1369 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1370 break;
1372 case ALGORITHM_PARITY_0:
1373 pd_idx = 0;
1374 qd_idx = 1;
1375 (*dd_idx) += 2;
1376 break;
1377 case ALGORITHM_PARITY_N:
1378 pd_idx = data_disks;
1379 qd_idx = data_disks + 1;
1380 break;
1382 case ALGORITHM_ROTATING_ZERO_RESTART:
1383 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1384 * of blocks for computing Q is different.
1386 pd_idx = stripe % raid_disks;
1387 qd_idx = pd_idx + 1;
1388 if (pd_idx == raid_disks-1) {
1389 (*dd_idx)++; /* Q D D D P */
1390 qd_idx = 0;
1391 } else if (*dd_idx >= pd_idx)
1392 (*dd_idx) += 2; /* D D P Q D */
1393 ddf_layout = 1;
1394 break;
1396 case ALGORITHM_ROTATING_N_RESTART:
1397 /* Same a left_asymmetric, by first stripe is
1398 * D D D P Q rather than
1399 * Q D D D P
1401 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1402 qd_idx = pd_idx + 1;
1403 if (pd_idx == raid_disks-1) {
1404 (*dd_idx)++; /* Q D D D P */
1405 qd_idx = 0;
1406 } else if (*dd_idx >= pd_idx)
1407 (*dd_idx) += 2; /* D D P Q D */
1408 ddf_layout = 1;
1409 break;
1411 case ALGORITHM_ROTATING_N_CONTINUE:
1412 /* Same as left_symmetric but Q is before P */
1413 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1414 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1415 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1416 ddf_layout = 1;
1417 break;
1419 case ALGORITHM_LEFT_ASYMMETRIC_6:
1420 /* RAID5 left_asymmetric, with Q on last device */
1421 pd_idx = data_disks - stripe % (raid_disks-1);
1422 if (*dd_idx >= pd_idx)
1423 (*dd_idx)++;
1424 qd_idx = raid_disks - 1;
1425 break;
1427 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1428 pd_idx = stripe % (raid_disks-1);
1429 if (*dd_idx >= pd_idx)
1430 (*dd_idx)++;
1431 qd_idx = raid_disks - 1;
1432 break;
1434 case ALGORITHM_LEFT_SYMMETRIC_6:
1435 pd_idx = data_disks - stripe % (raid_disks-1);
1436 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1437 qd_idx = raid_disks - 1;
1438 break;
1440 case ALGORITHM_RIGHT_SYMMETRIC_6:
1441 pd_idx = stripe % (raid_disks-1);
1442 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1443 qd_idx = raid_disks - 1;
1444 break;
1446 case ALGORITHM_PARITY_0_6:
1447 pd_idx = 0;
1448 (*dd_idx)++;
1449 qd_idx = raid_disks - 1;
1450 break;
1453 default:
1454 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1455 conf->algorithm);
1456 BUG();
1458 break;
1461 if (sh) {
1462 sh->pd_idx = pd_idx;
1463 sh->qd_idx = qd_idx;
1464 sh->ddf_layout = ddf_layout;
1467 * Finally, compute the new sector number
1469 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1470 return new_sector;
1474 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1476 raid5_conf_t *conf = sh->raid_conf;
1477 int raid_disks = sh->disks;
1478 int data_disks = raid_disks - conf->max_degraded;
1479 sector_t new_sector = sh->sector, check;
1480 int sectors_per_chunk = conf->chunk_size >> 9;
1481 sector_t stripe;
1482 int chunk_offset;
1483 int chunk_number, dummy1, dd_idx = i;
1484 sector_t r_sector;
1485 struct stripe_head sh2;
1488 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1489 stripe = new_sector;
1490 BUG_ON(new_sector != stripe);
1492 if (i == sh->pd_idx)
1493 return 0;
1494 switch(conf->level) {
1495 case 4: break;
1496 case 5:
1497 switch (conf->algorithm) {
1498 case ALGORITHM_LEFT_ASYMMETRIC:
1499 case ALGORITHM_RIGHT_ASYMMETRIC:
1500 if (i > sh->pd_idx)
1501 i--;
1502 break;
1503 case ALGORITHM_LEFT_SYMMETRIC:
1504 case ALGORITHM_RIGHT_SYMMETRIC:
1505 if (i < sh->pd_idx)
1506 i += raid_disks;
1507 i -= (sh->pd_idx + 1);
1508 break;
1509 case ALGORITHM_PARITY_0:
1510 i -= 1;
1511 break;
1512 case ALGORITHM_PARITY_N:
1513 break;
1514 default:
1515 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1516 conf->algorithm);
1517 BUG();
1519 break;
1520 case 6:
1521 if (i == sh->qd_idx)
1522 return 0; /* It is the Q disk */
1523 switch (conf->algorithm) {
1524 case ALGORITHM_LEFT_ASYMMETRIC:
1525 case ALGORITHM_RIGHT_ASYMMETRIC:
1526 case ALGORITHM_ROTATING_ZERO_RESTART:
1527 case ALGORITHM_ROTATING_N_RESTART:
1528 if (sh->pd_idx == raid_disks-1)
1529 i--; /* Q D D D P */
1530 else if (i > sh->pd_idx)
1531 i -= 2; /* D D P Q D */
1532 break;
1533 case ALGORITHM_LEFT_SYMMETRIC:
1534 case ALGORITHM_RIGHT_SYMMETRIC:
1535 if (sh->pd_idx == raid_disks-1)
1536 i--; /* Q D D D P */
1537 else {
1538 /* D D P Q D */
1539 if (i < sh->pd_idx)
1540 i += raid_disks;
1541 i -= (sh->pd_idx + 2);
1543 break;
1544 case ALGORITHM_PARITY_0:
1545 i -= 2;
1546 break;
1547 case ALGORITHM_PARITY_N:
1548 break;
1549 case ALGORITHM_ROTATING_N_CONTINUE:
1550 if (sh->pd_idx == 0)
1551 i--; /* P D D D Q */
1552 else if (i > sh->pd_idx)
1553 i -= 2; /* D D Q P D */
1554 break;
1555 case ALGORITHM_LEFT_ASYMMETRIC_6:
1556 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1557 if (i > sh->pd_idx)
1558 i--;
1559 break;
1560 case ALGORITHM_LEFT_SYMMETRIC_6:
1561 case ALGORITHM_RIGHT_SYMMETRIC_6:
1562 if (i < sh->pd_idx)
1563 i += data_disks + 1;
1564 i -= (sh->pd_idx + 1);
1565 break;
1566 case ALGORITHM_PARITY_0_6:
1567 i -= 1;
1568 break;
1569 default:
1570 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1571 conf->algorithm);
1572 BUG();
1574 break;
1577 chunk_number = stripe * data_disks + i;
1578 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1580 check = raid5_compute_sector(conf, r_sector,
1581 (raid_disks != conf->raid_disks),
1582 &dummy1, &sh2);
1583 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1584 || sh2.qd_idx != sh->qd_idx) {
1585 printk(KERN_ERR "compute_blocknr: map not correct\n");
1586 return 0;
1588 return r_sector;
1594 * Copy data between a page in the stripe cache, and one or more bion
1595 * The page could align with the middle of the bio, or there could be
1596 * several bion, each with several bio_vecs, which cover part of the page
1597 * Multiple bion are linked together on bi_next. There may be extras
1598 * at the end of this list. We ignore them.
1600 static void copy_data(int frombio, struct bio *bio,
1601 struct page *page,
1602 sector_t sector)
1604 char *pa = page_address(page);
1605 struct bio_vec *bvl;
1606 int i;
1607 int page_offset;
1609 if (bio->bi_sector >= sector)
1610 page_offset = (signed)(bio->bi_sector - sector) * 512;
1611 else
1612 page_offset = (signed)(sector - bio->bi_sector) * -512;
1613 bio_for_each_segment(bvl, bio, i) {
1614 int len = bio_iovec_idx(bio,i)->bv_len;
1615 int clen;
1616 int b_offset = 0;
1618 if (page_offset < 0) {
1619 b_offset = -page_offset;
1620 page_offset += b_offset;
1621 len -= b_offset;
1624 if (len > 0 && page_offset + len > STRIPE_SIZE)
1625 clen = STRIPE_SIZE - page_offset;
1626 else clen = len;
1628 if (clen > 0) {
1629 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1630 if (frombio)
1631 memcpy(pa+page_offset, ba+b_offset, clen);
1632 else
1633 memcpy(ba+b_offset, pa+page_offset, clen);
1634 __bio_kunmap_atomic(ba, KM_USER0);
1636 if (clen < len) /* hit end of page */
1637 break;
1638 page_offset += len;
1642 #define check_xor() do { \
1643 if (count == MAX_XOR_BLOCKS) { \
1644 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1645 count = 0; \
1647 } while(0)
1649 static void compute_parity6(struct stripe_head *sh, int method)
1651 raid5_conf_t *conf = sh->raid_conf;
1652 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1653 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1654 struct bio *chosen;
1655 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1656 void *ptrs[syndrome_disks+2];
1658 pd_idx = sh->pd_idx;
1659 qd_idx = sh->qd_idx;
1660 d0_idx = raid6_d0(sh);
1662 pr_debug("compute_parity, stripe %llu, method %d\n",
1663 (unsigned long long)sh->sector, method);
1665 switch(method) {
1666 case READ_MODIFY_WRITE:
1667 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1668 case RECONSTRUCT_WRITE:
1669 for (i= disks; i-- ;)
1670 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1671 chosen = sh->dev[i].towrite;
1672 sh->dev[i].towrite = NULL;
1674 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1675 wake_up(&conf->wait_for_overlap);
1677 BUG_ON(sh->dev[i].written);
1678 sh->dev[i].written = chosen;
1680 break;
1681 case CHECK_PARITY:
1682 BUG(); /* Not implemented yet */
1685 for (i = disks; i--;)
1686 if (sh->dev[i].written) {
1687 sector_t sector = sh->dev[i].sector;
1688 struct bio *wbi = sh->dev[i].written;
1689 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1690 copy_data(1, wbi, sh->dev[i].page, sector);
1691 wbi = r5_next_bio(wbi, sector);
1694 set_bit(R5_LOCKED, &sh->dev[i].flags);
1695 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1698 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1700 for (i = 0; i < disks; i++)
1701 ptrs[i] = (void *)raid6_empty_zero_page;
1703 count = 0;
1704 i = d0_idx;
1705 do {
1706 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1708 ptrs[slot] = page_address(sh->dev[i].page);
1709 if (slot < syndrome_disks &&
1710 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1711 printk(KERN_ERR "block %d/%d not uptodate "
1712 "on parity calc\n", i, count);
1713 BUG();
1716 i = raid6_next_disk(i, disks);
1717 } while (i != d0_idx);
1718 BUG_ON(count != syndrome_disks);
1720 raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1722 switch(method) {
1723 case RECONSTRUCT_WRITE:
1724 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1725 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1726 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1727 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1728 break;
1729 case UPDATE_PARITY:
1730 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1731 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1732 break;
1737 /* Compute one missing block */
1738 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1740 int i, count, disks = sh->disks;
1741 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1742 int qd_idx = sh->qd_idx;
1744 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1745 (unsigned long long)sh->sector, dd_idx);
1747 if ( dd_idx == qd_idx ) {
1748 /* We're actually computing the Q drive */
1749 compute_parity6(sh, UPDATE_PARITY);
1750 } else {
1751 dest = page_address(sh->dev[dd_idx].page);
1752 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1753 count = 0;
1754 for (i = disks ; i--; ) {
1755 if (i == dd_idx || i == qd_idx)
1756 continue;
1757 p = page_address(sh->dev[i].page);
1758 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1759 ptr[count++] = p;
1760 else
1761 printk("compute_block() %d, stripe %llu, %d"
1762 " not present\n", dd_idx,
1763 (unsigned long long)sh->sector, i);
1765 check_xor();
1767 if (count)
1768 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1769 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1770 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1774 /* Compute two missing blocks */
1775 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1777 int i, count, disks = sh->disks;
1778 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1779 int d0_idx = raid6_d0(sh);
1780 int faila = -1, failb = -1;
1781 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1782 void *ptrs[syndrome_disks+2];
1784 for (i = 0; i < disks ; i++)
1785 ptrs[i] = (void *)raid6_empty_zero_page;
1786 count = 0;
1787 i = d0_idx;
1788 do {
1789 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1791 ptrs[slot] = page_address(sh->dev[i].page);
1793 if (i == dd_idx1)
1794 faila = slot;
1795 if (i == dd_idx2)
1796 failb = slot;
1797 i = raid6_next_disk(i, disks);
1798 } while (i != d0_idx);
1799 BUG_ON(count != syndrome_disks);
1801 BUG_ON(faila == failb);
1802 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1804 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1805 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1806 faila, failb);
1808 if (failb == syndrome_disks+1) {
1809 /* Q disk is one of the missing disks */
1810 if (faila == syndrome_disks) {
1811 /* Missing P+Q, just recompute */
1812 compute_parity6(sh, UPDATE_PARITY);
1813 return;
1814 } else {
1815 /* We're missing D+Q; recompute D from P */
1816 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1817 dd_idx2 : dd_idx1),
1819 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1820 return;
1824 /* We're missing D+P or D+D; */
1825 if (failb == syndrome_disks) {
1826 /* We're missing D+P. */
1827 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1828 } else {
1829 /* We're missing D+D. */
1830 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1831 ptrs);
1834 /* Both the above update both missing blocks */
1835 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1836 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1839 static void
1840 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1841 int rcw, int expand)
1843 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1845 if (rcw) {
1846 /* if we are not expanding this is a proper write request, and
1847 * there will be bios with new data to be drained into the
1848 * stripe cache
1850 if (!expand) {
1851 sh->reconstruct_state = reconstruct_state_drain_run;
1852 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1853 } else
1854 sh->reconstruct_state = reconstruct_state_run;
1856 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1858 for (i = disks; i--; ) {
1859 struct r5dev *dev = &sh->dev[i];
1861 if (dev->towrite) {
1862 set_bit(R5_LOCKED, &dev->flags);
1863 set_bit(R5_Wantdrain, &dev->flags);
1864 if (!expand)
1865 clear_bit(R5_UPTODATE, &dev->flags);
1866 s->locked++;
1869 if (s->locked + 1 == disks)
1870 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1871 atomic_inc(&sh->raid_conf->pending_full_writes);
1872 } else {
1873 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1874 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1876 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1877 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1878 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1879 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1881 for (i = disks; i--; ) {
1882 struct r5dev *dev = &sh->dev[i];
1883 if (i == pd_idx)
1884 continue;
1886 if (dev->towrite &&
1887 (test_bit(R5_UPTODATE, &dev->flags) ||
1888 test_bit(R5_Wantcompute, &dev->flags))) {
1889 set_bit(R5_Wantdrain, &dev->flags);
1890 set_bit(R5_LOCKED, &dev->flags);
1891 clear_bit(R5_UPTODATE, &dev->flags);
1892 s->locked++;
1897 /* keep the parity disk locked while asynchronous operations
1898 * are in flight
1900 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1901 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1902 s->locked++;
1904 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1905 __func__, (unsigned long long)sh->sector,
1906 s->locked, s->ops_request);
1910 * Each stripe/dev can have one or more bion attached.
1911 * toread/towrite point to the first in a chain.
1912 * The bi_next chain must be in order.
1914 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1916 struct bio **bip;
1917 raid5_conf_t *conf = sh->raid_conf;
1918 int firstwrite=0;
1920 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1921 (unsigned long long)bi->bi_sector,
1922 (unsigned long long)sh->sector);
1925 spin_lock(&sh->lock);
1926 spin_lock_irq(&conf->device_lock);
1927 if (forwrite) {
1928 bip = &sh->dev[dd_idx].towrite;
1929 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1930 firstwrite = 1;
1931 } else
1932 bip = &sh->dev[dd_idx].toread;
1933 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1934 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1935 goto overlap;
1936 bip = & (*bip)->bi_next;
1938 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1939 goto overlap;
1941 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1942 if (*bip)
1943 bi->bi_next = *bip;
1944 *bip = bi;
1945 bi->bi_phys_segments++;
1946 spin_unlock_irq(&conf->device_lock);
1947 spin_unlock(&sh->lock);
1949 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1950 (unsigned long long)bi->bi_sector,
1951 (unsigned long long)sh->sector, dd_idx);
1953 if (conf->mddev->bitmap && firstwrite) {
1954 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1955 STRIPE_SECTORS, 0);
1956 sh->bm_seq = conf->seq_flush+1;
1957 set_bit(STRIPE_BIT_DELAY, &sh->state);
1960 if (forwrite) {
1961 /* check if page is covered */
1962 sector_t sector = sh->dev[dd_idx].sector;
1963 for (bi=sh->dev[dd_idx].towrite;
1964 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1965 bi && bi->bi_sector <= sector;
1966 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1967 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1968 sector = bi->bi_sector + (bi->bi_size>>9);
1970 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1971 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1973 return 1;
1975 overlap:
1976 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1977 spin_unlock_irq(&conf->device_lock);
1978 spin_unlock(&sh->lock);
1979 return 0;
1982 static void end_reshape(raid5_conf_t *conf);
1984 static int page_is_zero(struct page *p)
1986 char *a = page_address(p);
1987 return ((*(u32*)a) == 0 &&
1988 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1991 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1992 struct stripe_head *sh)
1994 int sectors_per_chunk = conf->chunk_size >> 9;
1995 int dd_idx;
1996 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1997 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1999 raid5_compute_sector(conf,
2000 stripe * (disks - conf->max_degraded)
2001 *sectors_per_chunk + chunk_offset,
2002 previous,
2003 &dd_idx, sh);
2006 static void
2007 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2008 struct stripe_head_state *s, int disks,
2009 struct bio **return_bi)
2011 int i;
2012 for (i = disks; i--; ) {
2013 struct bio *bi;
2014 int bitmap_end = 0;
2016 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2017 mdk_rdev_t *rdev;
2018 rcu_read_lock();
2019 rdev = rcu_dereference(conf->disks[i].rdev);
2020 if (rdev && test_bit(In_sync, &rdev->flags))
2021 /* multiple read failures in one stripe */
2022 md_error(conf->mddev, rdev);
2023 rcu_read_unlock();
2025 spin_lock_irq(&conf->device_lock);
2026 /* fail all writes first */
2027 bi = sh->dev[i].towrite;
2028 sh->dev[i].towrite = NULL;
2029 if (bi) {
2030 s->to_write--;
2031 bitmap_end = 1;
2034 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2035 wake_up(&conf->wait_for_overlap);
2037 while (bi && bi->bi_sector <
2038 sh->dev[i].sector + STRIPE_SECTORS) {
2039 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2040 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2041 if (!raid5_dec_bi_phys_segments(bi)) {
2042 md_write_end(conf->mddev);
2043 bi->bi_next = *return_bi;
2044 *return_bi = bi;
2046 bi = nextbi;
2048 /* and fail all 'written' */
2049 bi = sh->dev[i].written;
2050 sh->dev[i].written = NULL;
2051 if (bi) bitmap_end = 1;
2052 while (bi && bi->bi_sector <
2053 sh->dev[i].sector + STRIPE_SECTORS) {
2054 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2055 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2056 if (!raid5_dec_bi_phys_segments(bi)) {
2057 md_write_end(conf->mddev);
2058 bi->bi_next = *return_bi;
2059 *return_bi = bi;
2061 bi = bi2;
2064 /* fail any reads if this device is non-operational and
2065 * the data has not reached the cache yet.
2067 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2068 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2069 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2070 bi = sh->dev[i].toread;
2071 sh->dev[i].toread = NULL;
2072 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2073 wake_up(&conf->wait_for_overlap);
2074 if (bi) s->to_read--;
2075 while (bi && bi->bi_sector <
2076 sh->dev[i].sector + STRIPE_SECTORS) {
2077 struct bio *nextbi =
2078 r5_next_bio(bi, sh->dev[i].sector);
2079 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2080 if (!raid5_dec_bi_phys_segments(bi)) {
2081 bi->bi_next = *return_bi;
2082 *return_bi = bi;
2084 bi = nextbi;
2087 spin_unlock_irq(&conf->device_lock);
2088 if (bitmap_end)
2089 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2090 STRIPE_SECTORS, 0, 0);
2093 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2094 if (atomic_dec_and_test(&conf->pending_full_writes))
2095 md_wakeup_thread(conf->mddev->thread);
2098 /* fetch_block5 - checks the given member device to see if its data needs
2099 * to be read or computed to satisfy a request.
2101 * Returns 1 when no more member devices need to be checked, otherwise returns
2102 * 0 to tell the loop in handle_stripe_fill5 to continue
2104 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2105 int disk_idx, int disks)
2107 struct r5dev *dev = &sh->dev[disk_idx];
2108 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2110 /* is the data in this block needed, and can we get it? */
2111 if (!test_bit(R5_LOCKED, &dev->flags) &&
2112 !test_bit(R5_UPTODATE, &dev->flags) &&
2113 (dev->toread ||
2114 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2115 s->syncing || s->expanding ||
2116 (s->failed &&
2117 (failed_dev->toread ||
2118 (failed_dev->towrite &&
2119 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2120 /* We would like to get this block, possibly by computing it,
2121 * otherwise read it if the backing disk is insync
2123 if ((s->uptodate == disks - 1) &&
2124 (s->failed && disk_idx == s->failed_num)) {
2125 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2126 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2127 set_bit(R5_Wantcompute, &dev->flags);
2128 sh->ops.target = disk_idx;
2129 s->req_compute = 1;
2130 /* Careful: from this point on 'uptodate' is in the eye
2131 * of raid5_run_ops which services 'compute' operations
2132 * before writes. R5_Wantcompute flags a block that will
2133 * be R5_UPTODATE by the time it is needed for a
2134 * subsequent operation.
2136 s->uptodate++;
2137 return 1; /* uptodate + compute == disks */
2138 } else if (test_bit(R5_Insync, &dev->flags)) {
2139 set_bit(R5_LOCKED, &dev->flags);
2140 set_bit(R5_Wantread, &dev->flags);
2141 s->locked++;
2142 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2143 s->syncing);
2147 return 0;
2151 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2153 static void handle_stripe_fill5(struct stripe_head *sh,
2154 struct stripe_head_state *s, int disks)
2156 int i;
2158 /* look for blocks to read/compute, skip this if a compute
2159 * is already in flight, or if the stripe contents are in the
2160 * midst of changing due to a write
2162 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2163 !sh->reconstruct_state)
2164 for (i = disks; i--; )
2165 if (fetch_block5(sh, s, i, disks))
2166 break;
2167 set_bit(STRIPE_HANDLE, &sh->state);
2170 static void handle_stripe_fill6(struct stripe_head *sh,
2171 struct stripe_head_state *s, struct r6_state *r6s,
2172 int disks)
2174 int i;
2175 for (i = disks; i--; ) {
2176 struct r5dev *dev = &sh->dev[i];
2177 if (!test_bit(R5_LOCKED, &dev->flags) &&
2178 !test_bit(R5_UPTODATE, &dev->flags) &&
2179 (dev->toread || (dev->towrite &&
2180 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2181 s->syncing || s->expanding ||
2182 (s->failed >= 1 &&
2183 (sh->dev[r6s->failed_num[0]].toread ||
2184 s->to_write)) ||
2185 (s->failed >= 2 &&
2186 (sh->dev[r6s->failed_num[1]].toread ||
2187 s->to_write)))) {
2188 /* we would like to get this block, possibly
2189 * by computing it, but we might not be able to
2191 if ((s->uptodate == disks - 1) &&
2192 (s->failed && (i == r6s->failed_num[0] ||
2193 i == r6s->failed_num[1]))) {
2194 pr_debug("Computing stripe %llu block %d\n",
2195 (unsigned long long)sh->sector, i);
2196 compute_block_1(sh, i, 0);
2197 s->uptodate++;
2198 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2199 /* Computing 2-failure is *very* expensive; only
2200 * do it if failed >= 2
2202 int other;
2203 for (other = disks; other--; ) {
2204 if (other == i)
2205 continue;
2206 if (!test_bit(R5_UPTODATE,
2207 &sh->dev[other].flags))
2208 break;
2210 BUG_ON(other < 0);
2211 pr_debug("Computing stripe %llu blocks %d,%d\n",
2212 (unsigned long long)sh->sector,
2213 i, other);
2214 compute_block_2(sh, i, other);
2215 s->uptodate += 2;
2216 } else if (test_bit(R5_Insync, &dev->flags)) {
2217 set_bit(R5_LOCKED, &dev->flags);
2218 set_bit(R5_Wantread, &dev->flags);
2219 s->locked++;
2220 pr_debug("Reading block %d (sync=%d)\n",
2221 i, s->syncing);
2225 set_bit(STRIPE_HANDLE, &sh->state);
2229 /* handle_stripe_clean_event
2230 * any written block on an uptodate or failed drive can be returned.
2231 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2232 * never LOCKED, so we don't need to test 'failed' directly.
2234 static void handle_stripe_clean_event(raid5_conf_t *conf,
2235 struct stripe_head *sh, int disks, struct bio **return_bi)
2237 int i;
2238 struct r5dev *dev;
2240 for (i = disks; i--; )
2241 if (sh->dev[i].written) {
2242 dev = &sh->dev[i];
2243 if (!test_bit(R5_LOCKED, &dev->flags) &&
2244 test_bit(R5_UPTODATE, &dev->flags)) {
2245 /* We can return any write requests */
2246 struct bio *wbi, *wbi2;
2247 int bitmap_end = 0;
2248 pr_debug("Return write for disc %d\n", i);
2249 spin_lock_irq(&conf->device_lock);
2250 wbi = dev->written;
2251 dev->written = NULL;
2252 while (wbi && wbi->bi_sector <
2253 dev->sector + STRIPE_SECTORS) {
2254 wbi2 = r5_next_bio(wbi, dev->sector);
2255 if (!raid5_dec_bi_phys_segments(wbi)) {
2256 md_write_end(conf->mddev);
2257 wbi->bi_next = *return_bi;
2258 *return_bi = wbi;
2260 wbi = wbi2;
2262 if (dev->towrite == NULL)
2263 bitmap_end = 1;
2264 spin_unlock_irq(&conf->device_lock);
2265 if (bitmap_end)
2266 bitmap_endwrite(conf->mddev->bitmap,
2267 sh->sector,
2268 STRIPE_SECTORS,
2269 !test_bit(STRIPE_DEGRADED, &sh->state),
2274 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2275 if (atomic_dec_and_test(&conf->pending_full_writes))
2276 md_wakeup_thread(conf->mddev->thread);
2279 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2280 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2282 int rmw = 0, rcw = 0, i;
2283 for (i = disks; i--; ) {
2284 /* would I have to read this buffer for read_modify_write */
2285 struct r5dev *dev = &sh->dev[i];
2286 if ((dev->towrite || i == sh->pd_idx) &&
2287 !test_bit(R5_LOCKED, &dev->flags) &&
2288 !(test_bit(R5_UPTODATE, &dev->flags) ||
2289 test_bit(R5_Wantcompute, &dev->flags))) {
2290 if (test_bit(R5_Insync, &dev->flags))
2291 rmw++;
2292 else
2293 rmw += 2*disks; /* cannot read it */
2295 /* Would I have to read this buffer for reconstruct_write */
2296 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2297 !test_bit(R5_LOCKED, &dev->flags) &&
2298 !(test_bit(R5_UPTODATE, &dev->flags) ||
2299 test_bit(R5_Wantcompute, &dev->flags))) {
2300 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2301 else
2302 rcw += 2*disks;
2305 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2306 (unsigned long long)sh->sector, rmw, rcw);
2307 set_bit(STRIPE_HANDLE, &sh->state);
2308 if (rmw < rcw && rmw > 0)
2309 /* prefer read-modify-write, but need to get some data */
2310 for (i = disks; i--; ) {
2311 struct r5dev *dev = &sh->dev[i];
2312 if ((dev->towrite || i == sh->pd_idx) &&
2313 !test_bit(R5_LOCKED, &dev->flags) &&
2314 !(test_bit(R5_UPTODATE, &dev->flags) ||
2315 test_bit(R5_Wantcompute, &dev->flags)) &&
2316 test_bit(R5_Insync, &dev->flags)) {
2317 if (
2318 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2319 pr_debug("Read_old block "
2320 "%d for r-m-w\n", i);
2321 set_bit(R5_LOCKED, &dev->flags);
2322 set_bit(R5_Wantread, &dev->flags);
2323 s->locked++;
2324 } else {
2325 set_bit(STRIPE_DELAYED, &sh->state);
2326 set_bit(STRIPE_HANDLE, &sh->state);
2330 if (rcw <= rmw && rcw > 0)
2331 /* want reconstruct write, but need to get some data */
2332 for (i = disks; i--; ) {
2333 struct r5dev *dev = &sh->dev[i];
2334 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2335 i != sh->pd_idx &&
2336 !test_bit(R5_LOCKED, &dev->flags) &&
2337 !(test_bit(R5_UPTODATE, &dev->flags) ||
2338 test_bit(R5_Wantcompute, &dev->flags)) &&
2339 test_bit(R5_Insync, &dev->flags)) {
2340 if (
2341 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2342 pr_debug("Read_old block "
2343 "%d for Reconstruct\n", i);
2344 set_bit(R5_LOCKED, &dev->flags);
2345 set_bit(R5_Wantread, &dev->flags);
2346 s->locked++;
2347 } else {
2348 set_bit(STRIPE_DELAYED, &sh->state);
2349 set_bit(STRIPE_HANDLE, &sh->state);
2353 /* now if nothing is locked, and if we have enough data,
2354 * we can start a write request
2356 /* since handle_stripe can be called at any time we need to handle the
2357 * case where a compute block operation has been submitted and then a
2358 * subsequent call wants to start a write request. raid5_run_ops only
2359 * handles the case where compute block and postxor are requested
2360 * simultaneously. If this is not the case then new writes need to be
2361 * held off until the compute completes.
2363 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2364 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2365 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2366 schedule_reconstruction5(sh, s, rcw == 0, 0);
2369 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2370 struct stripe_head *sh, struct stripe_head_state *s,
2371 struct r6_state *r6s, int disks)
2373 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2374 int qd_idx = sh->qd_idx;
2375 for (i = disks; i--; ) {
2376 struct r5dev *dev = &sh->dev[i];
2377 /* Would I have to read this buffer for reconstruct_write */
2378 if (!test_bit(R5_OVERWRITE, &dev->flags)
2379 && i != pd_idx && i != qd_idx
2380 && (!test_bit(R5_LOCKED, &dev->flags)
2381 ) &&
2382 !test_bit(R5_UPTODATE, &dev->flags)) {
2383 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2384 else {
2385 pr_debug("raid6: must_compute: "
2386 "disk %d flags=%#lx\n", i, dev->flags);
2387 must_compute++;
2391 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2392 (unsigned long long)sh->sector, rcw, must_compute);
2393 set_bit(STRIPE_HANDLE, &sh->state);
2395 if (rcw > 0)
2396 /* want reconstruct write, but need to get some data */
2397 for (i = disks; i--; ) {
2398 struct r5dev *dev = &sh->dev[i];
2399 if (!test_bit(R5_OVERWRITE, &dev->flags)
2400 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2401 && !test_bit(R5_LOCKED, &dev->flags) &&
2402 !test_bit(R5_UPTODATE, &dev->flags) &&
2403 test_bit(R5_Insync, &dev->flags)) {
2404 if (
2405 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2406 pr_debug("Read_old stripe %llu "
2407 "block %d for Reconstruct\n",
2408 (unsigned long long)sh->sector, i);
2409 set_bit(R5_LOCKED, &dev->flags);
2410 set_bit(R5_Wantread, &dev->flags);
2411 s->locked++;
2412 } else {
2413 pr_debug("Request delayed stripe %llu "
2414 "block %d for Reconstruct\n",
2415 (unsigned long long)sh->sector, i);
2416 set_bit(STRIPE_DELAYED, &sh->state);
2417 set_bit(STRIPE_HANDLE, &sh->state);
2421 /* now if nothing is locked, and if we have enough data, we can start a
2422 * write request
2424 if (s->locked == 0 && rcw == 0 &&
2425 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2426 if (must_compute > 0) {
2427 /* We have failed blocks and need to compute them */
2428 switch (s->failed) {
2429 case 0:
2430 BUG();
2431 case 1:
2432 compute_block_1(sh, r6s->failed_num[0], 0);
2433 break;
2434 case 2:
2435 compute_block_2(sh, r6s->failed_num[0],
2436 r6s->failed_num[1]);
2437 break;
2438 default: /* This request should have been failed? */
2439 BUG();
2443 pr_debug("Computing parity for stripe %llu\n",
2444 (unsigned long long)sh->sector);
2445 compute_parity6(sh, RECONSTRUCT_WRITE);
2446 /* now every locked buffer is ready to be written */
2447 for (i = disks; i--; )
2448 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2449 pr_debug("Writing stripe %llu block %d\n",
2450 (unsigned long long)sh->sector, i);
2451 s->locked++;
2452 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2454 if (s->locked == disks)
2455 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2456 atomic_inc(&conf->pending_full_writes);
2457 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2458 set_bit(STRIPE_INSYNC, &sh->state);
2460 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2461 atomic_dec(&conf->preread_active_stripes);
2462 if (atomic_read(&conf->preread_active_stripes) <
2463 IO_THRESHOLD)
2464 md_wakeup_thread(conf->mddev->thread);
2469 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2470 struct stripe_head_state *s, int disks)
2472 struct r5dev *dev = NULL;
2474 set_bit(STRIPE_HANDLE, &sh->state);
2476 switch (sh->check_state) {
2477 case check_state_idle:
2478 /* start a new check operation if there are no failures */
2479 if (s->failed == 0) {
2480 BUG_ON(s->uptodate != disks);
2481 sh->check_state = check_state_run;
2482 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2483 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2484 s->uptodate--;
2485 break;
2487 dev = &sh->dev[s->failed_num];
2488 /* fall through */
2489 case check_state_compute_result:
2490 sh->check_state = check_state_idle;
2491 if (!dev)
2492 dev = &sh->dev[sh->pd_idx];
2494 /* check that a write has not made the stripe insync */
2495 if (test_bit(STRIPE_INSYNC, &sh->state))
2496 break;
2498 /* either failed parity check, or recovery is happening */
2499 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2500 BUG_ON(s->uptodate != disks);
2502 set_bit(R5_LOCKED, &dev->flags);
2503 s->locked++;
2504 set_bit(R5_Wantwrite, &dev->flags);
2506 clear_bit(STRIPE_DEGRADED, &sh->state);
2507 set_bit(STRIPE_INSYNC, &sh->state);
2508 break;
2509 case check_state_run:
2510 break; /* we will be called again upon completion */
2511 case check_state_check_result:
2512 sh->check_state = check_state_idle;
2514 /* if a failure occurred during the check operation, leave
2515 * STRIPE_INSYNC not set and let the stripe be handled again
2517 if (s->failed)
2518 break;
2520 /* handle a successful check operation, if parity is correct
2521 * we are done. Otherwise update the mismatch count and repair
2522 * parity if !MD_RECOVERY_CHECK
2524 if (sh->ops.zero_sum_result == 0)
2525 /* parity is correct (on disc,
2526 * not in buffer any more)
2528 set_bit(STRIPE_INSYNC, &sh->state);
2529 else {
2530 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2531 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2532 /* don't try to repair!! */
2533 set_bit(STRIPE_INSYNC, &sh->state);
2534 else {
2535 sh->check_state = check_state_compute_run;
2536 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2537 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2538 set_bit(R5_Wantcompute,
2539 &sh->dev[sh->pd_idx].flags);
2540 sh->ops.target = sh->pd_idx;
2541 s->uptodate++;
2544 break;
2545 case check_state_compute_run:
2546 break;
2547 default:
2548 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2549 __func__, sh->check_state,
2550 (unsigned long long) sh->sector);
2551 BUG();
2556 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2557 struct stripe_head_state *s,
2558 struct r6_state *r6s, struct page *tmp_page,
2559 int disks)
2561 int update_p = 0, update_q = 0;
2562 struct r5dev *dev;
2563 int pd_idx = sh->pd_idx;
2564 int qd_idx = sh->qd_idx;
2566 set_bit(STRIPE_HANDLE, &sh->state);
2568 BUG_ON(s->failed > 2);
2569 BUG_ON(s->uptodate < disks);
2570 /* Want to check and possibly repair P and Q.
2571 * However there could be one 'failed' device, in which
2572 * case we can only check one of them, possibly using the
2573 * other to generate missing data
2576 /* If !tmp_page, we cannot do the calculations,
2577 * but as we have set STRIPE_HANDLE, we will soon be called
2578 * by stripe_handle with a tmp_page - just wait until then.
2580 if (tmp_page) {
2581 if (s->failed == r6s->q_failed) {
2582 /* The only possible failed device holds 'Q', so it
2583 * makes sense to check P (If anything else were failed,
2584 * we would have used P to recreate it).
2586 compute_block_1(sh, pd_idx, 1);
2587 if (!page_is_zero(sh->dev[pd_idx].page)) {
2588 compute_block_1(sh, pd_idx, 0);
2589 update_p = 1;
2592 if (!r6s->q_failed && s->failed < 2) {
2593 /* q is not failed, and we didn't use it to generate
2594 * anything, so it makes sense to check it
2596 memcpy(page_address(tmp_page),
2597 page_address(sh->dev[qd_idx].page),
2598 STRIPE_SIZE);
2599 compute_parity6(sh, UPDATE_PARITY);
2600 if (memcmp(page_address(tmp_page),
2601 page_address(sh->dev[qd_idx].page),
2602 STRIPE_SIZE) != 0) {
2603 clear_bit(STRIPE_INSYNC, &sh->state);
2604 update_q = 1;
2607 if (update_p || update_q) {
2608 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2609 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2610 /* don't try to repair!! */
2611 update_p = update_q = 0;
2614 /* now write out any block on a failed drive,
2615 * or P or Q if they need it
2618 if (s->failed == 2) {
2619 dev = &sh->dev[r6s->failed_num[1]];
2620 s->locked++;
2621 set_bit(R5_LOCKED, &dev->flags);
2622 set_bit(R5_Wantwrite, &dev->flags);
2624 if (s->failed >= 1) {
2625 dev = &sh->dev[r6s->failed_num[0]];
2626 s->locked++;
2627 set_bit(R5_LOCKED, &dev->flags);
2628 set_bit(R5_Wantwrite, &dev->flags);
2631 if (update_p) {
2632 dev = &sh->dev[pd_idx];
2633 s->locked++;
2634 set_bit(R5_LOCKED, &dev->flags);
2635 set_bit(R5_Wantwrite, &dev->flags);
2637 if (update_q) {
2638 dev = &sh->dev[qd_idx];
2639 s->locked++;
2640 set_bit(R5_LOCKED, &dev->flags);
2641 set_bit(R5_Wantwrite, &dev->flags);
2643 clear_bit(STRIPE_DEGRADED, &sh->state);
2645 set_bit(STRIPE_INSYNC, &sh->state);
2649 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2650 struct r6_state *r6s)
2652 int i;
2654 /* We have read all the blocks in this stripe and now we need to
2655 * copy some of them into a target stripe for expand.
2657 struct dma_async_tx_descriptor *tx = NULL;
2658 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2659 for (i = 0; i < sh->disks; i++)
2660 if (i != sh->pd_idx && i != sh->qd_idx) {
2661 int dd_idx, j;
2662 struct stripe_head *sh2;
2664 sector_t bn = compute_blocknr(sh, i);
2665 sector_t s = raid5_compute_sector(conf, bn, 0,
2666 &dd_idx, NULL);
2667 sh2 = get_active_stripe(conf, s, 0, 1);
2668 if (sh2 == NULL)
2669 /* so far only the early blocks of this stripe
2670 * have been requested. When later blocks
2671 * get requested, we will try again
2673 continue;
2674 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2675 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2676 /* must have already done this block */
2677 release_stripe(sh2);
2678 continue;
2681 /* place all the copies on one channel */
2682 tx = async_memcpy(sh2->dev[dd_idx].page,
2683 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2684 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2686 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2687 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2688 for (j = 0; j < conf->raid_disks; j++)
2689 if (j != sh2->pd_idx &&
2690 (!r6s || j != sh2->qd_idx) &&
2691 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2692 break;
2693 if (j == conf->raid_disks) {
2694 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2695 set_bit(STRIPE_HANDLE, &sh2->state);
2697 release_stripe(sh2);
2700 /* done submitting copies, wait for them to complete */
2701 if (tx) {
2702 async_tx_ack(tx);
2703 dma_wait_for_async_tx(tx);
2709 * handle_stripe - do things to a stripe.
2711 * We lock the stripe and then examine the state of various bits
2712 * to see what needs to be done.
2713 * Possible results:
2714 * return some read request which now have data
2715 * return some write requests which are safely on disc
2716 * schedule a read on some buffers
2717 * schedule a write of some buffers
2718 * return confirmation of parity correctness
2720 * buffers are taken off read_list or write_list, and bh_cache buffers
2721 * get BH_Lock set before the stripe lock is released.
2725 static bool handle_stripe5(struct stripe_head *sh)
2727 raid5_conf_t *conf = sh->raid_conf;
2728 int disks = sh->disks, i;
2729 struct bio *return_bi = NULL;
2730 struct stripe_head_state s;
2731 struct r5dev *dev;
2732 mdk_rdev_t *blocked_rdev = NULL;
2733 int prexor;
2735 memset(&s, 0, sizeof(s));
2736 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2737 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2738 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2739 sh->reconstruct_state);
2741 spin_lock(&sh->lock);
2742 clear_bit(STRIPE_HANDLE, &sh->state);
2743 clear_bit(STRIPE_DELAYED, &sh->state);
2745 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2746 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2747 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2749 /* Now to look around and see what can be done */
2750 rcu_read_lock();
2751 for (i=disks; i--; ) {
2752 mdk_rdev_t *rdev;
2753 struct r5dev *dev = &sh->dev[i];
2754 clear_bit(R5_Insync, &dev->flags);
2756 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2757 "written %p\n", i, dev->flags, dev->toread, dev->read,
2758 dev->towrite, dev->written);
2760 /* maybe we can request a biofill operation
2762 * new wantfill requests are only permitted while
2763 * ops_complete_biofill is guaranteed to be inactive
2765 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2766 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2767 set_bit(R5_Wantfill, &dev->flags);
2769 /* now count some things */
2770 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2771 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2772 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2774 if (test_bit(R5_Wantfill, &dev->flags))
2775 s.to_fill++;
2776 else if (dev->toread)
2777 s.to_read++;
2778 if (dev->towrite) {
2779 s.to_write++;
2780 if (!test_bit(R5_OVERWRITE, &dev->flags))
2781 s.non_overwrite++;
2783 if (dev->written)
2784 s.written++;
2785 rdev = rcu_dereference(conf->disks[i].rdev);
2786 if (blocked_rdev == NULL &&
2787 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2788 blocked_rdev = rdev;
2789 atomic_inc(&rdev->nr_pending);
2791 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2792 /* The ReadError flag will just be confusing now */
2793 clear_bit(R5_ReadError, &dev->flags);
2794 clear_bit(R5_ReWrite, &dev->flags);
2796 if (!rdev || !test_bit(In_sync, &rdev->flags)
2797 || test_bit(R5_ReadError, &dev->flags)) {
2798 s.failed++;
2799 s.failed_num = i;
2800 } else
2801 set_bit(R5_Insync, &dev->flags);
2803 rcu_read_unlock();
2805 if (unlikely(blocked_rdev)) {
2806 if (s.syncing || s.expanding || s.expanded ||
2807 s.to_write || s.written) {
2808 set_bit(STRIPE_HANDLE, &sh->state);
2809 goto unlock;
2811 /* There is nothing for the blocked_rdev to block */
2812 rdev_dec_pending(blocked_rdev, conf->mddev);
2813 blocked_rdev = NULL;
2816 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2817 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2818 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2821 pr_debug("locked=%d uptodate=%d to_read=%d"
2822 " to_write=%d failed=%d failed_num=%d\n",
2823 s.locked, s.uptodate, s.to_read, s.to_write,
2824 s.failed, s.failed_num);
2825 /* check if the array has lost two devices and, if so, some requests might
2826 * need to be failed
2828 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2829 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2830 if (s.failed > 1 && s.syncing) {
2831 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2832 clear_bit(STRIPE_SYNCING, &sh->state);
2833 s.syncing = 0;
2836 /* might be able to return some write requests if the parity block
2837 * is safe, or on a failed drive
2839 dev = &sh->dev[sh->pd_idx];
2840 if ( s.written &&
2841 ((test_bit(R5_Insync, &dev->flags) &&
2842 !test_bit(R5_LOCKED, &dev->flags) &&
2843 test_bit(R5_UPTODATE, &dev->flags)) ||
2844 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2845 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2847 /* Now we might consider reading some blocks, either to check/generate
2848 * parity, or to satisfy requests
2849 * or to load a block that is being partially written.
2851 if (s.to_read || s.non_overwrite ||
2852 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2853 handle_stripe_fill5(sh, &s, disks);
2855 /* Now we check to see if any write operations have recently
2856 * completed
2858 prexor = 0;
2859 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2860 prexor = 1;
2861 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2862 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2863 sh->reconstruct_state = reconstruct_state_idle;
2865 /* All the 'written' buffers and the parity block are ready to
2866 * be written back to disk
2868 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2869 for (i = disks; i--; ) {
2870 dev = &sh->dev[i];
2871 if (test_bit(R5_LOCKED, &dev->flags) &&
2872 (i == sh->pd_idx || dev->written)) {
2873 pr_debug("Writing block %d\n", i);
2874 set_bit(R5_Wantwrite, &dev->flags);
2875 if (prexor)
2876 continue;
2877 if (!test_bit(R5_Insync, &dev->flags) ||
2878 (i == sh->pd_idx && s.failed == 0))
2879 set_bit(STRIPE_INSYNC, &sh->state);
2882 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2883 atomic_dec(&conf->preread_active_stripes);
2884 if (atomic_read(&conf->preread_active_stripes) <
2885 IO_THRESHOLD)
2886 md_wakeup_thread(conf->mddev->thread);
2890 /* Now to consider new write requests and what else, if anything
2891 * should be read. We do not handle new writes when:
2892 * 1/ A 'write' operation (copy+xor) is already in flight.
2893 * 2/ A 'check' operation is in flight, as it may clobber the parity
2894 * block.
2896 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2897 handle_stripe_dirtying5(conf, sh, &s, disks);
2899 /* maybe we need to check and possibly fix the parity for this stripe
2900 * Any reads will already have been scheduled, so we just see if enough
2901 * data is available. The parity check is held off while parity
2902 * dependent operations are in flight.
2904 if (sh->check_state ||
2905 (s.syncing && s.locked == 0 &&
2906 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2907 !test_bit(STRIPE_INSYNC, &sh->state)))
2908 handle_parity_checks5(conf, sh, &s, disks);
2910 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2911 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2912 clear_bit(STRIPE_SYNCING, &sh->state);
2915 /* If the failed drive is just a ReadError, then we might need to progress
2916 * the repair/check process
2918 if (s.failed == 1 && !conf->mddev->ro &&
2919 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2920 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2921 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2923 dev = &sh->dev[s.failed_num];
2924 if (!test_bit(R5_ReWrite, &dev->flags)) {
2925 set_bit(R5_Wantwrite, &dev->flags);
2926 set_bit(R5_ReWrite, &dev->flags);
2927 set_bit(R5_LOCKED, &dev->flags);
2928 s.locked++;
2929 } else {
2930 /* let's read it back */
2931 set_bit(R5_Wantread, &dev->flags);
2932 set_bit(R5_LOCKED, &dev->flags);
2933 s.locked++;
2937 /* Finish reconstruct operations initiated by the expansion process */
2938 if (sh->reconstruct_state == reconstruct_state_result) {
2939 sh->reconstruct_state = reconstruct_state_idle;
2940 clear_bit(STRIPE_EXPANDING, &sh->state);
2941 for (i = conf->raid_disks; i--; ) {
2942 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2943 set_bit(R5_LOCKED, &sh->dev[i].flags);
2944 s.locked++;
2948 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2949 !sh->reconstruct_state) {
2950 /* Need to write out all blocks after computing parity */
2951 sh->disks = conf->raid_disks;
2952 stripe_set_idx(sh->sector, conf, 0, sh);
2953 schedule_reconstruction5(sh, &s, 1, 1);
2954 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2955 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2956 atomic_dec(&conf->reshape_stripes);
2957 wake_up(&conf->wait_for_overlap);
2958 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2961 if (s.expanding && s.locked == 0 &&
2962 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2963 handle_stripe_expansion(conf, sh, NULL);
2965 unlock:
2966 spin_unlock(&sh->lock);
2968 /* wait for this device to become unblocked */
2969 if (unlikely(blocked_rdev))
2970 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2972 if (s.ops_request)
2973 raid5_run_ops(sh, s.ops_request);
2975 ops_run_io(sh, &s);
2977 return_io(return_bi);
2979 return blocked_rdev == NULL;
2982 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2984 raid5_conf_t *conf = sh->raid_conf;
2985 int disks = sh->disks;
2986 struct bio *return_bi = NULL;
2987 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
2988 struct stripe_head_state s;
2989 struct r6_state r6s;
2990 struct r5dev *dev, *pdev, *qdev;
2991 mdk_rdev_t *blocked_rdev = NULL;
2993 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2994 "pd_idx=%d, qd_idx=%d\n",
2995 (unsigned long long)sh->sector, sh->state,
2996 atomic_read(&sh->count), pd_idx, qd_idx);
2997 memset(&s, 0, sizeof(s));
2999 spin_lock(&sh->lock);
3000 clear_bit(STRIPE_HANDLE, &sh->state);
3001 clear_bit(STRIPE_DELAYED, &sh->state);
3003 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3004 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3005 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3006 /* Now to look around and see what can be done */
3008 rcu_read_lock();
3009 for (i=disks; i--; ) {
3010 mdk_rdev_t *rdev;
3011 dev = &sh->dev[i];
3012 clear_bit(R5_Insync, &dev->flags);
3014 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3015 i, dev->flags, dev->toread, dev->towrite, dev->written);
3016 /* maybe we can reply to a read */
3017 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3018 struct bio *rbi, *rbi2;
3019 pr_debug("Return read for disc %d\n", i);
3020 spin_lock_irq(&conf->device_lock);
3021 rbi = dev->toread;
3022 dev->toread = NULL;
3023 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3024 wake_up(&conf->wait_for_overlap);
3025 spin_unlock_irq(&conf->device_lock);
3026 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3027 copy_data(0, rbi, dev->page, dev->sector);
3028 rbi2 = r5_next_bio(rbi, dev->sector);
3029 spin_lock_irq(&conf->device_lock);
3030 if (!raid5_dec_bi_phys_segments(rbi)) {
3031 rbi->bi_next = return_bi;
3032 return_bi = rbi;
3034 spin_unlock_irq(&conf->device_lock);
3035 rbi = rbi2;
3039 /* now count some things */
3040 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3041 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3044 if (dev->toread)
3045 s.to_read++;
3046 if (dev->towrite) {
3047 s.to_write++;
3048 if (!test_bit(R5_OVERWRITE, &dev->flags))
3049 s.non_overwrite++;
3051 if (dev->written)
3052 s.written++;
3053 rdev = rcu_dereference(conf->disks[i].rdev);
3054 if (blocked_rdev == NULL &&
3055 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3056 blocked_rdev = rdev;
3057 atomic_inc(&rdev->nr_pending);
3059 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3060 /* The ReadError flag will just be confusing now */
3061 clear_bit(R5_ReadError, &dev->flags);
3062 clear_bit(R5_ReWrite, &dev->flags);
3064 if (!rdev || !test_bit(In_sync, &rdev->flags)
3065 || test_bit(R5_ReadError, &dev->flags)) {
3066 if (s.failed < 2)
3067 r6s.failed_num[s.failed] = i;
3068 s.failed++;
3069 } else
3070 set_bit(R5_Insync, &dev->flags);
3072 rcu_read_unlock();
3074 if (unlikely(blocked_rdev)) {
3075 if (s.syncing || s.expanding || s.expanded ||
3076 s.to_write || s.written) {
3077 set_bit(STRIPE_HANDLE, &sh->state);
3078 goto unlock;
3080 /* There is nothing for the blocked_rdev to block */
3081 rdev_dec_pending(blocked_rdev, conf->mddev);
3082 blocked_rdev = NULL;
3085 pr_debug("locked=%d uptodate=%d to_read=%d"
3086 " to_write=%d failed=%d failed_num=%d,%d\n",
3087 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3088 r6s.failed_num[0], r6s.failed_num[1]);
3089 /* check if the array has lost >2 devices and, if so, some requests
3090 * might need to be failed
3092 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3093 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3094 if (s.failed > 2 && s.syncing) {
3095 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3096 clear_bit(STRIPE_SYNCING, &sh->state);
3097 s.syncing = 0;
3101 * might be able to return some write requests if the parity blocks
3102 * are safe, or on a failed drive
3104 pdev = &sh->dev[pd_idx];
3105 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3106 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3107 qdev = &sh->dev[qd_idx];
3108 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3109 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3111 if ( s.written &&
3112 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3113 && !test_bit(R5_LOCKED, &pdev->flags)
3114 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3115 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3116 && !test_bit(R5_LOCKED, &qdev->flags)
3117 && test_bit(R5_UPTODATE, &qdev->flags)))))
3118 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3120 /* Now we might consider reading some blocks, either to check/generate
3121 * parity, or to satisfy requests
3122 * or to load a block that is being partially written.
3124 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3125 (s.syncing && (s.uptodate < disks)) || s.expanding)
3126 handle_stripe_fill6(sh, &s, &r6s, disks);
3128 /* now to consider writing and what else, if anything should be read */
3129 if (s.to_write)
3130 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3132 /* maybe we need to check and possibly fix the parity for this stripe
3133 * Any reads will already have been scheduled, so we just see if enough
3134 * data is available
3136 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3137 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3139 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3140 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3141 clear_bit(STRIPE_SYNCING, &sh->state);
3144 /* If the failed drives are just a ReadError, then we might need
3145 * to progress the repair/check process
3147 if (s.failed <= 2 && !conf->mddev->ro)
3148 for (i = 0; i < s.failed; i++) {
3149 dev = &sh->dev[r6s.failed_num[i]];
3150 if (test_bit(R5_ReadError, &dev->flags)
3151 && !test_bit(R5_LOCKED, &dev->flags)
3152 && test_bit(R5_UPTODATE, &dev->flags)
3154 if (!test_bit(R5_ReWrite, &dev->flags)) {
3155 set_bit(R5_Wantwrite, &dev->flags);
3156 set_bit(R5_ReWrite, &dev->flags);
3157 set_bit(R5_LOCKED, &dev->flags);
3158 } else {
3159 /* let's read it back */
3160 set_bit(R5_Wantread, &dev->flags);
3161 set_bit(R5_LOCKED, &dev->flags);
3166 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3167 /* Need to write out all blocks after computing P&Q */
3168 sh->disks = conf->raid_disks;
3169 stripe_set_idx(sh->sector, conf, 0, sh);
3170 compute_parity6(sh, RECONSTRUCT_WRITE);
3171 for (i = conf->raid_disks ; i-- ; ) {
3172 set_bit(R5_LOCKED, &sh->dev[i].flags);
3173 s.locked++;
3174 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3176 clear_bit(STRIPE_EXPANDING, &sh->state);
3177 } else if (s.expanded) {
3178 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3179 atomic_dec(&conf->reshape_stripes);
3180 wake_up(&conf->wait_for_overlap);
3181 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3184 if (s.expanding && s.locked == 0 &&
3185 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3186 handle_stripe_expansion(conf, sh, &r6s);
3188 unlock:
3189 spin_unlock(&sh->lock);
3191 /* wait for this device to become unblocked */
3192 if (unlikely(blocked_rdev))
3193 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3195 ops_run_io(sh, &s);
3197 return_io(return_bi);
3199 return blocked_rdev == NULL;
3202 /* returns true if the stripe was handled */
3203 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3205 if (sh->raid_conf->level == 6)
3206 return handle_stripe6(sh, tmp_page);
3207 else
3208 return handle_stripe5(sh);
3213 static void raid5_activate_delayed(raid5_conf_t *conf)
3215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3216 while (!list_empty(&conf->delayed_list)) {
3217 struct list_head *l = conf->delayed_list.next;
3218 struct stripe_head *sh;
3219 sh = list_entry(l, struct stripe_head, lru);
3220 list_del_init(l);
3221 clear_bit(STRIPE_DELAYED, &sh->state);
3222 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3223 atomic_inc(&conf->preread_active_stripes);
3224 list_add_tail(&sh->lru, &conf->hold_list);
3226 } else
3227 blk_plug_device(conf->mddev->queue);
3230 static void activate_bit_delay(raid5_conf_t *conf)
3232 /* device_lock is held */
3233 struct list_head head;
3234 list_add(&head, &conf->bitmap_list);
3235 list_del_init(&conf->bitmap_list);
3236 while (!list_empty(&head)) {
3237 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3238 list_del_init(&sh->lru);
3239 atomic_inc(&sh->count);
3240 __release_stripe(conf, sh);
3244 static void unplug_slaves(mddev_t *mddev)
3246 raid5_conf_t *conf = mddev_to_conf(mddev);
3247 int i;
3249 rcu_read_lock();
3250 for (i=0; i<mddev->raid_disks; i++) {
3251 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3252 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3253 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3255 atomic_inc(&rdev->nr_pending);
3256 rcu_read_unlock();
3258 blk_unplug(r_queue);
3260 rdev_dec_pending(rdev, mddev);
3261 rcu_read_lock();
3264 rcu_read_unlock();
3267 static void raid5_unplug_device(struct request_queue *q)
3269 mddev_t *mddev = q->queuedata;
3270 raid5_conf_t *conf = mddev_to_conf(mddev);
3271 unsigned long flags;
3273 spin_lock_irqsave(&conf->device_lock, flags);
3275 if (blk_remove_plug(q)) {
3276 conf->seq_flush++;
3277 raid5_activate_delayed(conf);
3279 md_wakeup_thread(mddev->thread);
3281 spin_unlock_irqrestore(&conf->device_lock, flags);
3283 unplug_slaves(mddev);
3286 static int raid5_congested(void *data, int bits)
3288 mddev_t *mddev = data;
3289 raid5_conf_t *conf = mddev_to_conf(mddev);
3291 /* No difference between reads and writes. Just check
3292 * how busy the stripe_cache is
3294 if (conf->inactive_blocked)
3295 return 1;
3296 if (conf->quiesce)
3297 return 1;
3298 if (list_empty_careful(&conf->inactive_list))
3299 return 1;
3301 return 0;
3304 /* We want read requests to align with chunks where possible,
3305 * but write requests don't need to.
3307 static int raid5_mergeable_bvec(struct request_queue *q,
3308 struct bvec_merge_data *bvm,
3309 struct bio_vec *biovec)
3311 mddev_t *mddev = q->queuedata;
3312 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3313 int max;
3314 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3315 unsigned int bio_sectors = bvm->bi_size >> 9;
3317 if ((bvm->bi_rw & 1) == WRITE)
3318 return biovec->bv_len; /* always allow writes to be mergeable */
3320 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3321 if (max < 0) max = 0;
3322 if (max <= biovec->bv_len && bio_sectors == 0)
3323 return biovec->bv_len;
3324 else
3325 return max;
3329 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3331 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3332 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3333 unsigned int bio_sectors = bio->bi_size >> 9;
3335 return chunk_sectors >=
3336 ((sector & (chunk_sectors - 1)) + bio_sectors);
3340 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3341 * later sampled by raid5d.
3343 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3345 unsigned long flags;
3347 spin_lock_irqsave(&conf->device_lock, flags);
3349 bi->bi_next = conf->retry_read_aligned_list;
3350 conf->retry_read_aligned_list = bi;
3352 spin_unlock_irqrestore(&conf->device_lock, flags);
3353 md_wakeup_thread(conf->mddev->thread);
3357 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3359 struct bio *bi;
3361 bi = conf->retry_read_aligned;
3362 if (bi) {
3363 conf->retry_read_aligned = NULL;
3364 return bi;
3366 bi = conf->retry_read_aligned_list;
3367 if(bi) {
3368 conf->retry_read_aligned_list = bi->bi_next;
3369 bi->bi_next = NULL;
3371 * this sets the active strip count to 1 and the processed
3372 * strip count to zero (upper 8 bits)
3374 bi->bi_phys_segments = 1; /* biased count of active stripes */
3377 return bi;
3382 * The "raid5_align_endio" should check if the read succeeded and if it
3383 * did, call bio_endio on the original bio (having bio_put the new bio
3384 * first).
3385 * If the read failed..
3387 static void raid5_align_endio(struct bio *bi, int error)
3389 struct bio* raid_bi = bi->bi_private;
3390 mddev_t *mddev;
3391 raid5_conf_t *conf;
3392 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3393 mdk_rdev_t *rdev;
3395 bio_put(bi);
3397 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3398 conf = mddev_to_conf(mddev);
3399 rdev = (void*)raid_bi->bi_next;
3400 raid_bi->bi_next = NULL;
3402 rdev_dec_pending(rdev, conf->mddev);
3404 if (!error && uptodate) {
3405 bio_endio(raid_bi, 0);
3406 if (atomic_dec_and_test(&conf->active_aligned_reads))
3407 wake_up(&conf->wait_for_stripe);
3408 return;
3412 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3414 add_bio_to_retry(raid_bi, conf);
3417 static int bio_fits_rdev(struct bio *bi)
3419 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3421 if ((bi->bi_size>>9) > q->max_sectors)
3422 return 0;
3423 blk_recount_segments(q, bi);
3424 if (bi->bi_phys_segments > q->max_phys_segments)
3425 return 0;
3427 if (q->merge_bvec_fn)
3428 /* it's too hard to apply the merge_bvec_fn at this stage,
3429 * just just give up
3431 return 0;
3433 return 1;
3437 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3439 mddev_t *mddev = q->queuedata;
3440 raid5_conf_t *conf = mddev_to_conf(mddev);
3441 unsigned int dd_idx;
3442 struct bio* align_bi;
3443 mdk_rdev_t *rdev;
3445 if (!in_chunk_boundary(mddev, raid_bio)) {
3446 pr_debug("chunk_aligned_read : non aligned\n");
3447 return 0;
3450 * use bio_clone to make a copy of the bio
3452 align_bi = bio_clone(raid_bio, GFP_NOIO);
3453 if (!align_bi)
3454 return 0;
3456 * set bi_end_io to a new function, and set bi_private to the
3457 * original bio.
3459 align_bi->bi_end_io = raid5_align_endio;
3460 align_bi->bi_private = raid_bio;
3462 * compute position
3464 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3466 &dd_idx, NULL);
3468 rcu_read_lock();
3469 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3470 if (rdev && test_bit(In_sync, &rdev->flags)) {
3471 atomic_inc(&rdev->nr_pending);
3472 rcu_read_unlock();
3473 raid_bio->bi_next = (void*)rdev;
3474 align_bi->bi_bdev = rdev->bdev;
3475 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3476 align_bi->bi_sector += rdev->data_offset;
3478 if (!bio_fits_rdev(align_bi)) {
3479 /* too big in some way */
3480 bio_put(align_bi);
3481 rdev_dec_pending(rdev, mddev);
3482 return 0;
3485 spin_lock_irq(&conf->device_lock);
3486 wait_event_lock_irq(conf->wait_for_stripe,
3487 conf->quiesce == 0,
3488 conf->device_lock, /* nothing */);
3489 atomic_inc(&conf->active_aligned_reads);
3490 spin_unlock_irq(&conf->device_lock);
3492 generic_make_request(align_bi);
3493 return 1;
3494 } else {
3495 rcu_read_unlock();
3496 bio_put(align_bi);
3497 return 0;
3501 /* __get_priority_stripe - get the next stripe to process
3503 * Full stripe writes are allowed to pass preread active stripes up until
3504 * the bypass_threshold is exceeded. In general the bypass_count
3505 * increments when the handle_list is handled before the hold_list; however, it
3506 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3507 * stripe with in flight i/o. The bypass_count will be reset when the
3508 * head of the hold_list has changed, i.e. the head was promoted to the
3509 * handle_list.
3511 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3513 struct stripe_head *sh;
3515 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3516 __func__,
3517 list_empty(&conf->handle_list) ? "empty" : "busy",
3518 list_empty(&conf->hold_list) ? "empty" : "busy",
3519 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3521 if (!list_empty(&conf->handle_list)) {
3522 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3524 if (list_empty(&conf->hold_list))
3525 conf->bypass_count = 0;
3526 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3527 if (conf->hold_list.next == conf->last_hold)
3528 conf->bypass_count++;
3529 else {
3530 conf->last_hold = conf->hold_list.next;
3531 conf->bypass_count -= conf->bypass_threshold;
3532 if (conf->bypass_count < 0)
3533 conf->bypass_count = 0;
3536 } else if (!list_empty(&conf->hold_list) &&
3537 ((conf->bypass_threshold &&
3538 conf->bypass_count > conf->bypass_threshold) ||
3539 atomic_read(&conf->pending_full_writes) == 0)) {
3540 sh = list_entry(conf->hold_list.next,
3541 typeof(*sh), lru);
3542 conf->bypass_count -= conf->bypass_threshold;
3543 if (conf->bypass_count < 0)
3544 conf->bypass_count = 0;
3545 } else
3546 return NULL;
3548 list_del_init(&sh->lru);
3549 atomic_inc(&sh->count);
3550 BUG_ON(atomic_read(&sh->count) != 1);
3551 return sh;
3554 static int make_request(struct request_queue *q, struct bio * bi)
3556 mddev_t *mddev = q->queuedata;
3557 raid5_conf_t *conf = mddev_to_conf(mddev);
3558 int dd_idx;
3559 sector_t new_sector;
3560 sector_t logical_sector, last_sector;
3561 struct stripe_head *sh;
3562 const int rw = bio_data_dir(bi);
3563 int cpu, remaining;
3565 if (unlikely(bio_barrier(bi))) {
3566 bio_endio(bi, -EOPNOTSUPP);
3567 return 0;
3570 md_write_start(mddev, bi);
3572 cpu = part_stat_lock();
3573 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3574 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3575 bio_sectors(bi));
3576 part_stat_unlock();
3578 if (rw == READ &&
3579 mddev->reshape_position == MaxSector &&
3580 chunk_aligned_read(q,bi))
3581 return 0;
3583 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3584 last_sector = bi->bi_sector + (bi->bi_size>>9);
3585 bi->bi_next = NULL;
3586 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3588 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3589 DEFINE_WAIT(w);
3590 int disks, data_disks;
3591 int previous;
3593 retry:
3594 previous = 0;
3595 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3596 if (likely(conf->expand_progress == MaxSector))
3597 disks = conf->raid_disks;
3598 else {
3599 /* spinlock is needed as expand_progress may be
3600 * 64bit on a 32bit platform, and so it might be
3601 * possible to see a half-updated value
3602 * Ofcourse expand_progress could change after
3603 * the lock is dropped, so once we get a reference
3604 * to the stripe that we think it is, we will have
3605 * to check again.
3607 spin_lock_irq(&conf->device_lock);
3608 disks = conf->raid_disks;
3609 if (logical_sector >= conf->expand_progress) {
3610 disks = conf->previous_raid_disks;
3611 previous = 1;
3612 } else {
3613 if (logical_sector >= conf->expand_lo) {
3614 spin_unlock_irq(&conf->device_lock);
3615 schedule();
3616 goto retry;
3619 spin_unlock_irq(&conf->device_lock);
3621 data_disks = disks - conf->max_degraded;
3623 new_sector = raid5_compute_sector(conf, logical_sector,
3624 previous,
3625 &dd_idx, NULL);
3626 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3627 (unsigned long long)new_sector,
3628 (unsigned long long)logical_sector);
3630 sh = get_active_stripe(conf, new_sector, previous,
3631 (bi->bi_rw&RWA_MASK));
3632 if (sh) {
3633 if (unlikely(conf->expand_progress != MaxSector)) {
3634 /* expansion might have moved on while waiting for a
3635 * stripe, so we must do the range check again.
3636 * Expansion could still move past after this
3637 * test, but as we are holding a reference to
3638 * 'sh', we know that if that happens,
3639 * STRIPE_EXPANDING will get set and the expansion
3640 * won't proceed until we finish with the stripe.
3642 int must_retry = 0;
3643 spin_lock_irq(&conf->device_lock);
3644 if (logical_sector < conf->expand_progress &&
3645 disks == conf->previous_raid_disks)
3646 /* mismatch, need to try again */
3647 must_retry = 1;
3648 spin_unlock_irq(&conf->device_lock);
3649 if (must_retry) {
3650 release_stripe(sh);
3651 goto retry;
3654 /* FIXME what if we get a false positive because these
3655 * are being updated.
3657 if (logical_sector >= mddev->suspend_lo &&
3658 logical_sector < mddev->suspend_hi) {
3659 release_stripe(sh);
3660 schedule();
3661 goto retry;
3664 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3665 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3666 /* Stripe is busy expanding or
3667 * add failed due to overlap. Flush everything
3668 * and wait a while
3670 raid5_unplug_device(mddev->queue);
3671 release_stripe(sh);
3672 schedule();
3673 goto retry;
3675 finish_wait(&conf->wait_for_overlap, &w);
3676 set_bit(STRIPE_HANDLE, &sh->state);
3677 clear_bit(STRIPE_DELAYED, &sh->state);
3678 release_stripe(sh);
3679 } else {
3680 /* cannot get stripe for read-ahead, just give-up */
3681 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3682 finish_wait(&conf->wait_for_overlap, &w);
3683 break;
3687 spin_lock_irq(&conf->device_lock);
3688 remaining = raid5_dec_bi_phys_segments(bi);
3689 spin_unlock_irq(&conf->device_lock);
3690 if (remaining == 0) {
3692 if ( rw == WRITE )
3693 md_write_end(mddev);
3695 bio_endio(bi, 0);
3697 return 0;
3700 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3702 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3704 /* reshaping is quite different to recovery/resync so it is
3705 * handled quite separately ... here.
3707 * On each call to sync_request, we gather one chunk worth of
3708 * destination stripes and flag them as expanding.
3709 * Then we find all the source stripes and request reads.
3710 * As the reads complete, handle_stripe will copy the data
3711 * into the destination stripe and release that stripe.
3713 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3714 struct stripe_head *sh;
3715 sector_t first_sector, last_sector;
3716 int raid_disks = conf->previous_raid_disks;
3717 int data_disks = raid_disks - conf->max_degraded;
3718 int new_data_disks = conf->raid_disks - conf->max_degraded;
3719 int i;
3720 int dd_idx;
3721 sector_t writepos, safepos, gap;
3723 if (sector_nr == 0 &&
3724 conf->expand_progress != 0) {
3725 /* restarting in the middle, skip the initial sectors */
3726 sector_nr = conf->expand_progress;
3727 sector_div(sector_nr, new_data_disks);
3728 *skipped = 1;
3729 return sector_nr;
3732 /* we update the metadata when there is more than 3Meg
3733 * in the block range (that is rather arbitrary, should
3734 * probably be time based) or when the data about to be
3735 * copied would over-write the source of the data at
3736 * the front of the range.
3737 * i.e. one new_stripe forward from expand_progress new_maps
3738 * to after where expand_lo old_maps to
3740 writepos = conf->expand_progress +
3741 conf->chunk_size/512*(new_data_disks);
3742 sector_div(writepos, new_data_disks);
3743 safepos = conf->expand_lo;
3744 sector_div(safepos, data_disks);
3745 gap = conf->expand_progress - conf->expand_lo;
3747 if (writepos >= safepos ||
3748 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3749 /* Cannot proceed until we've updated the superblock... */
3750 wait_event(conf->wait_for_overlap,
3751 atomic_read(&conf->reshape_stripes)==0);
3752 mddev->reshape_position = conf->expand_progress;
3753 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3754 md_wakeup_thread(mddev->thread);
3755 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3756 kthread_should_stop());
3757 spin_lock_irq(&conf->device_lock);
3758 conf->expand_lo = mddev->reshape_position;
3759 spin_unlock_irq(&conf->device_lock);
3760 wake_up(&conf->wait_for_overlap);
3763 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3764 int j;
3765 int skipped = 0;
3766 sh = get_active_stripe(conf, sector_nr+i, 0, 0);
3767 set_bit(STRIPE_EXPANDING, &sh->state);
3768 atomic_inc(&conf->reshape_stripes);
3769 /* If any of this stripe is beyond the end of the old
3770 * array, then we need to zero those blocks
3772 for (j=sh->disks; j--;) {
3773 sector_t s;
3774 if (j == sh->pd_idx)
3775 continue;
3776 if (conf->level == 6 &&
3777 j == sh->qd_idx)
3778 continue;
3779 s = compute_blocknr(sh, j);
3780 if (s < raid5_size(mddev, 0, 0)) {
3781 skipped = 1;
3782 continue;
3784 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3785 set_bit(R5_Expanded, &sh->dev[j].flags);
3786 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3788 if (!skipped) {
3789 set_bit(STRIPE_EXPAND_READY, &sh->state);
3790 set_bit(STRIPE_HANDLE, &sh->state);
3792 release_stripe(sh);
3794 spin_lock_irq(&conf->device_lock);
3795 conf->expand_progress = (sector_nr + i) * new_data_disks;
3796 spin_unlock_irq(&conf->device_lock);
3797 /* Ok, those stripe are ready. We can start scheduling
3798 * reads on the source stripes.
3799 * The source stripes are determined by mapping the first and last
3800 * block on the destination stripes.
3802 first_sector =
3803 raid5_compute_sector(conf, sector_nr*(new_data_disks),
3804 1, &dd_idx, NULL);
3805 last_sector =
3806 raid5_compute_sector(conf, ((sector_nr+conf->chunk_size/512)
3807 *(new_data_disks) - 1),
3808 1, &dd_idx, NULL);
3809 if (last_sector >= mddev->dev_sectors)
3810 last_sector = mddev->dev_sectors - 1;
3811 while (first_sector <= last_sector) {
3812 sh = get_active_stripe(conf, first_sector, 1, 0);
3813 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3814 set_bit(STRIPE_HANDLE, &sh->state);
3815 release_stripe(sh);
3816 first_sector += STRIPE_SECTORS;
3818 /* If this takes us to the resync_max point where we have to pause,
3819 * then we need to write out the superblock.
3821 sector_nr += conf->chunk_size>>9;
3822 if (sector_nr >= mddev->resync_max) {
3823 /* Cannot proceed until we've updated the superblock... */
3824 wait_event(conf->wait_for_overlap,
3825 atomic_read(&conf->reshape_stripes) == 0);
3826 mddev->reshape_position = conf->expand_progress;
3827 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3828 md_wakeup_thread(mddev->thread);
3829 wait_event(mddev->sb_wait,
3830 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3831 || kthread_should_stop());
3832 spin_lock_irq(&conf->device_lock);
3833 conf->expand_lo = mddev->reshape_position;
3834 spin_unlock_irq(&conf->device_lock);
3835 wake_up(&conf->wait_for_overlap);
3837 return conf->chunk_size>>9;
3840 /* FIXME go_faster isn't used */
3841 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3843 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3844 struct stripe_head *sh;
3845 sector_t max_sector = mddev->dev_sectors;
3846 int sync_blocks;
3847 int still_degraded = 0;
3848 int i;
3850 if (sector_nr >= max_sector) {
3851 /* just being told to finish up .. nothing much to do */
3852 unplug_slaves(mddev);
3853 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3854 end_reshape(conf);
3855 return 0;
3858 if (mddev->curr_resync < max_sector) /* aborted */
3859 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3860 &sync_blocks, 1);
3861 else /* completed sync */
3862 conf->fullsync = 0;
3863 bitmap_close_sync(mddev->bitmap);
3865 return 0;
3868 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3869 return reshape_request(mddev, sector_nr, skipped);
3871 /* No need to check resync_max as we never do more than one
3872 * stripe, and as resync_max will always be on a chunk boundary,
3873 * if the check in md_do_sync didn't fire, there is no chance
3874 * of overstepping resync_max here
3877 /* if there is too many failed drives and we are trying
3878 * to resync, then assert that we are finished, because there is
3879 * nothing we can do.
3881 if (mddev->degraded >= conf->max_degraded &&
3882 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3883 sector_t rv = mddev->dev_sectors - sector_nr;
3884 *skipped = 1;
3885 return rv;
3887 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3888 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3889 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3890 /* we can skip this block, and probably more */
3891 sync_blocks /= STRIPE_SECTORS;
3892 *skipped = 1;
3893 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3897 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3899 sh = get_active_stripe(conf, sector_nr, 0, 1);
3900 if (sh == NULL) {
3901 sh = get_active_stripe(conf, sector_nr, 0, 0);
3902 /* make sure we don't swamp the stripe cache if someone else
3903 * is trying to get access
3905 schedule_timeout_uninterruptible(1);
3907 /* Need to check if array will still be degraded after recovery/resync
3908 * We don't need to check the 'failed' flag as when that gets set,
3909 * recovery aborts.
3911 for (i=0; i<mddev->raid_disks; i++)
3912 if (conf->disks[i].rdev == NULL)
3913 still_degraded = 1;
3915 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3917 spin_lock(&sh->lock);
3918 set_bit(STRIPE_SYNCING, &sh->state);
3919 clear_bit(STRIPE_INSYNC, &sh->state);
3920 spin_unlock(&sh->lock);
3922 /* wait for any blocked device to be handled */
3923 while(unlikely(!handle_stripe(sh, NULL)))
3925 release_stripe(sh);
3927 return STRIPE_SECTORS;
3930 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3932 /* We may not be able to submit a whole bio at once as there
3933 * may not be enough stripe_heads available.
3934 * We cannot pre-allocate enough stripe_heads as we may need
3935 * more than exist in the cache (if we allow ever large chunks).
3936 * So we do one stripe head at a time and record in
3937 * ->bi_hw_segments how many have been done.
3939 * We *know* that this entire raid_bio is in one chunk, so
3940 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3942 struct stripe_head *sh;
3943 int dd_idx;
3944 sector_t sector, logical_sector, last_sector;
3945 int scnt = 0;
3946 int remaining;
3947 int handled = 0;
3949 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3950 sector = raid5_compute_sector(conf, logical_sector,
3951 0, &dd_idx, NULL);
3952 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3954 for (; logical_sector < last_sector;
3955 logical_sector += STRIPE_SECTORS,
3956 sector += STRIPE_SECTORS,
3957 scnt++) {
3959 if (scnt < raid5_bi_hw_segments(raid_bio))
3960 /* already done this stripe */
3961 continue;
3963 sh = get_active_stripe(conf, sector, 0, 1);
3965 if (!sh) {
3966 /* failed to get a stripe - must wait */
3967 raid5_set_bi_hw_segments(raid_bio, scnt);
3968 conf->retry_read_aligned = raid_bio;
3969 return handled;
3972 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3973 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3974 release_stripe(sh);
3975 raid5_set_bi_hw_segments(raid_bio, scnt);
3976 conf->retry_read_aligned = raid_bio;
3977 return handled;
3980 handle_stripe(sh, NULL);
3981 release_stripe(sh);
3982 handled++;
3984 spin_lock_irq(&conf->device_lock);
3985 remaining = raid5_dec_bi_phys_segments(raid_bio);
3986 spin_unlock_irq(&conf->device_lock);
3987 if (remaining == 0)
3988 bio_endio(raid_bio, 0);
3989 if (atomic_dec_and_test(&conf->active_aligned_reads))
3990 wake_up(&conf->wait_for_stripe);
3991 return handled;
3997 * This is our raid5 kernel thread.
3999 * We scan the hash table for stripes which can be handled now.
4000 * During the scan, completed stripes are saved for us by the interrupt
4001 * handler, so that they will not have to wait for our next wakeup.
4003 static void raid5d(mddev_t *mddev)
4005 struct stripe_head *sh;
4006 raid5_conf_t *conf = mddev_to_conf(mddev);
4007 int handled;
4009 pr_debug("+++ raid5d active\n");
4011 md_check_recovery(mddev);
4013 handled = 0;
4014 spin_lock_irq(&conf->device_lock);
4015 while (1) {
4016 struct bio *bio;
4018 if (conf->seq_flush != conf->seq_write) {
4019 int seq = conf->seq_flush;
4020 spin_unlock_irq(&conf->device_lock);
4021 bitmap_unplug(mddev->bitmap);
4022 spin_lock_irq(&conf->device_lock);
4023 conf->seq_write = seq;
4024 activate_bit_delay(conf);
4027 while ((bio = remove_bio_from_retry(conf))) {
4028 int ok;
4029 spin_unlock_irq(&conf->device_lock);
4030 ok = retry_aligned_read(conf, bio);
4031 spin_lock_irq(&conf->device_lock);
4032 if (!ok)
4033 break;
4034 handled++;
4037 sh = __get_priority_stripe(conf);
4039 if (!sh)
4040 break;
4041 spin_unlock_irq(&conf->device_lock);
4043 handled++;
4044 handle_stripe(sh, conf->spare_page);
4045 release_stripe(sh);
4047 spin_lock_irq(&conf->device_lock);
4049 pr_debug("%d stripes handled\n", handled);
4051 spin_unlock_irq(&conf->device_lock);
4053 async_tx_issue_pending_all();
4054 unplug_slaves(mddev);
4056 pr_debug("--- raid5d inactive\n");
4059 static ssize_t
4060 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4062 raid5_conf_t *conf = mddev_to_conf(mddev);
4063 if (conf)
4064 return sprintf(page, "%d\n", conf->max_nr_stripes);
4065 else
4066 return 0;
4069 static ssize_t
4070 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4072 raid5_conf_t *conf = mddev_to_conf(mddev);
4073 unsigned long new;
4074 int err;
4076 if (len >= PAGE_SIZE)
4077 return -EINVAL;
4078 if (!conf)
4079 return -ENODEV;
4081 if (strict_strtoul(page, 10, &new))
4082 return -EINVAL;
4083 if (new <= 16 || new > 32768)
4084 return -EINVAL;
4085 while (new < conf->max_nr_stripes) {
4086 if (drop_one_stripe(conf))
4087 conf->max_nr_stripes--;
4088 else
4089 break;
4091 err = md_allow_write(mddev);
4092 if (err)
4093 return err;
4094 while (new > conf->max_nr_stripes) {
4095 if (grow_one_stripe(conf))
4096 conf->max_nr_stripes++;
4097 else break;
4099 return len;
4102 static struct md_sysfs_entry
4103 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4104 raid5_show_stripe_cache_size,
4105 raid5_store_stripe_cache_size);
4107 static ssize_t
4108 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4110 raid5_conf_t *conf = mddev_to_conf(mddev);
4111 if (conf)
4112 return sprintf(page, "%d\n", conf->bypass_threshold);
4113 else
4114 return 0;
4117 static ssize_t
4118 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4120 raid5_conf_t *conf = mddev_to_conf(mddev);
4121 unsigned long new;
4122 if (len >= PAGE_SIZE)
4123 return -EINVAL;
4124 if (!conf)
4125 return -ENODEV;
4127 if (strict_strtoul(page, 10, &new))
4128 return -EINVAL;
4129 if (new > conf->max_nr_stripes)
4130 return -EINVAL;
4131 conf->bypass_threshold = new;
4132 return len;
4135 static struct md_sysfs_entry
4136 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4137 S_IRUGO | S_IWUSR,
4138 raid5_show_preread_threshold,
4139 raid5_store_preread_threshold);
4141 static ssize_t
4142 stripe_cache_active_show(mddev_t *mddev, char *page)
4144 raid5_conf_t *conf = mddev_to_conf(mddev);
4145 if (conf)
4146 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4147 else
4148 return 0;
4151 static struct md_sysfs_entry
4152 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4154 static struct attribute *raid5_attrs[] = {
4155 &raid5_stripecache_size.attr,
4156 &raid5_stripecache_active.attr,
4157 &raid5_preread_bypass_threshold.attr,
4158 NULL,
4160 static struct attribute_group raid5_attrs_group = {
4161 .name = NULL,
4162 .attrs = raid5_attrs,
4165 static sector_t
4166 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4168 raid5_conf_t *conf = mddev_to_conf(mddev);
4170 if (!sectors)
4171 sectors = mddev->dev_sectors;
4172 if (!raid_disks) {
4173 /* size is defined by the smallest of previous and new size */
4174 if (conf->raid_disks < conf->previous_raid_disks)
4175 raid_disks = conf->raid_disks;
4176 else
4177 raid_disks = conf->previous_raid_disks;
4180 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4181 return sectors * (raid_disks - conf->max_degraded);
4184 static raid5_conf_t *setup_conf(mddev_t *mddev)
4186 raid5_conf_t *conf;
4187 int raid_disk, memory;
4188 mdk_rdev_t *rdev;
4189 struct disk_info *disk;
4191 if (mddev->new_level != 5
4192 && mddev->new_level != 4
4193 && mddev->new_level != 6) {
4194 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4195 mdname(mddev), mddev->new_level);
4196 return ERR_PTR(-EIO);
4198 if ((mddev->new_level == 5
4199 && !algorithm_valid_raid5(mddev->new_layout)) ||
4200 (mddev->new_level == 6
4201 && !algorithm_valid_raid6(mddev->new_layout))) {
4202 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4203 mdname(mddev), mddev->new_layout);
4204 return ERR_PTR(-EIO);
4206 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4207 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4208 mdname(mddev), mddev->raid_disks);
4209 return ERR_PTR(-EINVAL);
4212 if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4213 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4214 mddev->new_chunk, mdname(mddev));
4215 return ERR_PTR(-EINVAL);
4218 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4219 if (conf == NULL)
4220 goto abort;
4222 conf->raid_disks = mddev->raid_disks;
4223 if (mddev->reshape_position == MaxSector)
4224 conf->previous_raid_disks = mddev->raid_disks;
4225 else
4226 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4228 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4229 GFP_KERNEL);
4230 if (!conf->disks)
4231 goto abort;
4233 conf->mddev = mddev;
4235 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4236 goto abort;
4238 if (mddev->new_level == 6) {
4239 conf->spare_page = alloc_page(GFP_KERNEL);
4240 if (!conf->spare_page)
4241 goto abort;
4243 spin_lock_init(&conf->device_lock);
4244 init_waitqueue_head(&conf->wait_for_stripe);
4245 init_waitqueue_head(&conf->wait_for_overlap);
4246 INIT_LIST_HEAD(&conf->handle_list);
4247 INIT_LIST_HEAD(&conf->hold_list);
4248 INIT_LIST_HEAD(&conf->delayed_list);
4249 INIT_LIST_HEAD(&conf->bitmap_list);
4250 INIT_LIST_HEAD(&conf->inactive_list);
4251 atomic_set(&conf->active_stripes, 0);
4252 atomic_set(&conf->preread_active_stripes, 0);
4253 atomic_set(&conf->active_aligned_reads, 0);
4254 conf->bypass_threshold = BYPASS_THRESHOLD;
4256 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4258 list_for_each_entry(rdev, &mddev->disks, same_set) {
4259 raid_disk = rdev->raid_disk;
4260 if (raid_disk >= conf->raid_disks
4261 || raid_disk < 0)
4262 continue;
4263 disk = conf->disks + raid_disk;
4265 disk->rdev = rdev;
4267 if (test_bit(In_sync, &rdev->flags)) {
4268 char b[BDEVNAME_SIZE];
4269 printk(KERN_INFO "raid5: device %s operational as raid"
4270 " disk %d\n", bdevname(rdev->bdev,b),
4271 raid_disk);
4272 } else
4273 /* Cannot rely on bitmap to complete recovery */
4274 conf->fullsync = 1;
4277 conf->chunk_size = mddev->new_chunk;
4278 conf->level = mddev->new_level;
4279 if (conf->level == 6)
4280 conf->max_degraded = 2;
4281 else
4282 conf->max_degraded = 1;
4283 conf->algorithm = mddev->new_layout;
4284 conf->max_nr_stripes = NR_STRIPES;
4285 conf->expand_progress = mddev->reshape_position;
4287 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4288 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4289 if (grow_stripes(conf, conf->max_nr_stripes)) {
4290 printk(KERN_ERR
4291 "raid5: couldn't allocate %dkB for buffers\n", memory);
4292 goto abort;
4293 } else
4294 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4295 memory, mdname(mddev));
4297 conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4298 if (!conf->thread) {
4299 printk(KERN_ERR
4300 "raid5: couldn't allocate thread for %s\n",
4301 mdname(mddev));
4302 goto abort;
4305 return conf;
4307 abort:
4308 if (conf) {
4309 shrink_stripes(conf);
4310 safe_put_page(conf->spare_page);
4311 kfree(conf->disks);
4312 kfree(conf->stripe_hashtbl);
4313 kfree(conf);
4314 return ERR_PTR(-EIO);
4315 } else
4316 return ERR_PTR(-ENOMEM);
4319 static int run(mddev_t *mddev)
4321 raid5_conf_t *conf;
4322 int working_disks = 0;
4323 mdk_rdev_t *rdev;
4325 if (mddev->reshape_position != MaxSector) {
4326 /* Check that we can continue the reshape.
4327 * Currently only disks can change, it must
4328 * increase, and we must be past the point where
4329 * a stripe over-writes itself
4331 sector_t here_new, here_old;
4332 int old_disks;
4333 int max_degraded = (mddev->level == 6 ? 2 : 1);
4335 if (mddev->new_level != mddev->level ||
4336 mddev->new_layout != mddev->layout ||
4337 mddev->new_chunk != mddev->chunk_size) {
4338 printk(KERN_ERR "raid5: %s: unsupported reshape "
4339 "required - aborting.\n",
4340 mdname(mddev));
4341 return -EINVAL;
4343 if (mddev->delta_disks <= 0) {
4344 printk(KERN_ERR "raid5: %s: unsupported reshape "
4345 "(reduce disks) required - aborting.\n",
4346 mdname(mddev));
4347 return -EINVAL;
4349 old_disks = mddev->raid_disks - mddev->delta_disks;
4350 /* reshape_position must be on a new-stripe boundary, and one
4351 * further up in new geometry must map after here in old
4352 * geometry.
4354 here_new = mddev->reshape_position;
4355 if (sector_div(here_new, (mddev->chunk_size>>9)*
4356 (mddev->raid_disks - max_degraded))) {
4357 printk(KERN_ERR "raid5: reshape_position not "
4358 "on a stripe boundary\n");
4359 return -EINVAL;
4361 /* here_new is the stripe we will write to */
4362 here_old = mddev->reshape_position;
4363 sector_div(here_old, (mddev->chunk_size>>9)*
4364 (old_disks-max_degraded));
4365 /* here_old is the first stripe that we might need to read
4366 * from */
4367 if (here_new >= here_old) {
4368 /* Reading from the same stripe as writing to - bad */
4369 printk(KERN_ERR "raid5: reshape_position too early for "
4370 "auto-recovery - aborting.\n");
4371 return -EINVAL;
4373 printk(KERN_INFO "raid5: reshape will continue\n");
4374 /* OK, we should be able to continue; */
4375 } else {
4376 BUG_ON(mddev->level != mddev->new_level);
4377 BUG_ON(mddev->layout != mddev->new_layout);
4378 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4379 BUG_ON(mddev->delta_disks != 0);
4382 if (mddev->private == NULL)
4383 conf = setup_conf(mddev);
4384 else
4385 conf = mddev->private;
4387 if (IS_ERR(conf))
4388 return PTR_ERR(conf);
4390 mddev->thread = conf->thread;
4391 conf->thread = NULL;
4392 mddev->private = conf;
4395 * 0 for a fully functional array, 1 or 2 for a degraded array.
4397 list_for_each_entry(rdev, &mddev->disks, same_set)
4398 if (rdev->raid_disk >= 0 &&
4399 test_bit(In_sync, &rdev->flags))
4400 working_disks++;
4402 mddev->degraded = conf->raid_disks - working_disks;
4404 if (mddev->degraded > conf->max_degraded) {
4405 printk(KERN_ERR "raid5: not enough operational devices for %s"
4406 " (%d/%d failed)\n",
4407 mdname(mddev), mddev->degraded, conf->raid_disks);
4408 goto abort;
4411 /* device size must be a multiple of chunk size */
4412 mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4413 mddev->resync_max_sectors = mddev->dev_sectors;
4415 if (mddev->degraded > 0 &&
4416 mddev->recovery_cp != MaxSector) {
4417 if (mddev->ok_start_degraded)
4418 printk(KERN_WARNING
4419 "raid5: starting dirty degraded array: %s"
4420 "- data corruption possible.\n",
4421 mdname(mddev));
4422 else {
4423 printk(KERN_ERR
4424 "raid5: cannot start dirty degraded array for %s\n",
4425 mdname(mddev));
4426 goto abort;
4430 if (mddev->degraded == 0)
4431 printk("raid5: raid level %d set %s active with %d out of %d"
4432 " devices, algorithm %d\n", conf->level, mdname(mddev),
4433 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4434 conf->algorithm);
4435 else
4436 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4437 " out of %d devices, algorithm %d\n", conf->level,
4438 mdname(mddev), mddev->raid_disks - mddev->degraded,
4439 mddev->raid_disks, conf->algorithm);
4441 print_raid5_conf(conf);
4443 if (conf->expand_progress != MaxSector) {
4444 printk("...ok start reshape thread\n");
4445 conf->expand_lo = conf->expand_progress;
4446 atomic_set(&conf->reshape_stripes, 0);
4447 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4448 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4449 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4450 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4451 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4452 "%s_reshape");
4455 /* read-ahead size must cover two whole stripes, which is
4456 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4459 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4460 int stripe = data_disks *
4461 (mddev->chunk_size / PAGE_SIZE);
4462 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4463 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4466 /* Ok, everything is just fine now */
4467 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4468 printk(KERN_WARNING
4469 "raid5: failed to create sysfs attributes for %s\n",
4470 mdname(mddev));
4472 mddev->queue->queue_lock = &conf->device_lock;
4474 mddev->queue->unplug_fn = raid5_unplug_device;
4475 mddev->queue->backing_dev_info.congested_data = mddev;
4476 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4478 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4480 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4482 return 0;
4483 abort:
4484 md_unregister_thread(mddev->thread);
4485 mddev->thread = NULL;
4486 if (conf) {
4487 shrink_stripes(conf);
4488 print_raid5_conf(conf);
4489 safe_put_page(conf->spare_page);
4490 kfree(conf->disks);
4491 kfree(conf->stripe_hashtbl);
4492 kfree(conf);
4494 mddev->private = NULL;
4495 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4496 return -EIO;
4501 static int stop(mddev_t *mddev)
4503 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4505 md_unregister_thread(mddev->thread);
4506 mddev->thread = NULL;
4507 shrink_stripes(conf);
4508 kfree(conf->stripe_hashtbl);
4509 mddev->queue->backing_dev_info.congested_fn = NULL;
4510 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4511 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4512 kfree(conf->disks);
4513 kfree(conf);
4514 mddev->private = NULL;
4515 return 0;
4518 #ifdef DEBUG
4519 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4521 int i;
4523 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4524 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4525 seq_printf(seq, "sh %llu, count %d.\n",
4526 (unsigned long long)sh->sector, atomic_read(&sh->count));
4527 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4528 for (i = 0; i < sh->disks; i++) {
4529 seq_printf(seq, "(cache%d: %p %ld) ",
4530 i, sh->dev[i].page, sh->dev[i].flags);
4532 seq_printf(seq, "\n");
4535 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4537 struct stripe_head *sh;
4538 struct hlist_node *hn;
4539 int i;
4541 spin_lock_irq(&conf->device_lock);
4542 for (i = 0; i < NR_HASH; i++) {
4543 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4544 if (sh->raid_conf != conf)
4545 continue;
4546 print_sh(seq, sh);
4549 spin_unlock_irq(&conf->device_lock);
4551 #endif
4553 static void status(struct seq_file *seq, mddev_t *mddev)
4555 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4556 int i;
4558 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4559 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4560 for (i = 0; i < conf->raid_disks; i++)
4561 seq_printf (seq, "%s",
4562 conf->disks[i].rdev &&
4563 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4564 seq_printf (seq, "]");
4565 #ifdef DEBUG
4566 seq_printf (seq, "\n");
4567 printall(seq, conf);
4568 #endif
4571 static void print_raid5_conf (raid5_conf_t *conf)
4573 int i;
4574 struct disk_info *tmp;
4576 printk("RAID5 conf printout:\n");
4577 if (!conf) {
4578 printk("(conf==NULL)\n");
4579 return;
4581 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4582 conf->raid_disks - conf->mddev->degraded);
4584 for (i = 0; i < conf->raid_disks; i++) {
4585 char b[BDEVNAME_SIZE];
4586 tmp = conf->disks + i;
4587 if (tmp->rdev)
4588 printk(" disk %d, o:%d, dev:%s\n",
4589 i, !test_bit(Faulty, &tmp->rdev->flags),
4590 bdevname(tmp->rdev->bdev,b));
4594 static int raid5_spare_active(mddev_t *mddev)
4596 int i;
4597 raid5_conf_t *conf = mddev->private;
4598 struct disk_info *tmp;
4600 for (i = 0; i < conf->raid_disks; i++) {
4601 tmp = conf->disks + i;
4602 if (tmp->rdev
4603 && !test_bit(Faulty, &tmp->rdev->flags)
4604 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4605 unsigned long flags;
4606 spin_lock_irqsave(&conf->device_lock, flags);
4607 mddev->degraded--;
4608 spin_unlock_irqrestore(&conf->device_lock, flags);
4611 print_raid5_conf(conf);
4612 return 0;
4615 static int raid5_remove_disk(mddev_t *mddev, int number)
4617 raid5_conf_t *conf = mddev->private;
4618 int err = 0;
4619 mdk_rdev_t *rdev;
4620 struct disk_info *p = conf->disks + number;
4622 print_raid5_conf(conf);
4623 rdev = p->rdev;
4624 if (rdev) {
4625 if (test_bit(In_sync, &rdev->flags) ||
4626 atomic_read(&rdev->nr_pending)) {
4627 err = -EBUSY;
4628 goto abort;
4630 /* Only remove non-faulty devices if recovery
4631 * isn't possible.
4633 if (!test_bit(Faulty, &rdev->flags) &&
4634 mddev->degraded <= conf->max_degraded) {
4635 err = -EBUSY;
4636 goto abort;
4638 p->rdev = NULL;
4639 synchronize_rcu();
4640 if (atomic_read(&rdev->nr_pending)) {
4641 /* lost the race, try later */
4642 err = -EBUSY;
4643 p->rdev = rdev;
4646 abort:
4648 print_raid5_conf(conf);
4649 return err;
4652 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4654 raid5_conf_t *conf = mddev->private;
4655 int err = -EEXIST;
4656 int disk;
4657 struct disk_info *p;
4658 int first = 0;
4659 int last = conf->raid_disks - 1;
4661 if (mddev->degraded > conf->max_degraded)
4662 /* no point adding a device */
4663 return -EINVAL;
4665 if (rdev->raid_disk >= 0)
4666 first = last = rdev->raid_disk;
4669 * find the disk ... but prefer rdev->saved_raid_disk
4670 * if possible.
4672 if (rdev->saved_raid_disk >= 0 &&
4673 rdev->saved_raid_disk >= first &&
4674 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4675 disk = rdev->saved_raid_disk;
4676 else
4677 disk = first;
4678 for ( ; disk <= last ; disk++)
4679 if ((p=conf->disks + disk)->rdev == NULL) {
4680 clear_bit(In_sync, &rdev->flags);
4681 rdev->raid_disk = disk;
4682 err = 0;
4683 if (rdev->saved_raid_disk != disk)
4684 conf->fullsync = 1;
4685 rcu_assign_pointer(p->rdev, rdev);
4686 break;
4688 print_raid5_conf(conf);
4689 return err;
4692 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4694 /* no resync is happening, and there is enough space
4695 * on all devices, so we can resize.
4696 * We need to make sure resync covers any new space.
4697 * If the array is shrinking we should possibly wait until
4698 * any io in the removed space completes, but it hardly seems
4699 * worth it.
4701 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4702 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4703 mddev->raid_disks));
4704 if (mddev->array_sectors >
4705 raid5_size(mddev, sectors, mddev->raid_disks))
4706 return -EINVAL;
4707 set_capacity(mddev->gendisk, mddev->array_sectors);
4708 mddev->changed = 1;
4709 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4710 mddev->recovery_cp = mddev->dev_sectors;
4711 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4713 mddev->dev_sectors = sectors;
4714 mddev->resync_max_sectors = sectors;
4715 return 0;
4718 #ifdef CONFIG_MD_RAID5_RESHAPE
4719 static int raid5_check_reshape(mddev_t *mddev)
4721 raid5_conf_t *conf = mddev_to_conf(mddev);
4722 int err;
4724 if (mddev->delta_disks < 0 ||
4725 mddev->new_level != mddev->level)
4726 return -EINVAL; /* Cannot shrink array or change level yet */
4727 if (mddev->delta_disks == 0)
4728 return 0; /* nothing to do */
4729 if (mddev->bitmap)
4730 /* Cannot grow a bitmap yet */
4731 return -EBUSY;
4733 /* Can only proceed if there are plenty of stripe_heads.
4734 * We need a minimum of one full stripe,, and for sensible progress
4735 * it is best to have about 4 times that.
4736 * If we require 4 times, then the default 256 4K stripe_heads will
4737 * allow for chunk sizes up to 256K, which is probably OK.
4738 * If the chunk size is greater, user-space should request more
4739 * stripe_heads first.
4741 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4742 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4743 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4744 (mddev->chunk_size / STRIPE_SIZE)*4);
4745 return -ENOSPC;
4748 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4749 if (err)
4750 return err;
4752 if (mddev->degraded > conf->max_degraded)
4753 return -EINVAL;
4754 /* looks like we might be able to manage this */
4755 return 0;
4758 static int raid5_start_reshape(mddev_t *mddev)
4760 raid5_conf_t *conf = mddev_to_conf(mddev);
4761 mdk_rdev_t *rdev;
4762 int spares = 0;
4763 int added_devices = 0;
4764 unsigned long flags;
4766 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4767 return -EBUSY;
4769 list_for_each_entry(rdev, &mddev->disks, same_set)
4770 if (rdev->raid_disk < 0 &&
4771 !test_bit(Faulty, &rdev->flags))
4772 spares++;
4774 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4775 /* Not enough devices even to make a degraded array
4776 * of that size
4778 return -EINVAL;
4780 atomic_set(&conf->reshape_stripes, 0);
4781 spin_lock_irq(&conf->device_lock);
4782 conf->previous_raid_disks = conf->raid_disks;
4783 conf->raid_disks += mddev->delta_disks;
4784 conf->expand_progress = 0;
4785 conf->expand_lo = 0;
4786 spin_unlock_irq(&conf->device_lock);
4788 /* Add some new drives, as many as will fit.
4789 * We know there are enough to make the newly sized array work.
4791 list_for_each_entry(rdev, &mddev->disks, same_set)
4792 if (rdev->raid_disk < 0 &&
4793 !test_bit(Faulty, &rdev->flags)) {
4794 if (raid5_add_disk(mddev, rdev) == 0) {
4795 char nm[20];
4796 set_bit(In_sync, &rdev->flags);
4797 added_devices++;
4798 rdev->recovery_offset = 0;
4799 sprintf(nm, "rd%d", rdev->raid_disk);
4800 if (sysfs_create_link(&mddev->kobj,
4801 &rdev->kobj, nm))
4802 printk(KERN_WARNING
4803 "raid5: failed to create "
4804 " link %s for %s\n",
4805 nm, mdname(mddev));
4806 } else
4807 break;
4810 spin_lock_irqsave(&conf->device_lock, flags);
4811 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4812 spin_unlock_irqrestore(&conf->device_lock, flags);
4813 mddev->raid_disks = conf->raid_disks;
4814 mddev->reshape_position = 0;
4815 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4817 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4818 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4819 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4820 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4821 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4822 "%s_reshape");
4823 if (!mddev->sync_thread) {
4824 mddev->recovery = 0;
4825 spin_lock_irq(&conf->device_lock);
4826 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4827 conf->expand_progress = MaxSector;
4828 spin_unlock_irq(&conf->device_lock);
4829 return -EAGAIN;
4831 md_wakeup_thread(mddev->sync_thread);
4832 md_new_event(mddev);
4833 return 0;
4835 #endif
4837 static void end_reshape(raid5_conf_t *conf)
4839 struct block_device *bdev;
4841 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4842 mddev_t *mddev = conf->mddev;
4844 md_set_array_sectors_lock(mddev, raid5_size(mddev, 0,
4845 conf->raid_disks));
4846 set_capacity(mddev->gendisk, mddev->array_sectors);
4847 mddev->changed = 1;
4848 conf->previous_raid_disks = conf->raid_disks;
4850 bdev = bdget_disk(conf->mddev->gendisk, 0);
4851 if (bdev) {
4852 mutex_lock(&bdev->bd_inode->i_mutex);
4853 i_size_write(bdev->bd_inode,
4854 (loff_t)conf->mddev->array_sectors << 9);
4855 mutex_unlock(&bdev->bd_inode->i_mutex);
4856 bdput(bdev);
4858 spin_lock_irq(&conf->device_lock);
4859 conf->expand_progress = MaxSector;
4860 spin_unlock_irq(&conf->device_lock);
4861 conf->mddev->reshape_position = MaxSector;
4863 /* read-ahead size must cover two whole stripes, which is
4864 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4867 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4868 int stripe = data_disks *
4869 (conf->mddev->chunk_size / PAGE_SIZE);
4870 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4871 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4876 static void raid5_quiesce(mddev_t *mddev, int state)
4878 raid5_conf_t *conf = mddev_to_conf(mddev);
4880 switch(state) {
4881 case 2: /* resume for a suspend */
4882 wake_up(&conf->wait_for_overlap);
4883 break;
4885 case 1: /* stop all writes */
4886 spin_lock_irq(&conf->device_lock);
4887 conf->quiesce = 1;
4888 wait_event_lock_irq(conf->wait_for_stripe,
4889 atomic_read(&conf->active_stripes) == 0 &&
4890 atomic_read(&conf->active_aligned_reads) == 0,
4891 conf->device_lock, /* nothing */);
4892 spin_unlock_irq(&conf->device_lock);
4893 break;
4895 case 0: /* re-enable writes */
4896 spin_lock_irq(&conf->device_lock);
4897 conf->quiesce = 0;
4898 wake_up(&conf->wait_for_stripe);
4899 wake_up(&conf->wait_for_overlap);
4900 spin_unlock_irq(&conf->device_lock);
4901 break;
4906 static void *raid5_takeover_raid1(mddev_t *mddev)
4908 int chunksect;
4910 if (mddev->raid_disks != 2 ||
4911 mddev->degraded > 1)
4912 return ERR_PTR(-EINVAL);
4914 /* Should check if there are write-behind devices? */
4916 chunksect = 64*2; /* 64K by default */
4918 /* The array must be an exact multiple of chunksize */
4919 while (chunksect && (mddev->array_sectors & (chunksect-1)))
4920 chunksect >>= 1;
4922 if ((chunksect<<9) < STRIPE_SIZE)
4923 /* array size does not allow a suitable chunk size */
4924 return ERR_PTR(-EINVAL);
4926 mddev->new_level = 5;
4927 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
4928 mddev->new_chunk = chunksect << 9;
4930 return setup_conf(mddev);
4933 static void *raid5_takeover_raid6(mddev_t *mddev)
4935 int new_layout;
4937 switch (mddev->layout) {
4938 case ALGORITHM_LEFT_ASYMMETRIC_6:
4939 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
4940 break;
4941 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4942 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
4943 break;
4944 case ALGORITHM_LEFT_SYMMETRIC_6:
4945 new_layout = ALGORITHM_LEFT_SYMMETRIC;
4946 break;
4947 case ALGORITHM_RIGHT_SYMMETRIC_6:
4948 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
4949 break;
4950 case ALGORITHM_PARITY_0_6:
4951 new_layout = ALGORITHM_PARITY_0;
4952 break;
4953 case ALGORITHM_PARITY_N:
4954 new_layout = ALGORITHM_PARITY_N;
4955 break;
4956 default:
4957 return ERR_PTR(-EINVAL);
4959 mddev->new_level = 5;
4960 mddev->new_layout = new_layout;
4961 mddev->delta_disks = -1;
4962 mddev->raid_disks -= 1;
4963 return setup_conf(mddev);
4967 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
4969 /* Currently the layout and chunk size can only be changed
4970 * for a 2-drive raid array, as in that case no data shuffling
4971 * is required.
4972 * Later we might validate these and set new_* so a reshape
4973 * can complete the change.
4975 raid5_conf_t *conf = mddev_to_conf(mddev);
4977 if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
4978 return -EINVAL;
4979 if (new_chunk > 0) {
4980 if (new_chunk & (new_chunk-1))
4981 /* not a power of 2 */
4982 return -EINVAL;
4983 if (new_chunk < PAGE_SIZE)
4984 return -EINVAL;
4985 if (mddev->array_sectors & ((new_chunk>>9)-1))
4986 /* not factor of array size */
4987 return -EINVAL;
4990 /* They look valid */
4992 if (mddev->raid_disks != 2)
4993 return -EINVAL;
4995 if (new_layout >= 0) {
4996 conf->algorithm = new_layout;
4997 mddev->layout = mddev->new_layout = new_layout;
4999 if (new_chunk > 0) {
5000 conf->chunk_size = new_chunk;
5001 mddev->chunk_size = mddev->new_chunk = new_chunk;
5003 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5004 md_wakeup_thread(mddev->thread);
5005 return 0;
5008 static void *raid5_takeover(mddev_t *mddev)
5010 /* raid5 can take over:
5011 * raid0 - if all devices are the same - make it a raid4 layout
5012 * raid1 - if there are two drives. We need to know the chunk size
5013 * raid4 - trivial - just use a raid4 layout.
5014 * raid6 - Providing it is a *_6 layout
5016 * For now, just do raid1
5019 if (mddev->level == 1)
5020 return raid5_takeover_raid1(mddev);
5021 if (mddev->level == 4) {
5022 mddev->new_layout = ALGORITHM_PARITY_N;
5023 mddev->new_level = 5;
5024 return setup_conf(mddev);
5026 if (mddev->level == 6)
5027 return raid5_takeover_raid6(mddev);
5029 return ERR_PTR(-EINVAL);
5033 static struct mdk_personality raid5_personality;
5035 static void *raid6_takeover(mddev_t *mddev)
5037 /* Currently can only take over a raid5. We map the
5038 * personality to an equivalent raid6 personality
5039 * with the Q block at the end.
5041 int new_layout;
5043 if (mddev->pers != &raid5_personality)
5044 return ERR_PTR(-EINVAL);
5045 if (mddev->degraded > 1)
5046 return ERR_PTR(-EINVAL);
5047 if (mddev->raid_disks > 253)
5048 return ERR_PTR(-EINVAL);
5049 if (mddev->raid_disks < 3)
5050 return ERR_PTR(-EINVAL);
5052 switch (mddev->layout) {
5053 case ALGORITHM_LEFT_ASYMMETRIC:
5054 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5055 break;
5056 case ALGORITHM_RIGHT_ASYMMETRIC:
5057 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5058 break;
5059 case ALGORITHM_LEFT_SYMMETRIC:
5060 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5061 break;
5062 case ALGORITHM_RIGHT_SYMMETRIC:
5063 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5064 break;
5065 case ALGORITHM_PARITY_0:
5066 new_layout = ALGORITHM_PARITY_0_6;
5067 break;
5068 case ALGORITHM_PARITY_N:
5069 new_layout = ALGORITHM_PARITY_N;
5070 break;
5071 default:
5072 return ERR_PTR(-EINVAL);
5074 mddev->new_level = 6;
5075 mddev->new_layout = new_layout;
5076 mddev->delta_disks = 1;
5077 mddev->raid_disks += 1;
5078 return setup_conf(mddev);
5082 static struct mdk_personality raid6_personality =
5084 .name = "raid6",
5085 .level = 6,
5086 .owner = THIS_MODULE,
5087 .make_request = make_request,
5088 .run = run,
5089 .stop = stop,
5090 .status = status,
5091 .error_handler = error,
5092 .hot_add_disk = raid5_add_disk,
5093 .hot_remove_disk= raid5_remove_disk,
5094 .spare_active = raid5_spare_active,
5095 .sync_request = sync_request,
5096 .resize = raid5_resize,
5097 .size = raid5_size,
5098 #ifdef CONFIG_MD_RAID5_RESHAPE
5099 .check_reshape = raid5_check_reshape,
5100 .start_reshape = raid5_start_reshape,
5101 #endif
5102 .quiesce = raid5_quiesce,
5103 .takeover = raid6_takeover,
5105 static struct mdk_personality raid5_personality =
5107 .name = "raid5",
5108 .level = 5,
5109 .owner = THIS_MODULE,
5110 .make_request = make_request,
5111 .run = run,
5112 .stop = stop,
5113 .status = status,
5114 .error_handler = error,
5115 .hot_add_disk = raid5_add_disk,
5116 .hot_remove_disk= raid5_remove_disk,
5117 .spare_active = raid5_spare_active,
5118 .sync_request = sync_request,
5119 .resize = raid5_resize,
5120 .size = raid5_size,
5121 #ifdef CONFIG_MD_RAID5_RESHAPE
5122 .check_reshape = raid5_check_reshape,
5123 .start_reshape = raid5_start_reshape,
5124 #endif
5125 .quiesce = raid5_quiesce,
5126 .takeover = raid5_takeover,
5127 .reconfig = raid5_reconfig,
5130 static struct mdk_personality raid4_personality =
5132 .name = "raid4",
5133 .level = 4,
5134 .owner = THIS_MODULE,
5135 .make_request = make_request,
5136 .run = run,
5137 .stop = stop,
5138 .status = status,
5139 .error_handler = error,
5140 .hot_add_disk = raid5_add_disk,
5141 .hot_remove_disk= raid5_remove_disk,
5142 .spare_active = raid5_spare_active,
5143 .sync_request = sync_request,
5144 .resize = raid5_resize,
5145 .size = raid5_size,
5146 #ifdef CONFIG_MD_RAID5_RESHAPE
5147 .check_reshape = raid5_check_reshape,
5148 .start_reshape = raid5_start_reshape,
5149 #endif
5150 .quiesce = raid5_quiesce,
5153 static int __init raid5_init(void)
5155 register_md_personality(&raid6_personality);
5156 register_md_personality(&raid5_personality);
5157 register_md_personality(&raid4_personality);
5158 return 0;
5161 static void raid5_exit(void)
5163 unregister_md_personality(&raid6_personality);
5164 unregister_md_personality(&raid5_personality);
5165 unregister_md_personality(&raid4_personality);
5168 module_init(raid5_init);
5169 module_exit(raid5_exit);
5170 MODULE_LICENSE("GPL");
5171 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5172 MODULE_ALIAS("md-raid5");
5173 MODULE_ALIAS("md-raid4");
5174 MODULE_ALIAS("md-level-5");
5175 MODULE_ALIAS("md-level-4");
5176 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5177 MODULE_ALIAS("md-raid6");
5178 MODULE_ALIAS("md-level-6");
5180 /* This used to be two separate modules, they were: */
5181 MODULE_ALIAS("raid5");
5182 MODULE_ALIAS("raid6");