block: remove per-queue plugging
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / shmem.c
blob24d23f5bedf14619c763ded89276c651003d3060
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104 SGP_READ, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE, /* may exceed i_size, may allocate page */
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages / 2;
116 static unsigned long shmem_default_max_inodes(void)
118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
120 #endif
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123 struct page **pagep, enum sgp_type sgp, int *type);
125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
132 * Mobility flags are masked out as swap vectors cannot move
134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135 PAGE_CACHE_SHIFT-PAGE_SHIFT);
138 static inline void shmem_dir_free(struct page *page)
140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
143 static struct page **shmem_dir_map(struct page *page)
145 return (struct page **)kmap_atomic(page, KM_USER0);
148 static inline void shmem_dir_unmap(struct page **dir)
150 kunmap_atomic(dir, KM_USER0);
153 static swp_entry_t *shmem_swp_map(struct page *page)
155 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
158 static inline void shmem_swp_balance_unmap(void)
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
170 static inline void shmem_swp_unmap(swp_entry_t *entry)
172 kunmap_atomic(entry, KM_USER1);
175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
177 return sb->s_fs_info;
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
188 return (flags & VM_NORESERVE) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size));
192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
194 if (!(flags & VM_NORESERVE))
195 vm_unacct_memory(VM_ACCT(size));
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
204 static inline int shmem_acct_block(unsigned long flags)
206 return (flags & VM_NORESERVE) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
225 .ra_pages = 0, /* No readahead */
226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
229 static LIST_HEAD(shmem_swaplist);
230 static DEFINE_MUTEX(shmem_swaplist_mutex);
232 static void shmem_free_blocks(struct inode *inode, long pages)
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks) {
236 percpu_counter_add(&sbinfo->used_blocks, -pages);
237 spin_lock(&inode->i_lock);
238 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 spin_unlock(&inode->i_lock);
243 static int shmem_reserve_inode(struct super_block *sb)
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 if (!sbinfo->free_inodes) {
249 spin_unlock(&sbinfo->stat_lock);
250 return -ENOSPC;
252 sbinfo->free_inodes--;
253 spin_unlock(&sbinfo->stat_lock);
255 return 0;
258 static void shmem_free_inode(struct super_block *sb)
260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 if (sbinfo->max_inodes) {
262 spin_lock(&sbinfo->stat_lock);
263 sbinfo->free_inodes++;
264 spin_unlock(&sbinfo->stat_lock);
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 * It has to be called with the spinlock held.
280 static void shmem_recalc_inode(struct inode *inode)
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 long freed;
285 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 if (freed > 0) {
287 info->alloced -= freed;
288 shmem_unacct_blocks(info->flags, freed);
289 shmem_free_blocks(inode, freed);
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info: info structure for the inode
296 * @index: index of the page to find
297 * @page: optional page to add to the structure. Has to be preset to
298 * all zeros
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
304 * The swap vector is organized the following way:
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
317 * i_indirect -> dir --> 16-19
318 * | +-> 20-23
320 * +-->dir2 --> 24-27
321 * | +-> 28-31
322 * | +-> 32-35
323 * | +-> 36-39
325 * +-->dir3 --> 40-43
326 * +-> 44-47
327 * +-> 48-51
328 * +-> 52-55
330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332 unsigned long offset;
333 struct page **dir;
334 struct page *subdir;
336 if (index < SHMEM_NR_DIRECT) {
337 shmem_swp_balance_unmap();
338 return info->i_direct+index;
340 if (!info->i_indirect) {
341 if (page) {
342 info->i_indirect = *page;
343 *page = NULL;
345 return NULL; /* need another page */
348 index -= SHMEM_NR_DIRECT;
349 offset = index % ENTRIES_PER_PAGE;
350 index /= ENTRIES_PER_PAGE;
351 dir = shmem_dir_map(info->i_indirect);
353 if (index >= ENTRIES_PER_PAGE/2) {
354 index -= ENTRIES_PER_PAGE/2;
355 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 index %= ENTRIES_PER_PAGE;
357 subdir = *dir;
358 if (!subdir) {
359 if (page) {
360 *dir = *page;
361 *page = NULL;
363 shmem_dir_unmap(dir);
364 return NULL; /* need another page */
366 shmem_dir_unmap(dir);
367 dir = shmem_dir_map(subdir);
370 dir += index;
371 subdir = *dir;
372 if (!subdir) {
373 if (!page || !(subdir = *page)) {
374 shmem_dir_unmap(dir);
375 return NULL; /* need a page */
377 *dir = subdir;
378 *page = NULL;
380 shmem_dir_unmap(dir);
381 return shmem_swp_map(subdir) + offset;
384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386 long incdec = value? 1: -1;
388 entry->val = value;
389 info->swapped += incdec;
390 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 struct page *page = kmap_atomic_to_page(entry);
392 set_page_private(page, page_private(page) + incdec);
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info: info structure for the inode
399 * @index: index of the page to find
400 * @sgp: check and recheck i_size? skip allocation?
402 * If the entry does not exist, allocate it.
404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406 struct inode *inode = &info->vfs_inode;
407 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 struct page *page = NULL;
409 swp_entry_t *entry;
411 if (sgp != SGP_WRITE &&
412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 return ERR_PTR(-EINVAL);
415 while (!(entry = shmem_swp_entry(info, index, &page))) {
416 if (sgp == SGP_READ)
417 return shmem_swp_map(ZERO_PAGE(0));
419 * Test used_blocks against 1 less max_blocks, since we have 1 data
420 * page (and perhaps indirect index pages) yet to allocate:
421 * a waste to allocate index if we cannot allocate data.
423 if (sbinfo->max_blocks) {
424 if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
425 return ERR_PTR(-ENOSPC);
426 percpu_counter_inc(&sbinfo->used_blocks);
427 spin_lock(&inode->i_lock);
428 inode->i_blocks += BLOCKS_PER_PAGE;
429 spin_unlock(&inode->i_lock);
432 spin_unlock(&info->lock);
433 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
434 spin_lock(&info->lock);
436 if (!page) {
437 shmem_free_blocks(inode, 1);
438 return ERR_PTR(-ENOMEM);
440 if (sgp != SGP_WRITE &&
441 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
442 entry = ERR_PTR(-EINVAL);
443 break;
445 if (info->next_index <= index)
446 info->next_index = index + 1;
448 if (page) {
449 /* another task gave its page, or truncated the file */
450 shmem_free_blocks(inode, 1);
451 shmem_dir_free(page);
453 if (info->next_index <= index && !IS_ERR(entry))
454 info->next_index = index + 1;
455 return entry;
459 * shmem_free_swp - free some swap entries in a directory
460 * @dir: pointer to the directory
461 * @edir: pointer after last entry of the directory
462 * @punch_lock: pointer to spinlock when needed for the holepunch case
464 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
465 spinlock_t *punch_lock)
467 spinlock_t *punch_unlock = NULL;
468 swp_entry_t *ptr;
469 int freed = 0;
471 for (ptr = dir; ptr < edir; ptr++) {
472 if (ptr->val) {
473 if (unlikely(punch_lock)) {
474 punch_unlock = punch_lock;
475 punch_lock = NULL;
476 spin_lock(punch_unlock);
477 if (!ptr->val)
478 continue;
480 free_swap_and_cache(*ptr);
481 *ptr = (swp_entry_t){0};
482 freed++;
485 if (punch_unlock)
486 spin_unlock(punch_unlock);
487 return freed;
490 static int shmem_map_and_free_swp(struct page *subdir, int offset,
491 int limit, struct page ***dir, spinlock_t *punch_lock)
493 swp_entry_t *ptr;
494 int freed = 0;
496 ptr = shmem_swp_map(subdir);
497 for (; offset < limit; offset += LATENCY_LIMIT) {
498 int size = limit - offset;
499 if (size > LATENCY_LIMIT)
500 size = LATENCY_LIMIT;
501 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
502 punch_lock);
503 if (need_resched()) {
504 shmem_swp_unmap(ptr);
505 if (*dir) {
506 shmem_dir_unmap(*dir);
507 *dir = NULL;
509 cond_resched();
510 ptr = shmem_swp_map(subdir);
513 shmem_swp_unmap(ptr);
514 return freed;
517 static void shmem_free_pages(struct list_head *next)
519 struct page *page;
520 int freed = 0;
522 do {
523 page = container_of(next, struct page, lru);
524 next = next->next;
525 shmem_dir_free(page);
526 freed++;
527 if (freed >= LATENCY_LIMIT) {
528 cond_resched();
529 freed = 0;
531 } while (next);
534 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536 struct shmem_inode_info *info = SHMEM_I(inode);
537 unsigned long idx;
538 unsigned long size;
539 unsigned long limit;
540 unsigned long stage;
541 unsigned long diroff;
542 struct page **dir;
543 struct page *topdir;
544 struct page *middir;
545 struct page *subdir;
546 swp_entry_t *ptr;
547 LIST_HEAD(pages_to_free);
548 long nr_pages_to_free = 0;
549 long nr_swaps_freed = 0;
550 int offset;
551 int freed;
552 int punch_hole;
553 spinlock_t *needs_lock;
554 spinlock_t *punch_lock;
555 unsigned long upper_limit;
557 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
558 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
559 if (idx >= info->next_index)
560 return;
562 spin_lock(&info->lock);
563 info->flags |= SHMEM_TRUNCATE;
564 if (likely(end == (loff_t) -1)) {
565 limit = info->next_index;
566 upper_limit = SHMEM_MAX_INDEX;
567 info->next_index = idx;
568 needs_lock = NULL;
569 punch_hole = 0;
570 } else {
571 if (end + 1 >= inode->i_size) { /* we may free a little more */
572 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
573 PAGE_CACHE_SHIFT;
574 upper_limit = SHMEM_MAX_INDEX;
575 } else {
576 limit = (end + 1) >> PAGE_CACHE_SHIFT;
577 upper_limit = limit;
579 needs_lock = &info->lock;
580 punch_hole = 1;
583 topdir = info->i_indirect;
584 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
585 info->i_indirect = NULL;
586 nr_pages_to_free++;
587 list_add(&topdir->lru, &pages_to_free);
589 spin_unlock(&info->lock);
591 if (info->swapped && idx < SHMEM_NR_DIRECT) {
592 ptr = info->i_direct;
593 size = limit;
594 if (size > SHMEM_NR_DIRECT)
595 size = SHMEM_NR_DIRECT;
596 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
600 * If there are no indirect blocks or we are punching a hole
601 * below indirect blocks, nothing to be done.
603 if (!topdir || limit <= SHMEM_NR_DIRECT)
604 goto done2;
607 * The truncation case has already dropped info->lock, and we're safe
608 * because i_size and next_index have already been lowered, preventing
609 * access beyond. But in the punch_hole case, we still need to take
610 * the lock when updating the swap directory, because there might be
611 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
612 * shmem_writepage. However, whenever we find we can remove a whole
613 * directory page (not at the misaligned start or end of the range),
614 * we first NULLify its pointer in the level above, and then have no
615 * need to take the lock when updating its contents: needs_lock and
616 * punch_lock (either pointing to info->lock or NULL) manage this.
619 upper_limit -= SHMEM_NR_DIRECT;
620 limit -= SHMEM_NR_DIRECT;
621 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
622 offset = idx % ENTRIES_PER_PAGE;
623 idx -= offset;
625 dir = shmem_dir_map(topdir);
626 stage = ENTRIES_PER_PAGEPAGE/2;
627 if (idx < ENTRIES_PER_PAGEPAGE/2) {
628 middir = topdir;
629 diroff = idx/ENTRIES_PER_PAGE;
630 } else {
631 dir += ENTRIES_PER_PAGE/2;
632 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
633 while (stage <= idx)
634 stage += ENTRIES_PER_PAGEPAGE;
635 middir = *dir;
636 if (*dir) {
637 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
638 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
639 if (!diroff && !offset && upper_limit >= stage) {
640 if (needs_lock) {
641 spin_lock(needs_lock);
642 *dir = NULL;
643 spin_unlock(needs_lock);
644 needs_lock = NULL;
645 } else
646 *dir = NULL;
647 nr_pages_to_free++;
648 list_add(&middir->lru, &pages_to_free);
650 shmem_dir_unmap(dir);
651 dir = shmem_dir_map(middir);
652 } else {
653 diroff = 0;
654 offset = 0;
655 idx = stage;
659 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
660 if (unlikely(idx == stage)) {
661 shmem_dir_unmap(dir);
662 dir = shmem_dir_map(topdir) +
663 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
664 while (!*dir) {
665 dir++;
666 idx += ENTRIES_PER_PAGEPAGE;
667 if (idx >= limit)
668 goto done1;
670 stage = idx + ENTRIES_PER_PAGEPAGE;
671 middir = *dir;
672 if (punch_hole)
673 needs_lock = &info->lock;
674 if (upper_limit >= stage) {
675 if (needs_lock) {
676 spin_lock(needs_lock);
677 *dir = NULL;
678 spin_unlock(needs_lock);
679 needs_lock = NULL;
680 } else
681 *dir = NULL;
682 nr_pages_to_free++;
683 list_add(&middir->lru, &pages_to_free);
685 shmem_dir_unmap(dir);
686 cond_resched();
687 dir = shmem_dir_map(middir);
688 diroff = 0;
690 punch_lock = needs_lock;
691 subdir = dir[diroff];
692 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
693 if (needs_lock) {
694 spin_lock(needs_lock);
695 dir[diroff] = NULL;
696 spin_unlock(needs_lock);
697 punch_lock = NULL;
698 } else
699 dir[diroff] = NULL;
700 nr_pages_to_free++;
701 list_add(&subdir->lru, &pages_to_free);
703 if (subdir && page_private(subdir) /* has swap entries */) {
704 size = limit - idx;
705 if (size > ENTRIES_PER_PAGE)
706 size = ENTRIES_PER_PAGE;
707 freed = shmem_map_and_free_swp(subdir,
708 offset, size, &dir, punch_lock);
709 if (!dir)
710 dir = shmem_dir_map(middir);
711 nr_swaps_freed += freed;
712 if (offset || punch_lock) {
713 spin_lock(&info->lock);
714 set_page_private(subdir,
715 page_private(subdir) - freed);
716 spin_unlock(&info->lock);
717 } else
718 BUG_ON(page_private(subdir) != freed);
720 offset = 0;
722 done1:
723 shmem_dir_unmap(dir);
724 done2:
725 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727 * Call truncate_inode_pages again: racing shmem_unuse_inode
728 * may have swizzled a page in from swap since
729 * truncate_pagecache or generic_delete_inode did it, before we
730 * lowered next_index. Also, though shmem_getpage checks
731 * i_size before adding to cache, no recheck after: so fix the
732 * narrow window there too.
734 * Recalling truncate_inode_pages_range and unmap_mapping_range
735 * every time for punch_hole (which never got a chance to clear
736 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
737 * yet hardly ever necessary: try to optimize them out later.
739 truncate_inode_pages_range(inode->i_mapping, start, end);
740 if (punch_hole)
741 unmap_mapping_range(inode->i_mapping, start,
742 end - start, 1);
745 spin_lock(&info->lock);
746 info->flags &= ~SHMEM_TRUNCATE;
747 info->swapped -= nr_swaps_freed;
748 if (nr_pages_to_free)
749 shmem_free_blocks(inode, nr_pages_to_free);
750 shmem_recalc_inode(inode);
751 spin_unlock(&info->lock);
754 * Empty swap vector directory pages to be freed?
756 if (!list_empty(&pages_to_free)) {
757 pages_to_free.prev->next = NULL;
758 shmem_free_pages(pages_to_free.next);
762 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764 struct inode *inode = dentry->d_inode;
765 loff_t newsize = attr->ia_size;
766 int error;
768 error = inode_change_ok(inode, attr);
769 if (error)
770 return error;
772 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
773 && newsize != inode->i_size) {
774 struct page *page = NULL;
776 if (newsize < inode->i_size) {
778 * If truncating down to a partial page, then
779 * if that page is already allocated, hold it
780 * in memory until the truncation is over, so
781 * truncate_partial_page cannnot miss it were
782 * it assigned to swap.
784 if (newsize & (PAGE_CACHE_SIZE-1)) {
785 (void) shmem_getpage(inode,
786 newsize >> PAGE_CACHE_SHIFT,
787 &page, SGP_READ, NULL);
788 if (page)
789 unlock_page(page);
792 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
793 * detect if any pages might have been added to cache
794 * after truncate_inode_pages. But we needn't bother
795 * if it's being fully truncated to zero-length: the
796 * nrpages check is efficient enough in that case.
798 if (newsize) {
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 spin_lock(&info->lock);
801 info->flags &= ~SHMEM_PAGEIN;
802 spin_unlock(&info->lock);
806 /* XXX(truncate): truncate_setsize should be called last */
807 truncate_setsize(inode, newsize);
808 if (page)
809 page_cache_release(page);
810 shmem_truncate_range(inode, newsize, (loff_t)-1);
813 setattr_copy(inode, attr);
814 #ifdef CONFIG_TMPFS_POSIX_ACL
815 if (attr->ia_valid & ATTR_MODE)
816 error = generic_acl_chmod(inode);
817 #endif
818 return error;
821 static void shmem_evict_inode(struct inode *inode)
823 struct shmem_inode_info *info = SHMEM_I(inode);
825 if (inode->i_mapping->a_ops == &shmem_aops) {
826 truncate_inode_pages(inode->i_mapping, 0);
827 shmem_unacct_size(info->flags, inode->i_size);
828 inode->i_size = 0;
829 shmem_truncate_range(inode, 0, (loff_t)-1);
830 if (!list_empty(&info->swaplist)) {
831 mutex_lock(&shmem_swaplist_mutex);
832 list_del_init(&info->swaplist);
833 mutex_unlock(&shmem_swaplist_mutex);
836 BUG_ON(inode->i_blocks);
837 shmem_free_inode(inode->i_sb);
838 end_writeback(inode);
841 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843 swp_entry_t *ptr;
845 for (ptr = dir; ptr < edir; ptr++) {
846 if (ptr->val == entry.val)
847 return ptr - dir;
849 return -1;
852 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854 struct inode *inode;
855 unsigned long idx;
856 unsigned long size;
857 unsigned long limit;
858 unsigned long stage;
859 struct page **dir;
860 struct page *subdir;
861 swp_entry_t *ptr;
862 int offset;
863 int error;
865 idx = 0;
866 ptr = info->i_direct;
867 spin_lock(&info->lock);
868 if (!info->swapped) {
869 list_del_init(&info->swaplist);
870 goto lost2;
872 limit = info->next_index;
873 size = limit;
874 if (size > SHMEM_NR_DIRECT)
875 size = SHMEM_NR_DIRECT;
876 offset = shmem_find_swp(entry, ptr, ptr+size);
877 if (offset >= 0)
878 goto found;
879 if (!info->i_indirect)
880 goto lost2;
882 dir = shmem_dir_map(info->i_indirect);
883 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
885 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
886 if (unlikely(idx == stage)) {
887 shmem_dir_unmap(dir-1);
888 if (cond_resched_lock(&info->lock)) {
889 /* check it has not been truncated */
890 if (limit > info->next_index) {
891 limit = info->next_index;
892 if (idx >= limit)
893 goto lost2;
896 dir = shmem_dir_map(info->i_indirect) +
897 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
898 while (!*dir) {
899 dir++;
900 idx += ENTRIES_PER_PAGEPAGE;
901 if (idx >= limit)
902 goto lost1;
904 stage = idx + ENTRIES_PER_PAGEPAGE;
905 subdir = *dir;
906 shmem_dir_unmap(dir);
907 dir = shmem_dir_map(subdir);
909 subdir = *dir;
910 if (subdir && page_private(subdir)) {
911 ptr = shmem_swp_map(subdir);
912 size = limit - idx;
913 if (size > ENTRIES_PER_PAGE)
914 size = ENTRIES_PER_PAGE;
915 offset = shmem_find_swp(entry, ptr, ptr+size);
916 shmem_swp_unmap(ptr);
917 if (offset >= 0) {
918 shmem_dir_unmap(dir);
919 goto found;
923 lost1:
924 shmem_dir_unmap(dir-1);
925 lost2:
926 spin_unlock(&info->lock);
927 return 0;
928 found:
929 idx += offset;
930 inode = igrab(&info->vfs_inode);
931 spin_unlock(&info->lock);
934 * Move _head_ to start search for next from here.
935 * But be careful: shmem_evict_inode checks list_empty without taking
936 * mutex, and there's an instant in list_move_tail when info->swaplist
937 * would appear empty, if it were the only one on shmem_swaplist. We
938 * could avoid doing it if inode NULL; or use this minor optimization.
940 if (shmem_swaplist.next != &info->swaplist)
941 list_move_tail(&shmem_swaplist, &info->swaplist);
942 mutex_unlock(&shmem_swaplist_mutex);
944 error = 1;
945 if (!inode)
946 goto out;
948 * Charge page using GFP_KERNEL while we can wait.
949 * Charged back to the user(not to caller) when swap account is used.
950 * add_to_page_cache() will be called with GFP_NOWAIT.
952 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
953 if (error)
954 goto out;
955 error = radix_tree_preload(GFP_KERNEL);
956 if (error) {
957 mem_cgroup_uncharge_cache_page(page);
958 goto out;
960 error = 1;
962 spin_lock(&info->lock);
963 ptr = shmem_swp_entry(info, idx, NULL);
964 if (ptr && ptr->val == entry.val) {
965 error = add_to_page_cache_locked(page, inode->i_mapping,
966 idx, GFP_NOWAIT);
967 /* does mem_cgroup_uncharge_cache_page on error */
968 } else /* we must compensate for our precharge above */
969 mem_cgroup_uncharge_cache_page(page);
971 if (error == -EEXIST) {
972 struct page *filepage = find_get_page(inode->i_mapping, idx);
973 error = 1;
974 if (filepage) {
976 * There might be a more uptodate page coming down
977 * from a stacked writepage: forget our swappage if so.
979 if (PageUptodate(filepage))
980 error = 0;
981 page_cache_release(filepage);
984 if (!error) {
985 delete_from_swap_cache(page);
986 set_page_dirty(page);
987 info->flags |= SHMEM_PAGEIN;
988 shmem_swp_set(info, ptr, 0);
989 swap_free(entry);
990 error = 1; /* not an error, but entry was found */
992 if (ptr)
993 shmem_swp_unmap(ptr);
994 spin_unlock(&info->lock);
995 radix_tree_preload_end();
996 out:
997 unlock_page(page);
998 page_cache_release(page);
999 iput(inode); /* allows for NULL */
1000 return error;
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1006 int shmem_unuse(swp_entry_t entry, struct page *page)
1008 struct list_head *p, *next;
1009 struct shmem_inode_info *info;
1010 int found = 0;
1012 mutex_lock(&shmem_swaplist_mutex);
1013 list_for_each_safe(p, next, &shmem_swaplist) {
1014 info = list_entry(p, struct shmem_inode_info, swaplist);
1015 found = shmem_unuse_inode(info, entry, page);
1016 cond_resched();
1017 if (found)
1018 goto out;
1020 mutex_unlock(&shmem_swaplist_mutex);
1022 * Can some race bring us here? We've been holding page lock,
1023 * so I think not; but would rather try again later than BUG()
1025 unlock_page(page);
1026 page_cache_release(page);
1027 out:
1028 return (found < 0) ? found : 0;
1032 * Move the page from the page cache to the swap cache.
1034 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1036 struct shmem_inode_info *info;
1037 swp_entry_t *entry, swap;
1038 struct address_space *mapping;
1039 unsigned long index;
1040 struct inode *inode;
1042 BUG_ON(!PageLocked(page));
1043 mapping = page->mapping;
1044 index = page->index;
1045 inode = mapping->host;
1046 info = SHMEM_I(inode);
1047 if (info->flags & VM_LOCKED)
1048 goto redirty;
1049 if (!total_swap_pages)
1050 goto redirty;
1053 * shmem_backing_dev_info's capabilities prevent regular writeback or
1054 * sync from ever calling shmem_writepage; but a stacking filesystem
1055 * may use the ->writepage of its underlying filesystem, in which case
1056 * tmpfs should write out to swap only in response to memory pressure,
1057 * and not for the writeback threads or sync. However, in those cases,
1058 * we do still want to check if there's a redundant swappage to be
1059 * discarded.
1061 if (wbc->for_reclaim)
1062 swap = get_swap_page();
1063 else
1064 swap.val = 0;
1066 spin_lock(&info->lock);
1067 if (index >= info->next_index) {
1068 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1069 goto unlock;
1071 entry = shmem_swp_entry(info, index, NULL);
1072 if (entry->val) {
1074 * The more uptodate page coming down from a stacked
1075 * writepage should replace our old swappage.
1077 free_swap_and_cache(*entry);
1078 shmem_swp_set(info, entry, 0);
1080 shmem_recalc_inode(inode);
1082 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1083 remove_from_page_cache(page);
1084 shmem_swp_set(info, entry, swap.val);
1085 shmem_swp_unmap(entry);
1086 if (list_empty(&info->swaplist))
1087 inode = igrab(inode);
1088 else
1089 inode = NULL;
1090 spin_unlock(&info->lock);
1091 swap_shmem_alloc(swap);
1092 BUG_ON(page_mapped(page));
1093 page_cache_release(page); /* pagecache ref */
1094 swap_writepage(page, wbc);
1095 if (inode) {
1096 mutex_lock(&shmem_swaplist_mutex);
1097 /* move instead of add in case we're racing */
1098 list_move_tail(&info->swaplist, &shmem_swaplist);
1099 mutex_unlock(&shmem_swaplist_mutex);
1100 iput(inode);
1102 return 0;
1105 shmem_swp_unmap(entry);
1106 unlock:
1107 spin_unlock(&info->lock);
1109 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1110 * clear SWAP_HAS_CACHE flag.
1112 swapcache_free(swap, NULL);
1113 redirty:
1114 set_page_dirty(page);
1115 if (wbc->for_reclaim)
1116 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1117 unlock_page(page);
1118 return 0;
1121 #ifdef CONFIG_NUMA
1122 #ifdef CONFIG_TMPFS
1123 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1125 char buffer[64];
1127 if (!mpol || mpol->mode == MPOL_DEFAULT)
1128 return; /* show nothing */
1130 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1132 seq_printf(seq, ",mpol=%s", buffer);
1135 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1137 struct mempolicy *mpol = NULL;
1138 if (sbinfo->mpol) {
1139 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1140 mpol = sbinfo->mpol;
1141 mpol_get(mpol);
1142 spin_unlock(&sbinfo->stat_lock);
1144 return mpol;
1146 #endif /* CONFIG_TMPFS */
1148 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1149 struct shmem_inode_info *info, unsigned long idx)
1151 struct mempolicy mpol, *spol;
1152 struct vm_area_struct pvma;
1153 struct page *page;
1155 spol = mpol_cond_copy(&mpol,
1156 mpol_shared_policy_lookup(&info->policy, idx));
1158 /* Create a pseudo vma that just contains the policy */
1159 pvma.vm_start = 0;
1160 pvma.vm_pgoff = idx;
1161 pvma.vm_ops = NULL;
1162 pvma.vm_policy = spol;
1163 page = swapin_readahead(entry, gfp, &pvma, 0);
1164 return page;
1167 static struct page *shmem_alloc_page(gfp_t gfp,
1168 struct shmem_inode_info *info, unsigned long idx)
1170 struct vm_area_struct pvma;
1172 /* Create a pseudo vma that just contains the policy */
1173 pvma.vm_start = 0;
1174 pvma.vm_pgoff = idx;
1175 pvma.vm_ops = NULL;
1176 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1179 * alloc_page_vma() will drop the shared policy reference
1181 return alloc_page_vma(gfp, &pvma, 0);
1183 #else /* !CONFIG_NUMA */
1184 #ifdef CONFIG_TMPFS
1185 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1188 #endif /* CONFIG_TMPFS */
1190 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1191 struct shmem_inode_info *info, unsigned long idx)
1193 return swapin_readahead(entry, gfp, NULL, 0);
1196 static inline struct page *shmem_alloc_page(gfp_t gfp,
1197 struct shmem_inode_info *info, unsigned long idx)
1199 return alloc_page(gfp);
1201 #endif /* CONFIG_NUMA */
1203 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1204 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1206 return NULL;
1208 #endif
1211 * shmem_getpage - either get the page from swap or allocate a new one
1213 * If we allocate a new one we do not mark it dirty. That's up to the
1214 * vm. If we swap it in we mark it dirty since we also free the swap
1215 * entry since a page cannot live in both the swap and page cache
1217 static int shmem_getpage(struct inode *inode, unsigned long idx,
1218 struct page **pagep, enum sgp_type sgp, int *type)
1220 struct address_space *mapping = inode->i_mapping;
1221 struct shmem_inode_info *info = SHMEM_I(inode);
1222 struct shmem_sb_info *sbinfo;
1223 struct page *filepage = *pagep;
1224 struct page *swappage;
1225 struct page *prealloc_page = NULL;
1226 swp_entry_t *entry;
1227 swp_entry_t swap;
1228 gfp_t gfp;
1229 int error;
1231 if (idx >= SHMEM_MAX_INDEX)
1232 return -EFBIG;
1234 if (type)
1235 *type = 0;
1238 * Normally, filepage is NULL on entry, and either found
1239 * uptodate immediately, or allocated and zeroed, or read
1240 * in under swappage, which is then assigned to filepage.
1241 * But shmem_readpage (required for splice) passes in a locked
1242 * filepage, which may be found not uptodate by other callers
1243 * too, and may need to be copied from the swappage read in.
1245 repeat:
1246 if (!filepage)
1247 filepage = find_lock_page(mapping, idx);
1248 if (filepage && PageUptodate(filepage))
1249 goto done;
1250 gfp = mapping_gfp_mask(mapping);
1251 if (!filepage) {
1253 * Try to preload while we can wait, to not make a habit of
1254 * draining atomic reserves; but don't latch on to this cpu.
1256 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1257 if (error)
1258 goto failed;
1259 radix_tree_preload_end();
1260 if (sgp != SGP_READ && !prealloc_page) {
1261 /* We don't care if this fails */
1262 prealloc_page = shmem_alloc_page(gfp, info, idx);
1263 if (prealloc_page) {
1264 if (mem_cgroup_cache_charge(prealloc_page,
1265 current->mm, GFP_KERNEL)) {
1266 page_cache_release(prealloc_page);
1267 prealloc_page = NULL;
1272 error = 0;
1274 spin_lock(&info->lock);
1275 shmem_recalc_inode(inode);
1276 entry = shmem_swp_alloc(info, idx, sgp);
1277 if (IS_ERR(entry)) {
1278 spin_unlock(&info->lock);
1279 error = PTR_ERR(entry);
1280 goto failed;
1282 swap = *entry;
1284 if (swap.val) {
1285 /* Look it up and read it in.. */
1286 swappage = lookup_swap_cache(swap);
1287 if (!swappage) {
1288 shmem_swp_unmap(entry);
1289 /* here we actually do the io */
1290 if (type && !(*type & VM_FAULT_MAJOR)) {
1291 __count_vm_event(PGMAJFAULT);
1292 *type |= VM_FAULT_MAJOR;
1294 spin_unlock(&info->lock);
1295 swappage = shmem_swapin(swap, gfp, info, idx);
1296 if (!swappage) {
1297 spin_lock(&info->lock);
1298 entry = shmem_swp_alloc(info, idx, sgp);
1299 if (IS_ERR(entry))
1300 error = PTR_ERR(entry);
1301 else {
1302 if (entry->val == swap.val)
1303 error = -ENOMEM;
1304 shmem_swp_unmap(entry);
1306 spin_unlock(&info->lock);
1307 if (error)
1308 goto failed;
1309 goto repeat;
1311 wait_on_page_locked(swappage);
1312 page_cache_release(swappage);
1313 goto repeat;
1316 /* We have to do this with page locked to prevent races */
1317 if (!trylock_page(swappage)) {
1318 shmem_swp_unmap(entry);
1319 spin_unlock(&info->lock);
1320 wait_on_page_locked(swappage);
1321 page_cache_release(swappage);
1322 goto repeat;
1324 if (PageWriteback(swappage)) {
1325 shmem_swp_unmap(entry);
1326 spin_unlock(&info->lock);
1327 wait_on_page_writeback(swappage);
1328 unlock_page(swappage);
1329 page_cache_release(swappage);
1330 goto repeat;
1332 if (!PageUptodate(swappage)) {
1333 shmem_swp_unmap(entry);
1334 spin_unlock(&info->lock);
1335 unlock_page(swappage);
1336 page_cache_release(swappage);
1337 error = -EIO;
1338 goto failed;
1341 if (filepage) {
1342 shmem_swp_set(info, entry, 0);
1343 shmem_swp_unmap(entry);
1344 delete_from_swap_cache(swappage);
1345 spin_unlock(&info->lock);
1346 copy_highpage(filepage, swappage);
1347 unlock_page(swappage);
1348 page_cache_release(swappage);
1349 flush_dcache_page(filepage);
1350 SetPageUptodate(filepage);
1351 set_page_dirty(filepage);
1352 swap_free(swap);
1353 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1354 idx, GFP_NOWAIT))) {
1355 info->flags |= SHMEM_PAGEIN;
1356 shmem_swp_set(info, entry, 0);
1357 shmem_swp_unmap(entry);
1358 delete_from_swap_cache(swappage);
1359 spin_unlock(&info->lock);
1360 filepage = swappage;
1361 set_page_dirty(filepage);
1362 swap_free(swap);
1363 } else {
1364 shmem_swp_unmap(entry);
1365 spin_unlock(&info->lock);
1366 if (error == -ENOMEM) {
1368 * reclaim from proper memory cgroup and
1369 * call memcg's OOM if needed.
1371 error = mem_cgroup_shmem_charge_fallback(
1372 swappage,
1373 current->mm,
1374 gfp);
1375 if (error) {
1376 unlock_page(swappage);
1377 page_cache_release(swappage);
1378 goto failed;
1381 unlock_page(swappage);
1382 page_cache_release(swappage);
1383 goto repeat;
1385 } else if (sgp == SGP_READ && !filepage) {
1386 shmem_swp_unmap(entry);
1387 filepage = find_get_page(mapping, idx);
1388 if (filepage &&
1389 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1390 spin_unlock(&info->lock);
1391 wait_on_page_locked(filepage);
1392 page_cache_release(filepage);
1393 filepage = NULL;
1394 goto repeat;
1396 spin_unlock(&info->lock);
1397 } else {
1398 shmem_swp_unmap(entry);
1399 sbinfo = SHMEM_SB(inode->i_sb);
1400 if (sbinfo->max_blocks) {
1401 if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
1402 shmem_acct_block(info->flags)) {
1403 spin_unlock(&info->lock);
1404 error = -ENOSPC;
1405 goto failed;
1407 percpu_counter_inc(&sbinfo->used_blocks);
1408 spin_lock(&inode->i_lock);
1409 inode->i_blocks += BLOCKS_PER_PAGE;
1410 spin_unlock(&inode->i_lock);
1411 } else if (shmem_acct_block(info->flags)) {
1412 spin_unlock(&info->lock);
1413 error = -ENOSPC;
1414 goto failed;
1417 if (!filepage) {
1418 int ret;
1420 if (!prealloc_page) {
1421 spin_unlock(&info->lock);
1422 filepage = shmem_alloc_page(gfp, info, idx);
1423 if (!filepage) {
1424 shmem_unacct_blocks(info->flags, 1);
1425 shmem_free_blocks(inode, 1);
1426 error = -ENOMEM;
1427 goto failed;
1429 SetPageSwapBacked(filepage);
1432 * Precharge page while we can wait, compensate
1433 * after
1435 error = mem_cgroup_cache_charge(filepage,
1436 current->mm, GFP_KERNEL);
1437 if (error) {
1438 page_cache_release(filepage);
1439 shmem_unacct_blocks(info->flags, 1);
1440 shmem_free_blocks(inode, 1);
1441 filepage = NULL;
1442 goto failed;
1445 spin_lock(&info->lock);
1446 } else {
1447 filepage = prealloc_page;
1448 prealloc_page = NULL;
1449 SetPageSwapBacked(filepage);
1452 entry = shmem_swp_alloc(info, idx, sgp);
1453 if (IS_ERR(entry))
1454 error = PTR_ERR(entry);
1455 else {
1456 swap = *entry;
1457 shmem_swp_unmap(entry);
1459 ret = error || swap.val;
1460 if (ret)
1461 mem_cgroup_uncharge_cache_page(filepage);
1462 else
1463 ret = add_to_page_cache_lru(filepage, mapping,
1464 idx, GFP_NOWAIT);
1466 * At add_to_page_cache_lru() failure, uncharge will
1467 * be done automatically.
1469 if (ret) {
1470 spin_unlock(&info->lock);
1471 page_cache_release(filepage);
1472 shmem_unacct_blocks(info->flags, 1);
1473 shmem_free_blocks(inode, 1);
1474 filepage = NULL;
1475 if (error)
1476 goto failed;
1477 goto repeat;
1479 info->flags |= SHMEM_PAGEIN;
1482 info->alloced++;
1483 spin_unlock(&info->lock);
1484 clear_highpage(filepage);
1485 flush_dcache_page(filepage);
1486 SetPageUptodate(filepage);
1487 if (sgp == SGP_DIRTY)
1488 set_page_dirty(filepage);
1490 done:
1491 *pagep = filepage;
1492 error = 0;
1493 goto out;
1495 failed:
1496 if (*pagep != filepage) {
1497 unlock_page(filepage);
1498 page_cache_release(filepage);
1500 out:
1501 if (prealloc_page) {
1502 mem_cgroup_uncharge_cache_page(prealloc_page);
1503 page_cache_release(prealloc_page);
1505 return error;
1508 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1510 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1511 int error;
1512 int ret;
1514 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1515 return VM_FAULT_SIGBUS;
1517 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1518 if (error)
1519 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1521 return ret | VM_FAULT_LOCKED;
1524 #ifdef CONFIG_NUMA
1525 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1527 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1528 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1531 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1532 unsigned long addr)
1534 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1535 unsigned long idx;
1537 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1538 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1540 #endif
1542 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1544 struct inode *inode = file->f_path.dentry->d_inode;
1545 struct shmem_inode_info *info = SHMEM_I(inode);
1546 int retval = -ENOMEM;
1548 spin_lock(&info->lock);
1549 if (lock && !(info->flags & VM_LOCKED)) {
1550 if (!user_shm_lock(inode->i_size, user))
1551 goto out_nomem;
1552 info->flags |= VM_LOCKED;
1553 mapping_set_unevictable(file->f_mapping);
1555 if (!lock && (info->flags & VM_LOCKED) && user) {
1556 user_shm_unlock(inode->i_size, user);
1557 info->flags &= ~VM_LOCKED;
1558 mapping_clear_unevictable(file->f_mapping);
1559 scan_mapping_unevictable_pages(file->f_mapping);
1561 retval = 0;
1563 out_nomem:
1564 spin_unlock(&info->lock);
1565 return retval;
1568 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1570 file_accessed(file);
1571 vma->vm_ops = &shmem_vm_ops;
1572 vma->vm_flags |= VM_CAN_NONLINEAR;
1573 return 0;
1576 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1577 int mode, dev_t dev, unsigned long flags)
1579 struct inode *inode;
1580 struct shmem_inode_info *info;
1581 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1583 if (shmem_reserve_inode(sb))
1584 return NULL;
1586 inode = new_inode(sb);
1587 if (inode) {
1588 inode->i_ino = get_next_ino();
1589 inode_init_owner(inode, dir, mode);
1590 inode->i_blocks = 0;
1591 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1592 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1593 inode->i_generation = get_seconds();
1594 info = SHMEM_I(inode);
1595 memset(info, 0, (char *)inode - (char *)info);
1596 spin_lock_init(&info->lock);
1597 info->flags = flags & VM_NORESERVE;
1598 INIT_LIST_HEAD(&info->swaplist);
1599 cache_no_acl(inode);
1601 switch (mode & S_IFMT) {
1602 default:
1603 inode->i_op = &shmem_special_inode_operations;
1604 init_special_inode(inode, mode, dev);
1605 break;
1606 case S_IFREG:
1607 inode->i_mapping->a_ops = &shmem_aops;
1608 inode->i_op = &shmem_inode_operations;
1609 inode->i_fop = &shmem_file_operations;
1610 mpol_shared_policy_init(&info->policy,
1611 shmem_get_sbmpol(sbinfo));
1612 break;
1613 case S_IFDIR:
1614 inc_nlink(inode);
1615 /* Some things misbehave if size == 0 on a directory */
1616 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1617 inode->i_op = &shmem_dir_inode_operations;
1618 inode->i_fop = &simple_dir_operations;
1619 break;
1620 case S_IFLNK:
1622 * Must not load anything in the rbtree,
1623 * mpol_free_shared_policy will not be called.
1625 mpol_shared_policy_init(&info->policy, NULL);
1626 break;
1628 } else
1629 shmem_free_inode(sb);
1630 return inode;
1633 #ifdef CONFIG_TMPFS
1634 static const struct inode_operations shmem_symlink_inode_operations;
1635 static const struct inode_operations shmem_symlink_inline_operations;
1638 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1639 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1640 * below the loop driver, in the generic fashion that many filesystems support.
1642 static int shmem_readpage(struct file *file, struct page *page)
1644 struct inode *inode = page->mapping->host;
1645 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1646 unlock_page(page);
1647 return error;
1650 static int
1651 shmem_write_begin(struct file *file, struct address_space *mapping,
1652 loff_t pos, unsigned len, unsigned flags,
1653 struct page **pagep, void **fsdata)
1655 struct inode *inode = mapping->host;
1656 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1657 *pagep = NULL;
1658 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1661 static int
1662 shmem_write_end(struct file *file, struct address_space *mapping,
1663 loff_t pos, unsigned len, unsigned copied,
1664 struct page *page, void *fsdata)
1666 struct inode *inode = mapping->host;
1668 if (pos + copied > inode->i_size)
1669 i_size_write(inode, pos + copied);
1671 set_page_dirty(page);
1672 unlock_page(page);
1673 page_cache_release(page);
1675 return copied;
1678 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1680 struct inode *inode = filp->f_path.dentry->d_inode;
1681 struct address_space *mapping = inode->i_mapping;
1682 unsigned long index, offset;
1683 enum sgp_type sgp = SGP_READ;
1686 * Might this read be for a stacking filesystem? Then when reading
1687 * holes of a sparse file, we actually need to allocate those pages,
1688 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1690 if (segment_eq(get_fs(), KERNEL_DS))
1691 sgp = SGP_DIRTY;
1693 index = *ppos >> PAGE_CACHE_SHIFT;
1694 offset = *ppos & ~PAGE_CACHE_MASK;
1696 for (;;) {
1697 struct page *page = NULL;
1698 unsigned long end_index, nr, ret;
1699 loff_t i_size = i_size_read(inode);
1701 end_index = i_size >> PAGE_CACHE_SHIFT;
1702 if (index > end_index)
1703 break;
1704 if (index == end_index) {
1705 nr = i_size & ~PAGE_CACHE_MASK;
1706 if (nr <= offset)
1707 break;
1710 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1711 if (desc->error) {
1712 if (desc->error == -EINVAL)
1713 desc->error = 0;
1714 break;
1716 if (page)
1717 unlock_page(page);
1720 * We must evaluate after, since reads (unlike writes)
1721 * are called without i_mutex protection against truncate
1723 nr = PAGE_CACHE_SIZE;
1724 i_size = i_size_read(inode);
1725 end_index = i_size >> PAGE_CACHE_SHIFT;
1726 if (index == end_index) {
1727 nr = i_size & ~PAGE_CACHE_MASK;
1728 if (nr <= offset) {
1729 if (page)
1730 page_cache_release(page);
1731 break;
1734 nr -= offset;
1736 if (page) {
1738 * If users can be writing to this page using arbitrary
1739 * virtual addresses, take care about potential aliasing
1740 * before reading the page on the kernel side.
1742 if (mapping_writably_mapped(mapping))
1743 flush_dcache_page(page);
1745 * Mark the page accessed if we read the beginning.
1747 if (!offset)
1748 mark_page_accessed(page);
1749 } else {
1750 page = ZERO_PAGE(0);
1751 page_cache_get(page);
1755 * Ok, we have the page, and it's up-to-date, so
1756 * now we can copy it to user space...
1758 * The actor routine returns how many bytes were actually used..
1759 * NOTE! This may not be the same as how much of a user buffer
1760 * we filled up (we may be padding etc), so we can only update
1761 * "pos" here (the actor routine has to update the user buffer
1762 * pointers and the remaining count).
1764 ret = actor(desc, page, offset, nr);
1765 offset += ret;
1766 index += offset >> PAGE_CACHE_SHIFT;
1767 offset &= ~PAGE_CACHE_MASK;
1769 page_cache_release(page);
1770 if (ret != nr || !desc->count)
1771 break;
1773 cond_resched();
1776 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1777 file_accessed(filp);
1780 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1781 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1783 struct file *filp = iocb->ki_filp;
1784 ssize_t retval;
1785 unsigned long seg;
1786 size_t count;
1787 loff_t *ppos = &iocb->ki_pos;
1789 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1790 if (retval)
1791 return retval;
1793 for (seg = 0; seg < nr_segs; seg++) {
1794 read_descriptor_t desc;
1796 desc.written = 0;
1797 desc.arg.buf = iov[seg].iov_base;
1798 desc.count = iov[seg].iov_len;
1799 if (desc.count == 0)
1800 continue;
1801 desc.error = 0;
1802 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1803 retval += desc.written;
1804 if (desc.error) {
1805 retval = retval ?: desc.error;
1806 break;
1808 if (desc.count > 0)
1809 break;
1811 return retval;
1814 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1816 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1818 buf->f_type = TMPFS_MAGIC;
1819 buf->f_bsize = PAGE_CACHE_SIZE;
1820 buf->f_namelen = NAME_MAX;
1821 if (sbinfo->max_blocks) {
1822 buf->f_blocks = sbinfo->max_blocks;
1823 buf->f_bavail = buf->f_bfree =
1824 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1826 if (sbinfo->max_inodes) {
1827 buf->f_files = sbinfo->max_inodes;
1828 buf->f_ffree = sbinfo->free_inodes;
1830 /* else leave those fields 0 like simple_statfs */
1831 return 0;
1835 * File creation. Allocate an inode, and we're done..
1837 static int
1838 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1840 struct inode *inode;
1841 int error = -ENOSPC;
1843 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1844 if (inode) {
1845 error = security_inode_init_security(inode, dir, NULL, NULL,
1846 NULL);
1847 if (error) {
1848 if (error != -EOPNOTSUPP) {
1849 iput(inode);
1850 return error;
1853 #ifdef CONFIG_TMPFS_POSIX_ACL
1854 error = generic_acl_init(inode, dir);
1855 if (error) {
1856 iput(inode);
1857 return error;
1859 #else
1860 error = 0;
1861 #endif
1862 dir->i_size += BOGO_DIRENT_SIZE;
1863 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1864 d_instantiate(dentry, inode);
1865 dget(dentry); /* Extra count - pin the dentry in core */
1867 return error;
1870 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1872 int error;
1874 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1875 return error;
1876 inc_nlink(dir);
1877 return 0;
1880 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1881 struct nameidata *nd)
1883 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1887 * Link a file..
1889 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1891 struct inode *inode = old_dentry->d_inode;
1892 int ret;
1895 * No ordinary (disk based) filesystem counts links as inodes;
1896 * but each new link needs a new dentry, pinning lowmem, and
1897 * tmpfs dentries cannot be pruned until they are unlinked.
1899 ret = shmem_reserve_inode(inode->i_sb);
1900 if (ret)
1901 goto out;
1903 dir->i_size += BOGO_DIRENT_SIZE;
1904 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1905 inc_nlink(inode);
1906 ihold(inode); /* New dentry reference */
1907 dget(dentry); /* Extra pinning count for the created dentry */
1908 d_instantiate(dentry, inode);
1909 out:
1910 return ret;
1913 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1915 struct inode *inode = dentry->d_inode;
1917 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1918 shmem_free_inode(inode->i_sb);
1920 dir->i_size -= BOGO_DIRENT_SIZE;
1921 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922 drop_nlink(inode);
1923 dput(dentry); /* Undo the count from "create" - this does all the work */
1924 return 0;
1927 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1929 if (!simple_empty(dentry))
1930 return -ENOTEMPTY;
1932 drop_nlink(dentry->d_inode);
1933 drop_nlink(dir);
1934 return shmem_unlink(dir, dentry);
1938 * The VFS layer already does all the dentry stuff for rename,
1939 * we just have to decrement the usage count for the target if
1940 * it exists so that the VFS layer correctly free's it when it
1941 * gets overwritten.
1943 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1945 struct inode *inode = old_dentry->d_inode;
1946 int they_are_dirs = S_ISDIR(inode->i_mode);
1948 if (!simple_empty(new_dentry))
1949 return -ENOTEMPTY;
1951 if (new_dentry->d_inode) {
1952 (void) shmem_unlink(new_dir, new_dentry);
1953 if (they_are_dirs)
1954 drop_nlink(old_dir);
1955 } else if (they_are_dirs) {
1956 drop_nlink(old_dir);
1957 inc_nlink(new_dir);
1960 old_dir->i_size -= BOGO_DIRENT_SIZE;
1961 new_dir->i_size += BOGO_DIRENT_SIZE;
1962 old_dir->i_ctime = old_dir->i_mtime =
1963 new_dir->i_ctime = new_dir->i_mtime =
1964 inode->i_ctime = CURRENT_TIME;
1965 return 0;
1968 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970 int error;
1971 int len;
1972 struct inode *inode;
1973 struct page *page = NULL;
1974 char *kaddr;
1975 struct shmem_inode_info *info;
1977 len = strlen(symname) + 1;
1978 if (len > PAGE_CACHE_SIZE)
1979 return -ENAMETOOLONG;
1981 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1982 if (!inode)
1983 return -ENOSPC;
1985 error = security_inode_init_security(inode, dir, NULL, NULL,
1986 NULL);
1987 if (error) {
1988 if (error != -EOPNOTSUPP) {
1989 iput(inode);
1990 return error;
1992 error = 0;
1995 info = SHMEM_I(inode);
1996 inode->i_size = len-1;
1997 if (len <= (char *)inode - (char *)info) {
1998 /* do it inline */
1999 memcpy(info, symname, len);
2000 inode->i_op = &shmem_symlink_inline_operations;
2001 } else {
2002 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2003 if (error) {
2004 iput(inode);
2005 return error;
2007 inode->i_mapping->a_ops = &shmem_aops;
2008 inode->i_op = &shmem_symlink_inode_operations;
2009 kaddr = kmap_atomic(page, KM_USER0);
2010 memcpy(kaddr, symname, len);
2011 kunmap_atomic(kaddr, KM_USER0);
2012 set_page_dirty(page);
2013 unlock_page(page);
2014 page_cache_release(page);
2016 dir->i_size += BOGO_DIRENT_SIZE;
2017 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2018 d_instantiate(dentry, inode);
2019 dget(dentry);
2020 return 0;
2023 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2025 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2026 return NULL;
2029 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2031 struct page *page = NULL;
2032 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2033 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2034 if (page)
2035 unlock_page(page);
2036 return page;
2039 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2041 if (!IS_ERR(nd_get_link(nd))) {
2042 struct page *page = cookie;
2043 kunmap(page);
2044 mark_page_accessed(page);
2045 page_cache_release(page);
2049 static const struct inode_operations shmem_symlink_inline_operations = {
2050 .readlink = generic_readlink,
2051 .follow_link = shmem_follow_link_inline,
2054 static const struct inode_operations shmem_symlink_inode_operations = {
2055 .readlink = generic_readlink,
2056 .follow_link = shmem_follow_link,
2057 .put_link = shmem_put_link,
2060 #ifdef CONFIG_TMPFS_POSIX_ACL
2062 * Superblocks without xattr inode operations will get security.* xattr
2063 * support from the VFS "for free". As soon as we have any other xattrs
2064 * like ACLs, we also need to implement the security.* handlers at
2065 * filesystem level, though.
2068 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2069 size_t list_len, const char *name,
2070 size_t name_len, int handler_flags)
2072 return security_inode_listsecurity(dentry->d_inode, list, list_len);
2075 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2076 void *buffer, size_t size, int handler_flags)
2078 if (strcmp(name, "") == 0)
2079 return -EINVAL;
2080 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2083 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2084 const void *value, size_t size, int flags, int handler_flags)
2086 if (strcmp(name, "") == 0)
2087 return -EINVAL;
2088 return security_inode_setsecurity(dentry->d_inode, name, value,
2089 size, flags);
2092 static const struct xattr_handler shmem_xattr_security_handler = {
2093 .prefix = XATTR_SECURITY_PREFIX,
2094 .list = shmem_xattr_security_list,
2095 .get = shmem_xattr_security_get,
2096 .set = shmem_xattr_security_set,
2099 static const struct xattr_handler *shmem_xattr_handlers[] = {
2100 &generic_acl_access_handler,
2101 &generic_acl_default_handler,
2102 &shmem_xattr_security_handler,
2103 NULL
2105 #endif
2107 static struct dentry *shmem_get_parent(struct dentry *child)
2109 return ERR_PTR(-ESTALE);
2112 static int shmem_match(struct inode *ino, void *vfh)
2114 __u32 *fh = vfh;
2115 __u64 inum = fh[2];
2116 inum = (inum << 32) | fh[1];
2117 return ino->i_ino == inum && fh[0] == ino->i_generation;
2120 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2121 struct fid *fid, int fh_len, int fh_type)
2123 struct inode *inode;
2124 struct dentry *dentry = NULL;
2125 u64 inum = fid->raw[2];
2126 inum = (inum << 32) | fid->raw[1];
2128 if (fh_len < 3)
2129 return NULL;
2131 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2132 shmem_match, fid->raw);
2133 if (inode) {
2134 dentry = d_find_alias(inode);
2135 iput(inode);
2138 return dentry;
2141 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2142 int connectable)
2144 struct inode *inode = dentry->d_inode;
2146 if (*len < 3)
2147 return 255;
2149 if (inode_unhashed(inode)) {
2150 /* Unfortunately insert_inode_hash is not idempotent,
2151 * so as we hash inodes here rather than at creation
2152 * time, we need a lock to ensure we only try
2153 * to do it once
2155 static DEFINE_SPINLOCK(lock);
2156 spin_lock(&lock);
2157 if (inode_unhashed(inode))
2158 __insert_inode_hash(inode,
2159 inode->i_ino + inode->i_generation);
2160 spin_unlock(&lock);
2163 fh[0] = inode->i_generation;
2164 fh[1] = inode->i_ino;
2165 fh[2] = ((__u64)inode->i_ino) >> 32;
2167 *len = 3;
2168 return 1;
2171 static const struct export_operations shmem_export_ops = {
2172 .get_parent = shmem_get_parent,
2173 .encode_fh = shmem_encode_fh,
2174 .fh_to_dentry = shmem_fh_to_dentry,
2177 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2178 bool remount)
2180 char *this_char, *value, *rest;
2182 while (options != NULL) {
2183 this_char = options;
2184 for (;;) {
2186 * NUL-terminate this option: unfortunately,
2187 * mount options form a comma-separated list,
2188 * but mpol's nodelist may also contain commas.
2190 options = strchr(options, ',');
2191 if (options == NULL)
2192 break;
2193 options++;
2194 if (!isdigit(*options)) {
2195 options[-1] = '\0';
2196 break;
2199 if (!*this_char)
2200 continue;
2201 if ((value = strchr(this_char,'=')) != NULL) {
2202 *value++ = 0;
2203 } else {
2204 printk(KERN_ERR
2205 "tmpfs: No value for mount option '%s'\n",
2206 this_char);
2207 return 1;
2210 if (!strcmp(this_char,"size")) {
2211 unsigned long long size;
2212 size = memparse(value,&rest);
2213 if (*rest == '%') {
2214 size <<= PAGE_SHIFT;
2215 size *= totalram_pages;
2216 do_div(size, 100);
2217 rest++;
2219 if (*rest)
2220 goto bad_val;
2221 sbinfo->max_blocks =
2222 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2223 } else if (!strcmp(this_char,"nr_blocks")) {
2224 sbinfo->max_blocks = memparse(value, &rest);
2225 if (*rest)
2226 goto bad_val;
2227 } else if (!strcmp(this_char,"nr_inodes")) {
2228 sbinfo->max_inodes = memparse(value, &rest);
2229 if (*rest)
2230 goto bad_val;
2231 } else if (!strcmp(this_char,"mode")) {
2232 if (remount)
2233 continue;
2234 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2235 if (*rest)
2236 goto bad_val;
2237 } else if (!strcmp(this_char,"uid")) {
2238 if (remount)
2239 continue;
2240 sbinfo->uid = simple_strtoul(value, &rest, 0);
2241 if (*rest)
2242 goto bad_val;
2243 } else if (!strcmp(this_char,"gid")) {
2244 if (remount)
2245 continue;
2246 sbinfo->gid = simple_strtoul(value, &rest, 0);
2247 if (*rest)
2248 goto bad_val;
2249 } else if (!strcmp(this_char,"mpol")) {
2250 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2251 goto bad_val;
2252 } else {
2253 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2254 this_char);
2255 return 1;
2258 return 0;
2260 bad_val:
2261 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2262 value, this_char);
2263 return 1;
2267 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2269 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2270 struct shmem_sb_info config = *sbinfo;
2271 unsigned long inodes;
2272 int error = -EINVAL;
2274 if (shmem_parse_options(data, &config, true))
2275 return error;
2277 spin_lock(&sbinfo->stat_lock);
2278 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2279 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2280 goto out;
2281 if (config.max_inodes < inodes)
2282 goto out;
2284 * Those tests also disallow limited->unlimited while any are in
2285 * use, so i_blocks will always be zero when max_blocks is zero;
2286 * but we must separately disallow unlimited->limited, because
2287 * in that case we have no record of how much is already in use.
2289 if (config.max_blocks && !sbinfo->max_blocks)
2290 goto out;
2291 if (config.max_inodes && !sbinfo->max_inodes)
2292 goto out;
2294 error = 0;
2295 sbinfo->max_blocks = config.max_blocks;
2296 sbinfo->max_inodes = config.max_inodes;
2297 sbinfo->free_inodes = config.max_inodes - inodes;
2299 mpol_put(sbinfo->mpol);
2300 sbinfo->mpol = config.mpol; /* transfers initial ref */
2301 out:
2302 spin_unlock(&sbinfo->stat_lock);
2303 return error;
2306 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2308 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2310 if (sbinfo->max_blocks != shmem_default_max_blocks())
2311 seq_printf(seq, ",size=%luk",
2312 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2313 if (sbinfo->max_inodes != shmem_default_max_inodes())
2314 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2315 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2316 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2317 if (sbinfo->uid != 0)
2318 seq_printf(seq, ",uid=%u", sbinfo->uid);
2319 if (sbinfo->gid != 0)
2320 seq_printf(seq, ",gid=%u", sbinfo->gid);
2321 shmem_show_mpol(seq, sbinfo->mpol);
2322 return 0;
2324 #endif /* CONFIG_TMPFS */
2326 static void shmem_put_super(struct super_block *sb)
2328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2330 percpu_counter_destroy(&sbinfo->used_blocks);
2331 kfree(sbinfo);
2332 sb->s_fs_info = NULL;
2335 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2337 struct inode *inode;
2338 struct dentry *root;
2339 struct shmem_sb_info *sbinfo;
2340 int err = -ENOMEM;
2342 /* Round up to L1_CACHE_BYTES to resist false sharing */
2343 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2344 L1_CACHE_BYTES), GFP_KERNEL);
2345 if (!sbinfo)
2346 return -ENOMEM;
2348 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2349 sbinfo->uid = current_fsuid();
2350 sbinfo->gid = current_fsgid();
2351 sb->s_fs_info = sbinfo;
2353 #ifdef CONFIG_TMPFS
2355 * Per default we only allow half of the physical ram per
2356 * tmpfs instance, limiting inodes to one per page of lowmem;
2357 * but the internal instance is left unlimited.
2359 if (!(sb->s_flags & MS_NOUSER)) {
2360 sbinfo->max_blocks = shmem_default_max_blocks();
2361 sbinfo->max_inodes = shmem_default_max_inodes();
2362 if (shmem_parse_options(data, sbinfo, false)) {
2363 err = -EINVAL;
2364 goto failed;
2367 sb->s_export_op = &shmem_export_ops;
2368 #else
2369 sb->s_flags |= MS_NOUSER;
2370 #endif
2372 spin_lock_init(&sbinfo->stat_lock);
2373 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2374 goto failed;
2375 sbinfo->free_inodes = sbinfo->max_inodes;
2377 sb->s_maxbytes = SHMEM_MAX_BYTES;
2378 sb->s_blocksize = PAGE_CACHE_SIZE;
2379 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2380 sb->s_magic = TMPFS_MAGIC;
2381 sb->s_op = &shmem_ops;
2382 sb->s_time_gran = 1;
2383 #ifdef CONFIG_TMPFS_POSIX_ACL
2384 sb->s_xattr = shmem_xattr_handlers;
2385 sb->s_flags |= MS_POSIXACL;
2386 #endif
2388 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2389 if (!inode)
2390 goto failed;
2391 inode->i_uid = sbinfo->uid;
2392 inode->i_gid = sbinfo->gid;
2393 root = d_alloc_root(inode);
2394 if (!root)
2395 goto failed_iput;
2396 sb->s_root = root;
2397 return 0;
2399 failed_iput:
2400 iput(inode);
2401 failed:
2402 shmem_put_super(sb);
2403 return err;
2406 static struct kmem_cache *shmem_inode_cachep;
2408 static struct inode *shmem_alloc_inode(struct super_block *sb)
2410 struct shmem_inode_info *p;
2411 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2412 if (!p)
2413 return NULL;
2414 return &p->vfs_inode;
2417 static void shmem_i_callback(struct rcu_head *head)
2419 struct inode *inode = container_of(head, struct inode, i_rcu);
2420 INIT_LIST_HEAD(&inode->i_dentry);
2421 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2424 static void shmem_destroy_inode(struct inode *inode)
2426 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2427 /* only struct inode is valid if it's an inline symlink */
2428 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2430 call_rcu(&inode->i_rcu, shmem_i_callback);
2433 static void init_once(void *foo)
2435 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2437 inode_init_once(&p->vfs_inode);
2440 static int init_inodecache(void)
2442 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2443 sizeof(struct shmem_inode_info),
2444 0, SLAB_PANIC, init_once);
2445 return 0;
2448 static void destroy_inodecache(void)
2450 kmem_cache_destroy(shmem_inode_cachep);
2453 static const struct address_space_operations shmem_aops = {
2454 .writepage = shmem_writepage,
2455 .set_page_dirty = __set_page_dirty_no_writeback,
2456 #ifdef CONFIG_TMPFS
2457 .readpage = shmem_readpage,
2458 .write_begin = shmem_write_begin,
2459 .write_end = shmem_write_end,
2460 #endif
2461 .migratepage = migrate_page,
2462 .error_remove_page = generic_error_remove_page,
2465 static const struct file_operations shmem_file_operations = {
2466 .mmap = shmem_mmap,
2467 #ifdef CONFIG_TMPFS
2468 .llseek = generic_file_llseek,
2469 .read = do_sync_read,
2470 .write = do_sync_write,
2471 .aio_read = shmem_file_aio_read,
2472 .aio_write = generic_file_aio_write,
2473 .fsync = noop_fsync,
2474 .splice_read = generic_file_splice_read,
2475 .splice_write = generic_file_splice_write,
2476 #endif
2479 static const struct inode_operations shmem_inode_operations = {
2480 .setattr = shmem_notify_change,
2481 .truncate_range = shmem_truncate_range,
2482 #ifdef CONFIG_TMPFS_POSIX_ACL
2483 .setxattr = generic_setxattr,
2484 .getxattr = generic_getxattr,
2485 .listxattr = generic_listxattr,
2486 .removexattr = generic_removexattr,
2487 .check_acl = generic_check_acl,
2488 #endif
2492 static const struct inode_operations shmem_dir_inode_operations = {
2493 #ifdef CONFIG_TMPFS
2494 .create = shmem_create,
2495 .lookup = simple_lookup,
2496 .link = shmem_link,
2497 .unlink = shmem_unlink,
2498 .symlink = shmem_symlink,
2499 .mkdir = shmem_mkdir,
2500 .rmdir = shmem_rmdir,
2501 .mknod = shmem_mknod,
2502 .rename = shmem_rename,
2503 #endif
2504 #ifdef CONFIG_TMPFS_POSIX_ACL
2505 .setattr = shmem_notify_change,
2506 .setxattr = generic_setxattr,
2507 .getxattr = generic_getxattr,
2508 .listxattr = generic_listxattr,
2509 .removexattr = generic_removexattr,
2510 .check_acl = generic_check_acl,
2511 #endif
2514 static const struct inode_operations shmem_special_inode_operations = {
2515 #ifdef CONFIG_TMPFS_POSIX_ACL
2516 .setattr = shmem_notify_change,
2517 .setxattr = generic_setxattr,
2518 .getxattr = generic_getxattr,
2519 .listxattr = generic_listxattr,
2520 .removexattr = generic_removexattr,
2521 .check_acl = generic_check_acl,
2522 #endif
2525 static const struct super_operations shmem_ops = {
2526 .alloc_inode = shmem_alloc_inode,
2527 .destroy_inode = shmem_destroy_inode,
2528 #ifdef CONFIG_TMPFS
2529 .statfs = shmem_statfs,
2530 .remount_fs = shmem_remount_fs,
2531 .show_options = shmem_show_options,
2532 #endif
2533 .evict_inode = shmem_evict_inode,
2534 .drop_inode = generic_delete_inode,
2535 .put_super = shmem_put_super,
2538 static const struct vm_operations_struct shmem_vm_ops = {
2539 .fault = shmem_fault,
2540 #ifdef CONFIG_NUMA
2541 .set_policy = shmem_set_policy,
2542 .get_policy = shmem_get_policy,
2543 #endif
2547 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2548 int flags, const char *dev_name, void *data)
2550 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2553 static struct file_system_type tmpfs_fs_type = {
2554 .owner = THIS_MODULE,
2555 .name = "tmpfs",
2556 .mount = shmem_mount,
2557 .kill_sb = kill_litter_super,
2560 int __init init_tmpfs(void)
2562 int error;
2564 error = bdi_init(&shmem_backing_dev_info);
2565 if (error)
2566 goto out4;
2568 error = init_inodecache();
2569 if (error)
2570 goto out3;
2572 error = register_filesystem(&tmpfs_fs_type);
2573 if (error) {
2574 printk(KERN_ERR "Could not register tmpfs\n");
2575 goto out2;
2578 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2579 tmpfs_fs_type.name, NULL);
2580 if (IS_ERR(shm_mnt)) {
2581 error = PTR_ERR(shm_mnt);
2582 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2583 goto out1;
2585 return 0;
2587 out1:
2588 unregister_filesystem(&tmpfs_fs_type);
2589 out2:
2590 destroy_inodecache();
2591 out3:
2592 bdi_destroy(&shmem_backing_dev_info);
2593 out4:
2594 shm_mnt = ERR_PTR(error);
2595 return error;
2598 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2600 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2601 * @inode: the inode to be searched
2602 * @pgoff: the offset to be searched
2603 * @pagep: the pointer for the found page to be stored
2604 * @ent: the pointer for the found swap entry to be stored
2606 * If a page is found, refcount of it is incremented. Callers should handle
2607 * these refcount.
2609 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2610 struct page **pagep, swp_entry_t *ent)
2612 swp_entry_t entry = { .val = 0 }, *ptr;
2613 struct page *page = NULL;
2614 struct shmem_inode_info *info = SHMEM_I(inode);
2616 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2617 goto out;
2619 spin_lock(&info->lock);
2620 ptr = shmem_swp_entry(info, pgoff, NULL);
2621 #ifdef CONFIG_SWAP
2622 if (ptr && ptr->val) {
2623 entry.val = ptr->val;
2624 page = find_get_page(&swapper_space, entry.val);
2625 } else
2626 #endif
2627 page = find_get_page(inode->i_mapping, pgoff);
2628 if (ptr)
2629 shmem_swp_unmap(ptr);
2630 spin_unlock(&info->lock);
2631 out:
2632 *pagep = page;
2633 *ent = entry;
2635 #endif
2637 #else /* !CONFIG_SHMEM */
2640 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2642 * This is intended for small system where the benefits of the full
2643 * shmem code (swap-backed and resource-limited) are outweighed by
2644 * their complexity. On systems without swap this code should be
2645 * effectively equivalent, but much lighter weight.
2648 #include <linux/ramfs.h>
2650 static struct file_system_type tmpfs_fs_type = {
2651 .name = "tmpfs",
2652 .mount = ramfs_mount,
2653 .kill_sb = kill_litter_super,
2656 int __init init_tmpfs(void)
2658 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2660 shm_mnt = kern_mount(&tmpfs_fs_type);
2661 BUG_ON(IS_ERR(shm_mnt));
2663 return 0;
2666 int shmem_unuse(swp_entry_t entry, struct page *page)
2668 return 0;
2671 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2673 return 0;
2676 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2678 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2679 * @inode: the inode to be searched
2680 * @pgoff: the offset to be searched
2681 * @pagep: the pointer for the found page to be stored
2682 * @ent: the pointer for the found swap entry to be stored
2684 * If a page is found, refcount of it is incremented. Callers should handle
2685 * these refcount.
2687 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2688 struct page **pagep, swp_entry_t *ent)
2690 struct page *page = NULL;
2692 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2693 goto out;
2694 page = find_get_page(inode->i_mapping, pgoff);
2695 out:
2696 *pagep = page;
2697 *ent = (swp_entry_t){ .val = 0 };
2699 #endif
2701 #define shmem_vm_ops generic_file_vm_ops
2702 #define shmem_file_operations ramfs_file_operations
2703 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2704 #define shmem_acct_size(flags, size) 0
2705 #define shmem_unacct_size(flags, size) do {} while (0)
2706 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2708 #endif /* CONFIG_SHMEM */
2710 /* common code */
2713 * shmem_file_setup - get an unlinked file living in tmpfs
2714 * @name: name for dentry (to be seen in /proc/<pid>/maps
2715 * @size: size to be set for the file
2716 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2718 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2720 int error;
2721 struct file *file;
2722 struct inode *inode;
2723 struct path path;
2724 struct dentry *root;
2725 struct qstr this;
2727 if (IS_ERR(shm_mnt))
2728 return (void *)shm_mnt;
2730 if (size < 0 || size > SHMEM_MAX_BYTES)
2731 return ERR_PTR(-EINVAL);
2733 if (shmem_acct_size(flags, size))
2734 return ERR_PTR(-ENOMEM);
2736 error = -ENOMEM;
2737 this.name = name;
2738 this.len = strlen(name);
2739 this.hash = 0; /* will go */
2740 root = shm_mnt->mnt_root;
2741 path.dentry = d_alloc(root, &this);
2742 if (!path.dentry)
2743 goto put_memory;
2744 path.mnt = mntget(shm_mnt);
2746 error = -ENOSPC;
2747 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2748 if (!inode)
2749 goto put_dentry;
2751 d_instantiate(path.dentry, inode);
2752 inode->i_size = size;
2753 inode->i_nlink = 0; /* It is unlinked */
2754 #ifndef CONFIG_MMU
2755 error = ramfs_nommu_expand_for_mapping(inode, size);
2756 if (error)
2757 goto put_dentry;
2758 #endif
2760 error = -ENFILE;
2761 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2762 &shmem_file_operations);
2763 if (!file)
2764 goto put_dentry;
2766 return file;
2768 put_dentry:
2769 path_put(&path);
2770 put_memory:
2771 shmem_unacct_size(flags, size);
2772 return ERR_PTR(error);
2774 EXPORT_SYMBOL_GPL(shmem_file_setup);
2777 * shmem_zero_setup - setup a shared anonymous mapping
2778 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2780 int shmem_zero_setup(struct vm_area_struct *vma)
2782 struct file *file;
2783 loff_t size = vma->vm_end - vma->vm_start;
2785 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2786 if (IS_ERR(file))
2787 return PTR_ERR(file);
2789 if (vma->vm_file)
2790 fput(vma->vm_file);
2791 vma->vm_file = file;
2792 vma->vm_ops = &shmem_vm_ops;
2793 return 0;