Merge branch 'timers-clockevents-for-linus' of git://git.kernel.org/pub/scm/linux...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / iio / ring_sw.c
blobb71ce390064971a4905fac4531cec10bcd9a5177
1 /* The industrial I/O simple minimally locked ring buffer.
3 * Copyright (c) 2008 Jonathan Cameron
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 */
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/workqueue.h>
15 #include <linux/poll.h>
16 #include "ring_sw.h"
17 #include "trigger.h"
19 static inline int __iio_allocate_sw_ring_buffer(struct iio_sw_ring_buffer *ring,
20 int bytes_per_datum, int length)
22 if ((length == 0) || (bytes_per_datum == 0))
23 return -EINVAL;
24 __iio_update_ring_buffer(&ring->buf, bytes_per_datum, length);
25 ring->data = kmalloc(length*ring->buf.bytes_per_datum, GFP_ATOMIC);
26 ring->read_p = NULL;
27 ring->write_p = NULL;
28 ring->last_written_p = NULL;
29 ring->half_p = NULL;
30 return ring->data ? 0 : -ENOMEM;
33 static inline void __iio_init_sw_ring_buffer(struct iio_sw_ring_buffer *ring)
35 spin_lock_init(&ring->use_lock);
38 static inline void __iio_free_sw_ring_buffer(struct iio_sw_ring_buffer *ring)
40 kfree(ring->data);
43 void iio_mark_sw_rb_in_use(struct iio_ring_buffer *r)
45 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
46 spin_lock(&ring->use_lock);
47 ring->use_count++;
48 spin_unlock(&ring->use_lock);
50 EXPORT_SYMBOL(iio_mark_sw_rb_in_use);
52 void iio_unmark_sw_rb_in_use(struct iio_ring_buffer *r)
54 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
55 spin_lock(&ring->use_lock);
56 ring->use_count--;
57 spin_unlock(&ring->use_lock);
59 EXPORT_SYMBOL(iio_unmark_sw_rb_in_use);
62 /* Ring buffer related functionality */
63 /* Store to ring is typically called in the bh of a data ready interrupt handler
64 * in the device driver */
65 /* Lock always held if their is a chance this may be called */
66 /* Only one of these per ring may run concurrently - enforced by drivers */
67 static int iio_store_to_sw_ring(struct iio_sw_ring_buffer *ring,
68 unsigned char *data, s64 timestamp)
70 int ret = 0;
71 int code;
72 unsigned char *temp_ptr, *change_test_ptr;
74 /* initial store */
75 if (unlikely(ring->write_p == NULL)) {
76 ring->write_p = ring->data;
77 /* Doesn't actually matter if this is out of the set
78 * as long as the read pointer is valid before this
79 * passes it - guaranteed as set later in this function.
81 ring->half_p = ring->data - ring->buf.length*ring->buf.bytes_per_datum/2;
83 /* Copy data to where ever the current write pointer says */
84 memcpy(ring->write_p, data, ring->buf.bytes_per_datum);
85 barrier();
86 /* Update the pointer used to get most recent value.
87 * Always valid as either points to latest or second latest value.
88 * Before this runs it is null and read attempts fail with -EAGAIN.
90 ring->last_written_p = ring->write_p;
91 barrier();
92 /* temp_ptr used to ensure we never have an invalid pointer
93 * it may be slightly lagging, but never invalid
95 temp_ptr = ring->write_p + ring->buf.bytes_per_datum;
96 /* End of ring, back to the beginning */
97 if (temp_ptr == ring->data + ring->buf.length*ring->buf.bytes_per_datum)
98 temp_ptr = ring->data;
99 /* Update the write pointer
100 * always valid as long as this is the only function able to write.
101 * Care needed with smp systems to ensure more than one ring fill
102 * is never scheduled.
104 ring->write_p = temp_ptr;
106 if (ring->read_p == NULL)
107 ring->read_p = ring->data;
108 /* Buffer full - move the read pointer and create / escalate
109 * ring event */
110 /* Tricky case - if the read pointer moves before we adjust it.
111 * Handle by not pushing if it has moved - may result in occasional
112 * unnecessary buffer full events when it wasn't quite true.
114 else if (ring->write_p == ring->read_p) {
115 change_test_ptr = ring->read_p;
116 temp_ptr = change_test_ptr + ring->buf.bytes_per_datum;
117 if (temp_ptr
118 == ring->data + ring->buf.length*ring->buf.bytes_per_datum) {
119 temp_ptr = ring->data;
121 /* We are moving pointer on one because the ring is full. Any
122 * change to the read pointer will be this or greater.
124 if (change_test_ptr == ring->read_p)
125 ring->read_p = temp_ptr;
127 spin_lock(&ring->buf.shared_ev_pointer.lock);
129 ret = iio_push_or_escallate_ring_event(&ring->buf,
130 IIO_EVENT_CODE_RING_100_FULL, timestamp);
131 spin_unlock(&ring->buf.shared_ev_pointer.lock);
132 if (ret)
133 goto error_ret;
135 /* investigate if our event barrier has been passed */
136 /* There are definite 'issues' with this and chances of
137 * simultaneous read */
138 /* Also need to use loop count to ensure this only happens once */
139 ring->half_p += ring->buf.bytes_per_datum;
140 if (ring->half_p == ring->data + ring->buf.length*ring->buf.bytes_per_datum)
141 ring->half_p = ring->data;
142 if (ring->half_p == ring->read_p) {
143 spin_lock(&ring->buf.shared_ev_pointer.lock);
144 code = IIO_EVENT_CODE_RING_50_FULL;
145 ret = __iio_push_event(&ring->buf.ev_int,
146 code,
147 timestamp,
148 &ring->buf.shared_ev_pointer);
149 spin_unlock(&ring->buf.shared_ev_pointer.lock);
151 error_ret:
152 return ret;
155 int iio_rip_sw_rb(struct iio_ring_buffer *r,
156 size_t count, char __user *buf, int *dead_offset)
158 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
160 u8 *initial_read_p, *initial_write_p, *current_read_p, *end_read_p;
161 u8 *data;
162 int ret, max_copied;
163 int bytes_to_rip;
165 /* A userspace program has probably made an error if it tries to
166 * read something that is not a whole number of bpds.
167 * Return an error.
169 if (count % ring->buf.bytes_per_datum) {
170 ret = -EINVAL;
171 printk(KERN_INFO "Ring buffer read request not whole number of"
172 "samples: Request bytes %zd, Current bytes per datum %d\n",
173 count, ring->buf.bytes_per_datum);
174 goto error_ret;
176 /* Limit size to whole of ring buffer */
177 bytes_to_rip = min((size_t)(ring->buf.bytes_per_datum*ring->buf.length), count);
179 data = kmalloc(bytes_to_rip, GFP_KERNEL);
180 if (data == NULL) {
181 ret = -ENOMEM;
182 goto error_ret;
185 /* build local copy */
186 initial_read_p = ring->read_p;
187 if (unlikely(initial_read_p == NULL)) { /* No data here as yet */
188 ret = 0;
189 goto error_free_data_cpy;
192 initial_write_p = ring->write_p;
194 /* Need a consistent pair */
195 while ((initial_read_p != ring->read_p)
196 || (initial_write_p != ring->write_p)) {
197 initial_read_p = ring->read_p;
198 initial_write_p = ring->write_p;
200 if (initial_write_p == initial_read_p) {
201 /* No new data available.*/
202 ret = 0;
203 goto error_free_data_cpy;
206 if (initial_write_p >= initial_read_p + bytes_to_rip) {
207 /* write_p is greater than necessary, all is easy */
208 max_copied = bytes_to_rip;
209 memcpy(data, initial_read_p, max_copied);
210 end_read_p = initial_read_p + max_copied;
211 } else if (initial_write_p > initial_read_p) {
212 /*not enough data to cpy */
213 max_copied = initial_write_p - initial_read_p;
214 memcpy(data, initial_read_p, max_copied);
215 end_read_p = initial_write_p;
216 } else {
217 /* going through 'end' of ring buffer */
218 max_copied = ring->data
219 + ring->buf.length*ring->buf.bytes_per_datum - initial_read_p;
220 memcpy(data, initial_read_p, max_copied);
221 /* possible we are done if we align precisely with end */
222 if (max_copied == bytes_to_rip)
223 end_read_p = ring->data;
224 else if (initial_write_p
225 > ring->data + bytes_to_rip - max_copied) {
226 /* enough data to finish */
227 memcpy(data + max_copied, ring->data,
228 bytes_to_rip - max_copied);
229 max_copied = bytes_to_rip;
230 end_read_p = ring->data + (bytes_to_rip - max_copied);
231 } else { /* not enough data */
232 memcpy(data + max_copied, ring->data,
233 initial_write_p - ring->data);
234 max_copied += initial_write_p - ring->data;
235 end_read_p = initial_write_p;
238 /* Now to verify which section was cleanly copied - i.e. how far
239 * read pointer has been pushed */
240 current_read_p = ring->read_p;
242 if (initial_read_p <= current_read_p)
243 *dead_offset = current_read_p - initial_read_p;
244 else
245 *dead_offset = ring->buf.length*ring->buf.bytes_per_datum
246 - (initial_read_p - current_read_p);
248 /* possible issue if the initial write has been lapped or indeed
249 * the point we were reading to has been passed */
250 /* No valid data read.
251 * In this case the read pointer is already correct having been
252 * pushed further than we would look. */
253 if (max_copied - *dead_offset < 0) {
254 ret = 0;
255 goto error_free_data_cpy;
258 /* setup the next read position */
259 /* Beware, this may fail due to concurrency fun and games.
260 * Possible that sufficient fill commands have run to push the read
261 * pointer past where we would be after the rip. If this occurs, leave
262 * it be.
264 /* Tricky - deal with loops */
266 while (ring->read_p != end_read_p)
267 ring->read_p = end_read_p;
269 ret = max_copied - *dead_offset;
271 if (copy_to_user(buf, data + *dead_offset, ret)) {
272 ret = -EFAULT;
273 goto error_free_data_cpy;
275 error_free_data_cpy:
276 kfree(data);
277 error_ret:
279 return ret;
281 EXPORT_SYMBOL(iio_rip_sw_rb);
283 int iio_store_to_sw_rb(struct iio_ring_buffer *r, u8 *data, s64 timestamp)
285 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
286 return iio_store_to_sw_ring(ring, data, timestamp);
288 EXPORT_SYMBOL(iio_store_to_sw_rb);
290 static int iio_read_last_from_sw_ring(struct iio_sw_ring_buffer *ring,
291 unsigned char *data)
293 unsigned char *last_written_p_copy;
295 iio_mark_sw_rb_in_use(&ring->buf);
296 again:
297 barrier();
298 last_written_p_copy = ring->last_written_p;
299 barrier(); /*unnessecary? */
300 /* Check there is anything here */
301 if (last_written_p_copy == NULL)
302 return -EAGAIN;
303 memcpy(data, last_written_p_copy, ring->buf.bytes_per_datum);
305 if (unlikely(ring->last_written_p != last_written_p_copy))
306 goto again;
308 iio_unmark_sw_rb_in_use(&ring->buf);
309 return 0;
312 int iio_read_last_from_sw_rb(struct iio_ring_buffer *r,
313 unsigned char *data)
315 return iio_read_last_from_sw_ring(iio_to_sw_ring(r), data);
317 EXPORT_SYMBOL(iio_read_last_from_sw_rb);
319 int iio_request_update_sw_rb(struct iio_ring_buffer *r)
321 int ret = 0;
322 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
324 spin_lock(&ring->use_lock);
325 if (!ring->update_needed)
326 goto error_ret;
327 if (ring->use_count) {
328 ret = -EAGAIN;
329 goto error_ret;
331 __iio_free_sw_ring_buffer(ring);
332 ret = __iio_allocate_sw_ring_buffer(ring, ring->buf.bytes_per_datum,
333 ring->buf.length);
334 error_ret:
335 spin_unlock(&ring->use_lock);
336 return ret;
338 EXPORT_SYMBOL(iio_request_update_sw_rb);
340 int iio_get_bytes_per_datum_sw_rb(struct iio_ring_buffer *r)
342 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
343 return ring->buf.bytes_per_datum;
345 EXPORT_SYMBOL(iio_get_bytes_per_datum_sw_rb);
347 int iio_set_bytes_per_datum_sw_rb(struct iio_ring_buffer *r, size_t bpd)
349 if (r->bytes_per_datum != bpd) {
350 r->bytes_per_datum = bpd;
351 if (r->access.mark_param_change)
352 r->access.mark_param_change(r);
354 return 0;
356 EXPORT_SYMBOL(iio_set_bytes_per_datum_sw_rb);
358 int iio_get_length_sw_rb(struct iio_ring_buffer *r)
360 return r->length;
362 EXPORT_SYMBOL(iio_get_length_sw_rb);
364 int iio_set_length_sw_rb(struct iio_ring_buffer *r, int length)
366 if (r->length != length) {
367 r->length = length;
368 if (r->access.mark_param_change)
369 r->access.mark_param_change(r);
371 return 0;
373 EXPORT_SYMBOL(iio_set_length_sw_rb);
375 int iio_mark_update_needed_sw_rb(struct iio_ring_buffer *r)
377 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
378 ring->update_needed = true;
379 return 0;
381 EXPORT_SYMBOL(iio_mark_update_needed_sw_rb);
383 static void iio_sw_rb_release(struct device *dev)
385 struct iio_ring_buffer *r = to_iio_ring_buffer(dev);
386 kfree(iio_to_sw_ring(r));
389 static IIO_RING_ENABLE_ATTR;
390 static IIO_RING_BYTES_PER_DATUM_ATTR;
391 static IIO_RING_LENGTH_ATTR;
393 /* Standard set of ring buffer attributes */
394 static struct attribute *iio_ring_attributes[] = {
395 &dev_attr_length.attr,
396 &dev_attr_bytes_per_datum.attr,
397 &dev_attr_enable.attr,
398 NULL,
401 static struct attribute_group iio_ring_attribute_group = {
402 .attrs = iio_ring_attributes,
405 static const struct attribute_group *iio_ring_attribute_groups[] = {
406 &iio_ring_attribute_group,
407 NULL
410 static struct device_type iio_sw_ring_type = {
411 .release = iio_sw_rb_release,
412 .groups = iio_ring_attribute_groups,
415 struct iio_ring_buffer *iio_sw_rb_allocate(struct iio_dev *indio_dev)
417 struct iio_ring_buffer *buf;
418 struct iio_sw_ring_buffer *ring;
420 ring = kzalloc(sizeof *ring, GFP_KERNEL);
421 if (!ring)
422 return NULL;
423 buf = &ring->buf;
424 iio_ring_buffer_init(buf, indio_dev);
425 __iio_init_sw_ring_buffer(ring);
426 buf->dev.type = &iio_sw_ring_type;
427 device_initialize(&buf->dev);
428 buf->dev.parent = &indio_dev->dev;
429 buf->dev.bus = &iio_bus_type;
430 dev_set_drvdata(&buf->dev, (void *)buf);
432 return buf;
434 EXPORT_SYMBOL(iio_sw_rb_allocate);
436 void iio_sw_rb_free(struct iio_ring_buffer *r)
438 if (r)
439 iio_put_ring_buffer(r);
441 EXPORT_SYMBOL(iio_sw_rb_free);
443 int iio_sw_ring_preenable(struct iio_dev *indio_dev)
445 struct iio_ring_buffer *ring = indio_dev->ring;
446 size_t size;
447 dev_dbg(&indio_dev->dev, "%s\n", __func__);
448 /* Check if there are any scan elements enabled, if not fail*/
449 if (!(ring->scan_count || ring->scan_timestamp))
450 return -EINVAL;
451 if (ring->scan_timestamp)
452 if (ring->scan_count)
453 /* Timestamp (aligned to s64) and data */
454 size = (((ring->scan_count * ring->bpe)
455 + sizeof(s64) - 1)
456 & ~(sizeof(s64) - 1))
457 + sizeof(s64);
458 else /* Timestamp only */
459 size = sizeof(s64);
460 else /* Data only */
461 size = ring->scan_count * ring->bpe;
462 ring->access.set_bytes_per_datum(ring, size);
464 return 0;
466 EXPORT_SYMBOL(iio_sw_ring_preenable);
468 void iio_sw_trigger_bh_to_ring(struct work_struct *work_s)
470 struct iio_sw_ring_helper_state *st
471 = container_of(work_s, struct iio_sw_ring_helper_state,
472 work_trigger_to_ring);
473 struct iio_ring_buffer *ring = st->indio_dev->ring;
474 int len = 0;
475 size_t datasize = ring->access.get_bytes_per_datum(ring);
476 char *data = kmalloc(datasize, GFP_KERNEL);
478 if (data == NULL) {
479 dev_err(st->indio_dev->dev.parent,
480 "memory alloc failed in ring bh");
481 return;
484 if (ring->scan_count)
485 len = st->get_ring_element(st, data);
487 /* Guaranteed to be aligned with 8 byte boundary */
488 if (ring->scan_timestamp)
489 *(s64 *)(((phys_addr_t)data + len
490 + sizeof(s64) - 1) & ~(sizeof(s64) - 1))
491 = st->last_timestamp;
492 ring->access.store_to(ring,
493 (u8 *)data,
494 st->last_timestamp);
496 iio_trigger_notify_done(st->indio_dev->trig);
497 kfree(data);
499 return;
501 EXPORT_SYMBOL(iio_sw_trigger_bh_to_ring);
503 void iio_sw_poll_func_th(struct iio_dev *indio_dev, s64 time)
504 { struct iio_sw_ring_helper_state *h
505 = iio_dev_get_devdata(indio_dev);
506 h->last_timestamp = time;
507 schedule_work(&h->work_trigger_to_ring);
509 EXPORT_SYMBOL(iio_sw_poll_func_th);
511 MODULE_DESCRIPTION("Industrialio I/O software ring buffer");
512 MODULE_LICENSE("GPL");