USB: keep track of whether interface sysfs files exist
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / usb.h
blob416ee7617d9eac56ad07b320c814742d19998d65
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
11 #ifdef __KERNEL__
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
24 struct usb_device;
25 struct usb_driver;
27 /*-------------------------------------------------------------------------*/
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
39 * And there might be other descriptors mixed in with those.
41 * Devices may also have class-specific or vendor-specific descriptors.
44 struct ep_device;
46 /**
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 * with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
55 * @enabled: URBs may be submitted to this endpoint
57 * USB requests are always queued to a given endpoint, identified by a
58 * descriptor within an active interface in a given USB configuration.
60 struct usb_host_endpoint {
61 struct usb_endpoint_descriptor desc;
62 struct list_head urb_list;
63 void *hcpriv;
64 struct ep_device *ep_dev; /* For sysfs info */
66 unsigned char *extra; /* Extra descriptors */
67 int extralen;
68 int enabled;
71 /* host-side wrapper for one interface setting's parsed descriptors */
72 struct usb_host_interface {
73 struct usb_interface_descriptor desc;
75 /* array of desc.bNumEndpoint endpoints associated with this
76 * interface setting. these will be in no particular order.
78 struct usb_host_endpoint *endpoint;
80 char *string; /* iInterface string, if present */
81 unsigned char *extra; /* Extra descriptors */
82 int extralen;
85 enum usb_interface_condition {
86 USB_INTERFACE_UNBOUND = 0,
87 USB_INTERFACE_BINDING,
88 USB_INTERFACE_BOUND,
89 USB_INTERFACE_UNBINDING,
92 /**
93 * struct usb_interface - what usb device drivers talk to
94 * @altsetting: array of interface structures, one for each alternate
95 * setting that may be selected. Each one includes a set of
96 * endpoint configurations. They will be in no particular order.
97 * @num_altsetting: number of altsettings defined.
98 * @cur_altsetting: the current altsetting.
99 * @intf_assoc: interface association descriptor
100 * @driver: the USB driver that is bound to this interface.
101 * @minor: the minor number assigned to this interface, if this
102 * interface is bound to a driver that uses the USB major number.
103 * If this interface does not use the USB major, this field should
104 * be unused. The driver should set this value in the probe()
105 * function of the driver, after it has been assigned a minor
106 * number from the USB core by calling usb_register_dev().
107 * @condition: binding state of the interface: not bound, binding
108 * (in probe()), bound to a driver, or unbinding (in disconnect())
109 * @is_active: flag set when the interface is bound and not suspended.
110 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
111 * capability during autosuspend.
112 * @dev: driver model's view of this device
113 * @usb_dev: if an interface is bound to the USB major, this will point
114 * to the sysfs representation for that device.
115 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
116 * allowed unless the counter is 0.
118 * USB device drivers attach to interfaces on a physical device. Each
119 * interface encapsulates a single high level function, such as feeding
120 * an audio stream to a speaker or reporting a change in a volume control.
121 * Many USB devices only have one interface. The protocol used to talk to
122 * an interface's endpoints can be defined in a usb "class" specification,
123 * or by a product's vendor. The (default) control endpoint is part of
124 * every interface, but is never listed among the interface's descriptors.
126 * The driver that is bound to the interface can use standard driver model
127 * calls such as dev_get_drvdata() on the dev member of this structure.
129 * Each interface may have alternate settings. The initial configuration
130 * of a device sets altsetting 0, but the device driver can change
131 * that setting using usb_set_interface(). Alternate settings are often
132 * used to control the use of periodic endpoints, such as by having
133 * different endpoints use different amounts of reserved USB bandwidth.
134 * All standards-conformant USB devices that use isochronous endpoints
135 * will use them in non-default settings.
137 * The USB specification says that alternate setting numbers must run from
138 * 0 to one less than the total number of alternate settings. But some
139 * devices manage to mess this up, and the structures aren't necessarily
140 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
141 * look up an alternate setting in the altsetting array based on its number.
143 struct usb_interface {
144 /* array of alternate settings for this interface,
145 * stored in no particular order */
146 struct usb_host_interface *altsetting;
148 struct usb_host_interface *cur_altsetting; /* the currently
149 * active alternate setting */
150 unsigned num_altsetting; /* number of alternate settings */
152 /* If there is an interface association descriptor then it will list
153 * the associated interfaces */
154 struct usb_interface_assoc_descriptor *intf_assoc;
156 int minor; /* minor number this interface is
157 * bound to */
158 enum usb_interface_condition condition; /* state of binding */
159 unsigned is_active:1; /* the interface is not suspended */
160 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
161 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
163 struct device dev; /* interface specific device info */
164 struct device *usb_dev; /* pointer to the usb class's device, if any */
165 int pm_usage_cnt; /* usage counter for autosuspend */
167 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
168 #define interface_to_usbdev(intf) \
169 container_of(intf->dev.parent, struct usb_device, dev)
171 static inline void *usb_get_intfdata (struct usb_interface *intf)
173 return dev_get_drvdata (&intf->dev);
176 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
178 dev_set_drvdata(&intf->dev, data);
181 struct usb_interface *usb_get_intf(struct usb_interface *intf);
182 void usb_put_intf(struct usb_interface *intf);
184 /* this maximum is arbitrary */
185 #define USB_MAXINTERFACES 32
186 #define USB_MAXIADS USB_MAXINTERFACES/2
189 * struct usb_interface_cache - long-term representation of a device interface
190 * @num_altsetting: number of altsettings defined.
191 * @ref: reference counter.
192 * @altsetting: variable-length array of interface structures, one for
193 * each alternate setting that may be selected. Each one includes a
194 * set of endpoint configurations. They will be in no particular order.
196 * These structures persist for the lifetime of a usb_device, unlike
197 * struct usb_interface (which persists only as long as its configuration
198 * is installed). The altsetting arrays can be accessed through these
199 * structures at any time, permitting comparison of configurations and
200 * providing support for the /proc/bus/usb/devices pseudo-file.
202 struct usb_interface_cache {
203 unsigned num_altsetting; /* number of alternate settings */
204 struct kref ref; /* reference counter */
206 /* variable-length array of alternate settings for this interface,
207 * stored in no particular order */
208 struct usb_host_interface altsetting[0];
210 #define ref_to_usb_interface_cache(r) \
211 container_of(r, struct usb_interface_cache, ref)
212 #define altsetting_to_usb_interface_cache(a) \
213 container_of(a, struct usb_interface_cache, altsetting[0])
216 * struct usb_host_config - representation of a device's configuration
217 * @desc: the device's configuration descriptor.
218 * @string: pointer to the cached version of the iConfiguration string, if
219 * present for this configuration.
220 * @intf_assoc: list of any interface association descriptors in this config
221 * @interface: array of pointers to usb_interface structures, one for each
222 * interface in the configuration. The number of interfaces is stored
223 * in desc.bNumInterfaces. These pointers are valid only while the
224 * the configuration is active.
225 * @intf_cache: array of pointers to usb_interface_cache structures, one
226 * for each interface in the configuration. These structures exist
227 * for the entire life of the device.
228 * @extra: pointer to buffer containing all extra descriptors associated
229 * with this configuration (those preceding the first interface
230 * descriptor).
231 * @extralen: length of the extra descriptors buffer.
233 * USB devices may have multiple configurations, but only one can be active
234 * at any time. Each encapsulates a different operational environment;
235 * for example, a dual-speed device would have separate configurations for
236 * full-speed and high-speed operation. The number of configurations
237 * available is stored in the device descriptor as bNumConfigurations.
239 * A configuration can contain multiple interfaces. Each corresponds to
240 * a different function of the USB device, and all are available whenever
241 * the configuration is active. The USB standard says that interfaces
242 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
243 * of devices get this wrong. In addition, the interface array is not
244 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
245 * look up an interface entry based on its number.
247 * Device drivers should not attempt to activate configurations. The choice
248 * of which configuration to install is a policy decision based on such
249 * considerations as available power, functionality provided, and the user's
250 * desires (expressed through userspace tools). However, drivers can call
251 * usb_reset_configuration() to reinitialize the current configuration and
252 * all its interfaces.
254 struct usb_host_config {
255 struct usb_config_descriptor desc;
257 char *string; /* iConfiguration string, if present */
259 /* List of any Interface Association Descriptors in this
260 * configuration. */
261 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
263 /* the interfaces associated with this configuration,
264 * stored in no particular order */
265 struct usb_interface *interface[USB_MAXINTERFACES];
267 /* Interface information available even when this is not the
268 * active configuration */
269 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
271 unsigned char *extra; /* Extra descriptors */
272 int extralen;
275 int __usb_get_extra_descriptor(char *buffer, unsigned size,
276 unsigned char type, void **ptr);
277 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
278 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
279 type,(void**)ptr)
281 /* ----------------------------------------------------------------------- */
283 /* USB device number allocation bitmap */
284 struct usb_devmap {
285 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
289 * Allocated per bus (tree of devices) we have:
291 struct usb_bus {
292 struct device *controller; /* host/master side hardware */
293 int busnum; /* Bus number (in order of reg) */
294 char *bus_name; /* stable id (PCI slot_name etc) */
295 u8 uses_dma; /* Does the host controller use DMA? */
296 u8 otg_port; /* 0, or number of OTG/HNP port */
297 unsigned is_b_host:1; /* true during some HNP roleswitches */
298 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
300 int devnum_next; /* Next open device number in
301 * round-robin allocation */
303 struct usb_devmap devmap; /* device address allocation map */
304 struct usb_device *root_hub; /* Root hub */
305 struct list_head bus_list; /* list of busses */
307 int bandwidth_allocated; /* on this bus: how much of the time
308 * reserved for periodic (intr/iso)
309 * requests is used, on average?
310 * Units: microseconds/frame.
311 * Limits: Full/low speed reserve 90%,
312 * while high speed reserves 80%.
314 int bandwidth_int_reqs; /* number of Interrupt requests */
315 int bandwidth_isoc_reqs; /* number of Isoc. requests */
317 #ifdef CONFIG_USB_DEVICEFS
318 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
319 #endif
320 struct class_device *class_dev; /* class device for this bus */
322 #if defined(CONFIG_USB_MON)
323 struct mon_bus *mon_bus; /* non-null when associated */
324 int monitored; /* non-zero when monitored */
325 #endif
328 /* ----------------------------------------------------------------------- */
330 /* This is arbitrary.
331 * From USB 2.0 spec Table 11-13, offset 7, a hub can
332 * have up to 255 ports. The most yet reported is 10.
334 * Current Wireless USB host hardware (Intel i1480 for example) allows
335 * up to 22 devices to connect. Upcoming hardware might raise that
336 * limit. Because the arrays need to add a bit for hub status data, we
337 * do 31, so plus one evens out to four bytes.
339 #define USB_MAXCHILDREN (31)
341 struct usb_tt;
344 * struct usb_device - kernel's representation of a USB device
346 * FIXME: Write the kerneldoc!
348 * Usbcore drivers should not set usbdev->state directly. Instead use
349 * usb_set_device_state().
351 * @authorized: (user space) policy determines if we authorize this
352 * device to be used or not. By default, wired USB
353 * devices are authorized. WUSB devices are not, until we
354 * authorize them from user space. FIXME -- complete doc
356 struct usb_device {
357 int devnum; /* Address on USB bus */
358 char devpath [16]; /* Use in messages: /port/port/... */
359 enum usb_device_state state; /* configured, not attached, etc */
360 enum usb_device_speed speed; /* high/full/low (or error) */
362 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
363 int ttport; /* device port on that tt hub */
365 unsigned int toggle[2]; /* one bit for each endpoint
366 * ([0] = IN, [1] = OUT) */
368 struct usb_device *parent; /* our hub, unless we're the root */
369 struct usb_bus *bus; /* Bus we're part of */
370 struct usb_host_endpoint ep0;
372 struct device dev; /* Generic device interface */
374 struct usb_device_descriptor descriptor;/* Descriptor */
375 struct usb_host_config *config; /* All of the configs */
377 struct usb_host_config *actconfig;/* the active configuration */
378 struct usb_host_endpoint *ep_in[16];
379 struct usb_host_endpoint *ep_out[16];
381 char **rawdescriptors; /* Raw descriptors for each config */
383 unsigned short bus_mA; /* Current available from the bus */
384 u8 portnum; /* Parent port number (origin 1) */
385 u8 level; /* Number of USB hub ancestors */
387 unsigned can_submit:1; /* URBs may be submitted */
388 unsigned discon_suspended:1; /* Disconnected while suspended */
389 unsigned have_langid:1; /* whether string_langid is valid */
390 unsigned authorized:1; /* Policy has determined we can use it */
391 unsigned wusb:1; /* Device is Wireless USB */
392 int string_langid; /* language ID for strings */
394 /* static strings from the device */
395 char *product; /* iProduct string, if present */
396 char *manufacturer; /* iManufacturer string, if present */
397 char *serial; /* iSerialNumber string, if present */
399 struct list_head filelist;
400 #ifdef CONFIG_USB_DEVICE_CLASS
401 struct device *usb_classdev;
402 #endif
403 #ifdef CONFIG_USB_DEVICEFS
404 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
405 #endif
407 * Child devices - these can be either new devices
408 * (if this is a hub device), or different instances
409 * of this same device.
411 * Each instance needs its own set of data structures.
414 int maxchild; /* Number of ports if hub */
415 struct usb_device *children[USB_MAXCHILDREN];
417 int pm_usage_cnt; /* usage counter for autosuspend */
418 u32 quirks; /* quirks of the whole device */
419 atomic_t urbnum; /* number of URBs submitted for the whole device */
421 #ifdef CONFIG_PM
422 struct delayed_work autosuspend; /* for delayed autosuspends */
423 struct mutex pm_mutex; /* protects PM operations */
425 unsigned long last_busy; /* time of last use */
426 int autosuspend_delay; /* in jiffies */
428 unsigned auto_pm:1; /* autosuspend/resume in progress */
429 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */
430 unsigned reset_resume:1; /* needs reset instead of resume */
431 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */
432 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
433 unsigned autoresume_disabled:1; /* disabled by the user */
434 unsigned skip_sys_resume:1; /* skip the next system resume */
435 #endif
437 #define to_usb_device(d) container_of(d, struct usb_device, dev)
439 extern struct usb_device *usb_get_dev(struct usb_device *dev);
440 extern void usb_put_dev(struct usb_device *dev);
442 /* USB device locking */
443 #define usb_lock_device(udev) down(&(udev)->dev.sem)
444 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
445 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
446 extern int usb_lock_device_for_reset(struct usb_device *udev,
447 const struct usb_interface *iface);
449 /* USB port reset for device reinitialization */
450 extern int usb_reset_device(struct usb_device *dev);
451 extern int usb_reset_composite_device(struct usb_device *dev,
452 struct usb_interface *iface);
454 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
456 /* USB autosuspend and autoresume */
457 #ifdef CONFIG_USB_SUSPEND
458 extern int usb_autopm_set_interface(struct usb_interface *intf);
459 extern int usb_autopm_get_interface(struct usb_interface *intf);
460 extern void usb_autopm_put_interface(struct usb_interface *intf);
462 static inline void usb_autopm_enable(struct usb_interface *intf)
464 intf->pm_usage_cnt = 0;
465 usb_autopm_set_interface(intf);
468 static inline void usb_autopm_disable(struct usb_interface *intf)
470 intf->pm_usage_cnt = 1;
471 usb_autopm_set_interface(intf);
474 static inline void usb_mark_last_busy(struct usb_device *udev)
476 udev->last_busy = jiffies;
479 #else
481 static inline int usb_autopm_set_interface(struct usb_interface *intf)
482 { return 0; }
484 static inline int usb_autopm_get_interface(struct usb_interface *intf)
485 { return 0; }
487 static inline void usb_autopm_put_interface(struct usb_interface *intf)
489 static inline void usb_autopm_enable(struct usb_interface *intf)
491 static inline void usb_autopm_disable(struct usb_interface *intf)
493 static inline void usb_mark_last_busy(struct usb_device *udev)
495 #endif
497 /*-------------------------------------------------------------------------*/
499 /* for drivers using iso endpoints */
500 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
502 /* used these for multi-interface device registration */
503 extern int usb_driver_claim_interface(struct usb_driver *driver,
504 struct usb_interface *iface, void* priv);
507 * usb_interface_claimed - returns true iff an interface is claimed
508 * @iface: the interface being checked
510 * Returns true (nonzero) iff the interface is claimed, else false (zero).
511 * Callers must own the driver model's usb bus readlock. So driver
512 * probe() entries don't need extra locking, but other call contexts
513 * may need to explicitly claim that lock.
516 static inline int usb_interface_claimed(struct usb_interface *iface) {
517 return (iface->dev.driver != NULL);
520 extern void usb_driver_release_interface(struct usb_driver *driver,
521 struct usb_interface *iface);
522 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
523 const struct usb_device_id *id);
524 extern int usb_match_one_id(struct usb_interface *interface,
525 const struct usb_device_id *id);
527 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
528 int minor);
529 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
530 unsigned ifnum);
531 extern struct usb_host_interface *usb_altnum_to_altsetting(
532 const struct usb_interface *intf, unsigned int altnum);
536 * usb_make_path - returns stable device path in the usb tree
537 * @dev: the device whose path is being constructed
538 * @buf: where to put the string
539 * @size: how big is "buf"?
541 * Returns length of the string (> 0) or negative if size was too small.
543 * This identifier is intended to be "stable", reflecting physical paths in
544 * hardware such as physical bus addresses for host controllers or ports on
545 * USB hubs. That makes it stay the same until systems are physically
546 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
547 * controllers. Adding and removing devices, including virtual root hubs
548 * in host controller driver modules, does not change these path identifers;
549 * neither does rebooting or re-enumerating. These are more useful identifiers
550 * than changeable ("unstable") ones like bus numbers or device addresses.
552 * With a partial exception for devices connected to USB 2.0 root hubs, these
553 * identifiers are also predictable. So long as the device tree isn't changed,
554 * plugging any USB device into a given hub port always gives it the same path.
555 * Because of the use of "companion" controllers, devices connected to ports on
556 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
557 * high speed, and a different one if they are full or low speed.
559 static inline int usb_make_path (struct usb_device *dev, char *buf,
560 size_t size)
562 int actual;
563 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
564 dev->devpath);
565 return (actual >= (int)size) ? -1 : actual;
568 /*-------------------------------------------------------------------------*/
571 * usb_endpoint_num - get the endpoint's number
572 * @epd: endpoint to be checked
574 * Returns @epd's number: 0 to 15.
576 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
578 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
582 * usb_endpoint_type - get the endpoint's transfer type
583 * @epd: endpoint to be checked
585 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
586 * to @epd's transfer type.
588 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
590 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
594 * usb_endpoint_dir_in - check if the endpoint has IN direction
595 * @epd: endpoint to be checked
597 * Returns true if the endpoint is of type IN, otherwise it returns false.
599 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
601 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
605 * usb_endpoint_dir_out - check if the endpoint has OUT direction
606 * @epd: endpoint to be checked
608 * Returns true if the endpoint is of type OUT, otherwise it returns false.
610 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
612 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
616 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
617 * @epd: endpoint to be checked
619 * Returns true if the endpoint is of type bulk, otherwise it returns false.
621 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
623 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
624 USB_ENDPOINT_XFER_BULK);
628 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
629 * @epd: endpoint to be checked
631 * Returns true if the endpoint is of type control, otherwise it returns false.
633 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
635 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
636 USB_ENDPOINT_XFER_CONTROL);
640 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
641 * @epd: endpoint to be checked
643 * Returns true if the endpoint is of type interrupt, otherwise it returns
644 * false.
646 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
648 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
649 USB_ENDPOINT_XFER_INT);
653 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
654 * @epd: endpoint to be checked
656 * Returns true if the endpoint is of type isochronous, otherwise it returns
657 * false.
659 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
661 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
662 USB_ENDPOINT_XFER_ISOC);
666 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
667 * @epd: endpoint to be checked
669 * Returns true if the endpoint has bulk transfer type and IN direction,
670 * otherwise it returns false.
672 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
674 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
678 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
679 * @epd: endpoint to be checked
681 * Returns true if the endpoint has bulk transfer type and OUT direction,
682 * otherwise it returns false.
684 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
686 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
690 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
691 * @epd: endpoint to be checked
693 * Returns true if the endpoint has interrupt transfer type and IN direction,
694 * otherwise it returns false.
696 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
698 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
702 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
703 * @epd: endpoint to be checked
705 * Returns true if the endpoint has interrupt transfer type and OUT direction,
706 * otherwise it returns false.
708 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
710 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
714 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
715 * @epd: endpoint to be checked
717 * Returns true if the endpoint has isochronous transfer type and IN direction,
718 * otherwise it returns false.
720 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
722 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
726 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
727 * @epd: endpoint to be checked
729 * Returns true if the endpoint has isochronous transfer type and OUT direction,
730 * otherwise it returns false.
732 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
734 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
737 /*-------------------------------------------------------------------------*/
739 #define USB_DEVICE_ID_MATCH_DEVICE \
740 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
741 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
742 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
743 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
744 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
745 #define USB_DEVICE_ID_MATCH_DEV_INFO \
746 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
747 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
748 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
749 #define USB_DEVICE_ID_MATCH_INT_INFO \
750 (USB_DEVICE_ID_MATCH_INT_CLASS | \
751 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
752 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
755 * USB_DEVICE - macro used to describe a specific usb device
756 * @vend: the 16 bit USB Vendor ID
757 * @prod: the 16 bit USB Product ID
759 * This macro is used to create a struct usb_device_id that matches a
760 * specific device.
762 #define USB_DEVICE(vend,prod) \
763 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
764 .idProduct = (prod)
766 * USB_DEVICE_VER - macro used to describe a specific usb device with a
767 * version range
768 * @vend: the 16 bit USB Vendor ID
769 * @prod: the 16 bit USB Product ID
770 * @lo: the bcdDevice_lo value
771 * @hi: the bcdDevice_hi value
773 * This macro is used to create a struct usb_device_id that matches a
774 * specific device, with a version range.
776 #define USB_DEVICE_VER(vend,prod,lo,hi) \
777 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
778 .idVendor = (vend), .idProduct = (prod), \
779 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
782 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb
783 * device with a specific interface protocol
784 * @vend: the 16 bit USB Vendor ID
785 * @prod: the 16 bit USB Product ID
786 * @pr: bInterfaceProtocol value
788 * This macro is used to create a struct usb_device_id that matches a
789 * specific interface protocol of devices.
791 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \
792 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
793 .idVendor = (vend), \
794 .idProduct = (prod), \
795 .bInterfaceProtocol = (pr)
798 * USB_DEVICE_INFO - macro used to describe a class of usb devices
799 * @cl: bDeviceClass value
800 * @sc: bDeviceSubClass value
801 * @pr: bDeviceProtocol value
803 * This macro is used to create a struct usb_device_id that matches a
804 * specific class of devices.
806 #define USB_DEVICE_INFO(cl,sc,pr) \
807 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
808 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
811 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
812 * @cl: bInterfaceClass value
813 * @sc: bInterfaceSubClass value
814 * @pr: bInterfaceProtocol value
816 * This macro is used to create a struct usb_device_id that matches a
817 * specific class of interfaces.
819 #define USB_INTERFACE_INFO(cl,sc,pr) \
820 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
821 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
824 * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device
825 * with a class of usb interfaces
826 * @vend: the 16 bit USB Vendor ID
827 * @prod: the 16 bit USB Product ID
828 * @cl: bInterfaceClass value
829 * @sc: bInterfaceSubClass value
830 * @pr: bInterfaceProtocol value
832 * This macro is used to create a struct usb_device_id that matches a
833 * specific device with a specific class of interfaces.
835 * This is especially useful when explicitly matching devices that have
836 * vendor specific bDeviceClass values, but standards-compliant interfaces.
838 #define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \
839 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
840 | USB_DEVICE_ID_MATCH_DEVICE, \
841 .idVendor = (vend), .idProduct = (prod), \
842 .bInterfaceClass = (cl), \
843 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
845 /* ----------------------------------------------------------------------- */
847 /* Stuff for dynamic usb ids */
848 struct usb_dynids {
849 spinlock_t lock;
850 struct list_head list;
853 struct usb_dynid {
854 struct list_head node;
855 struct usb_device_id id;
858 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
859 struct device_driver *driver,
860 const char *buf, size_t count);
863 * struct usbdrv_wrap - wrapper for driver-model structure
864 * @driver: The driver-model core driver structure.
865 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
867 struct usbdrv_wrap {
868 struct device_driver driver;
869 int for_devices;
873 * struct usb_driver - identifies USB interface driver to usbcore
874 * @name: The driver name should be unique among USB drivers,
875 * and should normally be the same as the module name.
876 * @probe: Called to see if the driver is willing to manage a particular
877 * interface on a device. If it is, probe returns zero and uses
878 * dev_set_drvdata() to associate driver-specific data with the
879 * interface. It may also use usb_set_interface() to specify the
880 * appropriate altsetting. If unwilling to manage the interface,
881 * return a negative errno value.
882 * @disconnect: Called when the interface is no longer accessible, usually
883 * because its device has been (or is being) disconnected or the
884 * driver module is being unloaded.
885 * @ioctl: Used for drivers that want to talk to userspace through
886 * the "usbfs" filesystem. This lets devices provide ways to
887 * expose information to user space regardless of where they
888 * do (or don't) show up otherwise in the filesystem.
889 * @suspend: Called when the device is going to be suspended by the system.
890 * @resume: Called when the device is being resumed by the system.
891 * @reset_resume: Called when the suspended device has been reset instead
892 * of being resumed.
893 * @pre_reset: Called by usb_reset_composite_device() when the device
894 * is about to be reset.
895 * @post_reset: Called by usb_reset_composite_device() after the device
896 * has been reset, or in lieu of @resume following a reset-resume
897 * (i.e., the device is reset instead of being resumed, as might
898 * happen if power was lost). The second argument tells which is
899 * the reason.
900 * @id_table: USB drivers use ID table to support hotplugging.
901 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
902 * or your driver's probe function will never get called.
903 * @dynids: used internally to hold the list of dynamically added device
904 * ids for this driver.
905 * @drvwrap: Driver-model core structure wrapper.
906 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
907 * added to this driver by preventing the sysfs file from being created.
908 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
909 * for interfaces bound to this driver.
911 * USB interface drivers must provide a name, probe() and disconnect()
912 * methods, and an id_table. Other driver fields are optional.
914 * The id_table is used in hotplugging. It holds a set of descriptors,
915 * and specialized data may be associated with each entry. That table
916 * is used by both user and kernel mode hotplugging support.
918 * The probe() and disconnect() methods are called in a context where
919 * they can sleep, but they should avoid abusing the privilege. Most
920 * work to connect to a device should be done when the device is opened,
921 * and undone at the last close. The disconnect code needs to address
922 * concurrency issues with respect to open() and close() methods, as
923 * well as forcing all pending I/O requests to complete (by unlinking
924 * them as necessary, and blocking until the unlinks complete).
926 struct usb_driver {
927 const char *name;
929 int (*probe) (struct usb_interface *intf,
930 const struct usb_device_id *id);
932 void (*disconnect) (struct usb_interface *intf);
934 int (*ioctl) (struct usb_interface *intf, unsigned int code,
935 void *buf);
937 int (*suspend) (struct usb_interface *intf, pm_message_t message);
938 int (*resume) (struct usb_interface *intf);
939 int (*reset_resume)(struct usb_interface *intf);
941 int (*pre_reset)(struct usb_interface *intf);
942 int (*post_reset)(struct usb_interface *intf);
944 const struct usb_device_id *id_table;
946 struct usb_dynids dynids;
947 struct usbdrv_wrap drvwrap;
948 unsigned int no_dynamic_id:1;
949 unsigned int supports_autosuspend:1;
951 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
954 * struct usb_device_driver - identifies USB device driver to usbcore
955 * @name: The driver name should be unique among USB drivers,
956 * and should normally be the same as the module name.
957 * @probe: Called to see if the driver is willing to manage a particular
958 * device. If it is, probe returns zero and uses dev_set_drvdata()
959 * to associate driver-specific data with the device. If unwilling
960 * to manage the device, return a negative errno value.
961 * @disconnect: Called when the device is no longer accessible, usually
962 * because it has been (or is being) disconnected or the driver's
963 * module is being unloaded.
964 * @suspend: Called when the device is going to be suspended by the system.
965 * @resume: Called when the device is being resumed by the system.
966 * @drvwrap: Driver-model core structure wrapper.
967 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
968 * for devices bound to this driver.
970 * USB drivers must provide all the fields listed above except drvwrap.
972 struct usb_device_driver {
973 const char *name;
975 int (*probe) (struct usb_device *udev);
976 void (*disconnect) (struct usb_device *udev);
978 int (*suspend) (struct usb_device *udev, pm_message_t message);
979 int (*resume) (struct usb_device *udev);
980 struct usbdrv_wrap drvwrap;
981 unsigned int supports_autosuspend:1;
983 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
984 drvwrap.driver)
986 extern struct bus_type usb_bus_type;
989 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
990 * @name: the usb class device name for this driver. Will show up in sysfs.
991 * @fops: pointer to the struct file_operations of this driver.
992 * @minor_base: the start of the minor range for this driver.
994 * This structure is used for the usb_register_dev() and
995 * usb_unregister_dev() functions, to consolidate a number of the
996 * parameters used for them.
998 struct usb_class_driver {
999 char *name;
1000 const struct file_operations *fops;
1001 int minor_base;
1005 * use these in module_init()/module_exit()
1006 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1008 extern int usb_register_driver(struct usb_driver *, struct module *,
1009 const char *);
1010 static inline int usb_register(struct usb_driver *driver)
1012 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1014 extern void usb_deregister(struct usb_driver *);
1016 extern int usb_register_device_driver(struct usb_device_driver *,
1017 struct module *);
1018 extern void usb_deregister_device_driver(struct usb_device_driver *);
1020 extern int usb_register_dev(struct usb_interface *intf,
1021 struct usb_class_driver *class_driver);
1022 extern void usb_deregister_dev(struct usb_interface *intf,
1023 struct usb_class_driver *class_driver);
1025 extern int usb_disabled(void);
1027 /* ----------------------------------------------------------------------- */
1030 * URB support, for asynchronous request completions
1034 * urb->transfer_flags:
1036 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1038 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1039 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1040 * ignored */
1041 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1042 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
1043 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1044 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1045 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1046 * needed */
1047 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1049 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1050 #define URB_DIR_OUT 0
1051 #define URB_DIR_MASK URB_DIR_IN
1053 struct usb_iso_packet_descriptor {
1054 unsigned int offset;
1055 unsigned int length; /* expected length */
1056 unsigned int actual_length;
1057 int status;
1060 struct urb;
1062 struct usb_anchor {
1063 struct list_head urb_list;
1064 wait_queue_head_t wait;
1065 spinlock_t lock;
1068 static inline void init_usb_anchor(struct usb_anchor *anchor)
1070 INIT_LIST_HEAD(&anchor->urb_list);
1071 init_waitqueue_head(&anchor->wait);
1072 spin_lock_init(&anchor->lock);
1075 typedef void (*usb_complete_t)(struct urb *);
1078 * struct urb - USB Request Block
1079 * @urb_list: For use by current owner of the URB.
1080 * @anchor_list: membership in the list of an anchor
1081 * @anchor: to anchor URBs to a common mooring
1082 * @ep: Points to the endpoint's data structure. Will eventually
1083 * replace @pipe.
1084 * @pipe: Holds endpoint number, direction, type, and more.
1085 * Create these values with the eight macros available;
1086 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1087 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1088 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1089 * numbers range from zero to fifteen. Note that "in" endpoint two
1090 * is a different endpoint (and pipe) from "out" endpoint two.
1091 * The current configuration controls the existence, type, and
1092 * maximum packet size of any given endpoint.
1093 * @dev: Identifies the USB device to perform the request.
1094 * @status: This is read in non-iso completion functions to get the
1095 * status of the particular request. ISO requests only use it
1096 * to tell whether the URB was unlinked; detailed status for
1097 * each frame is in the fields of the iso_frame-desc.
1098 * @transfer_flags: A variety of flags may be used to affect how URB
1099 * submission, unlinking, or operation are handled. Different
1100 * kinds of URB can use different flags.
1101 * @transfer_buffer: This identifies the buffer to (or from) which
1102 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1103 * is set). This buffer must be suitable for DMA; allocate it with
1104 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1105 * of this buffer will be modified. This buffer is used for the data
1106 * stage of control transfers.
1107 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1108 * the device driver is saying that it provided this DMA address,
1109 * which the host controller driver should use in preference to the
1110 * transfer_buffer.
1111 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1112 * be broken up into chunks according to the current maximum packet
1113 * size for the endpoint, which is a function of the configuration
1114 * and is encoded in the pipe. When the length is zero, neither
1115 * transfer_buffer nor transfer_dma is used.
1116 * @actual_length: This is read in non-iso completion functions, and
1117 * it tells how many bytes (out of transfer_buffer_length) were
1118 * transferred. It will normally be the same as requested, unless
1119 * either an error was reported or a short read was performed.
1120 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1121 * short reads be reported as errors.
1122 * @setup_packet: Only used for control transfers, this points to eight bytes
1123 * of setup data. Control transfers always start by sending this data
1124 * to the device. Then transfer_buffer is read or written, if needed.
1125 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1126 * device driver has provided this DMA address for the setup packet.
1127 * The host controller driver should use this in preference to
1128 * setup_packet.
1129 * @start_frame: Returns the initial frame for isochronous transfers.
1130 * @number_of_packets: Lists the number of ISO transfer buffers.
1131 * @interval: Specifies the polling interval for interrupt or isochronous
1132 * transfers. The units are frames (milliseconds) for for full and low
1133 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1134 * @error_count: Returns the number of ISO transfers that reported errors.
1135 * @context: For use in completion functions. This normally points to
1136 * request-specific driver context.
1137 * @complete: Completion handler. This URB is passed as the parameter to the
1138 * completion function. The completion function may then do what
1139 * it likes with the URB, including resubmitting or freeing it.
1140 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1141 * collect the transfer status for each buffer.
1143 * This structure identifies USB transfer requests. URBs must be allocated by
1144 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1145 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1146 * are submitted using usb_submit_urb(), and pending requests may be canceled
1147 * using usb_unlink_urb() or usb_kill_urb().
1149 * Data Transfer Buffers:
1151 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1152 * taken from the general page pool. That is provided by transfer_buffer
1153 * (control requests also use setup_packet), and host controller drivers
1154 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1155 * mapping operations can be expensive on some platforms (perhaps using a dma
1156 * bounce buffer or talking to an IOMMU),
1157 * although they're cheap on commodity x86 and ppc hardware.
1159 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1160 * which tell the host controller driver that no such mapping is needed since
1161 * the device driver is DMA-aware. For example, a device driver might
1162 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1163 * When these transfer flags are provided, host controller drivers will
1164 * attempt to use the dma addresses found in the transfer_dma and/or
1165 * setup_dma fields rather than determining a dma address themselves. (Note
1166 * that transfer_buffer and setup_packet must still be set because not all
1167 * host controllers use DMA, nor do virtual root hubs).
1169 * Initialization:
1171 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1172 * zero), and complete fields. All URBs must also initialize
1173 * transfer_buffer and transfer_buffer_length. They may provide the
1174 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1175 * to be treated as errors; that flag is invalid for write requests.
1177 * Bulk URBs may
1178 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1179 * should always terminate with a short packet, even if it means adding an
1180 * extra zero length packet.
1182 * Control URBs must provide a setup_packet. The setup_packet and
1183 * transfer_buffer may each be mapped for DMA or not, independently of
1184 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1185 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1186 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1188 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1189 * or, for highspeed devices, 125 microsecond units)
1190 * to poll for transfers. After the URB has been submitted, the interval
1191 * field reflects how the transfer was actually scheduled.
1192 * The polling interval may be more frequent than requested.
1193 * For example, some controllers have a maximum interval of 32 milliseconds,
1194 * while others support intervals of up to 1024 milliseconds.
1195 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1196 * endpoints, as well as high speed interrupt endpoints, the encoding of
1197 * the transfer interval in the endpoint descriptor is logarithmic.
1198 * Device drivers must convert that value to linear units themselves.)
1200 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1201 * the host controller to schedule the transfer as soon as bandwidth
1202 * utilization allows, and then set start_frame to reflect the actual frame
1203 * selected during submission. Otherwise drivers must specify the start_frame
1204 * and handle the case where the transfer can't begin then. However, drivers
1205 * won't know how bandwidth is currently allocated, and while they can
1206 * find the current frame using usb_get_current_frame_number () they can't
1207 * know the range for that frame number. (Ranges for frame counter values
1208 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1210 * Isochronous URBs have a different data transfer model, in part because
1211 * the quality of service is only "best effort". Callers provide specially
1212 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1213 * at the end. Each such packet is an individual ISO transfer. Isochronous
1214 * URBs are normally queued, submitted by drivers to arrange that
1215 * transfers are at least double buffered, and then explicitly resubmitted
1216 * in completion handlers, so
1217 * that data (such as audio or video) streams at as constant a rate as the
1218 * host controller scheduler can support.
1220 * Completion Callbacks:
1222 * The completion callback is made in_interrupt(), and one of the first
1223 * things that a completion handler should do is check the status field.
1224 * The status field is provided for all URBs. It is used to report
1225 * unlinked URBs, and status for all non-ISO transfers. It should not
1226 * be examined before the URB is returned to the completion handler.
1228 * The context field is normally used to link URBs back to the relevant
1229 * driver or request state.
1231 * When the completion callback is invoked for non-isochronous URBs, the
1232 * actual_length field tells how many bytes were transferred. This field
1233 * is updated even when the URB terminated with an error or was unlinked.
1235 * ISO transfer status is reported in the status and actual_length fields
1236 * of the iso_frame_desc array, and the number of errors is reported in
1237 * error_count. Completion callbacks for ISO transfers will normally
1238 * (re)submit URBs to ensure a constant transfer rate.
1240 * Note that even fields marked "public" should not be touched by the driver
1241 * when the urb is owned by the hcd, that is, since the call to
1242 * usb_submit_urb() till the entry into the completion routine.
1244 struct urb
1246 /* private: usb core and host controller only fields in the urb */
1247 struct kref kref; /* reference count of the URB */
1248 void *hcpriv; /* private data for host controller */
1249 atomic_t use_count; /* concurrent submissions counter */
1250 u8 reject; /* submissions will fail */
1251 int unlinked; /* unlink error code */
1253 /* public: documented fields in the urb that can be used by drivers */
1254 struct list_head urb_list; /* list head for use by the urb's
1255 * current owner */
1256 struct list_head anchor_list; /* the URB may be anchored by the driver */
1257 struct usb_anchor *anchor;
1258 struct usb_device *dev; /* (in) pointer to associated device */
1259 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint struct */
1260 unsigned int pipe; /* (in) pipe information */
1261 int status; /* (return) non-ISO status */
1262 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1263 void *transfer_buffer; /* (in) associated data buffer */
1264 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1265 int transfer_buffer_length; /* (in) data buffer length */
1266 int actual_length; /* (return) actual transfer length */
1267 unsigned char *setup_packet; /* (in) setup packet (control only) */
1268 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1269 int start_frame; /* (modify) start frame (ISO) */
1270 int number_of_packets; /* (in) number of ISO packets */
1271 int interval; /* (modify) transfer interval
1272 * (INT/ISO) */
1273 int error_count; /* (return) number of ISO errors */
1274 void *context; /* (in) context for completion */
1275 usb_complete_t complete; /* (in) completion routine */
1276 struct usb_iso_packet_descriptor iso_frame_desc[0];
1277 /* (in) ISO ONLY */
1280 /* ----------------------------------------------------------------------- */
1283 * usb_fill_control_urb - initializes a control urb
1284 * @urb: pointer to the urb to initialize.
1285 * @dev: pointer to the struct usb_device for this urb.
1286 * @pipe: the endpoint pipe
1287 * @setup_packet: pointer to the setup_packet buffer
1288 * @transfer_buffer: pointer to the transfer buffer
1289 * @buffer_length: length of the transfer buffer
1290 * @complete_fn: pointer to the usb_complete_t function
1291 * @context: what to set the urb context to.
1293 * Initializes a control urb with the proper information needed to submit
1294 * it to a device.
1296 static inline void usb_fill_control_urb (struct urb *urb,
1297 struct usb_device *dev,
1298 unsigned int pipe,
1299 unsigned char *setup_packet,
1300 void *transfer_buffer,
1301 int buffer_length,
1302 usb_complete_t complete_fn,
1303 void *context)
1305 urb->dev = dev;
1306 urb->pipe = pipe;
1307 urb->setup_packet = setup_packet;
1308 urb->transfer_buffer = transfer_buffer;
1309 urb->transfer_buffer_length = buffer_length;
1310 urb->complete = complete_fn;
1311 urb->context = context;
1315 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1316 * @urb: pointer to the urb to initialize.
1317 * @dev: pointer to the struct usb_device for this urb.
1318 * @pipe: the endpoint pipe
1319 * @transfer_buffer: pointer to the transfer buffer
1320 * @buffer_length: length of the transfer buffer
1321 * @complete_fn: pointer to the usb_complete_t function
1322 * @context: what to set the urb context to.
1324 * Initializes a bulk urb with the proper information needed to submit it
1325 * to a device.
1327 static inline void usb_fill_bulk_urb (struct urb *urb,
1328 struct usb_device *dev,
1329 unsigned int pipe,
1330 void *transfer_buffer,
1331 int buffer_length,
1332 usb_complete_t complete_fn,
1333 void *context)
1335 urb->dev = dev;
1336 urb->pipe = pipe;
1337 urb->transfer_buffer = transfer_buffer;
1338 urb->transfer_buffer_length = buffer_length;
1339 urb->complete = complete_fn;
1340 urb->context = context;
1344 * usb_fill_int_urb - macro to help initialize a interrupt urb
1345 * @urb: pointer to the urb to initialize.
1346 * @dev: pointer to the struct usb_device for this urb.
1347 * @pipe: the endpoint pipe
1348 * @transfer_buffer: pointer to the transfer buffer
1349 * @buffer_length: length of the transfer buffer
1350 * @complete_fn: pointer to the usb_complete_t function
1351 * @context: what to set the urb context to.
1352 * @interval: what to set the urb interval to, encoded like
1353 * the endpoint descriptor's bInterval value.
1355 * Initializes a interrupt urb with the proper information needed to submit
1356 * it to a device.
1357 * Note that high speed interrupt endpoints use a logarithmic encoding of
1358 * the endpoint interval, and express polling intervals in microframes
1359 * (eight per millisecond) rather than in frames (one per millisecond).
1361 static inline void usb_fill_int_urb (struct urb *urb,
1362 struct usb_device *dev,
1363 unsigned int pipe,
1364 void *transfer_buffer,
1365 int buffer_length,
1366 usb_complete_t complete_fn,
1367 void *context,
1368 int interval)
1370 urb->dev = dev;
1371 urb->pipe = pipe;
1372 urb->transfer_buffer = transfer_buffer;
1373 urb->transfer_buffer_length = buffer_length;
1374 urb->complete = complete_fn;
1375 urb->context = context;
1376 if (dev->speed == USB_SPEED_HIGH)
1377 urb->interval = 1 << (interval - 1);
1378 else
1379 urb->interval = interval;
1380 urb->start_frame = -1;
1383 extern void usb_init_urb(struct urb *urb);
1384 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1385 extern void usb_free_urb(struct urb *urb);
1386 #define usb_put_urb usb_free_urb
1387 extern struct urb *usb_get_urb(struct urb *urb);
1388 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1389 extern int usb_unlink_urb(struct urb *urb);
1390 extern void usb_kill_urb(struct urb *urb);
1391 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1392 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1393 extern void usb_unanchor_urb(struct urb *urb);
1394 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1395 unsigned int timeout);
1398 * usb_urb_dir_in - check if an URB describes an IN transfer
1399 * @urb: URB to be checked
1401 * Returns 1 if @urb describes an IN transfer (device-to-host),
1402 * otherwise 0.
1404 static inline int usb_urb_dir_in(struct urb *urb)
1406 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1410 * usb_urb_dir_out - check if an URB describes an OUT transfer
1411 * @urb: URB to be checked
1413 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1414 * otherwise 0.
1416 static inline int usb_urb_dir_out(struct urb *urb)
1418 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1421 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1422 gfp_t mem_flags, dma_addr_t *dma);
1423 void usb_buffer_free (struct usb_device *dev, size_t size,
1424 void *addr, dma_addr_t dma);
1426 #if 0
1427 struct urb *usb_buffer_map (struct urb *urb);
1428 void usb_buffer_dmasync (struct urb *urb);
1429 void usb_buffer_unmap (struct urb *urb);
1430 #endif
1432 struct scatterlist;
1433 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1434 struct scatterlist *sg, int nents);
1435 #if 0
1436 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1437 struct scatterlist *sg, int n_hw_ents);
1438 #endif
1439 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1440 struct scatterlist *sg, int n_hw_ents);
1442 /*-------------------------------------------------------------------*
1443 * SYNCHRONOUS CALL SUPPORT *
1444 *-------------------------------------------------------------------*/
1446 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1447 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1448 void *data, __u16 size, int timeout);
1449 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1450 void *data, int len, int *actual_length, int timeout);
1451 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1452 void *data, int len, int *actual_length,
1453 int timeout);
1455 /* wrappers around usb_control_msg() for the most common standard requests */
1456 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1457 unsigned char descindex, void *buf, int size);
1458 extern int usb_get_status(struct usb_device *dev,
1459 int type, int target, void *data);
1460 extern int usb_string(struct usb_device *dev, int index,
1461 char *buf, size_t size);
1463 /* wrappers that also update important state inside usbcore */
1464 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1465 extern int usb_reset_configuration(struct usb_device *dev);
1466 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1468 /* this request isn't really synchronous, but it belongs with the others */
1469 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1472 * timeouts, in milliseconds, used for sending/receiving control messages
1473 * they typically complete within a few frames (msec) after they're issued
1474 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1475 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1477 #define USB_CTRL_GET_TIMEOUT 5000
1478 #define USB_CTRL_SET_TIMEOUT 5000
1482 * struct usb_sg_request - support for scatter/gather I/O
1483 * @status: zero indicates success, else negative errno
1484 * @bytes: counts bytes transferred.
1486 * These requests are initialized using usb_sg_init(), and then are used
1487 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1488 * members of the request object aren't for driver access.
1490 * The status and bytecount values are valid only after usb_sg_wait()
1491 * returns. If the status is zero, then the bytecount matches the total
1492 * from the request.
1494 * After an error completion, drivers may need to clear a halt condition
1495 * on the endpoint.
1497 struct usb_sg_request {
1498 int status;
1499 size_t bytes;
1502 * members below are private: to usbcore,
1503 * and are not provided for driver access!
1505 spinlock_t lock;
1507 struct usb_device *dev;
1508 int pipe;
1509 struct scatterlist *sg;
1510 int nents;
1512 int entries;
1513 struct urb **urbs;
1515 int count;
1516 struct completion complete;
1519 int usb_sg_init (
1520 struct usb_sg_request *io,
1521 struct usb_device *dev,
1522 unsigned pipe,
1523 unsigned period,
1524 struct scatterlist *sg,
1525 int nents,
1526 size_t length,
1527 gfp_t mem_flags
1529 void usb_sg_cancel (struct usb_sg_request *io);
1530 void usb_sg_wait (struct usb_sg_request *io);
1533 /* ----------------------------------------------------------------------- */
1536 * For various legacy reasons, Linux has a small cookie that's paired with
1537 * a struct usb_device to identify an endpoint queue. Queue characteristics
1538 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1539 * an unsigned int encoded as:
1541 * - direction: bit 7 (0 = Host-to-Device [Out],
1542 * 1 = Device-to-Host [In] ...
1543 * like endpoint bEndpointAddress)
1544 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1545 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1546 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1547 * 10 = control, 11 = bulk)
1549 * Given the device address and endpoint descriptor, pipes are redundant.
1552 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1553 /* (yet ... they're the values used by usbfs) */
1554 #define PIPE_ISOCHRONOUS 0
1555 #define PIPE_INTERRUPT 1
1556 #define PIPE_CONTROL 2
1557 #define PIPE_BULK 3
1559 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1560 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1562 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1563 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1565 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1566 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1567 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1568 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1569 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1571 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1572 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1573 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1574 #define usb_settoggle(dev, ep, out, bit) \
1575 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1576 ((bit) << (ep)))
1579 static inline unsigned int __create_pipe(struct usb_device *dev,
1580 unsigned int endpoint)
1582 return (dev->devnum << 8) | (endpoint << 15);
1585 /* Create various pipes... */
1586 #define usb_sndctrlpipe(dev,endpoint) \
1587 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1588 #define usb_rcvctrlpipe(dev,endpoint) \
1589 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1590 #define usb_sndisocpipe(dev,endpoint) \
1591 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1592 #define usb_rcvisocpipe(dev,endpoint) \
1593 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1594 #define usb_sndbulkpipe(dev,endpoint) \
1595 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1596 #define usb_rcvbulkpipe(dev,endpoint) \
1597 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1598 #define usb_sndintpipe(dev,endpoint) \
1599 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1600 #define usb_rcvintpipe(dev,endpoint) \
1601 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1603 /*-------------------------------------------------------------------------*/
1605 static inline __u16
1606 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1608 struct usb_host_endpoint *ep;
1609 unsigned epnum = usb_pipeendpoint(pipe);
1611 if (is_out) {
1612 WARN_ON(usb_pipein(pipe));
1613 ep = udev->ep_out[epnum];
1614 } else {
1615 WARN_ON(usb_pipeout(pipe));
1616 ep = udev->ep_in[epnum];
1618 if (!ep)
1619 return 0;
1621 /* NOTE: only 0x07ff bits are for packet size... */
1622 return le16_to_cpu(ep->desc.wMaxPacketSize);
1625 /* ----------------------------------------------------------------------- */
1627 /* Events from the usb core */
1628 #define USB_DEVICE_ADD 0x0001
1629 #define USB_DEVICE_REMOVE 0x0002
1630 #define USB_BUS_ADD 0x0003
1631 #define USB_BUS_REMOVE 0x0004
1632 extern void usb_register_notify(struct notifier_block *nb);
1633 extern void usb_unregister_notify(struct notifier_block *nb);
1635 #ifdef DEBUG
1636 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1637 __FILE__ , ## arg)
1638 #else
1639 #define dbg(format, arg...) do {} while (0)
1640 #endif
1642 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1643 __FILE__ , ## arg)
1644 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1645 __FILE__ , ## arg)
1646 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1647 __FILE__ , ## arg)
1650 #endif /* __KERNEL__ */
1652 #endif