Merge git://git.kernel.org/pub/scm/linux/kernel/git/agk/linux-2.6-dm
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / tulip / de4x5.c
blob6444cbec0bdc8dd02a0a9eca4c2066af15be2a96
1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
4 Copyright 1994, 1995 Digital Equipment Corporation.
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
9 The author may be reached at davies@maniac.ultranet.com.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
50 So far the driver is known to work with the following cards:
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
82 Upto 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
99 To utilise this ability, you have to do 8 things:
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
114 insmod de4x5
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
238 TO DO:
239 ------
241 Revision History
242 ----------------
244 Version Date Description
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/slab.h>
454 #include <linux/pci.h>
455 #include <linux/eisa.h>
456 #include <linux/delay.h>
457 #include <linux/init.h>
458 #include <linux/spinlock.h>
459 #include <linux/crc32.h>
460 #include <linux/netdevice.h>
461 #include <linux/etherdevice.h>
462 #include <linux/skbuff.h>
463 #include <linux/time.h>
464 #include <linux/types.h>
465 #include <linux/unistd.h>
466 #include <linux/ctype.h>
467 #include <linux/dma-mapping.h>
468 #include <linux/moduleparam.h>
469 #include <linux/bitops.h>
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
480 #include "de4x5.h"
482 static char version[] __devinitdata = "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484 #define c_char const char
487 ** MII Information
489 struct phy_table {
490 int reset; /* Hard reset required? */
491 int id; /* IEEE OUI */
492 int ta; /* One cycle TA time - 802.3u is confusing here */
493 struct { /* Non autonegotiation (parallel) speed det. */
494 int reg;
495 int mask;
496 int value;
497 } spd;
500 struct mii_phy {
501 int reset; /* Hard reset required? */
502 int id; /* IEEE OUI */
503 int ta; /* One cycle TA time */
504 struct { /* Non autonegotiation (parallel) speed det. */
505 int reg;
506 int mask;
507 int value;
508 } spd;
509 int addr; /* MII address for the PHY */
510 u_char *gep; /* Start of GEP sequence block in SROM */
511 u_char *rst; /* Start of reset sequence in SROM */
512 u_int mc; /* Media Capabilities */
513 u_int ana; /* NWay Advertisement */
514 u_int fdx; /* Full DupleX capabilities for each media */
515 u_int ttm; /* Transmit Threshold Mode for each media */
516 u_int mci; /* 21142 MII Connector Interrupt info */
519 #define DE4X5_MAX_PHY 8 /* Allow upto 8 attached PHY devices per board */
521 struct sia_phy {
522 u_char mc; /* Media Code */
523 u_char ext; /* csr13-15 valid when set */
524 int csr13; /* SIA Connectivity Register */
525 int csr14; /* SIA TX/RX Register */
526 int csr15; /* SIA General Register */
527 int gepc; /* SIA GEP Control Information */
528 int gep; /* SIA GEP Data */
532 ** Define the know universe of PHY devices that can be
533 ** recognised by this driver.
535 static struct phy_table phy_info[] = {
536 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
537 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
538 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
539 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
540 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
544 ** These GENERIC values assumes that the PHY devices follow 802.3u and
545 ** allow parallel detection to set the link partner ability register.
546 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
549 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
550 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
553 ** Define special SROM detection cases
555 static c_char enet_det[][ETH_ALEN] = {
556 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
557 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
560 #define SMC 1
561 #define ACCTON 2
564 ** SROM Repair definitions. If a broken SROM is detected a card may
565 ** use this information to help figure out what to do. This is a
566 ** "stab in the dark" and so far for SMC9332's only.
568 static c_char srom_repair_info[][100] = {
569 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
570 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
571 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
572 0x00,0x18,}
576 #ifdef DE4X5_DEBUG
577 static int de4x5_debug = DE4X5_DEBUG;
578 #else
579 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
580 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
581 #endif
584 ** Allow per adapter set up. For modules this is simply a command line
585 ** parameter, e.g.:
586 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 ** For a compiled in driver, place e.g.
589 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
590 ** here
592 #ifdef DE4X5_PARM
593 static char *args = DE4X5_PARM;
594 #else
595 static char *args;
596 #endif
598 struct parameters {
599 bool fdx;
600 int autosense;
603 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
605 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
608 ** Ethernet PROM defines
610 #define PROBE_LENGTH 32
611 #define ETH_PROM_SIG 0xAA5500FFUL
614 ** Ethernet Info
616 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
617 #define IEEE802_3_SZ 1518 /* Packet + CRC */
618 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
619 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
620 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
621 #define PKT_HDR_LEN 14 /* Addresses and data length info */
622 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
623 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
627 ** EISA bus defines
629 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
630 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
632 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
634 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
635 #define DE4X5_NAME_LENGTH 8
637 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
640 ** Ethernet PROM defines for DC21040
642 #define PROBE_LENGTH 32
643 #define ETH_PROM_SIG 0xAA5500FFUL
646 ** PCI Bus defines
648 #define PCI_MAX_BUS_NUM 8
649 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
650 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
653 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
654 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
655 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
656 ** and hence the RX descriptor ring's first entry.
658 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
659 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
660 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
661 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
662 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
663 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
665 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
666 #define DE4X5_CACHE_ALIGN CAL_16LONG
667 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
668 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
669 #define DESC_ALIGN
671 #ifndef DEC_ONLY /* See README.de4x5 for using this */
672 static int dec_only;
673 #else
674 static int dec_only = 1;
675 #endif
678 ** DE4X5 IRQ ENABLE/DISABLE
680 #define ENABLE_IRQs { \
681 imr |= lp->irq_en;\
682 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
685 #define DISABLE_IRQs {\
686 imr = inl(DE4X5_IMR);\
687 imr &= ~lp->irq_en;\
688 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
691 #define UNMASK_IRQs {\
692 imr |= lp->irq_mask;\
693 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
696 #define MASK_IRQs {\
697 imr = inl(DE4X5_IMR);\
698 imr &= ~lp->irq_mask;\
699 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
703 ** DE4X5 START/STOP
705 #define START_DE4X5 {\
706 omr = inl(DE4X5_OMR);\
707 omr |= OMR_ST | OMR_SR;\
708 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
711 #define STOP_DE4X5 {\
712 omr = inl(DE4X5_OMR);\
713 omr &= ~(OMR_ST|OMR_SR);\
714 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
718 ** DE4X5 SIA RESET
720 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
723 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 #define DE4X5_AUTOSENSE_MS 250
728 ** SROM Structure
730 struct de4x5_srom {
731 char sub_vendor_id[2];
732 char sub_system_id[2];
733 char reserved[12];
734 char id_block_crc;
735 char reserved2;
736 char version;
737 char num_controllers;
738 char ieee_addr[6];
739 char info[100];
740 short chksum;
742 #define SUB_VENDOR_ID 0x500a
745 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
746 ** and have sizes of both a power of 2 and a multiple of 4.
747 ** A size of 256 bytes for each buffer could be chosen because over 90% of
748 ** all packets in our network are <256 bytes long and 64 longword alignment
749 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
750 ** descriptors are needed for machines with an ALPHA CPU.
752 #define NUM_RX_DESC 8 /* Number of RX descriptors */
753 #define NUM_TX_DESC 32 /* Number of TX descriptors */
754 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
755 /* Multiple of 4 for DC21040 */
756 /* Allows 512 byte alignment */
757 struct de4x5_desc {
758 volatile __le32 status;
759 __le32 des1;
760 __le32 buf;
761 __le32 next;
762 DESC_ALIGN
766 ** The DE4X5 private structure
768 #define DE4X5_PKT_STAT_SZ 16
769 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
770 increase DE4X5_PKT_STAT_SZ */
772 struct pkt_stats {
773 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
774 u_int unicast;
775 u_int multicast;
776 u_int broadcast;
777 u_int excessive_collisions;
778 u_int tx_underruns;
779 u_int excessive_underruns;
780 u_int rx_runt_frames;
781 u_int rx_collision;
782 u_int rx_dribble;
783 u_int rx_overflow;
786 struct de4x5_private {
787 char adapter_name[80]; /* Adapter name */
788 u_long interrupt; /* Aligned ISR flag */
789 struct de4x5_desc *rx_ring; /* RX descriptor ring */
790 struct de4x5_desc *tx_ring; /* TX descriptor ring */
791 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
792 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
793 int rx_new, rx_old; /* RX descriptor ring pointers */
794 int tx_new, tx_old; /* TX descriptor ring pointers */
795 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
796 char frame[64]; /* Min sized packet for loopback*/
797 spinlock_t lock; /* Adapter specific spinlock */
798 struct net_device_stats stats; /* Public stats */
799 struct pkt_stats pktStats; /* Private stats counters */
800 char rxRingSize;
801 char txRingSize;
802 int bus; /* EISA or PCI */
803 int bus_num; /* PCI Bus number */
804 int device; /* Device number on PCI bus */
805 int state; /* Adapter OPENED or CLOSED */
806 int chipset; /* DC21040, DC21041 or DC21140 */
807 s32 irq_mask; /* Interrupt Mask (Enable) bits */
808 s32 irq_en; /* Summary interrupt bits */
809 int media; /* Media (eg TP), mode (eg 100B)*/
810 int c_media; /* Remember the last media conn */
811 bool fdx; /* media full duplex flag */
812 int linkOK; /* Link is OK */
813 int autosense; /* Allow/disallow autosensing */
814 bool tx_enable; /* Enable descriptor polling */
815 int setup_f; /* Setup frame filtering type */
816 int local_state; /* State within a 'media' state */
817 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
818 struct sia_phy sia; /* SIA PHY Information */
819 int active; /* Index to active PHY device */
820 int mii_cnt; /* Number of attached PHY's */
821 int timeout; /* Scheduling counter */
822 struct timer_list timer; /* Timer info for kernel */
823 int tmp; /* Temporary global per card */
824 struct {
825 u_long lock; /* Lock the cache accesses */
826 s32 csr0; /* Saved Bus Mode Register */
827 s32 csr6; /* Saved Operating Mode Reg. */
828 s32 csr7; /* Saved IRQ Mask Register */
829 s32 gep; /* Saved General Purpose Reg. */
830 s32 gepc; /* Control info for GEP */
831 s32 csr13; /* Saved SIA Connectivity Reg. */
832 s32 csr14; /* Saved SIA TX/RX Register */
833 s32 csr15; /* Saved SIA General Register */
834 int save_cnt; /* Flag if state already saved */
835 struct sk_buff_head queue; /* Save the (re-ordered) skb's */
836 } cache;
837 struct de4x5_srom srom; /* A copy of the SROM */
838 int cfrv; /* Card CFRV copy */
839 int rx_ovf; /* Check for 'RX overflow' tag */
840 bool useSROM; /* For non-DEC card use SROM */
841 bool useMII; /* Infoblock using the MII */
842 int asBitValid; /* Autosense bits in GEP? */
843 int asPolarity; /* 0 => asserted high */
844 int asBit; /* Autosense bit number in GEP */
845 int defMedium; /* SROM default medium */
846 int tcount; /* Last infoblock number */
847 int infoblock_init; /* Initialised this infoblock? */
848 int infoleaf_offset; /* SROM infoleaf for controller */
849 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
850 int infoblock_media; /* infoblock media */
851 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
852 u_char *rst; /* Pointer to Type 5 reset info */
853 u_char ibn; /* Infoblock number */
854 struct parameters params; /* Command line/ #defined params */
855 struct device *gendev; /* Generic device */
856 dma_addr_t dma_rings; /* DMA handle for rings */
857 int dma_size; /* Size of the DMA area */
858 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
862 ** To get around certain poxy cards that don't provide an SROM
863 ** for the second and more DECchip, I have to key off the first
864 ** chip's address. I'll assume there's not a bad SROM iff:
866 ** o the chipset is the same
867 ** o the bus number is the same and > 0
868 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
870 ** Also have to save the irq for those cards whose hardware designers
871 ** can't follow the PCI to PCI Bridge Architecture spec.
873 static struct {
874 int chipset;
875 int bus;
876 int irq;
877 u_char addr[ETH_ALEN];
878 } last = {0,};
881 ** The transmit ring full condition is described by the tx_old and tx_new
882 ** pointers by:
883 ** tx_old = tx_new Empty ring
884 ** tx_old = tx_new+1 Full ring
885 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
887 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
888 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
889 lp->tx_old -lp->tx_new-1)
891 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
894 ** Public Functions
896 static int de4x5_open(struct net_device *dev);
897 static int de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev);
898 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
899 static int de4x5_close(struct net_device *dev);
900 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
901 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
902 static void set_multicast_list(struct net_device *dev);
903 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906 ** Private functions
908 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
909 static int de4x5_init(struct net_device *dev);
910 static int de4x5_sw_reset(struct net_device *dev);
911 static int de4x5_rx(struct net_device *dev);
912 static int de4x5_tx(struct net_device *dev);
913 static void de4x5_ast(struct net_device *dev);
914 static int de4x5_txur(struct net_device *dev);
915 static int de4x5_rx_ovfc(struct net_device *dev);
917 static int autoconf_media(struct net_device *dev);
918 static void create_packet(struct net_device *dev, char *frame, int len);
919 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
920 static int dc21040_autoconf(struct net_device *dev);
921 static int dc21041_autoconf(struct net_device *dev);
922 static int dc21140m_autoconf(struct net_device *dev);
923 static int dc2114x_autoconf(struct net_device *dev);
924 static int srom_autoconf(struct net_device *dev);
925 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
926 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
927 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
928 static int test_for_100Mb(struct net_device *dev, int msec);
929 static int wait_for_link(struct net_device *dev);
930 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
931 static int is_spd_100(struct net_device *dev);
932 static int is_100_up(struct net_device *dev);
933 static int is_10_up(struct net_device *dev);
934 static int is_anc_capable(struct net_device *dev);
935 static int ping_media(struct net_device *dev, int msec);
936 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
937 static void de4x5_free_rx_buffs(struct net_device *dev);
938 static void de4x5_free_tx_buffs(struct net_device *dev);
939 static void de4x5_save_skbs(struct net_device *dev);
940 static void de4x5_rst_desc_ring(struct net_device *dev);
941 static void de4x5_cache_state(struct net_device *dev, int flag);
942 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
943 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
944 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
945 static void de4x5_setup_intr(struct net_device *dev);
946 static void de4x5_init_connection(struct net_device *dev);
947 static int de4x5_reset_phy(struct net_device *dev);
948 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
949 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
950 static int test_tp(struct net_device *dev, s32 msec);
951 static int EISA_signature(char *name, struct device *device);
952 static int PCI_signature(char *name, struct de4x5_private *lp);
953 static void DevicePresent(struct net_device *dev, u_long iobase);
954 static void enet_addr_rst(u_long aprom_addr);
955 static int de4x5_bad_srom(struct de4x5_private *lp);
956 static short srom_rd(u_long address, u_char offset);
957 static void srom_latch(u_int command, u_long address);
958 static void srom_command(u_int command, u_long address);
959 static void srom_address(u_int command, u_long address, u_char offset);
960 static short srom_data(u_int command, u_long address);
961 /*static void srom_busy(u_int command, u_long address);*/
962 static void sendto_srom(u_int command, u_long addr);
963 static int getfrom_srom(u_long addr);
964 static int srom_map_media(struct net_device *dev);
965 static int srom_infoleaf_info(struct net_device *dev);
966 static void srom_init(struct net_device *dev);
967 static void srom_exec(struct net_device *dev, u_char *p);
968 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
969 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
970 static int mii_rdata(u_long ioaddr);
971 static void mii_wdata(int data, int len, u_long ioaddr);
972 static void mii_ta(u_long rw, u_long ioaddr);
973 static int mii_swap(int data, int len);
974 static void mii_address(u_char addr, u_long ioaddr);
975 static void sendto_mii(u32 command, int data, u_long ioaddr);
976 static int getfrom_mii(u32 command, u_long ioaddr);
977 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
978 static int mii_get_phy(struct net_device *dev);
979 static void SetMulticastFilter(struct net_device *dev);
980 static int get_hw_addr(struct net_device *dev);
981 static void srom_repair(struct net_device *dev, int card);
982 static int test_bad_enet(struct net_device *dev, int status);
983 static int an_exception(struct de4x5_private *lp);
984 static char *build_setup_frame(struct net_device *dev, int mode);
985 static void disable_ast(struct net_device *dev);
986 static long de4x5_switch_mac_port(struct net_device *dev);
987 static int gep_rd(struct net_device *dev);
988 static void gep_wr(s32 data, struct net_device *dev);
989 static void yawn(struct net_device *dev, int state);
990 static void de4x5_parse_params(struct net_device *dev);
991 static void de4x5_dbg_open(struct net_device *dev);
992 static void de4x5_dbg_mii(struct net_device *dev, int k);
993 static void de4x5_dbg_media(struct net_device *dev);
994 static void de4x5_dbg_srom(struct de4x5_srom *p);
995 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
996 static int de4x5_strncmp(char *a, char *b, int n);
997 static int dc21041_infoleaf(struct net_device *dev);
998 static int dc21140_infoleaf(struct net_device *dev);
999 static int dc21142_infoleaf(struct net_device *dev);
1000 static int dc21143_infoleaf(struct net_device *dev);
1001 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1002 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1010 ** Note now that module autoprobing is allowed under EISA and PCI. The
1011 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1012 ** to "do the right thing".
1015 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1017 module_param(io, int, 0);
1018 module_param(de4x5_debug, int, 0);
1019 module_param(dec_only, int, 0);
1020 module_param(args, charp, 0);
1022 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1023 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1024 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1025 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1026 MODULE_LICENSE("GPL");
1029 ** List the SROM infoleaf functions and chipsets
1031 struct InfoLeaf {
1032 int chipset;
1033 int (*fn)(struct net_device *);
1035 static struct InfoLeaf infoleaf_array[] = {
1036 {DC21041, dc21041_infoleaf},
1037 {DC21140, dc21140_infoleaf},
1038 {DC21142, dc21142_infoleaf},
1039 {DC21143, dc21143_infoleaf}
1041 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1044 ** List the SROM info block functions
1046 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1047 type0_infoblock,
1048 type1_infoblock,
1049 type2_infoblock,
1050 type3_infoblock,
1051 type4_infoblock,
1052 type5_infoblock,
1053 compact_infoblock
1056 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1059 ** Miscellaneous defines...
1061 #define RESET_DE4X5 {\
1062 int i;\
1063 i=inl(DE4X5_BMR);\
1064 mdelay(1);\
1065 outl(i | BMR_SWR, DE4X5_BMR);\
1066 mdelay(1);\
1067 outl(i, DE4X5_BMR);\
1068 mdelay(1);\
1069 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1070 mdelay(1);\
1073 #define PHY_HARD_RESET {\
1074 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1075 mdelay(1); /* Assert for 1ms */\
1076 outl(0x00, DE4X5_GEP);\
1077 mdelay(2); /* Wait for 2ms */\
1081 static int __devinit
1082 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1084 char name[DE4X5_NAME_LENGTH + 1];
1085 struct de4x5_private *lp = netdev_priv(dev);
1086 struct pci_dev *pdev = NULL;
1087 int i, status=0;
1088 DECLARE_MAC_BUF(mac);
1090 gendev->driver_data = dev;
1092 /* Ensure we're not sleeping */
1093 if (lp->bus == EISA) {
1094 outb(WAKEUP, PCI_CFPM);
1095 } else {
1096 pdev = to_pci_dev (gendev);
1097 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1099 mdelay(10);
1101 RESET_DE4X5;
1103 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1104 return -ENXIO; /* Hardware could not reset */
1108 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1110 lp->useSROM = false;
1111 if (lp->bus == PCI) {
1112 PCI_signature(name, lp);
1113 } else {
1114 EISA_signature(name, gendev);
1117 if (*name == '\0') { /* Not found a board signature */
1118 return -ENXIO;
1121 dev->base_addr = iobase;
1122 printk ("%s: %s at 0x%04lx", gendev->bus_id, name, iobase);
1124 status = get_hw_addr(dev);
1125 printk(", h/w address %s\n", print_mac(mac, dev->dev_addr));
1127 if (status != 0) {
1128 printk(" which has an Ethernet PROM CRC error.\n");
1129 return -ENXIO;
1130 } else {
1131 skb_queue_head_init(&lp->cache.queue);
1132 lp->cache.gepc = GEP_INIT;
1133 lp->asBit = GEP_SLNK;
1134 lp->asPolarity = GEP_SLNK;
1135 lp->asBitValid = ~0;
1136 lp->timeout = -1;
1137 lp->gendev = gendev;
1138 spin_lock_init(&lp->lock);
1139 init_timer(&lp->timer);
1140 lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1141 lp->timer.data = (unsigned long)dev;
1142 de4x5_parse_params(dev);
1145 ** Choose correct autosensing in case someone messed up
1147 lp->autosense = lp->params.autosense;
1148 if (lp->chipset != DC21140) {
1149 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1150 lp->params.autosense = TP;
1152 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1153 lp->params.autosense = BNC;
1156 lp->fdx = lp->params.fdx;
1157 sprintf(lp->adapter_name,"%s (%s)", name, gendev->bus_id);
1159 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1160 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1161 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1162 #endif
1163 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1164 &lp->dma_rings, GFP_ATOMIC);
1165 if (lp->rx_ring == NULL) {
1166 return -ENOMEM;
1169 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1172 ** Set up the RX descriptor ring (Intels)
1173 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1175 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1176 for (i=0; i<NUM_RX_DESC; i++) {
1177 lp->rx_ring[i].status = 0;
1178 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1179 lp->rx_ring[i].buf = 0;
1180 lp->rx_ring[i].next = 0;
1181 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1184 #else
1186 dma_addr_t dma_rx_bufs;
1188 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1189 * sizeof(struct de4x5_desc);
1190 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1191 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1192 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1193 for (i=0; i<NUM_RX_DESC; i++) {
1194 lp->rx_ring[i].status = 0;
1195 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1196 lp->rx_ring[i].buf =
1197 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1198 lp->rx_ring[i].next = 0;
1199 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1203 #endif
1205 barrier();
1207 lp->rxRingSize = NUM_RX_DESC;
1208 lp->txRingSize = NUM_TX_DESC;
1210 /* Write the end of list marker to the descriptor lists */
1211 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1212 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1214 /* Tell the adapter where the TX/RX rings are located. */
1215 outl(lp->dma_rings, DE4X5_RRBA);
1216 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1217 DE4X5_TRBA);
1219 /* Initialise the IRQ mask and Enable/Disable */
1220 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1221 lp->irq_en = IMR_NIM | IMR_AIM;
1223 /* Create a loopback packet frame for later media probing */
1224 create_packet(dev, lp->frame, sizeof(lp->frame));
1226 /* Check if the RX overflow bug needs testing for */
1227 i = lp->cfrv & 0x000000fe;
1228 if ((lp->chipset == DC21140) && (i == 0x20)) {
1229 lp->rx_ovf = 1;
1232 /* Initialise the SROM pointers if possible */
1233 if (lp->useSROM) {
1234 lp->state = INITIALISED;
1235 if (srom_infoleaf_info(dev)) {
1236 dma_free_coherent (gendev, lp->dma_size,
1237 lp->rx_ring, lp->dma_rings);
1238 return -ENXIO;
1240 srom_init(dev);
1243 lp->state = CLOSED;
1246 ** Check for an MII interface
1248 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1249 mii_get_phy(dev);
1252 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1253 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1256 if (de4x5_debug & DEBUG_VERSION) {
1257 printk(version);
1260 /* The DE4X5-specific entries in the device structure. */
1261 SET_NETDEV_DEV(dev, gendev);
1262 dev->open = &de4x5_open;
1263 dev->hard_start_xmit = &de4x5_queue_pkt;
1264 dev->stop = &de4x5_close;
1265 dev->get_stats = &de4x5_get_stats;
1266 dev->set_multicast_list = &set_multicast_list;
1267 dev->do_ioctl = &de4x5_ioctl;
1269 dev->mem_start = 0;
1271 /* Fill in the generic fields of the device structure. */
1272 if ((status = register_netdev (dev))) {
1273 dma_free_coherent (gendev, lp->dma_size,
1274 lp->rx_ring, lp->dma_rings);
1275 return status;
1278 /* Let the adapter sleep to save power */
1279 yawn(dev, SLEEP);
1281 return status;
1285 static int
1286 de4x5_open(struct net_device *dev)
1288 struct de4x5_private *lp = netdev_priv(dev);
1289 u_long iobase = dev->base_addr;
1290 int i, status = 0;
1291 s32 omr;
1293 /* Allocate the RX buffers */
1294 for (i=0; i<lp->rxRingSize; i++) {
1295 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1296 de4x5_free_rx_buffs(dev);
1297 return -EAGAIN;
1302 ** Wake up the adapter
1304 yawn(dev, WAKEUP);
1307 ** Re-initialize the DE4X5...
1309 status = de4x5_init(dev);
1310 spin_lock_init(&lp->lock);
1311 lp->state = OPEN;
1312 de4x5_dbg_open(dev);
1314 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1315 lp->adapter_name, dev)) {
1316 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1317 if (request_irq(dev->irq, de4x5_interrupt, IRQF_DISABLED | IRQF_SHARED,
1318 lp->adapter_name, dev)) {
1319 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1320 disable_ast(dev);
1321 de4x5_free_rx_buffs(dev);
1322 de4x5_free_tx_buffs(dev);
1323 yawn(dev, SLEEP);
1324 lp->state = CLOSED;
1325 return -EAGAIN;
1326 } else {
1327 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1328 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1332 lp->interrupt = UNMASK_INTERRUPTS;
1333 dev->trans_start = jiffies;
1335 START_DE4X5;
1337 de4x5_setup_intr(dev);
1339 if (de4x5_debug & DEBUG_OPEN) {
1340 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1341 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1342 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1343 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1344 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1345 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1346 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1347 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1350 return status;
1354 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1355 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1356 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1357 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1358 ** to be data corruption problems if it is larger (UDP errors seen from a
1359 ** ttcp source).
1361 static int
1362 de4x5_init(struct net_device *dev)
1364 /* Lock out other processes whilst setting up the hardware */
1365 netif_stop_queue(dev);
1367 de4x5_sw_reset(dev);
1369 /* Autoconfigure the connected port */
1370 autoconf_media(dev);
1372 return 0;
1375 static int
1376 de4x5_sw_reset(struct net_device *dev)
1378 struct de4x5_private *lp = netdev_priv(dev);
1379 u_long iobase = dev->base_addr;
1380 int i, j, status = 0;
1381 s32 bmr, omr;
1383 /* Select the MII or SRL port now and RESET the MAC */
1384 if (!lp->useSROM) {
1385 if (lp->phy[lp->active].id != 0) {
1386 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1387 } else {
1388 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1390 de4x5_switch_mac_port(dev);
1394 ** Set the programmable burst length to 8 longwords for all the DC21140
1395 ** Fasternet chips and 4 longwords for all others: DMA errors result
1396 ** without these values. Cache align 16 long.
1398 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1399 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1400 outl(bmr, DE4X5_BMR);
1402 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1403 if (lp->chipset == DC21140) {
1404 omr |= (OMR_SDP | OMR_SB);
1406 lp->setup_f = PERFECT;
1407 outl(lp->dma_rings, DE4X5_RRBA);
1408 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1409 DE4X5_TRBA);
1411 lp->rx_new = lp->rx_old = 0;
1412 lp->tx_new = lp->tx_old = 0;
1414 for (i = 0; i < lp->rxRingSize; i++) {
1415 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1418 for (i = 0; i < lp->txRingSize; i++) {
1419 lp->tx_ring[i].status = cpu_to_le32(0);
1422 barrier();
1424 /* Build the setup frame depending on filtering mode */
1425 SetMulticastFilter(dev);
1427 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1428 outl(omr|OMR_ST, DE4X5_OMR);
1430 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1432 for (j=0, i=0;(i<500) && (j==0);i++) { /* Upto 500ms delay */
1433 mdelay(1);
1434 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1436 outl(omr, DE4X5_OMR); /* Stop everything! */
1438 if (j == 0) {
1439 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1440 inl(DE4X5_STS));
1441 status = -EIO;
1444 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1445 lp->tx_old = lp->tx_new;
1447 return status;
1451 ** Writes a socket buffer address to the next available transmit descriptor.
1453 static int
1454 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1456 struct de4x5_private *lp = netdev_priv(dev);
1457 u_long iobase = dev->base_addr;
1458 int status = 0;
1459 u_long flags = 0;
1461 netif_stop_queue(dev);
1462 if (!lp->tx_enable) { /* Cannot send for now */
1463 return -1;
1467 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1468 ** interrupts are lost by delayed descriptor status updates relative to
1469 ** the irq assertion, especially with a busy PCI bus.
1471 spin_lock_irqsave(&lp->lock, flags);
1472 de4x5_tx(dev);
1473 spin_unlock_irqrestore(&lp->lock, flags);
1475 /* Test if cache is already locked - requeue skb if so */
1476 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1477 return -1;
1479 /* Transmit descriptor ring full or stale skb */
1480 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1481 if (lp->interrupt) {
1482 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1483 } else {
1484 de4x5_put_cache(dev, skb);
1486 if (de4x5_debug & DEBUG_TX) {
1487 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1489 } else if (skb->len > 0) {
1490 /* If we already have stuff queued locally, use that first */
1491 if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1492 de4x5_put_cache(dev, skb);
1493 skb = de4x5_get_cache(dev);
1496 while (skb && !netif_queue_stopped(dev) &&
1497 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1498 spin_lock_irqsave(&lp->lock, flags);
1499 netif_stop_queue(dev);
1500 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1501 lp->stats.tx_bytes += skb->len;
1502 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1504 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1505 dev->trans_start = jiffies;
1507 if (TX_BUFFS_AVAIL) {
1508 netif_start_queue(dev); /* Another pkt may be queued */
1510 skb = de4x5_get_cache(dev);
1511 spin_unlock_irqrestore(&lp->lock, flags);
1513 if (skb) de4x5_putb_cache(dev, skb);
1516 lp->cache.lock = 0;
1518 return status;
1522 ** The DE4X5 interrupt handler.
1524 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1525 ** so that the asserted interrupt always has some real data to work with -
1526 ** if these I/O accesses are ever changed to memory accesses, ensure the
1527 ** STS write is read immediately to complete the transaction if the adapter
1528 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1529 ** is high and descriptor status bits cannot be set before the associated
1530 ** interrupt is asserted and this routine entered.
1532 static irqreturn_t
1533 de4x5_interrupt(int irq, void *dev_id)
1535 struct net_device *dev = dev_id;
1536 struct de4x5_private *lp;
1537 s32 imr, omr, sts, limit;
1538 u_long iobase;
1539 unsigned int handled = 0;
1541 lp = netdev_priv(dev);
1542 spin_lock(&lp->lock);
1543 iobase = dev->base_addr;
1545 DISABLE_IRQs; /* Ensure non re-entrancy */
1547 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1548 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1550 synchronize_irq(dev->irq);
1552 for (limit=0; limit<8; limit++) {
1553 sts = inl(DE4X5_STS); /* Read IRQ status */
1554 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1556 if (!(sts & lp->irq_mask)) break;/* All done */
1557 handled = 1;
1559 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1560 de4x5_rx(dev);
1562 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1563 de4x5_tx(dev);
1565 if (sts & STS_LNF) { /* TP Link has failed */
1566 lp->irq_mask &= ~IMR_LFM;
1569 if (sts & STS_UNF) { /* Transmit underrun */
1570 de4x5_txur(dev);
1573 if (sts & STS_SE) { /* Bus Error */
1574 STOP_DE4X5;
1575 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1576 dev->name, sts);
1577 spin_unlock(&lp->lock);
1578 return IRQ_HANDLED;
1582 /* Load the TX ring with any locally stored packets */
1583 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1584 while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1585 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1587 lp->cache.lock = 0;
1590 lp->interrupt = UNMASK_INTERRUPTS;
1591 ENABLE_IRQs;
1592 spin_unlock(&lp->lock);
1594 return IRQ_RETVAL(handled);
1597 static int
1598 de4x5_rx(struct net_device *dev)
1600 struct de4x5_private *lp = netdev_priv(dev);
1601 u_long iobase = dev->base_addr;
1602 int entry;
1603 s32 status;
1605 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1606 entry=lp->rx_new) {
1607 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1609 if (lp->rx_ovf) {
1610 if (inl(DE4X5_MFC) & MFC_FOCM) {
1611 de4x5_rx_ovfc(dev);
1612 break;
1616 if (status & RD_FS) { /* Remember the start of frame */
1617 lp->rx_old = entry;
1620 if (status & RD_LS) { /* Valid frame status */
1621 if (lp->tx_enable) lp->linkOK++;
1622 if (status & RD_ES) { /* There was an error. */
1623 lp->stats.rx_errors++; /* Update the error stats. */
1624 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1625 if (status & RD_CE) lp->stats.rx_crc_errors++;
1626 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1627 if (status & RD_TL) lp->stats.rx_length_errors++;
1628 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1629 if (status & RD_CS) lp->pktStats.rx_collision++;
1630 if (status & RD_DB) lp->pktStats.rx_dribble++;
1631 if (status & RD_OF) lp->pktStats.rx_overflow++;
1632 } else { /* A valid frame received */
1633 struct sk_buff *skb;
1634 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1635 >> 16) - 4;
1637 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1638 printk("%s: Insufficient memory; nuking packet.\n",
1639 dev->name);
1640 lp->stats.rx_dropped++;
1641 } else {
1642 de4x5_dbg_rx(skb, pkt_len);
1644 /* Push up the protocol stack */
1645 skb->protocol=eth_type_trans(skb,dev);
1646 de4x5_local_stats(dev, skb->data, pkt_len);
1647 netif_rx(skb);
1649 /* Update stats */
1650 dev->last_rx = jiffies;
1651 lp->stats.rx_packets++;
1652 lp->stats.rx_bytes += pkt_len;
1656 /* Change buffer ownership for this frame, back to the adapter */
1657 for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) {
1658 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1659 barrier();
1661 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1662 barrier();
1666 ** Update entry information
1668 lp->rx_new = (++lp->rx_new) % lp->rxRingSize;
1671 return 0;
1674 static inline void
1675 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1677 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1678 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1679 DMA_TO_DEVICE);
1680 if ((u_long) lp->tx_skb[entry] > 1)
1681 dev_kfree_skb_irq(lp->tx_skb[entry]);
1682 lp->tx_skb[entry] = NULL;
1686 ** Buffer sent - check for TX buffer errors.
1688 static int
1689 de4x5_tx(struct net_device *dev)
1691 struct de4x5_private *lp = netdev_priv(dev);
1692 u_long iobase = dev->base_addr;
1693 int entry;
1694 s32 status;
1696 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1697 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1698 if (status < 0) { /* Buffer not sent yet */
1699 break;
1700 } else if (status != 0x7fffffff) { /* Not setup frame */
1701 if (status & TD_ES) { /* An error happened */
1702 lp->stats.tx_errors++;
1703 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1704 if (status & TD_LC) lp->stats.tx_window_errors++;
1705 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1706 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1707 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1709 if (TX_PKT_PENDING) {
1710 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1712 } else { /* Packet sent */
1713 lp->stats.tx_packets++;
1714 if (lp->tx_enable) lp->linkOK++;
1716 /* Update the collision counter */
1717 lp->stats.collisions += ((status & TD_EC) ? 16 :
1718 ((status & TD_CC) >> 3));
1720 /* Free the buffer. */
1721 if (lp->tx_skb[entry] != NULL)
1722 de4x5_free_tx_buff(lp, entry);
1725 /* Update all the pointers */
1726 lp->tx_old = (++lp->tx_old) % lp->txRingSize;
1729 /* Any resources available? */
1730 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1731 if (lp->interrupt)
1732 netif_wake_queue(dev);
1733 else
1734 netif_start_queue(dev);
1737 return 0;
1740 static void
1741 de4x5_ast(struct net_device *dev)
1743 struct de4x5_private *lp = netdev_priv(dev);
1744 int next_tick = DE4X5_AUTOSENSE_MS;
1745 int dt;
1747 if (lp->useSROM)
1748 next_tick = srom_autoconf(dev);
1749 else if (lp->chipset == DC21140)
1750 next_tick = dc21140m_autoconf(dev);
1751 else if (lp->chipset == DC21041)
1752 next_tick = dc21041_autoconf(dev);
1753 else if (lp->chipset == DC21040)
1754 next_tick = dc21040_autoconf(dev);
1755 lp->linkOK = 0;
1757 dt = (next_tick * HZ) / 1000;
1759 if (!dt)
1760 dt = 1;
1762 mod_timer(&lp->timer, jiffies + dt);
1765 static int
1766 de4x5_txur(struct net_device *dev)
1768 struct de4x5_private *lp = netdev_priv(dev);
1769 u_long iobase = dev->base_addr;
1770 int omr;
1772 omr = inl(DE4X5_OMR);
1773 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1774 omr &= ~(OMR_ST|OMR_SR);
1775 outl(omr, DE4X5_OMR);
1776 while (inl(DE4X5_STS) & STS_TS);
1777 if ((omr & OMR_TR) < OMR_TR) {
1778 omr += 0x4000;
1779 } else {
1780 omr |= OMR_SF;
1782 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1785 return 0;
1788 static int
1789 de4x5_rx_ovfc(struct net_device *dev)
1791 struct de4x5_private *lp = netdev_priv(dev);
1792 u_long iobase = dev->base_addr;
1793 int omr;
1795 omr = inl(DE4X5_OMR);
1796 outl(omr & ~OMR_SR, DE4X5_OMR);
1797 while (inl(DE4X5_STS) & STS_RS);
1799 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1800 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1801 lp->rx_new = (++lp->rx_new % lp->rxRingSize);
1804 outl(omr, DE4X5_OMR);
1806 return 0;
1809 static int
1810 de4x5_close(struct net_device *dev)
1812 struct de4x5_private *lp = netdev_priv(dev);
1813 u_long iobase = dev->base_addr;
1814 s32 imr, omr;
1816 disable_ast(dev);
1818 netif_stop_queue(dev);
1820 if (de4x5_debug & DEBUG_CLOSE) {
1821 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1822 dev->name, inl(DE4X5_STS));
1826 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1828 DISABLE_IRQs;
1829 STOP_DE4X5;
1831 /* Free the associated irq */
1832 free_irq(dev->irq, dev);
1833 lp->state = CLOSED;
1835 /* Free any socket buffers */
1836 de4x5_free_rx_buffs(dev);
1837 de4x5_free_tx_buffs(dev);
1839 /* Put the adapter to sleep to save power */
1840 yawn(dev, SLEEP);
1842 return 0;
1845 static struct net_device_stats *
1846 de4x5_get_stats(struct net_device *dev)
1848 struct de4x5_private *lp = netdev_priv(dev);
1849 u_long iobase = dev->base_addr;
1851 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1853 return &lp->stats;
1856 static void
1857 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1859 struct de4x5_private *lp = netdev_priv(dev);
1860 int i;
1862 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1863 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1864 lp->pktStats.bins[i]++;
1865 i = DE4X5_PKT_STAT_SZ;
1868 if (buf[0] & 0x01) { /* Multicast/Broadcast */
1869 if ((*(s32 *)&buf[0] == -1) && (*(s16 *)&buf[4] == -1)) {
1870 lp->pktStats.broadcast++;
1871 } else {
1872 lp->pktStats.multicast++;
1874 } else if ((*(s32 *)&buf[0] == *(s32 *)&dev->dev_addr[0]) &&
1875 (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) {
1876 lp->pktStats.unicast++;
1879 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1880 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1881 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1884 return;
1888 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889 ** If the flag is changed on a descriptor that is being read by the hardware,
1890 ** I assume PCI transaction ordering will mean you are either successful or
1891 ** just miss asserting the change to the hardware. Anyway you're messing with
1892 ** a descriptor you don't own, but this shouldn't kill the chip provided
1893 ** the descriptor register is read only to the hardware.
1895 static void
1896 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1898 struct de4x5_private *lp = netdev_priv(dev);
1899 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1902 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905 lp->tx_skb[lp->tx_new] = skb;
1906 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907 barrier();
1909 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910 barrier();
1914 ** Set or clear the multicast filter for this adaptor.
1916 static void
1917 set_multicast_list(struct net_device *dev)
1919 struct de4x5_private *lp = netdev_priv(dev);
1920 u_long iobase = dev->base_addr;
1922 /* First, double check that the adapter is open */
1923 if (lp->state == OPEN) {
1924 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1925 u32 omr;
1926 omr = inl(DE4X5_OMR);
1927 omr |= OMR_PR;
1928 outl(omr, DE4X5_OMR);
1929 } else {
1930 SetMulticastFilter(dev);
1931 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932 SETUP_FRAME_LEN, (struct sk_buff *)1);
1934 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1935 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1936 dev->trans_start = jiffies;
1942 ** Calculate the hash code and update the logical address filter
1943 ** from a list of ethernet multicast addresses.
1944 ** Little endian crc one liner from Matt Thomas, DEC.
1946 static void
1947 SetMulticastFilter(struct net_device *dev)
1949 struct de4x5_private *lp = netdev_priv(dev);
1950 struct dev_mc_list *dmi=dev->mc_list;
1951 u_long iobase = dev->base_addr;
1952 int i, j, bit, byte;
1953 u16 hashcode;
1954 u32 omr, crc;
1955 char *pa;
1956 unsigned char *addrs;
1958 omr = inl(DE4X5_OMR);
1959 omr &= ~(OMR_PR | OMR_PM);
1960 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1962 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) {
1963 omr |= OMR_PM; /* Pass all multicasts */
1964 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1965 for (i=0;i<dev->mc_count;i++) { /* for each address in the list */
1966 addrs=dmi->dmi_addr;
1967 dmi=dmi->next;
1968 if ((*addrs & 0x01) == 1) { /* multicast address? */
1969 crc = ether_crc_le(ETH_ALEN, addrs);
1970 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
1972 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1973 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1975 byte <<= 1; /* calc offset into setup frame */
1976 if (byte & 0x02) {
1977 byte -= 1;
1979 lp->setup_frame[byte] |= bit;
1982 } else { /* Perfect filtering */
1983 for (j=0; j<dev->mc_count; j++) {
1984 addrs=dmi->dmi_addr;
1985 dmi=dmi->next;
1986 for (i=0; i<ETH_ALEN; i++) {
1987 *(pa + (i&1)) = *addrs++;
1988 if (i & 0x01) pa += 4;
1992 outl(omr, DE4X5_OMR);
1994 return;
1997 #ifdef CONFIG_EISA
1999 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
2001 static int __init de4x5_eisa_probe (struct device *gendev)
2003 struct eisa_device *edev;
2004 u_long iobase;
2005 u_char irq, regval;
2006 u_short vendor;
2007 u32 cfid;
2008 int status, device;
2009 struct net_device *dev;
2010 struct de4x5_private *lp;
2012 edev = to_eisa_device (gendev);
2013 iobase = edev->base_addr;
2015 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2016 return -EBUSY;
2018 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2019 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2020 status = -EBUSY;
2021 goto release_reg_1;
2024 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2025 status = -ENOMEM;
2026 goto release_reg_2;
2028 lp = netdev_priv(dev);
2030 cfid = (u32) inl(PCI_CFID);
2031 lp->cfrv = (u_short) inl(PCI_CFRV);
2032 device = (cfid >> 8) & 0x00ffff00;
2033 vendor = (u_short) cfid;
2035 /* Read the EISA Configuration Registers */
2036 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2037 #ifdef CONFIG_ALPHA
2038 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2039 * care about the EISA configuration, and thus doesn't
2040 * configure the PLX bridge properly. Oh well... Simply mimic
2041 * the EISA config file to sort it out. */
2043 /* EISA REG1: Assert DecChip 21040 HW Reset */
2044 outb (ER1_IAM | 1, EISA_REG1);
2045 mdelay (1);
2047 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2048 outb (ER1_IAM, EISA_REG1);
2049 mdelay (1);
2051 /* EISA REG3: R/W Burst Transfer Enable */
2052 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2054 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2055 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2056 #endif
2057 irq = de4x5_irq[(regval >> 1) & 0x03];
2059 if (is_DC2114x) {
2060 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2062 lp->chipset = device;
2063 lp->bus = EISA;
2065 /* Write the PCI Configuration Registers */
2066 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2067 outl(0x00006000, PCI_CFLT);
2068 outl(iobase, PCI_CBIO);
2070 DevicePresent(dev, EISA_APROM);
2072 dev->irq = irq;
2074 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2075 return 0;
2078 free_netdev (dev);
2079 release_reg_2:
2080 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2081 release_reg_1:
2082 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2084 return status;
2087 static int __devexit de4x5_eisa_remove (struct device *device)
2089 struct net_device *dev;
2090 u_long iobase;
2092 dev = device->driver_data;
2093 iobase = dev->base_addr;
2095 unregister_netdev (dev);
2096 free_netdev (dev);
2097 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2098 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2100 return 0;
2103 static struct eisa_device_id de4x5_eisa_ids[] = {
2104 { "DEC4250", 0 }, /* 0 is the board name index... */
2105 { "" }
2107 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2109 static struct eisa_driver de4x5_eisa_driver = {
2110 .id_table = de4x5_eisa_ids,
2111 .driver = {
2112 .name = "de4x5",
2113 .probe = de4x5_eisa_probe,
2114 .remove = __devexit_p (de4x5_eisa_remove),
2117 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2118 #endif
2120 #ifdef CONFIG_PCI
2123 ** This function searches the current bus (which is >0) for a DECchip with an
2124 ** SROM, so that in multiport cards that have one SROM shared between multiple
2125 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2126 ** For single port cards this is a time waster...
2128 static void __devinit
2129 srom_search(struct net_device *dev, struct pci_dev *pdev)
2131 u_char pb;
2132 u_short vendor, status;
2133 u_int irq = 0, device;
2134 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2135 int i, j;
2136 struct de4x5_private *lp = netdev_priv(dev);
2137 struct list_head *walk;
2139 list_for_each(walk, &pdev->bus_list) {
2140 struct pci_dev *this_dev = pci_dev_b(walk);
2142 /* Skip the pci_bus list entry */
2143 if (list_entry(walk, struct pci_bus, devices) == pdev->bus) continue;
2145 vendor = this_dev->vendor;
2146 device = this_dev->device << 8;
2147 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2149 /* Get the chip configuration revision register */
2150 pb = this_dev->bus->number;
2152 /* Set the device number information */
2153 lp->device = PCI_SLOT(this_dev->devfn);
2154 lp->bus_num = pb;
2156 /* Set the chipset information */
2157 if (is_DC2114x) {
2158 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2159 ? DC21142 : DC21143);
2161 lp->chipset = device;
2163 /* Get the board I/O address (64 bits on sparc64) */
2164 iobase = pci_resource_start(this_dev, 0);
2166 /* Fetch the IRQ to be used */
2167 irq = this_dev->irq;
2168 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2170 /* Check if I/O accesses are enabled */
2171 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2172 if (!(status & PCI_COMMAND_IO)) continue;
2174 /* Search for a valid SROM attached to this DECchip */
2175 DevicePresent(dev, DE4X5_APROM);
2176 for (j=0, i=0; i<ETH_ALEN; i++) {
2177 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2179 if (j != 0 && j != 6 * 0xff) {
2180 last.chipset = device;
2181 last.bus = pb;
2182 last.irq = irq;
2183 for (i=0; i<ETH_ALEN; i++) {
2184 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2186 return;
2190 return;
2194 ** PCI bus I/O device probe
2195 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2196 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2197 ** enabled by the user first in the set up utility. Hence we just check for
2198 ** enabled features and silently ignore the card if they're not.
2200 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2201 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2202 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2203 ** PC doesn't conform to the PCI standard)!
2205 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2206 ** kernels use the V0.535[n] drivers.
2209 static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2210 const struct pci_device_id *ent)
2212 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2213 u_short vendor, status;
2214 u_int irq = 0, device;
2215 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2216 int error;
2217 struct net_device *dev;
2218 struct de4x5_private *lp;
2220 dev_num = PCI_SLOT(pdev->devfn);
2221 pb = pdev->bus->number;
2223 if (io) { /* probe a single PCI device */
2224 pbus = (u_short)(io >> 8);
2225 dnum = (u_short)(io & 0xff);
2226 if ((pbus != pb) || (dnum != dev_num))
2227 return -ENODEV;
2230 vendor = pdev->vendor;
2231 device = pdev->device << 8;
2232 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2233 return -ENODEV;
2235 /* Ok, the device seems to be for us. */
2236 if ((error = pci_enable_device (pdev)))
2237 return error;
2239 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2240 error = -ENOMEM;
2241 goto disable_dev;
2244 lp = netdev_priv(dev);
2245 lp->bus = PCI;
2246 lp->bus_num = 0;
2248 /* Search for an SROM on this bus */
2249 if (lp->bus_num != pb) {
2250 lp->bus_num = pb;
2251 srom_search(dev, pdev);
2254 /* Get the chip configuration revision register */
2255 lp->cfrv = pdev->revision;
2257 /* Set the device number information */
2258 lp->device = dev_num;
2259 lp->bus_num = pb;
2261 /* Set the chipset information */
2262 if (is_DC2114x) {
2263 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2265 lp->chipset = device;
2267 /* Get the board I/O address (64 bits on sparc64) */
2268 iobase = pci_resource_start(pdev, 0);
2270 /* Fetch the IRQ to be used */
2271 irq = pdev->irq;
2272 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2273 error = -ENODEV;
2274 goto free_dev;
2277 /* Check if I/O accesses and Bus Mastering are enabled */
2278 pci_read_config_word(pdev, PCI_COMMAND, &status);
2279 #ifdef __powerpc__
2280 if (!(status & PCI_COMMAND_IO)) {
2281 status |= PCI_COMMAND_IO;
2282 pci_write_config_word(pdev, PCI_COMMAND, status);
2283 pci_read_config_word(pdev, PCI_COMMAND, &status);
2285 #endif /* __powerpc__ */
2286 if (!(status & PCI_COMMAND_IO)) {
2287 error = -ENODEV;
2288 goto free_dev;
2291 if (!(status & PCI_COMMAND_MASTER)) {
2292 status |= PCI_COMMAND_MASTER;
2293 pci_write_config_word(pdev, PCI_COMMAND, status);
2294 pci_read_config_word(pdev, PCI_COMMAND, &status);
2296 if (!(status & PCI_COMMAND_MASTER)) {
2297 error = -ENODEV;
2298 goto free_dev;
2301 /* Check the latency timer for values >= 0x60 */
2302 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2303 if (timer < 0x60) {
2304 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2307 DevicePresent(dev, DE4X5_APROM);
2309 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2310 error = -EBUSY;
2311 goto free_dev;
2314 dev->irq = irq;
2316 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2317 goto release;
2320 return 0;
2322 release:
2323 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2324 free_dev:
2325 free_netdev (dev);
2326 disable_dev:
2327 pci_disable_device (pdev);
2328 return error;
2331 static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2333 struct net_device *dev;
2334 u_long iobase;
2336 dev = pdev->dev.driver_data;
2337 iobase = dev->base_addr;
2339 unregister_netdev (dev);
2340 free_netdev (dev);
2341 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2342 pci_disable_device (pdev);
2345 static struct pci_device_id de4x5_pci_tbl[] = {
2346 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2347 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2348 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2349 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2350 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2351 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2352 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2353 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2354 { },
2357 static struct pci_driver de4x5_pci_driver = {
2358 .name = "de4x5",
2359 .id_table = de4x5_pci_tbl,
2360 .probe = de4x5_pci_probe,
2361 .remove = __devexit_p (de4x5_pci_remove),
2364 #endif
2367 ** Auto configure the media here rather than setting the port at compile
2368 ** time. This routine is called by de4x5_init() and when a loss of media is
2369 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2370 ** [TP] or no recent receive activity) to check whether the user has been
2371 ** sneaky and changed the port on us.
2373 static int
2374 autoconf_media(struct net_device *dev)
2376 struct de4x5_private *lp = netdev_priv(dev);
2377 u_long iobase = dev->base_addr;
2379 disable_ast(dev);
2381 lp->c_media = AUTO; /* Bogus last media */
2382 inl(DE4X5_MFC); /* Zero the lost frames counter */
2383 lp->media = INIT;
2384 lp->tcount = 0;
2386 de4x5_ast(dev);
2388 return lp->media;
2392 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2393 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2394 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2395 ** The only way to test for that is to place a loopback packet onto the
2396 ** network and watch for errors. Since we're messing with the interrupt mask
2397 ** register, disable the board interrupts and do not allow any more packets to
2398 ** be queued to the hardware. Re-enable everything only when the media is
2399 ** found.
2400 ** I may have to "age out" locally queued packets so that the higher layer
2401 ** timeouts don't effectively duplicate packets on the network.
2403 static int
2404 dc21040_autoconf(struct net_device *dev)
2406 struct de4x5_private *lp = netdev_priv(dev);
2407 u_long iobase = dev->base_addr;
2408 int next_tick = DE4X5_AUTOSENSE_MS;
2409 s32 imr;
2411 switch (lp->media) {
2412 case INIT:
2413 DISABLE_IRQs;
2414 lp->tx_enable = false;
2415 lp->timeout = -1;
2416 de4x5_save_skbs(dev);
2417 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2418 lp->media = TP;
2419 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2420 lp->media = BNC_AUI;
2421 } else if (lp->autosense == EXT_SIA) {
2422 lp->media = EXT_SIA;
2423 } else {
2424 lp->media = NC;
2426 lp->local_state = 0;
2427 next_tick = dc21040_autoconf(dev);
2428 break;
2430 case TP:
2431 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2432 TP_SUSPECT, test_tp);
2433 break;
2435 case TP_SUSPECT:
2436 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2437 break;
2439 case BNC:
2440 case AUI:
2441 case BNC_AUI:
2442 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2443 BNC_AUI_SUSPECT, ping_media);
2444 break;
2446 case BNC_AUI_SUSPECT:
2447 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2448 break;
2450 case EXT_SIA:
2451 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2452 NC, EXT_SIA_SUSPECT, ping_media);
2453 break;
2455 case EXT_SIA_SUSPECT:
2456 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2457 break;
2459 case NC:
2460 /* default to TP for all */
2461 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2462 if (lp->media != lp->c_media) {
2463 de4x5_dbg_media(dev);
2464 lp->c_media = lp->media;
2466 lp->media = INIT;
2467 lp->tx_enable = false;
2468 break;
2471 return next_tick;
2474 static int
2475 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2476 int next_state, int suspect_state,
2477 int (*fn)(struct net_device *, int))
2479 struct de4x5_private *lp = netdev_priv(dev);
2480 int next_tick = DE4X5_AUTOSENSE_MS;
2481 int linkBad;
2483 switch (lp->local_state) {
2484 case 0:
2485 reset_init_sia(dev, csr13, csr14, csr15);
2486 lp->local_state++;
2487 next_tick = 500;
2488 break;
2490 case 1:
2491 if (!lp->tx_enable) {
2492 linkBad = fn(dev, timeout);
2493 if (linkBad < 0) {
2494 next_tick = linkBad & ~TIMER_CB;
2495 } else {
2496 if (linkBad && (lp->autosense == AUTO)) {
2497 lp->local_state = 0;
2498 lp->media = next_state;
2499 } else {
2500 de4x5_init_connection(dev);
2503 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2504 lp->media = suspect_state;
2505 next_tick = 3000;
2507 break;
2510 return next_tick;
2513 static int
2514 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2515 int (*fn)(struct net_device *, int),
2516 int (*asfn)(struct net_device *))
2518 struct de4x5_private *lp = netdev_priv(dev);
2519 int next_tick = DE4X5_AUTOSENSE_MS;
2520 int linkBad;
2522 switch (lp->local_state) {
2523 case 1:
2524 if (lp->linkOK) {
2525 lp->media = prev_state;
2526 } else {
2527 lp->local_state++;
2528 next_tick = asfn(dev);
2530 break;
2532 case 2:
2533 linkBad = fn(dev, timeout);
2534 if (linkBad < 0) {
2535 next_tick = linkBad & ~TIMER_CB;
2536 } else if (!linkBad) {
2537 lp->local_state--;
2538 lp->media = prev_state;
2539 } else {
2540 lp->media = INIT;
2541 lp->tcount++;
2545 return next_tick;
2549 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2550 ** before BNC, because the BNC port will indicate activity if it's not
2551 ** terminated correctly. The only way to test for that is to place a loopback
2552 ** packet onto the network and watch for errors. Since we're messing with
2553 ** the interrupt mask register, disable the board interrupts and do not allow
2554 ** any more packets to be queued to the hardware. Re-enable everything only
2555 ** when the media is found.
2557 static int
2558 dc21041_autoconf(struct net_device *dev)
2560 struct de4x5_private *lp = netdev_priv(dev);
2561 u_long iobase = dev->base_addr;
2562 s32 sts, irqs, irq_mask, imr, omr;
2563 int next_tick = DE4X5_AUTOSENSE_MS;
2565 switch (lp->media) {
2566 case INIT:
2567 DISABLE_IRQs;
2568 lp->tx_enable = false;
2569 lp->timeout = -1;
2570 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2571 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2572 lp->media = TP; /* On chip auto negotiation is broken */
2573 } else if (lp->autosense == TP) {
2574 lp->media = TP;
2575 } else if (lp->autosense == BNC) {
2576 lp->media = BNC;
2577 } else if (lp->autosense == AUI) {
2578 lp->media = AUI;
2579 } else {
2580 lp->media = NC;
2582 lp->local_state = 0;
2583 next_tick = dc21041_autoconf(dev);
2584 break;
2586 case TP_NW:
2587 if (lp->timeout < 0) {
2588 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2589 outl(omr | OMR_FDX, DE4X5_OMR);
2591 irqs = STS_LNF | STS_LNP;
2592 irq_mask = IMR_LFM | IMR_LPM;
2593 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2594 if (sts < 0) {
2595 next_tick = sts & ~TIMER_CB;
2596 } else {
2597 if (sts & STS_LNP) {
2598 lp->media = ANS;
2599 } else {
2600 lp->media = AUI;
2602 next_tick = dc21041_autoconf(dev);
2604 break;
2606 case ANS:
2607 if (!lp->tx_enable) {
2608 irqs = STS_LNP;
2609 irq_mask = IMR_LPM;
2610 sts = test_ans(dev, irqs, irq_mask, 3000);
2611 if (sts < 0) {
2612 next_tick = sts & ~TIMER_CB;
2613 } else {
2614 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2615 lp->media = TP;
2616 next_tick = dc21041_autoconf(dev);
2617 } else {
2618 lp->local_state = 1;
2619 de4x5_init_connection(dev);
2622 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2623 lp->media = ANS_SUSPECT;
2624 next_tick = 3000;
2626 break;
2628 case ANS_SUSPECT:
2629 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2630 break;
2632 case TP:
2633 if (!lp->tx_enable) {
2634 if (lp->timeout < 0) {
2635 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2636 outl(omr & ~OMR_FDX, DE4X5_OMR);
2638 irqs = STS_LNF | STS_LNP;
2639 irq_mask = IMR_LFM | IMR_LPM;
2640 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2641 if (sts < 0) {
2642 next_tick = sts & ~TIMER_CB;
2643 } else {
2644 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2645 if (inl(DE4X5_SISR) & SISR_NRA) {
2646 lp->media = AUI; /* Non selected port activity */
2647 } else {
2648 lp->media = BNC;
2650 next_tick = dc21041_autoconf(dev);
2651 } else {
2652 lp->local_state = 1;
2653 de4x5_init_connection(dev);
2656 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2657 lp->media = TP_SUSPECT;
2658 next_tick = 3000;
2660 break;
2662 case TP_SUSPECT:
2663 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2664 break;
2666 case AUI:
2667 if (!lp->tx_enable) {
2668 if (lp->timeout < 0) {
2669 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2670 outl(omr & ~OMR_FDX, DE4X5_OMR);
2672 irqs = 0;
2673 irq_mask = 0;
2674 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2675 if (sts < 0) {
2676 next_tick = sts & ~TIMER_CB;
2677 } else {
2678 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2679 lp->media = BNC;
2680 next_tick = dc21041_autoconf(dev);
2681 } else {
2682 lp->local_state = 1;
2683 de4x5_init_connection(dev);
2686 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2687 lp->media = AUI_SUSPECT;
2688 next_tick = 3000;
2690 break;
2692 case AUI_SUSPECT:
2693 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2694 break;
2696 case BNC:
2697 switch (lp->local_state) {
2698 case 0:
2699 if (lp->timeout < 0) {
2700 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2701 outl(omr & ~OMR_FDX, DE4X5_OMR);
2703 irqs = 0;
2704 irq_mask = 0;
2705 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2706 if (sts < 0) {
2707 next_tick = sts & ~TIMER_CB;
2708 } else {
2709 lp->local_state++; /* Ensure media connected */
2710 next_tick = dc21041_autoconf(dev);
2712 break;
2714 case 1:
2715 if (!lp->tx_enable) {
2716 if ((sts = ping_media(dev, 3000)) < 0) {
2717 next_tick = sts & ~TIMER_CB;
2718 } else {
2719 if (sts) {
2720 lp->local_state = 0;
2721 lp->media = NC;
2722 } else {
2723 de4x5_init_connection(dev);
2726 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2727 lp->media = BNC_SUSPECT;
2728 next_tick = 3000;
2730 break;
2732 break;
2734 case BNC_SUSPECT:
2735 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2736 break;
2738 case NC:
2739 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2740 outl(omr | OMR_FDX, DE4X5_OMR);
2741 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2742 if (lp->media != lp->c_media) {
2743 de4x5_dbg_media(dev);
2744 lp->c_media = lp->media;
2746 lp->media = INIT;
2747 lp->tx_enable = false;
2748 break;
2751 return next_tick;
2755 ** Some autonegotiation chips are broken in that they do not return the
2756 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2757 ** register, except at the first power up negotiation.
2759 static int
2760 dc21140m_autoconf(struct net_device *dev)
2762 struct de4x5_private *lp = netdev_priv(dev);
2763 int ana, anlpa, cap, cr, slnk, sr;
2764 int next_tick = DE4X5_AUTOSENSE_MS;
2765 u_long imr, omr, iobase = dev->base_addr;
2767 switch(lp->media) {
2768 case INIT:
2769 if (lp->timeout < 0) {
2770 DISABLE_IRQs;
2771 lp->tx_enable = false;
2772 lp->linkOK = 0;
2773 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2775 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2776 next_tick &= ~TIMER_CB;
2777 } else {
2778 if (lp->useSROM) {
2779 if (srom_map_media(dev) < 0) {
2780 lp->tcount++;
2781 return next_tick;
2783 srom_exec(dev, lp->phy[lp->active].gep);
2784 if (lp->infoblock_media == ANS) {
2785 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2786 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2788 } else {
2789 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2790 SET_10Mb;
2791 if (lp->autosense == _100Mb) {
2792 lp->media = _100Mb;
2793 } else if (lp->autosense == _10Mb) {
2794 lp->media = _10Mb;
2795 } else if ((lp->autosense == AUTO) &&
2796 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2797 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2798 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2799 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2800 lp->media = ANS;
2801 } else if (lp->autosense == AUTO) {
2802 lp->media = SPD_DET;
2803 } else if (is_spd_100(dev) && is_100_up(dev)) {
2804 lp->media = _100Mb;
2805 } else {
2806 lp->media = NC;
2809 lp->local_state = 0;
2810 next_tick = dc21140m_autoconf(dev);
2812 break;
2814 case ANS:
2815 switch (lp->local_state) {
2816 case 0:
2817 if (lp->timeout < 0) {
2818 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2820 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2821 if (cr < 0) {
2822 next_tick = cr & ~TIMER_CB;
2823 } else {
2824 if (cr) {
2825 lp->local_state = 0;
2826 lp->media = SPD_DET;
2827 } else {
2828 lp->local_state++;
2830 next_tick = dc21140m_autoconf(dev);
2832 break;
2834 case 1:
2835 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2836 next_tick = sr & ~TIMER_CB;
2837 } else {
2838 lp->media = SPD_DET;
2839 lp->local_state = 0;
2840 if (sr) { /* Success! */
2841 lp->tmp = MII_SR_ASSC;
2842 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2843 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2844 if (!(anlpa & MII_ANLPA_RF) &&
2845 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2846 if (cap & MII_ANA_100M) {
2847 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2848 lp->media = _100Mb;
2849 } else if (cap & MII_ANA_10M) {
2850 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2852 lp->media = _10Mb;
2855 } /* Auto Negotiation failed to finish */
2856 next_tick = dc21140m_autoconf(dev);
2857 } /* Auto Negotiation failed to start */
2858 break;
2860 break;
2862 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2863 if (lp->timeout < 0) {
2864 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2865 (~gep_rd(dev) & GEP_LNP));
2866 SET_100Mb_PDET;
2868 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2869 next_tick = slnk & ~TIMER_CB;
2870 } else {
2871 if (is_spd_100(dev) && is_100_up(dev)) {
2872 lp->media = _100Mb;
2873 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2874 lp->media = _10Mb;
2875 } else {
2876 lp->media = NC;
2878 next_tick = dc21140m_autoconf(dev);
2880 break;
2882 case _100Mb: /* Set 100Mb/s */
2883 next_tick = 3000;
2884 if (!lp->tx_enable) {
2885 SET_100Mb;
2886 de4x5_init_connection(dev);
2887 } else {
2888 if (!lp->linkOK && (lp->autosense == AUTO)) {
2889 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2890 lp->media = INIT;
2891 lp->tcount++;
2892 next_tick = DE4X5_AUTOSENSE_MS;
2896 break;
2898 case BNC:
2899 case AUI:
2900 case _10Mb: /* Set 10Mb/s */
2901 next_tick = 3000;
2902 if (!lp->tx_enable) {
2903 SET_10Mb;
2904 de4x5_init_connection(dev);
2905 } else {
2906 if (!lp->linkOK && (lp->autosense == AUTO)) {
2907 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2908 lp->media = INIT;
2909 lp->tcount++;
2910 next_tick = DE4X5_AUTOSENSE_MS;
2914 break;
2916 case NC:
2917 if (lp->media != lp->c_media) {
2918 de4x5_dbg_media(dev);
2919 lp->c_media = lp->media;
2921 lp->media = INIT;
2922 lp->tx_enable = false;
2923 break;
2926 return next_tick;
2930 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2931 ** changing how I figure out the media - but trying to keep it backwards
2932 ** compatible with the de500-xa and de500-aa.
2933 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2934 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2935 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2936 ** active.
2937 ** When autonegotiation is working, the ANS part searches the SROM for
2938 ** the highest common speed (TP) link that both can run and if that can
2939 ** be full duplex. That infoblock is executed and then the link speed set.
2941 ** Only _10Mb and _100Mb are tested here.
2943 static int
2944 dc2114x_autoconf(struct net_device *dev)
2946 struct de4x5_private *lp = netdev_priv(dev);
2947 u_long iobase = dev->base_addr;
2948 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2949 int next_tick = DE4X5_AUTOSENSE_MS;
2951 switch (lp->media) {
2952 case INIT:
2953 if (lp->timeout < 0) {
2954 DISABLE_IRQs;
2955 lp->tx_enable = false;
2956 lp->linkOK = 0;
2957 lp->timeout = -1;
2958 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2959 if (lp->params.autosense & ~AUTO) {
2960 srom_map_media(dev); /* Fixed media requested */
2961 if (lp->media != lp->params.autosense) {
2962 lp->tcount++;
2963 lp->media = INIT;
2964 return next_tick;
2966 lp->media = INIT;
2969 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2970 next_tick &= ~TIMER_CB;
2971 } else {
2972 if (lp->autosense == _100Mb) {
2973 lp->media = _100Mb;
2974 } else if (lp->autosense == _10Mb) {
2975 lp->media = _10Mb;
2976 } else if (lp->autosense == TP) {
2977 lp->media = TP;
2978 } else if (lp->autosense == BNC) {
2979 lp->media = BNC;
2980 } else if (lp->autosense == AUI) {
2981 lp->media = AUI;
2982 } else {
2983 lp->media = SPD_DET;
2984 if ((lp->infoblock_media == ANS) &&
2985 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2986 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2987 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2988 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2989 lp->media = ANS;
2992 lp->local_state = 0;
2993 next_tick = dc2114x_autoconf(dev);
2995 break;
2997 case ANS:
2998 switch (lp->local_state) {
2999 case 0:
3000 if (lp->timeout < 0) {
3001 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3003 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
3004 if (cr < 0) {
3005 next_tick = cr & ~TIMER_CB;
3006 } else {
3007 if (cr) {
3008 lp->local_state = 0;
3009 lp->media = SPD_DET;
3010 } else {
3011 lp->local_state++;
3013 next_tick = dc2114x_autoconf(dev);
3015 break;
3017 case 1:
3018 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3019 if (sr < 0) {
3020 next_tick = sr & ~TIMER_CB;
3021 } else {
3022 lp->media = SPD_DET;
3023 lp->local_state = 0;
3024 if (sr) { /* Success! */
3025 lp->tmp = MII_SR_ASSC;
3026 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3027 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3028 if (!(anlpa & MII_ANLPA_RF) &&
3029 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3030 if (cap & MII_ANA_100M) {
3031 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3032 lp->media = _100Mb;
3033 } else if (cap & MII_ANA_10M) {
3034 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3035 lp->media = _10Mb;
3038 } /* Auto Negotiation failed to finish */
3039 next_tick = dc2114x_autoconf(dev);
3040 } /* Auto Negotiation failed to start */
3041 break;
3043 break;
3045 case AUI:
3046 if (!lp->tx_enable) {
3047 if (lp->timeout < 0) {
3048 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3049 outl(omr & ~OMR_FDX, DE4X5_OMR);
3051 irqs = 0;
3052 irq_mask = 0;
3053 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3054 if (sts < 0) {
3055 next_tick = sts & ~TIMER_CB;
3056 } else {
3057 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3058 lp->media = BNC;
3059 next_tick = dc2114x_autoconf(dev);
3060 } else {
3061 lp->local_state = 1;
3062 de4x5_init_connection(dev);
3065 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3066 lp->media = AUI_SUSPECT;
3067 next_tick = 3000;
3069 break;
3071 case AUI_SUSPECT:
3072 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3073 break;
3075 case BNC:
3076 switch (lp->local_state) {
3077 case 0:
3078 if (lp->timeout < 0) {
3079 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3080 outl(omr & ~OMR_FDX, DE4X5_OMR);
3082 irqs = 0;
3083 irq_mask = 0;
3084 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3085 if (sts < 0) {
3086 next_tick = sts & ~TIMER_CB;
3087 } else {
3088 lp->local_state++; /* Ensure media connected */
3089 next_tick = dc2114x_autoconf(dev);
3091 break;
3093 case 1:
3094 if (!lp->tx_enable) {
3095 if ((sts = ping_media(dev, 3000)) < 0) {
3096 next_tick = sts & ~TIMER_CB;
3097 } else {
3098 if (sts) {
3099 lp->local_state = 0;
3100 lp->tcount++;
3101 lp->media = INIT;
3102 } else {
3103 de4x5_init_connection(dev);
3106 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3107 lp->media = BNC_SUSPECT;
3108 next_tick = 3000;
3110 break;
3112 break;
3114 case BNC_SUSPECT:
3115 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3116 break;
3118 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3119 if (srom_map_media(dev) < 0) {
3120 lp->tcount++;
3121 lp->media = INIT;
3122 return next_tick;
3124 if (lp->media == _100Mb) {
3125 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3126 lp->media = SPD_DET;
3127 return (slnk & ~TIMER_CB);
3129 } else {
3130 if (wait_for_link(dev) < 0) {
3131 lp->media = SPD_DET;
3132 return PDET_LINK_WAIT;
3135 if (lp->media == ANS) { /* Do MII parallel detection */
3136 if (is_spd_100(dev)) {
3137 lp->media = _100Mb;
3138 } else {
3139 lp->media = _10Mb;
3141 next_tick = dc2114x_autoconf(dev);
3142 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3143 (((lp->media == _10Mb) || (lp->media == TP) ||
3144 (lp->media == BNC) || (lp->media == AUI)) &&
3145 is_10_up(dev))) {
3146 next_tick = dc2114x_autoconf(dev);
3147 } else {
3148 lp->tcount++;
3149 lp->media = INIT;
3151 break;
3153 case _10Mb:
3154 next_tick = 3000;
3155 if (!lp->tx_enable) {
3156 SET_10Mb;
3157 de4x5_init_connection(dev);
3158 } else {
3159 if (!lp->linkOK && (lp->autosense == AUTO)) {
3160 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3161 lp->media = INIT;
3162 lp->tcount++;
3163 next_tick = DE4X5_AUTOSENSE_MS;
3167 break;
3169 case _100Mb:
3170 next_tick = 3000;
3171 if (!lp->tx_enable) {
3172 SET_100Mb;
3173 de4x5_init_connection(dev);
3174 } else {
3175 if (!lp->linkOK && (lp->autosense == AUTO)) {
3176 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3177 lp->media = INIT;
3178 lp->tcount++;
3179 next_tick = DE4X5_AUTOSENSE_MS;
3183 break;
3185 default:
3186 lp->tcount++;
3187 printk("Huh?: media:%02x\n", lp->media);
3188 lp->media = INIT;
3189 break;
3192 return next_tick;
3195 static int
3196 srom_autoconf(struct net_device *dev)
3198 struct de4x5_private *lp = netdev_priv(dev);
3200 return lp->infoleaf_fn(dev);
3204 ** This mapping keeps the original media codes and FDX flag unchanged.
3205 ** While it isn't strictly necessary, it helps me for the moment...
3206 ** The early return avoids a media state / SROM media space clash.
3208 static int
3209 srom_map_media(struct net_device *dev)
3211 struct de4x5_private *lp = netdev_priv(dev);
3213 lp->fdx = false;
3214 if (lp->infoblock_media == lp->media)
3215 return 0;
3217 switch(lp->infoblock_media) {
3218 case SROM_10BASETF:
3219 if (!lp->params.fdx) return -1;
3220 lp->fdx = true;
3221 case SROM_10BASET:
3222 if (lp->params.fdx && !lp->fdx) return -1;
3223 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3224 lp->media = _10Mb;
3225 } else {
3226 lp->media = TP;
3228 break;
3230 case SROM_10BASE2:
3231 lp->media = BNC;
3232 break;
3234 case SROM_10BASE5:
3235 lp->media = AUI;
3236 break;
3238 case SROM_100BASETF:
3239 if (!lp->params.fdx) return -1;
3240 lp->fdx = true;
3241 case SROM_100BASET:
3242 if (lp->params.fdx && !lp->fdx) return -1;
3243 lp->media = _100Mb;
3244 break;
3246 case SROM_100BASET4:
3247 lp->media = _100Mb;
3248 break;
3250 case SROM_100BASEFF:
3251 if (!lp->params.fdx) return -1;
3252 lp->fdx = true;
3253 case SROM_100BASEF:
3254 if (lp->params.fdx && !lp->fdx) return -1;
3255 lp->media = _100Mb;
3256 break;
3258 case ANS:
3259 lp->media = ANS;
3260 lp->fdx = lp->params.fdx;
3261 break;
3263 default:
3264 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3265 lp->infoblock_media);
3266 return -1;
3267 break;
3270 return 0;
3273 static void
3274 de4x5_init_connection(struct net_device *dev)
3276 struct de4x5_private *lp = netdev_priv(dev);
3277 u_long iobase = dev->base_addr;
3278 u_long flags = 0;
3280 if (lp->media != lp->c_media) {
3281 de4x5_dbg_media(dev);
3282 lp->c_media = lp->media; /* Stop scrolling media messages */
3285 spin_lock_irqsave(&lp->lock, flags);
3286 de4x5_rst_desc_ring(dev);
3287 de4x5_setup_intr(dev);
3288 lp->tx_enable = true;
3289 spin_unlock_irqrestore(&lp->lock, flags);
3290 outl(POLL_DEMAND, DE4X5_TPD);
3292 netif_wake_queue(dev);
3294 return;
3298 ** General PHY reset function. Some MII devices don't reset correctly
3299 ** since their MII address pins can float at voltages that are dependent
3300 ** on the signal pin use. Do a double reset to ensure a reset.
3302 static int
3303 de4x5_reset_phy(struct net_device *dev)
3305 struct de4x5_private *lp = netdev_priv(dev);
3306 u_long iobase = dev->base_addr;
3307 int next_tick = 0;
3309 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3310 if (lp->timeout < 0) {
3311 if (lp->useSROM) {
3312 if (lp->phy[lp->active].rst) {
3313 srom_exec(dev, lp->phy[lp->active].rst);
3314 srom_exec(dev, lp->phy[lp->active].rst);
3315 } else if (lp->rst) { /* Type 5 infoblock reset */
3316 srom_exec(dev, lp->rst);
3317 srom_exec(dev, lp->rst);
3319 } else {
3320 PHY_HARD_RESET;
3322 if (lp->useMII) {
3323 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3326 if (lp->useMII) {
3327 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3329 } else if (lp->chipset == DC21140) {
3330 PHY_HARD_RESET;
3333 return next_tick;
3336 static int
3337 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3339 struct de4x5_private *lp = netdev_priv(dev);
3340 u_long iobase = dev->base_addr;
3341 s32 sts, csr12;
3343 if (lp->timeout < 0) {
3344 lp->timeout = msec/100;
3345 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3346 reset_init_sia(dev, csr13, csr14, csr15);
3349 /* set up the interrupt mask */
3350 outl(irq_mask, DE4X5_IMR);
3352 /* clear all pending interrupts */
3353 sts = inl(DE4X5_STS);
3354 outl(sts, DE4X5_STS);
3356 /* clear csr12 NRA and SRA bits */
3357 if ((lp->chipset == DC21041) || lp->useSROM) {
3358 csr12 = inl(DE4X5_SISR);
3359 outl(csr12, DE4X5_SISR);
3363 sts = inl(DE4X5_STS) & ~TIMER_CB;
3365 if (!(sts & irqs) && --lp->timeout) {
3366 sts = 100 | TIMER_CB;
3367 } else {
3368 lp->timeout = -1;
3371 return sts;
3374 static int
3375 test_tp(struct net_device *dev, s32 msec)
3377 struct de4x5_private *lp = netdev_priv(dev);
3378 u_long iobase = dev->base_addr;
3379 int sisr;
3381 if (lp->timeout < 0) {
3382 lp->timeout = msec/100;
3385 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3387 if (sisr && --lp->timeout) {
3388 sisr = 100 | TIMER_CB;
3389 } else {
3390 lp->timeout = -1;
3393 return sisr;
3397 ** Samples the 100Mb Link State Signal. The sample interval is important
3398 ** because too fast a rate can give erroneous results and confuse the
3399 ** speed sense algorithm.
3401 #define SAMPLE_INTERVAL 500 /* ms */
3402 #define SAMPLE_DELAY 2000 /* ms */
3403 static int
3404 test_for_100Mb(struct net_device *dev, int msec)
3406 struct de4x5_private *lp = netdev_priv(dev);
3407 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3409 if (lp->timeout < 0) {
3410 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3411 if (msec > SAMPLE_DELAY) {
3412 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3413 gep = SAMPLE_DELAY | TIMER_CB;
3414 return gep;
3415 } else {
3416 lp->timeout = msec/SAMPLE_INTERVAL;
3420 if (lp->phy[lp->active].id || lp->useSROM) {
3421 gep = is_100_up(dev) | is_spd_100(dev);
3422 } else {
3423 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3425 if (!(gep & ret) && --lp->timeout) {
3426 gep = SAMPLE_INTERVAL | TIMER_CB;
3427 } else {
3428 lp->timeout = -1;
3431 return gep;
3434 static int
3435 wait_for_link(struct net_device *dev)
3437 struct de4x5_private *lp = netdev_priv(dev);
3439 if (lp->timeout < 0) {
3440 lp->timeout = 1;
3443 if (lp->timeout--) {
3444 return TIMER_CB;
3445 } else {
3446 lp->timeout = -1;
3449 return 0;
3456 static int
3457 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3459 struct de4x5_private *lp = netdev_priv(dev);
3460 int test;
3461 u_long iobase = dev->base_addr;
3463 if (lp->timeout < 0) {
3464 lp->timeout = msec/100;
3467 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3468 test = (reg ^ (pol ? ~0 : 0)) & mask;
3470 if (test && --lp->timeout) {
3471 reg = 100 | TIMER_CB;
3472 } else {
3473 lp->timeout = -1;
3476 return reg;
3479 static int
3480 is_spd_100(struct net_device *dev)
3482 struct de4x5_private *lp = netdev_priv(dev);
3483 u_long iobase = dev->base_addr;
3484 int spd;
3486 if (lp->useMII) {
3487 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3488 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3489 spd &= lp->phy[lp->active].spd.mask;
3490 } else if (!lp->useSROM) { /* de500-xa */
3491 spd = ((~gep_rd(dev)) & GEP_SLNK);
3492 } else {
3493 if ((lp->ibn == 2) || !lp->asBitValid)
3494 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3496 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3497 (lp->linkOK & ~lp->asBitValid);
3500 return spd;
3503 static int
3504 is_100_up(struct net_device *dev)
3506 struct de4x5_private *lp = netdev_priv(dev);
3507 u_long iobase = dev->base_addr;
3509 if (lp->useMII) {
3510 /* Double read for sticky bits & temporary drops */
3511 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3512 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3513 } else if (!lp->useSROM) { /* de500-xa */
3514 return ((~gep_rd(dev)) & GEP_SLNK);
3515 } else {
3516 if ((lp->ibn == 2) || !lp->asBitValid)
3517 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3519 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3520 (lp->linkOK & ~lp->asBitValid));
3524 static int
3525 is_10_up(struct net_device *dev)
3527 struct de4x5_private *lp = netdev_priv(dev);
3528 u_long iobase = dev->base_addr;
3530 if (lp->useMII) {
3531 /* Double read for sticky bits & temporary drops */
3532 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3533 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3534 } else if (!lp->useSROM) { /* de500-xa */
3535 return ((~gep_rd(dev)) & GEP_LNP);
3536 } else {
3537 if ((lp->ibn == 2) || !lp->asBitValid)
3538 return (((lp->chipset & ~0x00ff) == DC2114x) ?
3539 (~inl(DE4X5_SISR)&SISR_LS10):
3542 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3543 (lp->linkOK & ~lp->asBitValid));
3547 static int
3548 is_anc_capable(struct net_device *dev)
3550 struct de4x5_private *lp = netdev_priv(dev);
3551 u_long iobase = dev->base_addr;
3553 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3554 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII));
3555 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3556 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3557 } else {
3558 return 0;
3563 ** Send a packet onto the media and watch for send errors that indicate the
3564 ** media is bad or unconnected.
3566 static int
3567 ping_media(struct net_device *dev, int msec)
3569 struct de4x5_private *lp = netdev_priv(dev);
3570 u_long iobase = dev->base_addr;
3571 int sisr;
3573 if (lp->timeout < 0) {
3574 lp->timeout = msec/100;
3576 lp->tmp = lp->tx_new; /* Remember the ring position */
3577 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3578 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
3579 outl(POLL_DEMAND, DE4X5_TPD);
3582 sisr = inl(DE4X5_SISR);
3584 if ((!(sisr & SISR_NCR)) &&
3585 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3586 (--lp->timeout)) {
3587 sisr = 100 | TIMER_CB;
3588 } else {
3589 if ((!(sisr & SISR_NCR)) &&
3590 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3591 lp->timeout) {
3592 sisr = 0;
3593 } else {
3594 sisr = 1;
3596 lp->timeout = -1;
3599 return sisr;
3603 ** This function does 2 things: on Intels it kmalloc's another buffer to
3604 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3605 ** into which the packet is copied.
3607 static struct sk_buff *
3608 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3610 struct de4x5_private *lp = netdev_priv(dev);
3611 struct sk_buff *p;
3613 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3614 struct sk_buff *ret;
3615 u_long i=0, tmp;
3617 p = dev_alloc_skb(IEEE802_3_SZ + DE4X5_ALIGN + 2);
3618 if (!p) return NULL;
3620 tmp = virt_to_bus(p->data);
3621 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3622 skb_reserve(p, i);
3623 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3625 ret = lp->rx_skb[index];
3626 lp->rx_skb[index] = p;
3628 if ((u_long) ret > 1) {
3629 skb_put(ret, len);
3632 return ret;
3634 #else
3635 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3637 p = dev_alloc_skb(len + 2);
3638 if (!p) return NULL;
3640 skb_reserve(p, 2); /* Align */
3641 if (index < lp->rx_old) { /* Wrapped buffer */
3642 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3643 memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3644 memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3645 } else { /* Linear buffer */
3646 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3649 return p;
3650 #endif
3653 static void
3654 de4x5_free_rx_buffs(struct net_device *dev)
3656 struct de4x5_private *lp = netdev_priv(dev);
3657 int i;
3659 for (i=0; i<lp->rxRingSize; i++) {
3660 if ((u_long) lp->rx_skb[i] > 1) {
3661 dev_kfree_skb(lp->rx_skb[i]);
3663 lp->rx_ring[i].status = 0;
3664 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3667 return;
3670 static void
3671 de4x5_free_tx_buffs(struct net_device *dev)
3673 struct de4x5_private *lp = netdev_priv(dev);
3674 int i;
3676 for (i=0; i<lp->txRingSize; i++) {
3677 if (lp->tx_skb[i])
3678 de4x5_free_tx_buff(lp, i);
3679 lp->tx_ring[i].status = 0;
3682 /* Unload the locally queued packets */
3683 __skb_queue_purge(&lp->cache.queue);
3687 ** When a user pulls a connection, the DECchip can end up in a
3688 ** 'running - waiting for end of transmission' state. This means that we
3689 ** have to perform a chip soft reset to ensure that we can synchronize
3690 ** the hardware and software and make any media probes using a loopback
3691 ** packet meaningful.
3693 static void
3694 de4x5_save_skbs(struct net_device *dev)
3696 struct de4x5_private *lp = netdev_priv(dev);
3697 u_long iobase = dev->base_addr;
3698 s32 omr;
3700 if (!lp->cache.save_cnt) {
3701 STOP_DE4X5;
3702 de4x5_tx(dev); /* Flush any sent skb's */
3703 de4x5_free_tx_buffs(dev);
3704 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3705 de4x5_sw_reset(dev);
3706 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3707 lp->cache.save_cnt++;
3708 START_DE4X5;
3711 return;
3714 static void
3715 de4x5_rst_desc_ring(struct net_device *dev)
3717 struct de4x5_private *lp = netdev_priv(dev);
3718 u_long iobase = dev->base_addr;
3719 int i;
3720 s32 omr;
3722 if (lp->cache.save_cnt) {
3723 STOP_DE4X5;
3724 outl(lp->dma_rings, DE4X5_RRBA);
3725 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3726 DE4X5_TRBA);
3728 lp->rx_new = lp->rx_old = 0;
3729 lp->tx_new = lp->tx_old = 0;
3731 for (i = 0; i < lp->rxRingSize; i++) {
3732 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3735 for (i = 0; i < lp->txRingSize; i++) {
3736 lp->tx_ring[i].status = cpu_to_le32(0);
3739 barrier();
3740 lp->cache.save_cnt--;
3741 START_DE4X5;
3744 return;
3747 static void
3748 de4x5_cache_state(struct net_device *dev, int flag)
3750 struct de4x5_private *lp = netdev_priv(dev);
3751 u_long iobase = dev->base_addr;
3753 switch(flag) {
3754 case DE4X5_SAVE_STATE:
3755 lp->cache.csr0 = inl(DE4X5_BMR);
3756 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3757 lp->cache.csr7 = inl(DE4X5_IMR);
3758 break;
3760 case DE4X5_RESTORE_STATE:
3761 outl(lp->cache.csr0, DE4X5_BMR);
3762 outl(lp->cache.csr6, DE4X5_OMR);
3763 outl(lp->cache.csr7, DE4X5_IMR);
3764 if (lp->chipset == DC21140) {
3765 gep_wr(lp->cache.gepc, dev);
3766 gep_wr(lp->cache.gep, dev);
3767 } else {
3768 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3769 lp->cache.csr15);
3771 break;
3774 return;
3777 static void
3778 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3780 struct de4x5_private *lp = netdev_priv(dev);
3782 __skb_queue_tail(&lp->cache.queue, skb);
3785 static void
3786 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3788 struct de4x5_private *lp = netdev_priv(dev);
3790 __skb_queue_head(&lp->cache.queue, skb);
3793 static struct sk_buff *
3794 de4x5_get_cache(struct net_device *dev)
3796 struct de4x5_private *lp = netdev_priv(dev);
3798 return __skb_dequeue(&lp->cache.queue);
3802 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3803 ** is received and the auto-negotiation status is NWAY OK.
3805 static int
3806 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3808 struct de4x5_private *lp = netdev_priv(dev);
3809 u_long iobase = dev->base_addr;
3810 s32 sts, ans;
3812 if (lp->timeout < 0) {
3813 lp->timeout = msec/100;
3814 outl(irq_mask, DE4X5_IMR);
3816 /* clear all pending interrupts */
3817 sts = inl(DE4X5_STS);
3818 outl(sts, DE4X5_STS);
3821 ans = inl(DE4X5_SISR) & SISR_ANS;
3822 sts = inl(DE4X5_STS) & ~TIMER_CB;
3824 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3825 sts = 100 | TIMER_CB;
3826 } else {
3827 lp->timeout = -1;
3830 return sts;
3833 static void
3834 de4x5_setup_intr(struct net_device *dev)
3836 struct de4x5_private *lp = netdev_priv(dev);
3837 u_long iobase = dev->base_addr;
3838 s32 imr, sts;
3840 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3841 imr = 0;
3842 UNMASK_IRQs;
3843 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3844 outl(sts, DE4X5_STS);
3845 ENABLE_IRQs;
3848 return;
3854 static void
3855 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3857 struct de4x5_private *lp = netdev_priv(dev);
3858 u_long iobase = dev->base_addr;
3860 RESET_SIA;
3861 if (lp->useSROM) {
3862 if (lp->ibn == 3) {
3863 srom_exec(dev, lp->phy[lp->active].rst);
3864 srom_exec(dev, lp->phy[lp->active].gep);
3865 outl(1, DE4X5_SICR);
3866 return;
3867 } else {
3868 csr15 = lp->cache.csr15;
3869 csr14 = lp->cache.csr14;
3870 csr13 = lp->cache.csr13;
3871 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3872 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3874 } else {
3875 outl(csr15, DE4X5_SIGR);
3877 outl(csr14, DE4X5_STRR);
3878 outl(csr13, DE4X5_SICR);
3880 mdelay(10);
3882 return;
3886 ** Create a loopback ethernet packet
3888 static void
3889 create_packet(struct net_device *dev, char *frame, int len)
3891 int i;
3892 char *buf = frame;
3894 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3895 *buf++ = dev->dev_addr[i];
3897 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3898 *buf++ = dev->dev_addr[i];
3901 *buf++ = 0; /* Packet length (2 bytes) */
3902 *buf++ = 1;
3904 return;
3908 ** Look for a particular board name in the EISA configuration space
3910 static int
3911 EISA_signature(char *name, struct device *device)
3913 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3914 struct eisa_device *edev;
3916 *name = '\0';
3917 edev = to_eisa_device (device);
3918 i = edev->id.driver_data;
3920 if (i >= 0 && i < siglen) {
3921 strcpy (name, de4x5_signatures[i]);
3922 status = 1;
3925 return status; /* return the device name string */
3929 ** Look for a particular board name in the PCI configuration space
3931 static int
3932 PCI_signature(char *name, struct de4x5_private *lp)
3934 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3936 if (lp->chipset == DC21040) {
3937 strcpy(name, "DE434/5");
3938 return status;
3939 } else { /* Search for a DEC name in the SROM */
3940 int i = *((char *)&lp->srom + 19) * 3;
3941 strncpy(name, (char *)&lp->srom + 26 + i, 8);
3943 name[8] = '\0';
3944 for (i=0; i<siglen; i++) {
3945 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3947 if (i == siglen) {
3948 if (dec_only) {
3949 *name = '\0';
3950 } else { /* Use chip name to avoid confusion */
3951 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3952 ((lp->chipset == DC21041) ? "DC21041" :
3953 ((lp->chipset == DC21140) ? "DC21140" :
3954 ((lp->chipset == DC21142) ? "DC21142" :
3955 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3956 )))))));
3958 if (lp->chipset != DC21041) {
3959 lp->useSROM = true; /* card is not recognisably DEC */
3961 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3962 lp->useSROM = true;
3965 return status;
3969 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3970 ** the DC21040, else read the SROM for the other chips.
3971 ** The SROM may not be present in a multi-MAC card, so first read the
3972 ** MAC address and check for a bad address. If there is a bad one then exit
3973 ** immediately with the prior srom contents intact (the h/w address will
3974 ** be fixed up later).
3976 static void
3977 DevicePresent(struct net_device *dev, u_long aprom_addr)
3979 int i, j=0;
3980 struct de4x5_private *lp = netdev_priv(dev);
3982 if (lp->chipset == DC21040) {
3983 if (lp->bus == EISA) {
3984 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3985 } else {
3986 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
3988 } else { /* Read new srom */
3989 u_short tmp;
3990 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3991 for (i=0; i<(ETH_ALEN>>1); i++) {
3992 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3993 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3994 *p = cpu_to_le16(tmp);
3996 if (j == 0 || j == 3 * 0xffff) {
3997 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3998 return;
4001 p = (__le16 *)&lp->srom;
4002 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
4003 tmp = srom_rd(aprom_addr, i);
4004 *p++ = cpu_to_le16(tmp);
4006 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
4009 return;
4013 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
4014 ** pointer correctly (at least on my DE425 EISA card), this routine should do
4015 ** it...from depca.c.
4017 static void
4018 enet_addr_rst(u_long aprom_addr)
4020 union {
4021 struct {
4022 u32 a;
4023 u32 b;
4024 } llsig;
4025 char Sig[sizeof(u32) << 1];
4026 } dev;
4027 short sigLength=0;
4028 s8 data;
4029 int i, j;
4031 dev.llsig.a = ETH_PROM_SIG;
4032 dev.llsig.b = ETH_PROM_SIG;
4033 sigLength = sizeof(u32) << 1;
4035 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4036 data = inb(aprom_addr);
4037 if (dev.Sig[j] == data) { /* track signature */
4038 j++;
4039 } else { /* lost signature; begin search again */
4040 if (data == dev.Sig[0]) { /* rare case.... */
4041 j=1;
4042 } else {
4043 j=0;
4048 return;
4052 ** For the bad status case and no SROM, then add one to the previous
4053 ** address. However, need to add one backwards in case we have 0xff
4054 ** as one or more of the bytes. Only the last 3 bytes should be checked
4055 ** as the first three are invariant - assigned to an organisation.
4057 static int
4058 get_hw_addr(struct net_device *dev)
4060 u_long iobase = dev->base_addr;
4061 int broken, i, k, tmp, status = 0;
4062 u_short j,chksum;
4063 struct de4x5_private *lp = netdev_priv(dev);
4065 broken = de4x5_bad_srom(lp);
4067 for (i=0,k=0,j=0;j<3;j++) {
4068 k <<= 1;
4069 if (k > 0xffff) k-=0xffff;
4071 if (lp->bus == PCI) {
4072 if (lp->chipset == DC21040) {
4073 while ((tmp = inl(DE4X5_APROM)) < 0);
4074 k += (u_char) tmp;
4075 dev->dev_addr[i++] = (u_char) tmp;
4076 while ((tmp = inl(DE4X5_APROM)) < 0);
4077 k += (u_short) (tmp << 8);
4078 dev->dev_addr[i++] = (u_char) tmp;
4079 } else if (!broken) {
4080 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4081 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4082 } else if ((broken == SMC) || (broken == ACCTON)) {
4083 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4084 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4086 } else {
4087 k += (u_char) (tmp = inb(EISA_APROM));
4088 dev->dev_addr[i++] = (u_char) tmp;
4089 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4090 dev->dev_addr[i++] = (u_char) tmp;
4093 if (k > 0xffff) k-=0xffff;
4095 if (k == 0xffff) k=0;
4097 if (lp->bus == PCI) {
4098 if (lp->chipset == DC21040) {
4099 while ((tmp = inl(DE4X5_APROM)) < 0);
4100 chksum = (u_char) tmp;
4101 while ((tmp = inl(DE4X5_APROM)) < 0);
4102 chksum |= (u_short) (tmp << 8);
4103 if ((k != chksum) && (dec_only)) status = -1;
4105 } else {
4106 chksum = (u_char) inb(EISA_APROM);
4107 chksum |= (u_short) (inb(EISA_APROM) << 8);
4108 if ((k != chksum) && (dec_only)) status = -1;
4111 /* If possible, try to fix a broken card - SMC only so far */
4112 srom_repair(dev, broken);
4114 #ifdef CONFIG_PPC_PMAC
4116 ** If the address starts with 00 a0, we have to bit-reverse
4117 ** each byte of the address.
4119 if ( machine_is(powermac) &&
4120 (dev->dev_addr[0] == 0) &&
4121 (dev->dev_addr[1] == 0xa0) )
4123 for (i = 0; i < ETH_ALEN; ++i)
4125 int x = dev->dev_addr[i];
4126 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4127 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4128 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4131 #endif /* CONFIG_PPC_PMAC */
4133 /* Test for a bad enet address */
4134 status = test_bad_enet(dev, status);
4136 return status;
4140 ** Test for enet addresses in the first 32 bytes. The built-in strncmp
4141 ** didn't seem to work here...?
4143 static int
4144 de4x5_bad_srom(struct de4x5_private *lp)
4146 int i, status = 0;
4148 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4149 if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4150 !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4151 if (i == 0) {
4152 status = SMC;
4153 } else if (i == 1) {
4154 status = ACCTON;
4156 break;
4160 return status;
4163 static int
4164 de4x5_strncmp(char *a, char *b, int n)
4166 int ret=0;
4168 for (;n && !ret; n--) {
4169 ret = *a++ - *b++;
4172 return ret;
4175 static void
4176 srom_repair(struct net_device *dev, int card)
4178 struct de4x5_private *lp = netdev_priv(dev);
4180 switch(card) {
4181 case SMC:
4182 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4183 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4184 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4185 lp->useSROM = true;
4186 break;
4189 return;
4193 ** Assume that the irq's do not follow the PCI spec - this is seems
4194 ** to be true so far (2 for 2).
4196 static int
4197 test_bad_enet(struct net_device *dev, int status)
4199 struct de4x5_private *lp = netdev_priv(dev);
4200 int i, tmp;
4202 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4203 if ((tmp == 0) || (tmp == 0x5fa)) {
4204 if ((lp->chipset == last.chipset) &&
4205 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4206 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4207 for (i=ETH_ALEN-1; i>2; --i) {
4208 dev->dev_addr[i] += 1;
4209 if (dev->dev_addr[i] != 0) break;
4211 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4212 if (!an_exception(lp)) {
4213 dev->irq = last.irq;
4216 status = 0;
4218 } else if (!status) {
4219 last.chipset = lp->chipset;
4220 last.bus = lp->bus_num;
4221 last.irq = dev->irq;
4222 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4225 return status;
4229 ** List of board exceptions with correctly wired IRQs
4231 static int
4232 an_exception(struct de4x5_private *lp)
4234 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4235 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4236 return -1;
4239 return 0;
4243 ** SROM Read
4245 static short
4246 srom_rd(u_long addr, u_char offset)
4248 sendto_srom(SROM_RD | SROM_SR, addr);
4250 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4251 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4252 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4254 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4257 static void
4258 srom_latch(u_int command, u_long addr)
4260 sendto_srom(command, addr);
4261 sendto_srom(command | DT_CLK, addr);
4262 sendto_srom(command, addr);
4264 return;
4267 static void
4268 srom_command(u_int command, u_long addr)
4270 srom_latch(command, addr);
4271 srom_latch(command, addr);
4272 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4274 return;
4277 static void
4278 srom_address(u_int command, u_long addr, u_char offset)
4280 int i, a;
4282 a = offset << 2;
4283 for (i=0; i<6; i++, a <<= 1) {
4284 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4286 udelay(1);
4288 i = (getfrom_srom(addr) >> 3) & 0x01;
4290 return;
4293 static short
4294 srom_data(u_int command, u_long addr)
4296 int i;
4297 short word = 0;
4298 s32 tmp;
4300 for (i=0; i<16; i++) {
4301 sendto_srom(command | DT_CLK, addr);
4302 tmp = getfrom_srom(addr);
4303 sendto_srom(command, addr);
4305 word = (word << 1) | ((tmp >> 3) & 0x01);
4308 sendto_srom(command & 0x0000ff00, addr);
4310 return word;
4314 static void
4315 srom_busy(u_int command, u_long addr)
4317 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4319 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4320 mdelay(1);
4323 sendto_srom(command & 0x0000ff00, addr);
4325 return;
4329 static void
4330 sendto_srom(u_int command, u_long addr)
4332 outl(command, addr);
4333 udelay(1);
4335 return;
4338 static int
4339 getfrom_srom(u_long addr)
4341 s32 tmp;
4343 tmp = inl(addr);
4344 udelay(1);
4346 return tmp;
4349 static int
4350 srom_infoleaf_info(struct net_device *dev)
4352 struct de4x5_private *lp = netdev_priv(dev);
4353 int i, count;
4354 u_char *p;
4356 /* Find the infoleaf decoder function that matches this chipset */
4357 for (i=0; i<INFOLEAF_SIZE; i++) {
4358 if (lp->chipset == infoleaf_array[i].chipset) break;
4360 if (i == INFOLEAF_SIZE) {
4361 lp->useSROM = false;
4362 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4363 dev->name);
4364 return -ENXIO;
4367 lp->infoleaf_fn = infoleaf_array[i].fn;
4369 /* Find the information offset that this function should use */
4370 count = *((u_char *)&lp->srom + 19);
4371 p = (u_char *)&lp->srom + 26;
4373 if (count > 1) {
4374 for (i=count; i; --i, p+=3) {
4375 if (lp->device == *p) break;
4377 if (i == 0) {
4378 lp->useSROM = false;
4379 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4380 dev->name, lp->device);
4381 return -ENXIO;
4385 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4387 return 0;
4391 ** This routine loads any type 1 or 3 MII info into the mii device
4392 ** struct and executes any type 5 code to reset PHY devices for this
4393 ** controller.
4394 ** The info for the MII devices will be valid since the index used
4395 ** will follow the discovery process from MII address 1-31 then 0.
4397 static void
4398 srom_init(struct net_device *dev)
4400 struct de4x5_private *lp = netdev_priv(dev);
4401 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4402 u_char count;
4404 p+=2;
4405 if (lp->chipset == DC21140) {
4406 lp->cache.gepc = (*p++ | GEP_CTRL);
4407 gep_wr(lp->cache.gepc, dev);
4410 /* Block count */
4411 count = *p++;
4413 /* Jump the infoblocks to find types */
4414 for (;count; --count) {
4415 if (*p < 128) {
4416 p += COMPACT_LEN;
4417 } else if (*(p+1) == 5) {
4418 type5_infoblock(dev, 1, p);
4419 p += ((*p & BLOCK_LEN) + 1);
4420 } else if (*(p+1) == 4) {
4421 p += ((*p & BLOCK_LEN) + 1);
4422 } else if (*(p+1) == 3) {
4423 type3_infoblock(dev, 1, p);
4424 p += ((*p & BLOCK_LEN) + 1);
4425 } else if (*(p+1) == 2) {
4426 p += ((*p & BLOCK_LEN) + 1);
4427 } else if (*(p+1) == 1) {
4428 type1_infoblock(dev, 1, p);
4429 p += ((*p & BLOCK_LEN) + 1);
4430 } else {
4431 p += ((*p & BLOCK_LEN) + 1);
4435 return;
4439 ** A generic routine that writes GEP control, data and reset information
4440 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4442 static void
4443 srom_exec(struct net_device *dev, u_char *p)
4445 struct de4x5_private *lp = netdev_priv(dev);
4446 u_long iobase = dev->base_addr;
4447 u_char count = (p ? *p++ : 0);
4448 u_short *w = (u_short *)p;
4450 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4452 if (lp->chipset != DC21140) RESET_SIA;
4454 while (count--) {
4455 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4456 *p++ : get_unaligned_le16(w++)), dev);
4457 mdelay(2); /* 2ms per action */
4460 if (lp->chipset != DC21140) {
4461 outl(lp->cache.csr14, DE4X5_STRR);
4462 outl(lp->cache.csr13, DE4X5_SICR);
4465 return;
4469 ** Basically this function is a NOP since it will never be called,
4470 ** unless I implement the DC21041 SROM functions. There's no need
4471 ** since the existing code will be satisfactory for all boards.
4473 static int
4474 dc21041_infoleaf(struct net_device *dev)
4476 return DE4X5_AUTOSENSE_MS;
4479 static int
4480 dc21140_infoleaf(struct net_device *dev)
4482 struct de4x5_private *lp = netdev_priv(dev);
4483 u_char count = 0;
4484 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4485 int next_tick = DE4X5_AUTOSENSE_MS;
4487 /* Read the connection type */
4488 p+=2;
4490 /* GEP control */
4491 lp->cache.gepc = (*p++ | GEP_CTRL);
4493 /* Block count */
4494 count = *p++;
4496 /* Recursively figure out the info blocks */
4497 if (*p < 128) {
4498 next_tick = dc_infoblock[COMPACT](dev, count, p);
4499 } else {
4500 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4503 if (lp->tcount == count) {
4504 lp->media = NC;
4505 if (lp->media != lp->c_media) {
4506 de4x5_dbg_media(dev);
4507 lp->c_media = lp->media;
4509 lp->media = INIT;
4510 lp->tcount = 0;
4511 lp->tx_enable = false;
4514 return next_tick & ~TIMER_CB;
4517 static int
4518 dc21142_infoleaf(struct net_device *dev)
4520 struct de4x5_private *lp = netdev_priv(dev);
4521 u_char count = 0;
4522 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4523 int next_tick = DE4X5_AUTOSENSE_MS;
4525 /* Read the connection type */
4526 p+=2;
4528 /* Block count */
4529 count = *p++;
4531 /* Recursively figure out the info blocks */
4532 if (*p < 128) {
4533 next_tick = dc_infoblock[COMPACT](dev, count, p);
4534 } else {
4535 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4538 if (lp->tcount == count) {
4539 lp->media = NC;
4540 if (lp->media != lp->c_media) {
4541 de4x5_dbg_media(dev);
4542 lp->c_media = lp->media;
4544 lp->media = INIT;
4545 lp->tcount = 0;
4546 lp->tx_enable = false;
4549 return next_tick & ~TIMER_CB;
4552 static int
4553 dc21143_infoleaf(struct net_device *dev)
4555 struct de4x5_private *lp = netdev_priv(dev);
4556 u_char count = 0;
4557 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4558 int next_tick = DE4X5_AUTOSENSE_MS;
4560 /* Read the connection type */
4561 p+=2;
4563 /* Block count */
4564 count = *p++;
4566 /* Recursively figure out the info blocks */
4567 if (*p < 128) {
4568 next_tick = dc_infoblock[COMPACT](dev, count, p);
4569 } else {
4570 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4572 if (lp->tcount == count) {
4573 lp->media = NC;
4574 if (lp->media != lp->c_media) {
4575 de4x5_dbg_media(dev);
4576 lp->c_media = lp->media;
4578 lp->media = INIT;
4579 lp->tcount = 0;
4580 lp->tx_enable = false;
4583 return next_tick & ~TIMER_CB;
4587 ** The compact infoblock is only designed for DC21140[A] chips, so
4588 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4590 static int
4591 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4593 struct de4x5_private *lp = netdev_priv(dev);
4594 u_char flags, csr6;
4596 /* Recursively figure out the info blocks */
4597 if (--count > lp->tcount) {
4598 if (*(p+COMPACT_LEN) < 128) {
4599 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4600 } else {
4601 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4605 if ((lp->media == INIT) && (lp->timeout < 0)) {
4606 lp->ibn = COMPACT;
4607 lp->active = 0;
4608 gep_wr(lp->cache.gepc, dev);
4609 lp->infoblock_media = (*p++) & COMPACT_MC;
4610 lp->cache.gep = *p++;
4611 csr6 = *p++;
4612 flags = *p++;
4614 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4615 lp->defMedium = (flags & 0x40) ? -1 : 0;
4616 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4617 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4618 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4619 lp->useMII = false;
4621 de4x5_switch_mac_port(dev);
4624 return dc21140m_autoconf(dev);
4628 ** This block describes non MII media for the DC21140[A] only.
4630 static int
4631 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4633 struct de4x5_private *lp = netdev_priv(dev);
4634 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4636 /* Recursively figure out the info blocks */
4637 if (--count > lp->tcount) {
4638 if (*(p+len) < 128) {
4639 return dc_infoblock[COMPACT](dev, count, p+len);
4640 } else {
4641 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4645 if ((lp->media == INIT) && (lp->timeout < 0)) {
4646 lp->ibn = 0;
4647 lp->active = 0;
4648 gep_wr(lp->cache.gepc, dev);
4649 p+=2;
4650 lp->infoblock_media = (*p++) & BLOCK0_MC;
4651 lp->cache.gep = *p++;
4652 csr6 = *p++;
4653 flags = *p++;
4655 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4656 lp->defMedium = (flags & 0x40) ? -1 : 0;
4657 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4658 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4659 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4660 lp->useMII = false;
4662 de4x5_switch_mac_port(dev);
4665 return dc21140m_autoconf(dev);
4668 /* These functions are under construction! */
4670 static int
4671 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4673 struct de4x5_private *lp = netdev_priv(dev);
4674 u_char len = (*p & BLOCK_LEN)+1;
4676 /* Recursively figure out the info blocks */
4677 if (--count > lp->tcount) {
4678 if (*(p+len) < 128) {
4679 return dc_infoblock[COMPACT](dev, count, p+len);
4680 } else {
4681 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4685 p += 2;
4686 if (lp->state == INITIALISED) {
4687 lp->ibn = 1;
4688 lp->active = *p++;
4689 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4690 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4691 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4692 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4693 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4694 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4695 return 0;
4696 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4697 lp->ibn = 1;
4698 lp->active = *p;
4699 lp->infoblock_csr6 = OMR_MII_100;
4700 lp->useMII = true;
4701 lp->infoblock_media = ANS;
4703 de4x5_switch_mac_port(dev);
4706 return dc21140m_autoconf(dev);
4709 static int
4710 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4712 struct de4x5_private *lp = netdev_priv(dev);
4713 u_char len = (*p & BLOCK_LEN)+1;
4715 /* Recursively figure out the info blocks */
4716 if (--count > lp->tcount) {
4717 if (*(p+len) < 128) {
4718 return dc_infoblock[COMPACT](dev, count, p+len);
4719 } else {
4720 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4724 if ((lp->media == INIT) && (lp->timeout < 0)) {
4725 lp->ibn = 2;
4726 lp->active = 0;
4727 p += 2;
4728 lp->infoblock_media = (*p) & MEDIA_CODE;
4730 if ((*p++) & EXT_FIELD) {
4731 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4732 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4733 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4734 } else {
4735 lp->cache.csr13 = CSR13;
4736 lp->cache.csr14 = CSR14;
4737 lp->cache.csr15 = CSR15;
4739 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4740 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4741 lp->infoblock_csr6 = OMR_SIA;
4742 lp->useMII = false;
4744 de4x5_switch_mac_port(dev);
4747 return dc2114x_autoconf(dev);
4750 static int
4751 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4753 struct de4x5_private *lp = netdev_priv(dev);
4754 u_char len = (*p & BLOCK_LEN)+1;
4756 /* Recursively figure out the info blocks */
4757 if (--count > lp->tcount) {
4758 if (*(p+len) < 128) {
4759 return dc_infoblock[COMPACT](dev, count, p+len);
4760 } else {
4761 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4765 p += 2;
4766 if (lp->state == INITIALISED) {
4767 lp->ibn = 3;
4768 lp->active = *p++;
4769 if (MOTO_SROM_BUG) lp->active = 0;
4770 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4771 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4772 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4773 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4774 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4775 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4776 lp->phy[lp->active].mci = *p;
4777 return 0;
4778 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4779 lp->ibn = 3;
4780 lp->active = *p;
4781 if (MOTO_SROM_BUG) lp->active = 0;
4782 lp->infoblock_csr6 = OMR_MII_100;
4783 lp->useMII = true;
4784 lp->infoblock_media = ANS;
4786 de4x5_switch_mac_port(dev);
4789 return dc2114x_autoconf(dev);
4792 static int
4793 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4795 struct de4x5_private *lp = netdev_priv(dev);
4796 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4798 /* Recursively figure out the info blocks */
4799 if (--count > lp->tcount) {
4800 if (*(p+len) < 128) {
4801 return dc_infoblock[COMPACT](dev, count, p+len);
4802 } else {
4803 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4807 if ((lp->media == INIT) && (lp->timeout < 0)) {
4808 lp->ibn = 4;
4809 lp->active = 0;
4810 p+=2;
4811 lp->infoblock_media = (*p++) & MEDIA_CODE;
4812 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4813 lp->cache.csr14 = CSR14;
4814 lp->cache.csr15 = CSR15;
4815 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4816 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4817 csr6 = *p++;
4818 flags = *p++;
4820 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4821 lp->defMedium = (flags & 0x40) ? -1 : 0;
4822 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4823 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4824 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4825 lp->useMII = false;
4827 de4x5_switch_mac_port(dev);
4830 return dc2114x_autoconf(dev);
4834 ** This block type provides information for resetting external devices
4835 ** (chips) through the General Purpose Register.
4837 static int
4838 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4840 struct de4x5_private *lp = netdev_priv(dev);
4841 u_char len = (*p & BLOCK_LEN)+1;
4843 /* Recursively figure out the info blocks */
4844 if (--count > lp->tcount) {
4845 if (*(p+len) < 128) {
4846 return dc_infoblock[COMPACT](dev, count, p+len);
4847 } else {
4848 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4852 /* Must be initializing to run this code */
4853 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4854 p+=2;
4855 lp->rst = p;
4856 srom_exec(dev, lp->rst);
4859 return DE4X5_AUTOSENSE_MS;
4863 ** MII Read/Write
4866 static int
4867 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4869 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4870 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4871 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4872 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4873 mii_address(phyreg, ioaddr); /* PHY Register to read */
4874 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4876 return mii_rdata(ioaddr); /* Read data */
4879 static void
4880 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4882 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4883 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4884 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4885 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4886 mii_address(phyreg, ioaddr); /* PHY Register to write */
4887 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4888 data = mii_swap(data, 16); /* Swap data bit ordering */
4889 mii_wdata(data, 16, ioaddr); /* Write data */
4891 return;
4894 static int
4895 mii_rdata(u_long ioaddr)
4897 int i;
4898 s32 tmp = 0;
4900 for (i=0; i<16; i++) {
4901 tmp <<= 1;
4902 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4905 return tmp;
4908 static void
4909 mii_wdata(int data, int len, u_long ioaddr)
4911 int i;
4913 for (i=0; i<len; i++) {
4914 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4915 data >>= 1;
4918 return;
4921 static void
4922 mii_address(u_char addr, u_long ioaddr)
4924 int i;
4926 addr = mii_swap(addr, 5);
4927 for (i=0; i<5; i++) {
4928 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4929 addr >>= 1;
4932 return;
4935 static void
4936 mii_ta(u_long rw, u_long ioaddr)
4938 if (rw == MII_STWR) {
4939 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4940 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4941 } else {
4942 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4945 return;
4948 static int
4949 mii_swap(int data, int len)
4951 int i, tmp = 0;
4953 for (i=0; i<len; i++) {
4954 tmp <<= 1;
4955 tmp |= (data & 1);
4956 data >>= 1;
4959 return tmp;
4962 static void
4963 sendto_mii(u32 command, int data, u_long ioaddr)
4965 u32 j;
4967 j = (data & 1) << 17;
4968 outl(command | j, ioaddr);
4969 udelay(1);
4970 outl(command | MII_MDC | j, ioaddr);
4971 udelay(1);
4973 return;
4976 static int
4977 getfrom_mii(u32 command, u_long ioaddr)
4979 outl(command, ioaddr);
4980 udelay(1);
4981 outl(command | MII_MDC, ioaddr);
4982 udelay(1);
4984 return ((inl(ioaddr) >> 19) & 1);
4988 ** Here's 3 ways to calculate the OUI from the ID registers.
4990 static int
4991 mii_get_oui(u_char phyaddr, u_long ioaddr)
4994 union {
4995 u_short reg;
4996 u_char breg[2];
4997 } a;
4998 int i, r2, r3, ret=0;*/
4999 int r2, r3;
5001 /* Read r2 and r3 */
5002 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
5003 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
5004 /* SEEQ and Cypress way * /
5005 / * Shuffle r2 and r3 * /
5006 a.reg=0;
5007 r3 = ((r3>>10)|(r2<<6))&0x0ff;
5008 r2 = ((r2>>2)&0x3fff);
5010 / * Bit reverse r3 * /
5011 for (i=0;i<8;i++) {
5012 ret<<=1;
5013 ret |= (r3&1);
5014 r3>>=1;
5017 / * Bit reverse r2 * /
5018 for (i=0;i<16;i++) {
5019 a.reg<<=1;
5020 a.reg |= (r2&1);
5021 r2>>=1;
5024 / * Swap r2 bytes * /
5025 i=a.breg[0];
5026 a.breg[0]=a.breg[1];
5027 a.breg[1]=i;
5029 return ((a.reg<<8)|ret); */ /* SEEQ and Cypress way */
5030 /* return ((r2<<6)|(u_int)(r3>>10)); */ /* NATIONAL and BROADCOM way */
5031 return r2; /* (I did it) My way */
5035 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
5037 static int
5038 mii_get_phy(struct net_device *dev)
5040 struct de4x5_private *lp = netdev_priv(dev);
5041 u_long iobase = dev->base_addr;
5042 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
5043 int id;
5045 lp->active = 0;
5046 lp->useMII = true;
5048 /* Search the MII address space for possible PHY devices */
5049 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
5050 lp->phy[lp->active].addr = i;
5051 if (i==0) n++; /* Count cycles */
5052 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
5053 id = mii_get_oui(i, DE4X5_MII);
5054 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
5055 for (j=0; j<limit; j++) { /* Search PHY table */
5056 if (id != phy_info[j].id) continue; /* ID match? */
5057 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++);
5058 if (k < DE4X5_MAX_PHY) {
5059 memcpy((char *)&lp->phy[k],
5060 (char *)&phy_info[j], sizeof(struct phy_table));
5061 lp->phy[k].addr = i;
5062 lp->mii_cnt++;
5063 lp->active++;
5064 } else {
5065 goto purgatory; /* Stop the search */
5067 break;
5069 if ((j == limit) && (i < DE4X5_MAX_MII)) {
5070 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++);
5071 lp->phy[k].addr = i;
5072 lp->phy[k].id = id;
5073 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5074 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5075 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5076 lp->mii_cnt++;
5077 lp->active++;
5078 printk("%s: Using generic MII device control. If the board doesn't operate, \nplease mail the following dump to the author:\n", dev->name);
5079 j = de4x5_debug;
5080 de4x5_debug |= DEBUG_MII;
5081 de4x5_dbg_mii(dev, k);
5082 de4x5_debug = j;
5083 printk("\n");
5086 purgatory:
5087 lp->active = 0;
5088 if (lp->phy[0].id) { /* Reset the PHY devices */
5089 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++) { /*For each PHY*/
5090 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5091 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5093 de4x5_dbg_mii(dev, k);
5096 if (!lp->mii_cnt) lp->useMII = false;
5098 return lp->mii_cnt;
5101 static char *
5102 build_setup_frame(struct net_device *dev, int mode)
5104 struct de4x5_private *lp = netdev_priv(dev);
5105 int i;
5106 char *pa = lp->setup_frame;
5108 /* Initialise the setup frame */
5109 if (mode == ALL) {
5110 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5113 if (lp->setup_f == HASH_PERF) {
5114 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5115 *(pa + i) = dev->dev_addr[i]; /* Host address */
5116 if (i & 0x01) pa += 2;
5118 *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5119 } else {
5120 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5121 *(pa + (i&1)) = dev->dev_addr[i];
5122 if (i & 0x01) pa += 4;
5124 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5125 *(pa + (i&1)) = (char) 0xff;
5126 if (i & 0x01) pa += 4;
5130 return pa; /* Points to the next entry */
5133 static void
5134 disable_ast(struct net_device *dev)
5136 struct de4x5_private *lp = netdev_priv(dev);
5137 del_timer_sync(&lp->timer);
5140 static long
5141 de4x5_switch_mac_port(struct net_device *dev)
5143 struct de4x5_private *lp = netdev_priv(dev);
5144 u_long iobase = dev->base_addr;
5145 s32 omr;
5147 STOP_DE4X5;
5149 /* Assert the OMR_PS bit in CSR6 */
5150 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5151 OMR_FDX));
5152 omr |= lp->infoblock_csr6;
5153 if (omr & OMR_PS) omr |= OMR_HBD;
5154 outl(omr, DE4X5_OMR);
5156 /* Soft Reset */
5157 RESET_DE4X5;
5159 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5160 if (lp->chipset == DC21140) {
5161 gep_wr(lp->cache.gepc, dev);
5162 gep_wr(lp->cache.gep, dev);
5163 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5164 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5167 /* Restore CSR6 */
5168 outl(omr, DE4X5_OMR);
5170 /* Reset CSR8 */
5171 inl(DE4X5_MFC);
5173 return omr;
5176 static void
5177 gep_wr(s32 data, struct net_device *dev)
5179 struct de4x5_private *lp = netdev_priv(dev);
5180 u_long iobase = dev->base_addr;
5182 if (lp->chipset == DC21140) {
5183 outl(data, DE4X5_GEP);
5184 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5185 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5188 return;
5191 static int
5192 gep_rd(struct net_device *dev)
5194 struct de4x5_private *lp = netdev_priv(dev);
5195 u_long iobase = dev->base_addr;
5197 if (lp->chipset == DC21140) {
5198 return inl(DE4X5_GEP);
5199 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5200 return (inl(DE4X5_SIGR) & 0x000fffff);
5203 return 0;
5206 static void
5207 yawn(struct net_device *dev, int state)
5209 struct de4x5_private *lp = netdev_priv(dev);
5210 u_long iobase = dev->base_addr;
5212 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5214 if(lp->bus == EISA) {
5215 switch(state) {
5216 case WAKEUP:
5217 outb(WAKEUP, PCI_CFPM);
5218 mdelay(10);
5219 break;
5221 case SNOOZE:
5222 outb(SNOOZE, PCI_CFPM);
5223 break;
5225 case SLEEP:
5226 outl(0, DE4X5_SICR);
5227 outb(SLEEP, PCI_CFPM);
5228 break;
5230 } else {
5231 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5232 switch(state) {
5233 case WAKEUP:
5234 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5235 mdelay(10);
5236 break;
5238 case SNOOZE:
5239 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5240 break;
5242 case SLEEP:
5243 outl(0, DE4X5_SICR);
5244 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5245 break;
5249 return;
5252 static void
5253 de4x5_parse_params(struct net_device *dev)
5255 struct de4x5_private *lp = netdev_priv(dev);
5256 char *p, *q, t;
5258 lp->params.fdx = 0;
5259 lp->params.autosense = AUTO;
5261 if (args == NULL) return;
5263 if ((p = strstr(args, dev->name))) {
5264 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5265 t = *q;
5266 *q = '\0';
5268 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = 1;
5270 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5271 if (strstr(p, "TP")) {
5272 lp->params.autosense = TP;
5273 } else if (strstr(p, "TP_NW")) {
5274 lp->params.autosense = TP_NW;
5275 } else if (strstr(p, "BNC")) {
5276 lp->params.autosense = BNC;
5277 } else if (strstr(p, "AUI")) {
5278 lp->params.autosense = AUI;
5279 } else if (strstr(p, "BNC_AUI")) {
5280 lp->params.autosense = BNC;
5281 } else if (strstr(p, "10Mb")) {
5282 lp->params.autosense = _10Mb;
5283 } else if (strstr(p, "100Mb")) {
5284 lp->params.autosense = _100Mb;
5285 } else if (strstr(p, "AUTO")) {
5286 lp->params.autosense = AUTO;
5289 *q = t;
5292 return;
5295 static void
5296 de4x5_dbg_open(struct net_device *dev)
5298 struct de4x5_private *lp = netdev_priv(dev);
5299 int i;
5301 if (de4x5_debug & DEBUG_OPEN) {
5302 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5303 printk("\tphysical address: ");
5304 for (i=0;i<6;i++) {
5305 printk("%2.2x:",(short)dev->dev_addr[i]);
5307 printk("\n");
5308 printk("Descriptor head addresses:\n");
5309 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5310 printk("Descriptor addresses:\nRX: ");
5311 for (i=0;i<lp->rxRingSize-1;i++){
5312 if (i < 3) {
5313 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5316 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5317 printk("TX: ");
5318 for (i=0;i<lp->txRingSize-1;i++){
5319 if (i < 3) {
5320 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5323 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5324 printk("Descriptor buffers:\nRX: ");
5325 for (i=0;i<lp->rxRingSize-1;i++){
5326 if (i < 3) {
5327 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5330 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5331 printk("TX: ");
5332 for (i=0;i<lp->txRingSize-1;i++){
5333 if (i < 3) {
5334 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5337 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5338 printk("Ring size: \nRX: %d\nTX: %d\n",
5339 (short)lp->rxRingSize,
5340 (short)lp->txRingSize);
5343 return;
5346 static void
5347 de4x5_dbg_mii(struct net_device *dev, int k)
5349 struct de4x5_private *lp = netdev_priv(dev);
5350 u_long iobase = dev->base_addr;
5352 if (de4x5_debug & DEBUG_MII) {
5353 printk("\nMII device address: %d\n", lp->phy[k].addr);
5354 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5355 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5356 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5357 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5358 if (lp->phy[k].id != BROADCOM_T4) {
5359 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5360 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5362 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5363 if (lp->phy[k].id != BROADCOM_T4) {
5364 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5365 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5366 } else {
5367 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5371 return;
5374 static void
5375 de4x5_dbg_media(struct net_device *dev)
5377 struct de4x5_private *lp = netdev_priv(dev);
5379 if (lp->media != lp->c_media) {
5380 if (de4x5_debug & DEBUG_MEDIA) {
5381 printk("%s: media is %s%s\n", dev->name,
5382 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5383 (lp->media == TP ? "TP" :
5384 (lp->media == ANS ? "TP/Nway" :
5385 (lp->media == BNC ? "BNC" :
5386 (lp->media == AUI ? "AUI" :
5387 (lp->media == BNC_AUI ? "BNC/AUI" :
5388 (lp->media == EXT_SIA ? "EXT SIA" :
5389 (lp->media == _100Mb ? "100Mb/s" :
5390 (lp->media == _10Mb ? "10Mb/s" :
5391 "???"
5392 ))))))))), (lp->fdx?" full duplex.":"."));
5394 lp->c_media = lp->media;
5397 return;
5400 static void
5401 de4x5_dbg_srom(struct de4x5_srom *p)
5403 int i;
5404 DECLARE_MAC_BUF(mac);
5406 if (de4x5_debug & DEBUG_SROM) {
5407 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5408 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5409 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5410 printk("SROM version: %02x\n", (u_char)(p->version));
5411 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5413 printk("Hardware Address: %s\n", print_mac(mac, p->ieee_addr));
5414 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5415 for (i=0; i<64; i++) {
5416 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5420 return;
5423 static void
5424 de4x5_dbg_rx(struct sk_buff *skb, int len)
5426 int i, j;
5427 DECLARE_MAC_BUF(mac);
5428 DECLARE_MAC_BUF(mac2);
5430 if (de4x5_debug & DEBUG_RX) {
5431 printk("R: %s <- %s len/SAP:%02x%02x [%d]\n",
5432 print_mac(mac, skb->data), print_mac(mac2, &skb->data[6]),
5433 (u_char)skb->data[12],
5434 (u_char)skb->data[13],
5435 len);
5436 for (j=0; len>0;j+=16, len-=16) {
5437 printk(" %03x: ",j);
5438 for (i=0; i<16 && i<len; i++) {
5439 printk("%02x ",(u_char)skb->data[i+j]);
5441 printk("\n");
5445 return;
5449 ** Perform IOCTL call functions here. Some are privileged operations and the
5450 ** effective uid is checked in those cases. In the normal course of events
5451 ** this function is only used for my testing.
5453 static int
5454 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5456 struct de4x5_private *lp = netdev_priv(dev);
5457 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5458 u_long iobase = dev->base_addr;
5459 int i, j, status = 0;
5460 s32 omr;
5461 union {
5462 u8 addr[144];
5463 u16 sval[72];
5464 u32 lval[36];
5465 } tmp;
5466 u_long flags = 0;
5468 switch(ioc->cmd) {
5469 case DE4X5_GET_HWADDR: /* Get the hardware address */
5470 ioc->len = ETH_ALEN;
5471 for (i=0; i<ETH_ALEN; i++) {
5472 tmp.addr[i] = dev->dev_addr[i];
5474 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5475 break;
5477 case DE4X5_SET_HWADDR: /* Set the hardware address */
5478 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5479 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5480 if (netif_queue_stopped(dev))
5481 return -EBUSY;
5482 netif_stop_queue(dev);
5483 for (i=0; i<ETH_ALEN; i++) {
5484 dev->dev_addr[i] = tmp.addr[i];
5486 build_setup_frame(dev, PHYS_ADDR_ONLY);
5487 /* Set up the descriptor and give ownership to the card */
5488 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5489 SETUP_FRAME_LEN, (struct sk_buff *)1);
5490 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
5491 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5492 netif_wake_queue(dev); /* Unlock the TX ring */
5493 break;
5495 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5496 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5497 printk("%s: Boo!\n", dev->name);
5498 break;
5500 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5501 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5502 omr = inl(DE4X5_OMR);
5503 omr |= OMR_PM;
5504 outl(omr, DE4X5_OMR);
5505 break;
5507 case DE4X5_GET_STATS: /* Get the driver statistics */
5509 struct pkt_stats statbuf;
5510 ioc->len = sizeof(statbuf);
5511 spin_lock_irqsave(&lp->lock, flags);
5512 memcpy(&statbuf, &lp->pktStats, ioc->len);
5513 spin_unlock_irqrestore(&lp->lock, flags);
5514 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5515 return -EFAULT;
5516 break;
5518 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5519 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5520 spin_lock_irqsave(&lp->lock, flags);
5521 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5522 spin_unlock_irqrestore(&lp->lock, flags);
5523 break;
5525 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5526 tmp.addr[0] = inl(DE4X5_OMR);
5527 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5528 break;
5530 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5531 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5532 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5533 outl(tmp.addr[0], DE4X5_OMR);
5534 break;
5536 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5537 j = 0;
5538 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5539 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5540 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5541 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5542 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5543 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5544 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5545 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5546 ioc->len = j;
5547 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5548 break;
5550 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5552 case DE4X5_DUMP:
5553 j = 0;
5554 tmp.addr[j++] = dev->irq;
5555 for (i=0; i<ETH_ALEN; i++) {
5556 tmp.addr[j++] = dev->dev_addr[i];
5558 tmp.addr[j++] = lp->rxRingSize;
5559 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5560 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5562 for (i=0;i<lp->rxRingSize-1;i++){
5563 if (i < 3) {
5564 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5567 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5568 for (i=0;i<lp->txRingSize-1;i++){
5569 if (i < 3) {
5570 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5573 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5575 for (i=0;i<lp->rxRingSize-1;i++){
5576 if (i < 3) {
5577 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5580 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5581 for (i=0;i<lp->txRingSize-1;i++){
5582 if (i < 3) {
5583 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5586 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5588 for (i=0;i<lp->rxRingSize;i++){
5589 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5591 for (i=0;i<lp->txRingSize;i++){
5592 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5595 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5596 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5597 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5598 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5599 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5600 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5601 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5602 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5603 tmp.lval[j>>2] = lp->chipset; j+=4;
5604 if (lp->chipset == DC21140) {
5605 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5606 } else {
5607 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5608 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5609 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5610 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5612 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5613 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5614 tmp.lval[j>>2] = lp->active; j+=4;
5615 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5616 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5617 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5618 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5619 if (lp->phy[lp->active].id != BROADCOM_T4) {
5620 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5621 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5623 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5624 if (lp->phy[lp->active].id != BROADCOM_T4) {
5625 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5626 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5627 } else {
5628 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5632 tmp.addr[j++] = lp->txRingSize;
5633 tmp.addr[j++] = netif_queue_stopped(dev);
5635 ioc->len = j;
5636 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5637 break;
5640 default:
5641 return -EOPNOTSUPP;
5644 return status;
5647 static int __init de4x5_module_init (void)
5649 int err = 0;
5651 #ifdef CONFIG_PCI
5652 err = pci_register_driver(&de4x5_pci_driver);
5653 #endif
5654 #ifdef CONFIG_EISA
5655 err |= eisa_driver_register (&de4x5_eisa_driver);
5656 #endif
5658 return err;
5661 static void __exit de4x5_module_exit (void)
5663 #ifdef CONFIG_PCI
5664 pci_unregister_driver (&de4x5_pci_driver);
5665 #endif
5666 #ifdef CONFIG_EISA
5667 eisa_driver_unregister (&de4x5_eisa_driver);
5668 #endif
5671 module_init (de4x5_module_init);
5672 module_exit (de4x5_module_exit);