Btrfs: if we have a lot of pinned space, commit the transaction
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent-tree.c
blob4eb7d2ba38f877b7b82a47ddad5976d47c12315b
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
49 enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
56 * Control how reservations are dealt with.
58 * RESERVE_FREE - freeing a reservation.
59 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
60 * ENOSPC accounting
61 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
62 * bytes_may_use as the ENOSPC accounting is done elsewhere
64 enum {
65 RESERVE_FREE = 0,
66 RESERVE_ALLOC = 1,
67 RESERVE_ALLOC_NO_ACCOUNT = 2,
70 static int update_block_group(struct btrfs_trans_handle *trans,
71 struct btrfs_root *root,
72 u64 bytenr, u64 num_bytes, int alloc);
73 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
74 struct btrfs_root *root,
75 u64 bytenr, u64 num_bytes, u64 parent,
76 u64 root_objectid, u64 owner_objectid,
77 u64 owner_offset, int refs_to_drop,
78 struct btrfs_delayed_extent_op *extra_op);
79 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
80 struct extent_buffer *leaf,
81 struct btrfs_extent_item *ei);
82 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
83 struct btrfs_root *root,
84 u64 parent, u64 root_objectid,
85 u64 flags, u64 owner, u64 offset,
86 struct btrfs_key *ins, int ref_mod);
87 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, struct btrfs_disk_key *key,
91 int level, struct btrfs_key *ins);
92 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
93 struct btrfs_root *extent_root, u64 alloc_bytes,
94 u64 flags, int force);
95 static int find_next_key(struct btrfs_path *path, int level,
96 struct btrfs_key *key);
97 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
98 int dump_block_groups);
99 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
100 u64 num_bytes, int reserve);
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 smp_mb();
106 return cache->cached == BTRFS_CACHE_FINISHED;
109 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 return (cache->flags & bits) == bits;
114 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 atomic_inc(&cache->count);
119 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 if (atomic_dec_and_test(&cache->count)) {
122 WARN_ON(cache->pinned > 0);
123 WARN_ON(cache->reserved > 0);
124 kfree(cache->free_space_ctl);
125 kfree(cache);
130 * this adds the block group to the fs_info rb tree for the block group
131 * cache
133 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
134 struct btrfs_block_group_cache *block_group)
136 struct rb_node **p;
137 struct rb_node *parent = NULL;
138 struct btrfs_block_group_cache *cache;
140 spin_lock(&info->block_group_cache_lock);
141 p = &info->block_group_cache_tree.rb_node;
143 while (*p) {
144 parent = *p;
145 cache = rb_entry(parent, struct btrfs_block_group_cache,
146 cache_node);
147 if (block_group->key.objectid < cache->key.objectid) {
148 p = &(*p)->rb_left;
149 } else if (block_group->key.objectid > cache->key.objectid) {
150 p = &(*p)->rb_right;
151 } else {
152 spin_unlock(&info->block_group_cache_lock);
153 return -EEXIST;
157 rb_link_node(&block_group->cache_node, parent, p);
158 rb_insert_color(&block_group->cache_node,
159 &info->block_group_cache_tree);
160 spin_unlock(&info->block_group_cache_lock);
162 return 0;
166 * This will return the block group at or after bytenr if contains is 0, else
167 * it will return the block group that contains the bytenr
169 static struct btrfs_block_group_cache *
170 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
171 int contains)
173 struct btrfs_block_group_cache *cache, *ret = NULL;
174 struct rb_node *n;
175 u64 end, start;
177 spin_lock(&info->block_group_cache_lock);
178 n = info->block_group_cache_tree.rb_node;
180 while (n) {
181 cache = rb_entry(n, struct btrfs_block_group_cache,
182 cache_node);
183 end = cache->key.objectid + cache->key.offset - 1;
184 start = cache->key.objectid;
186 if (bytenr < start) {
187 if (!contains && (!ret || start < ret->key.objectid))
188 ret = cache;
189 n = n->rb_left;
190 } else if (bytenr > start) {
191 if (contains && bytenr <= end) {
192 ret = cache;
193 break;
195 n = n->rb_right;
196 } else {
197 ret = cache;
198 break;
201 if (ret)
202 btrfs_get_block_group(ret);
203 spin_unlock(&info->block_group_cache_lock);
205 return ret;
208 static int add_excluded_extent(struct btrfs_root *root,
209 u64 start, u64 num_bytes)
211 u64 end = start + num_bytes - 1;
212 set_extent_bits(&root->fs_info->freed_extents[0],
213 start, end, EXTENT_UPTODATE, GFP_NOFS);
214 set_extent_bits(&root->fs_info->freed_extents[1],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 return 0;
219 static void free_excluded_extents(struct btrfs_root *root,
220 struct btrfs_block_group_cache *cache)
222 u64 start, end;
224 start = cache->key.objectid;
225 end = start + cache->key.offset - 1;
227 clear_extent_bits(&root->fs_info->freed_extents[0],
228 start, end, EXTENT_UPTODATE, GFP_NOFS);
229 clear_extent_bits(&root->fs_info->freed_extents[1],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 static int exclude_super_stripes(struct btrfs_root *root,
234 struct btrfs_block_group_cache *cache)
236 u64 bytenr;
237 u64 *logical;
238 int stripe_len;
239 int i, nr, ret;
241 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
242 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
243 cache->bytes_super += stripe_len;
244 ret = add_excluded_extent(root, cache->key.objectid,
245 stripe_len);
246 BUG_ON(ret);
249 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
250 bytenr = btrfs_sb_offset(i);
251 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
252 cache->key.objectid, bytenr,
253 0, &logical, &nr, &stripe_len);
254 BUG_ON(ret);
256 while (nr--) {
257 cache->bytes_super += stripe_len;
258 ret = add_excluded_extent(root, logical[nr],
259 stripe_len);
260 BUG_ON(ret);
263 kfree(logical);
265 return 0;
268 static struct btrfs_caching_control *
269 get_caching_control(struct btrfs_block_group_cache *cache)
271 struct btrfs_caching_control *ctl;
273 spin_lock(&cache->lock);
274 if (cache->cached != BTRFS_CACHE_STARTED) {
275 spin_unlock(&cache->lock);
276 return NULL;
279 /* We're loading it the fast way, so we don't have a caching_ctl. */
280 if (!cache->caching_ctl) {
281 spin_unlock(&cache->lock);
282 return NULL;
285 ctl = cache->caching_ctl;
286 atomic_inc(&ctl->count);
287 spin_unlock(&cache->lock);
288 return ctl;
291 static void put_caching_control(struct btrfs_caching_control *ctl)
293 if (atomic_dec_and_test(&ctl->count))
294 kfree(ctl);
298 * this is only called by cache_block_group, since we could have freed extents
299 * we need to check the pinned_extents for any extents that can't be used yet
300 * since their free space will be released as soon as the transaction commits.
302 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
303 struct btrfs_fs_info *info, u64 start, u64 end)
305 u64 extent_start, extent_end, size, total_added = 0;
306 int ret;
308 while (start < end) {
309 ret = find_first_extent_bit(info->pinned_extents, start,
310 &extent_start, &extent_end,
311 EXTENT_DIRTY | EXTENT_UPTODATE);
312 if (ret)
313 break;
315 if (extent_start <= start) {
316 start = extent_end + 1;
317 } else if (extent_start > start && extent_start < end) {
318 size = extent_start - start;
319 total_added += size;
320 ret = btrfs_add_free_space(block_group, start,
321 size);
322 BUG_ON(ret);
323 start = extent_end + 1;
324 } else {
325 break;
329 if (start < end) {
330 size = end - start;
331 total_added += size;
332 ret = btrfs_add_free_space(block_group, start, size);
333 BUG_ON(ret);
336 return total_added;
339 static noinline void caching_thread(struct btrfs_work *work)
341 struct btrfs_block_group_cache *block_group;
342 struct btrfs_fs_info *fs_info;
343 struct btrfs_caching_control *caching_ctl;
344 struct btrfs_root *extent_root;
345 struct btrfs_path *path;
346 struct extent_buffer *leaf;
347 struct btrfs_key key;
348 u64 total_found = 0;
349 u64 last = 0;
350 u32 nritems;
351 int ret = 0;
353 caching_ctl = container_of(work, struct btrfs_caching_control, work);
354 block_group = caching_ctl->block_group;
355 fs_info = block_group->fs_info;
356 extent_root = fs_info->extent_root;
358 path = btrfs_alloc_path();
359 if (!path)
360 goto out;
362 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365 * We don't want to deadlock with somebody trying to allocate a new
366 * extent for the extent root while also trying to search the extent
367 * root to add free space. So we skip locking and search the commit
368 * root, since its read-only
370 path->skip_locking = 1;
371 path->search_commit_root = 1;
372 path->reada = 1;
374 key.objectid = last;
375 key.offset = 0;
376 key.type = BTRFS_EXTENT_ITEM_KEY;
377 again:
378 mutex_lock(&caching_ctl->mutex);
379 /* need to make sure the commit_root doesn't disappear */
380 down_read(&fs_info->extent_commit_sem);
382 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
383 if (ret < 0)
384 goto err;
386 leaf = path->nodes[0];
387 nritems = btrfs_header_nritems(leaf);
389 while (1) {
390 if (btrfs_fs_closing(fs_info) > 1) {
391 last = (u64)-1;
392 break;
395 if (path->slots[0] < nritems) {
396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
397 } else {
398 ret = find_next_key(path, 0, &key);
399 if (ret)
400 break;
402 if (need_resched() ||
403 btrfs_next_leaf(extent_root, path)) {
404 caching_ctl->progress = last;
405 btrfs_release_path(path);
406 up_read(&fs_info->extent_commit_sem);
407 mutex_unlock(&caching_ctl->mutex);
408 cond_resched();
409 goto again;
411 leaf = path->nodes[0];
412 nritems = btrfs_header_nritems(leaf);
413 continue;
416 if (key.objectid < block_group->key.objectid) {
417 path->slots[0]++;
418 continue;
421 if (key.objectid >= block_group->key.objectid +
422 block_group->key.offset)
423 break;
425 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
426 total_found += add_new_free_space(block_group,
427 fs_info, last,
428 key.objectid);
429 last = key.objectid + key.offset;
431 if (total_found > (1024 * 1024 * 2)) {
432 total_found = 0;
433 wake_up(&caching_ctl->wait);
436 path->slots[0]++;
438 ret = 0;
440 total_found += add_new_free_space(block_group, fs_info, last,
441 block_group->key.objectid +
442 block_group->key.offset);
443 caching_ctl->progress = (u64)-1;
445 spin_lock(&block_group->lock);
446 block_group->caching_ctl = NULL;
447 block_group->cached = BTRFS_CACHE_FINISHED;
448 spin_unlock(&block_group->lock);
450 err:
451 btrfs_free_path(path);
452 up_read(&fs_info->extent_commit_sem);
454 free_excluded_extents(extent_root, block_group);
456 mutex_unlock(&caching_ctl->mutex);
457 out:
458 wake_up(&caching_ctl->wait);
460 put_caching_control(caching_ctl);
461 btrfs_put_block_group(block_group);
464 static int cache_block_group(struct btrfs_block_group_cache *cache,
465 struct btrfs_trans_handle *trans,
466 struct btrfs_root *root,
467 int load_cache_only)
469 struct btrfs_fs_info *fs_info = cache->fs_info;
470 struct btrfs_caching_control *caching_ctl;
471 int ret = 0;
473 smp_mb();
474 if (cache->cached != BTRFS_CACHE_NO)
475 return 0;
478 * We can't do the read from on-disk cache during a commit since we need
479 * to have the normal tree locking. Also if we are currently trying to
480 * allocate blocks for the tree root we can't do the fast caching since
481 * we likely hold important locks.
483 if (trans && (!trans->transaction->in_commit) &&
484 (root && root != root->fs_info->tree_root) &&
485 btrfs_test_opt(root, SPACE_CACHE)) {
486 spin_lock(&cache->lock);
487 if (cache->cached != BTRFS_CACHE_NO) {
488 spin_unlock(&cache->lock);
489 return 0;
491 cache->cached = BTRFS_CACHE_STARTED;
492 spin_unlock(&cache->lock);
494 ret = load_free_space_cache(fs_info, cache);
496 spin_lock(&cache->lock);
497 if (ret == 1) {
498 cache->cached = BTRFS_CACHE_FINISHED;
499 cache->last_byte_to_unpin = (u64)-1;
500 } else {
501 cache->cached = BTRFS_CACHE_NO;
503 spin_unlock(&cache->lock);
504 if (ret == 1) {
505 free_excluded_extents(fs_info->extent_root, cache);
506 return 0;
510 if (load_cache_only)
511 return 0;
513 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
514 BUG_ON(!caching_ctl);
516 INIT_LIST_HEAD(&caching_ctl->list);
517 mutex_init(&caching_ctl->mutex);
518 init_waitqueue_head(&caching_ctl->wait);
519 caching_ctl->block_group = cache;
520 caching_ctl->progress = cache->key.objectid;
521 /* one for caching kthread, one for caching block group list */
522 atomic_set(&caching_ctl->count, 2);
523 caching_ctl->work.func = caching_thread;
525 spin_lock(&cache->lock);
526 if (cache->cached != BTRFS_CACHE_NO) {
527 spin_unlock(&cache->lock);
528 kfree(caching_ctl);
529 return 0;
531 cache->caching_ctl = caching_ctl;
532 cache->cached = BTRFS_CACHE_STARTED;
533 spin_unlock(&cache->lock);
535 down_write(&fs_info->extent_commit_sem);
536 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
537 up_write(&fs_info->extent_commit_sem);
539 btrfs_get_block_group(cache);
541 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
543 return ret;
547 * return the block group that starts at or after bytenr
549 static struct btrfs_block_group_cache *
550 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
552 struct btrfs_block_group_cache *cache;
554 cache = block_group_cache_tree_search(info, bytenr, 0);
556 return cache;
560 * return the block group that contains the given bytenr
562 struct btrfs_block_group_cache *btrfs_lookup_block_group(
563 struct btrfs_fs_info *info,
564 u64 bytenr)
566 struct btrfs_block_group_cache *cache;
568 cache = block_group_cache_tree_search(info, bytenr, 1);
570 return cache;
573 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
574 u64 flags)
576 struct list_head *head = &info->space_info;
577 struct btrfs_space_info *found;
579 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
580 BTRFS_BLOCK_GROUP_METADATA;
582 rcu_read_lock();
583 list_for_each_entry_rcu(found, head, list) {
584 if (found->flags & flags) {
585 rcu_read_unlock();
586 return found;
589 rcu_read_unlock();
590 return NULL;
594 * after adding space to the filesystem, we need to clear the full flags
595 * on all the space infos.
597 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
599 struct list_head *head = &info->space_info;
600 struct btrfs_space_info *found;
602 rcu_read_lock();
603 list_for_each_entry_rcu(found, head, list)
604 found->full = 0;
605 rcu_read_unlock();
608 static u64 div_factor(u64 num, int factor)
610 if (factor == 10)
611 return num;
612 num *= factor;
613 do_div(num, 10);
614 return num;
617 static u64 div_factor_fine(u64 num, int factor)
619 if (factor == 100)
620 return num;
621 num *= factor;
622 do_div(num, 100);
623 return num;
626 u64 btrfs_find_block_group(struct btrfs_root *root,
627 u64 search_start, u64 search_hint, int owner)
629 struct btrfs_block_group_cache *cache;
630 u64 used;
631 u64 last = max(search_hint, search_start);
632 u64 group_start = 0;
633 int full_search = 0;
634 int factor = 9;
635 int wrapped = 0;
636 again:
637 while (1) {
638 cache = btrfs_lookup_first_block_group(root->fs_info, last);
639 if (!cache)
640 break;
642 spin_lock(&cache->lock);
643 last = cache->key.objectid + cache->key.offset;
644 used = btrfs_block_group_used(&cache->item);
646 if ((full_search || !cache->ro) &&
647 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
648 if (used + cache->pinned + cache->reserved <
649 div_factor(cache->key.offset, factor)) {
650 group_start = cache->key.objectid;
651 spin_unlock(&cache->lock);
652 btrfs_put_block_group(cache);
653 goto found;
656 spin_unlock(&cache->lock);
657 btrfs_put_block_group(cache);
658 cond_resched();
660 if (!wrapped) {
661 last = search_start;
662 wrapped = 1;
663 goto again;
665 if (!full_search && factor < 10) {
666 last = search_start;
667 full_search = 1;
668 factor = 10;
669 goto again;
671 found:
672 return group_start;
675 /* simple helper to search for an existing extent at a given offset */
676 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
678 int ret;
679 struct btrfs_key key;
680 struct btrfs_path *path;
682 path = btrfs_alloc_path();
683 if (!path)
684 return -ENOMEM;
686 key.objectid = start;
687 key.offset = len;
688 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
689 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
690 0, 0);
691 btrfs_free_path(path);
692 return ret;
696 * helper function to lookup reference count and flags of extent.
698 * the head node for delayed ref is used to store the sum of all the
699 * reference count modifications queued up in the rbtree. the head
700 * node may also store the extent flags to set. This way you can check
701 * to see what the reference count and extent flags would be if all of
702 * the delayed refs are not processed.
704 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
705 struct btrfs_root *root, u64 bytenr,
706 u64 num_bytes, u64 *refs, u64 *flags)
708 struct btrfs_delayed_ref_head *head;
709 struct btrfs_delayed_ref_root *delayed_refs;
710 struct btrfs_path *path;
711 struct btrfs_extent_item *ei;
712 struct extent_buffer *leaf;
713 struct btrfs_key key;
714 u32 item_size;
715 u64 num_refs;
716 u64 extent_flags;
717 int ret;
719 path = btrfs_alloc_path();
720 if (!path)
721 return -ENOMEM;
723 key.objectid = bytenr;
724 key.type = BTRFS_EXTENT_ITEM_KEY;
725 key.offset = num_bytes;
726 if (!trans) {
727 path->skip_locking = 1;
728 path->search_commit_root = 1;
730 again:
731 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
732 &key, path, 0, 0);
733 if (ret < 0)
734 goto out_free;
736 if (ret == 0) {
737 leaf = path->nodes[0];
738 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
739 if (item_size >= sizeof(*ei)) {
740 ei = btrfs_item_ptr(leaf, path->slots[0],
741 struct btrfs_extent_item);
742 num_refs = btrfs_extent_refs(leaf, ei);
743 extent_flags = btrfs_extent_flags(leaf, ei);
744 } else {
745 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
746 struct btrfs_extent_item_v0 *ei0;
747 BUG_ON(item_size != sizeof(*ei0));
748 ei0 = btrfs_item_ptr(leaf, path->slots[0],
749 struct btrfs_extent_item_v0);
750 num_refs = btrfs_extent_refs_v0(leaf, ei0);
751 /* FIXME: this isn't correct for data */
752 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
753 #else
754 BUG();
755 #endif
757 BUG_ON(num_refs == 0);
758 } else {
759 num_refs = 0;
760 extent_flags = 0;
761 ret = 0;
764 if (!trans)
765 goto out;
767 delayed_refs = &trans->transaction->delayed_refs;
768 spin_lock(&delayed_refs->lock);
769 head = btrfs_find_delayed_ref_head(trans, bytenr);
770 if (head) {
771 if (!mutex_trylock(&head->mutex)) {
772 atomic_inc(&head->node.refs);
773 spin_unlock(&delayed_refs->lock);
775 btrfs_release_path(path);
778 * Mutex was contended, block until it's released and try
779 * again
781 mutex_lock(&head->mutex);
782 mutex_unlock(&head->mutex);
783 btrfs_put_delayed_ref(&head->node);
784 goto again;
786 if (head->extent_op && head->extent_op->update_flags)
787 extent_flags |= head->extent_op->flags_to_set;
788 else
789 BUG_ON(num_refs == 0);
791 num_refs += head->node.ref_mod;
792 mutex_unlock(&head->mutex);
794 spin_unlock(&delayed_refs->lock);
795 out:
796 WARN_ON(num_refs == 0);
797 if (refs)
798 *refs = num_refs;
799 if (flags)
800 *flags = extent_flags;
801 out_free:
802 btrfs_free_path(path);
803 return ret;
807 * Back reference rules. Back refs have three main goals:
809 * 1) differentiate between all holders of references to an extent so that
810 * when a reference is dropped we can make sure it was a valid reference
811 * before freeing the extent.
813 * 2) Provide enough information to quickly find the holders of an extent
814 * if we notice a given block is corrupted or bad.
816 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
817 * maintenance. This is actually the same as #2, but with a slightly
818 * different use case.
820 * There are two kinds of back refs. The implicit back refs is optimized
821 * for pointers in non-shared tree blocks. For a given pointer in a block,
822 * back refs of this kind provide information about the block's owner tree
823 * and the pointer's key. These information allow us to find the block by
824 * b-tree searching. The full back refs is for pointers in tree blocks not
825 * referenced by their owner trees. The location of tree block is recorded
826 * in the back refs. Actually the full back refs is generic, and can be
827 * used in all cases the implicit back refs is used. The major shortcoming
828 * of the full back refs is its overhead. Every time a tree block gets
829 * COWed, we have to update back refs entry for all pointers in it.
831 * For a newly allocated tree block, we use implicit back refs for
832 * pointers in it. This means most tree related operations only involve
833 * implicit back refs. For a tree block created in old transaction, the
834 * only way to drop a reference to it is COW it. So we can detect the
835 * event that tree block loses its owner tree's reference and do the
836 * back refs conversion.
838 * When a tree block is COW'd through a tree, there are four cases:
840 * The reference count of the block is one and the tree is the block's
841 * owner tree. Nothing to do in this case.
843 * The reference count of the block is one and the tree is not the
844 * block's owner tree. In this case, full back refs is used for pointers
845 * in the block. Remove these full back refs, add implicit back refs for
846 * every pointers in the new block.
848 * The reference count of the block is greater than one and the tree is
849 * the block's owner tree. In this case, implicit back refs is used for
850 * pointers in the block. Add full back refs for every pointers in the
851 * block, increase lower level extents' reference counts. The original
852 * implicit back refs are entailed to the new block.
854 * The reference count of the block is greater than one and the tree is
855 * not the block's owner tree. Add implicit back refs for every pointer in
856 * the new block, increase lower level extents' reference count.
858 * Back Reference Key composing:
860 * The key objectid corresponds to the first byte in the extent,
861 * The key type is used to differentiate between types of back refs.
862 * There are different meanings of the key offset for different types
863 * of back refs.
865 * File extents can be referenced by:
867 * - multiple snapshots, subvolumes, or different generations in one subvol
868 * - different files inside a single subvolume
869 * - different offsets inside a file (bookend extents in file.c)
871 * The extent ref structure for the implicit back refs has fields for:
873 * - Objectid of the subvolume root
874 * - objectid of the file holding the reference
875 * - original offset in the file
876 * - how many bookend extents
878 * The key offset for the implicit back refs is hash of the first
879 * three fields.
881 * The extent ref structure for the full back refs has field for:
883 * - number of pointers in the tree leaf
885 * The key offset for the implicit back refs is the first byte of
886 * the tree leaf
888 * When a file extent is allocated, The implicit back refs is used.
889 * the fields are filled in:
891 * (root_key.objectid, inode objectid, offset in file, 1)
893 * When a file extent is removed file truncation, we find the
894 * corresponding implicit back refs and check the following fields:
896 * (btrfs_header_owner(leaf), inode objectid, offset in file)
898 * Btree extents can be referenced by:
900 * - Different subvolumes
902 * Both the implicit back refs and the full back refs for tree blocks
903 * only consist of key. The key offset for the implicit back refs is
904 * objectid of block's owner tree. The key offset for the full back refs
905 * is the first byte of parent block.
907 * When implicit back refs is used, information about the lowest key and
908 * level of the tree block are required. These information are stored in
909 * tree block info structure.
912 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
913 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
914 struct btrfs_root *root,
915 struct btrfs_path *path,
916 u64 owner, u32 extra_size)
918 struct btrfs_extent_item *item;
919 struct btrfs_extent_item_v0 *ei0;
920 struct btrfs_extent_ref_v0 *ref0;
921 struct btrfs_tree_block_info *bi;
922 struct extent_buffer *leaf;
923 struct btrfs_key key;
924 struct btrfs_key found_key;
925 u32 new_size = sizeof(*item);
926 u64 refs;
927 int ret;
929 leaf = path->nodes[0];
930 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
932 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
933 ei0 = btrfs_item_ptr(leaf, path->slots[0],
934 struct btrfs_extent_item_v0);
935 refs = btrfs_extent_refs_v0(leaf, ei0);
937 if (owner == (u64)-1) {
938 while (1) {
939 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
940 ret = btrfs_next_leaf(root, path);
941 if (ret < 0)
942 return ret;
943 BUG_ON(ret > 0);
944 leaf = path->nodes[0];
946 btrfs_item_key_to_cpu(leaf, &found_key,
947 path->slots[0]);
948 BUG_ON(key.objectid != found_key.objectid);
949 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
950 path->slots[0]++;
951 continue;
953 ref0 = btrfs_item_ptr(leaf, path->slots[0],
954 struct btrfs_extent_ref_v0);
955 owner = btrfs_ref_objectid_v0(leaf, ref0);
956 break;
959 btrfs_release_path(path);
961 if (owner < BTRFS_FIRST_FREE_OBJECTID)
962 new_size += sizeof(*bi);
964 new_size -= sizeof(*ei0);
965 ret = btrfs_search_slot(trans, root, &key, path,
966 new_size + extra_size, 1);
967 if (ret < 0)
968 return ret;
969 BUG_ON(ret);
971 ret = btrfs_extend_item(trans, root, path, new_size);
973 leaf = path->nodes[0];
974 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
975 btrfs_set_extent_refs(leaf, item, refs);
976 /* FIXME: get real generation */
977 btrfs_set_extent_generation(leaf, item, 0);
978 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
979 btrfs_set_extent_flags(leaf, item,
980 BTRFS_EXTENT_FLAG_TREE_BLOCK |
981 BTRFS_BLOCK_FLAG_FULL_BACKREF);
982 bi = (struct btrfs_tree_block_info *)(item + 1);
983 /* FIXME: get first key of the block */
984 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
985 btrfs_set_tree_block_level(leaf, bi, (int)owner);
986 } else {
987 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
989 btrfs_mark_buffer_dirty(leaf);
990 return 0;
992 #endif
994 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
996 u32 high_crc = ~(u32)0;
997 u32 low_crc = ~(u32)0;
998 __le64 lenum;
1000 lenum = cpu_to_le64(root_objectid);
1001 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1002 lenum = cpu_to_le64(owner);
1003 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1004 lenum = cpu_to_le64(offset);
1005 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1007 return ((u64)high_crc << 31) ^ (u64)low_crc;
1010 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1011 struct btrfs_extent_data_ref *ref)
1013 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1014 btrfs_extent_data_ref_objectid(leaf, ref),
1015 btrfs_extent_data_ref_offset(leaf, ref));
1018 static int match_extent_data_ref(struct extent_buffer *leaf,
1019 struct btrfs_extent_data_ref *ref,
1020 u64 root_objectid, u64 owner, u64 offset)
1022 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1023 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1024 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1025 return 0;
1026 return 1;
1029 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1030 struct btrfs_root *root,
1031 struct btrfs_path *path,
1032 u64 bytenr, u64 parent,
1033 u64 root_objectid,
1034 u64 owner, u64 offset)
1036 struct btrfs_key key;
1037 struct btrfs_extent_data_ref *ref;
1038 struct extent_buffer *leaf;
1039 u32 nritems;
1040 int ret;
1041 int recow;
1042 int err = -ENOENT;
1044 key.objectid = bytenr;
1045 if (parent) {
1046 key.type = BTRFS_SHARED_DATA_REF_KEY;
1047 key.offset = parent;
1048 } else {
1049 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1050 key.offset = hash_extent_data_ref(root_objectid,
1051 owner, offset);
1053 again:
1054 recow = 0;
1055 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1056 if (ret < 0) {
1057 err = ret;
1058 goto fail;
1061 if (parent) {
1062 if (!ret)
1063 return 0;
1064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1065 key.type = BTRFS_EXTENT_REF_V0_KEY;
1066 btrfs_release_path(path);
1067 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1068 if (ret < 0) {
1069 err = ret;
1070 goto fail;
1072 if (!ret)
1073 return 0;
1074 #endif
1075 goto fail;
1078 leaf = path->nodes[0];
1079 nritems = btrfs_header_nritems(leaf);
1080 while (1) {
1081 if (path->slots[0] >= nritems) {
1082 ret = btrfs_next_leaf(root, path);
1083 if (ret < 0)
1084 err = ret;
1085 if (ret)
1086 goto fail;
1088 leaf = path->nodes[0];
1089 nritems = btrfs_header_nritems(leaf);
1090 recow = 1;
1093 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1094 if (key.objectid != bytenr ||
1095 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1096 goto fail;
1098 ref = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_data_ref);
1101 if (match_extent_data_ref(leaf, ref, root_objectid,
1102 owner, offset)) {
1103 if (recow) {
1104 btrfs_release_path(path);
1105 goto again;
1107 err = 0;
1108 break;
1110 path->slots[0]++;
1112 fail:
1113 return err;
1116 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root,
1118 struct btrfs_path *path,
1119 u64 bytenr, u64 parent,
1120 u64 root_objectid, u64 owner,
1121 u64 offset, int refs_to_add)
1123 struct btrfs_key key;
1124 struct extent_buffer *leaf;
1125 u32 size;
1126 u32 num_refs;
1127 int ret;
1129 key.objectid = bytenr;
1130 if (parent) {
1131 key.type = BTRFS_SHARED_DATA_REF_KEY;
1132 key.offset = parent;
1133 size = sizeof(struct btrfs_shared_data_ref);
1134 } else {
1135 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1136 key.offset = hash_extent_data_ref(root_objectid,
1137 owner, offset);
1138 size = sizeof(struct btrfs_extent_data_ref);
1141 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1142 if (ret && ret != -EEXIST)
1143 goto fail;
1145 leaf = path->nodes[0];
1146 if (parent) {
1147 struct btrfs_shared_data_ref *ref;
1148 ref = btrfs_item_ptr(leaf, path->slots[0],
1149 struct btrfs_shared_data_ref);
1150 if (ret == 0) {
1151 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1152 } else {
1153 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1154 num_refs += refs_to_add;
1155 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1157 } else {
1158 struct btrfs_extent_data_ref *ref;
1159 while (ret == -EEXIST) {
1160 ref = btrfs_item_ptr(leaf, path->slots[0],
1161 struct btrfs_extent_data_ref);
1162 if (match_extent_data_ref(leaf, ref, root_objectid,
1163 owner, offset))
1164 break;
1165 btrfs_release_path(path);
1166 key.offset++;
1167 ret = btrfs_insert_empty_item(trans, root, path, &key,
1168 size);
1169 if (ret && ret != -EEXIST)
1170 goto fail;
1172 leaf = path->nodes[0];
1174 ref = btrfs_item_ptr(leaf, path->slots[0],
1175 struct btrfs_extent_data_ref);
1176 if (ret == 0) {
1177 btrfs_set_extent_data_ref_root(leaf, ref,
1178 root_objectid);
1179 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1180 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1181 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1182 } else {
1183 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1184 num_refs += refs_to_add;
1185 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1188 btrfs_mark_buffer_dirty(leaf);
1189 ret = 0;
1190 fail:
1191 btrfs_release_path(path);
1192 return ret;
1195 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1196 struct btrfs_root *root,
1197 struct btrfs_path *path,
1198 int refs_to_drop)
1200 struct btrfs_key key;
1201 struct btrfs_extent_data_ref *ref1 = NULL;
1202 struct btrfs_shared_data_ref *ref2 = NULL;
1203 struct extent_buffer *leaf;
1204 u32 num_refs = 0;
1205 int ret = 0;
1207 leaf = path->nodes[0];
1208 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1210 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1211 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1212 struct btrfs_extent_data_ref);
1213 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1214 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1215 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1218 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1219 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1220 struct btrfs_extent_ref_v0 *ref0;
1221 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1222 struct btrfs_extent_ref_v0);
1223 num_refs = btrfs_ref_count_v0(leaf, ref0);
1224 #endif
1225 } else {
1226 BUG();
1229 BUG_ON(num_refs < refs_to_drop);
1230 num_refs -= refs_to_drop;
1232 if (num_refs == 0) {
1233 ret = btrfs_del_item(trans, root, path);
1234 } else {
1235 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1236 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1237 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1238 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1239 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1240 else {
1241 struct btrfs_extent_ref_v0 *ref0;
1242 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1243 struct btrfs_extent_ref_v0);
1244 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1246 #endif
1247 btrfs_mark_buffer_dirty(leaf);
1249 return ret;
1252 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1253 struct btrfs_path *path,
1254 struct btrfs_extent_inline_ref *iref)
1256 struct btrfs_key key;
1257 struct extent_buffer *leaf;
1258 struct btrfs_extent_data_ref *ref1;
1259 struct btrfs_shared_data_ref *ref2;
1260 u32 num_refs = 0;
1262 leaf = path->nodes[0];
1263 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1264 if (iref) {
1265 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1266 BTRFS_EXTENT_DATA_REF_KEY) {
1267 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1268 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1269 } else {
1270 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1271 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1273 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1274 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1275 struct btrfs_extent_data_ref);
1276 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1277 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1278 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_shared_data_ref);
1280 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1283 struct btrfs_extent_ref_v0 *ref0;
1284 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_ref_v0);
1286 num_refs = btrfs_ref_count_v0(leaf, ref0);
1287 #endif
1288 } else {
1289 WARN_ON(1);
1291 return num_refs;
1294 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1295 struct btrfs_root *root,
1296 struct btrfs_path *path,
1297 u64 bytenr, u64 parent,
1298 u64 root_objectid)
1300 struct btrfs_key key;
1301 int ret;
1303 key.objectid = bytenr;
1304 if (parent) {
1305 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1306 key.offset = parent;
1307 } else {
1308 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1309 key.offset = root_objectid;
1312 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1313 if (ret > 0)
1314 ret = -ENOENT;
1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 if (ret == -ENOENT && parent) {
1317 btrfs_release_path(path);
1318 key.type = BTRFS_EXTENT_REF_V0_KEY;
1319 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1320 if (ret > 0)
1321 ret = -ENOENT;
1323 #endif
1324 return ret;
1327 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root,
1329 struct btrfs_path *path,
1330 u64 bytenr, u64 parent,
1331 u64 root_objectid)
1333 struct btrfs_key key;
1334 int ret;
1336 key.objectid = bytenr;
1337 if (parent) {
1338 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1339 key.offset = parent;
1340 } else {
1341 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1342 key.offset = root_objectid;
1345 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1346 btrfs_release_path(path);
1347 return ret;
1350 static inline int extent_ref_type(u64 parent, u64 owner)
1352 int type;
1353 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1354 if (parent > 0)
1355 type = BTRFS_SHARED_BLOCK_REF_KEY;
1356 else
1357 type = BTRFS_TREE_BLOCK_REF_KEY;
1358 } else {
1359 if (parent > 0)
1360 type = BTRFS_SHARED_DATA_REF_KEY;
1361 else
1362 type = BTRFS_EXTENT_DATA_REF_KEY;
1364 return type;
1367 static int find_next_key(struct btrfs_path *path, int level,
1368 struct btrfs_key *key)
1371 for (; level < BTRFS_MAX_LEVEL; level++) {
1372 if (!path->nodes[level])
1373 break;
1374 if (path->slots[level] + 1 >=
1375 btrfs_header_nritems(path->nodes[level]))
1376 continue;
1377 if (level == 0)
1378 btrfs_item_key_to_cpu(path->nodes[level], key,
1379 path->slots[level] + 1);
1380 else
1381 btrfs_node_key_to_cpu(path->nodes[level], key,
1382 path->slots[level] + 1);
1383 return 0;
1385 return 1;
1389 * look for inline back ref. if back ref is found, *ref_ret is set
1390 * to the address of inline back ref, and 0 is returned.
1392 * if back ref isn't found, *ref_ret is set to the address where it
1393 * should be inserted, and -ENOENT is returned.
1395 * if insert is true and there are too many inline back refs, the path
1396 * points to the extent item, and -EAGAIN is returned.
1398 * NOTE: inline back refs are ordered in the same way that back ref
1399 * items in the tree are ordered.
1401 static noinline_for_stack
1402 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_path *path,
1405 struct btrfs_extent_inline_ref **ref_ret,
1406 u64 bytenr, u64 num_bytes,
1407 u64 parent, u64 root_objectid,
1408 u64 owner, u64 offset, int insert)
1410 struct btrfs_key key;
1411 struct extent_buffer *leaf;
1412 struct btrfs_extent_item *ei;
1413 struct btrfs_extent_inline_ref *iref;
1414 u64 flags;
1415 u64 item_size;
1416 unsigned long ptr;
1417 unsigned long end;
1418 int extra_size;
1419 int type;
1420 int want;
1421 int ret;
1422 int err = 0;
1424 key.objectid = bytenr;
1425 key.type = BTRFS_EXTENT_ITEM_KEY;
1426 key.offset = num_bytes;
1428 want = extent_ref_type(parent, owner);
1429 if (insert) {
1430 extra_size = btrfs_extent_inline_ref_size(want);
1431 path->keep_locks = 1;
1432 } else
1433 extra_size = -1;
1434 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1435 if (ret < 0) {
1436 err = ret;
1437 goto out;
1439 BUG_ON(ret);
1441 leaf = path->nodes[0];
1442 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1443 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1444 if (item_size < sizeof(*ei)) {
1445 if (!insert) {
1446 err = -ENOENT;
1447 goto out;
1449 ret = convert_extent_item_v0(trans, root, path, owner,
1450 extra_size);
1451 if (ret < 0) {
1452 err = ret;
1453 goto out;
1455 leaf = path->nodes[0];
1456 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1458 #endif
1459 BUG_ON(item_size < sizeof(*ei));
1461 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1462 flags = btrfs_extent_flags(leaf, ei);
1464 ptr = (unsigned long)(ei + 1);
1465 end = (unsigned long)ei + item_size;
1467 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1468 ptr += sizeof(struct btrfs_tree_block_info);
1469 BUG_ON(ptr > end);
1470 } else {
1471 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1474 err = -ENOENT;
1475 while (1) {
1476 if (ptr >= end) {
1477 WARN_ON(ptr > end);
1478 break;
1480 iref = (struct btrfs_extent_inline_ref *)ptr;
1481 type = btrfs_extent_inline_ref_type(leaf, iref);
1482 if (want < type)
1483 break;
1484 if (want > type) {
1485 ptr += btrfs_extent_inline_ref_size(type);
1486 continue;
1489 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1490 struct btrfs_extent_data_ref *dref;
1491 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1492 if (match_extent_data_ref(leaf, dref, root_objectid,
1493 owner, offset)) {
1494 err = 0;
1495 break;
1497 if (hash_extent_data_ref_item(leaf, dref) <
1498 hash_extent_data_ref(root_objectid, owner, offset))
1499 break;
1500 } else {
1501 u64 ref_offset;
1502 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1503 if (parent > 0) {
1504 if (parent == ref_offset) {
1505 err = 0;
1506 break;
1508 if (ref_offset < parent)
1509 break;
1510 } else {
1511 if (root_objectid == ref_offset) {
1512 err = 0;
1513 break;
1515 if (ref_offset < root_objectid)
1516 break;
1519 ptr += btrfs_extent_inline_ref_size(type);
1521 if (err == -ENOENT && insert) {
1522 if (item_size + extra_size >=
1523 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1524 err = -EAGAIN;
1525 goto out;
1528 * To add new inline back ref, we have to make sure
1529 * there is no corresponding back ref item.
1530 * For simplicity, we just do not add new inline back
1531 * ref if there is any kind of item for this block
1533 if (find_next_key(path, 0, &key) == 0 &&
1534 key.objectid == bytenr &&
1535 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1536 err = -EAGAIN;
1537 goto out;
1540 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1541 out:
1542 if (insert) {
1543 path->keep_locks = 0;
1544 btrfs_unlock_up_safe(path, 1);
1546 return err;
1550 * helper to add new inline back ref
1552 static noinline_for_stack
1553 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1554 struct btrfs_root *root,
1555 struct btrfs_path *path,
1556 struct btrfs_extent_inline_ref *iref,
1557 u64 parent, u64 root_objectid,
1558 u64 owner, u64 offset, int refs_to_add,
1559 struct btrfs_delayed_extent_op *extent_op)
1561 struct extent_buffer *leaf;
1562 struct btrfs_extent_item *ei;
1563 unsigned long ptr;
1564 unsigned long end;
1565 unsigned long item_offset;
1566 u64 refs;
1567 int size;
1568 int type;
1569 int ret;
1571 leaf = path->nodes[0];
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 item_offset = (unsigned long)iref - (unsigned long)ei;
1575 type = extent_ref_type(parent, owner);
1576 size = btrfs_extent_inline_ref_size(type);
1578 ret = btrfs_extend_item(trans, root, path, size);
1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 refs = btrfs_extent_refs(leaf, ei);
1582 refs += refs_to_add;
1583 btrfs_set_extent_refs(leaf, ei, refs);
1584 if (extent_op)
1585 __run_delayed_extent_op(extent_op, leaf, ei);
1587 ptr = (unsigned long)ei + item_offset;
1588 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1589 if (ptr < end - size)
1590 memmove_extent_buffer(leaf, ptr + size, ptr,
1591 end - size - ptr);
1593 iref = (struct btrfs_extent_inline_ref *)ptr;
1594 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1595 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1596 struct btrfs_extent_data_ref *dref;
1597 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1598 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1599 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1600 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1601 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1602 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1603 struct btrfs_shared_data_ref *sref;
1604 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1605 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1606 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1607 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1608 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1609 } else {
1610 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1612 btrfs_mark_buffer_dirty(leaf);
1613 return 0;
1616 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1617 struct btrfs_root *root,
1618 struct btrfs_path *path,
1619 struct btrfs_extent_inline_ref **ref_ret,
1620 u64 bytenr, u64 num_bytes, u64 parent,
1621 u64 root_objectid, u64 owner, u64 offset)
1623 int ret;
1625 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1626 bytenr, num_bytes, parent,
1627 root_objectid, owner, offset, 0);
1628 if (ret != -ENOENT)
1629 return ret;
1631 btrfs_release_path(path);
1632 *ref_ret = NULL;
1634 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1635 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1636 root_objectid);
1637 } else {
1638 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1639 root_objectid, owner, offset);
1641 return ret;
1645 * helper to update/remove inline back ref
1647 static noinline_for_stack
1648 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1649 struct btrfs_root *root,
1650 struct btrfs_path *path,
1651 struct btrfs_extent_inline_ref *iref,
1652 int refs_to_mod,
1653 struct btrfs_delayed_extent_op *extent_op)
1655 struct extent_buffer *leaf;
1656 struct btrfs_extent_item *ei;
1657 struct btrfs_extent_data_ref *dref = NULL;
1658 struct btrfs_shared_data_ref *sref = NULL;
1659 unsigned long ptr;
1660 unsigned long end;
1661 u32 item_size;
1662 int size;
1663 int type;
1664 int ret;
1665 u64 refs;
1667 leaf = path->nodes[0];
1668 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1669 refs = btrfs_extent_refs(leaf, ei);
1670 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1671 refs += refs_to_mod;
1672 btrfs_set_extent_refs(leaf, ei, refs);
1673 if (extent_op)
1674 __run_delayed_extent_op(extent_op, leaf, ei);
1676 type = btrfs_extent_inline_ref_type(leaf, iref);
1678 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1679 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1680 refs = btrfs_extent_data_ref_count(leaf, dref);
1681 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1682 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1683 refs = btrfs_shared_data_ref_count(leaf, sref);
1684 } else {
1685 refs = 1;
1686 BUG_ON(refs_to_mod != -1);
1689 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1690 refs += refs_to_mod;
1692 if (refs > 0) {
1693 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1694 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1695 else
1696 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1697 } else {
1698 size = btrfs_extent_inline_ref_size(type);
1699 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1700 ptr = (unsigned long)iref;
1701 end = (unsigned long)ei + item_size;
1702 if (ptr + size < end)
1703 memmove_extent_buffer(leaf, ptr, ptr + size,
1704 end - ptr - size);
1705 item_size -= size;
1706 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1708 btrfs_mark_buffer_dirty(leaf);
1709 return 0;
1712 static noinline_for_stack
1713 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1714 struct btrfs_root *root,
1715 struct btrfs_path *path,
1716 u64 bytenr, u64 num_bytes, u64 parent,
1717 u64 root_objectid, u64 owner,
1718 u64 offset, int refs_to_add,
1719 struct btrfs_delayed_extent_op *extent_op)
1721 struct btrfs_extent_inline_ref *iref;
1722 int ret;
1724 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1725 bytenr, num_bytes, parent,
1726 root_objectid, owner, offset, 1);
1727 if (ret == 0) {
1728 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1729 ret = update_inline_extent_backref(trans, root, path, iref,
1730 refs_to_add, extent_op);
1731 } else if (ret == -ENOENT) {
1732 ret = setup_inline_extent_backref(trans, root, path, iref,
1733 parent, root_objectid,
1734 owner, offset, refs_to_add,
1735 extent_op);
1737 return ret;
1740 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1741 struct btrfs_root *root,
1742 struct btrfs_path *path,
1743 u64 bytenr, u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add)
1746 int ret;
1747 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1748 BUG_ON(refs_to_add != 1);
1749 ret = insert_tree_block_ref(trans, root, path, bytenr,
1750 parent, root_objectid);
1751 } else {
1752 ret = insert_extent_data_ref(trans, root, path, bytenr,
1753 parent, root_objectid,
1754 owner, offset, refs_to_add);
1756 return ret;
1759 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1760 struct btrfs_root *root,
1761 struct btrfs_path *path,
1762 struct btrfs_extent_inline_ref *iref,
1763 int refs_to_drop, int is_data)
1765 int ret;
1767 BUG_ON(!is_data && refs_to_drop != 1);
1768 if (iref) {
1769 ret = update_inline_extent_backref(trans, root, path, iref,
1770 -refs_to_drop, NULL);
1771 } else if (is_data) {
1772 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1773 } else {
1774 ret = btrfs_del_item(trans, root, path);
1776 return ret;
1779 static int btrfs_issue_discard(struct block_device *bdev,
1780 u64 start, u64 len)
1782 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1785 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1786 u64 num_bytes, u64 *actual_bytes)
1788 int ret;
1789 u64 discarded_bytes = 0;
1790 struct btrfs_multi_bio *multi = NULL;
1793 /* Tell the block device(s) that the sectors can be discarded */
1794 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1795 bytenr, &num_bytes, &multi, 0);
1796 if (!ret) {
1797 struct btrfs_bio_stripe *stripe = multi->stripes;
1798 int i;
1801 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1802 if (!stripe->dev->can_discard)
1803 continue;
1805 ret = btrfs_issue_discard(stripe->dev->bdev,
1806 stripe->physical,
1807 stripe->length);
1808 if (!ret)
1809 discarded_bytes += stripe->length;
1810 else if (ret != -EOPNOTSUPP)
1811 break;
1814 * Just in case we get back EOPNOTSUPP for some reason,
1815 * just ignore the return value so we don't screw up
1816 * people calling discard_extent.
1818 ret = 0;
1820 kfree(multi);
1823 if (actual_bytes)
1824 *actual_bytes = discarded_bytes;
1827 return ret;
1830 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1831 struct btrfs_root *root,
1832 u64 bytenr, u64 num_bytes, u64 parent,
1833 u64 root_objectid, u64 owner, u64 offset)
1835 int ret;
1836 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1837 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1839 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1840 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1841 parent, root_objectid, (int)owner,
1842 BTRFS_ADD_DELAYED_REF, NULL);
1843 } else {
1844 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1845 parent, root_objectid, owner, offset,
1846 BTRFS_ADD_DELAYED_REF, NULL);
1848 return ret;
1851 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 u64 bytenr, u64 num_bytes,
1854 u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add,
1856 struct btrfs_delayed_extent_op *extent_op)
1858 struct btrfs_path *path;
1859 struct extent_buffer *leaf;
1860 struct btrfs_extent_item *item;
1861 u64 refs;
1862 int ret;
1863 int err = 0;
1865 path = btrfs_alloc_path();
1866 if (!path)
1867 return -ENOMEM;
1869 path->reada = 1;
1870 path->leave_spinning = 1;
1871 /* this will setup the path even if it fails to insert the back ref */
1872 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1873 path, bytenr, num_bytes, parent,
1874 root_objectid, owner, offset,
1875 refs_to_add, extent_op);
1876 if (ret == 0)
1877 goto out;
1879 if (ret != -EAGAIN) {
1880 err = ret;
1881 goto out;
1884 leaf = path->nodes[0];
1885 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1886 refs = btrfs_extent_refs(leaf, item);
1887 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1888 if (extent_op)
1889 __run_delayed_extent_op(extent_op, leaf, item);
1891 btrfs_mark_buffer_dirty(leaf);
1892 btrfs_release_path(path);
1894 path->reada = 1;
1895 path->leave_spinning = 1;
1897 /* now insert the actual backref */
1898 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1899 path, bytenr, parent, root_objectid,
1900 owner, offset, refs_to_add);
1901 BUG_ON(ret);
1902 out:
1903 btrfs_free_path(path);
1904 return err;
1907 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1908 struct btrfs_root *root,
1909 struct btrfs_delayed_ref_node *node,
1910 struct btrfs_delayed_extent_op *extent_op,
1911 int insert_reserved)
1913 int ret = 0;
1914 struct btrfs_delayed_data_ref *ref;
1915 struct btrfs_key ins;
1916 u64 parent = 0;
1917 u64 ref_root = 0;
1918 u64 flags = 0;
1920 ins.objectid = node->bytenr;
1921 ins.offset = node->num_bytes;
1922 ins.type = BTRFS_EXTENT_ITEM_KEY;
1924 ref = btrfs_delayed_node_to_data_ref(node);
1925 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1926 parent = ref->parent;
1927 else
1928 ref_root = ref->root;
1930 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1931 if (extent_op) {
1932 BUG_ON(extent_op->update_key);
1933 flags |= extent_op->flags_to_set;
1935 ret = alloc_reserved_file_extent(trans, root,
1936 parent, ref_root, flags,
1937 ref->objectid, ref->offset,
1938 &ins, node->ref_mod);
1939 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1940 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1941 node->num_bytes, parent,
1942 ref_root, ref->objectid,
1943 ref->offset, node->ref_mod,
1944 extent_op);
1945 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1946 ret = __btrfs_free_extent(trans, root, node->bytenr,
1947 node->num_bytes, parent,
1948 ref_root, ref->objectid,
1949 ref->offset, node->ref_mod,
1950 extent_op);
1951 } else {
1952 BUG();
1954 return ret;
1957 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1958 struct extent_buffer *leaf,
1959 struct btrfs_extent_item *ei)
1961 u64 flags = btrfs_extent_flags(leaf, ei);
1962 if (extent_op->update_flags) {
1963 flags |= extent_op->flags_to_set;
1964 btrfs_set_extent_flags(leaf, ei, flags);
1967 if (extent_op->update_key) {
1968 struct btrfs_tree_block_info *bi;
1969 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1970 bi = (struct btrfs_tree_block_info *)(ei + 1);
1971 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1975 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1976 struct btrfs_root *root,
1977 struct btrfs_delayed_ref_node *node,
1978 struct btrfs_delayed_extent_op *extent_op)
1980 struct btrfs_key key;
1981 struct btrfs_path *path;
1982 struct btrfs_extent_item *ei;
1983 struct extent_buffer *leaf;
1984 u32 item_size;
1985 int ret;
1986 int err = 0;
1988 path = btrfs_alloc_path();
1989 if (!path)
1990 return -ENOMEM;
1992 key.objectid = node->bytenr;
1993 key.type = BTRFS_EXTENT_ITEM_KEY;
1994 key.offset = node->num_bytes;
1996 path->reada = 1;
1997 path->leave_spinning = 1;
1998 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1999 path, 0, 1);
2000 if (ret < 0) {
2001 err = ret;
2002 goto out;
2004 if (ret > 0) {
2005 err = -EIO;
2006 goto out;
2009 leaf = path->nodes[0];
2010 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2011 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2012 if (item_size < sizeof(*ei)) {
2013 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2014 path, (u64)-1, 0);
2015 if (ret < 0) {
2016 err = ret;
2017 goto out;
2019 leaf = path->nodes[0];
2020 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2022 #endif
2023 BUG_ON(item_size < sizeof(*ei));
2024 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2025 __run_delayed_extent_op(extent_op, leaf, ei);
2027 btrfs_mark_buffer_dirty(leaf);
2028 out:
2029 btrfs_free_path(path);
2030 return err;
2033 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2034 struct btrfs_root *root,
2035 struct btrfs_delayed_ref_node *node,
2036 struct btrfs_delayed_extent_op *extent_op,
2037 int insert_reserved)
2039 int ret = 0;
2040 struct btrfs_delayed_tree_ref *ref;
2041 struct btrfs_key ins;
2042 u64 parent = 0;
2043 u64 ref_root = 0;
2045 ins.objectid = node->bytenr;
2046 ins.offset = node->num_bytes;
2047 ins.type = BTRFS_EXTENT_ITEM_KEY;
2049 ref = btrfs_delayed_node_to_tree_ref(node);
2050 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2051 parent = ref->parent;
2052 else
2053 ref_root = ref->root;
2055 BUG_ON(node->ref_mod != 1);
2056 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2057 BUG_ON(!extent_op || !extent_op->update_flags ||
2058 !extent_op->update_key);
2059 ret = alloc_reserved_tree_block(trans, root,
2060 parent, ref_root,
2061 extent_op->flags_to_set,
2062 &extent_op->key,
2063 ref->level, &ins);
2064 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2065 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2066 node->num_bytes, parent, ref_root,
2067 ref->level, 0, 1, extent_op);
2068 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2069 ret = __btrfs_free_extent(trans, root, node->bytenr,
2070 node->num_bytes, parent, ref_root,
2071 ref->level, 0, 1, extent_op);
2072 } else {
2073 BUG();
2075 return ret;
2078 /* helper function to actually process a single delayed ref entry */
2079 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2080 struct btrfs_root *root,
2081 struct btrfs_delayed_ref_node *node,
2082 struct btrfs_delayed_extent_op *extent_op,
2083 int insert_reserved)
2085 int ret;
2086 if (btrfs_delayed_ref_is_head(node)) {
2087 struct btrfs_delayed_ref_head *head;
2089 * we've hit the end of the chain and we were supposed
2090 * to insert this extent into the tree. But, it got
2091 * deleted before we ever needed to insert it, so all
2092 * we have to do is clean up the accounting
2094 BUG_ON(extent_op);
2095 head = btrfs_delayed_node_to_head(node);
2096 if (insert_reserved) {
2097 btrfs_pin_extent(root, node->bytenr,
2098 node->num_bytes, 1);
2099 if (head->is_data) {
2100 ret = btrfs_del_csums(trans, root,
2101 node->bytenr,
2102 node->num_bytes);
2103 BUG_ON(ret);
2106 mutex_unlock(&head->mutex);
2107 return 0;
2110 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2111 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2112 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2113 insert_reserved);
2114 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2115 node->type == BTRFS_SHARED_DATA_REF_KEY)
2116 ret = run_delayed_data_ref(trans, root, node, extent_op,
2117 insert_reserved);
2118 else
2119 BUG();
2120 return ret;
2123 static noinline struct btrfs_delayed_ref_node *
2124 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2126 struct rb_node *node;
2127 struct btrfs_delayed_ref_node *ref;
2128 int action = BTRFS_ADD_DELAYED_REF;
2129 again:
2131 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2132 * this prevents ref count from going down to zero when
2133 * there still are pending delayed ref.
2135 node = rb_prev(&head->node.rb_node);
2136 while (1) {
2137 if (!node)
2138 break;
2139 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2140 rb_node);
2141 if (ref->bytenr != head->node.bytenr)
2142 break;
2143 if (ref->action == action)
2144 return ref;
2145 node = rb_prev(node);
2147 if (action == BTRFS_ADD_DELAYED_REF) {
2148 action = BTRFS_DROP_DELAYED_REF;
2149 goto again;
2151 return NULL;
2154 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2155 struct btrfs_root *root,
2156 struct list_head *cluster)
2158 struct btrfs_delayed_ref_root *delayed_refs;
2159 struct btrfs_delayed_ref_node *ref;
2160 struct btrfs_delayed_ref_head *locked_ref = NULL;
2161 struct btrfs_delayed_extent_op *extent_op;
2162 int ret;
2163 int count = 0;
2164 int must_insert_reserved = 0;
2166 delayed_refs = &trans->transaction->delayed_refs;
2167 while (1) {
2168 if (!locked_ref) {
2169 /* pick a new head ref from the cluster list */
2170 if (list_empty(cluster))
2171 break;
2173 locked_ref = list_entry(cluster->next,
2174 struct btrfs_delayed_ref_head, cluster);
2176 /* grab the lock that says we are going to process
2177 * all the refs for this head */
2178 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2181 * we may have dropped the spin lock to get the head
2182 * mutex lock, and that might have given someone else
2183 * time to free the head. If that's true, it has been
2184 * removed from our list and we can move on.
2186 if (ret == -EAGAIN) {
2187 locked_ref = NULL;
2188 count++;
2189 continue;
2194 * record the must insert reserved flag before we
2195 * drop the spin lock.
2197 must_insert_reserved = locked_ref->must_insert_reserved;
2198 locked_ref->must_insert_reserved = 0;
2200 extent_op = locked_ref->extent_op;
2201 locked_ref->extent_op = NULL;
2204 * locked_ref is the head node, so we have to go one
2205 * node back for any delayed ref updates
2207 ref = select_delayed_ref(locked_ref);
2208 if (!ref) {
2209 /* All delayed refs have been processed, Go ahead
2210 * and send the head node to run_one_delayed_ref,
2211 * so that any accounting fixes can happen
2213 ref = &locked_ref->node;
2215 if (extent_op && must_insert_reserved) {
2216 kfree(extent_op);
2217 extent_op = NULL;
2220 if (extent_op) {
2221 spin_unlock(&delayed_refs->lock);
2223 ret = run_delayed_extent_op(trans, root,
2224 ref, extent_op);
2225 BUG_ON(ret);
2226 kfree(extent_op);
2228 cond_resched();
2229 spin_lock(&delayed_refs->lock);
2230 continue;
2233 list_del_init(&locked_ref->cluster);
2234 locked_ref = NULL;
2237 ref->in_tree = 0;
2238 rb_erase(&ref->rb_node, &delayed_refs->root);
2239 delayed_refs->num_entries--;
2241 spin_unlock(&delayed_refs->lock);
2243 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2244 must_insert_reserved);
2245 BUG_ON(ret);
2247 btrfs_put_delayed_ref(ref);
2248 kfree(extent_op);
2249 count++;
2251 cond_resched();
2252 spin_lock(&delayed_refs->lock);
2254 return count;
2258 * this starts processing the delayed reference count updates and
2259 * extent insertions we have queued up so far. count can be
2260 * 0, which means to process everything in the tree at the start
2261 * of the run (but not newly added entries), or it can be some target
2262 * number you'd like to process.
2264 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2265 struct btrfs_root *root, unsigned long count)
2267 struct rb_node *node;
2268 struct btrfs_delayed_ref_root *delayed_refs;
2269 struct btrfs_delayed_ref_node *ref;
2270 struct list_head cluster;
2271 int ret;
2272 int run_all = count == (unsigned long)-1;
2273 int run_most = 0;
2275 if (root == root->fs_info->extent_root)
2276 root = root->fs_info->tree_root;
2278 delayed_refs = &trans->transaction->delayed_refs;
2279 INIT_LIST_HEAD(&cluster);
2280 again:
2281 spin_lock(&delayed_refs->lock);
2282 if (count == 0) {
2283 count = delayed_refs->num_entries * 2;
2284 run_most = 1;
2286 while (1) {
2287 if (!(run_all || run_most) &&
2288 delayed_refs->num_heads_ready < 64)
2289 break;
2292 * go find something we can process in the rbtree. We start at
2293 * the beginning of the tree, and then build a cluster
2294 * of refs to process starting at the first one we are able to
2295 * lock
2297 ret = btrfs_find_ref_cluster(trans, &cluster,
2298 delayed_refs->run_delayed_start);
2299 if (ret)
2300 break;
2302 ret = run_clustered_refs(trans, root, &cluster);
2303 BUG_ON(ret < 0);
2305 count -= min_t(unsigned long, ret, count);
2307 if (count == 0)
2308 break;
2311 if (run_all) {
2312 node = rb_first(&delayed_refs->root);
2313 if (!node)
2314 goto out;
2315 count = (unsigned long)-1;
2317 while (node) {
2318 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2319 rb_node);
2320 if (btrfs_delayed_ref_is_head(ref)) {
2321 struct btrfs_delayed_ref_head *head;
2323 head = btrfs_delayed_node_to_head(ref);
2324 atomic_inc(&ref->refs);
2326 spin_unlock(&delayed_refs->lock);
2328 * Mutex was contended, block until it's
2329 * released and try again
2331 mutex_lock(&head->mutex);
2332 mutex_unlock(&head->mutex);
2334 btrfs_put_delayed_ref(ref);
2335 cond_resched();
2336 goto again;
2338 node = rb_next(node);
2340 spin_unlock(&delayed_refs->lock);
2341 schedule_timeout(1);
2342 goto again;
2344 out:
2345 spin_unlock(&delayed_refs->lock);
2346 return 0;
2349 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2350 struct btrfs_root *root,
2351 u64 bytenr, u64 num_bytes, u64 flags,
2352 int is_data)
2354 struct btrfs_delayed_extent_op *extent_op;
2355 int ret;
2357 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2358 if (!extent_op)
2359 return -ENOMEM;
2361 extent_op->flags_to_set = flags;
2362 extent_op->update_flags = 1;
2363 extent_op->update_key = 0;
2364 extent_op->is_data = is_data ? 1 : 0;
2366 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2367 if (ret)
2368 kfree(extent_op);
2369 return ret;
2372 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2373 struct btrfs_root *root,
2374 struct btrfs_path *path,
2375 u64 objectid, u64 offset, u64 bytenr)
2377 struct btrfs_delayed_ref_head *head;
2378 struct btrfs_delayed_ref_node *ref;
2379 struct btrfs_delayed_data_ref *data_ref;
2380 struct btrfs_delayed_ref_root *delayed_refs;
2381 struct rb_node *node;
2382 int ret = 0;
2384 ret = -ENOENT;
2385 delayed_refs = &trans->transaction->delayed_refs;
2386 spin_lock(&delayed_refs->lock);
2387 head = btrfs_find_delayed_ref_head(trans, bytenr);
2388 if (!head)
2389 goto out;
2391 if (!mutex_trylock(&head->mutex)) {
2392 atomic_inc(&head->node.refs);
2393 spin_unlock(&delayed_refs->lock);
2395 btrfs_release_path(path);
2398 * Mutex was contended, block until it's released and let
2399 * caller try again
2401 mutex_lock(&head->mutex);
2402 mutex_unlock(&head->mutex);
2403 btrfs_put_delayed_ref(&head->node);
2404 return -EAGAIN;
2407 node = rb_prev(&head->node.rb_node);
2408 if (!node)
2409 goto out_unlock;
2411 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2413 if (ref->bytenr != bytenr)
2414 goto out_unlock;
2416 ret = 1;
2417 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2418 goto out_unlock;
2420 data_ref = btrfs_delayed_node_to_data_ref(ref);
2422 node = rb_prev(node);
2423 if (node) {
2424 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2425 if (ref->bytenr == bytenr)
2426 goto out_unlock;
2429 if (data_ref->root != root->root_key.objectid ||
2430 data_ref->objectid != objectid || data_ref->offset != offset)
2431 goto out_unlock;
2433 ret = 0;
2434 out_unlock:
2435 mutex_unlock(&head->mutex);
2436 out:
2437 spin_unlock(&delayed_refs->lock);
2438 return ret;
2441 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2442 struct btrfs_root *root,
2443 struct btrfs_path *path,
2444 u64 objectid, u64 offset, u64 bytenr)
2446 struct btrfs_root *extent_root = root->fs_info->extent_root;
2447 struct extent_buffer *leaf;
2448 struct btrfs_extent_data_ref *ref;
2449 struct btrfs_extent_inline_ref *iref;
2450 struct btrfs_extent_item *ei;
2451 struct btrfs_key key;
2452 u32 item_size;
2453 int ret;
2455 key.objectid = bytenr;
2456 key.offset = (u64)-1;
2457 key.type = BTRFS_EXTENT_ITEM_KEY;
2459 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2460 if (ret < 0)
2461 goto out;
2462 BUG_ON(ret == 0);
2464 ret = -ENOENT;
2465 if (path->slots[0] == 0)
2466 goto out;
2468 path->slots[0]--;
2469 leaf = path->nodes[0];
2470 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2472 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2473 goto out;
2475 ret = 1;
2476 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2477 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2478 if (item_size < sizeof(*ei)) {
2479 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2480 goto out;
2482 #endif
2483 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2485 if (item_size != sizeof(*ei) +
2486 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2487 goto out;
2489 if (btrfs_extent_generation(leaf, ei) <=
2490 btrfs_root_last_snapshot(&root->root_item))
2491 goto out;
2493 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2494 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2495 BTRFS_EXTENT_DATA_REF_KEY)
2496 goto out;
2498 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2499 if (btrfs_extent_refs(leaf, ei) !=
2500 btrfs_extent_data_ref_count(leaf, ref) ||
2501 btrfs_extent_data_ref_root(leaf, ref) !=
2502 root->root_key.objectid ||
2503 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2504 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2505 goto out;
2507 ret = 0;
2508 out:
2509 return ret;
2512 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2513 struct btrfs_root *root,
2514 u64 objectid, u64 offset, u64 bytenr)
2516 struct btrfs_path *path;
2517 int ret;
2518 int ret2;
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOENT;
2524 do {
2525 ret = check_committed_ref(trans, root, path, objectid,
2526 offset, bytenr);
2527 if (ret && ret != -ENOENT)
2528 goto out;
2530 ret2 = check_delayed_ref(trans, root, path, objectid,
2531 offset, bytenr);
2532 } while (ret2 == -EAGAIN);
2534 if (ret2 && ret2 != -ENOENT) {
2535 ret = ret2;
2536 goto out;
2539 if (ret != -ENOENT || ret2 != -ENOENT)
2540 ret = 0;
2541 out:
2542 btrfs_free_path(path);
2543 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2544 WARN_ON(ret > 0);
2545 return ret;
2548 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2549 struct btrfs_root *root,
2550 struct extent_buffer *buf,
2551 int full_backref, int inc)
2553 u64 bytenr;
2554 u64 num_bytes;
2555 u64 parent;
2556 u64 ref_root;
2557 u32 nritems;
2558 struct btrfs_key key;
2559 struct btrfs_file_extent_item *fi;
2560 int i;
2561 int level;
2562 int ret = 0;
2563 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2564 u64, u64, u64, u64, u64, u64);
2566 ref_root = btrfs_header_owner(buf);
2567 nritems = btrfs_header_nritems(buf);
2568 level = btrfs_header_level(buf);
2570 if (!root->ref_cows && level == 0)
2571 return 0;
2573 if (inc)
2574 process_func = btrfs_inc_extent_ref;
2575 else
2576 process_func = btrfs_free_extent;
2578 if (full_backref)
2579 parent = buf->start;
2580 else
2581 parent = 0;
2583 for (i = 0; i < nritems; i++) {
2584 if (level == 0) {
2585 btrfs_item_key_to_cpu(buf, &key, i);
2586 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2587 continue;
2588 fi = btrfs_item_ptr(buf, i,
2589 struct btrfs_file_extent_item);
2590 if (btrfs_file_extent_type(buf, fi) ==
2591 BTRFS_FILE_EXTENT_INLINE)
2592 continue;
2593 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2594 if (bytenr == 0)
2595 continue;
2597 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2598 key.offset -= btrfs_file_extent_offset(buf, fi);
2599 ret = process_func(trans, root, bytenr, num_bytes,
2600 parent, ref_root, key.objectid,
2601 key.offset);
2602 if (ret)
2603 goto fail;
2604 } else {
2605 bytenr = btrfs_node_blockptr(buf, i);
2606 num_bytes = btrfs_level_size(root, level - 1);
2607 ret = process_func(trans, root, bytenr, num_bytes,
2608 parent, ref_root, level - 1, 0);
2609 if (ret)
2610 goto fail;
2613 return 0;
2614 fail:
2615 BUG();
2616 return ret;
2619 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2620 struct extent_buffer *buf, int full_backref)
2622 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2625 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2626 struct extent_buffer *buf, int full_backref)
2628 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2631 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2632 struct btrfs_root *root,
2633 struct btrfs_path *path,
2634 struct btrfs_block_group_cache *cache)
2636 int ret;
2637 struct btrfs_root *extent_root = root->fs_info->extent_root;
2638 unsigned long bi;
2639 struct extent_buffer *leaf;
2641 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2642 if (ret < 0)
2643 goto fail;
2644 BUG_ON(ret);
2646 leaf = path->nodes[0];
2647 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2648 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2649 btrfs_mark_buffer_dirty(leaf);
2650 btrfs_release_path(path);
2651 fail:
2652 if (ret)
2653 return ret;
2654 return 0;
2658 static struct btrfs_block_group_cache *
2659 next_block_group(struct btrfs_root *root,
2660 struct btrfs_block_group_cache *cache)
2662 struct rb_node *node;
2663 spin_lock(&root->fs_info->block_group_cache_lock);
2664 node = rb_next(&cache->cache_node);
2665 btrfs_put_block_group(cache);
2666 if (node) {
2667 cache = rb_entry(node, struct btrfs_block_group_cache,
2668 cache_node);
2669 btrfs_get_block_group(cache);
2670 } else
2671 cache = NULL;
2672 spin_unlock(&root->fs_info->block_group_cache_lock);
2673 return cache;
2676 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2677 struct btrfs_trans_handle *trans,
2678 struct btrfs_path *path)
2680 struct btrfs_root *root = block_group->fs_info->tree_root;
2681 struct inode *inode = NULL;
2682 u64 alloc_hint = 0;
2683 int dcs = BTRFS_DC_ERROR;
2684 int num_pages = 0;
2685 int retries = 0;
2686 int ret = 0;
2689 * If this block group is smaller than 100 megs don't bother caching the
2690 * block group.
2692 if (block_group->key.offset < (100 * 1024 * 1024)) {
2693 spin_lock(&block_group->lock);
2694 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2695 spin_unlock(&block_group->lock);
2696 return 0;
2699 again:
2700 inode = lookup_free_space_inode(root, block_group, path);
2701 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2702 ret = PTR_ERR(inode);
2703 btrfs_release_path(path);
2704 goto out;
2707 if (IS_ERR(inode)) {
2708 BUG_ON(retries);
2709 retries++;
2711 if (block_group->ro)
2712 goto out_free;
2714 ret = create_free_space_inode(root, trans, block_group, path);
2715 if (ret)
2716 goto out_free;
2717 goto again;
2720 /* We've already setup this transaction, go ahead and exit */
2721 if (block_group->cache_generation == trans->transid &&
2722 i_size_read(inode)) {
2723 dcs = BTRFS_DC_SETUP;
2724 goto out_put;
2728 * We want to set the generation to 0, that way if anything goes wrong
2729 * from here on out we know not to trust this cache when we load up next
2730 * time.
2732 BTRFS_I(inode)->generation = 0;
2733 ret = btrfs_update_inode(trans, root, inode);
2734 WARN_ON(ret);
2736 if (i_size_read(inode) > 0) {
2737 ret = btrfs_truncate_free_space_cache(root, trans, path,
2738 inode);
2739 if (ret)
2740 goto out_put;
2743 spin_lock(&block_group->lock);
2744 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2745 /* We're not cached, don't bother trying to write stuff out */
2746 dcs = BTRFS_DC_WRITTEN;
2747 spin_unlock(&block_group->lock);
2748 goto out_put;
2750 spin_unlock(&block_group->lock);
2752 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2753 if (!num_pages)
2754 num_pages = 1;
2757 * Just to make absolutely sure we have enough space, we're going to
2758 * preallocate 12 pages worth of space for each block group. In
2759 * practice we ought to use at most 8, but we need extra space so we can
2760 * add our header and have a terminator between the extents and the
2761 * bitmaps.
2763 num_pages *= 16;
2764 num_pages *= PAGE_CACHE_SIZE;
2766 ret = btrfs_check_data_free_space(inode, num_pages);
2767 if (ret)
2768 goto out_put;
2770 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2771 num_pages, num_pages,
2772 &alloc_hint);
2773 if (!ret)
2774 dcs = BTRFS_DC_SETUP;
2775 btrfs_free_reserved_data_space(inode, num_pages);
2777 out_put:
2778 iput(inode);
2779 out_free:
2780 btrfs_release_path(path);
2781 out:
2782 spin_lock(&block_group->lock);
2783 if (!ret)
2784 block_group->cache_generation = trans->transid;
2785 block_group->disk_cache_state = dcs;
2786 spin_unlock(&block_group->lock);
2788 return ret;
2791 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2792 struct btrfs_root *root)
2794 struct btrfs_block_group_cache *cache;
2795 int err = 0;
2796 struct btrfs_path *path;
2797 u64 last = 0;
2799 path = btrfs_alloc_path();
2800 if (!path)
2801 return -ENOMEM;
2803 again:
2804 while (1) {
2805 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2806 while (cache) {
2807 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2808 break;
2809 cache = next_block_group(root, cache);
2811 if (!cache) {
2812 if (last == 0)
2813 break;
2814 last = 0;
2815 continue;
2817 err = cache_save_setup(cache, trans, path);
2818 last = cache->key.objectid + cache->key.offset;
2819 btrfs_put_block_group(cache);
2822 while (1) {
2823 if (last == 0) {
2824 err = btrfs_run_delayed_refs(trans, root,
2825 (unsigned long)-1);
2826 BUG_ON(err);
2829 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2830 while (cache) {
2831 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2832 btrfs_put_block_group(cache);
2833 goto again;
2836 if (cache->dirty)
2837 break;
2838 cache = next_block_group(root, cache);
2840 if (!cache) {
2841 if (last == 0)
2842 break;
2843 last = 0;
2844 continue;
2847 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2848 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2849 cache->dirty = 0;
2850 last = cache->key.objectid + cache->key.offset;
2852 err = write_one_cache_group(trans, root, path, cache);
2853 BUG_ON(err);
2854 btrfs_put_block_group(cache);
2857 while (1) {
2859 * I don't think this is needed since we're just marking our
2860 * preallocated extent as written, but just in case it can't
2861 * hurt.
2863 if (last == 0) {
2864 err = btrfs_run_delayed_refs(trans, root,
2865 (unsigned long)-1);
2866 BUG_ON(err);
2869 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2870 while (cache) {
2872 * Really this shouldn't happen, but it could if we
2873 * couldn't write the entire preallocated extent and
2874 * splitting the extent resulted in a new block.
2876 if (cache->dirty) {
2877 btrfs_put_block_group(cache);
2878 goto again;
2880 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2881 break;
2882 cache = next_block_group(root, cache);
2884 if (!cache) {
2885 if (last == 0)
2886 break;
2887 last = 0;
2888 continue;
2891 btrfs_write_out_cache(root, trans, cache, path);
2894 * If we didn't have an error then the cache state is still
2895 * NEED_WRITE, so we can set it to WRITTEN.
2897 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2898 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2899 last = cache->key.objectid + cache->key.offset;
2900 btrfs_put_block_group(cache);
2903 btrfs_free_path(path);
2904 return 0;
2907 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2909 struct btrfs_block_group_cache *block_group;
2910 int readonly = 0;
2912 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2913 if (!block_group || block_group->ro)
2914 readonly = 1;
2915 if (block_group)
2916 btrfs_put_block_group(block_group);
2917 return readonly;
2920 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2921 u64 total_bytes, u64 bytes_used,
2922 struct btrfs_space_info **space_info)
2924 struct btrfs_space_info *found;
2925 int i;
2926 int factor;
2928 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2929 BTRFS_BLOCK_GROUP_RAID10))
2930 factor = 2;
2931 else
2932 factor = 1;
2934 found = __find_space_info(info, flags);
2935 if (found) {
2936 spin_lock(&found->lock);
2937 found->total_bytes += total_bytes;
2938 found->disk_total += total_bytes * factor;
2939 found->bytes_used += bytes_used;
2940 found->disk_used += bytes_used * factor;
2941 found->full = 0;
2942 spin_unlock(&found->lock);
2943 *space_info = found;
2944 return 0;
2946 found = kzalloc(sizeof(*found), GFP_NOFS);
2947 if (!found)
2948 return -ENOMEM;
2950 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2951 INIT_LIST_HEAD(&found->block_groups[i]);
2952 init_rwsem(&found->groups_sem);
2953 spin_lock_init(&found->lock);
2954 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2955 BTRFS_BLOCK_GROUP_SYSTEM |
2956 BTRFS_BLOCK_GROUP_METADATA);
2957 found->total_bytes = total_bytes;
2958 found->disk_total = total_bytes * factor;
2959 found->bytes_used = bytes_used;
2960 found->disk_used = bytes_used * factor;
2961 found->bytes_pinned = 0;
2962 found->bytes_reserved = 0;
2963 found->bytes_readonly = 0;
2964 found->bytes_may_use = 0;
2965 found->full = 0;
2966 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2967 found->chunk_alloc = 0;
2968 found->flush = 0;
2969 init_waitqueue_head(&found->wait);
2970 *space_info = found;
2971 list_add_rcu(&found->list, &info->space_info);
2972 return 0;
2975 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2977 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2978 BTRFS_BLOCK_GROUP_RAID1 |
2979 BTRFS_BLOCK_GROUP_RAID10 |
2980 BTRFS_BLOCK_GROUP_DUP);
2981 if (extra_flags) {
2982 if (flags & BTRFS_BLOCK_GROUP_DATA)
2983 fs_info->avail_data_alloc_bits |= extra_flags;
2984 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2985 fs_info->avail_metadata_alloc_bits |= extra_flags;
2986 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2987 fs_info->avail_system_alloc_bits |= extra_flags;
2991 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2994 * we add in the count of missing devices because we want
2995 * to make sure that any RAID levels on a degraded FS
2996 * continue to be honored.
2998 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2999 root->fs_info->fs_devices->missing_devices;
3001 if (num_devices == 1)
3002 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3003 if (num_devices < 4)
3004 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3006 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3007 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3008 BTRFS_BLOCK_GROUP_RAID10))) {
3009 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3012 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3013 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3014 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3017 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3018 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3019 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3020 (flags & BTRFS_BLOCK_GROUP_DUP)))
3021 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3022 return flags;
3025 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3027 if (flags & BTRFS_BLOCK_GROUP_DATA)
3028 flags |= root->fs_info->avail_data_alloc_bits &
3029 root->fs_info->data_alloc_profile;
3030 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3031 flags |= root->fs_info->avail_system_alloc_bits &
3032 root->fs_info->system_alloc_profile;
3033 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3034 flags |= root->fs_info->avail_metadata_alloc_bits &
3035 root->fs_info->metadata_alloc_profile;
3036 return btrfs_reduce_alloc_profile(root, flags);
3039 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3041 u64 flags;
3043 if (data)
3044 flags = BTRFS_BLOCK_GROUP_DATA;
3045 else if (root == root->fs_info->chunk_root)
3046 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3047 else
3048 flags = BTRFS_BLOCK_GROUP_METADATA;
3050 return get_alloc_profile(root, flags);
3053 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3055 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3056 BTRFS_BLOCK_GROUP_DATA);
3060 * This will check the space that the inode allocates from to make sure we have
3061 * enough space for bytes.
3063 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3065 struct btrfs_space_info *data_sinfo;
3066 struct btrfs_root *root = BTRFS_I(inode)->root;
3067 u64 used;
3068 int ret = 0, committed = 0, alloc_chunk = 1;
3070 /* make sure bytes are sectorsize aligned */
3071 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3073 if (root == root->fs_info->tree_root ||
3074 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3075 alloc_chunk = 0;
3076 committed = 1;
3079 data_sinfo = BTRFS_I(inode)->space_info;
3080 if (!data_sinfo)
3081 goto alloc;
3083 again:
3084 /* make sure we have enough space to handle the data first */
3085 spin_lock(&data_sinfo->lock);
3086 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3087 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3088 data_sinfo->bytes_may_use;
3090 if (used + bytes > data_sinfo->total_bytes) {
3091 struct btrfs_trans_handle *trans;
3094 * if we don't have enough free bytes in this space then we need
3095 * to alloc a new chunk.
3097 if (!data_sinfo->full && alloc_chunk) {
3098 u64 alloc_target;
3100 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3101 spin_unlock(&data_sinfo->lock);
3102 alloc:
3103 alloc_target = btrfs_get_alloc_profile(root, 1);
3104 trans = btrfs_join_transaction(root);
3105 if (IS_ERR(trans))
3106 return PTR_ERR(trans);
3108 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3109 bytes + 2 * 1024 * 1024,
3110 alloc_target,
3111 CHUNK_ALLOC_NO_FORCE);
3112 btrfs_end_transaction(trans, root);
3113 if (ret < 0) {
3114 if (ret != -ENOSPC)
3115 return ret;
3116 else
3117 goto commit_trans;
3120 if (!data_sinfo) {
3121 btrfs_set_inode_space_info(root, inode);
3122 data_sinfo = BTRFS_I(inode)->space_info;
3124 goto again;
3128 * If we have less pinned bytes than we want to allocate then
3129 * don't bother committing the transaction, it won't help us.
3131 if (data_sinfo->bytes_pinned < bytes)
3132 committed = 1;
3133 spin_unlock(&data_sinfo->lock);
3135 /* commit the current transaction and try again */
3136 commit_trans:
3137 if (!committed &&
3138 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3139 committed = 1;
3140 trans = btrfs_join_transaction(root);
3141 if (IS_ERR(trans))
3142 return PTR_ERR(trans);
3143 ret = btrfs_commit_transaction(trans, root);
3144 if (ret)
3145 return ret;
3146 goto again;
3149 return -ENOSPC;
3151 data_sinfo->bytes_may_use += bytes;
3152 spin_unlock(&data_sinfo->lock);
3154 return 0;
3158 * Called if we need to clear a data reservation for this inode.
3160 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3162 struct btrfs_root *root = BTRFS_I(inode)->root;
3163 struct btrfs_space_info *data_sinfo;
3165 /* make sure bytes are sectorsize aligned */
3166 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3168 data_sinfo = BTRFS_I(inode)->space_info;
3169 spin_lock(&data_sinfo->lock);
3170 data_sinfo->bytes_may_use -= bytes;
3171 spin_unlock(&data_sinfo->lock);
3174 static void force_metadata_allocation(struct btrfs_fs_info *info)
3176 struct list_head *head = &info->space_info;
3177 struct btrfs_space_info *found;
3179 rcu_read_lock();
3180 list_for_each_entry_rcu(found, head, list) {
3181 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3182 found->force_alloc = CHUNK_ALLOC_FORCE;
3184 rcu_read_unlock();
3187 static int should_alloc_chunk(struct btrfs_root *root,
3188 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3189 int force)
3191 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3192 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3193 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3194 u64 thresh;
3196 if (force == CHUNK_ALLOC_FORCE)
3197 return 1;
3200 * We need to take into account the global rsv because for all intents
3201 * and purposes it's used space. Don't worry about locking the
3202 * global_rsv, it doesn't change except when the transaction commits.
3204 num_allocated += global_rsv->size;
3207 * in limited mode, we want to have some free space up to
3208 * about 1% of the FS size.
3210 if (force == CHUNK_ALLOC_LIMITED) {
3211 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3212 thresh = max_t(u64, 64 * 1024 * 1024,
3213 div_factor_fine(thresh, 1));
3215 if (num_bytes - num_allocated < thresh)
3216 return 1;
3220 * we have two similar checks here, one based on percentage
3221 * and once based on a hard number of 256MB. The idea
3222 * is that if we have a good amount of free
3223 * room, don't allocate a chunk. A good mount is
3224 * less than 80% utilized of the chunks we have allocated,
3225 * or more than 256MB free
3227 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3228 return 0;
3230 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3231 return 0;
3233 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3235 /* 256MB or 5% of the FS */
3236 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3238 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3239 return 0;
3240 return 1;
3243 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *extent_root, u64 alloc_bytes,
3245 u64 flags, int force)
3247 struct btrfs_space_info *space_info;
3248 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3249 int wait_for_alloc = 0;
3250 int ret = 0;
3252 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3254 space_info = __find_space_info(extent_root->fs_info, flags);
3255 if (!space_info) {
3256 ret = update_space_info(extent_root->fs_info, flags,
3257 0, 0, &space_info);
3258 BUG_ON(ret);
3260 BUG_ON(!space_info);
3262 again:
3263 spin_lock(&space_info->lock);
3264 if (space_info->force_alloc)
3265 force = space_info->force_alloc;
3266 if (space_info->full) {
3267 spin_unlock(&space_info->lock);
3268 return 0;
3271 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3272 spin_unlock(&space_info->lock);
3273 return 0;
3274 } else if (space_info->chunk_alloc) {
3275 wait_for_alloc = 1;
3276 } else {
3277 space_info->chunk_alloc = 1;
3280 spin_unlock(&space_info->lock);
3282 mutex_lock(&fs_info->chunk_mutex);
3285 * The chunk_mutex is held throughout the entirety of a chunk
3286 * allocation, so once we've acquired the chunk_mutex we know that the
3287 * other guy is done and we need to recheck and see if we should
3288 * allocate.
3290 if (wait_for_alloc) {
3291 mutex_unlock(&fs_info->chunk_mutex);
3292 wait_for_alloc = 0;
3293 goto again;
3297 * If we have mixed data/metadata chunks we want to make sure we keep
3298 * allocating mixed chunks instead of individual chunks.
3300 if (btrfs_mixed_space_info(space_info))
3301 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3304 * if we're doing a data chunk, go ahead and make sure that
3305 * we keep a reasonable number of metadata chunks allocated in the
3306 * FS as well.
3308 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3309 fs_info->data_chunk_allocations++;
3310 if (!(fs_info->data_chunk_allocations %
3311 fs_info->metadata_ratio))
3312 force_metadata_allocation(fs_info);
3315 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3316 if (ret < 0 && ret != -ENOSPC)
3317 goto out;
3319 spin_lock(&space_info->lock);
3320 if (ret)
3321 space_info->full = 1;
3322 else
3323 ret = 1;
3325 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3326 space_info->chunk_alloc = 0;
3327 spin_unlock(&space_info->lock);
3328 out:
3329 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3330 return ret;
3334 * shrink metadata reservation for delalloc
3336 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3337 struct btrfs_root *root, u64 to_reclaim,
3338 bool wait_ordered)
3340 struct btrfs_block_rsv *block_rsv;
3341 struct btrfs_space_info *space_info;
3342 u64 reserved;
3343 u64 max_reclaim;
3344 u64 reclaimed = 0;
3345 long time_left;
3346 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3347 int loops = 0;
3348 unsigned long progress;
3350 block_rsv = &root->fs_info->delalloc_block_rsv;
3351 space_info = block_rsv->space_info;
3353 smp_mb();
3354 reserved = space_info->bytes_may_use;
3355 progress = space_info->reservation_progress;
3357 if (reserved == 0)
3358 return 0;
3360 smp_mb();
3361 if (root->fs_info->delalloc_bytes == 0) {
3362 if (trans)
3363 return 0;
3364 btrfs_wait_ordered_extents(root, 0, 0);
3365 return 0;
3368 max_reclaim = min(reserved, to_reclaim);
3369 nr_pages = max_t(unsigned long, nr_pages,
3370 max_reclaim >> PAGE_CACHE_SHIFT);
3371 while (loops < 1024) {
3372 /* have the flusher threads jump in and do some IO */
3373 smp_mb();
3374 nr_pages = min_t(unsigned long, nr_pages,
3375 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3376 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3378 spin_lock(&space_info->lock);
3379 if (reserved > space_info->bytes_may_use)
3380 reclaimed += reserved - space_info->bytes_may_use;
3381 reserved = space_info->bytes_may_use;
3382 spin_unlock(&space_info->lock);
3384 loops++;
3386 if (reserved == 0 || reclaimed >= max_reclaim)
3387 break;
3389 if (trans && trans->transaction->blocked)
3390 return -EAGAIN;
3392 if (wait_ordered && !trans) {
3393 btrfs_wait_ordered_extents(root, 0, 0);
3394 } else {
3395 time_left = schedule_timeout_interruptible(1);
3397 /* We were interrupted, exit */
3398 if (time_left)
3399 break;
3402 /* we've kicked the IO a few times, if anything has been freed,
3403 * exit. There is no sense in looping here for a long time
3404 * when we really need to commit the transaction, or there are
3405 * just too many writers without enough free space
3408 if (loops > 3) {
3409 smp_mb();
3410 if (progress != space_info->reservation_progress)
3411 break;
3416 return reclaimed >= to_reclaim;
3420 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3421 * @root - the root we're allocating for
3422 * @block_rsv - the block_rsv we're allocating for
3423 * @orig_bytes - the number of bytes we want
3424 * @flush - wether or not we can flush to make our reservation
3426 * This will reserve orgi_bytes number of bytes from the space info associated
3427 * with the block_rsv. If there is not enough space it will make an attempt to
3428 * flush out space to make room. It will do this by flushing delalloc if
3429 * possible or committing the transaction. If flush is 0 then no attempts to
3430 * regain reservations will be made and this will fail if there is not enough
3431 * space already.
3433 static int reserve_metadata_bytes(struct btrfs_root *root,
3434 struct btrfs_block_rsv *block_rsv,
3435 u64 orig_bytes, int flush)
3437 struct btrfs_space_info *space_info = block_rsv->space_info;
3438 struct btrfs_trans_handle *trans;
3439 u64 used;
3440 u64 num_bytes = orig_bytes;
3441 int retries = 0;
3442 int ret = 0;
3443 bool committed = false;
3444 bool flushing = false;
3445 bool wait_ordered = false;
3447 trans = (struct btrfs_trans_handle *)current->journal_info;
3448 again:
3449 ret = 0;
3450 spin_lock(&space_info->lock);
3452 * We only want to wait if somebody other than us is flushing and we are
3453 * actually alloed to flush.
3455 while (flush && !flushing && space_info->flush) {
3456 spin_unlock(&space_info->lock);
3458 * If we have a trans handle we can't wait because the flusher
3459 * may have to commit the transaction, which would mean we would
3460 * deadlock since we are waiting for the flusher to finish, but
3461 * hold the current transaction open.
3463 if (trans)
3464 return -EAGAIN;
3465 ret = wait_event_interruptible(space_info->wait,
3466 !space_info->flush);
3467 /* Must have been interrupted, return */
3468 if (ret)
3469 return -EINTR;
3471 spin_lock(&space_info->lock);
3474 ret = -ENOSPC;
3475 used = space_info->bytes_used + space_info->bytes_reserved +
3476 space_info->bytes_pinned + space_info->bytes_readonly +
3477 space_info->bytes_may_use;
3480 * The idea here is that we've not already over-reserved the block group
3481 * then we can go ahead and save our reservation first and then start
3482 * flushing if we need to. Otherwise if we've already overcommitted
3483 * lets start flushing stuff first and then come back and try to make
3484 * our reservation.
3486 if (used <= space_info->total_bytes) {
3487 if (used + orig_bytes <= space_info->total_bytes) {
3488 space_info->bytes_may_use += orig_bytes;
3489 ret = 0;
3490 } else {
3492 * Ok set num_bytes to orig_bytes since we aren't
3493 * overocmmitted, this way we only try and reclaim what
3494 * we need.
3496 num_bytes = orig_bytes;
3498 } else {
3500 * Ok we're over committed, set num_bytes to the overcommitted
3501 * amount plus the amount of bytes that we need for this
3502 * reservation.
3504 wait_ordered = true;
3505 num_bytes = used - space_info->total_bytes +
3506 (orig_bytes * (retries + 1));
3509 if (ret) {
3510 u64 profile = btrfs_get_alloc_profile(root, 0);
3511 u64 avail;
3514 * If we have a lot of space that's pinned, don't bother doing
3515 * the overcommit dance yet and just commit the transaction.
3517 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3518 do_div(avail, 10);
3519 if (space_info->bytes_pinned >= avail && flush && !trans &&
3520 !committed) {
3521 space_info->flush = 1;
3522 flushing = true;
3523 spin_unlock(&space_info->lock);
3524 goto commit;
3527 spin_lock(&root->fs_info->free_chunk_lock);
3528 avail = root->fs_info->free_chunk_space;
3531 * If we have dup, raid1 or raid10 then only half of the free
3532 * space is actually useable.
3534 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3535 BTRFS_BLOCK_GROUP_RAID1 |
3536 BTRFS_BLOCK_GROUP_RAID10))
3537 avail >>= 1;
3540 * If we aren't flushing don't let us overcommit too much, say
3541 * 1/8th of the space. If we can flush, let it overcommit up to
3542 * 1/2 of the space.
3544 if (flush)
3545 avail >>= 3;
3546 else
3547 avail >>= 1;
3548 spin_unlock(&root->fs_info->free_chunk_lock);
3550 if (used + num_bytes < space_info->total_bytes + avail) {
3551 space_info->bytes_may_use += orig_bytes;
3552 ret = 0;
3553 } else {
3554 wait_ordered = true;
3559 * Couldn't make our reservation, save our place so while we're trying
3560 * to reclaim space we can actually use it instead of somebody else
3561 * stealing it from us.
3563 if (ret && flush) {
3564 flushing = true;
3565 space_info->flush = 1;
3568 spin_unlock(&space_info->lock);
3570 if (!ret || !flush)
3571 goto out;
3574 * We do synchronous shrinking since we don't actually unreserve
3575 * metadata until after the IO is completed.
3577 ret = shrink_delalloc(trans, root, num_bytes, wait_ordered);
3578 if (ret < 0)
3579 goto out;
3581 ret = 0;
3584 * So if we were overcommitted it's possible that somebody else flushed
3585 * out enough space and we simply didn't have enough space to reclaim,
3586 * so go back around and try again.
3588 if (retries < 2) {
3589 wait_ordered = true;
3590 retries++;
3591 goto again;
3594 ret = -EAGAIN;
3595 if (trans)
3596 goto out;
3598 commit:
3599 ret = -ENOSPC;
3600 if (committed)
3601 goto out;
3603 trans = btrfs_join_transaction(root);
3604 if (IS_ERR(trans))
3605 goto out;
3606 ret = btrfs_commit_transaction(trans, root);
3607 if (!ret) {
3608 trans = NULL;
3609 committed = true;
3610 goto again;
3613 out:
3614 if (flushing) {
3615 spin_lock(&space_info->lock);
3616 space_info->flush = 0;
3617 wake_up_all(&space_info->wait);
3618 spin_unlock(&space_info->lock);
3620 return ret;
3623 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3624 struct btrfs_root *root)
3626 struct btrfs_block_rsv *block_rsv = NULL;
3628 if (root->ref_cows || root == root->fs_info->csum_root)
3629 block_rsv = trans->block_rsv;
3631 if (!block_rsv)
3632 block_rsv = root->block_rsv;
3634 if (!block_rsv)
3635 block_rsv = &root->fs_info->empty_block_rsv;
3637 return block_rsv;
3640 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3641 u64 num_bytes)
3643 int ret = -ENOSPC;
3644 spin_lock(&block_rsv->lock);
3645 if (block_rsv->reserved >= num_bytes) {
3646 block_rsv->reserved -= num_bytes;
3647 if (block_rsv->reserved < block_rsv->size)
3648 block_rsv->full = 0;
3649 ret = 0;
3651 spin_unlock(&block_rsv->lock);
3652 return ret;
3655 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3656 u64 num_bytes, int update_size)
3658 spin_lock(&block_rsv->lock);
3659 block_rsv->reserved += num_bytes;
3660 if (update_size)
3661 block_rsv->size += num_bytes;
3662 else if (block_rsv->reserved >= block_rsv->size)
3663 block_rsv->full = 1;
3664 spin_unlock(&block_rsv->lock);
3667 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3668 struct btrfs_block_rsv *dest, u64 num_bytes)
3670 struct btrfs_space_info *space_info = block_rsv->space_info;
3672 spin_lock(&block_rsv->lock);
3673 if (num_bytes == (u64)-1)
3674 num_bytes = block_rsv->size;
3675 block_rsv->size -= num_bytes;
3676 if (block_rsv->reserved >= block_rsv->size) {
3677 num_bytes = block_rsv->reserved - block_rsv->size;
3678 block_rsv->reserved = block_rsv->size;
3679 block_rsv->full = 1;
3680 } else {
3681 num_bytes = 0;
3683 spin_unlock(&block_rsv->lock);
3685 if (num_bytes > 0) {
3686 if (dest) {
3687 spin_lock(&dest->lock);
3688 if (!dest->full) {
3689 u64 bytes_to_add;
3691 bytes_to_add = dest->size - dest->reserved;
3692 bytes_to_add = min(num_bytes, bytes_to_add);
3693 dest->reserved += bytes_to_add;
3694 if (dest->reserved >= dest->size)
3695 dest->full = 1;
3696 num_bytes -= bytes_to_add;
3698 spin_unlock(&dest->lock);
3700 if (num_bytes) {
3701 spin_lock(&space_info->lock);
3702 space_info->bytes_may_use -= num_bytes;
3703 space_info->reservation_progress++;
3704 spin_unlock(&space_info->lock);
3709 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3710 struct btrfs_block_rsv *dst, u64 num_bytes)
3712 int ret;
3714 ret = block_rsv_use_bytes(src, num_bytes);
3715 if (ret)
3716 return ret;
3718 block_rsv_add_bytes(dst, num_bytes, 1);
3719 return 0;
3722 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3724 memset(rsv, 0, sizeof(*rsv));
3725 spin_lock_init(&rsv->lock);
3728 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3730 struct btrfs_block_rsv *block_rsv;
3731 struct btrfs_fs_info *fs_info = root->fs_info;
3733 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3734 if (!block_rsv)
3735 return NULL;
3737 btrfs_init_block_rsv(block_rsv);
3738 block_rsv->space_info = __find_space_info(fs_info,
3739 BTRFS_BLOCK_GROUP_METADATA);
3740 return block_rsv;
3743 void btrfs_free_block_rsv(struct btrfs_root *root,
3744 struct btrfs_block_rsv *rsv)
3746 btrfs_block_rsv_release(root, rsv, (u64)-1);
3747 kfree(rsv);
3750 int btrfs_block_rsv_add(struct btrfs_root *root,
3751 struct btrfs_block_rsv *block_rsv,
3752 u64 num_bytes)
3754 int ret;
3756 if (num_bytes == 0)
3757 return 0;
3759 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, 1);
3760 if (!ret) {
3761 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3762 return 0;
3765 return ret;
3768 int btrfs_block_rsv_check(struct btrfs_root *root,
3769 struct btrfs_block_rsv *block_rsv, int min_factor)
3771 u64 num_bytes = 0;
3772 int ret = -ENOSPC;
3774 if (!block_rsv)
3775 return 0;
3777 spin_lock(&block_rsv->lock);
3778 num_bytes = div_factor(block_rsv->size, min_factor);
3779 if (block_rsv->reserved >= num_bytes)
3780 ret = 0;
3781 spin_unlock(&block_rsv->lock);
3783 return ret;
3786 int btrfs_block_rsv_refill(struct btrfs_root *root,
3787 struct btrfs_block_rsv *block_rsv,
3788 u64 min_reserved)
3790 u64 num_bytes = 0;
3791 int ret = -ENOSPC;
3793 if (!block_rsv)
3794 return 0;
3796 spin_lock(&block_rsv->lock);
3797 num_bytes = min_reserved;
3798 if (block_rsv->reserved >= num_bytes)
3799 ret = 0;
3800 else
3801 num_bytes -= block_rsv->reserved;
3802 spin_unlock(&block_rsv->lock);
3804 if (!ret)
3805 return 0;
3807 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, 1);
3808 if (!ret) {
3809 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3810 return 0;
3813 return ret;
3816 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3817 struct btrfs_block_rsv *dst_rsv,
3818 u64 num_bytes)
3820 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3823 void btrfs_block_rsv_release(struct btrfs_root *root,
3824 struct btrfs_block_rsv *block_rsv,
3825 u64 num_bytes)
3827 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3828 if (global_rsv->full || global_rsv == block_rsv ||
3829 block_rsv->space_info != global_rsv->space_info)
3830 global_rsv = NULL;
3831 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3835 * helper to calculate size of global block reservation.
3836 * the desired value is sum of space used by extent tree,
3837 * checksum tree and root tree
3839 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3841 struct btrfs_space_info *sinfo;
3842 u64 num_bytes;
3843 u64 meta_used;
3844 u64 data_used;
3845 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3847 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3848 spin_lock(&sinfo->lock);
3849 data_used = sinfo->bytes_used;
3850 spin_unlock(&sinfo->lock);
3852 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3853 spin_lock(&sinfo->lock);
3854 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3855 data_used = 0;
3856 meta_used = sinfo->bytes_used;
3857 spin_unlock(&sinfo->lock);
3859 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3860 csum_size * 2;
3861 num_bytes += div64_u64(data_used + meta_used, 50);
3863 if (num_bytes * 3 > meta_used)
3864 num_bytes = div64_u64(meta_used, 3);
3866 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3869 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3871 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3872 struct btrfs_space_info *sinfo = block_rsv->space_info;
3873 u64 num_bytes;
3875 num_bytes = calc_global_metadata_size(fs_info);
3877 spin_lock(&block_rsv->lock);
3878 spin_lock(&sinfo->lock);
3880 block_rsv->size = num_bytes;
3882 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3883 sinfo->bytes_reserved + sinfo->bytes_readonly +
3884 sinfo->bytes_may_use;
3886 if (sinfo->total_bytes > num_bytes) {
3887 num_bytes = sinfo->total_bytes - num_bytes;
3888 block_rsv->reserved += num_bytes;
3889 sinfo->bytes_may_use += num_bytes;
3892 if (block_rsv->reserved >= block_rsv->size) {
3893 num_bytes = block_rsv->reserved - block_rsv->size;
3894 sinfo->bytes_may_use -= num_bytes;
3895 sinfo->reservation_progress++;
3896 block_rsv->reserved = block_rsv->size;
3897 block_rsv->full = 1;
3900 spin_unlock(&sinfo->lock);
3901 spin_unlock(&block_rsv->lock);
3904 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3906 struct btrfs_space_info *space_info;
3908 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3909 fs_info->chunk_block_rsv.space_info = space_info;
3911 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3912 fs_info->global_block_rsv.space_info = space_info;
3913 fs_info->delalloc_block_rsv.space_info = space_info;
3914 fs_info->trans_block_rsv.space_info = space_info;
3915 fs_info->empty_block_rsv.space_info = space_info;
3917 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3918 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3919 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3920 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3921 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3923 update_global_block_rsv(fs_info);
3926 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3928 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3929 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3930 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3931 WARN_ON(fs_info->trans_block_rsv.size > 0);
3932 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3933 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3934 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3937 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root)
3940 if (!trans->bytes_reserved)
3941 return;
3943 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
3944 trans->bytes_reserved = 0;
3947 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3948 struct inode *inode)
3950 struct btrfs_root *root = BTRFS_I(inode)->root;
3951 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3952 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3955 * We need to hold space in order to delete our orphan item once we've
3956 * added it, so this takes the reservation so we can release it later
3957 * when we are truly done with the orphan item.
3959 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3960 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3963 void btrfs_orphan_release_metadata(struct inode *inode)
3965 struct btrfs_root *root = BTRFS_I(inode)->root;
3966 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3967 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3970 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3971 struct btrfs_pending_snapshot *pending)
3973 struct btrfs_root *root = pending->root;
3974 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3975 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3977 * two for root back/forward refs, two for directory entries
3978 * and one for root of the snapshot.
3980 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3981 dst_rsv->space_info = src_rsv->space_info;
3982 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3986 * drop_outstanding_extent - drop an outstanding extent
3987 * @inode: the inode we're dropping the extent for
3989 * This is called when we are freeing up an outstanding extent, either called
3990 * after an error or after an extent is written. This will return the number of
3991 * reserved extents that need to be freed. This must be called with
3992 * BTRFS_I(inode)->lock held.
3994 static unsigned drop_outstanding_extent(struct inode *inode)
3996 unsigned dropped_extents = 0;
3998 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
3999 BTRFS_I(inode)->outstanding_extents--;
4002 * If we have more or the same amount of outsanding extents than we have
4003 * reserved then we need to leave the reserved extents count alone.
4005 if (BTRFS_I(inode)->outstanding_extents >=
4006 BTRFS_I(inode)->reserved_extents)
4007 return 0;
4009 dropped_extents = BTRFS_I(inode)->reserved_extents -
4010 BTRFS_I(inode)->outstanding_extents;
4011 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4012 return dropped_extents;
4016 * calc_csum_metadata_size - return the amount of metada space that must be
4017 * reserved/free'd for the given bytes.
4018 * @inode: the inode we're manipulating
4019 * @num_bytes: the number of bytes in question
4020 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4022 * This adjusts the number of csum_bytes in the inode and then returns the
4023 * correct amount of metadata that must either be reserved or freed. We
4024 * calculate how many checksums we can fit into one leaf and then divide the
4025 * number of bytes that will need to be checksumed by this value to figure out
4026 * how many checksums will be required. If we are adding bytes then the number
4027 * may go up and we will return the number of additional bytes that must be
4028 * reserved. If it is going down we will return the number of bytes that must
4029 * be freed.
4031 * This must be called with BTRFS_I(inode)->lock held.
4033 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4034 int reserve)
4036 struct btrfs_root *root = BTRFS_I(inode)->root;
4037 u64 csum_size;
4038 int num_csums_per_leaf;
4039 int num_csums;
4040 int old_csums;
4042 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4043 BTRFS_I(inode)->csum_bytes == 0)
4044 return 0;
4046 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4047 if (reserve)
4048 BTRFS_I(inode)->csum_bytes += num_bytes;
4049 else
4050 BTRFS_I(inode)->csum_bytes -= num_bytes;
4051 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4052 num_csums_per_leaf = (int)div64_u64(csum_size,
4053 sizeof(struct btrfs_csum_item) +
4054 sizeof(struct btrfs_disk_key));
4055 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4056 num_csums = num_csums + num_csums_per_leaf - 1;
4057 num_csums = num_csums / num_csums_per_leaf;
4059 old_csums = old_csums + num_csums_per_leaf - 1;
4060 old_csums = old_csums / num_csums_per_leaf;
4062 /* No change, no need to reserve more */
4063 if (old_csums == num_csums)
4064 return 0;
4066 if (reserve)
4067 return btrfs_calc_trans_metadata_size(root,
4068 num_csums - old_csums);
4070 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4073 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4075 struct btrfs_root *root = BTRFS_I(inode)->root;
4076 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4077 u64 to_reserve = 0;
4078 unsigned nr_extents = 0;
4079 int flush = 1;
4080 int ret;
4082 if (btrfs_is_free_space_inode(root, inode))
4083 flush = 0;
4085 if (flush && btrfs_transaction_in_commit(root->fs_info))
4086 schedule_timeout(1);
4088 num_bytes = ALIGN(num_bytes, root->sectorsize);
4090 spin_lock(&BTRFS_I(inode)->lock);
4091 BTRFS_I(inode)->outstanding_extents++;
4093 if (BTRFS_I(inode)->outstanding_extents >
4094 BTRFS_I(inode)->reserved_extents) {
4095 nr_extents = BTRFS_I(inode)->outstanding_extents -
4096 BTRFS_I(inode)->reserved_extents;
4097 BTRFS_I(inode)->reserved_extents += nr_extents;
4099 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4101 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4102 spin_unlock(&BTRFS_I(inode)->lock);
4104 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4105 if (ret) {
4106 u64 to_free = 0;
4107 unsigned dropped;
4109 spin_lock(&BTRFS_I(inode)->lock);
4110 dropped = drop_outstanding_extent(inode);
4111 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4112 spin_unlock(&BTRFS_I(inode)->lock);
4113 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4116 * Somebody could have come in and twiddled with the
4117 * reservation, so if we have to free more than we would have
4118 * reserved from this reservation go ahead and release those
4119 * bytes.
4121 to_free -= to_reserve;
4122 if (to_free)
4123 btrfs_block_rsv_release(root, block_rsv, to_free);
4124 return ret;
4127 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4129 return 0;
4133 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4134 * @inode: the inode to release the reservation for
4135 * @num_bytes: the number of bytes we're releasing
4137 * This will release the metadata reservation for an inode. This can be called
4138 * once we complete IO for a given set of bytes to release their metadata
4139 * reservations.
4141 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4143 struct btrfs_root *root = BTRFS_I(inode)->root;
4144 u64 to_free = 0;
4145 unsigned dropped;
4147 num_bytes = ALIGN(num_bytes, root->sectorsize);
4148 spin_lock(&BTRFS_I(inode)->lock);
4149 dropped = drop_outstanding_extent(inode);
4151 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4152 spin_unlock(&BTRFS_I(inode)->lock);
4153 if (dropped > 0)
4154 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4156 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4157 to_free);
4161 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4162 * @inode: inode we're writing to
4163 * @num_bytes: the number of bytes we want to allocate
4165 * This will do the following things
4167 * o reserve space in the data space info for num_bytes
4168 * o reserve space in the metadata space info based on number of outstanding
4169 * extents and how much csums will be needed
4170 * o add to the inodes ->delalloc_bytes
4171 * o add it to the fs_info's delalloc inodes list.
4173 * This will return 0 for success and -ENOSPC if there is no space left.
4175 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4177 int ret;
4179 ret = btrfs_check_data_free_space(inode, num_bytes);
4180 if (ret)
4181 return ret;
4183 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4184 if (ret) {
4185 btrfs_free_reserved_data_space(inode, num_bytes);
4186 return ret;
4189 return 0;
4193 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4194 * @inode: inode we're releasing space for
4195 * @num_bytes: the number of bytes we want to free up
4197 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4198 * called in the case that we don't need the metadata AND data reservations
4199 * anymore. So if there is an error or we insert an inline extent.
4201 * This function will release the metadata space that was not used and will
4202 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4203 * list if there are no delalloc bytes left.
4205 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4207 btrfs_delalloc_release_metadata(inode, num_bytes);
4208 btrfs_free_reserved_data_space(inode, num_bytes);
4211 static int update_block_group(struct btrfs_trans_handle *trans,
4212 struct btrfs_root *root,
4213 u64 bytenr, u64 num_bytes, int alloc)
4215 struct btrfs_block_group_cache *cache = NULL;
4216 struct btrfs_fs_info *info = root->fs_info;
4217 u64 total = num_bytes;
4218 u64 old_val;
4219 u64 byte_in_group;
4220 int factor;
4222 /* block accounting for super block */
4223 spin_lock(&info->delalloc_lock);
4224 old_val = btrfs_super_bytes_used(&info->super_copy);
4225 if (alloc)
4226 old_val += num_bytes;
4227 else
4228 old_val -= num_bytes;
4229 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4230 spin_unlock(&info->delalloc_lock);
4232 while (total) {
4233 cache = btrfs_lookup_block_group(info, bytenr);
4234 if (!cache)
4235 return -1;
4236 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4237 BTRFS_BLOCK_GROUP_RAID1 |
4238 BTRFS_BLOCK_GROUP_RAID10))
4239 factor = 2;
4240 else
4241 factor = 1;
4243 * If this block group has free space cache written out, we
4244 * need to make sure to load it if we are removing space. This
4245 * is because we need the unpinning stage to actually add the
4246 * space back to the block group, otherwise we will leak space.
4248 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4249 cache_block_group(cache, trans, NULL, 1);
4251 byte_in_group = bytenr - cache->key.objectid;
4252 WARN_ON(byte_in_group > cache->key.offset);
4254 spin_lock(&cache->space_info->lock);
4255 spin_lock(&cache->lock);
4257 if (btrfs_test_opt(root, SPACE_CACHE) &&
4258 cache->disk_cache_state < BTRFS_DC_CLEAR)
4259 cache->disk_cache_state = BTRFS_DC_CLEAR;
4261 cache->dirty = 1;
4262 old_val = btrfs_block_group_used(&cache->item);
4263 num_bytes = min(total, cache->key.offset - byte_in_group);
4264 if (alloc) {
4265 old_val += num_bytes;
4266 btrfs_set_block_group_used(&cache->item, old_val);
4267 cache->reserved -= num_bytes;
4268 cache->space_info->bytes_reserved -= num_bytes;
4269 cache->space_info->bytes_used += num_bytes;
4270 cache->space_info->disk_used += num_bytes * factor;
4271 spin_unlock(&cache->lock);
4272 spin_unlock(&cache->space_info->lock);
4273 } else {
4274 old_val -= num_bytes;
4275 btrfs_set_block_group_used(&cache->item, old_val);
4276 cache->pinned += num_bytes;
4277 cache->space_info->bytes_pinned += num_bytes;
4278 cache->space_info->bytes_used -= num_bytes;
4279 cache->space_info->disk_used -= num_bytes * factor;
4280 spin_unlock(&cache->lock);
4281 spin_unlock(&cache->space_info->lock);
4283 set_extent_dirty(info->pinned_extents,
4284 bytenr, bytenr + num_bytes - 1,
4285 GFP_NOFS | __GFP_NOFAIL);
4287 btrfs_put_block_group(cache);
4288 total -= num_bytes;
4289 bytenr += num_bytes;
4291 return 0;
4294 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4296 struct btrfs_block_group_cache *cache;
4297 u64 bytenr;
4299 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4300 if (!cache)
4301 return 0;
4303 bytenr = cache->key.objectid;
4304 btrfs_put_block_group(cache);
4306 return bytenr;
4309 static int pin_down_extent(struct btrfs_root *root,
4310 struct btrfs_block_group_cache *cache,
4311 u64 bytenr, u64 num_bytes, int reserved)
4313 spin_lock(&cache->space_info->lock);
4314 spin_lock(&cache->lock);
4315 cache->pinned += num_bytes;
4316 cache->space_info->bytes_pinned += num_bytes;
4317 if (reserved) {
4318 cache->reserved -= num_bytes;
4319 cache->space_info->bytes_reserved -= num_bytes;
4321 spin_unlock(&cache->lock);
4322 spin_unlock(&cache->space_info->lock);
4324 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4325 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4326 return 0;
4330 * this function must be called within transaction
4332 int btrfs_pin_extent(struct btrfs_root *root,
4333 u64 bytenr, u64 num_bytes, int reserved)
4335 struct btrfs_block_group_cache *cache;
4337 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4338 BUG_ON(!cache);
4340 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4342 btrfs_put_block_group(cache);
4343 return 0;
4347 * btrfs_update_reserved_bytes - update the block_group and space info counters
4348 * @cache: The cache we are manipulating
4349 * @num_bytes: The number of bytes in question
4350 * @reserve: One of the reservation enums
4352 * This is called by the allocator when it reserves space, or by somebody who is
4353 * freeing space that was never actually used on disk. For example if you
4354 * reserve some space for a new leaf in transaction A and before transaction A
4355 * commits you free that leaf, you call this with reserve set to 0 in order to
4356 * clear the reservation.
4358 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4359 * ENOSPC accounting. For data we handle the reservation through clearing the
4360 * delalloc bits in the io_tree. We have to do this since we could end up
4361 * allocating less disk space for the amount of data we have reserved in the
4362 * case of compression.
4364 * If this is a reservation and the block group has become read only we cannot
4365 * make the reservation and return -EAGAIN, otherwise this function always
4366 * succeeds.
4368 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4369 u64 num_bytes, int reserve)
4371 struct btrfs_space_info *space_info = cache->space_info;
4372 int ret = 0;
4373 spin_lock(&space_info->lock);
4374 spin_lock(&cache->lock);
4375 if (reserve != RESERVE_FREE) {
4376 if (cache->ro) {
4377 ret = -EAGAIN;
4378 } else {
4379 cache->reserved += num_bytes;
4380 space_info->bytes_reserved += num_bytes;
4381 if (reserve == RESERVE_ALLOC) {
4382 BUG_ON(space_info->bytes_may_use < num_bytes);
4383 space_info->bytes_may_use -= num_bytes;
4386 } else {
4387 if (cache->ro)
4388 space_info->bytes_readonly += num_bytes;
4389 cache->reserved -= num_bytes;
4390 space_info->bytes_reserved -= num_bytes;
4391 space_info->reservation_progress++;
4393 spin_unlock(&cache->lock);
4394 spin_unlock(&space_info->lock);
4395 return ret;
4398 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4399 struct btrfs_root *root)
4401 struct btrfs_fs_info *fs_info = root->fs_info;
4402 struct btrfs_caching_control *next;
4403 struct btrfs_caching_control *caching_ctl;
4404 struct btrfs_block_group_cache *cache;
4406 down_write(&fs_info->extent_commit_sem);
4408 list_for_each_entry_safe(caching_ctl, next,
4409 &fs_info->caching_block_groups, list) {
4410 cache = caching_ctl->block_group;
4411 if (block_group_cache_done(cache)) {
4412 cache->last_byte_to_unpin = (u64)-1;
4413 list_del_init(&caching_ctl->list);
4414 put_caching_control(caching_ctl);
4415 } else {
4416 cache->last_byte_to_unpin = caching_ctl->progress;
4420 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4421 fs_info->pinned_extents = &fs_info->freed_extents[1];
4422 else
4423 fs_info->pinned_extents = &fs_info->freed_extents[0];
4425 up_write(&fs_info->extent_commit_sem);
4427 update_global_block_rsv(fs_info);
4428 return 0;
4431 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4433 struct btrfs_fs_info *fs_info = root->fs_info;
4434 struct btrfs_block_group_cache *cache = NULL;
4435 u64 len;
4437 while (start <= end) {
4438 if (!cache ||
4439 start >= cache->key.objectid + cache->key.offset) {
4440 if (cache)
4441 btrfs_put_block_group(cache);
4442 cache = btrfs_lookup_block_group(fs_info, start);
4443 BUG_ON(!cache);
4446 len = cache->key.objectid + cache->key.offset - start;
4447 len = min(len, end + 1 - start);
4449 if (start < cache->last_byte_to_unpin) {
4450 len = min(len, cache->last_byte_to_unpin - start);
4451 btrfs_add_free_space(cache, start, len);
4454 start += len;
4456 spin_lock(&cache->space_info->lock);
4457 spin_lock(&cache->lock);
4458 cache->pinned -= len;
4459 cache->space_info->bytes_pinned -= len;
4460 if (cache->ro)
4461 cache->space_info->bytes_readonly += len;
4462 spin_unlock(&cache->lock);
4463 spin_unlock(&cache->space_info->lock);
4466 if (cache)
4467 btrfs_put_block_group(cache);
4468 return 0;
4471 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4472 struct btrfs_root *root)
4474 struct btrfs_fs_info *fs_info = root->fs_info;
4475 struct extent_io_tree *unpin;
4476 u64 start;
4477 u64 end;
4478 int ret;
4480 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4481 unpin = &fs_info->freed_extents[1];
4482 else
4483 unpin = &fs_info->freed_extents[0];
4485 while (1) {
4486 ret = find_first_extent_bit(unpin, 0, &start, &end,
4487 EXTENT_DIRTY);
4488 if (ret)
4489 break;
4491 if (btrfs_test_opt(root, DISCARD))
4492 ret = btrfs_discard_extent(root, start,
4493 end + 1 - start, NULL);
4495 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4496 unpin_extent_range(root, start, end);
4497 cond_resched();
4500 return 0;
4503 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4504 struct btrfs_root *root,
4505 u64 bytenr, u64 num_bytes, u64 parent,
4506 u64 root_objectid, u64 owner_objectid,
4507 u64 owner_offset, int refs_to_drop,
4508 struct btrfs_delayed_extent_op *extent_op)
4510 struct btrfs_key key;
4511 struct btrfs_path *path;
4512 struct btrfs_fs_info *info = root->fs_info;
4513 struct btrfs_root *extent_root = info->extent_root;
4514 struct extent_buffer *leaf;
4515 struct btrfs_extent_item *ei;
4516 struct btrfs_extent_inline_ref *iref;
4517 int ret;
4518 int is_data;
4519 int extent_slot = 0;
4520 int found_extent = 0;
4521 int num_to_del = 1;
4522 u32 item_size;
4523 u64 refs;
4525 path = btrfs_alloc_path();
4526 if (!path)
4527 return -ENOMEM;
4529 path->reada = 1;
4530 path->leave_spinning = 1;
4532 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4533 BUG_ON(!is_data && refs_to_drop != 1);
4535 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4536 bytenr, num_bytes, parent,
4537 root_objectid, owner_objectid,
4538 owner_offset);
4539 if (ret == 0) {
4540 extent_slot = path->slots[0];
4541 while (extent_slot >= 0) {
4542 btrfs_item_key_to_cpu(path->nodes[0], &key,
4543 extent_slot);
4544 if (key.objectid != bytenr)
4545 break;
4546 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4547 key.offset == num_bytes) {
4548 found_extent = 1;
4549 break;
4551 if (path->slots[0] - extent_slot > 5)
4552 break;
4553 extent_slot--;
4555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4556 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4557 if (found_extent && item_size < sizeof(*ei))
4558 found_extent = 0;
4559 #endif
4560 if (!found_extent) {
4561 BUG_ON(iref);
4562 ret = remove_extent_backref(trans, extent_root, path,
4563 NULL, refs_to_drop,
4564 is_data);
4565 BUG_ON(ret);
4566 btrfs_release_path(path);
4567 path->leave_spinning = 1;
4569 key.objectid = bytenr;
4570 key.type = BTRFS_EXTENT_ITEM_KEY;
4571 key.offset = num_bytes;
4573 ret = btrfs_search_slot(trans, extent_root,
4574 &key, path, -1, 1);
4575 if (ret) {
4576 printk(KERN_ERR "umm, got %d back from search"
4577 ", was looking for %llu\n", ret,
4578 (unsigned long long)bytenr);
4579 if (ret > 0)
4580 btrfs_print_leaf(extent_root,
4581 path->nodes[0]);
4583 BUG_ON(ret);
4584 extent_slot = path->slots[0];
4586 } else {
4587 btrfs_print_leaf(extent_root, path->nodes[0]);
4588 WARN_ON(1);
4589 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4590 "parent %llu root %llu owner %llu offset %llu\n",
4591 (unsigned long long)bytenr,
4592 (unsigned long long)parent,
4593 (unsigned long long)root_objectid,
4594 (unsigned long long)owner_objectid,
4595 (unsigned long long)owner_offset);
4598 leaf = path->nodes[0];
4599 item_size = btrfs_item_size_nr(leaf, extent_slot);
4600 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4601 if (item_size < sizeof(*ei)) {
4602 BUG_ON(found_extent || extent_slot != path->slots[0]);
4603 ret = convert_extent_item_v0(trans, extent_root, path,
4604 owner_objectid, 0);
4605 BUG_ON(ret < 0);
4607 btrfs_release_path(path);
4608 path->leave_spinning = 1;
4610 key.objectid = bytenr;
4611 key.type = BTRFS_EXTENT_ITEM_KEY;
4612 key.offset = num_bytes;
4614 ret = btrfs_search_slot(trans, extent_root, &key, path,
4615 -1, 1);
4616 if (ret) {
4617 printk(KERN_ERR "umm, got %d back from search"
4618 ", was looking for %llu\n", ret,
4619 (unsigned long long)bytenr);
4620 btrfs_print_leaf(extent_root, path->nodes[0]);
4622 BUG_ON(ret);
4623 extent_slot = path->slots[0];
4624 leaf = path->nodes[0];
4625 item_size = btrfs_item_size_nr(leaf, extent_slot);
4627 #endif
4628 BUG_ON(item_size < sizeof(*ei));
4629 ei = btrfs_item_ptr(leaf, extent_slot,
4630 struct btrfs_extent_item);
4631 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4632 struct btrfs_tree_block_info *bi;
4633 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4634 bi = (struct btrfs_tree_block_info *)(ei + 1);
4635 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4638 refs = btrfs_extent_refs(leaf, ei);
4639 BUG_ON(refs < refs_to_drop);
4640 refs -= refs_to_drop;
4642 if (refs > 0) {
4643 if (extent_op)
4644 __run_delayed_extent_op(extent_op, leaf, ei);
4646 * In the case of inline back ref, reference count will
4647 * be updated by remove_extent_backref
4649 if (iref) {
4650 BUG_ON(!found_extent);
4651 } else {
4652 btrfs_set_extent_refs(leaf, ei, refs);
4653 btrfs_mark_buffer_dirty(leaf);
4655 if (found_extent) {
4656 ret = remove_extent_backref(trans, extent_root, path,
4657 iref, refs_to_drop,
4658 is_data);
4659 BUG_ON(ret);
4661 } else {
4662 if (found_extent) {
4663 BUG_ON(is_data && refs_to_drop !=
4664 extent_data_ref_count(root, path, iref));
4665 if (iref) {
4666 BUG_ON(path->slots[0] != extent_slot);
4667 } else {
4668 BUG_ON(path->slots[0] != extent_slot + 1);
4669 path->slots[0] = extent_slot;
4670 num_to_del = 2;
4674 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4675 num_to_del);
4676 BUG_ON(ret);
4677 btrfs_release_path(path);
4679 if (is_data) {
4680 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4681 BUG_ON(ret);
4682 } else {
4683 invalidate_mapping_pages(info->btree_inode->i_mapping,
4684 bytenr >> PAGE_CACHE_SHIFT,
4685 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4688 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4689 BUG_ON(ret);
4691 btrfs_free_path(path);
4692 return ret;
4696 * when we free an block, it is possible (and likely) that we free the last
4697 * delayed ref for that extent as well. This searches the delayed ref tree for
4698 * a given extent, and if there are no other delayed refs to be processed, it
4699 * removes it from the tree.
4701 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4702 struct btrfs_root *root, u64 bytenr)
4704 struct btrfs_delayed_ref_head *head;
4705 struct btrfs_delayed_ref_root *delayed_refs;
4706 struct btrfs_delayed_ref_node *ref;
4707 struct rb_node *node;
4708 int ret = 0;
4710 delayed_refs = &trans->transaction->delayed_refs;
4711 spin_lock(&delayed_refs->lock);
4712 head = btrfs_find_delayed_ref_head(trans, bytenr);
4713 if (!head)
4714 goto out;
4716 node = rb_prev(&head->node.rb_node);
4717 if (!node)
4718 goto out;
4720 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4722 /* there are still entries for this ref, we can't drop it */
4723 if (ref->bytenr == bytenr)
4724 goto out;
4726 if (head->extent_op) {
4727 if (!head->must_insert_reserved)
4728 goto out;
4729 kfree(head->extent_op);
4730 head->extent_op = NULL;
4734 * waiting for the lock here would deadlock. If someone else has it
4735 * locked they are already in the process of dropping it anyway
4737 if (!mutex_trylock(&head->mutex))
4738 goto out;
4741 * at this point we have a head with no other entries. Go
4742 * ahead and process it.
4744 head->node.in_tree = 0;
4745 rb_erase(&head->node.rb_node, &delayed_refs->root);
4747 delayed_refs->num_entries--;
4750 * we don't take a ref on the node because we're removing it from the
4751 * tree, so we just steal the ref the tree was holding.
4753 delayed_refs->num_heads--;
4754 if (list_empty(&head->cluster))
4755 delayed_refs->num_heads_ready--;
4757 list_del_init(&head->cluster);
4758 spin_unlock(&delayed_refs->lock);
4760 BUG_ON(head->extent_op);
4761 if (head->must_insert_reserved)
4762 ret = 1;
4764 mutex_unlock(&head->mutex);
4765 btrfs_put_delayed_ref(&head->node);
4766 return ret;
4767 out:
4768 spin_unlock(&delayed_refs->lock);
4769 return 0;
4772 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4773 struct btrfs_root *root,
4774 struct extent_buffer *buf,
4775 u64 parent, int last_ref)
4777 struct btrfs_block_group_cache *cache = NULL;
4778 int ret;
4780 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4781 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4782 parent, root->root_key.objectid,
4783 btrfs_header_level(buf),
4784 BTRFS_DROP_DELAYED_REF, NULL);
4785 BUG_ON(ret);
4788 if (!last_ref)
4789 return;
4791 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4793 if (btrfs_header_generation(buf) == trans->transid) {
4794 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4795 ret = check_ref_cleanup(trans, root, buf->start);
4796 if (!ret)
4797 goto out;
4800 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4801 pin_down_extent(root, cache, buf->start, buf->len, 1);
4802 goto out;
4805 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4807 btrfs_add_free_space(cache, buf->start, buf->len);
4808 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4810 out:
4812 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4813 * anymore.
4815 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4816 btrfs_put_block_group(cache);
4819 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4820 struct btrfs_root *root,
4821 u64 bytenr, u64 num_bytes, u64 parent,
4822 u64 root_objectid, u64 owner, u64 offset)
4824 int ret;
4827 * tree log blocks never actually go into the extent allocation
4828 * tree, just update pinning info and exit early.
4830 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4831 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4832 /* unlocks the pinned mutex */
4833 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4834 ret = 0;
4835 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4836 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4837 parent, root_objectid, (int)owner,
4838 BTRFS_DROP_DELAYED_REF, NULL);
4839 BUG_ON(ret);
4840 } else {
4841 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4842 parent, root_objectid, owner,
4843 offset, BTRFS_DROP_DELAYED_REF, NULL);
4844 BUG_ON(ret);
4846 return ret;
4849 static u64 stripe_align(struct btrfs_root *root, u64 val)
4851 u64 mask = ((u64)root->stripesize - 1);
4852 u64 ret = (val + mask) & ~mask;
4853 return ret;
4857 * when we wait for progress in the block group caching, its because
4858 * our allocation attempt failed at least once. So, we must sleep
4859 * and let some progress happen before we try again.
4861 * This function will sleep at least once waiting for new free space to
4862 * show up, and then it will check the block group free space numbers
4863 * for our min num_bytes. Another option is to have it go ahead
4864 * and look in the rbtree for a free extent of a given size, but this
4865 * is a good start.
4867 static noinline int
4868 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4869 u64 num_bytes)
4871 struct btrfs_caching_control *caching_ctl;
4872 DEFINE_WAIT(wait);
4874 caching_ctl = get_caching_control(cache);
4875 if (!caching_ctl)
4876 return 0;
4878 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4879 (cache->free_space_ctl->free_space >= num_bytes));
4881 put_caching_control(caching_ctl);
4882 return 0;
4885 static noinline int
4886 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4888 struct btrfs_caching_control *caching_ctl;
4889 DEFINE_WAIT(wait);
4891 caching_ctl = get_caching_control(cache);
4892 if (!caching_ctl)
4893 return 0;
4895 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4897 put_caching_control(caching_ctl);
4898 return 0;
4901 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4903 int index;
4904 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4905 index = 0;
4906 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4907 index = 1;
4908 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4909 index = 2;
4910 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4911 index = 3;
4912 else
4913 index = 4;
4914 return index;
4917 enum btrfs_loop_type {
4918 LOOP_FIND_IDEAL = 0,
4919 LOOP_CACHING_NOWAIT = 1,
4920 LOOP_CACHING_WAIT = 2,
4921 LOOP_ALLOC_CHUNK = 3,
4922 LOOP_NO_EMPTY_SIZE = 4,
4926 * walks the btree of allocated extents and find a hole of a given size.
4927 * The key ins is changed to record the hole:
4928 * ins->objectid == block start
4929 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4930 * ins->offset == number of blocks
4931 * Any available blocks before search_start are skipped.
4933 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4934 struct btrfs_root *orig_root,
4935 u64 num_bytes, u64 empty_size,
4936 u64 search_start, u64 search_end,
4937 u64 hint_byte, struct btrfs_key *ins,
4938 u64 data)
4940 int ret = 0;
4941 struct btrfs_root *root = orig_root->fs_info->extent_root;
4942 struct btrfs_free_cluster *last_ptr = NULL;
4943 struct btrfs_block_group_cache *block_group = NULL;
4944 int empty_cluster = 2 * 1024 * 1024;
4945 int allowed_chunk_alloc = 0;
4946 int done_chunk_alloc = 0;
4947 struct btrfs_space_info *space_info;
4948 int last_ptr_loop = 0;
4949 int loop = 0;
4950 int index = 0;
4951 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
4952 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
4953 bool found_uncached_bg = false;
4954 bool failed_cluster_refill = false;
4955 bool failed_alloc = false;
4956 bool use_cluster = true;
4957 u64 ideal_cache_percent = 0;
4958 u64 ideal_cache_offset = 0;
4960 WARN_ON(num_bytes < root->sectorsize);
4961 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4962 ins->objectid = 0;
4963 ins->offset = 0;
4965 space_info = __find_space_info(root->fs_info, data);
4966 if (!space_info) {
4967 printk(KERN_ERR "No space info for %llu\n", data);
4968 return -ENOSPC;
4972 * If the space info is for both data and metadata it means we have a
4973 * small filesystem and we can't use the clustering stuff.
4975 if (btrfs_mixed_space_info(space_info))
4976 use_cluster = false;
4978 if (orig_root->ref_cows || empty_size)
4979 allowed_chunk_alloc = 1;
4981 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4982 last_ptr = &root->fs_info->meta_alloc_cluster;
4983 if (!btrfs_test_opt(root, SSD))
4984 empty_cluster = 64 * 1024;
4987 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4988 btrfs_test_opt(root, SSD)) {
4989 last_ptr = &root->fs_info->data_alloc_cluster;
4992 if (last_ptr) {
4993 spin_lock(&last_ptr->lock);
4994 if (last_ptr->block_group)
4995 hint_byte = last_ptr->window_start;
4996 spin_unlock(&last_ptr->lock);
4999 search_start = max(search_start, first_logical_byte(root, 0));
5000 search_start = max(search_start, hint_byte);
5002 if (!last_ptr)
5003 empty_cluster = 0;
5005 if (search_start == hint_byte) {
5006 ideal_cache:
5007 block_group = btrfs_lookup_block_group(root->fs_info,
5008 search_start);
5010 * we don't want to use the block group if it doesn't match our
5011 * allocation bits, or if its not cached.
5013 * However if we are re-searching with an ideal block group
5014 * picked out then we don't care that the block group is cached.
5016 if (block_group && block_group_bits(block_group, data) &&
5017 (block_group->cached != BTRFS_CACHE_NO ||
5018 search_start == ideal_cache_offset)) {
5019 down_read(&space_info->groups_sem);
5020 if (list_empty(&block_group->list) ||
5021 block_group->ro) {
5023 * someone is removing this block group,
5024 * we can't jump into the have_block_group
5025 * target because our list pointers are not
5026 * valid
5028 btrfs_put_block_group(block_group);
5029 up_read(&space_info->groups_sem);
5030 } else {
5031 index = get_block_group_index(block_group);
5032 goto have_block_group;
5034 } else if (block_group) {
5035 btrfs_put_block_group(block_group);
5038 search:
5039 down_read(&space_info->groups_sem);
5040 list_for_each_entry(block_group, &space_info->block_groups[index],
5041 list) {
5042 u64 offset;
5043 int cached;
5045 btrfs_get_block_group(block_group);
5046 search_start = block_group->key.objectid;
5049 * this can happen if we end up cycling through all the
5050 * raid types, but we want to make sure we only allocate
5051 * for the proper type.
5053 if (!block_group_bits(block_group, data)) {
5054 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5055 BTRFS_BLOCK_GROUP_RAID1 |
5056 BTRFS_BLOCK_GROUP_RAID10;
5059 * if they asked for extra copies and this block group
5060 * doesn't provide them, bail. This does allow us to
5061 * fill raid0 from raid1.
5063 if ((data & extra) && !(block_group->flags & extra))
5064 goto loop;
5067 have_block_group:
5068 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5069 u64 free_percent;
5071 ret = cache_block_group(block_group, trans,
5072 orig_root, 1);
5073 if (block_group->cached == BTRFS_CACHE_FINISHED)
5074 goto have_block_group;
5076 free_percent = btrfs_block_group_used(&block_group->item);
5077 free_percent *= 100;
5078 free_percent = div64_u64(free_percent,
5079 block_group->key.offset);
5080 free_percent = 100 - free_percent;
5081 if (free_percent > ideal_cache_percent &&
5082 likely(!block_group->ro)) {
5083 ideal_cache_offset = block_group->key.objectid;
5084 ideal_cache_percent = free_percent;
5088 * The caching workers are limited to 2 threads, so we
5089 * can queue as much work as we care to.
5091 if (loop > LOOP_FIND_IDEAL) {
5092 ret = cache_block_group(block_group, trans,
5093 orig_root, 0);
5094 BUG_ON(ret);
5096 found_uncached_bg = true;
5099 * If loop is set for cached only, try the next block
5100 * group.
5102 if (loop == LOOP_FIND_IDEAL)
5103 goto loop;
5106 cached = block_group_cache_done(block_group);
5107 if (unlikely(!cached))
5108 found_uncached_bg = true;
5110 if (unlikely(block_group->ro))
5111 goto loop;
5113 spin_lock(&block_group->free_space_ctl->tree_lock);
5114 if (cached &&
5115 block_group->free_space_ctl->free_space <
5116 num_bytes + empty_size) {
5117 spin_unlock(&block_group->free_space_ctl->tree_lock);
5118 goto loop;
5120 spin_unlock(&block_group->free_space_ctl->tree_lock);
5123 * Ok we want to try and use the cluster allocator, so lets look
5124 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5125 * have tried the cluster allocator plenty of times at this
5126 * point and not have found anything, so we are likely way too
5127 * fragmented for the clustering stuff to find anything, so lets
5128 * just skip it and let the allocator find whatever block it can
5129 * find
5131 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5133 * the refill lock keeps out other
5134 * people trying to start a new cluster
5136 spin_lock(&last_ptr->refill_lock);
5137 if (last_ptr->block_group &&
5138 (last_ptr->block_group->ro ||
5139 !block_group_bits(last_ptr->block_group, data))) {
5140 offset = 0;
5141 goto refill_cluster;
5144 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5145 num_bytes, search_start);
5146 if (offset) {
5147 /* we have a block, we're done */
5148 spin_unlock(&last_ptr->refill_lock);
5149 goto checks;
5152 spin_lock(&last_ptr->lock);
5154 * whoops, this cluster doesn't actually point to
5155 * this block group. Get a ref on the block
5156 * group is does point to and try again
5158 if (!last_ptr_loop && last_ptr->block_group &&
5159 last_ptr->block_group != block_group &&
5160 index <=
5161 get_block_group_index(last_ptr->block_group)) {
5163 btrfs_put_block_group(block_group);
5164 block_group = last_ptr->block_group;
5165 btrfs_get_block_group(block_group);
5166 spin_unlock(&last_ptr->lock);
5167 spin_unlock(&last_ptr->refill_lock);
5169 last_ptr_loop = 1;
5170 search_start = block_group->key.objectid;
5172 * we know this block group is properly
5173 * in the list because
5174 * btrfs_remove_block_group, drops the
5175 * cluster before it removes the block
5176 * group from the list
5178 goto have_block_group;
5180 spin_unlock(&last_ptr->lock);
5181 refill_cluster:
5183 * this cluster didn't work out, free it and
5184 * start over
5186 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5188 last_ptr_loop = 0;
5190 /* allocate a cluster in this block group */
5191 ret = btrfs_find_space_cluster(trans, root,
5192 block_group, last_ptr,
5193 offset, num_bytes,
5194 empty_cluster + empty_size);
5195 if (ret == 0) {
5197 * now pull our allocation out of this
5198 * cluster
5200 offset = btrfs_alloc_from_cluster(block_group,
5201 last_ptr, num_bytes,
5202 search_start);
5203 if (offset) {
5204 /* we found one, proceed */
5205 spin_unlock(&last_ptr->refill_lock);
5206 goto checks;
5208 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5209 && !failed_cluster_refill) {
5210 spin_unlock(&last_ptr->refill_lock);
5212 failed_cluster_refill = true;
5213 wait_block_group_cache_progress(block_group,
5214 num_bytes + empty_cluster + empty_size);
5215 goto have_block_group;
5219 * at this point we either didn't find a cluster
5220 * or we weren't able to allocate a block from our
5221 * cluster. Free the cluster we've been trying
5222 * to use, and go to the next block group
5224 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5225 spin_unlock(&last_ptr->refill_lock);
5226 goto loop;
5229 offset = btrfs_find_space_for_alloc(block_group, search_start,
5230 num_bytes, empty_size);
5232 * If we didn't find a chunk, and we haven't failed on this
5233 * block group before, and this block group is in the middle of
5234 * caching and we are ok with waiting, then go ahead and wait
5235 * for progress to be made, and set failed_alloc to true.
5237 * If failed_alloc is true then we've already waited on this
5238 * block group once and should move on to the next block group.
5240 if (!offset && !failed_alloc && !cached &&
5241 loop > LOOP_CACHING_NOWAIT) {
5242 wait_block_group_cache_progress(block_group,
5243 num_bytes + empty_size);
5244 failed_alloc = true;
5245 goto have_block_group;
5246 } else if (!offset) {
5247 goto loop;
5249 checks:
5250 search_start = stripe_align(root, offset);
5251 /* move on to the next group */
5252 if (search_start + num_bytes >= search_end) {
5253 btrfs_add_free_space(block_group, offset, num_bytes);
5254 goto loop;
5257 /* move on to the next group */
5258 if (search_start + num_bytes >
5259 block_group->key.objectid + block_group->key.offset) {
5260 btrfs_add_free_space(block_group, offset, num_bytes);
5261 goto loop;
5264 ins->objectid = search_start;
5265 ins->offset = num_bytes;
5267 if (offset < search_start)
5268 btrfs_add_free_space(block_group, offset,
5269 search_start - offset);
5270 BUG_ON(offset > search_start);
5272 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
5273 alloc_type);
5274 if (ret == -EAGAIN) {
5275 btrfs_add_free_space(block_group, offset, num_bytes);
5276 goto loop;
5279 /* we are all good, lets return */
5280 ins->objectid = search_start;
5281 ins->offset = num_bytes;
5283 if (offset < search_start)
5284 btrfs_add_free_space(block_group, offset,
5285 search_start - offset);
5286 BUG_ON(offset > search_start);
5287 btrfs_put_block_group(block_group);
5288 break;
5289 loop:
5290 failed_cluster_refill = false;
5291 failed_alloc = false;
5292 BUG_ON(index != get_block_group_index(block_group));
5293 btrfs_put_block_group(block_group);
5295 up_read(&space_info->groups_sem);
5297 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5298 goto search;
5300 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5301 * for them to make caching progress. Also
5302 * determine the best possible bg to cache
5303 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5304 * caching kthreads as we move along
5305 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5306 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5307 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5308 * again
5310 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5311 index = 0;
5312 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5313 found_uncached_bg = false;
5314 loop++;
5315 if (!ideal_cache_percent)
5316 goto search;
5319 * 1 of the following 2 things have happened so far
5321 * 1) We found an ideal block group for caching that
5322 * is mostly full and will cache quickly, so we might
5323 * as well wait for it.
5325 * 2) We searched for cached only and we didn't find
5326 * anything, and we didn't start any caching kthreads
5327 * either, so chances are we will loop through and
5328 * start a couple caching kthreads, and then come back
5329 * around and just wait for them. This will be slower
5330 * because we will have 2 caching kthreads reading at
5331 * the same time when we could have just started one
5332 * and waited for it to get far enough to give us an
5333 * allocation, so go ahead and go to the wait caching
5334 * loop.
5336 loop = LOOP_CACHING_WAIT;
5337 search_start = ideal_cache_offset;
5338 ideal_cache_percent = 0;
5339 goto ideal_cache;
5340 } else if (loop == LOOP_FIND_IDEAL) {
5342 * Didn't find a uncached bg, wait on anything we find
5343 * next.
5345 loop = LOOP_CACHING_WAIT;
5346 goto search;
5349 loop++;
5351 if (loop == LOOP_ALLOC_CHUNK) {
5352 if (allowed_chunk_alloc) {
5353 ret = do_chunk_alloc(trans, root, num_bytes +
5354 2 * 1024 * 1024, data,
5355 CHUNK_ALLOC_LIMITED);
5356 allowed_chunk_alloc = 0;
5357 if (ret == 1)
5358 done_chunk_alloc = 1;
5359 } else if (!done_chunk_alloc &&
5360 space_info->force_alloc ==
5361 CHUNK_ALLOC_NO_FORCE) {
5362 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5366 * We didn't allocate a chunk, go ahead and drop the
5367 * empty size and loop again.
5369 if (!done_chunk_alloc)
5370 loop = LOOP_NO_EMPTY_SIZE;
5373 if (loop == LOOP_NO_EMPTY_SIZE) {
5374 empty_size = 0;
5375 empty_cluster = 0;
5378 goto search;
5379 } else if (!ins->objectid) {
5380 ret = -ENOSPC;
5381 } else if (ins->objectid) {
5382 ret = 0;
5385 return ret;
5388 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5389 int dump_block_groups)
5391 struct btrfs_block_group_cache *cache;
5392 int index = 0;
5394 spin_lock(&info->lock);
5395 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5396 (unsigned long long)info->flags,
5397 (unsigned long long)(info->total_bytes - info->bytes_used -
5398 info->bytes_pinned - info->bytes_reserved -
5399 info->bytes_readonly),
5400 (info->full) ? "" : "not ");
5401 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5402 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5403 (unsigned long long)info->total_bytes,
5404 (unsigned long long)info->bytes_used,
5405 (unsigned long long)info->bytes_pinned,
5406 (unsigned long long)info->bytes_reserved,
5407 (unsigned long long)info->bytes_may_use,
5408 (unsigned long long)info->bytes_readonly);
5409 spin_unlock(&info->lock);
5411 if (!dump_block_groups)
5412 return;
5414 down_read(&info->groups_sem);
5415 again:
5416 list_for_each_entry(cache, &info->block_groups[index], list) {
5417 spin_lock(&cache->lock);
5418 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5419 "%llu pinned %llu reserved\n",
5420 (unsigned long long)cache->key.objectid,
5421 (unsigned long long)cache->key.offset,
5422 (unsigned long long)btrfs_block_group_used(&cache->item),
5423 (unsigned long long)cache->pinned,
5424 (unsigned long long)cache->reserved);
5425 btrfs_dump_free_space(cache, bytes);
5426 spin_unlock(&cache->lock);
5428 if (++index < BTRFS_NR_RAID_TYPES)
5429 goto again;
5430 up_read(&info->groups_sem);
5433 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5434 struct btrfs_root *root,
5435 u64 num_bytes, u64 min_alloc_size,
5436 u64 empty_size, u64 hint_byte,
5437 u64 search_end, struct btrfs_key *ins,
5438 u64 data)
5440 int ret;
5441 u64 search_start = 0;
5443 data = btrfs_get_alloc_profile(root, data);
5444 again:
5446 * the only place that sets empty_size is btrfs_realloc_node, which
5447 * is not called recursively on allocations
5449 if (empty_size || root->ref_cows)
5450 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5451 num_bytes + 2 * 1024 * 1024, data,
5452 CHUNK_ALLOC_NO_FORCE);
5454 WARN_ON(num_bytes < root->sectorsize);
5455 ret = find_free_extent(trans, root, num_bytes, empty_size,
5456 search_start, search_end, hint_byte,
5457 ins, data);
5459 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5460 num_bytes = num_bytes >> 1;
5461 num_bytes = num_bytes & ~(root->sectorsize - 1);
5462 num_bytes = max(num_bytes, min_alloc_size);
5463 do_chunk_alloc(trans, root->fs_info->extent_root,
5464 num_bytes, data, CHUNK_ALLOC_FORCE);
5465 goto again;
5467 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5468 struct btrfs_space_info *sinfo;
5470 sinfo = __find_space_info(root->fs_info, data);
5471 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5472 "wanted %llu\n", (unsigned long long)data,
5473 (unsigned long long)num_bytes);
5474 dump_space_info(sinfo, num_bytes, 1);
5477 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5479 return ret;
5482 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5484 struct btrfs_block_group_cache *cache;
5485 int ret = 0;
5487 cache = btrfs_lookup_block_group(root->fs_info, start);
5488 if (!cache) {
5489 printk(KERN_ERR "Unable to find block group for %llu\n",
5490 (unsigned long long)start);
5491 return -ENOSPC;
5494 if (btrfs_test_opt(root, DISCARD))
5495 ret = btrfs_discard_extent(root, start, len, NULL);
5497 btrfs_add_free_space(cache, start, len);
5498 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5499 btrfs_put_block_group(cache);
5501 trace_btrfs_reserved_extent_free(root, start, len);
5503 return ret;
5506 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5507 struct btrfs_root *root,
5508 u64 parent, u64 root_objectid,
5509 u64 flags, u64 owner, u64 offset,
5510 struct btrfs_key *ins, int ref_mod)
5512 int ret;
5513 struct btrfs_fs_info *fs_info = root->fs_info;
5514 struct btrfs_extent_item *extent_item;
5515 struct btrfs_extent_inline_ref *iref;
5516 struct btrfs_path *path;
5517 struct extent_buffer *leaf;
5518 int type;
5519 u32 size;
5521 if (parent > 0)
5522 type = BTRFS_SHARED_DATA_REF_KEY;
5523 else
5524 type = BTRFS_EXTENT_DATA_REF_KEY;
5526 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5528 path = btrfs_alloc_path();
5529 if (!path)
5530 return -ENOMEM;
5532 path->leave_spinning = 1;
5533 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5534 ins, size);
5535 BUG_ON(ret);
5537 leaf = path->nodes[0];
5538 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5539 struct btrfs_extent_item);
5540 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5541 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5542 btrfs_set_extent_flags(leaf, extent_item,
5543 flags | BTRFS_EXTENT_FLAG_DATA);
5545 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5546 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5547 if (parent > 0) {
5548 struct btrfs_shared_data_ref *ref;
5549 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5550 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5551 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5552 } else {
5553 struct btrfs_extent_data_ref *ref;
5554 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5555 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5556 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5557 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5558 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5561 btrfs_mark_buffer_dirty(path->nodes[0]);
5562 btrfs_free_path(path);
5564 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5565 if (ret) {
5566 printk(KERN_ERR "btrfs update block group failed for %llu "
5567 "%llu\n", (unsigned long long)ins->objectid,
5568 (unsigned long long)ins->offset);
5569 BUG();
5571 return ret;
5574 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5575 struct btrfs_root *root,
5576 u64 parent, u64 root_objectid,
5577 u64 flags, struct btrfs_disk_key *key,
5578 int level, struct btrfs_key *ins)
5580 int ret;
5581 struct btrfs_fs_info *fs_info = root->fs_info;
5582 struct btrfs_extent_item *extent_item;
5583 struct btrfs_tree_block_info *block_info;
5584 struct btrfs_extent_inline_ref *iref;
5585 struct btrfs_path *path;
5586 struct extent_buffer *leaf;
5587 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5589 path = btrfs_alloc_path();
5590 if (!path)
5591 return -ENOMEM;
5593 path->leave_spinning = 1;
5594 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5595 ins, size);
5596 BUG_ON(ret);
5598 leaf = path->nodes[0];
5599 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5600 struct btrfs_extent_item);
5601 btrfs_set_extent_refs(leaf, extent_item, 1);
5602 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5603 btrfs_set_extent_flags(leaf, extent_item,
5604 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5605 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5607 btrfs_set_tree_block_key(leaf, block_info, key);
5608 btrfs_set_tree_block_level(leaf, block_info, level);
5610 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5611 if (parent > 0) {
5612 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5613 btrfs_set_extent_inline_ref_type(leaf, iref,
5614 BTRFS_SHARED_BLOCK_REF_KEY);
5615 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5616 } else {
5617 btrfs_set_extent_inline_ref_type(leaf, iref,
5618 BTRFS_TREE_BLOCK_REF_KEY);
5619 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5622 btrfs_mark_buffer_dirty(leaf);
5623 btrfs_free_path(path);
5625 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5626 if (ret) {
5627 printk(KERN_ERR "btrfs update block group failed for %llu "
5628 "%llu\n", (unsigned long long)ins->objectid,
5629 (unsigned long long)ins->offset);
5630 BUG();
5632 return ret;
5635 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5636 struct btrfs_root *root,
5637 u64 root_objectid, u64 owner,
5638 u64 offset, struct btrfs_key *ins)
5640 int ret;
5642 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5644 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5645 0, root_objectid, owner, offset,
5646 BTRFS_ADD_DELAYED_EXTENT, NULL);
5647 return ret;
5651 * this is used by the tree logging recovery code. It records that
5652 * an extent has been allocated and makes sure to clear the free
5653 * space cache bits as well
5655 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5656 struct btrfs_root *root,
5657 u64 root_objectid, u64 owner, u64 offset,
5658 struct btrfs_key *ins)
5660 int ret;
5661 struct btrfs_block_group_cache *block_group;
5662 struct btrfs_caching_control *caching_ctl;
5663 u64 start = ins->objectid;
5664 u64 num_bytes = ins->offset;
5666 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5667 cache_block_group(block_group, trans, NULL, 0);
5668 caching_ctl = get_caching_control(block_group);
5670 if (!caching_ctl) {
5671 BUG_ON(!block_group_cache_done(block_group));
5672 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5673 BUG_ON(ret);
5674 } else {
5675 mutex_lock(&caching_ctl->mutex);
5677 if (start >= caching_ctl->progress) {
5678 ret = add_excluded_extent(root, start, num_bytes);
5679 BUG_ON(ret);
5680 } else if (start + num_bytes <= caching_ctl->progress) {
5681 ret = btrfs_remove_free_space(block_group,
5682 start, num_bytes);
5683 BUG_ON(ret);
5684 } else {
5685 num_bytes = caching_ctl->progress - start;
5686 ret = btrfs_remove_free_space(block_group,
5687 start, num_bytes);
5688 BUG_ON(ret);
5690 start = caching_ctl->progress;
5691 num_bytes = ins->objectid + ins->offset -
5692 caching_ctl->progress;
5693 ret = add_excluded_extent(root, start, num_bytes);
5694 BUG_ON(ret);
5697 mutex_unlock(&caching_ctl->mutex);
5698 put_caching_control(caching_ctl);
5701 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5702 RESERVE_ALLOC_NO_ACCOUNT);
5703 BUG_ON(ret);
5704 btrfs_put_block_group(block_group);
5705 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5706 0, owner, offset, ins, 1);
5707 return ret;
5710 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5711 struct btrfs_root *root,
5712 u64 bytenr, u32 blocksize,
5713 int level)
5715 struct extent_buffer *buf;
5717 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5718 if (!buf)
5719 return ERR_PTR(-ENOMEM);
5720 btrfs_set_header_generation(buf, trans->transid);
5721 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5722 btrfs_tree_lock(buf);
5723 clean_tree_block(trans, root, buf);
5725 btrfs_set_lock_blocking(buf);
5726 btrfs_set_buffer_uptodate(buf);
5728 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5730 * we allow two log transactions at a time, use different
5731 * EXENT bit to differentiate dirty pages.
5733 if (root->log_transid % 2 == 0)
5734 set_extent_dirty(&root->dirty_log_pages, buf->start,
5735 buf->start + buf->len - 1, GFP_NOFS);
5736 else
5737 set_extent_new(&root->dirty_log_pages, buf->start,
5738 buf->start + buf->len - 1, GFP_NOFS);
5739 } else {
5740 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5741 buf->start + buf->len - 1, GFP_NOFS);
5743 trans->blocks_used++;
5744 /* this returns a buffer locked for blocking */
5745 return buf;
5748 static struct btrfs_block_rsv *
5749 use_block_rsv(struct btrfs_trans_handle *trans,
5750 struct btrfs_root *root, u32 blocksize)
5752 struct btrfs_block_rsv *block_rsv;
5753 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5754 int ret;
5756 block_rsv = get_block_rsv(trans, root);
5758 if (block_rsv->size == 0) {
5759 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5761 * If we couldn't reserve metadata bytes try and use some from
5762 * the global reserve.
5764 if (ret && block_rsv != global_rsv) {
5765 ret = block_rsv_use_bytes(global_rsv, blocksize);
5766 if (!ret)
5767 return global_rsv;
5768 return ERR_PTR(ret);
5769 } else if (ret) {
5770 return ERR_PTR(ret);
5772 return block_rsv;
5775 ret = block_rsv_use_bytes(block_rsv, blocksize);
5776 if (!ret)
5777 return block_rsv;
5778 if (ret) {
5779 WARN_ON(1);
5780 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5781 if (!ret) {
5782 return block_rsv;
5783 } else if (ret && block_rsv != global_rsv) {
5784 ret = block_rsv_use_bytes(global_rsv, blocksize);
5785 if (!ret)
5786 return global_rsv;
5790 return ERR_PTR(-ENOSPC);
5793 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5795 block_rsv_add_bytes(block_rsv, blocksize, 0);
5796 block_rsv_release_bytes(block_rsv, NULL, 0);
5800 * finds a free extent and does all the dirty work required for allocation
5801 * returns the key for the extent through ins, and a tree buffer for
5802 * the first block of the extent through buf.
5804 * returns the tree buffer or NULL.
5806 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5807 struct btrfs_root *root, u32 blocksize,
5808 u64 parent, u64 root_objectid,
5809 struct btrfs_disk_key *key, int level,
5810 u64 hint, u64 empty_size)
5812 struct btrfs_key ins;
5813 struct btrfs_block_rsv *block_rsv;
5814 struct extent_buffer *buf;
5815 u64 flags = 0;
5816 int ret;
5819 block_rsv = use_block_rsv(trans, root, blocksize);
5820 if (IS_ERR(block_rsv))
5821 return ERR_CAST(block_rsv);
5823 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5824 empty_size, hint, (u64)-1, &ins, 0);
5825 if (ret) {
5826 unuse_block_rsv(block_rsv, blocksize);
5827 return ERR_PTR(ret);
5830 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5831 blocksize, level);
5832 BUG_ON(IS_ERR(buf));
5834 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5835 if (parent == 0)
5836 parent = ins.objectid;
5837 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5838 } else
5839 BUG_ON(parent > 0);
5841 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5842 struct btrfs_delayed_extent_op *extent_op;
5843 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5844 BUG_ON(!extent_op);
5845 if (key)
5846 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5847 else
5848 memset(&extent_op->key, 0, sizeof(extent_op->key));
5849 extent_op->flags_to_set = flags;
5850 extent_op->update_key = 1;
5851 extent_op->update_flags = 1;
5852 extent_op->is_data = 0;
5854 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5855 ins.offset, parent, root_objectid,
5856 level, BTRFS_ADD_DELAYED_EXTENT,
5857 extent_op);
5858 BUG_ON(ret);
5860 return buf;
5863 struct walk_control {
5864 u64 refs[BTRFS_MAX_LEVEL];
5865 u64 flags[BTRFS_MAX_LEVEL];
5866 struct btrfs_key update_progress;
5867 int stage;
5868 int level;
5869 int shared_level;
5870 int update_ref;
5871 int keep_locks;
5872 int reada_slot;
5873 int reada_count;
5876 #define DROP_REFERENCE 1
5877 #define UPDATE_BACKREF 2
5879 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5880 struct btrfs_root *root,
5881 struct walk_control *wc,
5882 struct btrfs_path *path)
5884 u64 bytenr;
5885 u64 generation;
5886 u64 refs;
5887 u64 flags;
5888 u32 nritems;
5889 u32 blocksize;
5890 struct btrfs_key key;
5891 struct extent_buffer *eb;
5892 int ret;
5893 int slot;
5894 int nread = 0;
5896 if (path->slots[wc->level] < wc->reada_slot) {
5897 wc->reada_count = wc->reada_count * 2 / 3;
5898 wc->reada_count = max(wc->reada_count, 2);
5899 } else {
5900 wc->reada_count = wc->reada_count * 3 / 2;
5901 wc->reada_count = min_t(int, wc->reada_count,
5902 BTRFS_NODEPTRS_PER_BLOCK(root));
5905 eb = path->nodes[wc->level];
5906 nritems = btrfs_header_nritems(eb);
5907 blocksize = btrfs_level_size(root, wc->level - 1);
5909 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5910 if (nread >= wc->reada_count)
5911 break;
5913 cond_resched();
5914 bytenr = btrfs_node_blockptr(eb, slot);
5915 generation = btrfs_node_ptr_generation(eb, slot);
5917 if (slot == path->slots[wc->level])
5918 goto reada;
5920 if (wc->stage == UPDATE_BACKREF &&
5921 generation <= root->root_key.offset)
5922 continue;
5924 /* We don't lock the tree block, it's OK to be racy here */
5925 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5926 &refs, &flags);
5927 BUG_ON(ret);
5928 BUG_ON(refs == 0);
5930 if (wc->stage == DROP_REFERENCE) {
5931 if (refs == 1)
5932 goto reada;
5934 if (wc->level == 1 &&
5935 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5936 continue;
5937 if (!wc->update_ref ||
5938 generation <= root->root_key.offset)
5939 continue;
5940 btrfs_node_key_to_cpu(eb, &key, slot);
5941 ret = btrfs_comp_cpu_keys(&key,
5942 &wc->update_progress);
5943 if (ret < 0)
5944 continue;
5945 } else {
5946 if (wc->level == 1 &&
5947 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5948 continue;
5950 reada:
5951 ret = readahead_tree_block(root, bytenr, blocksize,
5952 generation);
5953 if (ret)
5954 break;
5955 nread++;
5957 wc->reada_slot = slot;
5961 * hepler to process tree block while walking down the tree.
5963 * when wc->stage == UPDATE_BACKREF, this function updates
5964 * back refs for pointers in the block.
5966 * NOTE: return value 1 means we should stop walking down.
5968 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5969 struct btrfs_root *root,
5970 struct btrfs_path *path,
5971 struct walk_control *wc, int lookup_info)
5973 int level = wc->level;
5974 struct extent_buffer *eb = path->nodes[level];
5975 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5976 int ret;
5978 if (wc->stage == UPDATE_BACKREF &&
5979 btrfs_header_owner(eb) != root->root_key.objectid)
5980 return 1;
5983 * when reference count of tree block is 1, it won't increase
5984 * again. once full backref flag is set, we never clear it.
5986 if (lookup_info &&
5987 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5988 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5989 BUG_ON(!path->locks[level]);
5990 ret = btrfs_lookup_extent_info(trans, root,
5991 eb->start, eb->len,
5992 &wc->refs[level],
5993 &wc->flags[level]);
5994 BUG_ON(ret);
5995 BUG_ON(wc->refs[level] == 0);
5998 if (wc->stage == DROP_REFERENCE) {
5999 if (wc->refs[level] > 1)
6000 return 1;
6002 if (path->locks[level] && !wc->keep_locks) {
6003 btrfs_tree_unlock_rw(eb, path->locks[level]);
6004 path->locks[level] = 0;
6006 return 0;
6009 /* wc->stage == UPDATE_BACKREF */
6010 if (!(wc->flags[level] & flag)) {
6011 BUG_ON(!path->locks[level]);
6012 ret = btrfs_inc_ref(trans, root, eb, 1);
6013 BUG_ON(ret);
6014 ret = btrfs_dec_ref(trans, root, eb, 0);
6015 BUG_ON(ret);
6016 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6017 eb->len, flag, 0);
6018 BUG_ON(ret);
6019 wc->flags[level] |= flag;
6023 * the block is shared by multiple trees, so it's not good to
6024 * keep the tree lock
6026 if (path->locks[level] && level > 0) {
6027 btrfs_tree_unlock_rw(eb, path->locks[level]);
6028 path->locks[level] = 0;
6030 return 0;
6034 * hepler to process tree block pointer.
6036 * when wc->stage == DROP_REFERENCE, this function checks
6037 * reference count of the block pointed to. if the block
6038 * is shared and we need update back refs for the subtree
6039 * rooted at the block, this function changes wc->stage to
6040 * UPDATE_BACKREF. if the block is shared and there is no
6041 * need to update back, this function drops the reference
6042 * to the block.
6044 * NOTE: return value 1 means we should stop walking down.
6046 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6047 struct btrfs_root *root,
6048 struct btrfs_path *path,
6049 struct walk_control *wc, int *lookup_info)
6051 u64 bytenr;
6052 u64 generation;
6053 u64 parent;
6054 u32 blocksize;
6055 struct btrfs_key key;
6056 struct extent_buffer *next;
6057 int level = wc->level;
6058 int reada = 0;
6059 int ret = 0;
6061 generation = btrfs_node_ptr_generation(path->nodes[level],
6062 path->slots[level]);
6064 * if the lower level block was created before the snapshot
6065 * was created, we know there is no need to update back refs
6066 * for the subtree
6068 if (wc->stage == UPDATE_BACKREF &&
6069 generation <= root->root_key.offset) {
6070 *lookup_info = 1;
6071 return 1;
6074 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6075 blocksize = btrfs_level_size(root, level - 1);
6077 next = btrfs_find_tree_block(root, bytenr, blocksize);
6078 if (!next) {
6079 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6080 if (!next)
6081 return -ENOMEM;
6082 reada = 1;
6084 btrfs_tree_lock(next);
6085 btrfs_set_lock_blocking(next);
6087 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6088 &wc->refs[level - 1],
6089 &wc->flags[level - 1]);
6090 BUG_ON(ret);
6091 BUG_ON(wc->refs[level - 1] == 0);
6092 *lookup_info = 0;
6094 if (wc->stage == DROP_REFERENCE) {
6095 if (wc->refs[level - 1] > 1) {
6096 if (level == 1 &&
6097 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6098 goto skip;
6100 if (!wc->update_ref ||
6101 generation <= root->root_key.offset)
6102 goto skip;
6104 btrfs_node_key_to_cpu(path->nodes[level], &key,
6105 path->slots[level]);
6106 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6107 if (ret < 0)
6108 goto skip;
6110 wc->stage = UPDATE_BACKREF;
6111 wc->shared_level = level - 1;
6113 } else {
6114 if (level == 1 &&
6115 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6116 goto skip;
6119 if (!btrfs_buffer_uptodate(next, generation)) {
6120 btrfs_tree_unlock(next);
6121 free_extent_buffer(next);
6122 next = NULL;
6123 *lookup_info = 1;
6126 if (!next) {
6127 if (reada && level == 1)
6128 reada_walk_down(trans, root, wc, path);
6129 next = read_tree_block(root, bytenr, blocksize, generation);
6130 if (!next)
6131 return -EIO;
6132 btrfs_tree_lock(next);
6133 btrfs_set_lock_blocking(next);
6136 level--;
6137 BUG_ON(level != btrfs_header_level(next));
6138 path->nodes[level] = next;
6139 path->slots[level] = 0;
6140 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6141 wc->level = level;
6142 if (wc->level == 1)
6143 wc->reada_slot = 0;
6144 return 0;
6145 skip:
6146 wc->refs[level - 1] = 0;
6147 wc->flags[level - 1] = 0;
6148 if (wc->stage == DROP_REFERENCE) {
6149 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6150 parent = path->nodes[level]->start;
6151 } else {
6152 BUG_ON(root->root_key.objectid !=
6153 btrfs_header_owner(path->nodes[level]));
6154 parent = 0;
6157 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6158 root->root_key.objectid, level - 1, 0);
6159 BUG_ON(ret);
6161 btrfs_tree_unlock(next);
6162 free_extent_buffer(next);
6163 *lookup_info = 1;
6164 return 1;
6168 * hepler to process tree block while walking up the tree.
6170 * when wc->stage == DROP_REFERENCE, this function drops
6171 * reference count on the block.
6173 * when wc->stage == UPDATE_BACKREF, this function changes
6174 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6175 * to UPDATE_BACKREF previously while processing the block.
6177 * NOTE: return value 1 means we should stop walking up.
6179 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6180 struct btrfs_root *root,
6181 struct btrfs_path *path,
6182 struct walk_control *wc)
6184 int ret;
6185 int level = wc->level;
6186 struct extent_buffer *eb = path->nodes[level];
6187 u64 parent = 0;
6189 if (wc->stage == UPDATE_BACKREF) {
6190 BUG_ON(wc->shared_level < level);
6191 if (level < wc->shared_level)
6192 goto out;
6194 ret = find_next_key(path, level + 1, &wc->update_progress);
6195 if (ret > 0)
6196 wc->update_ref = 0;
6198 wc->stage = DROP_REFERENCE;
6199 wc->shared_level = -1;
6200 path->slots[level] = 0;
6203 * check reference count again if the block isn't locked.
6204 * we should start walking down the tree again if reference
6205 * count is one.
6207 if (!path->locks[level]) {
6208 BUG_ON(level == 0);
6209 btrfs_tree_lock(eb);
6210 btrfs_set_lock_blocking(eb);
6211 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6213 ret = btrfs_lookup_extent_info(trans, root,
6214 eb->start, eb->len,
6215 &wc->refs[level],
6216 &wc->flags[level]);
6217 BUG_ON(ret);
6218 BUG_ON(wc->refs[level] == 0);
6219 if (wc->refs[level] == 1) {
6220 btrfs_tree_unlock_rw(eb, path->locks[level]);
6221 return 1;
6226 /* wc->stage == DROP_REFERENCE */
6227 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6229 if (wc->refs[level] == 1) {
6230 if (level == 0) {
6231 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6232 ret = btrfs_dec_ref(trans, root, eb, 1);
6233 else
6234 ret = btrfs_dec_ref(trans, root, eb, 0);
6235 BUG_ON(ret);
6237 /* make block locked assertion in clean_tree_block happy */
6238 if (!path->locks[level] &&
6239 btrfs_header_generation(eb) == trans->transid) {
6240 btrfs_tree_lock(eb);
6241 btrfs_set_lock_blocking(eb);
6242 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6244 clean_tree_block(trans, root, eb);
6247 if (eb == root->node) {
6248 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6249 parent = eb->start;
6250 else
6251 BUG_ON(root->root_key.objectid !=
6252 btrfs_header_owner(eb));
6253 } else {
6254 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6255 parent = path->nodes[level + 1]->start;
6256 else
6257 BUG_ON(root->root_key.objectid !=
6258 btrfs_header_owner(path->nodes[level + 1]));
6261 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6262 out:
6263 wc->refs[level] = 0;
6264 wc->flags[level] = 0;
6265 return 0;
6268 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6269 struct btrfs_root *root,
6270 struct btrfs_path *path,
6271 struct walk_control *wc)
6273 int level = wc->level;
6274 int lookup_info = 1;
6275 int ret;
6277 while (level >= 0) {
6278 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6279 if (ret > 0)
6280 break;
6282 if (level == 0)
6283 break;
6285 if (path->slots[level] >=
6286 btrfs_header_nritems(path->nodes[level]))
6287 break;
6289 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6290 if (ret > 0) {
6291 path->slots[level]++;
6292 continue;
6293 } else if (ret < 0)
6294 return ret;
6295 level = wc->level;
6297 return 0;
6300 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6301 struct btrfs_root *root,
6302 struct btrfs_path *path,
6303 struct walk_control *wc, int max_level)
6305 int level = wc->level;
6306 int ret;
6308 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6309 while (level < max_level && path->nodes[level]) {
6310 wc->level = level;
6311 if (path->slots[level] + 1 <
6312 btrfs_header_nritems(path->nodes[level])) {
6313 path->slots[level]++;
6314 return 0;
6315 } else {
6316 ret = walk_up_proc(trans, root, path, wc);
6317 if (ret > 0)
6318 return 0;
6320 if (path->locks[level]) {
6321 btrfs_tree_unlock_rw(path->nodes[level],
6322 path->locks[level]);
6323 path->locks[level] = 0;
6325 free_extent_buffer(path->nodes[level]);
6326 path->nodes[level] = NULL;
6327 level++;
6330 return 1;
6334 * drop a subvolume tree.
6336 * this function traverses the tree freeing any blocks that only
6337 * referenced by the tree.
6339 * when a shared tree block is found. this function decreases its
6340 * reference count by one. if update_ref is true, this function
6341 * also make sure backrefs for the shared block and all lower level
6342 * blocks are properly updated.
6344 void btrfs_drop_snapshot(struct btrfs_root *root,
6345 struct btrfs_block_rsv *block_rsv, int update_ref)
6347 struct btrfs_path *path;
6348 struct btrfs_trans_handle *trans;
6349 struct btrfs_root *tree_root = root->fs_info->tree_root;
6350 struct btrfs_root_item *root_item = &root->root_item;
6351 struct walk_control *wc;
6352 struct btrfs_key key;
6353 int err = 0;
6354 int ret;
6355 int level;
6357 path = btrfs_alloc_path();
6358 if (!path) {
6359 err = -ENOMEM;
6360 goto out;
6363 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6364 if (!wc) {
6365 btrfs_free_path(path);
6366 err = -ENOMEM;
6367 goto out;
6370 trans = btrfs_start_transaction(tree_root, 0);
6371 BUG_ON(IS_ERR(trans));
6373 if (block_rsv)
6374 trans->block_rsv = block_rsv;
6376 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6377 level = btrfs_header_level(root->node);
6378 path->nodes[level] = btrfs_lock_root_node(root);
6379 btrfs_set_lock_blocking(path->nodes[level]);
6380 path->slots[level] = 0;
6381 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6382 memset(&wc->update_progress, 0,
6383 sizeof(wc->update_progress));
6384 } else {
6385 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6386 memcpy(&wc->update_progress, &key,
6387 sizeof(wc->update_progress));
6389 level = root_item->drop_level;
6390 BUG_ON(level == 0);
6391 path->lowest_level = level;
6392 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6393 path->lowest_level = 0;
6394 if (ret < 0) {
6395 err = ret;
6396 goto out_free;
6398 WARN_ON(ret > 0);
6401 * unlock our path, this is safe because only this
6402 * function is allowed to delete this snapshot
6404 btrfs_unlock_up_safe(path, 0);
6406 level = btrfs_header_level(root->node);
6407 while (1) {
6408 btrfs_tree_lock(path->nodes[level]);
6409 btrfs_set_lock_blocking(path->nodes[level]);
6411 ret = btrfs_lookup_extent_info(trans, root,
6412 path->nodes[level]->start,
6413 path->nodes[level]->len,
6414 &wc->refs[level],
6415 &wc->flags[level]);
6416 BUG_ON(ret);
6417 BUG_ON(wc->refs[level] == 0);
6419 if (level == root_item->drop_level)
6420 break;
6422 btrfs_tree_unlock(path->nodes[level]);
6423 WARN_ON(wc->refs[level] != 1);
6424 level--;
6428 wc->level = level;
6429 wc->shared_level = -1;
6430 wc->stage = DROP_REFERENCE;
6431 wc->update_ref = update_ref;
6432 wc->keep_locks = 0;
6433 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6435 while (1) {
6436 ret = walk_down_tree(trans, root, path, wc);
6437 if (ret < 0) {
6438 err = ret;
6439 break;
6442 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6443 if (ret < 0) {
6444 err = ret;
6445 break;
6448 if (ret > 0) {
6449 BUG_ON(wc->stage != DROP_REFERENCE);
6450 break;
6453 if (wc->stage == DROP_REFERENCE) {
6454 level = wc->level;
6455 btrfs_node_key(path->nodes[level],
6456 &root_item->drop_progress,
6457 path->slots[level]);
6458 root_item->drop_level = level;
6461 BUG_ON(wc->level == 0);
6462 if (btrfs_should_end_transaction(trans, tree_root)) {
6463 ret = btrfs_update_root(trans, tree_root,
6464 &root->root_key,
6465 root_item);
6466 BUG_ON(ret);
6468 btrfs_end_transaction_throttle(trans, tree_root);
6469 trans = btrfs_start_transaction(tree_root, 0);
6470 BUG_ON(IS_ERR(trans));
6471 if (block_rsv)
6472 trans->block_rsv = block_rsv;
6475 btrfs_release_path(path);
6476 BUG_ON(err);
6478 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6479 BUG_ON(ret);
6481 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6482 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6483 NULL, NULL);
6484 BUG_ON(ret < 0);
6485 if (ret > 0) {
6486 /* if we fail to delete the orphan item this time
6487 * around, it'll get picked up the next time.
6489 * The most common failure here is just -ENOENT.
6491 btrfs_del_orphan_item(trans, tree_root,
6492 root->root_key.objectid);
6496 if (root->in_radix) {
6497 btrfs_free_fs_root(tree_root->fs_info, root);
6498 } else {
6499 free_extent_buffer(root->node);
6500 free_extent_buffer(root->commit_root);
6501 kfree(root);
6503 out_free:
6504 btrfs_end_transaction_throttle(trans, tree_root);
6505 kfree(wc);
6506 btrfs_free_path(path);
6507 out:
6508 if (err)
6509 btrfs_std_error(root->fs_info, err);
6510 return;
6514 * drop subtree rooted at tree block 'node'.
6516 * NOTE: this function will unlock and release tree block 'node'
6518 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6519 struct btrfs_root *root,
6520 struct extent_buffer *node,
6521 struct extent_buffer *parent)
6523 struct btrfs_path *path;
6524 struct walk_control *wc;
6525 int level;
6526 int parent_level;
6527 int ret = 0;
6528 int wret;
6530 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6532 path = btrfs_alloc_path();
6533 if (!path)
6534 return -ENOMEM;
6536 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6537 if (!wc) {
6538 btrfs_free_path(path);
6539 return -ENOMEM;
6542 btrfs_assert_tree_locked(parent);
6543 parent_level = btrfs_header_level(parent);
6544 extent_buffer_get(parent);
6545 path->nodes[parent_level] = parent;
6546 path->slots[parent_level] = btrfs_header_nritems(parent);
6548 btrfs_assert_tree_locked(node);
6549 level = btrfs_header_level(node);
6550 path->nodes[level] = node;
6551 path->slots[level] = 0;
6552 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6554 wc->refs[parent_level] = 1;
6555 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6556 wc->level = level;
6557 wc->shared_level = -1;
6558 wc->stage = DROP_REFERENCE;
6559 wc->update_ref = 0;
6560 wc->keep_locks = 1;
6561 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6563 while (1) {
6564 wret = walk_down_tree(trans, root, path, wc);
6565 if (wret < 0) {
6566 ret = wret;
6567 break;
6570 wret = walk_up_tree(trans, root, path, wc, parent_level);
6571 if (wret < 0)
6572 ret = wret;
6573 if (wret != 0)
6574 break;
6577 kfree(wc);
6578 btrfs_free_path(path);
6579 return ret;
6582 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6584 u64 num_devices;
6585 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6586 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6589 * we add in the count of missing devices because we want
6590 * to make sure that any RAID levels on a degraded FS
6591 * continue to be honored.
6593 num_devices = root->fs_info->fs_devices->rw_devices +
6594 root->fs_info->fs_devices->missing_devices;
6596 if (num_devices == 1) {
6597 stripped |= BTRFS_BLOCK_GROUP_DUP;
6598 stripped = flags & ~stripped;
6600 /* turn raid0 into single device chunks */
6601 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6602 return stripped;
6604 /* turn mirroring into duplication */
6605 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6606 BTRFS_BLOCK_GROUP_RAID10))
6607 return stripped | BTRFS_BLOCK_GROUP_DUP;
6608 return flags;
6609 } else {
6610 /* they already had raid on here, just return */
6611 if (flags & stripped)
6612 return flags;
6614 stripped |= BTRFS_BLOCK_GROUP_DUP;
6615 stripped = flags & ~stripped;
6617 /* switch duplicated blocks with raid1 */
6618 if (flags & BTRFS_BLOCK_GROUP_DUP)
6619 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6621 /* turn single device chunks into raid0 */
6622 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6624 return flags;
6627 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6629 struct btrfs_space_info *sinfo = cache->space_info;
6630 u64 num_bytes;
6631 u64 min_allocable_bytes;
6632 int ret = -ENOSPC;
6636 * We need some metadata space and system metadata space for
6637 * allocating chunks in some corner cases until we force to set
6638 * it to be readonly.
6640 if ((sinfo->flags &
6641 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6642 !force)
6643 min_allocable_bytes = 1 * 1024 * 1024;
6644 else
6645 min_allocable_bytes = 0;
6647 spin_lock(&sinfo->lock);
6648 spin_lock(&cache->lock);
6650 if (cache->ro) {
6651 ret = 0;
6652 goto out;
6655 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6656 cache->bytes_super - btrfs_block_group_used(&cache->item);
6658 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6659 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6660 min_allocable_bytes <= sinfo->total_bytes) {
6661 sinfo->bytes_readonly += num_bytes;
6662 cache->ro = 1;
6663 ret = 0;
6665 out:
6666 spin_unlock(&cache->lock);
6667 spin_unlock(&sinfo->lock);
6668 return ret;
6671 int btrfs_set_block_group_ro(struct btrfs_root *root,
6672 struct btrfs_block_group_cache *cache)
6675 struct btrfs_trans_handle *trans;
6676 u64 alloc_flags;
6677 int ret;
6679 BUG_ON(cache->ro);
6681 trans = btrfs_join_transaction(root);
6682 BUG_ON(IS_ERR(trans));
6684 alloc_flags = update_block_group_flags(root, cache->flags);
6685 if (alloc_flags != cache->flags)
6686 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6687 CHUNK_ALLOC_FORCE);
6689 ret = set_block_group_ro(cache, 0);
6690 if (!ret)
6691 goto out;
6692 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6693 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6694 CHUNK_ALLOC_FORCE);
6695 if (ret < 0)
6696 goto out;
6697 ret = set_block_group_ro(cache, 0);
6698 out:
6699 btrfs_end_transaction(trans, root);
6700 return ret;
6703 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6704 struct btrfs_root *root, u64 type)
6706 u64 alloc_flags = get_alloc_profile(root, type);
6707 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6708 CHUNK_ALLOC_FORCE);
6712 * helper to account the unused space of all the readonly block group in the
6713 * list. takes mirrors into account.
6715 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6717 struct btrfs_block_group_cache *block_group;
6718 u64 free_bytes = 0;
6719 int factor;
6721 list_for_each_entry(block_group, groups_list, list) {
6722 spin_lock(&block_group->lock);
6724 if (!block_group->ro) {
6725 spin_unlock(&block_group->lock);
6726 continue;
6729 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6730 BTRFS_BLOCK_GROUP_RAID10 |
6731 BTRFS_BLOCK_GROUP_DUP))
6732 factor = 2;
6733 else
6734 factor = 1;
6736 free_bytes += (block_group->key.offset -
6737 btrfs_block_group_used(&block_group->item)) *
6738 factor;
6740 spin_unlock(&block_group->lock);
6743 return free_bytes;
6747 * helper to account the unused space of all the readonly block group in the
6748 * space_info. takes mirrors into account.
6750 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6752 int i;
6753 u64 free_bytes = 0;
6755 spin_lock(&sinfo->lock);
6757 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6758 if (!list_empty(&sinfo->block_groups[i]))
6759 free_bytes += __btrfs_get_ro_block_group_free_space(
6760 &sinfo->block_groups[i]);
6762 spin_unlock(&sinfo->lock);
6764 return free_bytes;
6767 int btrfs_set_block_group_rw(struct btrfs_root *root,
6768 struct btrfs_block_group_cache *cache)
6770 struct btrfs_space_info *sinfo = cache->space_info;
6771 u64 num_bytes;
6773 BUG_ON(!cache->ro);
6775 spin_lock(&sinfo->lock);
6776 spin_lock(&cache->lock);
6777 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6778 cache->bytes_super - btrfs_block_group_used(&cache->item);
6779 sinfo->bytes_readonly -= num_bytes;
6780 cache->ro = 0;
6781 spin_unlock(&cache->lock);
6782 spin_unlock(&sinfo->lock);
6783 return 0;
6787 * checks to see if its even possible to relocate this block group.
6789 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6790 * ok to go ahead and try.
6792 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6794 struct btrfs_block_group_cache *block_group;
6795 struct btrfs_space_info *space_info;
6796 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6797 struct btrfs_device *device;
6798 u64 min_free;
6799 u64 dev_min = 1;
6800 u64 dev_nr = 0;
6801 int index;
6802 int full = 0;
6803 int ret = 0;
6805 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6807 /* odd, couldn't find the block group, leave it alone */
6808 if (!block_group)
6809 return -1;
6811 min_free = btrfs_block_group_used(&block_group->item);
6813 /* no bytes used, we're good */
6814 if (!min_free)
6815 goto out;
6817 space_info = block_group->space_info;
6818 spin_lock(&space_info->lock);
6820 full = space_info->full;
6823 * if this is the last block group we have in this space, we can't
6824 * relocate it unless we're able to allocate a new chunk below.
6826 * Otherwise, we need to make sure we have room in the space to handle
6827 * all of the extents from this block group. If we can, we're good
6829 if ((space_info->total_bytes != block_group->key.offset) &&
6830 (space_info->bytes_used + space_info->bytes_reserved +
6831 space_info->bytes_pinned + space_info->bytes_readonly +
6832 min_free < space_info->total_bytes)) {
6833 spin_unlock(&space_info->lock);
6834 goto out;
6836 spin_unlock(&space_info->lock);
6839 * ok we don't have enough space, but maybe we have free space on our
6840 * devices to allocate new chunks for relocation, so loop through our
6841 * alloc devices and guess if we have enough space. However, if we
6842 * were marked as full, then we know there aren't enough chunks, and we
6843 * can just return.
6845 ret = -1;
6846 if (full)
6847 goto out;
6850 * index:
6851 * 0: raid10
6852 * 1: raid1
6853 * 2: dup
6854 * 3: raid0
6855 * 4: single
6857 index = get_block_group_index(block_group);
6858 if (index == 0) {
6859 dev_min = 4;
6860 /* Divide by 2 */
6861 min_free >>= 1;
6862 } else if (index == 1) {
6863 dev_min = 2;
6864 } else if (index == 2) {
6865 /* Multiply by 2 */
6866 min_free <<= 1;
6867 } else if (index == 3) {
6868 dev_min = fs_devices->rw_devices;
6869 do_div(min_free, dev_min);
6872 mutex_lock(&root->fs_info->chunk_mutex);
6873 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6874 u64 dev_offset;
6877 * check to make sure we can actually find a chunk with enough
6878 * space to fit our block group in.
6880 if (device->total_bytes > device->bytes_used + min_free) {
6881 ret = find_free_dev_extent(NULL, device, min_free,
6882 &dev_offset, NULL);
6883 if (!ret)
6884 dev_nr++;
6886 if (dev_nr >= dev_min)
6887 break;
6889 ret = -1;
6892 mutex_unlock(&root->fs_info->chunk_mutex);
6893 out:
6894 btrfs_put_block_group(block_group);
6895 return ret;
6898 static int find_first_block_group(struct btrfs_root *root,
6899 struct btrfs_path *path, struct btrfs_key *key)
6901 int ret = 0;
6902 struct btrfs_key found_key;
6903 struct extent_buffer *leaf;
6904 int slot;
6906 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6907 if (ret < 0)
6908 goto out;
6910 while (1) {
6911 slot = path->slots[0];
6912 leaf = path->nodes[0];
6913 if (slot >= btrfs_header_nritems(leaf)) {
6914 ret = btrfs_next_leaf(root, path);
6915 if (ret == 0)
6916 continue;
6917 if (ret < 0)
6918 goto out;
6919 break;
6921 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6923 if (found_key.objectid >= key->objectid &&
6924 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6925 ret = 0;
6926 goto out;
6928 path->slots[0]++;
6930 out:
6931 return ret;
6934 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6936 struct btrfs_block_group_cache *block_group;
6937 u64 last = 0;
6939 while (1) {
6940 struct inode *inode;
6942 block_group = btrfs_lookup_first_block_group(info, last);
6943 while (block_group) {
6944 spin_lock(&block_group->lock);
6945 if (block_group->iref)
6946 break;
6947 spin_unlock(&block_group->lock);
6948 block_group = next_block_group(info->tree_root,
6949 block_group);
6951 if (!block_group) {
6952 if (last == 0)
6953 break;
6954 last = 0;
6955 continue;
6958 inode = block_group->inode;
6959 block_group->iref = 0;
6960 block_group->inode = NULL;
6961 spin_unlock(&block_group->lock);
6962 iput(inode);
6963 last = block_group->key.objectid + block_group->key.offset;
6964 btrfs_put_block_group(block_group);
6968 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6970 struct btrfs_block_group_cache *block_group;
6971 struct btrfs_space_info *space_info;
6972 struct btrfs_caching_control *caching_ctl;
6973 struct rb_node *n;
6975 down_write(&info->extent_commit_sem);
6976 while (!list_empty(&info->caching_block_groups)) {
6977 caching_ctl = list_entry(info->caching_block_groups.next,
6978 struct btrfs_caching_control, list);
6979 list_del(&caching_ctl->list);
6980 put_caching_control(caching_ctl);
6982 up_write(&info->extent_commit_sem);
6984 spin_lock(&info->block_group_cache_lock);
6985 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6986 block_group = rb_entry(n, struct btrfs_block_group_cache,
6987 cache_node);
6988 rb_erase(&block_group->cache_node,
6989 &info->block_group_cache_tree);
6990 spin_unlock(&info->block_group_cache_lock);
6992 down_write(&block_group->space_info->groups_sem);
6993 list_del(&block_group->list);
6994 up_write(&block_group->space_info->groups_sem);
6996 if (block_group->cached == BTRFS_CACHE_STARTED)
6997 wait_block_group_cache_done(block_group);
7000 * We haven't cached this block group, which means we could
7001 * possibly have excluded extents on this block group.
7003 if (block_group->cached == BTRFS_CACHE_NO)
7004 free_excluded_extents(info->extent_root, block_group);
7006 btrfs_remove_free_space_cache(block_group);
7007 btrfs_put_block_group(block_group);
7009 spin_lock(&info->block_group_cache_lock);
7011 spin_unlock(&info->block_group_cache_lock);
7013 /* now that all the block groups are freed, go through and
7014 * free all the space_info structs. This is only called during
7015 * the final stages of unmount, and so we know nobody is
7016 * using them. We call synchronize_rcu() once before we start,
7017 * just to be on the safe side.
7019 synchronize_rcu();
7021 release_global_block_rsv(info);
7023 while(!list_empty(&info->space_info)) {
7024 space_info = list_entry(info->space_info.next,
7025 struct btrfs_space_info,
7026 list);
7027 if (space_info->bytes_pinned > 0 ||
7028 space_info->bytes_reserved > 0 ||
7029 space_info->bytes_may_use > 0) {
7030 WARN_ON(1);
7031 dump_space_info(space_info, 0, 0);
7033 list_del(&space_info->list);
7034 kfree(space_info);
7036 return 0;
7039 static void __link_block_group(struct btrfs_space_info *space_info,
7040 struct btrfs_block_group_cache *cache)
7042 int index = get_block_group_index(cache);
7044 down_write(&space_info->groups_sem);
7045 list_add_tail(&cache->list, &space_info->block_groups[index]);
7046 up_write(&space_info->groups_sem);
7049 int btrfs_read_block_groups(struct btrfs_root *root)
7051 struct btrfs_path *path;
7052 int ret;
7053 struct btrfs_block_group_cache *cache;
7054 struct btrfs_fs_info *info = root->fs_info;
7055 struct btrfs_space_info *space_info;
7056 struct btrfs_key key;
7057 struct btrfs_key found_key;
7058 struct extent_buffer *leaf;
7059 int need_clear = 0;
7060 u64 cache_gen;
7062 root = info->extent_root;
7063 key.objectid = 0;
7064 key.offset = 0;
7065 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7066 path = btrfs_alloc_path();
7067 if (!path)
7068 return -ENOMEM;
7069 path->reada = 1;
7071 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
7072 if (btrfs_test_opt(root, SPACE_CACHE) &&
7073 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
7074 need_clear = 1;
7075 if (btrfs_test_opt(root, CLEAR_CACHE))
7076 need_clear = 1;
7078 while (1) {
7079 ret = find_first_block_group(root, path, &key);
7080 if (ret > 0)
7081 break;
7082 if (ret != 0)
7083 goto error;
7084 leaf = path->nodes[0];
7085 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7086 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7087 if (!cache) {
7088 ret = -ENOMEM;
7089 goto error;
7091 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7092 GFP_NOFS);
7093 if (!cache->free_space_ctl) {
7094 kfree(cache);
7095 ret = -ENOMEM;
7096 goto error;
7099 atomic_set(&cache->count, 1);
7100 spin_lock_init(&cache->lock);
7101 cache->fs_info = info;
7102 INIT_LIST_HEAD(&cache->list);
7103 INIT_LIST_HEAD(&cache->cluster_list);
7105 if (need_clear)
7106 cache->disk_cache_state = BTRFS_DC_CLEAR;
7108 read_extent_buffer(leaf, &cache->item,
7109 btrfs_item_ptr_offset(leaf, path->slots[0]),
7110 sizeof(cache->item));
7111 memcpy(&cache->key, &found_key, sizeof(found_key));
7113 key.objectid = found_key.objectid + found_key.offset;
7114 btrfs_release_path(path);
7115 cache->flags = btrfs_block_group_flags(&cache->item);
7116 cache->sectorsize = root->sectorsize;
7118 btrfs_init_free_space_ctl(cache);
7121 * We need to exclude the super stripes now so that the space
7122 * info has super bytes accounted for, otherwise we'll think
7123 * we have more space than we actually do.
7125 exclude_super_stripes(root, cache);
7128 * check for two cases, either we are full, and therefore
7129 * don't need to bother with the caching work since we won't
7130 * find any space, or we are empty, and we can just add all
7131 * the space in and be done with it. This saves us _alot_ of
7132 * time, particularly in the full case.
7134 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7135 cache->last_byte_to_unpin = (u64)-1;
7136 cache->cached = BTRFS_CACHE_FINISHED;
7137 free_excluded_extents(root, cache);
7138 } else if (btrfs_block_group_used(&cache->item) == 0) {
7139 cache->last_byte_to_unpin = (u64)-1;
7140 cache->cached = BTRFS_CACHE_FINISHED;
7141 add_new_free_space(cache, root->fs_info,
7142 found_key.objectid,
7143 found_key.objectid +
7144 found_key.offset);
7145 free_excluded_extents(root, cache);
7148 ret = update_space_info(info, cache->flags, found_key.offset,
7149 btrfs_block_group_used(&cache->item),
7150 &space_info);
7151 BUG_ON(ret);
7152 cache->space_info = space_info;
7153 spin_lock(&cache->space_info->lock);
7154 cache->space_info->bytes_readonly += cache->bytes_super;
7155 spin_unlock(&cache->space_info->lock);
7157 __link_block_group(space_info, cache);
7159 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7160 BUG_ON(ret);
7162 set_avail_alloc_bits(root->fs_info, cache->flags);
7163 if (btrfs_chunk_readonly(root, cache->key.objectid))
7164 set_block_group_ro(cache, 1);
7167 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7168 if (!(get_alloc_profile(root, space_info->flags) &
7169 (BTRFS_BLOCK_GROUP_RAID10 |
7170 BTRFS_BLOCK_GROUP_RAID1 |
7171 BTRFS_BLOCK_GROUP_DUP)))
7172 continue;
7174 * avoid allocating from un-mirrored block group if there are
7175 * mirrored block groups.
7177 list_for_each_entry(cache, &space_info->block_groups[3], list)
7178 set_block_group_ro(cache, 1);
7179 list_for_each_entry(cache, &space_info->block_groups[4], list)
7180 set_block_group_ro(cache, 1);
7183 init_global_block_rsv(info);
7184 ret = 0;
7185 error:
7186 btrfs_free_path(path);
7187 return ret;
7190 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7191 struct btrfs_root *root, u64 bytes_used,
7192 u64 type, u64 chunk_objectid, u64 chunk_offset,
7193 u64 size)
7195 int ret;
7196 struct btrfs_root *extent_root;
7197 struct btrfs_block_group_cache *cache;
7199 extent_root = root->fs_info->extent_root;
7201 root->fs_info->last_trans_log_full_commit = trans->transid;
7203 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7204 if (!cache)
7205 return -ENOMEM;
7206 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7207 GFP_NOFS);
7208 if (!cache->free_space_ctl) {
7209 kfree(cache);
7210 return -ENOMEM;
7213 cache->key.objectid = chunk_offset;
7214 cache->key.offset = size;
7215 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7216 cache->sectorsize = root->sectorsize;
7217 cache->fs_info = root->fs_info;
7219 atomic_set(&cache->count, 1);
7220 spin_lock_init(&cache->lock);
7221 INIT_LIST_HEAD(&cache->list);
7222 INIT_LIST_HEAD(&cache->cluster_list);
7224 btrfs_init_free_space_ctl(cache);
7226 btrfs_set_block_group_used(&cache->item, bytes_used);
7227 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7228 cache->flags = type;
7229 btrfs_set_block_group_flags(&cache->item, type);
7231 cache->last_byte_to_unpin = (u64)-1;
7232 cache->cached = BTRFS_CACHE_FINISHED;
7233 exclude_super_stripes(root, cache);
7235 add_new_free_space(cache, root->fs_info, chunk_offset,
7236 chunk_offset + size);
7238 free_excluded_extents(root, cache);
7240 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7241 &cache->space_info);
7242 BUG_ON(ret);
7244 spin_lock(&cache->space_info->lock);
7245 cache->space_info->bytes_readonly += cache->bytes_super;
7246 spin_unlock(&cache->space_info->lock);
7248 __link_block_group(cache->space_info, cache);
7250 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7251 BUG_ON(ret);
7253 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7254 sizeof(cache->item));
7255 BUG_ON(ret);
7257 set_avail_alloc_bits(extent_root->fs_info, type);
7259 return 0;
7262 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7263 struct btrfs_root *root, u64 group_start)
7265 struct btrfs_path *path;
7266 struct btrfs_block_group_cache *block_group;
7267 struct btrfs_free_cluster *cluster;
7268 struct btrfs_root *tree_root = root->fs_info->tree_root;
7269 struct btrfs_key key;
7270 struct inode *inode;
7271 int ret;
7272 int factor;
7274 root = root->fs_info->extent_root;
7276 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7277 BUG_ON(!block_group);
7278 BUG_ON(!block_group->ro);
7281 * Free the reserved super bytes from this block group before
7282 * remove it.
7284 free_excluded_extents(root, block_group);
7286 memcpy(&key, &block_group->key, sizeof(key));
7287 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7288 BTRFS_BLOCK_GROUP_RAID1 |
7289 BTRFS_BLOCK_GROUP_RAID10))
7290 factor = 2;
7291 else
7292 factor = 1;
7294 /* make sure this block group isn't part of an allocation cluster */
7295 cluster = &root->fs_info->data_alloc_cluster;
7296 spin_lock(&cluster->refill_lock);
7297 btrfs_return_cluster_to_free_space(block_group, cluster);
7298 spin_unlock(&cluster->refill_lock);
7301 * make sure this block group isn't part of a metadata
7302 * allocation cluster
7304 cluster = &root->fs_info->meta_alloc_cluster;
7305 spin_lock(&cluster->refill_lock);
7306 btrfs_return_cluster_to_free_space(block_group, cluster);
7307 spin_unlock(&cluster->refill_lock);
7309 path = btrfs_alloc_path();
7310 if (!path) {
7311 ret = -ENOMEM;
7312 goto out;
7315 inode = lookup_free_space_inode(root, block_group, path);
7316 if (!IS_ERR(inode)) {
7317 ret = btrfs_orphan_add(trans, inode);
7318 BUG_ON(ret);
7319 clear_nlink(inode);
7320 /* One for the block groups ref */
7321 spin_lock(&block_group->lock);
7322 if (block_group->iref) {
7323 block_group->iref = 0;
7324 block_group->inode = NULL;
7325 spin_unlock(&block_group->lock);
7326 iput(inode);
7327 } else {
7328 spin_unlock(&block_group->lock);
7330 /* One for our lookup ref */
7331 btrfs_add_delayed_iput(inode);
7334 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7335 key.offset = block_group->key.objectid;
7336 key.type = 0;
7338 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7339 if (ret < 0)
7340 goto out;
7341 if (ret > 0)
7342 btrfs_release_path(path);
7343 if (ret == 0) {
7344 ret = btrfs_del_item(trans, tree_root, path);
7345 if (ret)
7346 goto out;
7347 btrfs_release_path(path);
7350 spin_lock(&root->fs_info->block_group_cache_lock);
7351 rb_erase(&block_group->cache_node,
7352 &root->fs_info->block_group_cache_tree);
7353 spin_unlock(&root->fs_info->block_group_cache_lock);
7355 down_write(&block_group->space_info->groups_sem);
7357 * we must use list_del_init so people can check to see if they
7358 * are still on the list after taking the semaphore
7360 list_del_init(&block_group->list);
7361 up_write(&block_group->space_info->groups_sem);
7363 if (block_group->cached == BTRFS_CACHE_STARTED)
7364 wait_block_group_cache_done(block_group);
7366 btrfs_remove_free_space_cache(block_group);
7368 spin_lock(&block_group->space_info->lock);
7369 block_group->space_info->total_bytes -= block_group->key.offset;
7370 block_group->space_info->bytes_readonly -= block_group->key.offset;
7371 block_group->space_info->disk_total -= block_group->key.offset * factor;
7372 spin_unlock(&block_group->space_info->lock);
7374 memcpy(&key, &block_group->key, sizeof(key));
7376 btrfs_clear_space_info_full(root->fs_info);
7378 btrfs_put_block_group(block_group);
7379 btrfs_put_block_group(block_group);
7381 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7382 if (ret > 0)
7383 ret = -EIO;
7384 if (ret < 0)
7385 goto out;
7387 ret = btrfs_del_item(trans, root, path);
7388 out:
7389 btrfs_free_path(path);
7390 return ret;
7393 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7395 struct btrfs_space_info *space_info;
7396 struct btrfs_super_block *disk_super;
7397 u64 features;
7398 u64 flags;
7399 int mixed = 0;
7400 int ret;
7402 disk_super = &fs_info->super_copy;
7403 if (!btrfs_super_root(disk_super))
7404 return 1;
7406 features = btrfs_super_incompat_flags(disk_super);
7407 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7408 mixed = 1;
7410 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7411 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7412 if (ret)
7413 goto out;
7415 if (mixed) {
7416 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7417 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7418 } else {
7419 flags = BTRFS_BLOCK_GROUP_METADATA;
7420 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7421 if (ret)
7422 goto out;
7424 flags = BTRFS_BLOCK_GROUP_DATA;
7425 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7427 out:
7428 return ret;
7431 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7433 return unpin_extent_range(root, start, end);
7436 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7437 u64 num_bytes, u64 *actual_bytes)
7439 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7442 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7444 struct btrfs_fs_info *fs_info = root->fs_info;
7445 struct btrfs_block_group_cache *cache = NULL;
7446 u64 group_trimmed;
7447 u64 start;
7448 u64 end;
7449 u64 trimmed = 0;
7450 int ret = 0;
7452 cache = btrfs_lookup_block_group(fs_info, range->start);
7454 while (cache) {
7455 if (cache->key.objectid >= (range->start + range->len)) {
7456 btrfs_put_block_group(cache);
7457 break;
7460 start = max(range->start, cache->key.objectid);
7461 end = min(range->start + range->len,
7462 cache->key.objectid + cache->key.offset);
7464 if (end - start >= range->minlen) {
7465 if (!block_group_cache_done(cache)) {
7466 ret = cache_block_group(cache, NULL, root, 0);
7467 if (!ret)
7468 wait_block_group_cache_done(cache);
7470 ret = btrfs_trim_block_group(cache,
7471 &group_trimmed,
7472 start,
7473 end,
7474 range->minlen);
7476 trimmed += group_trimmed;
7477 if (ret) {
7478 btrfs_put_block_group(cache);
7479 break;
7483 cache = next_block_group(fs_info->tree_root, cache);
7486 range->len = trimmed;
7487 return ret;