watchdog: WatchDog Timer Driver Core - Add nowayout feature
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / dir.c
blobededdbd0db389197d2732174856e794ec72b6ead
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
44 /* #define NFS_DEBUG_VERBOSE 1 */
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
51 static int nfs_mkdir(struct inode *, struct dentry *, int);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58 struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
63 const struct file_operations nfs_dir_operations = {
64 .llseek = nfs_llseek_dir,
65 .read = generic_read_dir,
66 .readdir = nfs_readdir,
67 .open = nfs_opendir,
68 .release = nfs_closedir,
69 .fsync = nfs_fsync_dir,
72 const struct inode_operations nfs_dir_inode_operations = {
73 .create = nfs_create,
74 .lookup = nfs_lookup,
75 .link = nfs_link,
76 .unlink = nfs_unlink,
77 .symlink = nfs_symlink,
78 .mkdir = nfs_mkdir,
79 .rmdir = nfs_rmdir,
80 .mknod = nfs_mknod,
81 .rename = nfs_rename,
82 .permission = nfs_permission,
83 .getattr = nfs_getattr,
84 .setattr = nfs_setattr,
87 const struct address_space_operations nfs_dir_aops = {
88 .freepage = nfs_readdir_clear_array,
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_dir_inode_operations = {
93 .create = nfs_create,
94 .lookup = nfs_lookup,
95 .link = nfs_link,
96 .unlink = nfs_unlink,
97 .symlink = nfs_symlink,
98 .mkdir = nfs_mkdir,
99 .rmdir = nfs_rmdir,
100 .mknod = nfs_mknod,
101 .rename = nfs_rename,
102 .permission = nfs_permission,
103 .getattr = nfs_getattr,
104 .setattr = nfs_setattr,
105 .listxattr = nfs3_listxattr,
106 .getxattr = nfs3_getxattr,
107 .setxattr = nfs3_setxattr,
108 .removexattr = nfs3_removexattr,
110 #endif /* CONFIG_NFS_V3 */
112 #ifdef CONFIG_NFS_V4
114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
116 const struct inode_operations nfs4_dir_inode_operations = {
117 .create = nfs_open_create,
118 .lookup = nfs_atomic_lookup,
119 .link = nfs_link,
120 .unlink = nfs_unlink,
121 .symlink = nfs_symlink,
122 .mkdir = nfs_mkdir,
123 .rmdir = nfs_rmdir,
124 .mknod = nfs_mknod,
125 .rename = nfs_rename,
126 .permission = nfs_permission,
127 .getattr = nfs_getattr,
128 .setattr = nfs_setattr,
129 .getxattr = generic_getxattr,
130 .setxattr = generic_setxattr,
131 .listxattr = generic_listxattr,
132 .removexattr = generic_removexattr,
135 #endif /* CONFIG_NFS_V4 */
137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct rpc_cred *cred)
139 struct nfs_open_dir_context *ctx;
140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
141 if (ctx != NULL) {
142 ctx->duped = 0;
143 ctx->dir_cookie = 0;
144 ctx->dup_cookie = 0;
145 ctx->cred = get_rpccred(cred);
146 } else
147 ctx = ERR_PTR(-ENOMEM);
148 return ctx;
151 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
153 put_rpccred(ctx->cred);
154 kfree(ctx);
158 * Open file
160 static int
161 nfs_opendir(struct inode *inode, struct file *filp)
163 int res = 0;
164 struct nfs_open_dir_context *ctx;
165 struct rpc_cred *cred;
167 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
168 filp->f_path.dentry->d_parent->d_name.name,
169 filp->f_path.dentry->d_name.name);
171 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
173 cred = rpc_lookup_cred();
174 if (IS_ERR(cred))
175 return PTR_ERR(cred);
176 ctx = alloc_nfs_open_dir_context(cred);
177 if (IS_ERR(ctx)) {
178 res = PTR_ERR(ctx);
179 goto out;
181 filp->private_data = ctx;
182 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
183 /* This is a mountpoint, so d_revalidate will never
184 * have been called, so we need to refresh the
185 * inode (for close-open consistency) ourselves.
187 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
189 out:
190 put_rpccred(cred);
191 return res;
194 static int
195 nfs_closedir(struct inode *inode, struct file *filp)
197 put_nfs_open_dir_context(filp->private_data);
198 return 0;
201 struct nfs_cache_array_entry {
202 u64 cookie;
203 u64 ino;
204 struct qstr string;
205 unsigned char d_type;
208 struct nfs_cache_array {
209 unsigned int size;
210 int eof_index;
211 u64 last_cookie;
212 struct nfs_cache_array_entry array[0];
215 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
216 typedef struct {
217 struct file *file;
218 struct page *page;
219 unsigned long page_index;
220 u64 *dir_cookie;
221 u64 last_cookie;
222 loff_t current_index;
223 decode_dirent_t decode;
225 unsigned long timestamp;
226 unsigned long gencount;
227 unsigned int cache_entry_index;
228 unsigned int plus:1;
229 unsigned int eof:1;
230 } nfs_readdir_descriptor_t;
233 * The caller is responsible for calling nfs_readdir_release_array(page)
235 static
236 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
238 void *ptr;
239 if (page == NULL)
240 return ERR_PTR(-EIO);
241 ptr = kmap(page);
242 if (ptr == NULL)
243 return ERR_PTR(-ENOMEM);
244 return ptr;
247 static
248 void nfs_readdir_release_array(struct page *page)
250 kunmap(page);
254 * we are freeing strings created by nfs_add_to_readdir_array()
256 static
257 void nfs_readdir_clear_array(struct page *page)
259 struct nfs_cache_array *array;
260 int i;
262 array = kmap_atomic(page, KM_USER0);
263 for (i = 0; i < array->size; i++)
264 kfree(array->array[i].string.name);
265 kunmap_atomic(array, KM_USER0);
269 * the caller is responsible for freeing qstr.name
270 * when called by nfs_readdir_add_to_array, the strings will be freed in
271 * nfs_clear_readdir_array()
273 static
274 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
276 string->len = len;
277 string->name = kmemdup(name, len, GFP_KERNEL);
278 if (string->name == NULL)
279 return -ENOMEM;
281 * Avoid a kmemleak false positive. The pointer to the name is stored
282 * in a page cache page which kmemleak does not scan.
284 kmemleak_not_leak(string->name);
285 string->hash = full_name_hash(name, len);
286 return 0;
289 static
290 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
292 struct nfs_cache_array *array = nfs_readdir_get_array(page);
293 struct nfs_cache_array_entry *cache_entry;
294 int ret;
296 if (IS_ERR(array))
297 return PTR_ERR(array);
299 cache_entry = &array->array[array->size];
301 /* Check that this entry lies within the page bounds */
302 ret = -ENOSPC;
303 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
304 goto out;
306 cache_entry->cookie = entry->prev_cookie;
307 cache_entry->ino = entry->ino;
308 cache_entry->d_type = entry->d_type;
309 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
310 if (ret)
311 goto out;
312 array->last_cookie = entry->cookie;
313 array->size++;
314 if (entry->eof != 0)
315 array->eof_index = array->size;
316 out:
317 nfs_readdir_release_array(page);
318 return ret;
321 static
322 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
324 loff_t diff = desc->file->f_pos - desc->current_index;
325 unsigned int index;
326 struct nfs_open_dir_context *ctx = desc->file->private_data;
328 if (diff < 0)
329 goto out_eof;
330 if (diff >= array->size) {
331 if (array->eof_index >= 0)
332 goto out_eof;
333 return -EAGAIN;
336 index = (unsigned int)diff;
337 *desc->dir_cookie = array->array[index].cookie;
338 desc->cache_entry_index = index;
339 ctx->duped = 0;
340 return 0;
341 out_eof:
342 desc->eof = 1;
343 return -EBADCOOKIE;
346 static
347 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
349 int i;
350 loff_t new_pos;
351 int status = -EAGAIN;
352 struct nfs_open_dir_context *ctx = desc->file->private_data;
354 for (i = 0; i < array->size; i++) {
355 if (array->array[i].cookie == *desc->dir_cookie) {
356 new_pos = desc->current_index + i;
357 if (new_pos < desc->file->f_pos) {
358 ctx->dup_cookie = *desc->dir_cookie;
359 ctx->duped = 1;
361 desc->file->f_pos = new_pos;
362 desc->cache_entry_index = i;
363 return 0;
366 if (array->eof_index >= 0) {
367 status = -EBADCOOKIE;
368 if (*desc->dir_cookie == array->last_cookie)
369 desc->eof = 1;
371 return status;
374 static
375 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
377 struct nfs_cache_array *array;
378 int status;
380 array = nfs_readdir_get_array(desc->page);
381 if (IS_ERR(array)) {
382 status = PTR_ERR(array);
383 goto out;
386 if (*desc->dir_cookie == 0)
387 status = nfs_readdir_search_for_pos(array, desc);
388 else
389 status = nfs_readdir_search_for_cookie(array, desc);
391 if (status == -EAGAIN) {
392 desc->last_cookie = array->last_cookie;
393 desc->current_index += array->size;
394 desc->page_index++;
396 nfs_readdir_release_array(desc->page);
397 out:
398 return status;
401 /* Fill a page with xdr information before transferring to the cache page */
402 static
403 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
404 struct nfs_entry *entry, struct file *file, struct inode *inode)
406 struct nfs_open_dir_context *ctx = file->private_data;
407 struct rpc_cred *cred = ctx->cred;
408 unsigned long timestamp, gencount;
409 int error;
411 again:
412 timestamp = jiffies;
413 gencount = nfs_inc_attr_generation_counter();
414 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
415 NFS_SERVER(inode)->dtsize, desc->plus);
416 if (error < 0) {
417 /* We requested READDIRPLUS, but the server doesn't grok it */
418 if (error == -ENOTSUPP && desc->plus) {
419 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
420 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
421 desc->plus = 0;
422 goto again;
424 goto error;
426 desc->timestamp = timestamp;
427 desc->gencount = gencount;
428 error:
429 return error;
432 static int xdr_decode(nfs_readdir_descriptor_t *desc,
433 struct nfs_entry *entry, struct xdr_stream *xdr)
435 int error;
437 error = desc->decode(xdr, entry, desc->plus);
438 if (error)
439 return error;
440 entry->fattr->time_start = desc->timestamp;
441 entry->fattr->gencount = desc->gencount;
442 return 0;
445 static
446 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
448 if (dentry->d_inode == NULL)
449 goto different;
450 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
451 goto different;
452 return 1;
453 different:
454 return 0;
457 static
458 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
460 struct qstr filename = {
461 .len = entry->len,
462 .name = entry->name,
464 struct dentry *dentry;
465 struct dentry *alias;
466 struct inode *dir = parent->d_inode;
467 struct inode *inode;
469 if (filename.name[0] == '.') {
470 if (filename.len == 1)
471 return;
472 if (filename.len == 2 && filename.name[1] == '.')
473 return;
475 filename.hash = full_name_hash(filename.name, filename.len);
477 dentry = d_lookup(parent, &filename);
478 if (dentry != NULL) {
479 if (nfs_same_file(dentry, entry)) {
480 nfs_refresh_inode(dentry->d_inode, entry->fattr);
481 goto out;
482 } else {
483 d_drop(dentry);
484 dput(dentry);
488 dentry = d_alloc(parent, &filename);
489 if (dentry == NULL)
490 return;
492 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
493 if (IS_ERR(inode))
494 goto out;
496 alias = d_materialise_unique(dentry, inode);
497 if (IS_ERR(alias))
498 goto out;
499 else if (alias) {
500 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
501 dput(alias);
502 } else
503 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
505 out:
506 dput(dentry);
509 /* Perform conversion from xdr to cache array */
510 static
511 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
512 struct page **xdr_pages, struct page *page, unsigned int buflen)
514 struct xdr_stream stream;
515 struct xdr_buf buf;
516 struct page *scratch;
517 struct nfs_cache_array *array;
518 unsigned int count = 0;
519 int status;
521 scratch = alloc_page(GFP_KERNEL);
522 if (scratch == NULL)
523 return -ENOMEM;
525 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
526 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
528 do {
529 status = xdr_decode(desc, entry, &stream);
530 if (status != 0) {
531 if (status == -EAGAIN)
532 status = 0;
533 break;
536 count++;
538 if (desc->plus != 0)
539 nfs_prime_dcache(desc->file->f_path.dentry, entry);
541 status = nfs_readdir_add_to_array(entry, page);
542 if (status != 0)
543 break;
544 } while (!entry->eof);
546 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
547 array = nfs_readdir_get_array(page);
548 if (!IS_ERR(array)) {
549 array->eof_index = array->size;
550 status = 0;
551 nfs_readdir_release_array(page);
552 } else
553 status = PTR_ERR(array);
556 put_page(scratch);
557 return status;
560 static
561 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
563 unsigned int i;
564 for (i = 0; i < npages; i++)
565 put_page(pages[i]);
568 static
569 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
570 unsigned int npages)
572 nfs_readdir_free_pagearray(pages, npages);
576 * nfs_readdir_large_page will allocate pages that must be freed with a call
577 * to nfs_readdir_free_large_page
579 static
580 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
582 unsigned int i;
584 for (i = 0; i < npages; i++) {
585 struct page *page = alloc_page(GFP_KERNEL);
586 if (page == NULL)
587 goto out_freepages;
588 pages[i] = page;
590 return 0;
592 out_freepages:
593 nfs_readdir_free_pagearray(pages, i);
594 return -ENOMEM;
597 static
598 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
600 struct page *pages[NFS_MAX_READDIR_PAGES];
601 void *pages_ptr = NULL;
602 struct nfs_entry entry;
603 struct file *file = desc->file;
604 struct nfs_cache_array *array;
605 int status = -ENOMEM;
606 unsigned int array_size = ARRAY_SIZE(pages);
608 entry.prev_cookie = 0;
609 entry.cookie = desc->last_cookie;
610 entry.eof = 0;
611 entry.fh = nfs_alloc_fhandle();
612 entry.fattr = nfs_alloc_fattr();
613 entry.server = NFS_SERVER(inode);
614 if (entry.fh == NULL || entry.fattr == NULL)
615 goto out;
617 array = nfs_readdir_get_array(page);
618 if (IS_ERR(array)) {
619 status = PTR_ERR(array);
620 goto out;
622 memset(array, 0, sizeof(struct nfs_cache_array));
623 array->eof_index = -1;
625 status = nfs_readdir_large_page(pages, array_size);
626 if (status < 0)
627 goto out_release_array;
628 do {
629 unsigned int pglen;
630 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
632 if (status < 0)
633 break;
634 pglen = status;
635 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
636 if (status < 0) {
637 if (status == -ENOSPC)
638 status = 0;
639 break;
641 } while (array->eof_index < 0);
643 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
644 out_release_array:
645 nfs_readdir_release_array(page);
646 out:
647 nfs_free_fattr(entry.fattr);
648 nfs_free_fhandle(entry.fh);
649 return status;
653 * Now we cache directories properly, by converting xdr information
654 * to an array that can be used for lookups later. This results in
655 * fewer cache pages, since we can store more information on each page.
656 * We only need to convert from xdr once so future lookups are much simpler
658 static
659 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
661 struct inode *inode = desc->file->f_path.dentry->d_inode;
662 int ret;
664 ret = nfs_readdir_xdr_to_array(desc, page, inode);
665 if (ret < 0)
666 goto error;
667 SetPageUptodate(page);
669 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
670 /* Should never happen */
671 nfs_zap_mapping(inode, inode->i_mapping);
673 unlock_page(page);
674 return 0;
675 error:
676 unlock_page(page);
677 return ret;
680 static
681 void cache_page_release(nfs_readdir_descriptor_t *desc)
683 if (!desc->page->mapping)
684 nfs_readdir_clear_array(desc->page);
685 page_cache_release(desc->page);
686 desc->page = NULL;
689 static
690 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
692 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
693 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
697 * Returns 0 if desc->dir_cookie was found on page desc->page_index
699 static
700 int find_cache_page(nfs_readdir_descriptor_t *desc)
702 int res;
704 desc->page = get_cache_page(desc);
705 if (IS_ERR(desc->page))
706 return PTR_ERR(desc->page);
708 res = nfs_readdir_search_array(desc);
709 if (res != 0)
710 cache_page_release(desc);
711 return res;
714 /* Search for desc->dir_cookie from the beginning of the page cache */
715 static inline
716 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
718 int res;
720 if (desc->page_index == 0) {
721 desc->current_index = 0;
722 desc->last_cookie = 0;
724 do {
725 res = find_cache_page(desc);
726 } while (res == -EAGAIN);
727 return res;
731 * Once we've found the start of the dirent within a page: fill 'er up...
733 static
734 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
735 filldir_t filldir)
737 struct file *file = desc->file;
738 int i = 0;
739 int res = 0;
740 struct nfs_cache_array *array = NULL;
741 struct nfs_open_dir_context *ctx = file->private_data;
743 if (ctx->duped != 0 && ctx->dup_cookie == *desc->dir_cookie) {
744 if (printk_ratelimit()) {
745 pr_notice("NFS: directory %s/%s contains a readdir loop. "
746 "Please contact your server vendor. "
747 "Offending cookie: %llu\n",
748 file->f_dentry->d_parent->d_name.name,
749 file->f_dentry->d_name.name,
750 *desc->dir_cookie);
752 res = -ELOOP;
753 goto out;
756 array = nfs_readdir_get_array(desc->page);
757 if (IS_ERR(array)) {
758 res = PTR_ERR(array);
759 goto out;
762 for (i = desc->cache_entry_index; i < array->size; i++) {
763 struct nfs_cache_array_entry *ent;
765 ent = &array->array[i];
766 if (filldir(dirent, ent->string.name, ent->string.len,
767 file->f_pos, nfs_compat_user_ino64(ent->ino),
768 ent->d_type) < 0) {
769 desc->eof = 1;
770 break;
772 file->f_pos++;
773 if (i < (array->size-1))
774 *desc->dir_cookie = array->array[i+1].cookie;
775 else
776 *desc->dir_cookie = array->last_cookie;
778 if (array->eof_index >= 0)
779 desc->eof = 1;
781 nfs_readdir_release_array(desc->page);
782 out:
783 cache_page_release(desc);
784 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
785 (unsigned long long)*desc->dir_cookie, res);
786 return res;
790 * If we cannot find a cookie in our cache, we suspect that this is
791 * because it points to a deleted file, so we ask the server to return
792 * whatever it thinks is the next entry. We then feed this to filldir.
793 * If all goes well, we should then be able to find our way round the
794 * cache on the next call to readdir_search_pagecache();
796 * NOTE: we cannot add the anonymous page to the pagecache because
797 * the data it contains might not be page aligned. Besides,
798 * we should already have a complete representation of the
799 * directory in the page cache by the time we get here.
801 static inline
802 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
803 filldir_t filldir)
805 struct page *page = NULL;
806 int status;
807 struct inode *inode = desc->file->f_path.dentry->d_inode;
809 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
810 (unsigned long long)*desc->dir_cookie);
812 page = alloc_page(GFP_HIGHUSER);
813 if (!page) {
814 status = -ENOMEM;
815 goto out;
818 desc->page_index = 0;
819 desc->last_cookie = *desc->dir_cookie;
820 desc->page = page;
822 status = nfs_readdir_xdr_to_array(desc, page, inode);
823 if (status < 0)
824 goto out_release;
826 status = nfs_do_filldir(desc, dirent, filldir);
828 out:
829 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
830 __func__, status);
831 return status;
832 out_release:
833 cache_page_release(desc);
834 goto out;
837 /* The file offset position represents the dirent entry number. A
838 last cookie cache takes care of the common case of reading the
839 whole directory.
841 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
843 struct dentry *dentry = filp->f_path.dentry;
844 struct inode *inode = dentry->d_inode;
845 nfs_readdir_descriptor_t my_desc,
846 *desc = &my_desc;
847 struct nfs_open_dir_context *dir_ctx = filp->private_data;
848 int res;
850 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
851 dentry->d_parent->d_name.name, dentry->d_name.name,
852 (long long)filp->f_pos);
853 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
856 * filp->f_pos points to the dirent entry number.
857 * *desc->dir_cookie has the cookie for the next entry. We have
858 * to either find the entry with the appropriate number or
859 * revalidate the cookie.
861 memset(desc, 0, sizeof(*desc));
863 desc->file = filp;
864 desc->dir_cookie = &dir_ctx->dir_cookie;
865 desc->decode = NFS_PROTO(inode)->decode_dirent;
866 desc->plus = NFS_USE_READDIRPLUS(inode);
868 nfs_block_sillyrename(dentry);
869 res = nfs_revalidate_mapping(inode, filp->f_mapping);
870 if (res < 0)
871 goto out;
873 do {
874 res = readdir_search_pagecache(desc);
876 if (res == -EBADCOOKIE) {
877 res = 0;
878 /* This means either end of directory */
879 if (*desc->dir_cookie && desc->eof == 0) {
880 /* Or that the server has 'lost' a cookie */
881 res = uncached_readdir(desc, dirent, filldir);
882 if (res == 0)
883 continue;
885 break;
887 if (res == -ETOOSMALL && desc->plus) {
888 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
889 nfs_zap_caches(inode);
890 desc->page_index = 0;
891 desc->plus = 0;
892 desc->eof = 0;
893 continue;
895 if (res < 0)
896 break;
898 res = nfs_do_filldir(desc, dirent, filldir);
899 if (res < 0)
900 break;
901 } while (!desc->eof);
902 out:
903 nfs_unblock_sillyrename(dentry);
904 if (res > 0)
905 res = 0;
906 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
907 dentry->d_parent->d_name.name, dentry->d_name.name,
908 res);
909 return res;
912 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
914 struct dentry *dentry = filp->f_path.dentry;
915 struct inode *inode = dentry->d_inode;
916 struct nfs_open_dir_context *dir_ctx = filp->private_data;
918 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
919 dentry->d_parent->d_name.name,
920 dentry->d_name.name,
921 offset, origin);
923 mutex_lock(&inode->i_mutex);
924 switch (origin) {
925 case 1:
926 offset += filp->f_pos;
927 case 0:
928 if (offset >= 0)
929 break;
930 default:
931 offset = -EINVAL;
932 goto out;
934 if (offset != filp->f_pos) {
935 filp->f_pos = offset;
936 dir_ctx->dir_cookie = 0;
937 dir_ctx->duped = 0;
939 out:
940 mutex_unlock(&inode->i_mutex);
941 return offset;
945 * All directory operations under NFS are synchronous, so fsync()
946 * is a dummy operation.
948 static int nfs_fsync_dir(struct file *filp, int datasync)
950 struct dentry *dentry = filp->f_path.dentry;
952 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
953 dentry->d_parent->d_name.name, dentry->d_name.name,
954 datasync);
956 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
957 return 0;
961 * nfs_force_lookup_revalidate - Mark the directory as having changed
962 * @dir - pointer to directory inode
964 * This forces the revalidation code in nfs_lookup_revalidate() to do a
965 * full lookup on all child dentries of 'dir' whenever a change occurs
966 * on the server that might have invalidated our dcache.
968 * The caller should be holding dir->i_lock
970 void nfs_force_lookup_revalidate(struct inode *dir)
972 NFS_I(dir)->cache_change_attribute++;
976 * A check for whether or not the parent directory has changed.
977 * In the case it has, we assume that the dentries are untrustworthy
978 * and may need to be looked up again.
980 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
982 if (IS_ROOT(dentry))
983 return 1;
984 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
985 return 0;
986 if (!nfs_verify_change_attribute(dir, dentry->d_time))
987 return 0;
988 /* Revalidate nfsi->cache_change_attribute before we declare a match */
989 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
990 return 0;
991 if (!nfs_verify_change_attribute(dir, dentry->d_time))
992 return 0;
993 return 1;
997 * Return the intent data that applies to this particular path component
999 * Note that the current set of intents only apply to the very last
1000 * component of the path.
1001 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
1003 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1004 unsigned int mask)
1006 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
1007 return 0;
1008 return nd->flags & mask;
1012 * Use intent information to check whether or not we're going to do
1013 * an O_EXCL create using this path component.
1015 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1017 if (NFS_PROTO(dir)->version == 2)
1018 return 0;
1019 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1023 * Inode and filehandle revalidation for lookups.
1025 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1026 * or if the intent information indicates that we're about to open this
1027 * particular file and the "nocto" mount flag is not set.
1030 static inline
1031 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1033 struct nfs_server *server = NFS_SERVER(inode);
1035 if (IS_AUTOMOUNT(inode))
1036 return 0;
1037 if (nd != NULL) {
1038 /* VFS wants an on-the-wire revalidation */
1039 if (nd->flags & LOOKUP_REVAL)
1040 goto out_force;
1041 /* This is an open(2) */
1042 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1043 !(server->flags & NFS_MOUNT_NOCTO) &&
1044 (S_ISREG(inode->i_mode) ||
1045 S_ISDIR(inode->i_mode)))
1046 goto out_force;
1047 return 0;
1049 return nfs_revalidate_inode(server, inode);
1050 out_force:
1051 return __nfs_revalidate_inode(server, inode);
1055 * We judge how long we want to trust negative
1056 * dentries by looking at the parent inode mtime.
1058 * If parent mtime has changed, we revalidate, else we wait for a
1059 * period corresponding to the parent's attribute cache timeout value.
1061 static inline
1062 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1063 struct nameidata *nd)
1065 /* Don't revalidate a negative dentry if we're creating a new file */
1066 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1067 return 0;
1068 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1069 return 1;
1070 return !nfs_check_verifier(dir, dentry);
1074 * This is called every time the dcache has a lookup hit,
1075 * and we should check whether we can really trust that
1076 * lookup.
1078 * NOTE! The hit can be a negative hit too, don't assume
1079 * we have an inode!
1081 * If the parent directory is seen to have changed, we throw out the
1082 * cached dentry and do a new lookup.
1084 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1086 struct inode *dir;
1087 struct inode *inode;
1088 struct dentry *parent;
1089 struct nfs_fh *fhandle = NULL;
1090 struct nfs_fattr *fattr = NULL;
1091 int error;
1093 if (nd->flags & LOOKUP_RCU)
1094 return -ECHILD;
1096 parent = dget_parent(dentry);
1097 dir = parent->d_inode;
1098 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1099 inode = dentry->d_inode;
1101 if (!inode) {
1102 if (nfs_neg_need_reval(dir, dentry, nd))
1103 goto out_bad;
1104 goto out_valid;
1107 if (is_bad_inode(inode)) {
1108 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1109 __func__, dentry->d_parent->d_name.name,
1110 dentry->d_name.name);
1111 goto out_bad;
1114 if (nfs_have_delegation(inode, FMODE_READ))
1115 goto out_set_verifier;
1117 /* Force a full look up iff the parent directory has changed */
1118 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1119 if (nfs_lookup_verify_inode(inode, nd))
1120 goto out_zap_parent;
1121 goto out_valid;
1124 if (NFS_STALE(inode))
1125 goto out_bad;
1127 error = -ENOMEM;
1128 fhandle = nfs_alloc_fhandle();
1129 fattr = nfs_alloc_fattr();
1130 if (fhandle == NULL || fattr == NULL)
1131 goto out_error;
1133 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1134 if (error)
1135 goto out_bad;
1136 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1137 goto out_bad;
1138 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1139 goto out_bad;
1141 nfs_free_fattr(fattr);
1142 nfs_free_fhandle(fhandle);
1143 out_set_verifier:
1144 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1145 out_valid:
1146 dput(parent);
1147 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1148 __func__, dentry->d_parent->d_name.name,
1149 dentry->d_name.name);
1150 return 1;
1151 out_zap_parent:
1152 nfs_zap_caches(dir);
1153 out_bad:
1154 nfs_mark_for_revalidate(dir);
1155 if (inode && S_ISDIR(inode->i_mode)) {
1156 /* Purge readdir caches. */
1157 nfs_zap_caches(inode);
1158 /* If we have submounts, don't unhash ! */
1159 if (have_submounts(dentry))
1160 goto out_valid;
1161 if (dentry->d_flags & DCACHE_DISCONNECTED)
1162 goto out_valid;
1163 shrink_dcache_parent(dentry);
1165 d_drop(dentry);
1166 nfs_free_fattr(fattr);
1167 nfs_free_fhandle(fhandle);
1168 dput(parent);
1169 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1170 __func__, dentry->d_parent->d_name.name,
1171 dentry->d_name.name);
1172 return 0;
1173 out_error:
1174 nfs_free_fattr(fattr);
1175 nfs_free_fhandle(fhandle);
1176 dput(parent);
1177 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1178 __func__, dentry->d_parent->d_name.name,
1179 dentry->d_name.name, error);
1180 return error;
1184 * This is called from dput() when d_count is going to 0.
1186 static int nfs_dentry_delete(const struct dentry *dentry)
1188 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1189 dentry->d_parent->d_name.name, dentry->d_name.name,
1190 dentry->d_flags);
1192 /* Unhash any dentry with a stale inode */
1193 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1194 return 1;
1196 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1197 /* Unhash it, so that ->d_iput() would be called */
1198 return 1;
1200 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1201 /* Unhash it, so that ancestors of killed async unlink
1202 * files will be cleaned up during umount */
1203 return 1;
1205 return 0;
1209 static void nfs_drop_nlink(struct inode *inode)
1211 spin_lock(&inode->i_lock);
1212 if (inode->i_nlink > 0)
1213 drop_nlink(inode);
1214 spin_unlock(&inode->i_lock);
1218 * Called when the dentry loses inode.
1219 * We use it to clean up silly-renamed files.
1221 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1223 if (S_ISDIR(inode->i_mode))
1224 /* drop any readdir cache as it could easily be old */
1225 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1227 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1228 drop_nlink(inode);
1229 nfs_complete_unlink(dentry, inode);
1231 iput(inode);
1234 static void nfs_d_release(struct dentry *dentry)
1236 /* free cached devname value, if it survived that far */
1237 if (unlikely(dentry->d_fsdata)) {
1238 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1239 WARN_ON(1);
1240 else
1241 kfree(dentry->d_fsdata);
1245 const struct dentry_operations nfs_dentry_operations = {
1246 .d_revalidate = nfs_lookup_revalidate,
1247 .d_delete = nfs_dentry_delete,
1248 .d_iput = nfs_dentry_iput,
1249 .d_automount = nfs_d_automount,
1250 .d_release = nfs_d_release,
1253 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1255 struct dentry *res;
1256 struct dentry *parent;
1257 struct inode *inode = NULL;
1258 struct nfs_fh *fhandle = NULL;
1259 struct nfs_fattr *fattr = NULL;
1260 int error;
1262 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1263 dentry->d_parent->d_name.name, dentry->d_name.name);
1264 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1266 res = ERR_PTR(-ENAMETOOLONG);
1267 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1268 goto out;
1271 * If we're doing an exclusive create, optimize away the lookup
1272 * but don't hash the dentry.
1274 if (nfs_is_exclusive_create(dir, nd)) {
1275 d_instantiate(dentry, NULL);
1276 res = NULL;
1277 goto out;
1280 res = ERR_PTR(-ENOMEM);
1281 fhandle = nfs_alloc_fhandle();
1282 fattr = nfs_alloc_fattr();
1283 if (fhandle == NULL || fattr == NULL)
1284 goto out;
1286 parent = dentry->d_parent;
1287 /* Protect against concurrent sillydeletes */
1288 nfs_block_sillyrename(parent);
1289 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1290 if (error == -ENOENT)
1291 goto no_entry;
1292 if (error < 0) {
1293 res = ERR_PTR(error);
1294 goto out_unblock_sillyrename;
1296 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1297 res = ERR_CAST(inode);
1298 if (IS_ERR(res))
1299 goto out_unblock_sillyrename;
1301 no_entry:
1302 res = d_materialise_unique(dentry, inode);
1303 if (res != NULL) {
1304 if (IS_ERR(res))
1305 goto out_unblock_sillyrename;
1306 dentry = res;
1308 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1309 out_unblock_sillyrename:
1310 nfs_unblock_sillyrename(parent);
1311 out:
1312 nfs_free_fattr(fattr);
1313 nfs_free_fhandle(fhandle);
1314 return res;
1317 #ifdef CONFIG_NFS_V4
1318 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1320 const struct dentry_operations nfs4_dentry_operations = {
1321 .d_revalidate = nfs_open_revalidate,
1322 .d_delete = nfs_dentry_delete,
1323 .d_iput = nfs_dentry_iput,
1324 .d_automount = nfs_d_automount,
1325 .d_release = nfs_d_release,
1329 * Use intent information to determine whether we need to substitute
1330 * the NFSv4-style stateful OPEN for the LOOKUP call
1332 static int is_atomic_open(struct nameidata *nd)
1334 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1335 return 0;
1336 /* NFS does not (yet) have a stateful open for directories */
1337 if (nd->flags & LOOKUP_DIRECTORY)
1338 return 0;
1339 /* Are we trying to write to a read only partition? */
1340 if (__mnt_is_readonly(nd->path.mnt) &&
1341 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1342 return 0;
1343 return 1;
1346 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1348 struct path path = {
1349 .mnt = nd->path.mnt,
1350 .dentry = dentry,
1352 struct nfs_open_context *ctx;
1353 struct rpc_cred *cred;
1354 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1356 cred = rpc_lookup_cred();
1357 if (IS_ERR(cred))
1358 return ERR_CAST(cred);
1359 ctx = alloc_nfs_open_context(&path, cred, fmode);
1360 put_rpccred(cred);
1361 if (ctx == NULL)
1362 return ERR_PTR(-ENOMEM);
1363 return ctx;
1366 static int do_open(struct inode *inode, struct file *filp)
1368 nfs_fscache_set_inode_cookie(inode, filp);
1369 return 0;
1372 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1374 struct file *filp;
1375 int ret = 0;
1377 /* If the open_intent is for execute, we have an extra check to make */
1378 if (ctx->mode & FMODE_EXEC) {
1379 ret = nfs_may_open(ctx->path.dentry->d_inode,
1380 ctx->cred,
1381 nd->intent.open.flags);
1382 if (ret < 0)
1383 goto out;
1385 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1386 if (IS_ERR(filp))
1387 ret = PTR_ERR(filp);
1388 else
1389 nfs_file_set_open_context(filp, ctx);
1390 out:
1391 put_nfs_open_context(ctx);
1392 return ret;
1395 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1397 struct nfs_open_context *ctx;
1398 struct iattr attr;
1399 struct dentry *res = NULL;
1400 struct inode *inode;
1401 int open_flags;
1402 int err;
1404 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1405 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1407 /* Check that we are indeed trying to open this file */
1408 if (!is_atomic_open(nd))
1409 goto no_open;
1411 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1412 res = ERR_PTR(-ENAMETOOLONG);
1413 goto out;
1416 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1417 * the dentry. */
1418 if (nd->flags & LOOKUP_EXCL) {
1419 d_instantiate(dentry, NULL);
1420 goto out;
1423 ctx = nameidata_to_nfs_open_context(dentry, nd);
1424 res = ERR_CAST(ctx);
1425 if (IS_ERR(ctx))
1426 goto out;
1428 open_flags = nd->intent.open.flags;
1429 if (nd->flags & LOOKUP_CREATE) {
1430 attr.ia_mode = nd->intent.open.create_mode;
1431 attr.ia_valid = ATTR_MODE;
1432 attr.ia_mode &= ~current_umask();
1433 } else {
1434 open_flags &= ~(O_EXCL | O_CREAT);
1435 attr.ia_valid = 0;
1438 /* Open the file on the server */
1439 nfs_block_sillyrename(dentry->d_parent);
1440 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1441 if (IS_ERR(inode)) {
1442 nfs_unblock_sillyrename(dentry->d_parent);
1443 put_nfs_open_context(ctx);
1444 switch (PTR_ERR(inode)) {
1445 /* Make a negative dentry */
1446 case -ENOENT:
1447 d_add(dentry, NULL);
1448 res = NULL;
1449 goto out;
1450 /* This turned out not to be a regular file */
1451 case -ENOTDIR:
1452 goto no_open;
1453 case -ELOOP:
1454 if (!(nd->intent.open.flags & O_NOFOLLOW))
1455 goto no_open;
1456 /* case -EISDIR: */
1457 /* case -EINVAL: */
1458 default:
1459 res = ERR_CAST(inode);
1460 goto out;
1463 res = d_add_unique(dentry, inode);
1464 nfs_unblock_sillyrename(dentry->d_parent);
1465 if (res != NULL) {
1466 dput(ctx->path.dentry);
1467 ctx->path.dentry = dget(res);
1468 dentry = res;
1470 err = nfs_intent_set_file(nd, ctx);
1471 if (err < 0) {
1472 if (res != NULL)
1473 dput(res);
1474 return ERR_PTR(err);
1476 out:
1477 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1478 return res;
1479 no_open:
1480 return nfs_lookup(dir, dentry, nd);
1483 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1485 struct dentry *parent = NULL;
1486 struct inode *inode;
1487 struct inode *dir;
1488 struct nfs_open_context *ctx;
1489 int openflags, ret = 0;
1491 if (nd->flags & LOOKUP_RCU)
1492 return -ECHILD;
1494 inode = dentry->d_inode;
1495 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1496 goto no_open;
1498 parent = dget_parent(dentry);
1499 dir = parent->d_inode;
1501 /* We can't create new files in nfs_open_revalidate(), so we
1502 * optimize away revalidation of negative dentries.
1504 if (inode == NULL) {
1505 if (!nfs_neg_need_reval(dir, dentry, nd))
1506 ret = 1;
1507 goto out;
1510 /* NFS only supports OPEN on regular files */
1511 if (!S_ISREG(inode->i_mode))
1512 goto no_open_dput;
1513 openflags = nd->intent.open.flags;
1514 /* We cannot do exclusive creation on a positive dentry */
1515 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1516 goto no_open_dput;
1517 /* We can't create new files, or truncate existing ones here */
1518 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1520 ctx = nameidata_to_nfs_open_context(dentry, nd);
1521 ret = PTR_ERR(ctx);
1522 if (IS_ERR(ctx))
1523 goto out;
1525 * Note: we're not holding inode->i_mutex and so may be racing with
1526 * operations that change the directory. We therefore save the
1527 * change attribute *before* we do the RPC call.
1529 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1530 if (IS_ERR(inode)) {
1531 ret = PTR_ERR(inode);
1532 switch (ret) {
1533 case -EPERM:
1534 case -EACCES:
1535 case -EDQUOT:
1536 case -ENOSPC:
1537 case -EROFS:
1538 goto out_put_ctx;
1539 default:
1540 goto out_drop;
1543 iput(inode);
1544 if (inode != dentry->d_inode)
1545 goto out_drop;
1547 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1548 ret = nfs_intent_set_file(nd, ctx);
1549 if (ret >= 0)
1550 ret = 1;
1551 out:
1552 dput(parent);
1553 return ret;
1554 out_drop:
1555 d_drop(dentry);
1556 ret = 0;
1557 out_put_ctx:
1558 put_nfs_open_context(ctx);
1559 goto out;
1561 no_open_dput:
1562 dput(parent);
1563 no_open:
1564 return nfs_lookup_revalidate(dentry, nd);
1567 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1568 struct nameidata *nd)
1570 struct nfs_open_context *ctx = NULL;
1571 struct iattr attr;
1572 int error;
1573 int open_flags = 0;
1575 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1576 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1578 attr.ia_mode = mode;
1579 attr.ia_valid = ATTR_MODE;
1581 if ((nd->flags & LOOKUP_CREATE) != 0) {
1582 open_flags = nd->intent.open.flags;
1584 ctx = nameidata_to_nfs_open_context(dentry, nd);
1585 error = PTR_ERR(ctx);
1586 if (IS_ERR(ctx))
1587 goto out_err_drop;
1590 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1591 if (error != 0)
1592 goto out_put_ctx;
1593 if (ctx != NULL) {
1594 error = nfs_intent_set_file(nd, ctx);
1595 if (error < 0)
1596 goto out_err;
1598 return 0;
1599 out_put_ctx:
1600 if (ctx != NULL)
1601 put_nfs_open_context(ctx);
1602 out_err_drop:
1603 d_drop(dentry);
1604 out_err:
1605 return error;
1608 #endif /* CONFIG_NFSV4 */
1611 * Code common to create, mkdir, and mknod.
1613 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1614 struct nfs_fattr *fattr)
1616 struct dentry *parent = dget_parent(dentry);
1617 struct inode *dir = parent->d_inode;
1618 struct inode *inode;
1619 int error = -EACCES;
1621 d_drop(dentry);
1623 /* We may have been initialized further down */
1624 if (dentry->d_inode)
1625 goto out;
1626 if (fhandle->size == 0) {
1627 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1628 if (error)
1629 goto out_error;
1631 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1632 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1633 struct nfs_server *server = NFS_SB(dentry->d_sb);
1634 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1635 if (error < 0)
1636 goto out_error;
1638 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1639 error = PTR_ERR(inode);
1640 if (IS_ERR(inode))
1641 goto out_error;
1642 d_add(dentry, inode);
1643 out:
1644 dput(parent);
1645 return 0;
1646 out_error:
1647 nfs_mark_for_revalidate(dir);
1648 dput(parent);
1649 return error;
1653 * Following a failed create operation, we drop the dentry rather
1654 * than retain a negative dentry. This avoids a problem in the event
1655 * that the operation succeeded on the server, but an error in the
1656 * reply path made it appear to have failed.
1658 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1659 struct nameidata *nd)
1661 struct iattr attr;
1662 int error;
1663 int open_flags = 0;
1665 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1666 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1668 attr.ia_mode = mode;
1669 attr.ia_valid = ATTR_MODE;
1671 if ((nd->flags & LOOKUP_CREATE) != 0)
1672 open_flags = nd->intent.open.flags;
1674 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1675 if (error != 0)
1676 goto out_err;
1677 return 0;
1678 out_err:
1679 d_drop(dentry);
1680 return error;
1684 * See comments for nfs_proc_create regarding failed operations.
1686 static int
1687 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1689 struct iattr attr;
1690 int status;
1692 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1693 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1695 if (!new_valid_dev(rdev))
1696 return -EINVAL;
1698 attr.ia_mode = mode;
1699 attr.ia_valid = ATTR_MODE;
1701 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1702 if (status != 0)
1703 goto out_err;
1704 return 0;
1705 out_err:
1706 d_drop(dentry);
1707 return status;
1711 * See comments for nfs_proc_create regarding failed operations.
1713 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1715 struct iattr attr;
1716 int error;
1718 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1719 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1721 attr.ia_valid = ATTR_MODE;
1722 attr.ia_mode = mode | S_IFDIR;
1724 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1725 if (error != 0)
1726 goto out_err;
1727 return 0;
1728 out_err:
1729 d_drop(dentry);
1730 return error;
1733 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1735 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1736 d_delete(dentry);
1739 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1741 int error;
1743 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1744 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1746 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1747 /* Ensure the VFS deletes this inode */
1748 if (error == 0 && dentry->d_inode != NULL)
1749 clear_nlink(dentry->d_inode);
1750 else if (error == -ENOENT)
1751 nfs_dentry_handle_enoent(dentry);
1753 return error;
1757 * Remove a file after making sure there are no pending writes,
1758 * and after checking that the file has only one user.
1760 * We invalidate the attribute cache and free the inode prior to the operation
1761 * to avoid possible races if the server reuses the inode.
1763 static int nfs_safe_remove(struct dentry *dentry)
1765 struct inode *dir = dentry->d_parent->d_inode;
1766 struct inode *inode = dentry->d_inode;
1767 int error = -EBUSY;
1769 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1770 dentry->d_parent->d_name.name, dentry->d_name.name);
1772 /* If the dentry was sillyrenamed, we simply call d_delete() */
1773 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1774 error = 0;
1775 goto out;
1778 if (inode != NULL) {
1779 nfs_inode_return_delegation(inode);
1780 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1781 /* The VFS may want to delete this inode */
1782 if (error == 0)
1783 nfs_drop_nlink(inode);
1784 nfs_mark_for_revalidate(inode);
1785 } else
1786 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1787 if (error == -ENOENT)
1788 nfs_dentry_handle_enoent(dentry);
1789 out:
1790 return error;
1793 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1794 * belongs to an active ".nfs..." file and we return -EBUSY.
1796 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1798 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1800 int error;
1801 int need_rehash = 0;
1803 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1804 dir->i_ino, dentry->d_name.name);
1806 spin_lock(&dentry->d_lock);
1807 if (dentry->d_count > 1) {
1808 spin_unlock(&dentry->d_lock);
1809 /* Start asynchronous writeout of the inode */
1810 write_inode_now(dentry->d_inode, 0);
1811 error = nfs_sillyrename(dir, dentry);
1812 return error;
1814 if (!d_unhashed(dentry)) {
1815 __d_drop(dentry);
1816 need_rehash = 1;
1818 spin_unlock(&dentry->d_lock);
1819 error = nfs_safe_remove(dentry);
1820 if (!error || error == -ENOENT) {
1821 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1822 } else if (need_rehash)
1823 d_rehash(dentry);
1824 return error;
1828 * To create a symbolic link, most file systems instantiate a new inode,
1829 * add a page to it containing the path, then write it out to the disk
1830 * using prepare_write/commit_write.
1832 * Unfortunately the NFS client can't create the in-core inode first
1833 * because it needs a file handle to create an in-core inode (see
1834 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1835 * symlink request has completed on the server.
1837 * So instead we allocate a raw page, copy the symname into it, then do
1838 * the SYMLINK request with the page as the buffer. If it succeeds, we
1839 * now have a new file handle and can instantiate an in-core NFS inode
1840 * and move the raw page into its mapping.
1842 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1844 struct pagevec lru_pvec;
1845 struct page *page;
1846 char *kaddr;
1847 struct iattr attr;
1848 unsigned int pathlen = strlen(symname);
1849 int error;
1851 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1852 dir->i_ino, dentry->d_name.name, symname);
1854 if (pathlen > PAGE_SIZE)
1855 return -ENAMETOOLONG;
1857 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1858 attr.ia_valid = ATTR_MODE;
1860 page = alloc_page(GFP_HIGHUSER);
1861 if (!page)
1862 return -ENOMEM;
1864 kaddr = kmap_atomic(page, KM_USER0);
1865 memcpy(kaddr, symname, pathlen);
1866 if (pathlen < PAGE_SIZE)
1867 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1868 kunmap_atomic(kaddr, KM_USER0);
1870 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1871 if (error != 0) {
1872 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1873 dir->i_sb->s_id, dir->i_ino,
1874 dentry->d_name.name, symname, error);
1875 d_drop(dentry);
1876 __free_page(page);
1877 return error;
1881 * No big deal if we can't add this page to the page cache here.
1882 * READLINK will get the missing page from the server if needed.
1884 pagevec_init(&lru_pvec, 0);
1885 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1886 GFP_KERNEL)) {
1887 pagevec_add(&lru_pvec, page);
1888 pagevec_lru_add_file(&lru_pvec);
1889 SetPageUptodate(page);
1890 unlock_page(page);
1891 } else
1892 __free_page(page);
1894 return 0;
1897 static int
1898 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1900 struct inode *inode = old_dentry->d_inode;
1901 int error;
1903 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1904 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1905 dentry->d_parent->d_name.name, dentry->d_name.name);
1907 nfs_inode_return_delegation(inode);
1909 d_drop(dentry);
1910 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1911 if (error == 0) {
1912 ihold(inode);
1913 d_add(dentry, inode);
1915 return error;
1919 * RENAME
1920 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1921 * different file handle for the same inode after a rename (e.g. when
1922 * moving to a different directory). A fail-safe method to do so would
1923 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1924 * rename the old file using the sillyrename stuff. This way, the original
1925 * file in old_dir will go away when the last process iput()s the inode.
1927 * FIXED.
1929 * It actually works quite well. One needs to have the possibility for
1930 * at least one ".nfs..." file in each directory the file ever gets
1931 * moved or linked to which happens automagically with the new
1932 * implementation that only depends on the dcache stuff instead of
1933 * using the inode layer
1935 * Unfortunately, things are a little more complicated than indicated
1936 * above. For a cross-directory move, we want to make sure we can get
1937 * rid of the old inode after the operation. This means there must be
1938 * no pending writes (if it's a file), and the use count must be 1.
1939 * If these conditions are met, we can drop the dentries before doing
1940 * the rename.
1942 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1943 struct inode *new_dir, struct dentry *new_dentry)
1945 struct inode *old_inode = old_dentry->d_inode;
1946 struct inode *new_inode = new_dentry->d_inode;
1947 struct dentry *dentry = NULL, *rehash = NULL;
1948 int error = -EBUSY;
1950 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1951 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1952 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1953 new_dentry->d_count);
1956 * For non-directories, check whether the target is busy and if so,
1957 * make a copy of the dentry and then do a silly-rename. If the
1958 * silly-rename succeeds, the copied dentry is hashed and becomes
1959 * the new target.
1961 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1963 * To prevent any new references to the target during the
1964 * rename, we unhash the dentry in advance.
1966 if (!d_unhashed(new_dentry)) {
1967 d_drop(new_dentry);
1968 rehash = new_dentry;
1971 if (new_dentry->d_count > 2) {
1972 int err;
1974 /* copy the target dentry's name */
1975 dentry = d_alloc(new_dentry->d_parent,
1976 &new_dentry->d_name);
1977 if (!dentry)
1978 goto out;
1980 /* silly-rename the existing target ... */
1981 err = nfs_sillyrename(new_dir, new_dentry);
1982 if (err)
1983 goto out;
1985 new_dentry = dentry;
1986 rehash = NULL;
1987 new_inode = NULL;
1991 nfs_inode_return_delegation(old_inode);
1992 if (new_inode != NULL)
1993 nfs_inode_return_delegation(new_inode);
1995 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1996 new_dir, &new_dentry->d_name);
1997 nfs_mark_for_revalidate(old_inode);
1998 out:
1999 if (rehash)
2000 d_rehash(rehash);
2001 if (!error) {
2002 if (new_inode != NULL)
2003 nfs_drop_nlink(new_inode);
2004 d_move(old_dentry, new_dentry);
2005 nfs_set_verifier(new_dentry,
2006 nfs_save_change_attribute(new_dir));
2007 } else if (error == -ENOENT)
2008 nfs_dentry_handle_enoent(old_dentry);
2010 /* new dentry created? */
2011 if (dentry)
2012 dput(dentry);
2013 return error;
2016 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2017 static LIST_HEAD(nfs_access_lru_list);
2018 static atomic_long_t nfs_access_nr_entries;
2020 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2022 put_rpccred(entry->cred);
2023 kfree(entry);
2024 smp_mb__before_atomic_dec();
2025 atomic_long_dec(&nfs_access_nr_entries);
2026 smp_mb__after_atomic_dec();
2029 static void nfs_access_free_list(struct list_head *head)
2031 struct nfs_access_entry *cache;
2033 while (!list_empty(head)) {
2034 cache = list_entry(head->next, struct nfs_access_entry, lru);
2035 list_del(&cache->lru);
2036 nfs_access_free_entry(cache);
2040 int nfs_access_cache_shrinker(struct shrinker *shrink,
2041 struct shrink_control *sc)
2043 LIST_HEAD(head);
2044 struct nfs_inode *nfsi, *next;
2045 struct nfs_access_entry *cache;
2046 int nr_to_scan = sc->nr_to_scan;
2047 gfp_t gfp_mask = sc->gfp_mask;
2049 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2050 return (nr_to_scan == 0) ? 0 : -1;
2052 spin_lock(&nfs_access_lru_lock);
2053 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2054 struct inode *inode;
2056 if (nr_to_scan-- == 0)
2057 break;
2058 inode = &nfsi->vfs_inode;
2059 spin_lock(&inode->i_lock);
2060 if (list_empty(&nfsi->access_cache_entry_lru))
2061 goto remove_lru_entry;
2062 cache = list_entry(nfsi->access_cache_entry_lru.next,
2063 struct nfs_access_entry, lru);
2064 list_move(&cache->lru, &head);
2065 rb_erase(&cache->rb_node, &nfsi->access_cache);
2066 if (!list_empty(&nfsi->access_cache_entry_lru))
2067 list_move_tail(&nfsi->access_cache_inode_lru,
2068 &nfs_access_lru_list);
2069 else {
2070 remove_lru_entry:
2071 list_del_init(&nfsi->access_cache_inode_lru);
2072 smp_mb__before_clear_bit();
2073 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2074 smp_mb__after_clear_bit();
2076 spin_unlock(&inode->i_lock);
2078 spin_unlock(&nfs_access_lru_lock);
2079 nfs_access_free_list(&head);
2080 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2083 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2085 struct rb_root *root_node = &nfsi->access_cache;
2086 struct rb_node *n;
2087 struct nfs_access_entry *entry;
2089 /* Unhook entries from the cache */
2090 while ((n = rb_first(root_node)) != NULL) {
2091 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2092 rb_erase(n, root_node);
2093 list_move(&entry->lru, head);
2095 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2098 void nfs_access_zap_cache(struct inode *inode)
2100 LIST_HEAD(head);
2102 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2103 return;
2104 /* Remove from global LRU init */
2105 spin_lock(&nfs_access_lru_lock);
2106 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2107 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2109 spin_lock(&inode->i_lock);
2110 __nfs_access_zap_cache(NFS_I(inode), &head);
2111 spin_unlock(&inode->i_lock);
2112 spin_unlock(&nfs_access_lru_lock);
2113 nfs_access_free_list(&head);
2116 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2118 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2119 struct nfs_access_entry *entry;
2121 while (n != NULL) {
2122 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2124 if (cred < entry->cred)
2125 n = n->rb_left;
2126 else if (cred > entry->cred)
2127 n = n->rb_right;
2128 else
2129 return entry;
2131 return NULL;
2134 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2136 struct nfs_inode *nfsi = NFS_I(inode);
2137 struct nfs_access_entry *cache;
2138 int err = -ENOENT;
2140 spin_lock(&inode->i_lock);
2141 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2142 goto out_zap;
2143 cache = nfs_access_search_rbtree(inode, cred);
2144 if (cache == NULL)
2145 goto out;
2146 if (!nfs_have_delegated_attributes(inode) &&
2147 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2148 goto out_stale;
2149 res->jiffies = cache->jiffies;
2150 res->cred = cache->cred;
2151 res->mask = cache->mask;
2152 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2153 err = 0;
2154 out:
2155 spin_unlock(&inode->i_lock);
2156 return err;
2157 out_stale:
2158 rb_erase(&cache->rb_node, &nfsi->access_cache);
2159 list_del(&cache->lru);
2160 spin_unlock(&inode->i_lock);
2161 nfs_access_free_entry(cache);
2162 return -ENOENT;
2163 out_zap:
2164 spin_unlock(&inode->i_lock);
2165 nfs_access_zap_cache(inode);
2166 return -ENOENT;
2169 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2171 struct nfs_inode *nfsi = NFS_I(inode);
2172 struct rb_root *root_node = &nfsi->access_cache;
2173 struct rb_node **p = &root_node->rb_node;
2174 struct rb_node *parent = NULL;
2175 struct nfs_access_entry *entry;
2177 spin_lock(&inode->i_lock);
2178 while (*p != NULL) {
2179 parent = *p;
2180 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2182 if (set->cred < entry->cred)
2183 p = &parent->rb_left;
2184 else if (set->cred > entry->cred)
2185 p = &parent->rb_right;
2186 else
2187 goto found;
2189 rb_link_node(&set->rb_node, parent, p);
2190 rb_insert_color(&set->rb_node, root_node);
2191 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2192 spin_unlock(&inode->i_lock);
2193 return;
2194 found:
2195 rb_replace_node(parent, &set->rb_node, root_node);
2196 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2197 list_del(&entry->lru);
2198 spin_unlock(&inode->i_lock);
2199 nfs_access_free_entry(entry);
2202 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2204 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2205 if (cache == NULL)
2206 return;
2207 RB_CLEAR_NODE(&cache->rb_node);
2208 cache->jiffies = set->jiffies;
2209 cache->cred = get_rpccred(set->cred);
2210 cache->mask = set->mask;
2212 nfs_access_add_rbtree(inode, cache);
2214 /* Update accounting */
2215 smp_mb__before_atomic_inc();
2216 atomic_long_inc(&nfs_access_nr_entries);
2217 smp_mb__after_atomic_inc();
2219 /* Add inode to global LRU list */
2220 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2221 spin_lock(&nfs_access_lru_lock);
2222 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2223 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2224 &nfs_access_lru_list);
2225 spin_unlock(&nfs_access_lru_lock);
2229 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2231 struct nfs_access_entry cache;
2232 int status;
2234 status = nfs_access_get_cached(inode, cred, &cache);
2235 if (status == 0)
2236 goto out;
2238 /* Be clever: ask server to check for all possible rights */
2239 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2240 cache.cred = cred;
2241 cache.jiffies = jiffies;
2242 status = NFS_PROTO(inode)->access(inode, &cache);
2243 if (status != 0) {
2244 if (status == -ESTALE) {
2245 nfs_zap_caches(inode);
2246 if (!S_ISDIR(inode->i_mode))
2247 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2249 return status;
2251 nfs_access_add_cache(inode, &cache);
2252 out:
2253 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2254 return 0;
2255 return -EACCES;
2258 static int nfs_open_permission_mask(int openflags)
2260 int mask = 0;
2262 if (openflags & FMODE_READ)
2263 mask |= MAY_READ;
2264 if (openflags & FMODE_WRITE)
2265 mask |= MAY_WRITE;
2266 if (openflags & FMODE_EXEC)
2267 mask |= MAY_EXEC;
2268 return mask;
2271 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2273 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2276 int nfs_permission(struct inode *inode, int mask, unsigned int flags)
2278 struct rpc_cred *cred;
2279 int res = 0;
2281 if (flags & IPERM_FLAG_RCU)
2282 return -ECHILD;
2284 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2286 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2287 goto out;
2288 /* Is this sys_access() ? */
2289 if (mask & (MAY_ACCESS | MAY_CHDIR))
2290 goto force_lookup;
2292 switch (inode->i_mode & S_IFMT) {
2293 case S_IFLNK:
2294 goto out;
2295 case S_IFREG:
2296 /* NFSv4 has atomic_open... */
2297 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2298 && (mask & MAY_OPEN)
2299 && !(mask & MAY_EXEC))
2300 goto out;
2301 break;
2302 case S_IFDIR:
2304 * Optimize away all write operations, since the server
2305 * will check permissions when we perform the op.
2307 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2308 goto out;
2311 force_lookup:
2312 if (!NFS_PROTO(inode)->access)
2313 goto out_notsup;
2315 cred = rpc_lookup_cred();
2316 if (!IS_ERR(cred)) {
2317 res = nfs_do_access(inode, cred, mask);
2318 put_rpccred(cred);
2319 } else
2320 res = PTR_ERR(cred);
2321 out:
2322 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2323 res = -EACCES;
2325 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2326 inode->i_sb->s_id, inode->i_ino, mask, res);
2327 return res;
2328 out_notsup:
2329 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2330 if (res == 0)
2331 res = generic_permission(inode, mask, flags, NULL);
2332 goto out;
2336 * Local variables:
2337 * version-control: t
2338 * kept-new-versions: 5
2339 * End: