drm/i915: Rephrase pwrite bounds checking to avoid any potential overflow
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobaa959c4a1836238354d7674cdaa52b3a195013d5
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44 int write);
45 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46 uint64_t offset,
47 uint64_t size);
48 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
49 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
50 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51 unsigned alignment);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
56 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
61 static inline bool
62 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
64 return obj_priv->gtt_space &&
65 !obj_priv->active &&
66 obj_priv->pin_count == 0;
69 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
70 unsigned long end)
72 drm_i915_private_t *dev_priv = dev->dev_private;
74 if (start >= end ||
75 (start & (PAGE_SIZE - 1)) != 0 ||
76 (end & (PAGE_SIZE - 1)) != 0) {
77 return -EINVAL;
80 drm_mm_init(&dev_priv->mm.gtt_space, start,
81 end - start);
83 dev->gtt_total = (uint32_t) (end - start);
85 return 0;
88 int
89 i915_gem_init_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
92 struct drm_i915_gem_init *args = data;
93 int ret;
95 mutex_lock(&dev->struct_mutex);
96 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
97 mutex_unlock(&dev->struct_mutex);
99 return ret;
103 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
104 struct drm_file *file_priv)
106 struct drm_i915_gem_get_aperture *args = data;
108 if (!(dev->driver->driver_features & DRIVER_GEM))
109 return -ENODEV;
111 args->aper_size = dev->gtt_total;
112 args->aper_available_size = (args->aper_size -
113 atomic_read(&dev->pin_memory));
115 return 0;
120 * Creates a new mm object and returns a handle to it.
123 i915_gem_create_ioctl(struct drm_device *dev, void *data,
124 struct drm_file *file_priv)
126 struct drm_i915_gem_create *args = data;
127 struct drm_gem_object *obj;
128 int ret;
129 u32 handle;
131 args->size = roundup(args->size, PAGE_SIZE);
133 /* Allocate the new object */
134 obj = i915_gem_alloc_object(dev, args->size);
135 if (obj == NULL)
136 return -ENOMEM;
138 ret = drm_gem_handle_create(file_priv, obj, &handle);
139 if (ret) {
140 drm_gem_object_unreference_unlocked(obj);
141 return ret;
144 /* Sink the floating reference from kref_init(handlecount) */
145 drm_gem_object_handle_unreference_unlocked(obj);
147 args->handle = handle;
148 return 0;
151 static inline int
152 fast_shmem_read(struct page **pages,
153 loff_t page_base, int page_offset,
154 char __user *data,
155 int length)
157 char __iomem *vaddr;
158 int unwritten;
160 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
161 if (vaddr == NULL)
162 return -ENOMEM;
163 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
164 kunmap_atomic(vaddr, KM_USER0);
166 if (unwritten)
167 return -EFAULT;
169 return 0;
172 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
174 drm_i915_private_t *dev_priv = obj->dev->dev_private;
175 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
177 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
178 obj_priv->tiling_mode != I915_TILING_NONE;
181 static inline void
182 slow_shmem_copy(struct page *dst_page,
183 int dst_offset,
184 struct page *src_page,
185 int src_offset,
186 int length)
188 char *dst_vaddr, *src_vaddr;
190 dst_vaddr = kmap(dst_page);
191 src_vaddr = kmap(src_page);
193 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
195 kunmap(src_page);
196 kunmap(dst_page);
199 static inline void
200 slow_shmem_bit17_copy(struct page *gpu_page,
201 int gpu_offset,
202 struct page *cpu_page,
203 int cpu_offset,
204 int length,
205 int is_read)
207 char *gpu_vaddr, *cpu_vaddr;
209 /* Use the unswizzled path if this page isn't affected. */
210 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
211 if (is_read)
212 return slow_shmem_copy(cpu_page, cpu_offset,
213 gpu_page, gpu_offset, length);
214 else
215 return slow_shmem_copy(gpu_page, gpu_offset,
216 cpu_page, cpu_offset, length);
219 gpu_vaddr = kmap(gpu_page);
220 cpu_vaddr = kmap(cpu_page);
222 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
223 * XORing with the other bits (A9 for Y, A9 and A10 for X)
225 while (length > 0) {
226 int cacheline_end = ALIGN(gpu_offset + 1, 64);
227 int this_length = min(cacheline_end - gpu_offset, length);
228 int swizzled_gpu_offset = gpu_offset ^ 64;
230 if (is_read) {
231 memcpy(cpu_vaddr + cpu_offset,
232 gpu_vaddr + swizzled_gpu_offset,
233 this_length);
234 } else {
235 memcpy(gpu_vaddr + swizzled_gpu_offset,
236 cpu_vaddr + cpu_offset,
237 this_length);
239 cpu_offset += this_length;
240 gpu_offset += this_length;
241 length -= this_length;
244 kunmap(cpu_page);
245 kunmap(gpu_page);
249 * This is the fast shmem pread path, which attempts to copy_from_user directly
250 * from the backing pages of the object to the user's address space. On a
251 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
253 static int
254 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
255 struct drm_i915_gem_pread *args,
256 struct drm_file *file_priv)
258 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
259 ssize_t remain;
260 loff_t offset, page_base;
261 char __user *user_data;
262 int page_offset, page_length;
263 int ret;
265 user_data = (char __user *) (uintptr_t) args->data_ptr;
266 remain = args->size;
268 mutex_lock(&dev->struct_mutex);
270 ret = i915_gem_object_get_pages(obj, 0);
271 if (ret != 0)
272 goto fail_unlock;
274 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
275 args->size);
276 if (ret != 0)
277 goto fail_put_pages;
279 obj_priv = to_intel_bo(obj);
280 offset = args->offset;
282 while (remain > 0) {
283 /* Operation in this page
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
295 ret = fast_shmem_read(obj_priv->pages,
296 page_base, page_offset,
297 user_data, page_length);
298 if (ret)
299 goto fail_put_pages;
301 remain -= page_length;
302 user_data += page_length;
303 offset += page_length;
306 fail_put_pages:
307 i915_gem_object_put_pages(obj);
308 fail_unlock:
309 mutex_unlock(&dev->struct_mutex);
311 return ret;
314 static int
315 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
317 int ret;
319 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
321 /* If we've insufficient memory to map in the pages, attempt
322 * to make some space by throwing out some old buffers.
324 if (ret == -ENOMEM) {
325 struct drm_device *dev = obj->dev;
327 ret = i915_gem_evict_something(dev, obj->size,
328 i915_gem_get_gtt_alignment(obj));
329 if (ret)
330 return ret;
332 ret = i915_gem_object_get_pages(obj, 0);
335 return ret;
339 * This is the fallback shmem pread path, which allocates temporary storage
340 * in kernel space to copy_to_user into outside of the struct_mutex, so we
341 * can copy out of the object's backing pages while holding the struct mutex
342 * and not take page faults.
344 static int
345 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
346 struct drm_i915_gem_pread *args,
347 struct drm_file *file_priv)
349 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
350 struct mm_struct *mm = current->mm;
351 struct page **user_pages;
352 ssize_t remain;
353 loff_t offset, pinned_pages, i;
354 loff_t first_data_page, last_data_page, num_pages;
355 int shmem_page_index, shmem_page_offset;
356 int data_page_index, data_page_offset;
357 int page_length;
358 int ret;
359 uint64_t data_ptr = args->data_ptr;
360 int do_bit17_swizzling;
362 remain = args->size;
364 /* Pin the user pages containing the data. We can't fault while
365 * holding the struct mutex, yet we want to hold it while
366 * dereferencing the user data.
368 first_data_page = data_ptr / PAGE_SIZE;
369 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
370 num_pages = last_data_page - first_data_page + 1;
372 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
373 if (user_pages == NULL)
374 return -ENOMEM;
376 down_read(&mm->mmap_sem);
377 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
378 num_pages, 1, 0, user_pages, NULL);
379 up_read(&mm->mmap_sem);
380 if (pinned_pages < num_pages) {
381 ret = -EFAULT;
382 goto fail_put_user_pages;
385 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
387 mutex_lock(&dev->struct_mutex);
389 ret = i915_gem_object_get_pages_or_evict(obj);
390 if (ret)
391 goto fail_unlock;
393 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
394 args->size);
395 if (ret != 0)
396 goto fail_put_pages;
398 obj_priv = to_intel_bo(obj);
399 offset = args->offset;
401 while (remain > 0) {
402 /* Operation in this page
404 * shmem_page_index = page number within shmem file
405 * shmem_page_offset = offset within page in shmem file
406 * data_page_index = page number in get_user_pages return
407 * data_page_offset = offset with data_page_index page.
408 * page_length = bytes to copy for this page
410 shmem_page_index = offset / PAGE_SIZE;
411 shmem_page_offset = offset & ~PAGE_MASK;
412 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
413 data_page_offset = data_ptr & ~PAGE_MASK;
415 page_length = remain;
416 if ((shmem_page_offset + page_length) > PAGE_SIZE)
417 page_length = PAGE_SIZE - shmem_page_offset;
418 if ((data_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - data_page_offset;
421 if (do_bit17_swizzling) {
422 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
423 shmem_page_offset,
424 user_pages[data_page_index],
425 data_page_offset,
426 page_length,
428 } else {
429 slow_shmem_copy(user_pages[data_page_index],
430 data_page_offset,
431 obj_priv->pages[shmem_page_index],
432 shmem_page_offset,
433 page_length);
436 remain -= page_length;
437 data_ptr += page_length;
438 offset += page_length;
441 fail_put_pages:
442 i915_gem_object_put_pages(obj);
443 fail_unlock:
444 mutex_unlock(&dev->struct_mutex);
445 fail_put_user_pages:
446 for (i = 0; i < pinned_pages; i++) {
447 SetPageDirty(user_pages[i]);
448 page_cache_release(user_pages[i]);
450 drm_free_large(user_pages);
452 return ret;
456 * Reads data from the object referenced by handle.
458 * On error, the contents of *data are undefined.
461 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
462 struct drm_file *file_priv)
464 struct drm_i915_gem_pread *args = data;
465 struct drm_gem_object *obj;
466 struct drm_i915_gem_object *obj_priv;
467 int ret;
469 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
470 if (obj == NULL)
471 return -ENOENT;
472 obj_priv = to_intel_bo(obj);
474 /* Bounds check source. */
475 if (args->offset > obj->size || args->size > obj->size - args->offset) {
476 ret = -EINVAL;
477 goto err;
480 if (!access_ok(VERIFY_WRITE,
481 (char __user *)(uintptr_t)args->data_ptr,
482 args->size)) {
483 ret = -EFAULT;
484 goto err;
487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
496 err:
497 drm_gem_object_unreference_unlocked(obj);
498 return ret;
501 /* This is the fast write path which cannot handle
502 * page faults in the source data
505 static inline int
506 fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
511 char *vaddr_atomic;
512 unsigned long unwritten;
514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
518 if (unwritten)
519 return -EFAULT;
520 return 0;
523 /* Here's the write path which can sleep for
524 * page faults
527 static inline void
528 slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
547 static inline int
548 fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
553 char __iomem *vaddr;
554 unsigned long unwritten;
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
560 kunmap_atomic(vaddr, KM_USER0);
562 if (unwritten)
563 return -EFAULT;
564 return 0;
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
571 static int
572 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
577 drm_i915_private_t *dev_priv = dev->dev_private;
578 ssize_t remain;
579 loff_t offset, page_base;
580 char __user *user_data;
581 int page_offset, page_length;
582 int ret;
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
588 mutex_lock(&dev->struct_mutex);
589 ret = i915_gem_object_pin(obj, 0);
590 if (ret) {
591 mutex_unlock(&dev->struct_mutex);
592 return ret;
594 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
595 if (ret)
596 goto fail;
598 obj_priv = to_intel_bo(obj);
599 offset = obj_priv->gtt_offset + args->offset;
601 while (remain > 0) {
602 /* Operation in this page
604 * page_base = page offset within aperture
605 * page_offset = offset within page
606 * page_length = bytes to copy for this page
608 page_base = (offset & ~(PAGE_SIZE-1));
609 page_offset = offset & (PAGE_SIZE-1);
610 page_length = remain;
611 if ((page_offset + remain) > PAGE_SIZE)
612 page_length = PAGE_SIZE - page_offset;
614 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
615 page_offset, user_data, page_length);
617 /* If we get a fault while copying data, then (presumably) our
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
621 if (ret)
622 goto fail;
624 remain -= page_length;
625 user_data += page_length;
626 offset += page_length;
629 fail:
630 i915_gem_object_unpin(obj);
631 mutex_unlock(&dev->struct_mutex);
633 return ret;
637 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
638 * the memory and maps it using kmap_atomic for copying.
640 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
641 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
643 static int
644 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
645 struct drm_i915_gem_pwrite *args,
646 struct drm_file *file_priv)
648 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
649 drm_i915_private_t *dev_priv = dev->dev_private;
650 ssize_t remain;
651 loff_t gtt_page_base, offset;
652 loff_t first_data_page, last_data_page, num_pages;
653 loff_t pinned_pages, i;
654 struct page **user_pages;
655 struct mm_struct *mm = current->mm;
656 int gtt_page_offset, data_page_offset, data_page_index, page_length;
657 int ret;
658 uint64_t data_ptr = args->data_ptr;
660 remain = args->size;
662 /* Pin the user pages containing the data. We can't fault while
663 * holding the struct mutex, and all of the pwrite implementations
664 * want to hold it while dereferencing the user data.
666 first_data_page = data_ptr / PAGE_SIZE;
667 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
668 num_pages = last_data_page - first_data_page + 1;
670 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
671 if (user_pages == NULL)
672 return -ENOMEM;
674 down_read(&mm->mmap_sem);
675 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
676 num_pages, 0, 0, user_pages, NULL);
677 up_read(&mm->mmap_sem);
678 if (pinned_pages < num_pages) {
679 ret = -EFAULT;
680 goto out_unpin_pages;
683 mutex_lock(&dev->struct_mutex);
684 ret = i915_gem_object_pin(obj, 0);
685 if (ret)
686 goto out_unlock;
688 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
689 if (ret)
690 goto out_unpin_object;
692 obj_priv = to_intel_bo(obj);
693 offset = obj_priv->gtt_offset + args->offset;
695 while (remain > 0) {
696 /* Operation in this page
698 * gtt_page_base = page offset within aperture
699 * gtt_page_offset = offset within page in aperture
700 * data_page_index = page number in get_user_pages return
701 * data_page_offset = offset with data_page_index page.
702 * page_length = bytes to copy for this page
704 gtt_page_base = offset & PAGE_MASK;
705 gtt_page_offset = offset & ~PAGE_MASK;
706 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
707 data_page_offset = data_ptr & ~PAGE_MASK;
709 page_length = remain;
710 if ((gtt_page_offset + page_length) > PAGE_SIZE)
711 page_length = PAGE_SIZE - gtt_page_offset;
712 if ((data_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - data_page_offset;
715 slow_kernel_write(dev_priv->mm.gtt_mapping,
716 gtt_page_base, gtt_page_offset,
717 user_pages[data_page_index],
718 data_page_offset,
719 page_length);
721 remain -= page_length;
722 offset += page_length;
723 data_ptr += page_length;
726 out_unpin_object:
727 i915_gem_object_unpin(obj);
728 out_unlock:
729 mutex_unlock(&dev->struct_mutex);
730 out_unpin_pages:
731 for (i = 0; i < pinned_pages; i++)
732 page_cache_release(user_pages[i]);
733 drm_free_large(user_pages);
735 return ret;
739 * This is the fast shmem pwrite path, which attempts to directly
740 * copy_from_user into the kmapped pages backing the object.
742 static int
743 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
744 struct drm_i915_gem_pwrite *args,
745 struct drm_file *file_priv)
747 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
748 ssize_t remain;
749 loff_t offset, page_base;
750 char __user *user_data;
751 int page_offset, page_length;
752 int ret;
754 user_data = (char __user *) (uintptr_t) args->data_ptr;
755 remain = args->size;
757 mutex_lock(&dev->struct_mutex);
759 ret = i915_gem_object_get_pages(obj, 0);
760 if (ret != 0)
761 goto fail_unlock;
763 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
764 if (ret != 0)
765 goto fail_put_pages;
767 obj_priv = to_intel_bo(obj);
768 offset = args->offset;
769 obj_priv->dirty = 1;
771 while (remain > 0) {
772 /* Operation in this page
774 * page_base = page offset within aperture
775 * page_offset = offset within page
776 * page_length = bytes to copy for this page
778 page_base = (offset & ~(PAGE_SIZE-1));
779 page_offset = offset & (PAGE_SIZE-1);
780 page_length = remain;
781 if ((page_offset + remain) > PAGE_SIZE)
782 page_length = PAGE_SIZE - page_offset;
784 ret = fast_shmem_write(obj_priv->pages,
785 page_base, page_offset,
786 user_data, page_length);
787 if (ret)
788 goto fail_put_pages;
790 remain -= page_length;
791 user_data += page_length;
792 offset += page_length;
795 fail_put_pages:
796 i915_gem_object_put_pages(obj);
797 fail_unlock:
798 mutex_unlock(&dev->struct_mutex);
800 return ret;
804 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
805 * the memory and maps it using kmap_atomic for copying.
807 * This avoids taking mmap_sem for faulting on the user's address while the
808 * struct_mutex is held.
810 static int
811 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
812 struct drm_i915_gem_pwrite *args,
813 struct drm_file *file_priv)
815 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
816 struct mm_struct *mm = current->mm;
817 struct page **user_pages;
818 ssize_t remain;
819 loff_t offset, pinned_pages, i;
820 loff_t first_data_page, last_data_page, num_pages;
821 int shmem_page_index, shmem_page_offset;
822 int data_page_index, data_page_offset;
823 int page_length;
824 int ret;
825 uint64_t data_ptr = args->data_ptr;
826 int do_bit17_swizzling;
828 remain = args->size;
830 /* Pin the user pages containing the data. We can't fault while
831 * holding the struct mutex, and all of the pwrite implementations
832 * want to hold it while dereferencing the user data.
834 first_data_page = data_ptr / PAGE_SIZE;
835 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
836 num_pages = last_data_page - first_data_page + 1;
838 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
839 if (user_pages == NULL)
840 return -ENOMEM;
842 down_read(&mm->mmap_sem);
843 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
844 num_pages, 0, 0, user_pages, NULL);
845 up_read(&mm->mmap_sem);
846 if (pinned_pages < num_pages) {
847 ret = -EFAULT;
848 goto fail_put_user_pages;
851 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
853 mutex_lock(&dev->struct_mutex);
855 ret = i915_gem_object_get_pages_or_evict(obj);
856 if (ret)
857 goto fail_unlock;
859 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
860 if (ret != 0)
861 goto fail_put_pages;
863 obj_priv = to_intel_bo(obj);
864 offset = args->offset;
865 obj_priv->dirty = 1;
867 while (remain > 0) {
868 /* Operation in this page
870 * shmem_page_index = page number within shmem file
871 * shmem_page_offset = offset within page in shmem file
872 * data_page_index = page number in get_user_pages return
873 * data_page_offset = offset with data_page_index page.
874 * page_length = bytes to copy for this page
876 shmem_page_index = offset / PAGE_SIZE;
877 shmem_page_offset = offset & ~PAGE_MASK;
878 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
879 data_page_offset = data_ptr & ~PAGE_MASK;
881 page_length = remain;
882 if ((shmem_page_offset + page_length) > PAGE_SIZE)
883 page_length = PAGE_SIZE - shmem_page_offset;
884 if ((data_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - data_page_offset;
887 if (do_bit17_swizzling) {
888 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
889 shmem_page_offset,
890 user_pages[data_page_index],
891 data_page_offset,
892 page_length,
894 } else {
895 slow_shmem_copy(obj_priv->pages[shmem_page_index],
896 shmem_page_offset,
897 user_pages[data_page_index],
898 data_page_offset,
899 page_length);
902 remain -= page_length;
903 data_ptr += page_length;
904 offset += page_length;
907 fail_put_pages:
908 i915_gem_object_put_pages(obj);
909 fail_unlock:
910 mutex_unlock(&dev->struct_mutex);
911 fail_put_user_pages:
912 for (i = 0; i < pinned_pages; i++)
913 page_cache_release(user_pages[i]);
914 drm_free_large(user_pages);
916 return ret;
920 * Writes data to the object referenced by handle.
922 * On error, the contents of the buffer that were to be modified are undefined.
925 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
926 struct drm_file *file_priv)
928 struct drm_i915_gem_pwrite *args = data;
929 struct drm_gem_object *obj;
930 struct drm_i915_gem_object *obj_priv;
931 int ret = 0;
933 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
934 if (obj == NULL)
935 return -ENOENT;
936 obj_priv = to_intel_bo(obj);
938 /* Bounds check destination. */
939 if (args->offset > obj->size || args->size > obj->size - args->offset) {
940 ret = -EINVAL;
941 goto err;
944 if (!access_ok(VERIFY_READ,
945 (char __user *)(uintptr_t)args->data_ptr,
946 args->size)) {
947 ret = -EFAULT;
948 goto err;
951 /* We can only do the GTT pwrite on untiled buffers, as otherwise
952 * it would end up going through the fenced access, and we'll get
953 * different detiling behavior between reading and writing.
954 * pread/pwrite currently are reading and writing from the CPU
955 * perspective, requiring manual detiling by the client.
957 if (obj_priv->phys_obj)
958 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
959 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
960 dev->gtt_total != 0 &&
961 obj->write_domain != I915_GEM_DOMAIN_CPU) {
962 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
963 if (ret == -EFAULT) {
964 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
965 file_priv);
967 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
968 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
969 } else {
970 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
971 if (ret == -EFAULT) {
972 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
973 file_priv);
977 #if WATCH_PWRITE
978 if (ret)
979 DRM_INFO("pwrite failed %d\n", ret);
980 #endif
982 err:
983 drm_gem_object_unreference_unlocked(obj);
984 return ret;
988 * Called when user space prepares to use an object with the CPU, either
989 * through the mmap ioctl's mapping or a GTT mapping.
992 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
993 struct drm_file *file_priv)
995 struct drm_i915_private *dev_priv = dev->dev_private;
996 struct drm_i915_gem_set_domain *args = data;
997 struct drm_gem_object *obj;
998 struct drm_i915_gem_object *obj_priv;
999 uint32_t read_domains = args->read_domains;
1000 uint32_t write_domain = args->write_domain;
1001 int ret;
1003 if (!(dev->driver->driver_features & DRIVER_GEM))
1004 return -ENODEV;
1006 /* Only handle setting domains to types used by the CPU. */
1007 if (write_domain & I915_GEM_GPU_DOMAINS)
1008 return -EINVAL;
1010 if (read_domains & I915_GEM_GPU_DOMAINS)
1011 return -EINVAL;
1013 /* Having something in the write domain implies it's in the read
1014 * domain, and only that read domain. Enforce that in the request.
1016 if (write_domain != 0 && read_domains != write_domain)
1017 return -EINVAL;
1019 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1020 if (obj == NULL)
1021 return -ENOENT;
1022 obj_priv = to_intel_bo(obj);
1024 mutex_lock(&dev->struct_mutex);
1026 intel_mark_busy(dev, obj);
1028 #if WATCH_BUF
1029 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1030 obj, obj->size, read_domains, write_domain);
1031 #endif
1032 if (read_domains & I915_GEM_DOMAIN_GTT) {
1033 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1035 /* Update the LRU on the fence for the CPU access that's
1036 * about to occur.
1038 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1039 struct drm_i915_fence_reg *reg =
1040 &dev_priv->fence_regs[obj_priv->fence_reg];
1041 list_move_tail(&reg->lru_list,
1042 &dev_priv->mm.fence_list);
1045 /* Silently promote "you're not bound, there was nothing to do"
1046 * to success, since the client was just asking us to
1047 * make sure everything was done.
1049 if (ret == -EINVAL)
1050 ret = 0;
1051 } else {
1052 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1056 /* Maintain LRU order of "inactive" objects */
1057 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1058 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1060 drm_gem_object_unreference(obj);
1061 mutex_unlock(&dev->struct_mutex);
1062 return ret;
1066 * Called when user space has done writes to this buffer
1069 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1070 struct drm_file *file_priv)
1072 struct drm_i915_gem_sw_finish *args = data;
1073 struct drm_gem_object *obj;
1074 struct drm_i915_gem_object *obj_priv;
1075 int ret = 0;
1077 if (!(dev->driver->driver_features & DRIVER_GEM))
1078 return -ENODEV;
1080 mutex_lock(&dev->struct_mutex);
1081 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1082 if (obj == NULL) {
1083 mutex_unlock(&dev->struct_mutex);
1084 return -ENOENT;
1087 #if WATCH_BUF
1088 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1089 __func__, args->handle, obj, obj->size);
1090 #endif
1091 obj_priv = to_intel_bo(obj);
1093 /* Pinned buffers may be scanout, so flush the cache */
1094 if (obj_priv->pin_count)
1095 i915_gem_object_flush_cpu_write_domain(obj);
1097 drm_gem_object_unreference(obj);
1098 mutex_unlock(&dev->struct_mutex);
1099 return ret;
1103 * Maps the contents of an object, returning the address it is mapped
1104 * into.
1106 * While the mapping holds a reference on the contents of the object, it doesn't
1107 * imply a ref on the object itself.
1110 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1111 struct drm_file *file_priv)
1113 struct drm_i915_gem_mmap *args = data;
1114 struct drm_gem_object *obj;
1115 loff_t offset;
1116 unsigned long addr;
1118 if (!(dev->driver->driver_features & DRIVER_GEM))
1119 return -ENODEV;
1121 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1122 if (obj == NULL)
1123 return -ENOENT;
1125 offset = args->offset;
1127 down_write(&current->mm->mmap_sem);
1128 addr = do_mmap(obj->filp, 0, args->size,
1129 PROT_READ | PROT_WRITE, MAP_SHARED,
1130 args->offset);
1131 up_write(&current->mm->mmap_sem);
1132 drm_gem_object_unreference_unlocked(obj);
1133 if (IS_ERR((void *)addr))
1134 return addr;
1136 args->addr_ptr = (uint64_t) addr;
1138 return 0;
1142 * i915_gem_fault - fault a page into the GTT
1143 * vma: VMA in question
1144 * vmf: fault info
1146 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1147 * from userspace. The fault handler takes care of binding the object to
1148 * the GTT (if needed), allocating and programming a fence register (again,
1149 * only if needed based on whether the old reg is still valid or the object
1150 * is tiled) and inserting a new PTE into the faulting process.
1152 * Note that the faulting process may involve evicting existing objects
1153 * from the GTT and/or fence registers to make room. So performance may
1154 * suffer if the GTT working set is large or there are few fence registers
1155 * left.
1157 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1159 struct drm_gem_object *obj = vma->vm_private_data;
1160 struct drm_device *dev = obj->dev;
1161 drm_i915_private_t *dev_priv = dev->dev_private;
1162 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1163 pgoff_t page_offset;
1164 unsigned long pfn;
1165 int ret = 0;
1166 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1168 /* We don't use vmf->pgoff since that has the fake offset */
1169 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1170 PAGE_SHIFT;
1172 /* Now bind it into the GTT if needed */
1173 mutex_lock(&dev->struct_mutex);
1174 if (!obj_priv->gtt_space) {
1175 ret = i915_gem_object_bind_to_gtt(obj, 0);
1176 if (ret)
1177 goto unlock;
1179 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1180 if (ret)
1181 goto unlock;
1184 /* Need a new fence register? */
1185 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1186 ret = i915_gem_object_get_fence_reg(obj);
1187 if (ret)
1188 goto unlock;
1191 if (i915_gem_object_is_inactive(obj_priv))
1192 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1194 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1195 page_offset;
1197 /* Finally, remap it using the new GTT offset */
1198 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1199 unlock:
1200 mutex_unlock(&dev->struct_mutex);
1202 switch (ret) {
1203 case 0:
1204 case -ERESTARTSYS:
1205 return VM_FAULT_NOPAGE;
1206 case -ENOMEM:
1207 case -EAGAIN:
1208 return VM_FAULT_OOM;
1209 default:
1210 return VM_FAULT_SIGBUS;
1215 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1216 * @obj: obj in question
1218 * GEM memory mapping works by handing back to userspace a fake mmap offset
1219 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1220 * up the object based on the offset and sets up the various memory mapping
1221 * structures.
1223 * This routine allocates and attaches a fake offset for @obj.
1225 static int
1226 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1228 struct drm_device *dev = obj->dev;
1229 struct drm_gem_mm *mm = dev->mm_private;
1230 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1231 struct drm_map_list *list;
1232 struct drm_local_map *map;
1233 int ret = 0;
1235 /* Set the object up for mmap'ing */
1236 list = &obj->map_list;
1237 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1238 if (!list->map)
1239 return -ENOMEM;
1241 map = list->map;
1242 map->type = _DRM_GEM;
1243 map->size = obj->size;
1244 map->handle = obj;
1246 /* Get a DRM GEM mmap offset allocated... */
1247 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1248 obj->size / PAGE_SIZE, 0, 0);
1249 if (!list->file_offset_node) {
1250 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1251 ret = -ENOMEM;
1252 goto out_free_list;
1255 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1256 obj->size / PAGE_SIZE, 0);
1257 if (!list->file_offset_node) {
1258 ret = -ENOMEM;
1259 goto out_free_list;
1262 list->hash.key = list->file_offset_node->start;
1263 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1264 DRM_ERROR("failed to add to map hash\n");
1265 ret = -ENOMEM;
1266 goto out_free_mm;
1269 /* By now we should be all set, any drm_mmap request on the offset
1270 * below will get to our mmap & fault handler */
1271 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1273 return 0;
1275 out_free_mm:
1276 drm_mm_put_block(list->file_offset_node);
1277 out_free_list:
1278 kfree(list->map);
1280 return ret;
1284 * i915_gem_release_mmap - remove physical page mappings
1285 * @obj: obj in question
1287 * Preserve the reservation of the mmapping with the DRM core code, but
1288 * relinquish ownership of the pages back to the system.
1290 * It is vital that we remove the page mapping if we have mapped a tiled
1291 * object through the GTT and then lose the fence register due to
1292 * resource pressure. Similarly if the object has been moved out of the
1293 * aperture, than pages mapped into userspace must be revoked. Removing the
1294 * mapping will then trigger a page fault on the next user access, allowing
1295 * fixup by i915_gem_fault().
1297 void
1298 i915_gem_release_mmap(struct drm_gem_object *obj)
1300 struct drm_device *dev = obj->dev;
1301 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1303 if (dev->dev_mapping)
1304 unmap_mapping_range(dev->dev_mapping,
1305 obj_priv->mmap_offset, obj->size, 1);
1308 static void
1309 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1311 struct drm_device *dev = obj->dev;
1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313 struct drm_gem_mm *mm = dev->mm_private;
1314 struct drm_map_list *list;
1316 list = &obj->map_list;
1317 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1319 if (list->file_offset_node) {
1320 drm_mm_put_block(list->file_offset_node);
1321 list->file_offset_node = NULL;
1324 if (list->map) {
1325 kfree(list->map);
1326 list->map = NULL;
1329 obj_priv->mmap_offset = 0;
1333 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1334 * @obj: object to check
1336 * Return the required GTT alignment for an object, taking into account
1337 * potential fence register mapping if needed.
1339 static uint32_t
1340 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1342 struct drm_device *dev = obj->dev;
1343 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1344 int start, i;
1347 * Minimum alignment is 4k (GTT page size), but might be greater
1348 * if a fence register is needed for the object.
1350 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1351 return 4096;
1354 * Previous chips need to be aligned to the size of the smallest
1355 * fence register that can contain the object.
1357 if (IS_I9XX(dev))
1358 start = 1024*1024;
1359 else
1360 start = 512*1024;
1362 for (i = start; i < obj->size; i <<= 1)
1365 return i;
1369 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1370 * @dev: DRM device
1371 * @data: GTT mapping ioctl data
1372 * @file_priv: GEM object info
1374 * Simply returns the fake offset to userspace so it can mmap it.
1375 * The mmap call will end up in drm_gem_mmap(), which will set things
1376 * up so we can get faults in the handler above.
1378 * The fault handler will take care of binding the object into the GTT
1379 * (since it may have been evicted to make room for something), allocating
1380 * a fence register, and mapping the appropriate aperture address into
1381 * userspace.
1384 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1385 struct drm_file *file_priv)
1387 struct drm_i915_gem_mmap_gtt *args = data;
1388 struct drm_gem_object *obj;
1389 struct drm_i915_gem_object *obj_priv;
1390 int ret;
1392 if (!(dev->driver->driver_features & DRIVER_GEM))
1393 return -ENODEV;
1395 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1396 if (obj == NULL)
1397 return -ENOENT;
1399 mutex_lock(&dev->struct_mutex);
1401 obj_priv = to_intel_bo(obj);
1403 if (obj_priv->madv != I915_MADV_WILLNEED) {
1404 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1405 drm_gem_object_unreference(obj);
1406 mutex_unlock(&dev->struct_mutex);
1407 return -EINVAL;
1411 if (!obj_priv->mmap_offset) {
1412 ret = i915_gem_create_mmap_offset(obj);
1413 if (ret) {
1414 drm_gem_object_unreference(obj);
1415 mutex_unlock(&dev->struct_mutex);
1416 return ret;
1420 args->offset = obj_priv->mmap_offset;
1423 * Pull it into the GTT so that we have a page list (makes the
1424 * initial fault faster and any subsequent flushing possible).
1426 if (!obj_priv->agp_mem) {
1427 ret = i915_gem_object_bind_to_gtt(obj, 0);
1428 if (ret) {
1429 drm_gem_object_unreference(obj);
1430 mutex_unlock(&dev->struct_mutex);
1431 return ret;
1435 drm_gem_object_unreference(obj);
1436 mutex_unlock(&dev->struct_mutex);
1438 return 0;
1441 void
1442 i915_gem_object_put_pages(struct drm_gem_object *obj)
1444 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1445 int page_count = obj->size / PAGE_SIZE;
1446 int i;
1448 BUG_ON(obj_priv->pages_refcount == 0);
1449 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1451 if (--obj_priv->pages_refcount != 0)
1452 return;
1454 if (obj_priv->tiling_mode != I915_TILING_NONE)
1455 i915_gem_object_save_bit_17_swizzle(obj);
1457 if (obj_priv->madv == I915_MADV_DONTNEED)
1458 obj_priv->dirty = 0;
1460 for (i = 0; i < page_count; i++) {
1461 if (obj_priv->dirty)
1462 set_page_dirty(obj_priv->pages[i]);
1464 if (obj_priv->madv == I915_MADV_WILLNEED)
1465 mark_page_accessed(obj_priv->pages[i]);
1467 page_cache_release(obj_priv->pages[i]);
1469 obj_priv->dirty = 0;
1471 drm_free_large(obj_priv->pages);
1472 obj_priv->pages = NULL;
1475 static void
1476 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1477 struct intel_ring_buffer *ring)
1479 struct drm_device *dev = obj->dev;
1480 drm_i915_private_t *dev_priv = dev->dev_private;
1481 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1482 BUG_ON(ring == NULL);
1483 obj_priv->ring = ring;
1485 /* Add a reference if we're newly entering the active list. */
1486 if (!obj_priv->active) {
1487 drm_gem_object_reference(obj);
1488 obj_priv->active = 1;
1490 /* Move from whatever list we were on to the tail of execution. */
1491 spin_lock(&dev_priv->mm.active_list_lock);
1492 list_move_tail(&obj_priv->list, &ring->active_list);
1493 spin_unlock(&dev_priv->mm.active_list_lock);
1494 obj_priv->last_rendering_seqno = seqno;
1497 static void
1498 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1500 struct drm_device *dev = obj->dev;
1501 drm_i915_private_t *dev_priv = dev->dev_private;
1502 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1504 BUG_ON(!obj_priv->active);
1505 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1506 obj_priv->last_rendering_seqno = 0;
1509 /* Immediately discard the backing storage */
1510 static void
1511 i915_gem_object_truncate(struct drm_gem_object *obj)
1513 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1514 struct inode *inode;
1516 /* Our goal here is to return as much of the memory as
1517 * is possible back to the system as we are called from OOM.
1518 * To do this we must instruct the shmfs to drop all of its
1519 * backing pages, *now*. Here we mirror the actions taken
1520 * when by shmem_delete_inode() to release the backing store.
1522 inode = obj->filp->f_path.dentry->d_inode;
1523 truncate_inode_pages(inode->i_mapping, 0);
1524 if (inode->i_op->truncate_range)
1525 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1527 obj_priv->madv = __I915_MADV_PURGED;
1530 static inline int
1531 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1533 return obj_priv->madv == I915_MADV_DONTNEED;
1536 static void
1537 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1539 struct drm_device *dev = obj->dev;
1540 drm_i915_private_t *dev_priv = dev->dev_private;
1541 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1543 i915_verify_inactive(dev, __FILE__, __LINE__);
1544 if (obj_priv->pin_count != 0)
1545 list_del_init(&obj_priv->list);
1546 else
1547 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1549 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1551 obj_priv->last_rendering_seqno = 0;
1552 obj_priv->ring = NULL;
1553 if (obj_priv->active) {
1554 obj_priv->active = 0;
1555 drm_gem_object_unreference(obj);
1557 i915_verify_inactive(dev, __FILE__, __LINE__);
1560 static void
1561 i915_gem_process_flushing_list(struct drm_device *dev,
1562 uint32_t flush_domains, uint32_t seqno,
1563 struct intel_ring_buffer *ring)
1565 drm_i915_private_t *dev_priv = dev->dev_private;
1566 struct drm_i915_gem_object *obj_priv, *next;
1568 list_for_each_entry_safe(obj_priv, next,
1569 &dev_priv->mm.gpu_write_list,
1570 gpu_write_list) {
1571 struct drm_gem_object *obj = &obj_priv->base;
1573 if ((obj->write_domain & flush_domains) ==
1574 obj->write_domain &&
1575 obj_priv->ring->ring_flag == ring->ring_flag) {
1576 uint32_t old_write_domain = obj->write_domain;
1578 obj->write_domain = 0;
1579 list_del_init(&obj_priv->gpu_write_list);
1580 i915_gem_object_move_to_active(obj, seqno, ring);
1582 /* update the fence lru list */
1583 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1584 struct drm_i915_fence_reg *reg =
1585 &dev_priv->fence_regs[obj_priv->fence_reg];
1586 list_move_tail(&reg->lru_list,
1587 &dev_priv->mm.fence_list);
1590 trace_i915_gem_object_change_domain(obj,
1591 obj->read_domains,
1592 old_write_domain);
1597 uint32_t
1598 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1599 uint32_t flush_domains, struct intel_ring_buffer *ring)
1601 drm_i915_private_t *dev_priv = dev->dev_private;
1602 struct drm_i915_file_private *i915_file_priv = NULL;
1603 struct drm_i915_gem_request *request;
1604 uint32_t seqno;
1605 int was_empty;
1607 if (file_priv != NULL)
1608 i915_file_priv = file_priv->driver_priv;
1610 request = kzalloc(sizeof(*request), GFP_KERNEL);
1611 if (request == NULL)
1612 return 0;
1614 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1616 request->seqno = seqno;
1617 request->ring = ring;
1618 request->emitted_jiffies = jiffies;
1619 was_empty = list_empty(&ring->request_list);
1620 list_add_tail(&request->list, &ring->request_list);
1622 if (i915_file_priv) {
1623 list_add_tail(&request->client_list,
1624 &i915_file_priv->mm.request_list);
1625 } else {
1626 INIT_LIST_HEAD(&request->client_list);
1629 /* Associate any objects on the flushing list matching the write
1630 * domain we're flushing with our flush.
1632 if (flush_domains != 0)
1633 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1635 if (!dev_priv->mm.suspended) {
1636 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1637 if (was_empty)
1638 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1640 return seqno;
1644 * Command execution barrier
1646 * Ensures that all commands in the ring are finished
1647 * before signalling the CPU
1649 static uint32_t
1650 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1652 uint32_t flush_domains = 0;
1654 /* The sampler always gets flushed on i965 (sigh) */
1655 if (IS_I965G(dev))
1656 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1658 ring->flush(dev, ring,
1659 I915_GEM_DOMAIN_COMMAND, flush_domains);
1660 return flush_domains;
1664 * Moves buffers associated only with the given active seqno from the active
1665 * to inactive list, potentially freeing them.
1667 static void
1668 i915_gem_retire_request(struct drm_device *dev,
1669 struct drm_i915_gem_request *request)
1671 drm_i915_private_t *dev_priv = dev->dev_private;
1673 trace_i915_gem_request_retire(dev, request->seqno);
1675 /* Move any buffers on the active list that are no longer referenced
1676 * by the ringbuffer to the flushing/inactive lists as appropriate.
1678 spin_lock(&dev_priv->mm.active_list_lock);
1679 while (!list_empty(&request->ring->active_list)) {
1680 struct drm_gem_object *obj;
1681 struct drm_i915_gem_object *obj_priv;
1683 obj_priv = list_first_entry(&request->ring->active_list,
1684 struct drm_i915_gem_object,
1685 list);
1686 obj = &obj_priv->base;
1688 /* If the seqno being retired doesn't match the oldest in the
1689 * list, then the oldest in the list must still be newer than
1690 * this seqno.
1692 if (obj_priv->last_rendering_seqno != request->seqno)
1693 goto out;
1695 #if WATCH_LRU
1696 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1697 __func__, request->seqno, obj);
1698 #endif
1700 if (obj->write_domain != 0)
1701 i915_gem_object_move_to_flushing(obj);
1702 else {
1703 /* Take a reference on the object so it won't be
1704 * freed while the spinlock is held. The list
1705 * protection for this spinlock is safe when breaking
1706 * the lock like this since the next thing we do
1707 * is just get the head of the list again.
1709 drm_gem_object_reference(obj);
1710 i915_gem_object_move_to_inactive(obj);
1711 spin_unlock(&dev_priv->mm.active_list_lock);
1712 drm_gem_object_unreference(obj);
1713 spin_lock(&dev_priv->mm.active_list_lock);
1716 out:
1717 spin_unlock(&dev_priv->mm.active_list_lock);
1721 * Returns true if seq1 is later than seq2.
1723 bool
1724 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1726 return (int32_t)(seq1 - seq2) >= 0;
1729 uint32_t
1730 i915_get_gem_seqno(struct drm_device *dev,
1731 struct intel_ring_buffer *ring)
1733 return ring->get_gem_seqno(dev, ring);
1737 * This function clears the request list as sequence numbers are passed.
1739 static void
1740 i915_gem_retire_requests_ring(struct drm_device *dev,
1741 struct intel_ring_buffer *ring)
1743 drm_i915_private_t *dev_priv = dev->dev_private;
1744 uint32_t seqno;
1746 if (!ring->status_page.page_addr
1747 || list_empty(&ring->request_list))
1748 return;
1750 seqno = i915_get_gem_seqno(dev, ring);
1752 while (!list_empty(&ring->request_list)) {
1753 struct drm_i915_gem_request *request;
1754 uint32_t retiring_seqno;
1756 request = list_first_entry(&ring->request_list,
1757 struct drm_i915_gem_request,
1758 list);
1759 retiring_seqno = request->seqno;
1761 if (i915_seqno_passed(seqno, retiring_seqno) ||
1762 atomic_read(&dev_priv->mm.wedged)) {
1763 i915_gem_retire_request(dev, request);
1765 list_del(&request->list);
1766 list_del(&request->client_list);
1767 kfree(request);
1768 } else
1769 break;
1772 if (unlikely (dev_priv->trace_irq_seqno &&
1773 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1775 ring->user_irq_put(dev, ring);
1776 dev_priv->trace_irq_seqno = 0;
1780 void
1781 i915_gem_retire_requests(struct drm_device *dev)
1783 drm_i915_private_t *dev_priv = dev->dev_private;
1785 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1786 struct drm_i915_gem_object *obj_priv, *tmp;
1788 /* We must be careful that during unbind() we do not
1789 * accidentally infinitely recurse into retire requests.
1790 * Currently:
1791 * retire -> free -> unbind -> wait -> retire_ring
1793 list_for_each_entry_safe(obj_priv, tmp,
1794 &dev_priv->mm.deferred_free_list,
1795 list)
1796 i915_gem_free_object_tail(&obj_priv->base);
1799 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1800 if (HAS_BSD(dev))
1801 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1804 void
1805 i915_gem_retire_work_handler(struct work_struct *work)
1807 drm_i915_private_t *dev_priv;
1808 struct drm_device *dev;
1810 dev_priv = container_of(work, drm_i915_private_t,
1811 mm.retire_work.work);
1812 dev = dev_priv->dev;
1814 mutex_lock(&dev->struct_mutex);
1815 i915_gem_retire_requests(dev);
1817 if (!dev_priv->mm.suspended &&
1818 (!list_empty(&dev_priv->render_ring.request_list) ||
1819 (HAS_BSD(dev) &&
1820 !list_empty(&dev_priv->bsd_ring.request_list))))
1821 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1822 mutex_unlock(&dev->struct_mutex);
1826 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1827 int interruptible, struct intel_ring_buffer *ring)
1829 drm_i915_private_t *dev_priv = dev->dev_private;
1830 u32 ier;
1831 int ret = 0;
1833 BUG_ON(seqno == 0);
1835 if (atomic_read(&dev_priv->mm.wedged))
1836 return -EIO;
1838 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1839 if (HAS_PCH_SPLIT(dev))
1840 ier = I915_READ(DEIER) | I915_READ(GTIER);
1841 else
1842 ier = I915_READ(IER);
1843 if (!ier) {
1844 DRM_ERROR("something (likely vbetool) disabled "
1845 "interrupts, re-enabling\n");
1846 i915_driver_irq_preinstall(dev);
1847 i915_driver_irq_postinstall(dev);
1850 trace_i915_gem_request_wait_begin(dev, seqno);
1852 ring->waiting_gem_seqno = seqno;
1853 ring->user_irq_get(dev, ring);
1854 if (interruptible)
1855 ret = wait_event_interruptible(ring->irq_queue,
1856 i915_seqno_passed(
1857 ring->get_gem_seqno(dev, ring), seqno)
1858 || atomic_read(&dev_priv->mm.wedged));
1859 else
1860 wait_event(ring->irq_queue,
1861 i915_seqno_passed(
1862 ring->get_gem_seqno(dev, ring), seqno)
1863 || atomic_read(&dev_priv->mm.wedged));
1865 ring->user_irq_put(dev, ring);
1866 ring->waiting_gem_seqno = 0;
1868 trace_i915_gem_request_wait_end(dev, seqno);
1870 if (atomic_read(&dev_priv->mm.wedged))
1871 ret = -EIO;
1873 if (ret && ret != -ERESTARTSYS)
1874 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1875 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1877 /* Directly dispatch request retiring. While we have the work queue
1878 * to handle this, the waiter on a request often wants an associated
1879 * buffer to have made it to the inactive list, and we would need
1880 * a separate wait queue to handle that.
1882 if (ret == 0)
1883 i915_gem_retire_requests_ring(dev, ring);
1885 return ret;
1889 * Waits for a sequence number to be signaled, and cleans up the
1890 * request and object lists appropriately for that event.
1892 static int
1893 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1894 struct intel_ring_buffer *ring)
1896 return i915_do_wait_request(dev, seqno, 1, ring);
1899 static void
1900 i915_gem_flush(struct drm_device *dev,
1901 uint32_t invalidate_domains,
1902 uint32_t flush_domains)
1904 drm_i915_private_t *dev_priv = dev->dev_private;
1905 if (flush_domains & I915_GEM_DOMAIN_CPU)
1906 drm_agp_chipset_flush(dev);
1907 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1908 invalidate_domains,
1909 flush_domains);
1911 if (HAS_BSD(dev))
1912 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1913 invalidate_domains,
1914 flush_domains);
1918 * Ensures that all rendering to the object has completed and the object is
1919 * safe to unbind from the GTT or access from the CPU.
1921 static int
1922 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1924 struct drm_device *dev = obj->dev;
1925 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1926 int ret;
1928 /* This function only exists to support waiting for existing rendering,
1929 * not for emitting required flushes.
1931 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1933 /* If there is rendering queued on the buffer being evicted, wait for
1934 * it.
1936 if (obj_priv->active) {
1937 #if WATCH_BUF
1938 DRM_INFO("%s: object %p wait for seqno %08x\n",
1939 __func__, obj, obj_priv->last_rendering_seqno);
1940 #endif
1941 ret = i915_wait_request(dev,
1942 obj_priv->last_rendering_seqno, obj_priv->ring);
1943 if (ret != 0)
1944 return ret;
1947 return 0;
1951 * Unbinds an object from the GTT aperture.
1954 i915_gem_object_unbind(struct drm_gem_object *obj)
1956 struct drm_device *dev = obj->dev;
1957 drm_i915_private_t *dev_priv = dev->dev_private;
1958 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1959 int ret = 0;
1961 #if WATCH_BUF
1962 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1963 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1964 #endif
1965 if (obj_priv->gtt_space == NULL)
1966 return 0;
1968 if (obj_priv->pin_count != 0) {
1969 DRM_ERROR("Attempting to unbind pinned buffer\n");
1970 return -EINVAL;
1973 /* blow away mappings if mapped through GTT */
1974 i915_gem_release_mmap(obj);
1976 /* Move the object to the CPU domain to ensure that
1977 * any possible CPU writes while it's not in the GTT
1978 * are flushed when we go to remap it. This will
1979 * also ensure that all pending GPU writes are finished
1980 * before we unbind.
1982 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1983 if (ret == -ERESTARTSYS)
1984 return ret;
1985 /* Continue on if we fail due to EIO, the GPU is hung so we
1986 * should be safe and we need to cleanup or else we might
1987 * cause memory corruption through use-after-free.
1990 /* release the fence reg _after_ flushing */
1991 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1992 i915_gem_clear_fence_reg(obj);
1994 if (obj_priv->agp_mem != NULL) {
1995 drm_unbind_agp(obj_priv->agp_mem);
1996 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1997 obj_priv->agp_mem = NULL;
2000 i915_gem_object_put_pages(obj);
2001 BUG_ON(obj_priv->pages_refcount);
2003 if (obj_priv->gtt_space) {
2004 atomic_dec(&dev->gtt_count);
2005 atomic_sub(obj->size, &dev->gtt_memory);
2007 drm_mm_put_block(obj_priv->gtt_space);
2008 obj_priv->gtt_space = NULL;
2011 /* Remove ourselves from the LRU list if present. */
2012 spin_lock(&dev_priv->mm.active_list_lock);
2013 if (!list_empty(&obj_priv->list))
2014 list_del_init(&obj_priv->list);
2015 spin_unlock(&dev_priv->mm.active_list_lock);
2017 if (i915_gem_object_is_purgeable(obj_priv))
2018 i915_gem_object_truncate(obj);
2020 trace_i915_gem_object_unbind(obj);
2022 return ret;
2026 i915_gpu_idle(struct drm_device *dev)
2028 drm_i915_private_t *dev_priv = dev->dev_private;
2029 bool lists_empty;
2030 uint32_t seqno1, seqno2;
2031 int ret;
2033 spin_lock(&dev_priv->mm.active_list_lock);
2034 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2035 list_empty(&dev_priv->render_ring.active_list) &&
2036 (!HAS_BSD(dev) ||
2037 list_empty(&dev_priv->bsd_ring.active_list)));
2038 spin_unlock(&dev_priv->mm.active_list_lock);
2040 if (lists_empty)
2041 return 0;
2043 /* Flush everything onto the inactive list. */
2044 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2045 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2046 &dev_priv->render_ring);
2047 if (seqno1 == 0)
2048 return -ENOMEM;
2049 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2051 if (HAS_BSD(dev)) {
2052 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2053 &dev_priv->bsd_ring);
2054 if (seqno2 == 0)
2055 return -ENOMEM;
2057 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2058 if (ret)
2059 return ret;
2063 return ret;
2067 i915_gem_object_get_pages(struct drm_gem_object *obj,
2068 gfp_t gfpmask)
2070 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2071 int page_count, i;
2072 struct address_space *mapping;
2073 struct inode *inode;
2074 struct page *page;
2076 BUG_ON(obj_priv->pages_refcount
2077 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2079 if (obj_priv->pages_refcount++ != 0)
2080 return 0;
2082 /* Get the list of pages out of our struct file. They'll be pinned
2083 * at this point until we release them.
2085 page_count = obj->size / PAGE_SIZE;
2086 BUG_ON(obj_priv->pages != NULL);
2087 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2088 if (obj_priv->pages == NULL) {
2089 obj_priv->pages_refcount--;
2090 return -ENOMEM;
2093 inode = obj->filp->f_path.dentry->d_inode;
2094 mapping = inode->i_mapping;
2095 for (i = 0; i < page_count; i++) {
2096 page = read_cache_page_gfp(mapping, i,
2097 GFP_HIGHUSER |
2098 __GFP_COLD |
2099 __GFP_RECLAIMABLE |
2100 gfpmask);
2101 if (IS_ERR(page))
2102 goto err_pages;
2104 obj_priv->pages[i] = page;
2107 if (obj_priv->tiling_mode != I915_TILING_NONE)
2108 i915_gem_object_do_bit_17_swizzle(obj);
2110 return 0;
2112 err_pages:
2113 while (i--)
2114 page_cache_release(obj_priv->pages[i]);
2116 drm_free_large(obj_priv->pages);
2117 obj_priv->pages = NULL;
2118 obj_priv->pages_refcount--;
2119 return PTR_ERR(page);
2122 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2124 struct drm_gem_object *obj = reg->obj;
2125 struct drm_device *dev = obj->dev;
2126 drm_i915_private_t *dev_priv = dev->dev_private;
2127 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2128 int regnum = obj_priv->fence_reg;
2129 uint64_t val;
2131 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2132 0xfffff000) << 32;
2133 val |= obj_priv->gtt_offset & 0xfffff000;
2134 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2135 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2137 if (obj_priv->tiling_mode == I915_TILING_Y)
2138 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2139 val |= I965_FENCE_REG_VALID;
2141 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2144 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2146 struct drm_gem_object *obj = reg->obj;
2147 struct drm_device *dev = obj->dev;
2148 drm_i915_private_t *dev_priv = dev->dev_private;
2149 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2150 int regnum = obj_priv->fence_reg;
2151 uint64_t val;
2153 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2154 0xfffff000) << 32;
2155 val |= obj_priv->gtt_offset & 0xfffff000;
2156 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2157 if (obj_priv->tiling_mode == I915_TILING_Y)
2158 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2159 val |= I965_FENCE_REG_VALID;
2161 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2164 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2166 struct drm_gem_object *obj = reg->obj;
2167 struct drm_device *dev = obj->dev;
2168 drm_i915_private_t *dev_priv = dev->dev_private;
2169 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2170 int regnum = obj_priv->fence_reg;
2171 int tile_width;
2172 uint32_t fence_reg, val;
2173 uint32_t pitch_val;
2175 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2176 (obj_priv->gtt_offset & (obj->size - 1))) {
2177 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2178 __func__, obj_priv->gtt_offset, obj->size);
2179 return;
2182 if (obj_priv->tiling_mode == I915_TILING_Y &&
2183 HAS_128_BYTE_Y_TILING(dev))
2184 tile_width = 128;
2185 else
2186 tile_width = 512;
2188 /* Note: pitch better be a power of two tile widths */
2189 pitch_val = obj_priv->stride / tile_width;
2190 pitch_val = ffs(pitch_val) - 1;
2192 if (obj_priv->tiling_mode == I915_TILING_Y &&
2193 HAS_128_BYTE_Y_TILING(dev))
2194 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2195 else
2196 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2198 val = obj_priv->gtt_offset;
2199 if (obj_priv->tiling_mode == I915_TILING_Y)
2200 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2201 val |= I915_FENCE_SIZE_BITS(obj->size);
2202 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2203 val |= I830_FENCE_REG_VALID;
2205 if (regnum < 8)
2206 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2207 else
2208 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2209 I915_WRITE(fence_reg, val);
2212 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2214 struct drm_gem_object *obj = reg->obj;
2215 struct drm_device *dev = obj->dev;
2216 drm_i915_private_t *dev_priv = dev->dev_private;
2217 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2218 int regnum = obj_priv->fence_reg;
2219 uint32_t val;
2220 uint32_t pitch_val;
2221 uint32_t fence_size_bits;
2223 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2224 (obj_priv->gtt_offset & (obj->size - 1))) {
2225 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2226 __func__, obj_priv->gtt_offset);
2227 return;
2230 pitch_val = obj_priv->stride / 128;
2231 pitch_val = ffs(pitch_val) - 1;
2232 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2234 val = obj_priv->gtt_offset;
2235 if (obj_priv->tiling_mode == I915_TILING_Y)
2236 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2237 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2238 WARN_ON(fence_size_bits & ~0x00000f00);
2239 val |= fence_size_bits;
2240 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2241 val |= I830_FENCE_REG_VALID;
2243 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2246 static int i915_find_fence_reg(struct drm_device *dev)
2248 struct drm_i915_fence_reg *reg = NULL;
2249 struct drm_i915_gem_object *obj_priv = NULL;
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 struct drm_gem_object *obj = NULL;
2252 int i, avail, ret;
2254 /* First try to find a free reg */
2255 avail = 0;
2256 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2257 reg = &dev_priv->fence_regs[i];
2258 if (!reg->obj)
2259 return i;
2261 obj_priv = to_intel_bo(reg->obj);
2262 if (!obj_priv->pin_count)
2263 avail++;
2266 if (avail == 0)
2267 return -ENOSPC;
2269 /* None available, try to steal one or wait for a user to finish */
2270 i = I915_FENCE_REG_NONE;
2271 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2272 lru_list) {
2273 obj = reg->obj;
2274 obj_priv = to_intel_bo(obj);
2276 if (obj_priv->pin_count)
2277 continue;
2279 /* found one! */
2280 i = obj_priv->fence_reg;
2281 break;
2284 BUG_ON(i == I915_FENCE_REG_NONE);
2286 /* We only have a reference on obj from the active list. put_fence_reg
2287 * might drop that one, causing a use-after-free in it. So hold a
2288 * private reference to obj like the other callers of put_fence_reg
2289 * (set_tiling ioctl) do. */
2290 drm_gem_object_reference(obj);
2291 ret = i915_gem_object_put_fence_reg(obj);
2292 drm_gem_object_unreference(obj);
2293 if (ret != 0)
2294 return ret;
2296 return i;
2300 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2301 * @obj: object to map through a fence reg
2303 * When mapping objects through the GTT, userspace wants to be able to write
2304 * to them without having to worry about swizzling if the object is tiled.
2306 * This function walks the fence regs looking for a free one for @obj,
2307 * stealing one if it can't find any.
2309 * It then sets up the reg based on the object's properties: address, pitch
2310 * and tiling format.
2313 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2315 struct drm_device *dev = obj->dev;
2316 struct drm_i915_private *dev_priv = dev->dev_private;
2317 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2318 struct drm_i915_fence_reg *reg = NULL;
2319 int ret;
2321 /* Just update our place in the LRU if our fence is getting used. */
2322 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2323 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2324 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2325 return 0;
2328 switch (obj_priv->tiling_mode) {
2329 case I915_TILING_NONE:
2330 WARN(1, "allocating a fence for non-tiled object?\n");
2331 break;
2332 case I915_TILING_X:
2333 if (!obj_priv->stride)
2334 return -EINVAL;
2335 WARN((obj_priv->stride & (512 - 1)),
2336 "object 0x%08x is X tiled but has non-512B pitch\n",
2337 obj_priv->gtt_offset);
2338 break;
2339 case I915_TILING_Y:
2340 if (!obj_priv->stride)
2341 return -EINVAL;
2342 WARN((obj_priv->stride & (128 - 1)),
2343 "object 0x%08x is Y tiled but has non-128B pitch\n",
2344 obj_priv->gtt_offset);
2345 break;
2348 ret = i915_find_fence_reg(dev);
2349 if (ret < 0)
2350 return ret;
2352 obj_priv->fence_reg = ret;
2353 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2354 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2356 reg->obj = obj;
2358 switch (INTEL_INFO(dev)->gen) {
2359 case 6:
2360 sandybridge_write_fence_reg(reg);
2361 break;
2362 case 5:
2363 case 4:
2364 i965_write_fence_reg(reg);
2365 break;
2366 case 3:
2367 i915_write_fence_reg(reg);
2368 break;
2369 case 2:
2370 i830_write_fence_reg(reg);
2371 break;
2374 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2375 obj_priv->tiling_mode);
2377 return 0;
2381 * i915_gem_clear_fence_reg - clear out fence register info
2382 * @obj: object to clear
2384 * Zeroes out the fence register itself and clears out the associated
2385 * data structures in dev_priv and obj_priv.
2387 static void
2388 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2390 struct drm_device *dev = obj->dev;
2391 drm_i915_private_t *dev_priv = dev->dev_private;
2392 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2393 struct drm_i915_fence_reg *reg =
2394 &dev_priv->fence_regs[obj_priv->fence_reg];
2395 uint32_t fence_reg;
2397 switch (INTEL_INFO(dev)->gen) {
2398 case 6:
2399 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2400 (obj_priv->fence_reg * 8), 0);
2401 break;
2402 case 5:
2403 case 4:
2404 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2405 break;
2406 case 3:
2407 if (obj_priv->fence_reg >= 8)
2408 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2409 else
2410 case 2:
2411 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2413 I915_WRITE(fence_reg, 0);
2414 break;
2417 reg->obj = NULL;
2418 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2419 list_del_init(&reg->lru_list);
2423 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2424 * to the buffer to finish, and then resets the fence register.
2425 * @obj: tiled object holding a fence register.
2427 * Zeroes out the fence register itself and clears out the associated
2428 * data structures in dev_priv and obj_priv.
2431 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2433 struct drm_device *dev = obj->dev;
2434 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2436 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2437 return 0;
2439 /* If we've changed tiling, GTT-mappings of the object
2440 * need to re-fault to ensure that the correct fence register
2441 * setup is in place.
2443 i915_gem_release_mmap(obj);
2445 /* On the i915, GPU access to tiled buffers is via a fence,
2446 * therefore we must wait for any outstanding access to complete
2447 * before clearing the fence.
2449 if (!IS_I965G(dev)) {
2450 int ret;
2452 ret = i915_gem_object_flush_gpu_write_domain(obj);
2453 if (ret != 0)
2454 return ret;
2456 ret = i915_gem_object_wait_rendering(obj);
2457 if (ret != 0)
2458 return ret;
2461 i915_gem_object_flush_gtt_write_domain(obj);
2462 i915_gem_clear_fence_reg (obj);
2464 return 0;
2468 * Finds free space in the GTT aperture and binds the object there.
2470 static int
2471 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2473 struct drm_device *dev = obj->dev;
2474 drm_i915_private_t *dev_priv = dev->dev_private;
2475 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2476 struct drm_mm_node *free_space;
2477 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2478 int ret;
2480 if (obj_priv->madv != I915_MADV_WILLNEED) {
2481 DRM_ERROR("Attempting to bind a purgeable object\n");
2482 return -EINVAL;
2485 if (alignment == 0)
2486 alignment = i915_gem_get_gtt_alignment(obj);
2487 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2488 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2489 return -EINVAL;
2492 /* If the object is bigger than the entire aperture, reject it early
2493 * before evicting everything in a vain attempt to find space.
2495 if (obj->size > dev->gtt_total) {
2496 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2497 return -E2BIG;
2500 search_free:
2501 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2502 obj->size, alignment, 0);
2503 if (free_space != NULL) {
2504 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2505 alignment);
2506 if (obj_priv->gtt_space != NULL)
2507 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2509 if (obj_priv->gtt_space == NULL) {
2510 /* If the gtt is empty and we're still having trouble
2511 * fitting our object in, we're out of memory.
2513 #if WATCH_LRU
2514 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2515 #endif
2516 ret = i915_gem_evict_something(dev, obj->size, alignment);
2517 if (ret)
2518 return ret;
2520 goto search_free;
2523 #if WATCH_BUF
2524 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2525 obj->size, obj_priv->gtt_offset);
2526 #endif
2527 ret = i915_gem_object_get_pages(obj, gfpmask);
2528 if (ret) {
2529 drm_mm_put_block(obj_priv->gtt_space);
2530 obj_priv->gtt_space = NULL;
2532 if (ret == -ENOMEM) {
2533 /* first try to clear up some space from the GTT */
2534 ret = i915_gem_evict_something(dev, obj->size,
2535 alignment);
2536 if (ret) {
2537 /* now try to shrink everyone else */
2538 if (gfpmask) {
2539 gfpmask = 0;
2540 goto search_free;
2543 return ret;
2546 goto search_free;
2549 return ret;
2552 /* Create an AGP memory structure pointing at our pages, and bind it
2553 * into the GTT.
2555 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2556 obj_priv->pages,
2557 obj->size >> PAGE_SHIFT,
2558 obj_priv->gtt_offset,
2559 obj_priv->agp_type);
2560 if (obj_priv->agp_mem == NULL) {
2561 i915_gem_object_put_pages(obj);
2562 drm_mm_put_block(obj_priv->gtt_space);
2563 obj_priv->gtt_space = NULL;
2565 ret = i915_gem_evict_something(dev, obj->size, alignment);
2566 if (ret)
2567 return ret;
2569 goto search_free;
2571 atomic_inc(&dev->gtt_count);
2572 atomic_add(obj->size, &dev->gtt_memory);
2574 /* keep track of bounds object by adding it to the inactive list */
2575 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2577 /* Assert that the object is not currently in any GPU domain. As it
2578 * wasn't in the GTT, there shouldn't be any way it could have been in
2579 * a GPU cache
2581 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2582 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2584 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2586 return 0;
2589 void
2590 i915_gem_clflush_object(struct drm_gem_object *obj)
2592 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2594 /* If we don't have a page list set up, then we're not pinned
2595 * to GPU, and we can ignore the cache flush because it'll happen
2596 * again at bind time.
2598 if (obj_priv->pages == NULL)
2599 return;
2601 trace_i915_gem_object_clflush(obj);
2603 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2606 /** Flushes any GPU write domain for the object if it's dirty. */
2607 static int
2608 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2610 struct drm_device *dev = obj->dev;
2611 uint32_t old_write_domain;
2612 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2614 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2615 return 0;
2617 /* Queue the GPU write cache flushing we need. */
2618 old_write_domain = obj->write_domain;
2619 i915_gem_flush(dev, 0, obj->write_domain);
2620 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2621 return -ENOMEM;
2623 trace_i915_gem_object_change_domain(obj,
2624 obj->read_domains,
2625 old_write_domain);
2626 return 0;
2629 /** Flushes the GTT write domain for the object if it's dirty. */
2630 static void
2631 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2633 uint32_t old_write_domain;
2635 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2636 return;
2638 /* No actual flushing is required for the GTT write domain. Writes
2639 * to it immediately go to main memory as far as we know, so there's
2640 * no chipset flush. It also doesn't land in render cache.
2642 old_write_domain = obj->write_domain;
2643 obj->write_domain = 0;
2645 trace_i915_gem_object_change_domain(obj,
2646 obj->read_domains,
2647 old_write_domain);
2650 /** Flushes the CPU write domain for the object if it's dirty. */
2651 static void
2652 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2654 struct drm_device *dev = obj->dev;
2655 uint32_t old_write_domain;
2657 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2658 return;
2660 i915_gem_clflush_object(obj);
2661 drm_agp_chipset_flush(dev);
2662 old_write_domain = obj->write_domain;
2663 obj->write_domain = 0;
2665 trace_i915_gem_object_change_domain(obj,
2666 obj->read_domains,
2667 old_write_domain);
2671 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2673 int ret = 0;
2675 switch (obj->write_domain) {
2676 case I915_GEM_DOMAIN_GTT:
2677 i915_gem_object_flush_gtt_write_domain(obj);
2678 break;
2679 case I915_GEM_DOMAIN_CPU:
2680 i915_gem_object_flush_cpu_write_domain(obj);
2681 break;
2682 default:
2683 ret = i915_gem_object_flush_gpu_write_domain(obj);
2684 break;
2687 return ret;
2691 * Moves a single object to the GTT read, and possibly write domain.
2693 * This function returns when the move is complete, including waiting on
2694 * flushes to occur.
2697 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2699 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2700 uint32_t old_write_domain, old_read_domains;
2701 int ret;
2703 /* Not valid to be called on unbound objects. */
2704 if (obj_priv->gtt_space == NULL)
2705 return -EINVAL;
2707 ret = i915_gem_object_flush_gpu_write_domain(obj);
2708 if (ret != 0)
2709 return ret;
2711 /* Wait on any GPU rendering and flushing to occur. */
2712 ret = i915_gem_object_wait_rendering(obj);
2713 if (ret != 0)
2714 return ret;
2716 old_write_domain = obj->write_domain;
2717 old_read_domains = obj->read_domains;
2719 /* If we're writing through the GTT domain, then CPU and GPU caches
2720 * will need to be invalidated at next use.
2722 if (write)
2723 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2725 i915_gem_object_flush_cpu_write_domain(obj);
2727 /* It should now be out of any other write domains, and we can update
2728 * the domain values for our changes.
2730 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2731 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2732 if (write) {
2733 obj->write_domain = I915_GEM_DOMAIN_GTT;
2734 obj_priv->dirty = 1;
2737 trace_i915_gem_object_change_domain(obj,
2738 old_read_domains,
2739 old_write_domain);
2741 return 0;
2745 * Prepare buffer for display plane. Use uninterruptible for possible flush
2746 * wait, as in modesetting process we're not supposed to be interrupted.
2749 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2751 struct drm_device *dev = obj->dev;
2752 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2753 uint32_t old_write_domain, old_read_domains;
2754 int ret;
2756 /* Not valid to be called on unbound objects. */
2757 if (obj_priv->gtt_space == NULL)
2758 return -EINVAL;
2760 ret = i915_gem_object_flush_gpu_write_domain(obj);
2761 if (ret)
2762 return ret;
2764 /* Wait on any GPU rendering and flushing to occur. */
2765 if (obj_priv->active) {
2766 #if WATCH_BUF
2767 DRM_INFO("%s: object %p wait for seqno %08x\n",
2768 __func__, obj, obj_priv->last_rendering_seqno);
2769 #endif
2770 ret = i915_do_wait_request(dev,
2771 obj_priv->last_rendering_seqno,
2773 obj_priv->ring);
2774 if (ret != 0)
2775 return ret;
2778 i915_gem_object_flush_cpu_write_domain(obj);
2780 old_write_domain = obj->write_domain;
2781 old_read_domains = obj->read_domains;
2783 /* It should now be out of any other write domains, and we can update
2784 * the domain values for our changes.
2786 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2787 obj->read_domains = I915_GEM_DOMAIN_GTT;
2788 obj->write_domain = I915_GEM_DOMAIN_GTT;
2789 obj_priv->dirty = 1;
2791 trace_i915_gem_object_change_domain(obj,
2792 old_read_domains,
2793 old_write_domain);
2795 return 0;
2799 * Moves a single object to the CPU read, and possibly write domain.
2801 * This function returns when the move is complete, including waiting on
2802 * flushes to occur.
2804 static int
2805 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2807 uint32_t old_write_domain, old_read_domains;
2808 int ret;
2810 ret = i915_gem_object_flush_gpu_write_domain(obj);
2811 if (ret)
2812 return ret;
2814 /* Wait on any GPU rendering and flushing to occur. */
2815 ret = i915_gem_object_wait_rendering(obj);
2816 if (ret != 0)
2817 return ret;
2819 i915_gem_object_flush_gtt_write_domain(obj);
2821 /* If we have a partially-valid cache of the object in the CPU,
2822 * finish invalidating it and free the per-page flags.
2824 i915_gem_object_set_to_full_cpu_read_domain(obj);
2826 old_write_domain = obj->write_domain;
2827 old_read_domains = obj->read_domains;
2829 /* Flush the CPU cache if it's still invalid. */
2830 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2831 i915_gem_clflush_object(obj);
2833 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2836 /* It should now be out of any other write domains, and we can update
2837 * the domain values for our changes.
2839 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2841 /* If we're writing through the CPU, then the GPU read domains will
2842 * need to be invalidated at next use.
2844 if (write) {
2845 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2846 obj->write_domain = I915_GEM_DOMAIN_CPU;
2849 trace_i915_gem_object_change_domain(obj,
2850 old_read_domains,
2851 old_write_domain);
2853 return 0;
2857 * Set the next domain for the specified object. This
2858 * may not actually perform the necessary flushing/invaliding though,
2859 * as that may want to be batched with other set_domain operations
2861 * This is (we hope) the only really tricky part of gem. The goal
2862 * is fairly simple -- track which caches hold bits of the object
2863 * and make sure they remain coherent. A few concrete examples may
2864 * help to explain how it works. For shorthand, we use the notation
2865 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2866 * a pair of read and write domain masks.
2868 * Case 1: the batch buffer
2870 * 1. Allocated
2871 * 2. Written by CPU
2872 * 3. Mapped to GTT
2873 * 4. Read by GPU
2874 * 5. Unmapped from GTT
2875 * 6. Freed
2877 * Let's take these a step at a time
2879 * 1. Allocated
2880 * Pages allocated from the kernel may still have
2881 * cache contents, so we set them to (CPU, CPU) always.
2882 * 2. Written by CPU (using pwrite)
2883 * The pwrite function calls set_domain (CPU, CPU) and
2884 * this function does nothing (as nothing changes)
2885 * 3. Mapped by GTT
2886 * This function asserts that the object is not
2887 * currently in any GPU-based read or write domains
2888 * 4. Read by GPU
2889 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2890 * As write_domain is zero, this function adds in the
2891 * current read domains (CPU+COMMAND, 0).
2892 * flush_domains is set to CPU.
2893 * invalidate_domains is set to COMMAND
2894 * clflush is run to get data out of the CPU caches
2895 * then i915_dev_set_domain calls i915_gem_flush to
2896 * emit an MI_FLUSH and drm_agp_chipset_flush
2897 * 5. Unmapped from GTT
2898 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2899 * flush_domains and invalidate_domains end up both zero
2900 * so no flushing/invalidating happens
2901 * 6. Freed
2902 * yay, done
2904 * Case 2: The shared render buffer
2906 * 1. Allocated
2907 * 2. Mapped to GTT
2908 * 3. Read/written by GPU
2909 * 4. set_domain to (CPU,CPU)
2910 * 5. Read/written by CPU
2911 * 6. Read/written by GPU
2913 * 1. Allocated
2914 * Same as last example, (CPU, CPU)
2915 * 2. Mapped to GTT
2916 * Nothing changes (assertions find that it is not in the GPU)
2917 * 3. Read/written by GPU
2918 * execbuffer calls set_domain (RENDER, RENDER)
2919 * flush_domains gets CPU
2920 * invalidate_domains gets GPU
2921 * clflush (obj)
2922 * MI_FLUSH and drm_agp_chipset_flush
2923 * 4. set_domain (CPU, CPU)
2924 * flush_domains gets GPU
2925 * invalidate_domains gets CPU
2926 * wait_rendering (obj) to make sure all drawing is complete.
2927 * This will include an MI_FLUSH to get the data from GPU
2928 * to memory
2929 * clflush (obj) to invalidate the CPU cache
2930 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2931 * 5. Read/written by CPU
2932 * cache lines are loaded and dirtied
2933 * 6. Read written by GPU
2934 * Same as last GPU access
2936 * Case 3: The constant buffer
2938 * 1. Allocated
2939 * 2. Written by CPU
2940 * 3. Read by GPU
2941 * 4. Updated (written) by CPU again
2942 * 5. Read by GPU
2944 * 1. Allocated
2945 * (CPU, CPU)
2946 * 2. Written by CPU
2947 * (CPU, CPU)
2948 * 3. Read by GPU
2949 * (CPU+RENDER, 0)
2950 * flush_domains = CPU
2951 * invalidate_domains = RENDER
2952 * clflush (obj)
2953 * MI_FLUSH
2954 * drm_agp_chipset_flush
2955 * 4. Updated (written) by CPU again
2956 * (CPU, CPU)
2957 * flush_domains = 0 (no previous write domain)
2958 * invalidate_domains = 0 (no new read domains)
2959 * 5. Read by GPU
2960 * (CPU+RENDER, 0)
2961 * flush_domains = CPU
2962 * invalidate_domains = RENDER
2963 * clflush (obj)
2964 * MI_FLUSH
2965 * drm_agp_chipset_flush
2967 static void
2968 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2970 struct drm_device *dev = obj->dev;
2971 drm_i915_private_t *dev_priv = dev->dev_private;
2972 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2973 uint32_t invalidate_domains = 0;
2974 uint32_t flush_domains = 0;
2975 uint32_t old_read_domains;
2977 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2978 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2980 intel_mark_busy(dev, obj);
2982 #if WATCH_BUF
2983 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2984 __func__, obj,
2985 obj->read_domains, obj->pending_read_domains,
2986 obj->write_domain, obj->pending_write_domain);
2987 #endif
2989 * If the object isn't moving to a new write domain,
2990 * let the object stay in multiple read domains
2992 if (obj->pending_write_domain == 0)
2993 obj->pending_read_domains |= obj->read_domains;
2994 else
2995 obj_priv->dirty = 1;
2998 * Flush the current write domain if
2999 * the new read domains don't match. Invalidate
3000 * any read domains which differ from the old
3001 * write domain
3003 if (obj->write_domain &&
3004 obj->write_domain != obj->pending_read_domains) {
3005 flush_domains |= obj->write_domain;
3006 invalidate_domains |=
3007 obj->pending_read_domains & ~obj->write_domain;
3010 * Invalidate any read caches which may have
3011 * stale data. That is, any new read domains.
3013 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3014 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3015 #if WATCH_BUF
3016 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3017 __func__, flush_domains, invalidate_domains);
3018 #endif
3019 i915_gem_clflush_object(obj);
3022 old_read_domains = obj->read_domains;
3024 /* The actual obj->write_domain will be updated with
3025 * pending_write_domain after we emit the accumulated flush for all
3026 * of our domain changes in execbuffers (which clears objects'
3027 * write_domains). So if we have a current write domain that we
3028 * aren't changing, set pending_write_domain to that.
3030 if (flush_domains == 0 && obj->pending_write_domain == 0)
3031 obj->pending_write_domain = obj->write_domain;
3032 obj->read_domains = obj->pending_read_domains;
3034 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3035 if (obj_priv->ring == &dev_priv->render_ring)
3036 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3037 else if (obj_priv->ring == &dev_priv->bsd_ring)
3038 dev_priv->flush_rings |= FLUSH_BSD_RING;
3041 dev->invalidate_domains |= invalidate_domains;
3042 dev->flush_domains |= flush_domains;
3043 #if WATCH_BUF
3044 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3045 __func__,
3046 obj->read_domains, obj->write_domain,
3047 dev->invalidate_domains, dev->flush_domains);
3048 #endif
3050 trace_i915_gem_object_change_domain(obj,
3051 old_read_domains,
3052 obj->write_domain);
3056 * Moves the object from a partially CPU read to a full one.
3058 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3059 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3061 static void
3062 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3064 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3066 if (!obj_priv->page_cpu_valid)
3067 return;
3069 /* If we're partially in the CPU read domain, finish moving it in.
3071 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3072 int i;
3074 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3075 if (obj_priv->page_cpu_valid[i])
3076 continue;
3077 drm_clflush_pages(obj_priv->pages + i, 1);
3081 /* Free the page_cpu_valid mappings which are now stale, whether
3082 * or not we've got I915_GEM_DOMAIN_CPU.
3084 kfree(obj_priv->page_cpu_valid);
3085 obj_priv->page_cpu_valid = NULL;
3089 * Set the CPU read domain on a range of the object.
3091 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3092 * not entirely valid. The page_cpu_valid member of the object flags which
3093 * pages have been flushed, and will be respected by
3094 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3095 * of the whole object.
3097 * This function returns when the move is complete, including waiting on
3098 * flushes to occur.
3100 static int
3101 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3102 uint64_t offset, uint64_t size)
3104 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3105 uint32_t old_read_domains;
3106 int i, ret;
3108 if (offset == 0 && size == obj->size)
3109 return i915_gem_object_set_to_cpu_domain(obj, 0);
3111 ret = i915_gem_object_flush_gpu_write_domain(obj);
3112 if (ret)
3113 return ret;
3115 /* Wait on any GPU rendering and flushing to occur. */
3116 ret = i915_gem_object_wait_rendering(obj);
3117 if (ret != 0)
3118 return ret;
3119 i915_gem_object_flush_gtt_write_domain(obj);
3121 /* If we're already fully in the CPU read domain, we're done. */
3122 if (obj_priv->page_cpu_valid == NULL &&
3123 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3124 return 0;
3126 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3127 * newly adding I915_GEM_DOMAIN_CPU
3129 if (obj_priv->page_cpu_valid == NULL) {
3130 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3131 GFP_KERNEL);
3132 if (obj_priv->page_cpu_valid == NULL)
3133 return -ENOMEM;
3134 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3135 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3137 /* Flush the cache on any pages that are still invalid from the CPU's
3138 * perspective.
3140 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3141 i++) {
3142 if (obj_priv->page_cpu_valid[i])
3143 continue;
3145 drm_clflush_pages(obj_priv->pages + i, 1);
3147 obj_priv->page_cpu_valid[i] = 1;
3150 /* It should now be out of any other write domains, and we can update
3151 * the domain values for our changes.
3153 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3155 old_read_domains = obj->read_domains;
3156 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3158 trace_i915_gem_object_change_domain(obj,
3159 old_read_domains,
3160 obj->write_domain);
3162 return 0;
3166 * Pin an object to the GTT and evaluate the relocations landing in it.
3168 static int
3169 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3170 struct drm_file *file_priv,
3171 struct drm_i915_gem_exec_object2 *entry,
3172 struct drm_i915_gem_relocation_entry *relocs)
3174 struct drm_device *dev = obj->dev;
3175 drm_i915_private_t *dev_priv = dev->dev_private;
3176 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3177 int i, ret;
3178 void __iomem *reloc_page;
3179 bool need_fence;
3181 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3182 obj_priv->tiling_mode != I915_TILING_NONE;
3184 /* Check fence reg constraints and rebind if necessary */
3185 if (need_fence &&
3186 !i915_gem_object_fence_offset_ok(obj,
3187 obj_priv->tiling_mode)) {
3188 ret = i915_gem_object_unbind(obj);
3189 if (ret)
3190 return ret;
3193 /* Choose the GTT offset for our buffer and put it there. */
3194 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3195 if (ret)
3196 return ret;
3199 * Pre-965 chips need a fence register set up in order to
3200 * properly handle blits to/from tiled surfaces.
3202 if (need_fence) {
3203 ret = i915_gem_object_get_fence_reg(obj);
3204 if (ret != 0) {
3205 i915_gem_object_unpin(obj);
3206 return ret;
3210 entry->offset = obj_priv->gtt_offset;
3212 /* Apply the relocations, using the GTT aperture to avoid cache
3213 * flushing requirements.
3215 for (i = 0; i < entry->relocation_count; i++) {
3216 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3217 struct drm_gem_object *target_obj;
3218 struct drm_i915_gem_object *target_obj_priv;
3219 uint32_t reloc_val, reloc_offset;
3220 uint32_t __iomem *reloc_entry;
3222 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3223 reloc->target_handle);
3224 if (target_obj == NULL) {
3225 i915_gem_object_unpin(obj);
3226 return -ENOENT;
3228 target_obj_priv = to_intel_bo(target_obj);
3230 #if WATCH_RELOC
3231 DRM_INFO("%s: obj %p offset %08x target %d "
3232 "read %08x write %08x gtt %08x "
3233 "presumed %08x delta %08x\n",
3234 __func__,
3235 obj,
3236 (int) reloc->offset,
3237 (int) reloc->target_handle,
3238 (int) reloc->read_domains,
3239 (int) reloc->write_domain,
3240 (int) target_obj_priv->gtt_offset,
3241 (int) reloc->presumed_offset,
3242 reloc->delta);
3243 #endif
3245 /* The target buffer should have appeared before us in the
3246 * exec_object list, so it should have a GTT space bound by now.
3248 if (target_obj_priv->gtt_space == NULL) {
3249 DRM_ERROR("No GTT space found for object %d\n",
3250 reloc->target_handle);
3251 drm_gem_object_unreference(target_obj);
3252 i915_gem_object_unpin(obj);
3253 return -EINVAL;
3256 /* Validate that the target is in a valid r/w GPU domain */
3257 if (reloc->write_domain & (reloc->write_domain - 1)) {
3258 DRM_ERROR("reloc with multiple write domains: "
3259 "obj %p target %d offset %d "
3260 "read %08x write %08x",
3261 obj, reloc->target_handle,
3262 (int) reloc->offset,
3263 reloc->read_domains,
3264 reloc->write_domain);
3265 drm_gem_object_unreference(target_obj);
3266 i915_gem_object_unpin(obj);
3267 return -EINVAL;
3269 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3270 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3271 DRM_ERROR("reloc with read/write CPU domains: "
3272 "obj %p target %d offset %d "
3273 "read %08x write %08x",
3274 obj, reloc->target_handle,
3275 (int) reloc->offset,
3276 reloc->read_domains,
3277 reloc->write_domain);
3278 drm_gem_object_unreference(target_obj);
3279 i915_gem_object_unpin(obj);
3280 return -EINVAL;
3282 if (reloc->write_domain && target_obj->pending_write_domain &&
3283 reloc->write_domain != target_obj->pending_write_domain) {
3284 DRM_ERROR("Write domain conflict: "
3285 "obj %p target %d offset %d "
3286 "new %08x old %08x\n",
3287 obj, reloc->target_handle,
3288 (int) reloc->offset,
3289 reloc->write_domain,
3290 target_obj->pending_write_domain);
3291 drm_gem_object_unreference(target_obj);
3292 i915_gem_object_unpin(obj);
3293 return -EINVAL;
3296 target_obj->pending_read_domains |= reloc->read_domains;
3297 target_obj->pending_write_domain |= reloc->write_domain;
3299 /* If the relocation already has the right value in it, no
3300 * more work needs to be done.
3302 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3303 drm_gem_object_unreference(target_obj);
3304 continue;
3307 /* Check that the relocation address is valid... */
3308 if (reloc->offset > obj->size - 4) {
3309 DRM_ERROR("Relocation beyond object bounds: "
3310 "obj %p target %d offset %d size %d.\n",
3311 obj, reloc->target_handle,
3312 (int) reloc->offset, (int) obj->size);
3313 drm_gem_object_unreference(target_obj);
3314 i915_gem_object_unpin(obj);
3315 return -EINVAL;
3317 if (reloc->offset & 3) {
3318 DRM_ERROR("Relocation not 4-byte aligned: "
3319 "obj %p target %d offset %d.\n",
3320 obj, reloc->target_handle,
3321 (int) reloc->offset);
3322 drm_gem_object_unreference(target_obj);
3323 i915_gem_object_unpin(obj);
3324 return -EINVAL;
3327 /* and points to somewhere within the target object. */
3328 if (reloc->delta >= target_obj->size) {
3329 DRM_ERROR("Relocation beyond target object bounds: "
3330 "obj %p target %d delta %d size %d.\n",
3331 obj, reloc->target_handle,
3332 (int) reloc->delta, (int) target_obj->size);
3333 drm_gem_object_unreference(target_obj);
3334 i915_gem_object_unpin(obj);
3335 return -EINVAL;
3338 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3339 if (ret != 0) {
3340 drm_gem_object_unreference(target_obj);
3341 i915_gem_object_unpin(obj);
3342 return -EINVAL;
3345 /* Map the page containing the relocation we're going to
3346 * perform.
3348 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3349 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3350 (reloc_offset &
3351 ~(PAGE_SIZE - 1)),
3352 KM_USER0);
3353 reloc_entry = (uint32_t __iomem *)(reloc_page +
3354 (reloc_offset & (PAGE_SIZE - 1)));
3355 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3357 #if WATCH_BUF
3358 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3359 obj, (unsigned int) reloc->offset,
3360 readl(reloc_entry), reloc_val);
3361 #endif
3362 writel(reloc_val, reloc_entry);
3363 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3365 /* The updated presumed offset for this entry will be
3366 * copied back out to the user.
3368 reloc->presumed_offset = target_obj_priv->gtt_offset;
3370 drm_gem_object_unreference(target_obj);
3373 #if WATCH_BUF
3374 if (0)
3375 i915_gem_dump_object(obj, 128, __func__, ~0);
3376 #endif
3377 return 0;
3380 /* Throttle our rendering by waiting until the ring has completed our requests
3381 * emitted over 20 msec ago.
3383 * Note that if we were to use the current jiffies each time around the loop,
3384 * we wouldn't escape the function with any frames outstanding if the time to
3385 * render a frame was over 20ms.
3387 * This should get us reasonable parallelism between CPU and GPU but also
3388 * relatively low latency when blocking on a particular request to finish.
3390 static int
3391 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3393 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3394 int ret = 0;
3395 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3397 mutex_lock(&dev->struct_mutex);
3398 while (!list_empty(&i915_file_priv->mm.request_list)) {
3399 struct drm_i915_gem_request *request;
3401 request = list_first_entry(&i915_file_priv->mm.request_list,
3402 struct drm_i915_gem_request,
3403 client_list);
3405 if (time_after_eq(request->emitted_jiffies, recent_enough))
3406 break;
3408 ret = i915_wait_request(dev, request->seqno, request->ring);
3409 if (ret != 0)
3410 break;
3412 mutex_unlock(&dev->struct_mutex);
3414 return ret;
3417 static int
3418 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3419 uint32_t buffer_count,
3420 struct drm_i915_gem_relocation_entry **relocs)
3422 uint32_t reloc_count = 0, reloc_index = 0, i;
3423 int ret;
3425 *relocs = NULL;
3426 for (i = 0; i < buffer_count; i++) {
3427 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3428 return -EINVAL;
3429 reloc_count += exec_list[i].relocation_count;
3432 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3433 if (*relocs == NULL) {
3434 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3435 return -ENOMEM;
3438 for (i = 0; i < buffer_count; i++) {
3439 struct drm_i915_gem_relocation_entry __user *user_relocs;
3441 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3443 ret = copy_from_user(&(*relocs)[reloc_index],
3444 user_relocs,
3445 exec_list[i].relocation_count *
3446 sizeof(**relocs));
3447 if (ret != 0) {
3448 drm_free_large(*relocs);
3449 *relocs = NULL;
3450 return -EFAULT;
3453 reloc_index += exec_list[i].relocation_count;
3456 return 0;
3459 static int
3460 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3461 uint32_t buffer_count,
3462 struct drm_i915_gem_relocation_entry *relocs)
3464 uint32_t reloc_count = 0, i;
3465 int ret = 0;
3467 if (relocs == NULL)
3468 return 0;
3470 for (i = 0; i < buffer_count; i++) {
3471 struct drm_i915_gem_relocation_entry __user *user_relocs;
3472 int unwritten;
3474 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3476 unwritten = copy_to_user(user_relocs,
3477 &relocs[reloc_count],
3478 exec_list[i].relocation_count *
3479 sizeof(*relocs));
3481 if (unwritten) {
3482 ret = -EFAULT;
3483 goto err;
3486 reloc_count += exec_list[i].relocation_count;
3489 err:
3490 drm_free_large(relocs);
3492 return ret;
3495 static int
3496 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3497 uint64_t exec_offset)
3499 uint32_t exec_start, exec_len;
3501 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3502 exec_len = (uint32_t) exec->batch_len;
3504 if ((exec_start | exec_len) & 0x7)
3505 return -EINVAL;
3507 if (!exec_start)
3508 return -EINVAL;
3510 return 0;
3513 static int
3514 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3515 struct drm_gem_object **object_list,
3516 int count)
3518 drm_i915_private_t *dev_priv = dev->dev_private;
3519 struct drm_i915_gem_object *obj_priv;
3520 DEFINE_WAIT(wait);
3521 int i, ret = 0;
3523 for (;;) {
3524 prepare_to_wait(&dev_priv->pending_flip_queue,
3525 &wait, TASK_INTERRUPTIBLE);
3526 for (i = 0; i < count; i++) {
3527 obj_priv = to_intel_bo(object_list[i]);
3528 if (atomic_read(&obj_priv->pending_flip) > 0)
3529 break;
3531 if (i == count)
3532 break;
3534 if (!signal_pending(current)) {
3535 mutex_unlock(&dev->struct_mutex);
3536 schedule();
3537 mutex_lock(&dev->struct_mutex);
3538 continue;
3540 ret = -ERESTARTSYS;
3541 break;
3543 finish_wait(&dev_priv->pending_flip_queue, &wait);
3545 return ret;
3550 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3551 struct drm_file *file_priv,
3552 struct drm_i915_gem_execbuffer2 *args,
3553 struct drm_i915_gem_exec_object2 *exec_list)
3555 drm_i915_private_t *dev_priv = dev->dev_private;
3556 struct drm_gem_object **object_list = NULL;
3557 struct drm_gem_object *batch_obj;
3558 struct drm_i915_gem_object *obj_priv;
3559 struct drm_clip_rect *cliprects = NULL;
3560 struct drm_i915_gem_relocation_entry *relocs = NULL;
3561 int ret = 0, ret2, i, pinned = 0;
3562 uint64_t exec_offset;
3563 uint32_t seqno, flush_domains, reloc_index;
3564 int pin_tries, flips;
3566 struct intel_ring_buffer *ring = NULL;
3568 #if WATCH_EXEC
3569 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3570 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3571 #endif
3572 if (args->flags & I915_EXEC_BSD) {
3573 if (!HAS_BSD(dev)) {
3574 DRM_ERROR("execbuf with wrong flag\n");
3575 return -EINVAL;
3577 ring = &dev_priv->bsd_ring;
3578 } else {
3579 ring = &dev_priv->render_ring;
3582 if (args->buffer_count < 1) {
3583 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3584 return -EINVAL;
3586 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3587 if (object_list == NULL) {
3588 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3589 args->buffer_count);
3590 ret = -ENOMEM;
3591 goto pre_mutex_err;
3594 if (args->num_cliprects != 0) {
3595 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3596 GFP_KERNEL);
3597 if (cliprects == NULL) {
3598 ret = -ENOMEM;
3599 goto pre_mutex_err;
3602 ret = copy_from_user(cliprects,
3603 (struct drm_clip_rect __user *)
3604 (uintptr_t) args->cliprects_ptr,
3605 sizeof(*cliprects) * args->num_cliprects);
3606 if (ret != 0) {
3607 DRM_ERROR("copy %d cliprects failed: %d\n",
3608 args->num_cliprects, ret);
3609 ret = -EFAULT;
3610 goto pre_mutex_err;
3614 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3615 &relocs);
3616 if (ret != 0)
3617 goto pre_mutex_err;
3619 mutex_lock(&dev->struct_mutex);
3621 i915_verify_inactive(dev, __FILE__, __LINE__);
3623 if (atomic_read(&dev_priv->mm.wedged)) {
3624 mutex_unlock(&dev->struct_mutex);
3625 ret = -EIO;
3626 goto pre_mutex_err;
3629 if (dev_priv->mm.suspended) {
3630 mutex_unlock(&dev->struct_mutex);
3631 ret = -EBUSY;
3632 goto pre_mutex_err;
3635 /* Look up object handles */
3636 flips = 0;
3637 for (i = 0; i < args->buffer_count; i++) {
3638 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3639 exec_list[i].handle);
3640 if (object_list[i] == NULL) {
3641 DRM_ERROR("Invalid object handle %d at index %d\n",
3642 exec_list[i].handle, i);
3643 /* prevent error path from reading uninitialized data */
3644 args->buffer_count = i + 1;
3645 ret = -ENOENT;
3646 goto err;
3649 obj_priv = to_intel_bo(object_list[i]);
3650 if (obj_priv->in_execbuffer) {
3651 DRM_ERROR("Object %p appears more than once in object list\n",
3652 object_list[i]);
3653 /* prevent error path from reading uninitialized data */
3654 args->buffer_count = i + 1;
3655 ret = -EINVAL;
3656 goto err;
3658 obj_priv->in_execbuffer = true;
3659 flips += atomic_read(&obj_priv->pending_flip);
3662 if (flips > 0) {
3663 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3664 args->buffer_count);
3665 if (ret)
3666 goto err;
3669 /* Pin and relocate */
3670 for (pin_tries = 0; ; pin_tries++) {
3671 ret = 0;
3672 reloc_index = 0;
3674 for (i = 0; i < args->buffer_count; i++) {
3675 object_list[i]->pending_read_domains = 0;
3676 object_list[i]->pending_write_domain = 0;
3677 ret = i915_gem_object_pin_and_relocate(object_list[i],
3678 file_priv,
3679 &exec_list[i],
3680 &relocs[reloc_index]);
3681 if (ret)
3682 break;
3683 pinned = i + 1;
3684 reloc_index += exec_list[i].relocation_count;
3686 /* success */
3687 if (ret == 0)
3688 break;
3690 /* error other than GTT full, or we've already tried again */
3691 if (ret != -ENOSPC || pin_tries >= 1) {
3692 if (ret != -ERESTARTSYS) {
3693 unsigned long long total_size = 0;
3694 int num_fences = 0;
3695 for (i = 0; i < args->buffer_count; i++) {
3696 obj_priv = to_intel_bo(object_list[i]);
3698 total_size += object_list[i]->size;
3699 num_fences +=
3700 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3701 obj_priv->tiling_mode != I915_TILING_NONE;
3703 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3704 pinned+1, args->buffer_count,
3705 total_size, num_fences,
3706 ret);
3707 DRM_ERROR("%d objects [%d pinned], "
3708 "%d object bytes [%d pinned], "
3709 "%d/%d gtt bytes\n",
3710 atomic_read(&dev->object_count),
3711 atomic_read(&dev->pin_count),
3712 atomic_read(&dev->object_memory),
3713 atomic_read(&dev->pin_memory),
3714 atomic_read(&dev->gtt_memory),
3715 dev->gtt_total);
3717 goto err;
3720 /* unpin all of our buffers */
3721 for (i = 0; i < pinned; i++)
3722 i915_gem_object_unpin(object_list[i]);
3723 pinned = 0;
3725 /* evict everyone we can from the aperture */
3726 ret = i915_gem_evict_everything(dev);
3727 if (ret && ret != -ENOSPC)
3728 goto err;
3731 /* Set the pending read domains for the batch buffer to COMMAND */
3732 batch_obj = object_list[args->buffer_count-1];
3733 if (batch_obj->pending_write_domain) {
3734 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3735 ret = -EINVAL;
3736 goto err;
3738 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3740 /* Sanity check the batch buffer, prior to moving objects */
3741 exec_offset = exec_list[args->buffer_count - 1].offset;
3742 ret = i915_gem_check_execbuffer (args, exec_offset);
3743 if (ret != 0) {
3744 DRM_ERROR("execbuf with invalid offset/length\n");
3745 goto err;
3748 i915_verify_inactive(dev, __FILE__, __LINE__);
3750 /* Zero the global flush/invalidate flags. These
3751 * will be modified as new domains are computed
3752 * for each object
3754 dev->invalidate_domains = 0;
3755 dev->flush_domains = 0;
3756 dev_priv->flush_rings = 0;
3758 for (i = 0; i < args->buffer_count; i++) {
3759 struct drm_gem_object *obj = object_list[i];
3761 /* Compute new gpu domains and update invalidate/flush */
3762 i915_gem_object_set_to_gpu_domain(obj);
3765 i915_verify_inactive(dev, __FILE__, __LINE__);
3767 if (dev->invalidate_domains | dev->flush_domains) {
3768 #if WATCH_EXEC
3769 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3770 __func__,
3771 dev->invalidate_domains,
3772 dev->flush_domains);
3773 #endif
3774 i915_gem_flush(dev,
3775 dev->invalidate_domains,
3776 dev->flush_domains);
3777 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
3778 (void)i915_add_request(dev, file_priv,
3779 dev->flush_domains,
3780 &dev_priv->render_ring);
3781 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3782 (void)i915_add_request(dev, file_priv,
3783 dev->flush_domains,
3784 &dev_priv->bsd_ring);
3787 for (i = 0; i < args->buffer_count; i++) {
3788 struct drm_gem_object *obj = object_list[i];
3789 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3790 uint32_t old_write_domain = obj->write_domain;
3792 obj->write_domain = obj->pending_write_domain;
3793 if (obj->write_domain)
3794 list_move_tail(&obj_priv->gpu_write_list,
3795 &dev_priv->mm.gpu_write_list);
3796 else
3797 list_del_init(&obj_priv->gpu_write_list);
3799 trace_i915_gem_object_change_domain(obj,
3800 obj->read_domains,
3801 old_write_domain);
3804 i915_verify_inactive(dev, __FILE__, __LINE__);
3806 #if WATCH_COHERENCY
3807 for (i = 0; i < args->buffer_count; i++) {
3808 i915_gem_object_check_coherency(object_list[i],
3809 exec_list[i].handle);
3811 #endif
3813 #if WATCH_EXEC
3814 i915_gem_dump_object(batch_obj,
3815 args->batch_len,
3816 __func__,
3817 ~0);
3818 #endif
3820 /* Exec the batchbuffer */
3821 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3822 cliprects, exec_offset);
3823 if (ret) {
3824 DRM_ERROR("dispatch failed %d\n", ret);
3825 goto err;
3829 * Ensure that the commands in the batch buffer are
3830 * finished before the interrupt fires
3832 flush_domains = i915_retire_commands(dev, ring);
3834 i915_verify_inactive(dev, __FILE__, __LINE__);
3837 * Get a seqno representing the execution of the current buffer,
3838 * which we can wait on. We would like to mitigate these interrupts,
3839 * likely by only creating seqnos occasionally (so that we have
3840 * *some* interrupts representing completion of buffers that we can
3841 * wait on when trying to clear up gtt space).
3843 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3844 BUG_ON(seqno == 0);
3845 for (i = 0; i < args->buffer_count; i++) {
3846 struct drm_gem_object *obj = object_list[i];
3847 obj_priv = to_intel_bo(obj);
3849 i915_gem_object_move_to_active(obj, seqno, ring);
3850 #if WATCH_LRU
3851 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3852 #endif
3854 #if WATCH_LRU
3855 i915_dump_lru(dev, __func__);
3856 #endif
3858 i915_verify_inactive(dev, __FILE__, __LINE__);
3860 err:
3861 for (i = 0; i < pinned; i++)
3862 i915_gem_object_unpin(object_list[i]);
3864 for (i = 0; i < args->buffer_count; i++) {
3865 if (object_list[i]) {
3866 obj_priv = to_intel_bo(object_list[i]);
3867 obj_priv->in_execbuffer = false;
3869 drm_gem_object_unreference(object_list[i]);
3872 mutex_unlock(&dev->struct_mutex);
3874 pre_mutex_err:
3875 /* Copy the updated relocations out regardless of current error
3876 * state. Failure to update the relocs would mean that the next
3877 * time userland calls execbuf, it would do so with presumed offset
3878 * state that didn't match the actual object state.
3880 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3881 relocs);
3882 if (ret2 != 0) {
3883 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3885 if (ret == 0)
3886 ret = ret2;
3889 drm_free_large(object_list);
3890 kfree(cliprects);
3892 return ret;
3896 * Legacy execbuffer just creates an exec2 list from the original exec object
3897 * list array and passes it to the real function.
3900 i915_gem_execbuffer(struct drm_device *dev, void *data,
3901 struct drm_file *file_priv)
3903 struct drm_i915_gem_execbuffer *args = data;
3904 struct drm_i915_gem_execbuffer2 exec2;
3905 struct drm_i915_gem_exec_object *exec_list = NULL;
3906 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3907 int ret, i;
3909 #if WATCH_EXEC
3910 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3911 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3912 #endif
3914 if (args->buffer_count < 1) {
3915 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3916 return -EINVAL;
3919 /* Copy in the exec list from userland */
3920 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3921 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3922 if (exec_list == NULL || exec2_list == NULL) {
3923 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3924 args->buffer_count);
3925 drm_free_large(exec_list);
3926 drm_free_large(exec2_list);
3927 return -ENOMEM;
3929 ret = copy_from_user(exec_list,
3930 (struct drm_i915_relocation_entry __user *)
3931 (uintptr_t) args->buffers_ptr,
3932 sizeof(*exec_list) * args->buffer_count);
3933 if (ret != 0) {
3934 DRM_ERROR("copy %d exec entries failed %d\n",
3935 args->buffer_count, ret);
3936 drm_free_large(exec_list);
3937 drm_free_large(exec2_list);
3938 return -EFAULT;
3941 for (i = 0; i < args->buffer_count; i++) {
3942 exec2_list[i].handle = exec_list[i].handle;
3943 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3944 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3945 exec2_list[i].alignment = exec_list[i].alignment;
3946 exec2_list[i].offset = exec_list[i].offset;
3947 if (!IS_I965G(dev))
3948 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3949 else
3950 exec2_list[i].flags = 0;
3953 exec2.buffers_ptr = args->buffers_ptr;
3954 exec2.buffer_count = args->buffer_count;
3955 exec2.batch_start_offset = args->batch_start_offset;
3956 exec2.batch_len = args->batch_len;
3957 exec2.DR1 = args->DR1;
3958 exec2.DR4 = args->DR4;
3959 exec2.num_cliprects = args->num_cliprects;
3960 exec2.cliprects_ptr = args->cliprects_ptr;
3961 exec2.flags = I915_EXEC_RENDER;
3963 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3964 if (!ret) {
3965 /* Copy the new buffer offsets back to the user's exec list. */
3966 for (i = 0; i < args->buffer_count; i++)
3967 exec_list[i].offset = exec2_list[i].offset;
3968 /* ... and back out to userspace */
3969 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3970 (uintptr_t) args->buffers_ptr,
3971 exec_list,
3972 sizeof(*exec_list) * args->buffer_count);
3973 if (ret) {
3974 ret = -EFAULT;
3975 DRM_ERROR("failed to copy %d exec entries "
3976 "back to user (%d)\n",
3977 args->buffer_count, ret);
3981 drm_free_large(exec_list);
3982 drm_free_large(exec2_list);
3983 return ret;
3987 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3988 struct drm_file *file_priv)
3990 struct drm_i915_gem_execbuffer2 *args = data;
3991 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3992 int ret;
3994 #if WATCH_EXEC
3995 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3996 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3997 #endif
3999 if (args->buffer_count < 1) {
4000 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4001 return -EINVAL;
4004 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4005 if (exec2_list == NULL) {
4006 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4007 args->buffer_count);
4008 return -ENOMEM;
4010 ret = copy_from_user(exec2_list,
4011 (struct drm_i915_relocation_entry __user *)
4012 (uintptr_t) args->buffers_ptr,
4013 sizeof(*exec2_list) * args->buffer_count);
4014 if (ret != 0) {
4015 DRM_ERROR("copy %d exec entries failed %d\n",
4016 args->buffer_count, ret);
4017 drm_free_large(exec2_list);
4018 return -EFAULT;
4021 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4022 if (!ret) {
4023 /* Copy the new buffer offsets back to the user's exec list. */
4024 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4025 (uintptr_t) args->buffers_ptr,
4026 exec2_list,
4027 sizeof(*exec2_list) * args->buffer_count);
4028 if (ret) {
4029 ret = -EFAULT;
4030 DRM_ERROR("failed to copy %d exec entries "
4031 "back to user (%d)\n",
4032 args->buffer_count, ret);
4036 drm_free_large(exec2_list);
4037 return ret;
4041 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4043 struct drm_device *dev = obj->dev;
4044 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4045 int ret;
4047 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4049 i915_verify_inactive(dev, __FILE__, __LINE__);
4051 if (obj_priv->gtt_space != NULL) {
4052 if (alignment == 0)
4053 alignment = i915_gem_get_gtt_alignment(obj);
4054 if (obj_priv->gtt_offset & (alignment - 1)) {
4055 WARN(obj_priv->pin_count,
4056 "bo is already pinned with incorrect alignment:"
4057 " offset=%x, req.alignment=%x\n",
4058 obj_priv->gtt_offset, alignment);
4059 ret = i915_gem_object_unbind(obj);
4060 if (ret)
4061 return ret;
4065 if (obj_priv->gtt_space == NULL) {
4066 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4067 if (ret)
4068 return ret;
4071 obj_priv->pin_count++;
4073 /* If the object is not active and not pending a flush,
4074 * remove it from the inactive list
4076 if (obj_priv->pin_count == 1) {
4077 atomic_inc(&dev->pin_count);
4078 atomic_add(obj->size, &dev->pin_memory);
4079 if (!obj_priv->active &&
4080 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4081 list_del_init(&obj_priv->list);
4083 i915_verify_inactive(dev, __FILE__, __LINE__);
4085 return 0;
4088 void
4089 i915_gem_object_unpin(struct drm_gem_object *obj)
4091 struct drm_device *dev = obj->dev;
4092 drm_i915_private_t *dev_priv = dev->dev_private;
4093 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4095 i915_verify_inactive(dev, __FILE__, __LINE__);
4096 obj_priv->pin_count--;
4097 BUG_ON(obj_priv->pin_count < 0);
4098 BUG_ON(obj_priv->gtt_space == NULL);
4100 /* If the object is no longer pinned, and is
4101 * neither active nor being flushed, then stick it on
4102 * the inactive list
4104 if (obj_priv->pin_count == 0) {
4105 if (!obj_priv->active &&
4106 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4107 list_move_tail(&obj_priv->list,
4108 &dev_priv->mm.inactive_list);
4109 atomic_dec(&dev->pin_count);
4110 atomic_sub(obj->size, &dev->pin_memory);
4112 i915_verify_inactive(dev, __FILE__, __LINE__);
4116 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4117 struct drm_file *file_priv)
4119 struct drm_i915_gem_pin *args = data;
4120 struct drm_gem_object *obj;
4121 struct drm_i915_gem_object *obj_priv;
4122 int ret;
4124 mutex_lock(&dev->struct_mutex);
4126 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4127 if (obj == NULL) {
4128 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4129 args->handle);
4130 mutex_unlock(&dev->struct_mutex);
4131 return -ENOENT;
4133 obj_priv = to_intel_bo(obj);
4135 if (obj_priv->madv != I915_MADV_WILLNEED) {
4136 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4137 drm_gem_object_unreference(obj);
4138 mutex_unlock(&dev->struct_mutex);
4139 return -EINVAL;
4142 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4143 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4144 args->handle);
4145 drm_gem_object_unreference(obj);
4146 mutex_unlock(&dev->struct_mutex);
4147 return -EINVAL;
4150 obj_priv->user_pin_count++;
4151 obj_priv->pin_filp = file_priv;
4152 if (obj_priv->user_pin_count == 1) {
4153 ret = i915_gem_object_pin(obj, args->alignment);
4154 if (ret != 0) {
4155 drm_gem_object_unreference(obj);
4156 mutex_unlock(&dev->struct_mutex);
4157 return ret;
4161 /* XXX - flush the CPU caches for pinned objects
4162 * as the X server doesn't manage domains yet
4164 i915_gem_object_flush_cpu_write_domain(obj);
4165 args->offset = obj_priv->gtt_offset;
4166 drm_gem_object_unreference(obj);
4167 mutex_unlock(&dev->struct_mutex);
4169 return 0;
4173 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4174 struct drm_file *file_priv)
4176 struct drm_i915_gem_pin *args = data;
4177 struct drm_gem_object *obj;
4178 struct drm_i915_gem_object *obj_priv;
4180 mutex_lock(&dev->struct_mutex);
4182 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4183 if (obj == NULL) {
4184 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4185 args->handle);
4186 mutex_unlock(&dev->struct_mutex);
4187 return -ENOENT;
4190 obj_priv = to_intel_bo(obj);
4191 if (obj_priv->pin_filp != file_priv) {
4192 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4193 args->handle);
4194 drm_gem_object_unreference(obj);
4195 mutex_unlock(&dev->struct_mutex);
4196 return -EINVAL;
4198 obj_priv->user_pin_count--;
4199 if (obj_priv->user_pin_count == 0) {
4200 obj_priv->pin_filp = NULL;
4201 i915_gem_object_unpin(obj);
4204 drm_gem_object_unreference(obj);
4205 mutex_unlock(&dev->struct_mutex);
4206 return 0;
4210 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4211 struct drm_file *file_priv)
4213 struct drm_i915_gem_busy *args = data;
4214 struct drm_gem_object *obj;
4215 struct drm_i915_gem_object *obj_priv;
4217 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4218 if (obj == NULL) {
4219 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4220 args->handle);
4221 return -ENOENT;
4224 mutex_lock(&dev->struct_mutex);
4226 /* Count all active objects as busy, even if they are currently not used
4227 * by the gpu. Users of this interface expect objects to eventually
4228 * become non-busy without any further actions, therefore emit any
4229 * necessary flushes here.
4231 obj_priv = to_intel_bo(obj);
4232 args->busy = obj_priv->active;
4233 if (args->busy) {
4234 /* Unconditionally flush objects, even when the gpu still uses this
4235 * object. Userspace calling this function indicates that it wants to
4236 * use this buffer rather sooner than later, so issuing the required
4237 * flush earlier is beneficial.
4239 if (obj->write_domain) {
4240 i915_gem_flush(dev, 0, obj->write_domain);
4241 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4244 /* Update the active list for the hardware's current position.
4245 * Otherwise this only updates on a delayed timer or when irqs
4246 * are actually unmasked, and our working set ends up being
4247 * larger than required.
4249 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4251 args->busy = obj_priv->active;
4254 drm_gem_object_unreference(obj);
4255 mutex_unlock(&dev->struct_mutex);
4256 return 0;
4260 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4261 struct drm_file *file_priv)
4263 return i915_gem_ring_throttle(dev, file_priv);
4267 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4270 struct drm_i915_gem_madvise *args = data;
4271 struct drm_gem_object *obj;
4272 struct drm_i915_gem_object *obj_priv;
4274 switch (args->madv) {
4275 case I915_MADV_DONTNEED:
4276 case I915_MADV_WILLNEED:
4277 break;
4278 default:
4279 return -EINVAL;
4282 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4283 if (obj == NULL) {
4284 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4285 args->handle);
4286 return -ENOENT;
4289 mutex_lock(&dev->struct_mutex);
4290 obj_priv = to_intel_bo(obj);
4292 if (obj_priv->pin_count) {
4293 drm_gem_object_unreference(obj);
4294 mutex_unlock(&dev->struct_mutex);
4296 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4297 return -EINVAL;
4300 if (obj_priv->madv != __I915_MADV_PURGED)
4301 obj_priv->madv = args->madv;
4303 /* if the object is no longer bound, discard its backing storage */
4304 if (i915_gem_object_is_purgeable(obj_priv) &&
4305 obj_priv->gtt_space == NULL)
4306 i915_gem_object_truncate(obj);
4308 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4310 drm_gem_object_unreference(obj);
4311 mutex_unlock(&dev->struct_mutex);
4313 return 0;
4316 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4317 size_t size)
4319 struct drm_i915_gem_object *obj;
4321 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4322 if (obj == NULL)
4323 return NULL;
4325 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4326 kfree(obj);
4327 return NULL;
4330 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4331 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4333 obj->agp_type = AGP_USER_MEMORY;
4334 obj->base.driver_private = NULL;
4335 obj->fence_reg = I915_FENCE_REG_NONE;
4336 INIT_LIST_HEAD(&obj->list);
4337 INIT_LIST_HEAD(&obj->gpu_write_list);
4338 obj->madv = I915_MADV_WILLNEED;
4340 trace_i915_gem_object_create(&obj->base);
4342 return &obj->base;
4345 int i915_gem_init_object(struct drm_gem_object *obj)
4347 BUG();
4349 return 0;
4352 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4354 struct drm_device *dev = obj->dev;
4355 drm_i915_private_t *dev_priv = dev->dev_private;
4356 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4357 int ret;
4359 ret = i915_gem_object_unbind(obj);
4360 if (ret == -ERESTARTSYS) {
4361 list_move(&obj_priv->list,
4362 &dev_priv->mm.deferred_free_list);
4363 return;
4366 if (obj_priv->mmap_offset)
4367 i915_gem_free_mmap_offset(obj);
4369 drm_gem_object_release(obj);
4371 kfree(obj_priv->page_cpu_valid);
4372 kfree(obj_priv->bit_17);
4373 kfree(obj_priv);
4376 void i915_gem_free_object(struct drm_gem_object *obj)
4378 struct drm_device *dev = obj->dev;
4379 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4381 trace_i915_gem_object_destroy(obj);
4383 while (obj_priv->pin_count > 0)
4384 i915_gem_object_unpin(obj);
4386 if (obj_priv->phys_obj)
4387 i915_gem_detach_phys_object(dev, obj);
4389 i915_gem_free_object_tail(obj);
4393 i915_gem_idle(struct drm_device *dev)
4395 drm_i915_private_t *dev_priv = dev->dev_private;
4396 int ret;
4398 mutex_lock(&dev->struct_mutex);
4400 if (dev_priv->mm.suspended ||
4401 (dev_priv->render_ring.gem_object == NULL) ||
4402 (HAS_BSD(dev) &&
4403 dev_priv->bsd_ring.gem_object == NULL)) {
4404 mutex_unlock(&dev->struct_mutex);
4405 return 0;
4408 ret = i915_gpu_idle(dev);
4409 if (ret) {
4410 mutex_unlock(&dev->struct_mutex);
4411 return ret;
4414 /* Under UMS, be paranoid and evict. */
4415 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4416 ret = i915_gem_evict_inactive(dev);
4417 if (ret) {
4418 mutex_unlock(&dev->struct_mutex);
4419 return ret;
4423 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4424 * We need to replace this with a semaphore, or something.
4425 * And not confound mm.suspended!
4427 dev_priv->mm.suspended = 1;
4428 del_timer(&dev_priv->hangcheck_timer);
4430 i915_kernel_lost_context(dev);
4431 i915_gem_cleanup_ringbuffer(dev);
4433 mutex_unlock(&dev->struct_mutex);
4435 /* Cancel the retire work handler, which should be idle now. */
4436 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4438 return 0;
4442 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4443 * over cache flushing.
4445 static int
4446 i915_gem_init_pipe_control(struct drm_device *dev)
4448 drm_i915_private_t *dev_priv = dev->dev_private;
4449 struct drm_gem_object *obj;
4450 struct drm_i915_gem_object *obj_priv;
4451 int ret;
4453 obj = i915_gem_alloc_object(dev, 4096);
4454 if (obj == NULL) {
4455 DRM_ERROR("Failed to allocate seqno page\n");
4456 ret = -ENOMEM;
4457 goto err;
4459 obj_priv = to_intel_bo(obj);
4460 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4462 ret = i915_gem_object_pin(obj, 4096);
4463 if (ret)
4464 goto err_unref;
4466 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4467 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4468 if (dev_priv->seqno_page == NULL)
4469 goto err_unpin;
4471 dev_priv->seqno_obj = obj;
4472 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4474 return 0;
4476 err_unpin:
4477 i915_gem_object_unpin(obj);
4478 err_unref:
4479 drm_gem_object_unreference(obj);
4480 err:
4481 return ret;
4485 static void
4486 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4488 drm_i915_private_t *dev_priv = dev->dev_private;
4489 struct drm_gem_object *obj;
4490 struct drm_i915_gem_object *obj_priv;
4492 obj = dev_priv->seqno_obj;
4493 obj_priv = to_intel_bo(obj);
4494 kunmap(obj_priv->pages[0]);
4495 i915_gem_object_unpin(obj);
4496 drm_gem_object_unreference(obj);
4497 dev_priv->seqno_obj = NULL;
4499 dev_priv->seqno_page = NULL;
4503 i915_gem_init_ringbuffer(struct drm_device *dev)
4505 drm_i915_private_t *dev_priv = dev->dev_private;
4506 int ret;
4508 dev_priv->render_ring = render_ring;
4510 if (!I915_NEED_GFX_HWS(dev)) {
4511 dev_priv->render_ring.status_page.page_addr
4512 = dev_priv->status_page_dmah->vaddr;
4513 memset(dev_priv->render_ring.status_page.page_addr,
4514 0, PAGE_SIZE);
4517 if (HAS_PIPE_CONTROL(dev)) {
4518 ret = i915_gem_init_pipe_control(dev);
4519 if (ret)
4520 return ret;
4523 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4524 if (ret)
4525 goto cleanup_pipe_control;
4527 if (HAS_BSD(dev)) {
4528 dev_priv->bsd_ring = bsd_ring;
4529 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4530 if (ret)
4531 goto cleanup_render_ring;
4534 dev_priv->next_seqno = 1;
4536 return 0;
4538 cleanup_render_ring:
4539 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4540 cleanup_pipe_control:
4541 if (HAS_PIPE_CONTROL(dev))
4542 i915_gem_cleanup_pipe_control(dev);
4543 return ret;
4546 void
4547 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4549 drm_i915_private_t *dev_priv = dev->dev_private;
4551 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4552 if (HAS_BSD(dev))
4553 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4554 if (HAS_PIPE_CONTROL(dev))
4555 i915_gem_cleanup_pipe_control(dev);
4559 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4560 struct drm_file *file_priv)
4562 drm_i915_private_t *dev_priv = dev->dev_private;
4563 int ret;
4565 if (drm_core_check_feature(dev, DRIVER_MODESET))
4566 return 0;
4568 if (atomic_read(&dev_priv->mm.wedged)) {
4569 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4570 atomic_set(&dev_priv->mm.wedged, 0);
4573 mutex_lock(&dev->struct_mutex);
4574 dev_priv->mm.suspended = 0;
4576 ret = i915_gem_init_ringbuffer(dev);
4577 if (ret != 0) {
4578 mutex_unlock(&dev->struct_mutex);
4579 return ret;
4582 spin_lock(&dev_priv->mm.active_list_lock);
4583 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4584 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4585 spin_unlock(&dev_priv->mm.active_list_lock);
4587 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4588 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4589 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4590 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4591 mutex_unlock(&dev->struct_mutex);
4593 ret = drm_irq_install(dev);
4594 if (ret)
4595 goto cleanup_ringbuffer;
4597 return 0;
4599 cleanup_ringbuffer:
4600 mutex_lock(&dev->struct_mutex);
4601 i915_gem_cleanup_ringbuffer(dev);
4602 dev_priv->mm.suspended = 1;
4603 mutex_unlock(&dev->struct_mutex);
4605 return ret;
4609 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4610 struct drm_file *file_priv)
4612 if (drm_core_check_feature(dev, DRIVER_MODESET))
4613 return 0;
4615 drm_irq_uninstall(dev);
4616 return i915_gem_idle(dev);
4619 void
4620 i915_gem_lastclose(struct drm_device *dev)
4622 int ret;
4624 if (drm_core_check_feature(dev, DRIVER_MODESET))
4625 return;
4627 ret = i915_gem_idle(dev);
4628 if (ret)
4629 DRM_ERROR("failed to idle hardware: %d\n", ret);
4632 void
4633 i915_gem_load(struct drm_device *dev)
4635 int i;
4636 drm_i915_private_t *dev_priv = dev->dev_private;
4638 spin_lock_init(&dev_priv->mm.active_list_lock);
4639 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4640 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4641 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4642 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4643 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4644 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4645 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4646 if (HAS_BSD(dev)) {
4647 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4648 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4650 for (i = 0; i < 16; i++)
4651 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4652 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4653 i915_gem_retire_work_handler);
4654 spin_lock(&shrink_list_lock);
4655 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4656 spin_unlock(&shrink_list_lock);
4658 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4659 if (IS_GEN3(dev)) {
4660 u32 tmp = I915_READ(MI_ARB_STATE);
4661 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4662 /* arb state is a masked write, so set bit + bit in mask */
4663 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4664 I915_WRITE(MI_ARB_STATE, tmp);
4668 /* Old X drivers will take 0-2 for front, back, depth buffers */
4669 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4670 dev_priv->fence_reg_start = 3;
4672 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4673 dev_priv->num_fence_regs = 16;
4674 else
4675 dev_priv->num_fence_regs = 8;
4677 /* Initialize fence registers to zero */
4678 if (IS_I965G(dev)) {
4679 for (i = 0; i < 16; i++)
4680 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4681 } else {
4682 for (i = 0; i < 8; i++)
4683 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4684 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4685 for (i = 0; i < 8; i++)
4686 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4688 i915_gem_detect_bit_6_swizzle(dev);
4689 init_waitqueue_head(&dev_priv->pending_flip_queue);
4693 * Create a physically contiguous memory object for this object
4694 * e.g. for cursor + overlay regs
4696 int i915_gem_init_phys_object(struct drm_device *dev,
4697 int id, int size, int align)
4699 drm_i915_private_t *dev_priv = dev->dev_private;
4700 struct drm_i915_gem_phys_object *phys_obj;
4701 int ret;
4703 if (dev_priv->mm.phys_objs[id - 1] || !size)
4704 return 0;
4706 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4707 if (!phys_obj)
4708 return -ENOMEM;
4710 phys_obj->id = id;
4712 phys_obj->handle = drm_pci_alloc(dev, size, align);
4713 if (!phys_obj->handle) {
4714 ret = -ENOMEM;
4715 goto kfree_obj;
4717 #ifdef CONFIG_X86
4718 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4719 #endif
4721 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4723 return 0;
4724 kfree_obj:
4725 kfree(phys_obj);
4726 return ret;
4729 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4731 drm_i915_private_t *dev_priv = dev->dev_private;
4732 struct drm_i915_gem_phys_object *phys_obj;
4734 if (!dev_priv->mm.phys_objs[id - 1])
4735 return;
4737 phys_obj = dev_priv->mm.phys_objs[id - 1];
4738 if (phys_obj->cur_obj) {
4739 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4742 #ifdef CONFIG_X86
4743 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4744 #endif
4745 drm_pci_free(dev, phys_obj->handle);
4746 kfree(phys_obj);
4747 dev_priv->mm.phys_objs[id - 1] = NULL;
4750 void i915_gem_free_all_phys_object(struct drm_device *dev)
4752 int i;
4754 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4755 i915_gem_free_phys_object(dev, i);
4758 void i915_gem_detach_phys_object(struct drm_device *dev,
4759 struct drm_gem_object *obj)
4761 struct drm_i915_gem_object *obj_priv;
4762 int i;
4763 int ret;
4764 int page_count;
4766 obj_priv = to_intel_bo(obj);
4767 if (!obj_priv->phys_obj)
4768 return;
4770 ret = i915_gem_object_get_pages(obj, 0);
4771 if (ret)
4772 goto out;
4774 page_count = obj->size / PAGE_SIZE;
4776 for (i = 0; i < page_count; i++) {
4777 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4778 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4780 memcpy(dst, src, PAGE_SIZE);
4781 kunmap_atomic(dst, KM_USER0);
4783 drm_clflush_pages(obj_priv->pages, page_count);
4784 drm_agp_chipset_flush(dev);
4786 i915_gem_object_put_pages(obj);
4787 out:
4788 obj_priv->phys_obj->cur_obj = NULL;
4789 obj_priv->phys_obj = NULL;
4793 i915_gem_attach_phys_object(struct drm_device *dev,
4794 struct drm_gem_object *obj,
4795 int id,
4796 int align)
4798 drm_i915_private_t *dev_priv = dev->dev_private;
4799 struct drm_i915_gem_object *obj_priv;
4800 int ret = 0;
4801 int page_count;
4802 int i;
4804 if (id > I915_MAX_PHYS_OBJECT)
4805 return -EINVAL;
4807 obj_priv = to_intel_bo(obj);
4809 if (obj_priv->phys_obj) {
4810 if (obj_priv->phys_obj->id == id)
4811 return 0;
4812 i915_gem_detach_phys_object(dev, obj);
4815 /* create a new object */
4816 if (!dev_priv->mm.phys_objs[id - 1]) {
4817 ret = i915_gem_init_phys_object(dev, id,
4818 obj->size, align);
4819 if (ret) {
4820 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4821 goto out;
4825 /* bind to the object */
4826 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4827 obj_priv->phys_obj->cur_obj = obj;
4829 ret = i915_gem_object_get_pages(obj, 0);
4830 if (ret) {
4831 DRM_ERROR("failed to get page list\n");
4832 goto out;
4835 page_count = obj->size / PAGE_SIZE;
4837 for (i = 0; i < page_count; i++) {
4838 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4839 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4841 memcpy(dst, src, PAGE_SIZE);
4842 kunmap_atomic(src, KM_USER0);
4845 i915_gem_object_put_pages(obj);
4847 return 0;
4848 out:
4849 return ret;
4852 static int
4853 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4854 struct drm_i915_gem_pwrite *args,
4855 struct drm_file *file_priv)
4857 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4858 void *obj_addr;
4859 int ret;
4860 char __user *user_data;
4862 user_data = (char __user *) (uintptr_t) args->data_ptr;
4863 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4865 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4866 ret = copy_from_user(obj_addr, user_data, args->size);
4867 if (ret)
4868 return -EFAULT;
4870 drm_agp_chipset_flush(dev);
4871 return 0;
4874 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4876 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4878 /* Clean up our request list when the client is going away, so that
4879 * later retire_requests won't dereference our soon-to-be-gone
4880 * file_priv.
4882 mutex_lock(&dev->struct_mutex);
4883 while (!list_empty(&i915_file_priv->mm.request_list))
4884 list_del_init(i915_file_priv->mm.request_list.next);
4885 mutex_unlock(&dev->struct_mutex);
4888 static int
4889 i915_gpu_is_active(struct drm_device *dev)
4891 drm_i915_private_t *dev_priv = dev->dev_private;
4892 int lists_empty;
4894 spin_lock(&dev_priv->mm.active_list_lock);
4895 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4896 list_empty(&dev_priv->render_ring.active_list);
4897 if (HAS_BSD(dev))
4898 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4899 spin_unlock(&dev_priv->mm.active_list_lock);
4901 return !lists_empty;
4904 static int
4905 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4907 drm_i915_private_t *dev_priv, *next_dev;
4908 struct drm_i915_gem_object *obj_priv, *next_obj;
4909 int cnt = 0;
4910 int would_deadlock = 1;
4912 /* "fast-path" to count number of available objects */
4913 if (nr_to_scan == 0) {
4914 spin_lock(&shrink_list_lock);
4915 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4916 struct drm_device *dev = dev_priv->dev;
4918 if (mutex_trylock(&dev->struct_mutex)) {
4919 list_for_each_entry(obj_priv,
4920 &dev_priv->mm.inactive_list,
4921 list)
4922 cnt++;
4923 mutex_unlock(&dev->struct_mutex);
4926 spin_unlock(&shrink_list_lock);
4928 return (cnt / 100) * sysctl_vfs_cache_pressure;
4931 spin_lock(&shrink_list_lock);
4933 rescan:
4934 /* first scan for clean buffers */
4935 list_for_each_entry_safe(dev_priv, next_dev,
4936 &shrink_list, mm.shrink_list) {
4937 struct drm_device *dev = dev_priv->dev;
4939 if (! mutex_trylock(&dev->struct_mutex))
4940 continue;
4942 spin_unlock(&shrink_list_lock);
4943 i915_gem_retire_requests(dev);
4945 list_for_each_entry_safe(obj_priv, next_obj,
4946 &dev_priv->mm.inactive_list,
4947 list) {
4948 if (i915_gem_object_is_purgeable(obj_priv)) {
4949 i915_gem_object_unbind(&obj_priv->base);
4950 if (--nr_to_scan <= 0)
4951 break;
4955 spin_lock(&shrink_list_lock);
4956 mutex_unlock(&dev->struct_mutex);
4958 would_deadlock = 0;
4960 if (nr_to_scan <= 0)
4961 break;
4964 /* second pass, evict/count anything still on the inactive list */
4965 list_for_each_entry_safe(dev_priv, next_dev,
4966 &shrink_list, mm.shrink_list) {
4967 struct drm_device *dev = dev_priv->dev;
4969 if (! mutex_trylock(&dev->struct_mutex))
4970 continue;
4972 spin_unlock(&shrink_list_lock);
4974 list_for_each_entry_safe(obj_priv, next_obj,
4975 &dev_priv->mm.inactive_list,
4976 list) {
4977 if (nr_to_scan > 0) {
4978 i915_gem_object_unbind(&obj_priv->base);
4979 nr_to_scan--;
4980 } else
4981 cnt++;
4984 spin_lock(&shrink_list_lock);
4985 mutex_unlock(&dev->struct_mutex);
4987 would_deadlock = 0;
4990 if (nr_to_scan) {
4991 int active = 0;
4994 * We are desperate for pages, so as a last resort, wait
4995 * for the GPU to finish and discard whatever we can.
4996 * This has a dramatic impact to reduce the number of
4997 * OOM-killer events whilst running the GPU aggressively.
4999 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5000 struct drm_device *dev = dev_priv->dev;
5002 if (!mutex_trylock(&dev->struct_mutex))
5003 continue;
5005 spin_unlock(&shrink_list_lock);
5007 if (i915_gpu_is_active(dev)) {
5008 i915_gpu_idle(dev);
5009 active++;
5012 spin_lock(&shrink_list_lock);
5013 mutex_unlock(&dev->struct_mutex);
5016 if (active)
5017 goto rescan;
5020 spin_unlock(&shrink_list_lock);
5022 if (would_deadlock)
5023 return -1;
5024 else if (cnt > 0)
5025 return (cnt / 100) * sysctl_vfs_cache_pressure;
5026 else
5027 return 0;
5030 static struct shrinker shrinker = {
5031 .shrink = i915_gem_shrink,
5032 .seeks = DEFAULT_SEEKS,
5035 __init void
5036 i915_gem_shrinker_init(void)
5038 register_shrinker(&shrinker);
5041 __exit void
5042 i915_gem_shrinker_exit(void)
5044 unregister_shrinker(&shrinker);