memstick: init sysfs attributes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blob2357b19b2451eb5f4c8017dfee853bb2037ed636
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/sysfs.h>
20 #include <linux/dcache.h>
21 #include <linux/percpu.h>
22 #include <linux/ptrace.h>
23 #include <linux/vmstat.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hardirq.h>
26 #include <linux/rculist.h>
27 #include <linux/uaccess.h>
28 #include <linux/syscalls.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/perf_event.h>
32 #include <linux/ftrace_event.h>
33 #include <linux/hw_breakpoint.h>
35 #include <asm/irq_regs.h>
38 * Each CPU has a list of per CPU events:
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42 int perf_max_events __read_mostly = 1;
43 static int perf_reserved_percpu __read_mostly;
44 static int perf_overcommit __read_mostly = 1;
46 static atomic_t nr_events __read_mostly;
47 static atomic_t nr_mmap_events __read_mostly;
48 static atomic_t nr_comm_events __read_mostly;
49 static atomic_t nr_task_events __read_mostly;
52 * perf event paranoia level:
53 * -1 - not paranoid at all
54 * 0 - disallow raw tracepoint access for unpriv
55 * 1 - disallow cpu events for unpriv
56 * 2 - disallow kernel profiling for unpriv
58 int sysctl_perf_event_paranoid __read_mostly = 1;
60 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
63 * max perf event sample rate
65 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67 static atomic64_t perf_event_id;
70 * Lock for (sysadmin-configurable) event reservations:
72 static DEFINE_SPINLOCK(perf_resource_lock);
75 * Architecture provided APIs - weak aliases:
77 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 return NULL;
82 void __weak hw_perf_disable(void) { barrier(); }
83 void __weak hw_perf_enable(void) { barrier(); }
85 int __weak
86 hw_perf_group_sched_in(struct perf_event *group_leader,
87 struct perf_cpu_context *cpuctx,
88 struct perf_event_context *ctx)
90 return 0;
93 void __weak perf_event_print_debug(void) { }
95 static DEFINE_PER_CPU(int, perf_disable_count);
97 void perf_disable(void)
99 if (!__get_cpu_var(perf_disable_count)++)
100 hw_perf_disable();
103 void perf_enable(void)
105 if (!--__get_cpu_var(perf_disable_count))
106 hw_perf_enable();
109 static void get_ctx(struct perf_event_context *ctx)
111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
114 static void free_ctx(struct rcu_head *head)
116 struct perf_event_context *ctx;
118 ctx = container_of(head, struct perf_event_context, rcu_head);
119 kfree(ctx);
122 static void put_ctx(struct perf_event_context *ctx)
124 if (atomic_dec_and_test(&ctx->refcount)) {
125 if (ctx->parent_ctx)
126 put_ctx(ctx->parent_ctx);
127 if (ctx->task)
128 put_task_struct(ctx->task);
129 call_rcu(&ctx->rcu_head, free_ctx);
133 static void unclone_ctx(struct perf_event_context *ctx)
135 if (ctx->parent_ctx) {
136 put_ctx(ctx->parent_ctx);
137 ctx->parent_ctx = NULL;
142 * If we inherit events we want to return the parent event id
143 * to userspace.
145 static u64 primary_event_id(struct perf_event *event)
147 u64 id = event->id;
149 if (event->parent)
150 id = event->parent->id;
152 return id;
156 * Get the perf_event_context for a task and lock it.
157 * This has to cope with with the fact that until it is locked,
158 * the context could get moved to another task.
160 static struct perf_event_context *
161 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163 struct perf_event_context *ctx;
165 rcu_read_lock();
166 retry:
167 ctx = rcu_dereference(task->perf_event_ctxp);
168 if (ctx) {
170 * If this context is a clone of another, it might
171 * get swapped for another underneath us by
172 * perf_event_task_sched_out, though the
173 * rcu_read_lock() protects us from any context
174 * getting freed. Lock the context and check if it
175 * got swapped before we could get the lock, and retry
176 * if so. If we locked the right context, then it
177 * can't get swapped on us any more.
179 raw_spin_lock_irqsave(&ctx->lock, *flags);
180 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 goto retry;
185 if (!atomic_inc_not_zero(&ctx->refcount)) {
186 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
187 ctx = NULL;
190 rcu_read_unlock();
191 return ctx;
195 * Get the context for a task and increment its pin_count so it
196 * can't get swapped to another task. This also increments its
197 * reference count so that the context can't get freed.
199 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201 struct perf_event_context *ctx;
202 unsigned long flags;
204 ctx = perf_lock_task_context(task, &flags);
205 if (ctx) {
206 ++ctx->pin_count;
207 raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 return ctx;
212 static void perf_unpin_context(struct perf_event_context *ctx)
214 unsigned long flags;
216 raw_spin_lock_irqsave(&ctx->lock, flags);
217 --ctx->pin_count;
218 raw_spin_unlock_irqrestore(&ctx->lock, flags);
219 put_ctx(ctx);
222 static inline u64 perf_clock(void)
224 return cpu_clock(raw_smp_processor_id());
228 * Update the record of the current time in a context.
230 static void update_context_time(struct perf_event_context *ctx)
232 u64 now = perf_clock();
234 ctx->time += now - ctx->timestamp;
235 ctx->timestamp = now;
239 * Update the total_time_enabled and total_time_running fields for a event.
241 static void update_event_times(struct perf_event *event)
243 struct perf_event_context *ctx = event->ctx;
244 u64 run_end;
246 if (event->state < PERF_EVENT_STATE_INACTIVE ||
247 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248 return;
250 if (ctx->is_active)
251 run_end = ctx->time;
252 else
253 run_end = event->tstamp_stopped;
255 event->total_time_enabled = run_end - event->tstamp_enabled;
257 if (event->state == PERF_EVENT_STATE_INACTIVE)
258 run_end = event->tstamp_stopped;
259 else
260 run_end = ctx->time;
262 event->total_time_running = run_end - event->tstamp_running;
266 * Update total_time_enabled and total_time_running for all events in a group.
268 static void update_group_times(struct perf_event *leader)
270 struct perf_event *event;
272 update_event_times(leader);
273 list_for_each_entry(event, &leader->sibling_list, group_entry)
274 update_event_times(event);
277 static struct list_head *
278 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
280 if (event->attr.pinned)
281 return &ctx->pinned_groups;
282 else
283 return &ctx->flexible_groups;
287 * Add a event from the lists for its context.
288 * Must be called with ctx->mutex and ctx->lock held.
290 static void
291 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
293 struct perf_event *group_leader = event->group_leader;
296 * Depending on whether it is a standalone or sibling event,
297 * add it straight to the context's event list, or to the group
298 * leader's sibling list:
300 if (group_leader == event) {
301 struct list_head *list;
303 if (is_software_event(event))
304 event->group_flags |= PERF_GROUP_SOFTWARE;
306 list = ctx_group_list(event, ctx);
307 list_add_tail(&event->group_entry, list);
308 } else {
309 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
310 !is_software_event(event))
311 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
313 list_add_tail(&event->group_entry, &group_leader->sibling_list);
314 group_leader->nr_siblings++;
317 list_add_rcu(&event->event_entry, &ctx->event_list);
318 ctx->nr_events++;
319 if (event->attr.inherit_stat)
320 ctx->nr_stat++;
324 * Remove a event from the lists for its context.
325 * Must be called with ctx->mutex and ctx->lock held.
327 static void
328 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
330 if (list_empty(&event->group_entry))
331 return;
332 ctx->nr_events--;
333 if (event->attr.inherit_stat)
334 ctx->nr_stat--;
336 list_del_init(&event->group_entry);
337 list_del_rcu(&event->event_entry);
339 if (event->group_leader != event)
340 event->group_leader->nr_siblings--;
342 update_group_times(event);
345 * If event was in error state, then keep it
346 * that way, otherwise bogus counts will be
347 * returned on read(). The only way to get out
348 * of error state is by explicit re-enabling
349 * of the event
351 if (event->state > PERF_EVENT_STATE_OFF)
352 event->state = PERF_EVENT_STATE_OFF;
355 static void
356 perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
358 struct perf_event *sibling, *tmp;
361 * If this was a group event with sibling events then
362 * upgrade the siblings to singleton events by adding them
363 * to the context list directly:
365 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
366 struct list_head *list;
368 list = ctx_group_list(event, ctx);
369 list_move_tail(&sibling->group_entry, list);
370 sibling->group_leader = sibling;
372 /* Inherit group flags from the previous leader */
373 sibling->group_flags = event->group_flags;
377 static void
378 event_sched_out(struct perf_event *event,
379 struct perf_cpu_context *cpuctx,
380 struct perf_event_context *ctx)
382 if (event->state != PERF_EVENT_STATE_ACTIVE)
383 return;
385 event->state = PERF_EVENT_STATE_INACTIVE;
386 if (event->pending_disable) {
387 event->pending_disable = 0;
388 event->state = PERF_EVENT_STATE_OFF;
390 event->tstamp_stopped = ctx->time;
391 event->pmu->disable(event);
392 event->oncpu = -1;
394 if (!is_software_event(event))
395 cpuctx->active_oncpu--;
396 ctx->nr_active--;
397 if (event->attr.exclusive || !cpuctx->active_oncpu)
398 cpuctx->exclusive = 0;
401 static void
402 group_sched_out(struct perf_event *group_event,
403 struct perf_cpu_context *cpuctx,
404 struct perf_event_context *ctx)
406 struct perf_event *event;
408 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
409 return;
411 event_sched_out(group_event, cpuctx, ctx);
414 * Schedule out siblings (if any):
416 list_for_each_entry(event, &group_event->sibling_list, group_entry)
417 event_sched_out(event, cpuctx, ctx);
419 if (group_event->attr.exclusive)
420 cpuctx->exclusive = 0;
424 * Cross CPU call to remove a performance event
426 * We disable the event on the hardware level first. After that we
427 * remove it from the context list.
429 static void __perf_event_remove_from_context(void *info)
431 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
432 struct perf_event *event = info;
433 struct perf_event_context *ctx = event->ctx;
436 * If this is a task context, we need to check whether it is
437 * the current task context of this cpu. If not it has been
438 * scheduled out before the smp call arrived.
440 if (ctx->task && cpuctx->task_ctx != ctx)
441 return;
443 raw_spin_lock(&ctx->lock);
445 * Protect the list operation against NMI by disabling the
446 * events on a global level.
448 perf_disable();
450 event_sched_out(event, cpuctx, ctx);
452 list_del_event(event, ctx);
454 if (!ctx->task) {
456 * Allow more per task events with respect to the
457 * reservation:
459 cpuctx->max_pertask =
460 min(perf_max_events - ctx->nr_events,
461 perf_max_events - perf_reserved_percpu);
464 perf_enable();
465 raw_spin_unlock(&ctx->lock);
470 * Remove the event from a task's (or a CPU's) list of events.
472 * Must be called with ctx->mutex held.
474 * CPU events are removed with a smp call. For task events we only
475 * call when the task is on a CPU.
477 * If event->ctx is a cloned context, callers must make sure that
478 * every task struct that event->ctx->task could possibly point to
479 * remains valid. This is OK when called from perf_release since
480 * that only calls us on the top-level context, which can't be a clone.
481 * When called from perf_event_exit_task, it's OK because the
482 * context has been detached from its task.
484 static void perf_event_remove_from_context(struct perf_event *event)
486 struct perf_event_context *ctx = event->ctx;
487 struct task_struct *task = ctx->task;
489 if (!task) {
491 * Per cpu events are removed via an smp call and
492 * the removal is always successful.
494 smp_call_function_single(event->cpu,
495 __perf_event_remove_from_context,
496 event, 1);
497 return;
500 retry:
501 task_oncpu_function_call(task, __perf_event_remove_from_context,
502 event);
504 raw_spin_lock_irq(&ctx->lock);
506 * If the context is active we need to retry the smp call.
508 if (ctx->nr_active && !list_empty(&event->group_entry)) {
509 raw_spin_unlock_irq(&ctx->lock);
510 goto retry;
514 * The lock prevents that this context is scheduled in so we
515 * can remove the event safely, if the call above did not
516 * succeed.
518 if (!list_empty(&event->group_entry))
519 list_del_event(event, ctx);
520 raw_spin_unlock_irq(&ctx->lock);
524 * Cross CPU call to disable a performance event
526 static void __perf_event_disable(void *info)
528 struct perf_event *event = info;
529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
530 struct perf_event_context *ctx = event->ctx;
533 * If this is a per-task event, need to check whether this
534 * event's task is the current task on this cpu.
536 if (ctx->task && cpuctx->task_ctx != ctx)
537 return;
539 raw_spin_lock(&ctx->lock);
542 * If the event is on, turn it off.
543 * If it is in error state, leave it in error state.
545 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
546 update_context_time(ctx);
547 update_group_times(event);
548 if (event == event->group_leader)
549 group_sched_out(event, cpuctx, ctx);
550 else
551 event_sched_out(event, cpuctx, ctx);
552 event->state = PERF_EVENT_STATE_OFF;
555 raw_spin_unlock(&ctx->lock);
559 * Disable a event.
561 * If event->ctx is a cloned context, callers must make sure that
562 * every task struct that event->ctx->task could possibly point to
563 * remains valid. This condition is satisifed when called through
564 * perf_event_for_each_child or perf_event_for_each because they
565 * hold the top-level event's child_mutex, so any descendant that
566 * goes to exit will block in sync_child_event.
567 * When called from perf_pending_event it's OK because event->ctx
568 * is the current context on this CPU and preemption is disabled,
569 * hence we can't get into perf_event_task_sched_out for this context.
571 void perf_event_disable(struct perf_event *event)
573 struct perf_event_context *ctx = event->ctx;
574 struct task_struct *task = ctx->task;
576 if (!task) {
578 * Disable the event on the cpu that it's on
580 smp_call_function_single(event->cpu, __perf_event_disable,
581 event, 1);
582 return;
585 retry:
586 task_oncpu_function_call(task, __perf_event_disable, event);
588 raw_spin_lock_irq(&ctx->lock);
590 * If the event is still active, we need to retry the cross-call.
592 if (event->state == PERF_EVENT_STATE_ACTIVE) {
593 raw_spin_unlock_irq(&ctx->lock);
594 goto retry;
598 * Since we have the lock this context can't be scheduled
599 * in, so we can change the state safely.
601 if (event->state == PERF_EVENT_STATE_INACTIVE) {
602 update_group_times(event);
603 event->state = PERF_EVENT_STATE_OFF;
606 raw_spin_unlock_irq(&ctx->lock);
609 static int
610 event_sched_in(struct perf_event *event,
611 struct perf_cpu_context *cpuctx,
612 struct perf_event_context *ctx)
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = smp_processor_id();
620 * The new state must be visible before we turn it on in the hardware:
622 smp_wmb();
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
639 return 0;
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx)
647 struct perf_event *event, *partial_group;
648 int ret;
650 if (group_event->state == PERF_EVENT_STATE_OFF)
651 return 0;
653 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
654 if (ret)
655 return ret < 0 ? ret : 0;
657 if (event_sched_in(group_event, cpuctx, ctx))
658 return -EAGAIN;
661 * Schedule in siblings as one group (if any):
663 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
664 if (event_sched_in(event, cpuctx, ctx)) {
665 partial_group = event;
666 goto group_error;
670 return 0;
672 group_error:
674 * Groups can be scheduled in as one unit only, so undo any
675 * partial group before returning:
677 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
678 if (event == partial_group)
679 break;
680 event_sched_out(event, cpuctx, ctx);
682 event_sched_out(group_event, cpuctx, ctx);
684 return -EAGAIN;
688 * Work out whether we can put this event group on the CPU now.
690 static int group_can_go_on(struct perf_event *event,
691 struct perf_cpu_context *cpuctx,
692 int can_add_hw)
695 * Groups consisting entirely of software events can always go on.
697 if (event->group_flags & PERF_GROUP_SOFTWARE)
698 return 1;
700 * If an exclusive group is already on, no other hardware
701 * events can go on.
703 if (cpuctx->exclusive)
704 return 0;
706 * If this group is exclusive and there are already
707 * events on the CPU, it can't go on.
709 if (event->attr.exclusive && cpuctx->active_oncpu)
710 return 0;
712 * Otherwise, try to add it if all previous groups were able
713 * to go on.
715 return can_add_hw;
718 static void add_event_to_ctx(struct perf_event *event,
719 struct perf_event_context *ctx)
721 list_add_event(event, ctx);
722 event->tstamp_enabled = ctx->time;
723 event->tstamp_running = ctx->time;
724 event->tstamp_stopped = ctx->time;
728 * Cross CPU call to install and enable a performance event
730 * Must be called with ctx->mutex held
732 static void __perf_install_in_context(void *info)
734 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735 struct perf_event *event = info;
736 struct perf_event_context *ctx = event->ctx;
737 struct perf_event *leader = event->group_leader;
738 int err;
741 * If this is a task context, we need to check whether it is
742 * the current task context of this cpu. If not it has been
743 * scheduled out before the smp call arrived.
744 * Or possibly this is the right context but it isn't
745 * on this cpu because it had no events.
747 if (ctx->task && cpuctx->task_ctx != ctx) {
748 if (cpuctx->task_ctx || ctx->task != current)
749 return;
750 cpuctx->task_ctx = ctx;
753 raw_spin_lock(&ctx->lock);
754 ctx->is_active = 1;
755 update_context_time(ctx);
758 * Protect the list operation against NMI by disabling the
759 * events on a global level. NOP for non NMI based events.
761 perf_disable();
763 add_event_to_ctx(event, ctx);
765 if (event->cpu != -1 && event->cpu != smp_processor_id())
766 goto unlock;
769 * Don't put the event on if it is disabled or if
770 * it is in a group and the group isn't on.
772 if (event->state != PERF_EVENT_STATE_INACTIVE ||
773 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
774 goto unlock;
777 * An exclusive event can't go on if there are already active
778 * hardware events, and no hardware event can go on if there
779 * is already an exclusive event on.
781 if (!group_can_go_on(event, cpuctx, 1))
782 err = -EEXIST;
783 else
784 err = event_sched_in(event, cpuctx, ctx);
786 if (err) {
788 * This event couldn't go on. If it is in a group
789 * then we have to pull the whole group off.
790 * If the event group is pinned then put it in error state.
792 if (leader != event)
793 group_sched_out(leader, cpuctx, ctx);
794 if (leader->attr.pinned) {
795 update_group_times(leader);
796 leader->state = PERF_EVENT_STATE_ERROR;
800 if (!err && !ctx->task && cpuctx->max_pertask)
801 cpuctx->max_pertask--;
803 unlock:
804 perf_enable();
806 raw_spin_unlock(&ctx->lock);
810 * Attach a performance event to a context
812 * First we add the event to the list with the hardware enable bit
813 * in event->hw_config cleared.
815 * If the event is attached to a task which is on a CPU we use a smp
816 * call to enable it in the task context. The task might have been
817 * scheduled away, but we check this in the smp call again.
819 * Must be called with ctx->mutex held.
821 static void
822 perf_install_in_context(struct perf_event_context *ctx,
823 struct perf_event *event,
824 int cpu)
826 struct task_struct *task = ctx->task;
828 if (!task) {
830 * Per cpu events are installed via an smp call and
831 * the install is always successful.
833 smp_call_function_single(cpu, __perf_install_in_context,
834 event, 1);
835 return;
838 retry:
839 task_oncpu_function_call(task, __perf_install_in_context,
840 event);
842 raw_spin_lock_irq(&ctx->lock);
844 * we need to retry the smp call.
846 if (ctx->is_active && list_empty(&event->group_entry)) {
847 raw_spin_unlock_irq(&ctx->lock);
848 goto retry;
852 * The lock prevents that this context is scheduled in so we
853 * can add the event safely, if it the call above did not
854 * succeed.
856 if (list_empty(&event->group_entry))
857 add_event_to_ctx(event, ctx);
858 raw_spin_unlock_irq(&ctx->lock);
862 * Put a event into inactive state and update time fields.
863 * Enabling the leader of a group effectively enables all
864 * the group members that aren't explicitly disabled, so we
865 * have to update their ->tstamp_enabled also.
866 * Note: this works for group members as well as group leaders
867 * since the non-leader members' sibling_lists will be empty.
869 static void __perf_event_mark_enabled(struct perf_event *event,
870 struct perf_event_context *ctx)
872 struct perf_event *sub;
874 event->state = PERF_EVENT_STATE_INACTIVE;
875 event->tstamp_enabled = ctx->time - event->total_time_enabled;
876 list_for_each_entry(sub, &event->sibling_list, group_entry)
877 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
878 sub->tstamp_enabled =
879 ctx->time - sub->total_time_enabled;
883 * Cross CPU call to enable a performance event
885 static void __perf_event_enable(void *info)
887 struct perf_event *event = info;
888 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
889 struct perf_event_context *ctx = event->ctx;
890 struct perf_event *leader = event->group_leader;
891 int err;
894 * If this is a per-task event, need to check whether this
895 * event's task is the current task on this cpu.
897 if (ctx->task && cpuctx->task_ctx != ctx) {
898 if (cpuctx->task_ctx || ctx->task != current)
899 return;
900 cpuctx->task_ctx = ctx;
903 raw_spin_lock(&ctx->lock);
904 ctx->is_active = 1;
905 update_context_time(ctx);
907 if (event->state >= PERF_EVENT_STATE_INACTIVE)
908 goto unlock;
909 __perf_event_mark_enabled(event, ctx);
911 if (event->cpu != -1 && event->cpu != smp_processor_id())
912 goto unlock;
915 * If the event is in a group and isn't the group leader,
916 * then don't put it on unless the group is on.
918 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
919 goto unlock;
921 if (!group_can_go_on(event, cpuctx, 1)) {
922 err = -EEXIST;
923 } else {
924 perf_disable();
925 if (event == leader)
926 err = group_sched_in(event, cpuctx, ctx);
927 else
928 err = event_sched_in(event, cpuctx, ctx);
929 perf_enable();
932 if (err) {
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
945 unlock:
946 raw_spin_unlock(&ctx->lock);
950 * Enable a event.
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
958 void perf_event_enable(struct perf_event *event)
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
963 if (!task) {
965 * Enable the event on the cpu that it's on
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
972 raw_spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
986 retry:
987 raw_spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
990 raw_spin_lock_irq(&ctx->lock);
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1006 out:
1007 raw_spin_unlock_irq(&ctx->lock);
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1013 * not supported on inherited events
1015 if (event->attr.inherit)
1016 return -EINVAL;
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1021 return 0;
1024 enum event_type_t {
1025 EVENT_FLEXIBLE = 0x1,
1026 EVENT_PINNED = 0x2,
1027 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1030 static void ctx_sched_out(struct perf_event_context *ctx,
1031 struct perf_cpu_context *cpuctx,
1032 enum event_type_t event_type)
1034 struct perf_event *event;
1036 raw_spin_lock(&ctx->lock);
1037 ctx->is_active = 0;
1038 if (likely(!ctx->nr_events))
1039 goto out;
1040 update_context_time(ctx);
1042 perf_disable();
1043 if (!ctx->nr_active)
1044 goto out_enable;
1046 if (event_type & EVENT_PINNED)
1047 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1048 group_sched_out(event, cpuctx, ctx);
1050 if (event_type & EVENT_FLEXIBLE)
1051 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1052 group_sched_out(event, cpuctx, ctx);
1054 out_enable:
1055 perf_enable();
1056 out:
1057 raw_spin_unlock(&ctx->lock);
1061 * Test whether two contexts are equivalent, i.e. whether they
1062 * have both been cloned from the same version of the same context
1063 * and they both have the same number of enabled events.
1064 * If the number of enabled events is the same, then the set
1065 * of enabled events should be the same, because these are both
1066 * inherited contexts, therefore we can't access individual events
1067 * in them directly with an fd; we can only enable/disable all
1068 * events via prctl, or enable/disable all events in a family
1069 * via ioctl, which will have the same effect on both contexts.
1071 static int context_equiv(struct perf_event_context *ctx1,
1072 struct perf_event_context *ctx2)
1074 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1075 && ctx1->parent_gen == ctx2->parent_gen
1076 && !ctx1->pin_count && !ctx2->pin_count;
1079 static void __perf_event_sync_stat(struct perf_event *event,
1080 struct perf_event *next_event)
1082 u64 value;
1084 if (!event->attr.inherit_stat)
1085 return;
1088 * Update the event value, we cannot use perf_event_read()
1089 * because we're in the middle of a context switch and have IRQs
1090 * disabled, which upsets smp_call_function_single(), however
1091 * we know the event must be on the current CPU, therefore we
1092 * don't need to use it.
1094 switch (event->state) {
1095 case PERF_EVENT_STATE_ACTIVE:
1096 event->pmu->read(event);
1097 /* fall-through */
1099 case PERF_EVENT_STATE_INACTIVE:
1100 update_event_times(event);
1101 break;
1103 default:
1104 break;
1108 * In order to keep per-task stats reliable we need to flip the event
1109 * values when we flip the contexts.
1111 value = atomic64_read(&next_event->count);
1112 value = atomic64_xchg(&event->count, value);
1113 atomic64_set(&next_event->count, value);
1115 swap(event->total_time_enabled, next_event->total_time_enabled);
1116 swap(event->total_time_running, next_event->total_time_running);
1119 * Since we swizzled the values, update the user visible data too.
1121 perf_event_update_userpage(event);
1122 perf_event_update_userpage(next_event);
1125 #define list_next_entry(pos, member) \
1126 list_entry(pos->member.next, typeof(*pos), member)
1128 static void perf_event_sync_stat(struct perf_event_context *ctx,
1129 struct perf_event_context *next_ctx)
1131 struct perf_event *event, *next_event;
1133 if (!ctx->nr_stat)
1134 return;
1136 update_context_time(ctx);
1138 event = list_first_entry(&ctx->event_list,
1139 struct perf_event, event_entry);
1141 next_event = list_first_entry(&next_ctx->event_list,
1142 struct perf_event, event_entry);
1144 while (&event->event_entry != &ctx->event_list &&
1145 &next_event->event_entry != &next_ctx->event_list) {
1147 __perf_event_sync_stat(event, next_event);
1149 event = list_next_entry(event, event_entry);
1150 next_event = list_next_entry(next_event, event_entry);
1155 * Called from scheduler to remove the events of the current task,
1156 * with interrupts disabled.
1158 * We stop each event and update the event value in event->count.
1160 * This does not protect us against NMI, but disable()
1161 * sets the disabled bit in the control field of event _before_
1162 * accessing the event control register. If a NMI hits, then it will
1163 * not restart the event.
1165 void perf_event_task_sched_out(struct task_struct *task,
1166 struct task_struct *next)
1168 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1169 struct perf_event_context *ctx = task->perf_event_ctxp;
1170 struct perf_event_context *next_ctx;
1171 struct perf_event_context *parent;
1172 int do_switch = 1;
1174 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1176 if (likely(!ctx || !cpuctx->task_ctx))
1177 return;
1179 rcu_read_lock();
1180 parent = rcu_dereference(ctx->parent_ctx);
1181 next_ctx = next->perf_event_ctxp;
1182 if (parent && next_ctx &&
1183 rcu_dereference(next_ctx->parent_ctx) == parent) {
1185 * Looks like the two contexts are clones, so we might be
1186 * able to optimize the context switch. We lock both
1187 * contexts and check that they are clones under the
1188 * lock (including re-checking that neither has been
1189 * uncloned in the meantime). It doesn't matter which
1190 * order we take the locks because no other cpu could
1191 * be trying to lock both of these tasks.
1193 raw_spin_lock(&ctx->lock);
1194 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1195 if (context_equiv(ctx, next_ctx)) {
1197 * XXX do we need a memory barrier of sorts
1198 * wrt to rcu_dereference() of perf_event_ctxp
1200 task->perf_event_ctxp = next_ctx;
1201 next->perf_event_ctxp = ctx;
1202 ctx->task = next;
1203 next_ctx->task = task;
1204 do_switch = 0;
1206 perf_event_sync_stat(ctx, next_ctx);
1208 raw_spin_unlock(&next_ctx->lock);
1209 raw_spin_unlock(&ctx->lock);
1211 rcu_read_unlock();
1213 if (do_switch) {
1214 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1215 cpuctx->task_ctx = NULL;
1219 static void task_ctx_sched_out(struct perf_event_context *ctx,
1220 enum event_type_t event_type)
1222 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1224 if (!cpuctx->task_ctx)
1225 return;
1227 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1228 return;
1230 ctx_sched_out(ctx, cpuctx, event_type);
1231 cpuctx->task_ctx = NULL;
1235 * Called with IRQs disabled
1237 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1239 task_ctx_sched_out(ctx, EVENT_ALL);
1243 * Called with IRQs disabled
1245 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1246 enum event_type_t event_type)
1248 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1251 static void
1252 ctx_pinned_sched_in(struct perf_event_context *ctx,
1253 struct perf_cpu_context *cpuctx)
1255 struct perf_event *event;
1257 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1258 if (event->state <= PERF_EVENT_STATE_OFF)
1259 continue;
1260 if (event->cpu != -1 && event->cpu != smp_processor_id())
1261 continue;
1263 if (group_can_go_on(event, cpuctx, 1))
1264 group_sched_in(event, cpuctx, ctx);
1267 * If this pinned group hasn't been scheduled,
1268 * put it in error state.
1270 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1271 update_group_times(event);
1272 event->state = PERF_EVENT_STATE_ERROR;
1277 static void
1278 ctx_flexible_sched_in(struct perf_event_context *ctx,
1279 struct perf_cpu_context *cpuctx)
1281 struct perf_event *event;
1282 int can_add_hw = 1;
1284 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1285 /* Ignore events in OFF or ERROR state */
1286 if (event->state <= PERF_EVENT_STATE_OFF)
1287 continue;
1289 * Listen to the 'cpu' scheduling filter constraint
1290 * of events:
1292 if (event->cpu != -1 && event->cpu != smp_processor_id())
1293 continue;
1295 if (group_can_go_on(event, cpuctx, can_add_hw))
1296 if (group_sched_in(event, cpuctx, ctx))
1297 can_add_hw = 0;
1301 static void
1302 ctx_sched_in(struct perf_event_context *ctx,
1303 struct perf_cpu_context *cpuctx,
1304 enum event_type_t event_type)
1306 raw_spin_lock(&ctx->lock);
1307 ctx->is_active = 1;
1308 if (likely(!ctx->nr_events))
1309 goto out;
1311 ctx->timestamp = perf_clock();
1313 perf_disable();
1316 * First go through the list and put on any pinned groups
1317 * in order to give them the best chance of going on.
1319 if (event_type & EVENT_PINNED)
1320 ctx_pinned_sched_in(ctx, cpuctx);
1322 /* Then walk through the lower prio flexible groups */
1323 if (event_type & EVENT_FLEXIBLE)
1324 ctx_flexible_sched_in(ctx, cpuctx);
1326 perf_enable();
1327 out:
1328 raw_spin_unlock(&ctx->lock);
1331 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1332 enum event_type_t event_type)
1334 struct perf_event_context *ctx = &cpuctx->ctx;
1336 ctx_sched_in(ctx, cpuctx, event_type);
1339 static void task_ctx_sched_in(struct task_struct *task,
1340 enum event_type_t event_type)
1342 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1343 struct perf_event_context *ctx = task->perf_event_ctxp;
1345 if (likely(!ctx))
1346 return;
1347 if (cpuctx->task_ctx == ctx)
1348 return;
1349 ctx_sched_in(ctx, cpuctx, event_type);
1350 cpuctx->task_ctx = ctx;
1353 * Called from scheduler to add the events of the current task
1354 * with interrupts disabled.
1356 * We restore the event value and then enable it.
1358 * This does not protect us against NMI, but enable()
1359 * sets the enabled bit in the control field of event _before_
1360 * accessing the event control register. If a NMI hits, then it will
1361 * keep the event running.
1363 void perf_event_task_sched_in(struct task_struct *task)
1365 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1366 struct perf_event_context *ctx = task->perf_event_ctxp;
1368 if (likely(!ctx))
1369 return;
1371 if (cpuctx->task_ctx == ctx)
1372 return;
1375 * We want to keep the following priority order:
1376 * cpu pinned (that don't need to move), task pinned,
1377 * cpu flexible, task flexible.
1379 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1381 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1382 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1383 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1385 cpuctx->task_ctx = ctx;
1388 #define MAX_INTERRUPTS (~0ULL)
1390 static void perf_log_throttle(struct perf_event *event, int enable);
1392 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1394 u64 frequency = event->attr.sample_freq;
1395 u64 sec = NSEC_PER_SEC;
1396 u64 divisor, dividend;
1398 int count_fls, nsec_fls, frequency_fls, sec_fls;
1400 count_fls = fls64(count);
1401 nsec_fls = fls64(nsec);
1402 frequency_fls = fls64(frequency);
1403 sec_fls = 30;
1406 * We got @count in @nsec, with a target of sample_freq HZ
1407 * the target period becomes:
1409 * @count * 10^9
1410 * period = -------------------
1411 * @nsec * sample_freq
1416 * Reduce accuracy by one bit such that @a and @b converge
1417 * to a similar magnitude.
1419 #define REDUCE_FLS(a, b) \
1420 do { \
1421 if (a##_fls > b##_fls) { \
1422 a >>= 1; \
1423 a##_fls--; \
1424 } else { \
1425 b >>= 1; \
1426 b##_fls--; \
1428 } while (0)
1431 * Reduce accuracy until either term fits in a u64, then proceed with
1432 * the other, so that finally we can do a u64/u64 division.
1434 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1435 REDUCE_FLS(nsec, frequency);
1436 REDUCE_FLS(sec, count);
1439 if (count_fls + sec_fls > 64) {
1440 divisor = nsec * frequency;
1442 while (count_fls + sec_fls > 64) {
1443 REDUCE_FLS(count, sec);
1444 divisor >>= 1;
1447 dividend = count * sec;
1448 } else {
1449 dividend = count * sec;
1451 while (nsec_fls + frequency_fls > 64) {
1452 REDUCE_FLS(nsec, frequency);
1453 dividend >>= 1;
1456 divisor = nsec * frequency;
1459 if (!divisor)
1460 return dividend;
1462 return div64_u64(dividend, divisor);
1465 static void perf_event_stop(struct perf_event *event)
1467 if (!event->pmu->stop)
1468 return event->pmu->disable(event);
1470 return event->pmu->stop(event);
1473 static int perf_event_start(struct perf_event *event)
1475 if (!event->pmu->start)
1476 return event->pmu->enable(event);
1478 return event->pmu->start(event);
1481 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1483 struct hw_perf_event *hwc = &event->hw;
1484 s64 period, sample_period;
1485 s64 delta;
1487 period = perf_calculate_period(event, nsec, count);
1489 delta = (s64)(period - hwc->sample_period);
1490 delta = (delta + 7) / 8; /* low pass filter */
1492 sample_period = hwc->sample_period + delta;
1494 if (!sample_period)
1495 sample_period = 1;
1497 hwc->sample_period = sample_period;
1499 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1500 perf_disable();
1501 perf_event_stop(event);
1502 atomic64_set(&hwc->period_left, 0);
1503 perf_event_start(event);
1504 perf_enable();
1508 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1510 struct perf_event *event;
1511 struct hw_perf_event *hwc;
1512 u64 interrupts, now;
1513 s64 delta;
1515 raw_spin_lock(&ctx->lock);
1516 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1517 if (event->state != PERF_EVENT_STATE_ACTIVE)
1518 continue;
1520 if (event->cpu != -1 && event->cpu != smp_processor_id())
1521 continue;
1523 hwc = &event->hw;
1525 interrupts = hwc->interrupts;
1526 hwc->interrupts = 0;
1529 * unthrottle events on the tick
1531 if (interrupts == MAX_INTERRUPTS) {
1532 perf_log_throttle(event, 1);
1533 perf_disable();
1534 event->pmu->unthrottle(event);
1535 perf_enable();
1538 if (!event->attr.freq || !event->attr.sample_freq)
1539 continue;
1541 perf_disable();
1542 event->pmu->read(event);
1543 now = atomic64_read(&event->count);
1544 delta = now - hwc->freq_count_stamp;
1545 hwc->freq_count_stamp = now;
1547 if (delta > 0)
1548 perf_adjust_period(event, TICK_NSEC, delta);
1549 perf_enable();
1551 raw_spin_unlock(&ctx->lock);
1555 * Round-robin a context's events:
1557 static void rotate_ctx(struct perf_event_context *ctx)
1559 raw_spin_lock(&ctx->lock);
1561 /* Rotate the first entry last of non-pinned groups */
1562 list_rotate_left(&ctx->flexible_groups);
1564 raw_spin_unlock(&ctx->lock);
1567 void perf_event_task_tick(struct task_struct *curr)
1569 struct perf_cpu_context *cpuctx;
1570 struct perf_event_context *ctx;
1571 int rotate = 0;
1573 if (!atomic_read(&nr_events))
1574 return;
1576 cpuctx = &__get_cpu_var(perf_cpu_context);
1577 if (cpuctx->ctx.nr_events &&
1578 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1579 rotate = 1;
1581 ctx = curr->perf_event_ctxp;
1582 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1583 rotate = 1;
1585 perf_ctx_adjust_freq(&cpuctx->ctx);
1586 if (ctx)
1587 perf_ctx_adjust_freq(ctx);
1589 if (!rotate)
1590 return;
1592 perf_disable();
1593 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1594 if (ctx)
1595 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1597 rotate_ctx(&cpuctx->ctx);
1598 if (ctx)
1599 rotate_ctx(ctx);
1601 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1602 if (ctx)
1603 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1604 perf_enable();
1607 static int event_enable_on_exec(struct perf_event *event,
1608 struct perf_event_context *ctx)
1610 if (!event->attr.enable_on_exec)
1611 return 0;
1613 event->attr.enable_on_exec = 0;
1614 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1615 return 0;
1617 __perf_event_mark_enabled(event, ctx);
1619 return 1;
1623 * Enable all of a task's events that have been marked enable-on-exec.
1624 * This expects task == current.
1626 static void perf_event_enable_on_exec(struct task_struct *task)
1628 struct perf_event_context *ctx;
1629 struct perf_event *event;
1630 unsigned long flags;
1631 int enabled = 0;
1632 int ret;
1634 local_irq_save(flags);
1635 ctx = task->perf_event_ctxp;
1636 if (!ctx || !ctx->nr_events)
1637 goto out;
1639 __perf_event_task_sched_out(ctx);
1641 raw_spin_lock(&ctx->lock);
1643 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1644 ret = event_enable_on_exec(event, ctx);
1645 if (ret)
1646 enabled = 1;
1649 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1650 ret = event_enable_on_exec(event, ctx);
1651 if (ret)
1652 enabled = 1;
1656 * Unclone this context if we enabled any event.
1658 if (enabled)
1659 unclone_ctx(ctx);
1661 raw_spin_unlock(&ctx->lock);
1663 perf_event_task_sched_in(task);
1664 out:
1665 local_irq_restore(flags);
1669 * Cross CPU call to read the hardware event
1671 static void __perf_event_read(void *info)
1673 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1674 struct perf_event *event = info;
1675 struct perf_event_context *ctx = event->ctx;
1678 * If this is a task context, we need to check whether it is
1679 * the current task context of this cpu. If not it has been
1680 * scheduled out before the smp call arrived. In that case
1681 * event->count would have been updated to a recent sample
1682 * when the event was scheduled out.
1684 if (ctx->task && cpuctx->task_ctx != ctx)
1685 return;
1687 raw_spin_lock(&ctx->lock);
1688 update_context_time(ctx);
1689 update_event_times(event);
1690 raw_spin_unlock(&ctx->lock);
1692 event->pmu->read(event);
1695 static u64 perf_event_read(struct perf_event *event)
1698 * If event is enabled and currently active on a CPU, update the
1699 * value in the event structure:
1701 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1702 smp_call_function_single(event->oncpu,
1703 __perf_event_read, event, 1);
1704 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1705 struct perf_event_context *ctx = event->ctx;
1706 unsigned long flags;
1708 raw_spin_lock_irqsave(&ctx->lock, flags);
1709 update_context_time(ctx);
1710 update_event_times(event);
1711 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1714 return atomic64_read(&event->count);
1718 * Initialize the perf_event context in a task_struct:
1720 static void
1721 __perf_event_init_context(struct perf_event_context *ctx,
1722 struct task_struct *task)
1724 raw_spin_lock_init(&ctx->lock);
1725 mutex_init(&ctx->mutex);
1726 INIT_LIST_HEAD(&ctx->pinned_groups);
1727 INIT_LIST_HEAD(&ctx->flexible_groups);
1728 INIT_LIST_HEAD(&ctx->event_list);
1729 atomic_set(&ctx->refcount, 1);
1730 ctx->task = task;
1733 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1735 struct perf_event_context *ctx;
1736 struct perf_cpu_context *cpuctx;
1737 struct task_struct *task;
1738 unsigned long flags;
1739 int err;
1741 if (pid == -1 && cpu != -1) {
1742 /* Must be root to operate on a CPU event: */
1743 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1744 return ERR_PTR(-EACCES);
1746 if (cpu < 0 || cpu >= nr_cpumask_bits)
1747 return ERR_PTR(-EINVAL);
1750 * We could be clever and allow to attach a event to an
1751 * offline CPU and activate it when the CPU comes up, but
1752 * that's for later.
1754 if (!cpu_online(cpu))
1755 return ERR_PTR(-ENODEV);
1757 cpuctx = &per_cpu(perf_cpu_context, cpu);
1758 ctx = &cpuctx->ctx;
1759 get_ctx(ctx);
1761 return ctx;
1764 rcu_read_lock();
1765 if (!pid)
1766 task = current;
1767 else
1768 task = find_task_by_vpid(pid);
1769 if (task)
1770 get_task_struct(task);
1771 rcu_read_unlock();
1773 if (!task)
1774 return ERR_PTR(-ESRCH);
1777 * Can't attach events to a dying task.
1779 err = -ESRCH;
1780 if (task->flags & PF_EXITING)
1781 goto errout;
1783 /* Reuse ptrace permission checks for now. */
1784 err = -EACCES;
1785 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1786 goto errout;
1788 retry:
1789 ctx = perf_lock_task_context(task, &flags);
1790 if (ctx) {
1791 unclone_ctx(ctx);
1792 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1795 if (!ctx) {
1796 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1797 err = -ENOMEM;
1798 if (!ctx)
1799 goto errout;
1800 __perf_event_init_context(ctx, task);
1801 get_ctx(ctx);
1802 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1804 * We raced with some other task; use
1805 * the context they set.
1807 kfree(ctx);
1808 goto retry;
1810 get_task_struct(task);
1813 put_task_struct(task);
1814 return ctx;
1816 errout:
1817 put_task_struct(task);
1818 return ERR_PTR(err);
1821 static void perf_event_free_filter(struct perf_event *event);
1823 static void free_event_rcu(struct rcu_head *head)
1825 struct perf_event *event;
1827 event = container_of(head, struct perf_event, rcu_head);
1828 if (event->ns)
1829 put_pid_ns(event->ns);
1830 perf_event_free_filter(event);
1831 kfree(event);
1834 static void perf_pending_sync(struct perf_event *event);
1835 static void perf_mmap_data_put(struct perf_mmap_data *data);
1837 static void free_event(struct perf_event *event)
1839 perf_pending_sync(event);
1841 if (!event->parent) {
1842 atomic_dec(&nr_events);
1843 if (event->attr.mmap)
1844 atomic_dec(&nr_mmap_events);
1845 if (event->attr.comm)
1846 atomic_dec(&nr_comm_events);
1847 if (event->attr.task)
1848 atomic_dec(&nr_task_events);
1851 if (event->data) {
1852 perf_mmap_data_put(event->data);
1853 event->data = NULL;
1856 if (event->destroy)
1857 event->destroy(event);
1859 put_ctx(event->ctx);
1860 call_rcu(&event->rcu_head, free_event_rcu);
1863 int perf_event_release_kernel(struct perf_event *event)
1865 struct perf_event_context *ctx = event->ctx;
1868 * Remove from the PMU, can't get re-enabled since we got
1869 * here because the last ref went.
1871 perf_event_disable(event);
1873 WARN_ON_ONCE(ctx->parent_ctx);
1874 mutex_lock(&ctx->mutex);
1875 raw_spin_lock_irq(&ctx->lock);
1876 list_del_event(event, ctx);
1877 perf_destroy_group(event, ctx);
1878 raw_spin_unlock_irq(&ctx->lock);
1879 mutex_unlock(&ctx->mutex);
1881 mutex_lock(&event->owner->perf_event_mutex);
1882 list_del_init(&event->owner_entry);
1883 mutex_unlock(&event->owner->perf_event_mutex);
1884 put_task_struct(event->owner);
1886 free_event(event);
1888 return 0;
1890 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1893 * Called when the last reference to the file is gone.
1895 static int perf_release(struct inode *inode, struct file *file)
1897 struct perf_event *event = file->private_data;
1899 file->private_data = NULL;
1901 return perf_event_release_kernel(event);
1904 static int perf_event_read_size(struct perf_event *event)
1906 int entry = sizeof(u64); /* value */
1907 int size = 0;
1908 int nr = 1;
1910 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1911 size += sizeof(u64);
1913 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1914 size += sizeof(u64);
1916 if (event->attr.read_format & PERF_FORMAT_ID)
1917 entry += sizeof(u64);
1919 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1920 nr += event->group_leader->nr_siblings;
1921 size += sizeof(u64);
1924 size += entry * nr;
1926 return size;
1929 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1931 struct perf_event *child;
1932 u64 total = 0;
1934 *enabled = 0;
1935 *running = 0;
1937 mutex_lock(&event->child_mutex);
1938 total += perf_event_read(event);
1939 *enabled += event->total_time_enabled +
1940 atomic64_read(&event->child_total_time_enabled);
1941 *running += event->total_time_running +
1942 atomic64_read(&event->child_total_time_running);
1944 list_for_each_entry(child, &event->child_list, child_list) {
1945 total += perf_event_read(child);
1946 *enabled += child->total_time_enabled;
1947 *running += child->total_time_running;
1949 mutex_unlock(&event->child_mutex);
1951 return total;
1953 EXPORT_SYMBOL_GPL(perf_event_read_value);
1955 static int perf_event_read_group(struct perf_event *event,
1956 u64 read_format, char __user *buf)
1958 struct perf_event *leader = event->group_leader, *sub;
1959 int n = 0, size = 0, ret = -EFAULT;
1960 struct perf_event_context *ctx = leader->ctx;
1961 u64 values[5];
1962 u64 count, enabled, running;
1964 mutex_lock(&ctx->mutex);
1965 count = perf_event_read_value(leader, &enabled, &running);
1967 values[n++] = 1 + leader->nr_siblings;
1968 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1969 values[n++] = enabled;
1970 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1971 values[n++] = running;
1972 values[n++] = count;
1973 if (read_format & PERF_FORMAT_ID)
1974 values[n++] = primary_event_id(leader);
1976 size = n * sizeof(u64);
1978 if (copy_to_user(buf, values, size))
1979 goto unlock;
1981 ret = size;
1983 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1984 n = 0;
1986 values[n++] = perf_event_read_value(sub, &enabled, &running);
1987 if (read_format & PERF_FORMAT_ID)
1988 values[n++] = primary_event_id(sub);
1990 size = n * sizeof(u64);
1992 if (copy_to_user(buf + ret, values, size)) {
1993 ret = -EFAULT;
1994 goto unlock;
1997 ret += size;
1999 unlock:
2000 mutex_unlock(&ctx->mutex);
2002 return ret;
2005 static int perf_event_read_one(struct perf_event *event,
2006 u64 read_format, char __user *buf)
2008 u64 enabled, running;
2009 u64 values[4];
2010 int n = 0;
2012 values[n++] = perf_event_read_value(event, &enabled, &running);
2013 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2014 values[n++] = enabled;
2015 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2016 values[n++] = running;
2017 if (read_format & PERF_FORMAT_ID)
2018 values[n++] = primary_event_id(event);
2020 if (copy_to_user(buf, values, n * sizeof(u64)))
2021 return -EFAULT;
2023 return n * sizeof(u64);
2027 * Read the performance event - simple non blocking version for now
2029 static ssize_t
2030 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2032 u64 read_format = event->attr.read_format;
2033 int ret;
2036 * Return end-of-file for a read on a event that is in
2037 * error state (i.e. because it was pinned but it couldn't be
2038 * scheduled on to the CPU at some point).
2040 if (event->state == PERF_EVENT_STATE_ERROR)
2041 return 0;
2043 if (count < perf_event_read_size(event))
2044 return -ENOSPC;
2046 WARN_ON_ONCE(event->ctx->parent_ctx);
2047 if (read_format & PERF_FORMAT_GROUP)
2048 ret = perf_event_read_group(event, read_format, buf);
2049 else
2050 ret = perf_event_read_one(event, read_format, buf);
2052 return ret;
2055 static ssize_t
2056 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2058 struct perf_event *event = file->private_data;
2060 return perf_read_hw(event, buf, count);
2063 static unsigned int perf_poll(struct file *file, poll_table *wait)
2065 struct perf_event *event = file->private_data;
2066 struct perf_mmap_data *data;
2067 unsigned int events = POLL_HUP;
2069 rcu_read_lock();
2070 data = rcu_dereference(event->data);
2071 if (data)
2072 events = atomic_xchg(&data->poll, 0);
2073 rcu_read_unlock();
2075 poll_wait(file, &event->waitq, wait);
2077 return events;
2080 static void perf_event_reset(struct perf_event *event)
2082 (void)perf_event_read(event);
2083 atomic64_set(&event->count, 0);
2084 perf_event_update_userpage(event);
2088 * Holding the top-level event's child_mutex means that any
2089 * descendant process that has inherited this event will block
2090 * in sync_child_event if it goes to exit, thus satisfying the
2091 * task existence requirements of perf_event_enable/disable.
2093 static void perf_event_for_each_child(struct perf_event *event,
2094 void (*func)(struct perf_event *))
2096 struct perf_event *child;
2098 WARN_ON_ONCE(event->ctx->parent_ctx);
2099 mutex_lock(&event->child_mutex);
2100 func(event);
2101 list_for_each_entry(child, &event->child_list, child_list)
2102 func(child);
2103 mutex_unlock(&event->child_mutex);
2106 static void perf_event_for_each(struct perf_event *event,
2107 void (*func)(struct perf_event *))
2109 struct perf_event_context *ctx = event->ctx;
2110 struct perf_event *sibling;
2112 WARN_ON_ONCE(ctx->parent_ctx);
2113 mutex_lock(&ctx->mutex);
2114 event = event->group_leader;
2116 perf_event_for_each_child(event, func);
2117 func(event);
2118 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2119 perf_event_for_each_child(event, func);
2120 mutex_unlock(&ctx->mutex);
2123 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2125 struct perf_event_context *ctx = event->ctx;
2126 unsigned long size;
2127 int ret = 0;
2128 u64 value;
2130 if (!event->attr.sample_period)
2131 return -EINVAL;
2133 size = copy_from_user(&value, arg, sizeof(value));
2134 if (size != sizeof(value))
2135 return -EFAULT;
2137 if (!value)
2138 return -EINVAL;
2140 raw_spin_lock_irq(&ctx->lock);
2141 if (event->attr.freq) {
2142 if (value > sysctl_perf_event_sample_rate) {
2143 ret = -EINVAL;
2144 goto unlock;
2147 event->attr.sample_freq = value;
2148 } else {
2149 event->attr.sample_period = value;
2150 event->hw.sample_period = value;
2152 unlock:
2153 raw_spin_unlock_irq(&ctx->lock);
2155 return ret;
2158 static const struct file_operations perf_fops;
2160 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2162 struct file *file;
2164 file = fget_light(fd, fput_needed);
2165 if (!file)
2166 return ERR_PTR(-EBADF);
2168 if (file->f_op != &perf_fops) {
2169 fput_light(file, *fput_needed);
2170 *fput_needed = 0;
2171 return ERR_PTR(-EBADF);
2174 return file->private_data;
2177 static int perf_event_set_output(struct perf_event *event,
2178 struct perf_event *output_event);
2179 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2181 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2183 struct perf_event *event = file->private_data;
2184 void (*func)(struct perf_event *);
2185 u32 flags = arg;
2187 switch (cmd) {
2188 case PERF_EVENT_IOC_ENABLE:
2189 func = perf_event_enable;
2190 break;
2191 case PERF_EVENT_IOC_DISABLE:
2192 func = perf_event_disable;
2193 break;
2194 case PERF_EVENT_IOC_RESET:
2195 func = perf_event_reset;
2196 break;
2198 case PERF_EVENT_IOC_REFRESH:
2199 return perf_event_refresh(event, arg);
2201 case PERF_EVENT_IOC_PERIOD:
2202 return perf_event_period(event, (u64 __user *)arg);
2204 case PERF_EVENT_IOC_SET_OUTPUT:
2206 struct perf_event *output_event = NULL;
2207 int fput_needed = 0;
2208 int ret;
2210 if (arg != -1) {
2211 output_event = perf_fget_light(arg, &fput_needed);
2212 if (IS_ERR(output_event))
2213 return PTR_ERR(output_event);
2216 ret = perf_event_set_output(event, output_event);
2217 if (output_event)
2218 fput_light(output_event->filp, fput_needed);
2220 return ret;
2223 case PERF_EVENT_IOC_SET_FILTER:
2224 return perf_event_set_filter(event, (void __user *)arg);
2226 default:
2227 return -ENOTTY;
2230 if (flags & PERF_IOC_FLAG_GROUP)
2231 perf_event_for_each(event, func);
2232 else
2233 perf_event_for_each_child(event, func);
2235 return 0;
2238 int perf_event_task_enable(void)
2240 struct perf_event *event;
2242 mutex_lock(&current->perf_event_mutex);
2243 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2244 perf_event_for_each_child(event, perf_event_enable);
2245 mutex_unlock(&current->perf_event_mutex);
2247 return 0;
2250 int perf_event_task_disable(void)
2252 struct perf_event *event;
2254 mutex_lock(&current->perf_event_mutex);
2255 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2256 perf_event_for_each_child(event, perf_event_disable);
2257 mutex_unlock(&current->perf_event_mutex);
2259 return 0;
2262 #ifndef PERF_EVENT_INDEX_OFFSET
2263 # define PERF_EVENT_INDEX_OFFSET 0
2264 #endif
2266 static int perf_event_index(struct perf_event *event)
2268 if (event->state != PERF_EVENT_STATE_ACTIVE)
2269 return 0;
2271 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2275 * Callers need to ensure there can be no nesting of this function, otherwise
2276 * the seqlock logic goes bad. We can not serialize this because the arch
2277 * code calls this from NMI context.
2279 void perf_event_update_userpage(struct perf_event *event)
2281 struct perf_event_mmap_page *userpg;
2282 struct perf_mmap_data *data;
2284 rcu_read_lock();
2285 data = rcu_dereference(event->data);
2286 if (!data)
2287 goto unlock;
2289 userpg = data->user_page;
2292 * Disable preemption so as to not let the corresponding user-space
2293 * spin too long if we get preempted.
2295 preempt_disable();
2296 ++userpg->lock;
2297 barrier();
2298 userpg->index = perf_event_index(event);
2299 userpg->offset = atomic64_read(&event->count);
2300 if (event->state == PERF_EVENT_STATE_ACTIVE)
2301 userpg->offset -= atomic64_read(&event->hw.prev_count);
2303 userpg->time_enabled = event->total_time_enabled +
2304 atomic64_read(&event->child_total_time_enabled);
2306 userpg->time_running = event->total_time_running +
2307 atomic64_read(&event->child_total_time_running);
2309 barrier();
2310 ++userpg->lock;
2311 preempt_enable();
2312 unlock:
2313 rcu_read_unlock();
2316 static unsigned long perf_data_size(struct perf_mmap_data *data)
2318 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2321 #ifndef CONFIG_PERF_USE_VMALLOC
2324 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2327 static struct page *
2328 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2330 if (pgoff > data->nr_pages)
2331 return NULL;
2333 if (pgoff == 0)
2334 return virt_to_page(data->user_page);
2336 return virt_to_page(data->data_pages[pgoff - 1]);
2339 static struct perf_mmap_data *
2340 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2342 struct perf_mmap_data *data;
2343 unsigned long size;
2344 int i;
2346 size = sizeof(struct perf_mmap_data);
2347 size += nr_pages * sizeof(void *);
2349 data = kzalloc(size, GFP_KERNEL);
2350 if (!data)
2351 goto fail;
2353 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2354 if (!data->user_page)
2355 goto fail_user_page;
2357 for (i = 0; i < nr_pages; i++) {
2358 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2359 if (!data->data_pages[i])
2360 goto fail_data_pages;
2363 data->data_order = 0;
2364 data->nr_pages = nr_pages;
2366 return data;
2368 fail_data_pages:
2369 for (i--; i >= 0; i--)
2370 free_page((unsigned long)data->data_pages[i]);
2372 free_page((unsigned long)data->user_page);
2374 fail_user_page:
2375 kfree(data);
2377 fail:
2378 return NULL;
2381 static void perf_mmap_free_page(unsigned long addr)
2383 struct page *page = virt_to_page((void *)addr);
2385 page->mapping = NULL;
2386 __free_page(page);
2389 static void perf_mmap_data_free(struct perf_mmap_data *data)
2391 int i;
2393 perf_mmap_free_page((unsigned long)data->user_page);
2394 for (i = 0; i < data->nr_pages; i++)
2395 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2396 kfree(data);
2399 #else
2402 * Back perf_mmap() with vmalloc memory.
2404 * Required for architectures that have d-cache aliasing issues.
2407 static struct page *
2408 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2410 if (pgoff > (1UL << data->data_order))
2411 return NULL;
2413 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2416 static void perf_mmap_unmark_page(void *addr)
2418 struct page *page = vmalloc_to_page(addr);
2420 page->mapping = NULL;
2423 static void perf_mmap_data_free_work(struct work_struct *work)
2425 struct perf_mmap_data *data;
2426 void *base;
2427 int i, nr;
2429 data = container_of(work, struct perf_mmap_data, work);
2430 nr = 1 << data->data_order;
2432 base = data->user_page;
2433 for (i = 0; i < nr + 1; i++)
2434 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2436 vfree(base);
2437 kfree(data);
2440 static void perf_mmap_data_free(struct perf_mmap_data *data)
2442 schedule_work(&data->work);
2445 static struct perf_mmap_data *
2446 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2448 struct perf_mmap_data *data;
2449 unsigned long size;
2450 void *all_buf;
2452 size = sizeof(struct perf_mmap_data);
2453 size += sizeof(void *);
2455 data = kzalloc(size, GFP_KERNEL);
2456 if (!data)
2457 goto fail;
2459 INIT_WORK(&data->work, perf_mmap_data_free_work);
2461 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2462 if (!all_buf)
2463 goto fail_all_buf;
2465 data->user_page = all_buf;
2466 data->data_pages[0] = all_buf + PAGE_SIZE;
2467 data->data_order = ilog2(nr_pages);
2468 data->nr_pages = 1;
2470 return data;
2472 fail_all_buf:
2473 kfree(data);
2475 fail:
2476 return NULL;
2479 #endif
2481 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2483 struct perf_event *event = vma->vm_file->private_data;
2484 struct perf_mmap_data *data;
2485 int ret = VM_FAULT_SIGBUS;
2487 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2488 if (vmf->pgoff == 0)
2489 ret = 0;
2490 return ret;
2493 rcu_read_lock();
2494 data = rcu_dereference(event->data);
2495 if (!data)
2496 goto unlock;
2498 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2499 goto unlock;
2501 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2502 if (!vmf->page)
2503 goto unlock;
2505 get_page(vmf->page);
2506 vmf->page->mapping = vma->vm_file->f_mapping;
2507 vmf->page->index = vmf->pgoff;
2509 ret = 0;
2510 unlock:
2511 rcu_read_unlock();
2513 return ret;
2516 static void
2517 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2519 long max_size = perf_data_size(data);
2521 atomic_set(&data->lock, -1);
2523 if (event->attr.watermark) {
2524 data->watermark = min_t(long, max_size,
2525 event->attr.wakeup_watermark);
2528 if (!data->watermark)
2529 data->watermark = max_size / 2;
2531 atomic_set(&data->refcount, 1);
2532 rcu_assign_pointer(event->data, data);
2535 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2537 struct perf_mmap_data *data;
2539 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2540 perf_mmap_data_free(data);
2543 static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
2545 struct perf_mmap_data *data;
2547 rcu_read_lock();
2548 data = rcu_dereference(event->data);
2549 if (data) {
2550 if (!atomic_inc_not_zero(&data->refcount))
2551 data = NULL;
2553 rcu_read_unlock();
2555 return data;
2558 static void perf_mmap_data_put(struct perf_mmap_data *data)
2560 if (!atomic_dec_and_test(&data->refcount))
2561 return;
2563 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2566 static void perf_mmap_open(struct vm_area_struct *vma)
2568 struct perf_event *event = vma->vm_file->private_data;
2570 atomic_inc(&event->mmap_count);
2573 static void perf_mmap_close(struct vm_area_struct *vma)
2575 struct perf_event *event = vma->vm_file->private_data;
2577 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2578 unsigned long size = perf_data_size(event->data);
2579 struct user_struct *user = event->mmap_user;
2580 struct perf_mmap_data *data = event->data;
2582 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2583 vma->vm_mm->locked_vm -= event->mmap_locked;
2584 rcu_assign_pointer(event->data, NULL);
2585 mutex_unlock(&event->mmap_mutex);
2587 perf_mmap_data_put(data);
2588 free_uid(user);
2592 static const struct vm_operations_struct perf_mmap_vmops = {
2593 .open = perf_mmap_open,
2594 .close = perf_mmap_close,
2595 .fault = perf_mmap_fault,
2596 .page_mkwrite = perf_mmap_fault,
2599 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2601 struct perf_event *event = file->private_data;
2602 unsigned long user_locked, user_lock_limit;
2603 struct user_struct *user = current_user();
2604 unsigned long locked, lock_limit;
2605 struct perf_mmap_data *data;
2606 unsigned long vma_size;
2607 unsigned long nr_pages;
2608 long user_extra, extra;
2609 int ret = 0;
2611 if (!(vma->vm_flags & VM_SHARED))
2612 return -EINVAL;
2614 vma_size = vma->vm_end - vma->vm_start;
2615 nr_pages = (vma_size / PAGE_SIZE) - 1;
2618 * If we have data pages ensure they're a power-of-two number, so we
2619 * can do bitmasks instead of modulo.
2621 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2622 return -EINVAL;
2624 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2625 return -EINVAL;
2627 if (vma->vm_pgoff != 0)
2628 return -EINVAL;
2630 WARN_ON_ONCE(event->ctx->parent_ctx);
2631 mutex_lock(&event->mmap_mutex);
2632 if (event->data) {
2633 if (event->data->nr_pages == nr_pages)
2634 atomic_inc(&event->data->refcount);
2635 else
2636 ret = -EINVAL;
2637 goto unlock;
2640 user_extra = nr_pages + 1;
2641 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2644 * Increase the limit linearly with more CPUs:
2646 user_lock_limit *= num_online_cpus();
2648 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2650 extra = 0;
2651 if (user_locked > user_lock_limit)
2652 extra = user_locked - user_lock_limit;
2654 lock_limit = rlimit(RLIMIT_MEMLOCK);
2655 lock_limit >>= PAGE_SHIFT;
2656 locked = vma->vm_mm->locked_vm + extra;
2658 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2659 !capable(CAP_IPC_LOCK)) {
2660 ret = -EPERM;
2661 goto unlock;
2664 WARN_ON(event->data);
2666 data = perf_mmap_data_alloc(event, nr_pages);
2667 if (!data) {
2668 ret = -ENOMEM;
2669 goto unlock;
2672 perf_mmap_data_init(event, data);
2673 if (vma->vm_flags & VM_WRITE)
2674 event->data->writable = 1;
2676 atomic_long_add(user_extra, &user->locked_vm);
2677 event->mmap_locked = extra;
2678 event->mmap_user = get_current_user();
2679 vma->vm_mm->locked_vm += event->mmap_locked;
2681 unlock:
2682 if (!ret)
2683 atomic_inc(&event->mmap_count);
2684 mutex_unlock(&event->mmap_mutex);
2686 vma->vm_flags |= VM_RESERVED;
2687 vma->vm_ops = &perf_mmap_vmops;
2689 return ret;
2692 static int perf_fasync(int fd, struct file *filp, int on)
2694 struct inode *inode = filp->f_path.dentry->d_inode;
2695 struct perf_event *event = filp->private_data;
2696 int retval;
2698 mutex_lock(&inode->i_mutex);
2699 retval = fasync_helper(fd, filp, on, &event->fasync);
2700 mutex_unlock(&inode->i_mutex);
2702 if (retval < 0)
2703 return retval;
2705 return 0;
2708 static const struct file_operations perf_fops = {
2709 .release = perf_release,
2710 .read = perf_read,
2711 .poll = perf_poll,
2712 .unlocked_ioctl = perf_ioctl,
2713 .compat_ioctl = perf_ioctl,
2714 .mmap = perf_mmap,
2715 .fasync = perf_fasync,
2719 * Perf event wakeup
2721 * If there's data, ensure we set the poll() state and publish everything
2722 * to user-space before waking everybody up.
2725 void perf_event_wakeup(struct perf_event *event)
2727 wake_up_all(&event->waitq);
2729 if (event->pending_kill) {
2730 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2731 event->pending_kill = 0;
2736 * Pending wakeups
2738 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2740 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2741 * single linked list and use cmpxchg() to add entries lockless.
2744 static void perf_pending_event(struct perf_pending_entry *entry)
2746 struct perf_event *event = container_of(entry,
2747 struct perf_event, pending);
2749 if (event->pending_disable) {
2750 event->pending_disable = 0;
2751 __perf_event_disable(event);
2754 if (event->pending_wakeup) {
2755 event->pending_wakeup = 0;
2756 perf_event_wakeup(event);
2760 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2762 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2763 PENDING_TAIL,
2766 static void perf_pending_queue(struct perf_pending_entry *entry,
2767 void (*func)(struct perf_pending_entry *))
2769 struct perf_pending_entry **head;
2771 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2772 return;
2774 entry->func = func;
2776 head = &get_cpu_var(perf_pending_head);
2778 do {
2779 entry->next = *head;
2780 } while (cmpxchg(head, entry->next, entry) != entry->next);
2782 set_perf_event_pending();
2784 put_cpu_var(perf_pending_head);
2787 static int __perf_pending_run(void)
2789 struct perf_pending_entry *list;
2790 int nr = 0;
2792 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2793 while (list != PENDING_TAIL) {
2794 void (*func)(struct perf_pending_entry *);
2795 struct perf_pending_entry *entry = list;
2797 list = list->next;
2799 func = entry->func;
2800 entry->next = NULL;
2802 * Ensure we observe the unqueue before we issue the wakeup,
2803 * so that we won't be waiting forever.
2804 * -- see perf_not_pending().
2806 smp_wmb();
2808 func(entry);
2809 nr++;
2812 return nr;
2815 static inline int perf_not_pending(struct perf_event *event)
2818 * If we flush on whatever cpu we run, there is a chance we don't
2819 * need to wait.
2821 get_cpu();
2822 __perf_pending_run();
2823 put_cpu();
2826 * Ensure we see the proper queue state before going to sleep
2827 * so that we do not miss the wakeup. -- see perf_pending_handle()
2829 smp_rmb();
2830 return event->pending.next == NULL;
2833 static void perf_pending_sync(struct perf_event *event)
2835 wait_event(event->waitq, perf_not_pending(event));
2838 void perf_event_do_pending(void)
2840 __perf_pending_run();
2844 * Callchain support -- arch specific
2847 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2849 return NULL;
2852 __weak
2853 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2859 * Output
2861 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2862 unsigned long offset, unsigned long head)
2864 unsigned long mask;
2866 if (!data->writable)
2867 return true;
2869 mask = perf_data_size(data) - 1;
2871 offset = (offset - tail) & mask;
2872 head = (head - tail) & mask;
2874 if ((int)(head - offset) < 0)
2875 return false;
2877 return true;
2880 static void perf_output_wakeup(struct perf_output_handle *handle)
2882 atomic_set(&handle->data->poll, POLL_IN);
2884 if (handle->nmi) {
2885 handle->event->pending_wakeup = 1;
2886 perf_pending_queue(&handle->event->pending,
2887 perf_pending_event);
2888 } else
2889 perf_event_wakeup(handle->event);
2893 * Curious locking construct.
2895 * We need to ensure a later event_id doesn't publish a head when a former
2896 * event_id isn't done writing. However since we need to deal with NMIs we
2897 * cannot fully serialize things.
2899 * What we do is serialize between CPUs so we only have to deal with NMI
2900 * nesting on a single CPU.
2902 * We only publish the head (and generate a wakeup) when the outer-most
2903 * event_id completes.
2905 static void perf_output_lock(struct perf_output_handle *handle)
2907 struct perf_mmap_data *data = handle->data;
2908 int cur, cpu = get_cpu();
2910 handle->locked = 0;
2912 for (;;) {
2913 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2914 if (cur == -1) {
2915 handle->locked = 1;
2916 break;
2918 if (cur == cpu)
2919 break;
2921 cpu_relax();
2925 static void perf_output_unlock(struct perf_output_handle *handle)
2927 struct perf_mmap_data *data = handle->data;
2928 unsigned long head;
2929 int cpu;
2931 data->done_head = data->head;
2933 if (!handle->locked)
2934 goto out;
2936 again:
2938 * The xchg implies a full barrier that ensures all writes are done
2939 * before we publish the new head, matched by a rmb() in userspace when
2940 * reading this position.
2942 while ((head = atomic_long_xchg(&data->done_head, 0)))
2943 data->user_page->data_head = head;
2946 * NMI can happen here, which means we can miss a done_head update.
2949 cpu = atomic_xchg(&data->lock, -1);
2950 WARN_ON_ONCE(cpu != smp_processor_id());
2953 * Therefore we have to validate we did not indeed do so.
2955 if (unlikely(atomic_long_read(&data->done_head))) {
2957 * Since we had it locked, we can lock it again.
2959 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2960 cpu_relax();
2962 goto again;
2965 if (atomic_xchg(&data->wakeup, 0))
2966 perf_output_wakeup(handle);
2967 out:
2968 put_cpu();
2971 void perf_output_copy(struct perf_output_handle *handle,
2972 const void *buf, unsigned int len)
2974 unsigned int pages_mask;
2975 unsigned long offset;
2976 unsigned int size;
2977 void **pages;
2979 offset = handle->offset;
2980 pages_mask = handle->data->nr_pages - 1;
2981 pages = handle->data->data_pages;
2983 do {
2984 unsigned long page_offset;
2985 unsigned long page_size;
2986 int nr;
2988 nr = (offset >> PAGE_SHIFT) & pages_mask;
2989 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2990 page_offset = offset & (page_size - 1);
2991 size = min_t(unsigned int, page_size - page_offset, len);
2993 memcpy(pages[nr] + page_offset, buf, size);
2995 len -= size;
2996 buf += size;
2997 offset += size;
2998 } while (len);
3000 handle->offset = offset;
3003 * Check we didn't copy past our reservation window, taking the
3004 * possible unsigned int wrap into account.
3006 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
3009 int perf_output_begin(struct perf_output_handle *handle,
3010 struct perf_event *event, unsigned int size,
3011 int nmi, int sample)
3013 struct perf_mmap_data *data;
3014 unsigned long tail, offset, head;
3015 int have_lost;
3016 struct {
3017 struct perf_event_header header;
3018 u64 id;
3019 u64 lost;
3020 } lost_event;
3022 rcu_read_lock();
3024 * For inherited events we send all the output towards the parent.
3026 if (event->parent)
3027 event = event->parent;
3029 data = rcu_dereference(event->data);
3030 if (!data)
3031 goto out;
3033 handle->data = data;
3034 handle->event = event;
3035 handle->nmi = nmi;
3036 handle->sample = sample;
3038 if (!data->nr_pages)
3039 goto fail;
3041 have_lost = atomic_read(&data->lost);
3042 if (have_lost)
3043 size += sizeof(lost_event);
3045 perf_output_lock(handle);
3047 do {
3049 * Userspace could choose to issue a mb() before updating the
3050 * tail pointer. So that all reads will be completed before the
3051 * write is issued.
3053 tail = ACCESS_ONCE(data->user_page->data_tail);
3054 smp_rmb();
3055 offset = head = atomic_long_read(&data->head);
3056 head += size;
3057 if (unlikely(!perf_output_space(data, tail, offset, head)))
3058 goto fail;
3059 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3061 handle->offset = offset;
3062 handle->head = head;
3064 if (head - tail > data->watermark)
3065 atomic_set(&data->wakeup, 1);
3067 if (have_lost) {
3068 lost_event.header.type = PERF_RECORD_LOST;
3069 lost_event.header.misc = 0;
3070 lost_event.header.size = sizeof(lost_event);
3071 lost_event.id = event->id;
3072 lost_event.lost = atomic_xchg(&data->lost, 0);
3074 perf_output_put(handle, lost_event);
3077 return 0;
3079 fail:
3080 atomic_inc(&data->lost);
3081 perf_output_unlock(handle);
3082 out:
3083 rcu_read_unlock();
3085 return -ENOSPC;
3088 void perf_output_end(struct perf_output_handle *handle)
3090 struct perf_event *event = handle->event;
3091 struct perf_mmap_data *data = handle->data;
3093 int wakeup_events = event->attr.wakeup_events;
3095 if (handle->sample && wakeup_events) {
3096 int events = atomic_inc_return(&data->events);
3097 if (events >= wakeup_events) {
3098 atomic_sub(wakeup_events, &data->events);
3099 atomic_set(&data->wakeup, 1);
3103 perf_output_unlock(handle);
3104 rcu_read_unlock();
3107 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3110 * only top level events have the pid namespace they were created in
3112 if (event->parent)
3113 event = event->parent;
3115 return task_tgid_nr_ns(p, event->ns);
3118 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3121 * only top level events have the pid namespace they were created in
3123 if (event->parent)
3124 event = event->parent;
3126 return task_pid_nr_ns(p, event->ns);
3129 static void perf_output_read_one(struct perf_output_handle *handle,
3130 struct perf_event *event)
3132 u64 read_format = event->attr.read_format;
3133 u64 values[4];
3134 int n = 0;
3136 values[n++] = atomic64_read(&event->count);
3137 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3138 values[n++] = event->total_time_enabled +
3139 atomic64_read(&event->child_total_time_enabled);
3141 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3142 values[n++] = event->total_time_running +
3143 atomic64_read(&event->child_total_time_running);
3145 if (read_format & PERF_FORMAT_ID)
3146 values[n++] = primary_event_id(event);
3148 perf_output_copy(handle, values, n * sizeof(u64));
3152 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3154 static void perf_output_read_group(struct perf_output_handle *handle,
3155 struct perf_event *event)
3157 struct perf_event *leader = event->group_leader, *sub;
3158 u64 read_format = event->attr.read_format;
3159 u64 values[5];
3160 int n = 0;
3162 values[n++] = 1 + leader->nr_siblings;
3164 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3165 values[n++] = leader->total_time_enabled;
3167 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3168 values[n++] = leader->total_time_running;
3170 if (leader != event)
3171 leader->pmu->read(leader);
3173 values[n++] = atomic64_read(&leader->count);
3174 if (read_format & PERF_FORMAT_ID)
3175 values[n++] = primary_event_id(leader);
3177 perf_output_copy(handle, values, n * sizeof(u64));
3179 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3180 n = 0;
3182 if (sub != event)
3183 sub->pmu->read(sub);
3185 values[n++] = atomic64_read(&sub->count);
3186 if (read_format & PERF_FORMAT_ID)
3187 values[n++] = primary_event_id(sub);
3189 perf_output_copy(handle, values, n * sizeof(u64));
3193 static void perf_output_read(struct perf_output_handle *handle,
3194 struct perf_event *event)
3196 if (event->attr.read_format & PERF_FORMAT_GROUP)
3197 perf_output_read_group(handle, event);
3198 else
3199 perf_output_read_one(handle, event);
3202 void perf_output_sample(struct perf_output_handle *handle,
3203 struct perf_event_header *header,
3204 struct perf_sample_data *data,
3205 struct perf_event *event)
3207 u64 sample_type = data->type;
3209 perf_output_put(handle, *header);
3211 if (sample_type & PERF_SAMPLE_IP)
3212 perf_output_put(handle, data->ip);
3214 if (sample_type & PERF_SAMPLE_TID)
3215 perf_output_put(handle, data->tid_entry);
3217 if (sample_type & PERF_SAMPLE_TIME)
3218 perf_output_put(handle, data->time);
3220 if (sample_type & PERF_SAMPLE_ADDR)
3221 perf_output_put(handle, data->addr);
3223 if (sample_type & PERF_SAMPLE_ID)
3224 perf_output_put(handle, data->id);
3226 if (sample_type & PERF_SAMPLE_STREAM_ID)
3227 perf_output_put(handle, data->stream_id);
3229 if (sample_type & PERF_SAMPLE_CPU)
3230 perf_output_put(handle, data->cpu_entry);
3232 if (sample_type & PERF_SAMPLE_PERIOD)
3233 perf_output_put(handle, data->period);
3235 if (sample_type & PERF_SAMPLE_READ)
3236 perf_output_read(handle, event);
3238 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3239 if (data->callchain) {
3240 int size = 1;
3242 if (data->callchain)
3243 size += data->callchain->nr;
3245 size *= sizeof(u64);
3247 perf_output_copy(handle, data->callchain, size);
3248 } else {
3249 u64 nr = 0;
3250 perf_output_put(handle, nr);
3254 if (sample_type & PERF_SAMPLE_RAW) {
3255 if (data->raw) {
3256 perf_output_put(handle, data->raw->size);
3257 perf_output_copy(handle, data->raw->data,
3258 data->raw->size);
3259 } else {
3260 struct {
3261 u32 size;
3262 u32 data;
3263 } raw = {
3264 .size = sizeof(u32),
3265 .data = 0,
3267 perf_output_put(handle, raw);
3272 void perf_prepare_sample(struct perf_event_header *header,
3273 struct perf_sample_data *data,
3274 struct perf_event *event,
3275 struct pt_regs *regs)
3277 u64 sample_type = event->attr.sample_type;
3279 data->type = sample_type;
3281 header->type = PERF_RECORD_SAMPLE;
3282 header->size = sizeof(*header);
3284 header->misc = 0;
3285 header->misc |= perf_misc_flags(regs);
3287 if (sample_type & PERF_SAMPLE_IP) {
3288 data->ip = perf_instruction_pointer(regs);
3290 header->size += sizeof(data->ip);
3293 if (sample_type & PERF_SAMPLE_TID) {
3294 /* namespace issues */
3295 data->tid_entry.pid = perf_event_pid(event, current);
3296 data->tid_entry.tid = perf_event_tid(event, current);
3298 header->size += sizeof(data->tid_entry);
3301 if (sample_type & PERF_SAMPLE_TIME) {
3302 data->time = perf_clock();
3304 header->size += sizeof(data->time);
3307 if (sample_type & PERF_SAMPLE_ADDR)
3308 header->size += sizeof(data->addr);
3310 if (sample_type & PERF_SAMPLE_ID) {
3311 data->id = primary_event_id(event);
3313 header->size += sizeof(data->id);
3316 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3317 data->stream_id = event->id;
3319 header->size += sizeof(data->stream_id);
3322 if (sample_type & PERF_SAMPLE_CPU) {
3323 data->cpu_entry.cpu = raw_smp_processor_id();
3324 data->cpu_entry.reserved = 0;
3326 header->size += sizeof(data->cpu_entry);
3329 if (sample_type & PERF_SAMPLE_PERIOD)
3330 header->size += sizeof(data->period);
3332 if (sample_type & PERF_SAMPLE_READ)
3333 header->size += perf_event_read_size(event);
3335 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3336 int size = 1;
3338 data->callchain = perf_callchain(regs);
3340 if (data->callchain)
3341 size += data->callchain->nr;
3343 header->size += size * sizeof(u64);
3346 if (sample_type & PERF_SAMPLE_RAW) {
3347 int size = sizeof(u32);
3349 if (data->raw)
3350 size += data->raw->size;
3351 else
3352 size += sizeof(u32);
3354 WARN_ON_ONCE(size & (sizeof(u64)-1));
3355 header->size += size;
3359 static void perf_event_output(struct perf_event *event, int nmi,
3360 struct perf_sample_data *data,
3361 struct pt_regs *regs)
3363 struct perf_output_handle handle;
3364 struct perf_event_header header;
3366 perf_prepare_sample(&header, data, event, regs);
3368 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3369 return;
3371 perf_output_sample(&handle, &header, data, event);
3373 perf_output_end(&handle);
3377 * read event_id
3380 struct perf_read_event {
3381 struct perf_event_header header;
3383 u32 pid;
3384 u32 tid;
3387 static void
3388 perf_event_read_event(struct perf_event *event,
3389 struct task_struct *task)
3391 struct perf_output_handle handle;
3392 struct perf_read_event read_event = {
3393 .header = {
3394 .type = PERF_RECORD_READ,
3395 .misc = 0,
3396 .size = sizeof(read_event) + perf_event_read_size(event),
3398 .pid = perf_event_pid(event, task),
3399 .tid = perf_event_tid(event, task),
3401 int ret;
3403 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3404 if (ret)
3405 return;
3407 perf_output_put(&handle, read_event);
3408 perf_output_read(&handle, event);
3410 perf_output_end(&handle);
3414 * task tracking -- fork/exit
3416 * enabled by: attr.comm | attr.mmap | attr.task
3419 struct perf_task_event {
3420 struct task_struct *task;
3421 struct perf_event_context *task_ctx;
3423 struct {
3424 struct perf_event_header header;
3426 u32 pid;
3427 u32 ppid;
3428 u32 tid;
3429 u32 ptid;
3430 u64 time;
3431 } event_id;
3434 static void perf_event_task_output(struct perf_event *event,
3435 struct perf_task_event *task_event)
3437 struct perf_output_handle handle;
3438 struct task_struct *task = task_event->task;
3439 unsigned long flags;
3440 int size, ret;
3443 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3444 * in perf_output_lock() from interrupt context, it's game over.
3446 local_irq_save(flags);
3448 size = task_event->event_id.header.size;
3449 ret = perf_output_begin(&handle, event, size, 0, 0);
3451 if (ret) {
3452 local_irq_restore(flags);
3453 return;
3456 task_event->event_id.pid = perf_event_pid(event, task);
3457 task_event->event_id.ppid = perf_event_pid(event, current);
3459 task_event->event_id.tid = perf_event_tid(event, task);
3460 task_event->event_id.ptid = perf_event_tid(event, current);
3462 perf_output_put(&handle, task_event->event_id);
3464 perf_output_end(&handle);
3465 local_irq_restore(flags);
3468 static int perf_event_task_match(struct perf_event *event)
3470 if (event->state < PERF_EVENT_STATE_INACTIVE)
3471 return 0;
3473 if (event->cpu != -1 && event->cpu != smp_processor_id())
3474 return 0;
3476 if (event->attr.comm || event->attr.mmap || event->attr.task)
3477 return 1;
3479 return 0;
3482 static void perf_event_task_ctx(struct perf_event_context *ctx,
3483 struct perf_task_event *task_event)
3485 struct perf_event *event;
3487 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3488 if (perf_event_task_match(event))
3489 perf_event_task_output(event, task_event);
3493 static void perf_event_task_event(struct perf_task_event *task_event)
3495 struct perf_cpu_context *cpuctx;
3496 struct perf_event_context *ctx = task_event->task_ctx;
3498 rcu_read_lock();
3499 cpuctx = &get_cpu_var(perf_cpu_context);
3500 perf_event_task_ctx(&cpuctx->ctx, task_event);
3501 if (!ctx)
3502 ctx = rcu_dereference(current->perf_event_ctxp);
3503 if (ctx)
3504 perf_event_task_ctx(ctx, task_event);
3505 put_cpu_var(perf_cpu_context);
3506 rcu_read_unlock();
3509 static void perf_event_task(struct task_struct *task,
3510 struct perf_event_context *task_ctx,
3511 int new)
3513 struct perf_task_event task_event;
3515 if (!atomic_read(&nr_comm_events) &&
3516 !atomic_read(&nr_mmap_events) &&
3517 !atomic_read(&nr_task_events))
3518 return;
3520 task_event = (struct perf_task_event){
3521 .task = task,
3522 .task_ctx = task_ctx,
3523 .event_id = {
3524 .header = {
3525 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3526 .misc = 0,
3527 .size = sizeof(task_event.event_id),
3529 /* .pid */
3530 /* .ppid */
3531 /* .tid */
3532 /* .ptid */
3533 .time = perf_clock(),
3537 perf_event_task_event(&task_event);
3540 void perf_event_fork(struct task_struct *task)
3542 perf_event_task(task, NULL, 1);
3546 * comm tracking
3549 struct perf_comm_event {
3550 struct task_struct *task;
3551 char *comm;
3552 int comm_size;
3554 struct {
3555 struct perf_event_header header;
3557 u32 pid;
3558 u32 tid;
3559 } event_id;
3562 static void perf_event_comm_output(struct perf_event *event,
3563 struct perf_comm_event *comm_event)
3565 struct perf_output_handle handle;
3566 int size = comm_event->event_id.header.size;
3567 int ret = perf_output_begin(&handle, event, size, 0, 0);
3569 if (ret)
3570 return;
3572 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3573 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3575 perf_output_put(&handle, comm_event->event_id);
3576 perf_output_copy(&handle, comm_event->comm,
3577 comm_event->comm_size);
3578 perf_output_end(&handle);
3581 static int perf_event_comm_match(struct perf_event *event)
3583 if (event->state < PERF_EVENT_STATE_INACTIVE)
3584 return 0;
3586 if (event->cpu != -1 && event->cpu != smp_processor_id())
3587 return 0;
3589 if (event->attr.comm)
3590 return 1;
3592 return 0;
3595 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3596 struct perf_comm_event *comm_event)
3598 struct perf_event *event;
3600 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3601 if (perf_event_comm_match(event))
3602 perf_event_comm_output(event, comm_event);
3606 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3608 struct perf_cpu_context *cpuctx;
3609 struct perf_event_context *ctx;
3610 unsigned int size;
3611 char comm[TASK_COMM_LEN];
3613 memset(comm, 0, sizeof(comm));
3614 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3615 size = ALIGN(strlen(comm)+1, sizeof(u64));
3617 comm_event->comm = comm;
3618 comm_event->comm_size = size;
3620 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3622 rcu_read_lock();
3623 cpuctx = &get_cpu_var(perf_cpu_context);
3624 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3625 ctx = rcu_dereference(current->perf_event_ctxp);
3626 if (ctx)
3627 perf_event_comm_ctx(ctx, comm_event);
3628 put_cpu_var(perf_cpu_context);
3629 rcu_read_unlock();
3632 void perf_event_comm(struct task_struct *task)
3634 struct perf_comm_event comm_event;
3636 if (task->perf_event_ctxp)
3637 perf_event_enable_on_exec(task);
3639 if (!atomic_read(&nr_comm_events))
3640 return;
3642 comm_event = (struct perf_comm_event){
3643 .task = task,
3644 /* .comm */
3645 /* .comm_size */
3646 .event_id = {
3647 .header = {
3648 .type = PERF_RECORD_COMM,
3649 .misc = 0,
3650 /* .size */
3652 /* .pid */
3653 /* .tid */
3657 perf_event_comm_event(&comm_event);
3661 * mmap tracking
3664 struct perf_mmap_event {
3665 struct vm_area_struct *vma;
3667 const char *file_name;
3668 int file_size;
3670 struct {
3671 struct perf_event_header header;
3673 u32 pid;
3674 u32 tid;
3675 u64 start;
3676 u64 len;
3677 u64 pgoff;
3678 } event_id;
3681 static void perf_event_mmap_output(struct perf_event *event,
3682 struct perf_mmap_event *mmap_event)
3684 struct perf_output_handle handle;
3685 int size = mmap_event->event_id.header.size;
3686 int ret = perf_output_begin(&handle, event, size, 0, 0);
3688 if (ret)
3689 return;
3691 mmap_event->event_id.pid = perf_event_pid(event, current);
3692 mmap_event->event_id.tid = perf_event_tid(event, current);
3694 perf_output_put(&handle, mmap_event->event_id);
3695 perf_output_copy(&handle, mmap_event->file_name,
3696 mmap_event->file_size);
3697 perf_output_end(&handle);
3700 static int perf_event_mmap_match(struct perf_event *event,
3701 struct perf_mmap_event *mmap_event)
3703 if (event->state < PERF_EVENT_STATE_INACTIVE)
3704 return 0;
3706 if (event->cpu != -1 && event->cpu != smp_processor_id())
3707 return 0;
3709 if (event->attr.mmap)
3710 return 1;
3712 return 0;
3715 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3716 struct perf_mmap_event *mmap_event)
3718 struct perf_event *event;
3720 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3721 if (perf_event_mmap_match(event, mmap_event))
3722 perf_event_mmap_output(event, mmap_event);
3726 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3728 struct perf_cpu_context *cpuctx;
3729 struct perf_event_context *ctx;
3730 struct vm_area_struct *vma = mmap_event->vma;
3731 struct file *file = vma->vm_file;
3732 unsigned int size;
3733 char tmp[16];
3734 char *buf = NULL;
3735 const char *name;
3737 memset(tmp, 0, sizeof(tmp));
3739 if (file) {
3741 * d_path works from the end of the buffer backwards, so we
3742 * need to add enough zero bytes after the string to handle
3743 * the 64bit alignment we do later.
3745 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3746 if (!buf) {
3747 name = strncpy(tmp, "//enomem", sizeof(tmp));
3748 goto got_name;
3750 name = d_path(&file->f_path, buf, PATH_MAX);
3751 if (IS_ERR(name)) {
3752 name = strncpy(tmp, "//toolong", sizeof(tmp));
3753 goto got_name;
3755 } else {
3756 if (arch_vma_name(mmap_event->vma)) {
3757 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3758 sizeof(tmp));
3759 goto got_name;
3762 if (!vma->vm_mm) {
3763 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3764 goto got_name;
3767 name = strncpy(tmp, "//anon", sizeof(tmp));
3768 goto got_name;
3771 got_name:
3772 size = ALIGN(strlen(name)+1, sizeof(u64));
3774 mmap_event->file_name = name;
3775 mmap_event->file_size = size;
3777 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3779 rcu_read_lock();
3780 cpuctx = &get_cpu_var(perf_cpu_context);
3781 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3782 ctx = rcu_dereference(current->perf_event_ctxp);
3783 if (ctx)
3784 perf_event_mmap_ctx(ctx, mmap_event);
3785 put_cpu_var(perf_cpu_context);
3786 rcu_read_unlock();
3788 kfree(buf);
3791 void __perf_event_mmap(struct vm_area_struct *vma)
3793 struct perf_mmap_event mmap_event;
3795 if (!atomic_read(&nr_mmap_events))
3796 return;
3798 mmap_event = (struct perf_mmap_event){
3799 .vma = vma,
3800 /* .file_name */
3801 /* .file_size */
3802 .event_id = {
3803 .header = {
3804 .type = PERF_RECORD_MMAP,
3805 .misc = 0,
3806 /* .size */
3808 /* .pid */
3809 /* .tid */
3810 .start = vma->vm_start,
3811 .len = vma->vm_end - vma->vm_start,
3812 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3816 perf_event_mmap_event(&mmap_event);
3820 * IRQ throttle logging
3823 static void perf_log_throttle(struct perf_event *event, int enable)
3825 struct perf_output_handle handle;
3826 int ret;
3828 struct {
3829 struct perf_event_header header;
3830 u64 time;
3831 u64 id;
3832 u64 stream_id;
3833 } throttle_event = {
3834 .header = {
3835 .type = PERF_RECORD_THROTTLE,
3836 .misc = 0,
3837 .size = sizeof(throttle_event),
3839 .time = perf_clock(),
3840 .id = primary_event_id(event),
3841 .stream_id = event->id,
3844 if (enable)
3845 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3847 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3848 if (ret)
3849 return;
3851 perf_output_put(&handle, throttle_event);
3852 perf_output_end(&handle);
3856 * Generic event overflow handling, sampling.
3859 static int __perf_event_overflow(struct perf_event *event, int nmi,
3860 int throttle, struct perf_sample_data *data,
3861 struct pt_regs *regs)
3863 int events = atomic_read(&event->event_limit);
3864 struct hw_perf_event *hwc = &event->hw;
3865 int ret = 0;
3867 throttle = (throttle && event->pmu->unthrottle != NULL);
3869 if (!throttle) {
3870 hwc->interrupts++;
3871 } else {
3872 if (hwc->interrupts != MAX_INTERRUPTS) {
3873 hwc->interrupts++;
3874 if (HZ * hwc->interrupts >
3875 (u64)sysctl_perf_event_sample_rate) {
3876 hwc->interrupts = MAX_INTERRUPTS;
3877 perf_log_throttle(event, 0);
3878 ret = 1;
3880 } else {
3882 * Keep re-disabling events even though on the previous
3883 * pass we disabled it - just in case we raced with a
3884 * sched-in and the event got enabled again:
3886 ret = 1;
3890 if (event->attr.freq) {
3891 u64 now = perf_clock();
3892 s64 delta = now - hwc->freq_time_stamp;
3894 hwc->freq_time_stamp = now;
3896 if (delta > 0 && delta < 2*TICK_NSEC)
3897 perf_adjust_period(event, delta, hwc->last_period);
3901 * XXX event_limit might not quite work as expected on inherited
3902 * events
3905 event->pending_kill = POLL_IN;
3906 if (events && atomic_dec_and_test(&event->event_limit)) {
3907 ret = 1;
3908 event->pending_kill = POLL_HUP;
3909 if (nmi) {
3910 event->pending_disable = 1;
3911 perf_pending_queue(&event->pending,
3912 perf_pending_event);
3913 } else
3914 perf_event_disable(event);
3917 if (event->overflow_handler)
3918 event->overflow_handler(event, nmi, data, regs);
3919 else
3920 perf_event_output(event, nmi, data, regs);
3922 return ret;
3925 int perf_event_overflow(struct perf_event *event, int nmi,
3926 struct perf_sample_data *data,
3927 struct pt_regs *regs)
3929 return __perf_event_overflow(event, nmi, 1, data, regs);
3933 * Generic software event infrastructure
3937 * We directly increment event->count and keep a second value in
3938 * event->hw.period_left to count intervals. This period event
3939 * is kept in the range [-sample_period, 0] so that we can use the
3940 * sign as trigger.
3943 static u64 perf_swevent_set_period(struct perf_event *event)
3945 struct hw_perf_event *hwc = &event->hw;
3946 u64 period = hwc->last_period;
3947 u64 nr, offset;
3948 s64 old, val;
3950 hwc->last_period = hwc->sample_period;
3952 again:
3953 old = val = atomic64_read(&hwc->period_left);
3954 if (val < 0)
3955 return 0;
3957 nr = div64_u64(period + val, period);
3958 offset = nr * period;
3959 val -= offset;
3960 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3961 goto again;
3963 return nr;
3966 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3967 int nmi, struct perf_sample_data *data,
3968 struct pt_regs *regs)
3970 struct hw_perf_event *hwc = &event->hw;
3971 int throttle = 0;
3973 data->period = event->hw.last_period;
3974 if (!overflow)
3975 overflow = perf_swevent_set_period(event);
3977 if (hwc->interrupts == MAX_INTERRUPTS)
3978 return;
3980 for (; overflow; overflow--) {
3981 if (__perf_event_overflow(event, nmi, throttle,
3982 data, regs)) {
3984 * We inhibit the overflow from happening when
3985 * hwc->interrupts == MAX_INTERRUPTS.
3987 break;
3989 throttle = 1;
3993 static void perf_swevent_unthrottle(struct perf_event *event)
3996 * Nothing to do, we already reset hwc->interrupts.
4000 static void perf_swevent_add(struct perf_event *event, u64 nr,
4001 int nmi, struct perf_sample_data *data,
4002 struct pt_regs *regs)
4004 struct hw_perf_event *hwc = &event->hw;
4006 atomic64_add(nr, &event->count);
4008 if (!regs)
4009 return;
4011 if (!hwc->sample_period)
4012 return;
4014 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4015 return perf_swevent_overflow(event, 1, nmi, data, regs);
4017 if (atomic64_add_negative(nr, &hwc->period_left))
4018 return;
4020 perf_swevent_overflow(event, 0, nmi, data, regs);
4023 static int perf_swevent_is_counting(struct perf_event *event)
4026 * The event is active, we're good!
4028 if (event->state == PERF_EVENT_STATE_ACTIVE)
4029 return 1;
4032 * The event is off/error, not counting.
4034 if (event->state != PERF_EVENT_STATE_INACTIVE)
4035 return 0;
4038 * The event is inactive, if the context is active
4039 * we're part of a group that didn't make it on the 'pmu',
4040 * not counting.
4042 if (event->ctx->is_active)
4043 return 0;
4046 * We're inactive and the context is too, this means the
4047 * task is scheduled out, we're counting events that happen
4048 * to us, like migration events.
4050 return 1;
4053 static int perf_tp_event_match(struct perf_event *event,
4054 struct perf_sample_data *data);
4056 static int perf_exclude_event(struct perf_event *event,
4057 struct pt_regs *regs)
4059 if (regs) {
4060 if (event->attr.exclude_user && user_mode(regs))
4061 return 1;
4063 if (event->attr.exclude_kernel && !user_mode(regs))
4064 return 1;
4067 return 0;
4070 static int perf_swevent_match(struct perf_event *event,
4071 enum perf_type_id type,
4072 u32 event_id,
4073 struct perf_sample_data *data,
4074 struct pt_regs *regs)
4076 if (event->cpu != -1 && event->cpu != smp_processor_id())
4077 return 0;
4079 if (!perf_swevent_is_counting(event))
4080 return 0;
4082 if (event->attr.type != type)
4083 return 0;
4085 if (event->attr.config != event_id)
4086 return 0;
4088 if (perf_exclude_event(event, regs))
4089 return 0;
4091 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4092 !perf_tp_event_match(event, data))
4093 return 0;
4095 return 1;
4098 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4099 enum perf_type_id type,
4100 u32 event_id, u64 nr, int nmi,
4101 struct perf_sample_data *data,
4102 struct pt_regs *regs)
4104 struct perf_event *event;
4106 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4107 if (perf_swevent_match(event, type, event_id, data, regs))
4108 perf_swevent_add(event, nr, nmi, data, regs);
4112 int perf_swevent_get_recursion_context(void)
4114 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4115 int rctx;
4117 if (in_nmi())
4118 rctx = 3;
4119 else if (in_irq())
4120 rctx = 2;
4121 else if (in_softirq())
4122 rctx = 1;
4123 else
4124 rctx = 0;
4126 if (cpuctx->recursion[rctx]) {
4127 put_cpu_var(perf_cpu_context);
4128 return -1;
4131 cpuctx->recursion[rctx]++;
4132 barrier();
4134 return rctx;
4136 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4138 void perf_swevent_put_recursion_context(int rctx)
4140 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4141 barrier();
4142 cpuctx->recursion[rctx]--;
4143 put_cpu_var(perf_cpu_context);
4145 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4147 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4148 u64 nr, int nmi,
4149 struct perf_sample_data *data,
4150 struct pt_regs *regs)
4152 struct perf_cpu_context *cpuctx;
4153 struct perf_event_context *ctx;
4155 cpuctx = &__get_cpu_var(perf_cpu_context);
4156 rcu_read_lock();
4157 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4158 nr, nmi, data, regs);
4160 * doesn't really matter which of the child contexts the
4161 * events ends up in.
4163 ctx = rcu_dereference(current->perf_event_ctxp);
4164 if (ctx)
4165 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4166 rcu_read_unlock();
4169 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4170 struct pt_regs *regs, u64 addr)
4172 struct perf_sample_data data;
4173 int rctx;
4175 rctx = perf_swevent_get_recursion_context();
4176 if (rctx < 0)
4177 return;
4179 perf_sample_data_init(&data, addr);
4181 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4183 perf_swevent_put_recursion_context(rctx);
4186 static void perf_swevent_read(struct perf_event *event)
4190 static int perf_swevent_enable(struct perf_event *event)
4192 struct hw_perf_event *hwc = &event->hw;
4194 if (hwc->sample_period) {
4195 hwc->last_period = hwc->sample_period;
4196 perf_swevent_set_period(event);
4198 return 0;
4201 static void perf_swevent_disable(struct perf_event *event)
4205 static const struct pmu perf_ops_generic = {
4206 .enable = perf_swevent_enable,
4207 .disable = perf_swevent_disable,
4208 .read = perf_swevent_read,
4209 .unthrottle = perf_swevent_unthrottle,
4213 * hrtimer based swevent callback
4216 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4218 enum hrtimer_restart ret = HRTIMER_RESTART;
4219 struct perf_sample_data data;
4220 struct pt_regs *regs;
4221 struct perf_event *event;
4222 u64 period;
4224 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4225 event->pmu->read(event);
4227 perf_sample_data_init(&data, 0);
4228 data.period = event->hw.last_period;
4229 regs = get_irq_regs();
4231 * In case we exclude kernel IPs or are somehow not in interrupt
4232 * context, provide the next best thing, the user IP.
4234 if ((event->attr.exclude_kernel || !regs) &&
4235 !event->attr.exclude_user)
4236 regs = task_pt_regs(current);
4238 if (regs) {
4239 if (!(event->attr.exclude_idle && current->pid == 0))
4240 if (perf_event_overflow(event, 0, &data, regs))
4241 ret = HRTIMER_NORESTART;
4244 period = max_t(u64, 10000, event->hw.sample_period);
4245 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4247 return ret;
4250 static void perf_swevent_start_hrtimer(struct perf_event *event)
4252 struct hw_perf_event *hwc = &event->hw;
4254 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4255 hwc->hrtimer.function = perf_swevent_hrtimer;
4256 if (hwc->sample_period) {
4257 u64 period;
4259 if (hwc->remaining) {
4260 if (hwc->remaining < 0)
4261 period = 10000;
4262 else
4263 period = hwc->remaining;
4264 hwc->remaining = 0;
4265 } else {
4266 period = max_t(u64, 10000, hwc->sample_period);
4268 __hrtimer_start_range_ns(&hwc->hrtimer,
4269 ns_to_ktime(period), 0,
4270 HRTIMER_MODE_REL, 0);
4274 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4276 struct hw_perf_event *hwc = &event->hw;
4278 if (hwc->sample_period) {
4279 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4280 hwc->remaining = ktime_to_ns(remaining);
4282 hrtimer_cancel(&hwc->hrtimer);
4287 * Software event: cpu wall time clock
4290 static void cpu_clock_perf_event_update(struct perf_event *event)
4292 int cpu = raw_smp_processor_id();
4293 s64 prev;
4294 u64 now;
4296 now = cpu_clock(cpu);
4297 prev = atomic64_xchg(&event->hw.prev_count, now);
4298 atomic64_add(now - prev, &event->count);
4301 static int cpu_clock_perf_event_enable(struct perf_event *event)
4303 struct hw_perf_event *hwc = &event->hw;
4304 int cpu = raw_smp_processor_id();
4306 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4307 perf_swevent_start_hrtimer(event);
4309 return 0;
4312 static void cpu_clock_perf_event_disable(struct perf_event *event)
4314 perf_swevent_cancel_hrtimer(event);
4315 cpu_clock_perf_event_update(event);
4318 static void cpu_clock_perf_event_read(struct perf_event *event)
4320 cpu_clock_perf_event_update(event);
4323 static const struct pmu perf_ops_cpu_clock = {
4324 .enable = cpu_clock_perf_event_enable,
4325 .disable = cpu_clock_perf_event_disable,
4326 .read = cpu_clock_perf_event_read,
4330 * Software event: task time clock
4333 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4335 u64 prev;
4336 s64 delta;
4338 prev = atomic64_xchg(&event->hw.prev_count, now);
4339 delta = now - prev;
4340 atomic64_add(delta, &event->count);
4343 static int task_clock_perf_event_enable(struct perf_event *event)
4345 struct hw_perf_event *hwc = &event->hw;
4346 u64 now;
4348 now = event->ctx->time;
4350 atomic64_set(&hwc->prev_count, now);
4352 perf_swevent_start_hrtimer(event);
4354 return 0;
4357 static void task_clock_perf_event_disable(struct perf_event *event)
4359 perf_swevent_cancel_hrtimer(event);
4360 task_clock_perf_event_update(event, event->ctx->time);
4364 static void task_clock_perf_event_read(struct perf_event *event)
4366 u64 time;
4368 if (!in_nmi()) {
4369 update_context_time(event->ctx);
4370 time = event->ctx->time;
4371 } else {
4372 u64 now = perf_clock();
4373 u64 delta = now - event->ctx->timestamp;
4374 time = event->ctx->time + delta;
4377 task_clock_perf_event_update(event, time);
4380 static const struct pmu perf_ops_task_clock = {
4381 .enable = task_clock_perf_event_enable,
4382 .disable = task_clock_perf_event_disable,
4383 .read = task_clock_perf_event_read,
4386 #ifdef CONFIG_EVENT_TRACING
4388 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4389 int entry_size, struct pt_regs *regs)
4391 struct perf_sample_data data;
4392 struct perf_raw_record raw = {
4393 .size = entry_size,
4394 .data = record,
4397 perf_sample_data_init(&data, addr);
4398 data.raw = &raw;
4400 /* Trace events already protected against recursion */
4401 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4402 &data, regs);
4404 EXPORT_SYMBOL_GPL(perf_tp_event);
4406 static int perf_tp_event_match(struct perf_event *event,
4407 struct perf_sample_data *data)
4409 void *record = data->raw->data;
4411 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4412 return 1;
4413 return 0;
4416 static void tp_perf_event_destroy(struct perf_event *event)
4418 perf_trace_disable(event->attr.config);
4421 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4424 * Raw tracepoint data is a severe data leak, only allow root to
4425 * have these.
4427 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4428 perf_paranoid_tracepoint_raw() &&
4429 !capable(CAP_SYS_ADMIN))
4430 return ERR_PTR(-EPERM);
4432 if (perf_trace_enable(event->attr.config))
4433 return NULL;
4435 event->destroy = tp_perf_event_destroy;
4437 return &perf_ops_generic;
4440 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4442 char *filter_str;
4443 int ret;
4445 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4446 return -EINVAL;
4448 filter_str = strndup_user(arg, PAGE_SIZE);
4449 if (IS_ERR(filter_str))
4450 return PTR_ERR(filter_str);
4452 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4454 kfree(filter_str);
4455 return ret;
4458 static void perf_event_free_filter(struct perf_event *event)
4460 ftrace_profile_free_filter(event);
4463 #else
4465 static int perf_tp_event_match(struct perf_event *event,
4466 struct perf_sample_data *data)
4468 return 1;
4471 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4473 return NULL;
4476 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4478 return -ENOENT;
4481 static void perf_event_free_filter(struct perf_event *event)
4485 #endif /* CONFIG_EVENT_TRACING */
4487 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4488 static void bp_perf_event_destroy(struct perf_event *event)
4490 release_bp_slot(event);
4493 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4495 int err;
4497 err = register_perf_hw_breakpoint(bp);
4498 if (err)
4499 return ERR_PTR(err);
4501 bp->destroy = bp_perf_event_destroy;
4503 return &perf_ops_bp;
4506 void perf_bp_event(struct perf_event *bp, void *data)
4508 struct perf_sample_data sample;
4509 struct pt_regs *regs = data;
4511 perf_sample_data_init(&sample, bp->attr.bp_addr);
4513 if (!perf_exclude_event(bp, regs))
4514 perf_swevent_add(bp, 1, 1, &sample, regs);
4516 #else
4517 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4519 return NULL;
4522 void perf_bp_event(struct perf_event *bp, void *regs)
4525 #endif
4527 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4529 static void sw_perf_event_destroy(struct perf_event *event)
4531 u64 event_id = event->attr.config;
4533 WARN_ON(event->parent);
4535 atomic_dec(&perf_swevent_enabled[event_id]);
4538 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4540 const struct pmu *pmu = NULL;
4541 u64 event_id = event->attr.config;
4544 * Software events (currently) can't in general distinguish
4545 * between user, kernel and hypervisor events.
4546 * However, context switches and cpu migrations are considered
4547 * to be kernel events, and page faults are never hypervisor
4548 * events.
4550 switch (event_id) {
4551 case PERF_COUNT_SW_CPU_CLOCK:
4552 pmu = &perf_ops_cpu_clock;
4554 break;
4555 case PERF_COUNT_SW_TASK_CLOCK:
4557 * If the user instantiates this as a per-cpu event,
4558 * use the cpu_clock event instead.
4560 if (event->ctx->task)
4561 pmu = &perf_ops_task_clock;
4562 else
4563 pmu = &perf_ops_cpu_clock;
4565 break;
4566 case PERF_COUNT_SW_PAGE_FAULTS:
4567 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4568 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4569 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4570 case PERF_COUNT_SW_CPU_MIGRATIONS:
4571 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4572 case PERF_COUNT_SW_EMULATION_FAULTS:
4573 if (!event->parent) {
4574 atomic_inc(&perf_swevent_enabled[event_id]);
4575 event->destroy = sw_perf_event_destroy;
4577 pmu = &perf_ops_generic;
4578 break;
4581 return pmu;
4585 * Allocate and initialize a event structure
4587 static struct perf_event *
4588 perf_event_alloc(struct perf_event_attr *attr,
4589 int cpu,
4590 struct perf_event_context *ctx,
4591 struct perf_event *group_leader,
4592 struct perf_event *parent_event,
4593 perf_overflow_handler_t overflow_handler,
4594 gfp_t gfpflags)
4596 const struct pmu *pmu;
4597 struct perf_event *event;
4598 struct hw_perf_event *hwc;
4599 long err;
4601 event = kzalloc(sizeof(*event), gfpflags);
4602 if (!event)
4603 return ERR_PTR(-ENOMEM);
4606 * Single events are their own group leaders, with an
4607 * empty sibling list:
4609 if (!group_leader)
4610 group_leader = event;
4612 mutex_init(&event->child_mutex);
4613 INIT_LIST_HEAD(&event->child_list);
4615 INIT_LIST_HEAD(&event->group_entry);
4616 INIT_LIST_HEAD(&event->event_entry);
4617 INIT_LIST_HEAD(&event->sibling_list);
4618 init_waitqueue_head(&event->waitq);
4620 mutex_init(&event->mmap_mutex);
4622 event->cpu = cpu;
4623 event->attr = *attr;
4624 event->group_leader = group_leader;
4625 event->pmu = NULL;
4626 event->ctx = ctx;
4627 event->oncpu = -1;
4629 event->parent = parent_event;
4631 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4632 event->id = atomic64_inc_return(&perf_event_id);
4634 event->state = PERF_EVENT_STATE_INACTIVE;
4636 if (!overflow_handler && parent_event)
4637 overflow_handler = parent_event->overflow_handler;
4639 event->overflow_handler = overflow_handler;
4641 if (attr->disabled)
4642 event->state = PERF_EVENT_STATE_OFF;
4644 pmu = NULL;
4646 hwc = &event->hw;
4647 hwc->sample_period = attr->sample_period;
4648 if (attr->freq && attr->sample_freq)
4649 hwc->sample_period = 1;
4650 hwc->last_period = hwc->sample_period;
4652 atomic64_set(&hwc->period_left, hwc->sample_period);
4655 * we currently do not support PERF_FORMAT_GROUP on inherited events
4657 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4658 goto done;
4660 switch (attr->type) {
4661 case PERF_TYPE_RAW:
4662 case PERF_TYPE_HARDWARE:
4663 case PERF_TYPE_HW_CACHE:
4664 pmu = hw_perf_event_init(event);
4665 break;
4667 case PERF_TYPE_SOFTWARE:
4668 pmu = sw_perf_event_init(event);
4669 break;
4671 case PERF_TYPE_TRACEPOINT:
4672 pmu = tp_perf_event_init(event);
4673 break;
4675 case PERF_TYPE_BREAKPOINT:
4676 pmu = bp_perf_event_init(event);
4677 break;
4680 default:
4681 break;
4683 done:
4684 err = 0;
4685 if (!pmu)
4686 err = -EINVAL;
4687 else if (IS_ERR(pmu))
4688 err = PTR_ERR(pmu);
4690 if (err) {
4691 if (event->ns)
4692 put_pid_ns(event->ns);
4693 kfree(event);
4694 return ERR_PTR(err);
4697 event->pmu = pmu;
4699 if (!event->parent) {
4700 atomic_inc(&nr_events);
4701 if (event->attr.mmap)
4702 atomic_inc(&nr_mmap_events);
4703 if (event->attr.comm)
4704 atomic_inc(&nr_comm_events);
4705 if (event->attr.task)
4706 atomic_inc(&nr_task_events);
4709 return event;
4712 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4713 struct perf_event_attr *attr)
4715 u32 size;
4716 int ret;
4718 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4719 return -EFAULT;
4722 * zero the full structure, so that a short copy will be nice.
4724 memset(attr, 0, sizeof(*attr));
4726 ret = get_user(size, &uattr->size);
4727 if (ret)
4728 return ret;
4730 if (size > PAGE_SIZE) /* silly large */
4731 goto err_size;
4733 if (!size) /* abi compat */
4734 size = PERF_ATTR_SIZE_VER0;
4736 if (size < PERF_ATTR_SIZE_VER0)
4737 goto err_size;
4740 * If we're handed a bigger struct than we know of,
4741 * ensure all the unknown bits are 0 - i.e. new
4742 * user-space does not rely on any kernel feature
4743 * extensions we dont know about yet.
4745 if (size > sizeof(*attr)) {
4746 unsigned char __user *addr;
4747 unsigned char __user *end;
4748 unsigned char val;
4750 addr = (void __user *)uattr + sizeof(*attr);
4751 end = (void __user *)uattr + size;
4753 for (; addr < end; addr++) {
4754 ret = get_user(val, addr);
4755 if (ret)
4756 return ret;
4757 if (val)
4758 goto err_size;
4760 size = sizeof(*attr);
4763 ret = copy_from_user(attr, uattr, size);
4764 if (ret)
4765 return -EFAULT;
4768 * If the type exists, the corresponding creation will verify
4769 * the attr->config.
4771 if (attr->type >= PERF_TYPE_MAX)
4772 return -EINVAL;
4774 if (attr->__reserved_1)
4775 return -EINVAL;
4777 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4778 return -EINVAL;
4780 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4781 return -EINVAL;
4783 out:
4784 return ret;
4786 err_size:
4787 put_user(sizeof(*attr), &uattr->size);
4788 ret = -E2BIG;
4789 goto out;
4792 static int
4793 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
4795 struct perf_mmap_data *data = NULL, *old_data = NULL;
4796 int ret = -EINVAL;
4798 if (!output_event)
4799 goto set;
4801 /* don't allow circular references */
4802 if (event == output_event)
4803 goto out;
4805 set:
4806 mutex_lock(&event->mmap_mutex);
4807 /* Can't redirect output if we've got an active mmap() */
4808 if (atomic_read(&event->mmap_count))
4809 goto unlock;
4811 if (output_event) {
4812 /* get the buffer we want to redirect to */
4813 data = perf_mmap_data_get(output_event);
4814 if (!data)
4815 goto unlock;
4818 old_data = event->data;
4819 rcu_assign_pointer(event->data, data);
4820 ret = 0;
4821 unlock:
4822 mutex_unlock(&event->mmap_mutex);
4824 if (old_data)
4825 perf_mmap_data_put(old_data);
4826 out:
4827 return ret;
4831 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4833 * @attr_uptr: event_id type attributes for monitoring/sampling
4834 * @pid: target pid
4835 * @cpu: target cpu
4836 * @group_fd: group leader event fd
4838 SYSCALL_DEFINE5(perf_event_open,
4839 struct perf_event_attr __user *, attr_uptr,
4840 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4842 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
4843 struct perf_event_attr attr;
4844 struct perf_event_context *ctx;
4845 struct file *event_file = NULL;
4846 struct file *group_file = NULL;
4847 int event_fd;
4848 int fput_needed = 0;
4849 int err;
4851 /* for future expandability... */
4852 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4853 return -EINVAL;
4855 err = perf_copy_attr(attr_uptr, &attr);
4856 if (err)
4857 return err;
4859 if (!attr.exclude_kernel) {
4860 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4861 return -EACCES;
4864 if (attr.freq) {
4865 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4866 return -EINVAL;
4869 event_fd = get_unused_fd_flags(O_RDWR);
4870 if (event_fd < 0)
4871 return event_fd;
4874 * Get the target context (task or percpu):
4876 ctx = find_get_context(pid, cpu);
4877 if (IS_ERR(ctx)) {
4878 err = PTR_ERR(ctx);
4879 goto err_fd;
4882 if (group_fd != -1) {
4883 group_leader = perf_fget_light(group_fd, &fput_needed);
4884 if (IS_ERR(group_leader)) {
4885 err = PTR_ERR(group_leader);
4886 goto err_put_context;
4888 group_file = group_leader->filp;
4889 if (flags & PERF_FLAG_FD_OUTPUT)
4890 output_event = group_leader;
4891 if (flags & PERF_FLAG_FD_NO_GROUP)
4892 group_leader = NULL;
4896 * Look up the group leader (we will attach this event to it):
4898 if (group_leader) {
4899 err = -EINVAL;
4902 * Do not allow a recursive hierarchy (this new sibling
4903 * becoming part of another group-sibling):
4905 if (group_leader->group_leader != group_leader)
4906 goto err_put_context;
4908 * Do not allow to attach to a group in a different
4909 * task or CPU context:
4911 if (group_leader->ctx != ctx)
4912 goto err_put_context;
4914 * Only a group leader can be exclusive or pinned
4916 if (attr.exclusive || attr.pinned)
4917 goto err_put_context;
4920 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4921 NULL, NULL, GFP_KERNEL);
4922 if (IS_ERR(event)) {
4923 err = PTR_ERR(event);
4924 goto err_put_context;
4927 if (output_event) {
4928 err = perf_event_set_output(event, output_event);
4929 if (err)
4930 goto err_free_put_context;
4933 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
4934 if (IS_ERR(event_file)) {
4935 err = PTR_ERR(event_file);
4936 goto err_free_put_context;
4939 event->filp = event_file;
4940 WARN_ON_ONCE(ctx->parent_ctx);
4941 mutex_lock(&ctx->mutex);
4942 perf_install_in_context(ctx, event, cpu);
4943 ++ctx->generation;
4944 mutex_unlock(&ctx->mutex);
4946 event->owner = current;
4947 get_task_struct(current);
4948 mutex_lock(&current->perf_event_mutex);
4949 list_add_tail(&event->owner_entry, &current->perf_event_list);
4950 mutex_unlock(&current->perf_event_mutex);
4952 fput_light(group_file, fput_needed);
4953 fd_install(event_fd, event_file);
4954 return event_fd;
4956 err_free_put_context:
4957 free_event(event);
4958 err_put_context:
4959 fput_light(group_file, fput_needed);
4960 put_ctx(ctx);
4961 err_fd:
4962 put_unused_fd(event_fd);
4963 return err;
4967 * perf_event_create_kernel_counter
4969 * @attr: attributes of the counter to create
4970 * @cpu: cpu in which the counter is bound
4971 * @pid: task to profile
4973 struct perf_event *
4974 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4975 pid_t pid,
4976 perf_overflow_handler_t overflow_handler)
4978 struct perf_event *event;
4979 struct perf_event_context *ctx;
4980 int err;
4983 * Get the target context (task or percpu):
4986 ctx = find_get_context(pid, cpu);
4987 if (IS_ERR(ctx)) {
4988 err = PTR_ERR(ctx);
4989 goto err_exit;
4992 event = perf_event_alloc(attr, cpu, ctx, NULL,
4993 NULL, overflow_handler, GFP_KERNEL);
4994 if (IS_ERR(event)) {
4995 err = PTR_ERR(event);
4996 goto err_put_context;
4999 event->filp = NULL;
5000 WARN_ON_ONCE(ctx->parent_ctx);
5001 mutex_lock(&ctx->mutex);
5002 perf_install_in_context(ctx, event, cpu);
5003 ++ctx->generation;
5004 mutex_unlock(&ctx->mutex);
5006 event->owner = current;
5007 get_task_struct(current);
5008 mutex_lock(&current->perf_event_mutex);
5009 list_add_tail(&event->owner_entry, &current->perf_event_list);
5010 mutex_unlock(&current->perf_event_mutex);
5012 return event;
5014 err_put_context:
5015 put_ctx(ctx);
5016 err_exit:
5017 return ERR_PTR(err);
5019 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5022 * inherit a event from parent task to child task:
5024 static struct perf_event *
5025 inherit_event(struct perf_event *parent_event,
5026 struct task_struct *parent,
5027 struct perf_event_context *parent_ctx,
5028 struct task_struct *child,
5029 struct perf_event *group_leader,
5030 struct perf_event_context *child_ctx)
5032 struct perf_event *child_event;
5035 * Instead of creating recursive hierarchies of events,
5036 * we link inherited events back to the original parent,
5037 * which has a filp for sure, which we use as the reference
5038 * count:
5040 if (parent_event->parent)
5041 parent_event = parent_event->parent;
5043 child_event = perf_event_alloc(&parent_event->attr,
5044 parent_event->cpu, child_ctx,
5045 group_leader, parent_event,
5046 NULL, GFP_KERNEL);
5047 if (IS_ERR(child_event))
5048 return child_event;
5049 get_ctx(child_ctx);
5052 * Make the child state follow the state of the parent event,
5053 * not its attr.disabled bit. We hold the parent's mutex,
5054 * so we won't race with perf_event_{en, dis}able_family.
5056 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5057 child_event->state = PERF_EVENT_STATE_INACTIVE;
5058 else
5059 child_event->state = PERF_EVENT_STATE_OFF;
5061 if (parent_event->attr.freq) {
5062 u64 sample_period = parent_event->hw.sample_period;
5063 struct hw_perf_event *hwc = &child_event->hw;
5065 hwc->sample_period = sample_period;
5066 hwc->last_period = sample_period;
5068 atomic64_set(&hwc->period_left, sample_period);
5071 child_event->overflow_handler = parent_event->overflow_handler;
5074 * Link it up in the child's context:
5076 add_event_to_ctx(child_event, child_ctx);
5079 * Get a reference to the parent filp - we will fput it
5080 * when the child event exits. This is safe to do because
5081 * we are in the parent and we know that the filp still
5082 * exists and has a nonzero count:
5084 atomic_long_inc(&parent_event->filp->f_count);
5087 * Link this into the parent event's child list
5089 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5090 mutex_lock(&parent_event->child_mutex);
5091 list_add_tail(&child_event->child_list, &parent_event->child_list);
5092 mutex_unlock(&parent_event->child_mutex);
5094 return child_event;
5097 static int inherit_group(struct perf_event *parent_event,
5098 struct task_struct *parent,
5099 struct perf_event_context *parent_ctx,
5100 struct task_struct *child,
5101 struct perf_event_context *child_ctx)
5103 struct perf_event *leader;
5104 struct perf_event *sub;
5105 struct perf_event *child_ctr;
5107 leader = inherit_event(parent_event, parent, parent_ctx,
5108 child, NULL, child_ctx);
5109 if (IS_ERR(leader))
5110 return PTR_ERR(leader);
5111 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5112 child_ctr = inherit_event(sub, parent, parent_ctx,
5113 child, leader, child_ctx);
5114 if (IS_ERR(child_ctr))
5115 return PTR_ERR(child_ctr);
5117 return 0;
5120 static void sync_child_event(struct perf_event *child_event,
5121 struct task_struct *child)
5123 struct perf_event *parent_event = child_event->parent;
5124 u64 child_val;
5126 if (child_event->attr.inherit_stat)
5127 perf_event_read_event(child_event, child);
5129 child_val = atomic64_read(&child_event->count);
5132 * Add back the child's count to the parent's count:
5134 atomic64_add(child_val, &parent_event->count);
5135 atomic64_add(child_event->total_time_enabled,
5136 &parent_event->child_total_time_enabled);
5137 atomic64_add(child_event->total_time_running,
5138 &parent_event->child_total_time_running);
5141 * Remove this event from the parent's list
5143 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5144 mutex_lock(&parent_event->child_mutex);
5145 list_del_init(&child_event->child_list);
5146 mutex_unlock(&parent_event->child_mutex);
5149 * Release the parent event, if this was the last
5150 * reference to it.
5152 fput(parent_event->filp);
5155 static void
5156 __perf_event_exit_task(struct perf_event *child_event,
5157 struct perf_event_context *child_ctx,
5158 struct task_struct *child)
5160 struct perf_event *parent_event;
5162 perf_event_remove_from_context(child_event);
5164 parent_event = child_event->parent;
5166 * It can happen that parent exits first, and has events
5167 * that are still around due to the child reference. These
5168 * events need to be zapped - but otherwise linger.
5170 if (parent_event) {
5171 sync_child_event(child_event, child);
5172 free_event(child_event);
5177 * When a child task exits, feed back event values to parent events.
5179 void perf_event_exit_task(struct task_struct *child)
5181 struct perf_event *child_event, *tmp;
5182 struct perf_event_context *child_ctx;
5183 unsigned long flags;
5185 if (likely(!child->perf_event_ctxp)) {
5186 perf_event_task(child, NULL, 0);
5187 return;
5190 local_irq_save(flags);
5192 * We can't reschedule here because interrupts are disabled,
5193 * and either child is current or it is a task that can't be
5194 * scheduled, so we are now safe from rescheduling changing
5195 * our context.
5197 child_ctx = child->perf_event_ctxp;
5198 __perf_event_task_sched_out(child_ctx);
5201 * Take the context lock here so that if find_get_context is
5202 * reading child->perf_event_ctxp, we wait until it has
5203 * incremented the context's refcount before we do put_ctx below.
5205 raw_spin_lock(&child_ctx->lock);
5206 child->perf_event_ctxp = NULL;
5208 * If this context is a clone; unclone it so it can't get
5209 * swapped to another process while we're removing all
5210 * the events from it.
5212 unclone_ctx(child_ctx);
5213 update_context_time(child_ctx);
5214 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5217 * Report the task dead after unscheduling the events so that we
5218 * won't get any samples after PERF_RECORD_EXIT. We can however still
5219 * get a few PERF_RECORD_READ events.
5221 perf_event_task(child, child_ctx, 0);
5224 * We can recurse on the same lock type through:
5226 * __perf_event_exit_task()
5227 * sync_child_event()
5228 * fput(parent_event->filp)
5229 * perf_release()
5230 * mutex_lock(&ctx->mutex)
5232 * But since its the parent context it won't be the same instance.
5234 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5236 again:
5237 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5238 group_entry)
5239 __perf_event_exit_task(child_event, child_ctx, child);
5241 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5242 group_entry)
5243 __perf_event_exit_task(child_event, child_ctx, child);
5246 * If the last event was a group event, it will have appended all
5247 * its siblings to the list, but we obtained 'tmp' before that which
5248 * will still point to the list head terminating the iteration.
5250 if (!list_empty(&child_ctx->pinned_groups) ||
5251 !list_empty(&child_ctx->flexible_groups))
5252 goto again;
5254 mutex_unlock(&child_ctx->mutex);
5256 put_ctx(child_ctx);
5259 static void perf_free_event(struct perf_event *event,
5260 struct perf_event_context *ctx)
5262 struct perf_event *parent = event->parent;
5264 if (WARN_ON_ONCE(!parent))
5265 return;
5267 mutex_lock(&parent->child_mutex);
5268 list_del_init(&event->child_list);
5269 mutex_unlock(&parent->child_mutex);
5271 fput(parent->filp);
5273 list_del_event(event, ctx);
5274 free_event(event);
5278 * free an unexposed, unused context as created by inheritance by
5279 * init_task below, used by fork() in case of fail.
5281 void perf_event_free_task(struct task_struct *task)
5283 struct perf_event_context *ctx = task->perf_event_ctxp;
5284 struct perf_event *event, *tmp;
5286 if (!ctx)
5287 return;
5289 mutex_lock(&ctx->mutex);
5290 again:
5291 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5292 perf_free_event(event, ctx);
5294 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5295 group_entry)
5296 perf_free_event(event, ctx);
5298 if (!list_empty(&ctx->pinned_groups) ||
5299 !list_empty(&ctx->flexible_groups))
5300 goto again;
5302 mutex_unlock(&ctx->mutex);
5304 put_ctx(ctx);
5307 static int
5308 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5309 struct perf_event_context *parent_ctx,
5310 struct task_struct *child,
5311 int *inherited_all)
5313 int ret;
5314 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5316 if (!event->attr.inherit) {
5317 *inherited_all = 0;
5318 return 0;
5321 if (!child_ctx) {
5323 * This is executed from the parent task context, so
5324 * inherit events that have been marked for cloning.
5325 * First allocate and initialize a context for the
5326 * child.
5329 child_ctx = kzalloc(sizeof(struct perf_event_context),
5330 GFP_KERNEL);
5331 if (!child_ctx)
5332 return -ENOMEM;
5334 __perf_event_init_context(child_ctx, child);
5335 child->perf_event_ctxp = child_ctx;
5336 get_task_struct(child);
5339 ret = inherit_group(event, parent, parent_ctx,
5340 child, child_ctx);
5342 if (ret)
5343 *inherited_all = 0;
5345 return ret;
5350 * Initialize the perf_event context in task_struct
5352 int perf_event_init_task(struct task_struct *child)
5354 struct perf_event_context *child_ctx, *parent_ctx;
5355 struct perf_event_context *cloned_ctx;
5356 struct perf_event *event;
5357 struct task_struct *parent = current;
5358 int inherited_all = 1;
5359 int ret = 0;
5361 child->perf_event_ctxp = NULL;
5363 mutex_init(&child->perf_event_mutex);
5364 INIT_LIST_HEAD(&child->perf_event_list);
5366 if (likely(!parent->perf_event_ctxp))
5367 return 0;
5370 * If the parent's context is a clone, pin it so it won't get
5371 * swapped under us.
5373 parent_ctx = perf_pin_task_context(parent);
5376 * No need to check if parent_ctx != NULL here; since we saw
5377 * it non-NULL earlier, the only reason for it to become NULL
5378 * is if we exit, and since we're currently in the middle of
5379 * a fork we can't be exiting at the same time.
5383 * Lock the parent list. No need to lock the child - not PID
5384 * hashed yet and not running, so nobody can access it.
5386 mutex_lock(&parent_ctx->mutex);
5389 * We dont have to disable NMIs - we are only looking at
5390 * the list, not manipulating it:
5392 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5393 ret = inherit_task_group(event, parent, parent_ctx, child,
5394 &inherited_all);
5395 if (ret)
5396 break;
5399 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5400 ret = inherit_task_group(event, parent, parent_ctx, child,
5401 &inherited_all);
5402 if (ret)
5403 break;
5406 child_ctx = child->perf_event_ctxp;
5408 if (child_ctx && inherited_all) {
5410 * Mark the child context as a clone of the parent
5411 * context, or of whatever the parent is a clone of.
5412 * Note that if the parent is a clone, it could get
5413 * uncloned at any point, but that doesn't matter
5414 * because the list of events and the generation
5415 * count can't have changed since we took the mutex.
5417 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5418 if (cloned_ctx) {
5419 child_ctx->parent_ctx = cloned_ctx;
5420 child_ctx->parent_gen = parent_ctx->parent_gen;
5421 } else {
5422 child_ctx->parent_ctx = parent_ctx;
5423 child_ctx->parent_gen = parent_ctx->generation;
5425 get_ctx(child_ctx->parent_ctx);
5428 mutex_unlock(&parent_ctx->mutex);
5430 perf_unpin_context(parent_ctx);
5432 return ret;
5435 static void __init perf_event_init_all_cpus(void)
5437 int cpu;
5438 struct perf_cpu_context *cpuctx;
5440 for_each_possible_cpu(cpu) {
5441 cpuctx = &per_cpu(perf_cpu_context, cpu);
5442 __perf_event_init_context(&cpuctx->ctx, NULL);
5446 static void __cpuinit perf_event_init_cpu(int cpu)
5448 struct perf_cpu_context *cpuctx;
5450 cpuctx = &per_cpu(perf_cpu_context, cpu);
5452 spin_lock(&perf_resource_lock);
5453 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5454 spin_unlock(&perf_resource_lock);
5457 #ifdef CONFIG_HOTPLUG_CPU
5458 static void __perf_event_exit_cpu(void *info)
5460 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5461 struct perf_event_context *ctx = &cpuctx->ctx;
5462 struct perf_event *event, *tmp;
5464 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5465 __perf_event_remove_from_context(event);
5466 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5467 __perf_event_remove_from_context(event);
5469 static void perf_event_exit_cpu(int cpu)
5471 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5472 struct perf_event_context *ctx = &cpuctx->ctx;
5474 mutex_lock(&ctx->mutex);
5475 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5476 mutex_unlock(&ctx->mutex);
5478 #else
5479 static inline void perf_event_exit_cpu(int cpu) { }
5480 #endif
5482 static int __cpuinit
5483 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5485 unsigned int cpu = (long)hcpu;
5487 switch (action) {
5489 case CPU_UP_PREPARE:
5490 case CPU_UP_PREPARE_FROZEN:
5491 perf_event_init_cpu(cpu);
5492 break;
5494 case CPU_DOWN_PREPARE:
5495 case CPU_DOWN_PREPARE_FROZEN:
5496 perf_event_exit_cpu(cpu);
5497 break;
5499 default:
5500 break;
5503 return NOTIFY_OK;
5507 * This has to have a higher priority than migration_notifier in sched.c.
5509 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5510 .notifier_call = perf_cpu_notify,
5511 .priority = 20,
5514 void __init perf_event_init(void)
5516 perf_event_init_all_cpus();
5517 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5518 (void *)(long)smp_processor_id());
5519 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5520 (void *)(long)smp_processor_id());
5521 register_cpu_notifier(&perf_cpu_nb);
5524 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5525 struct sysdev_class_attribute *attr,
5526 char *buf)
5528 return sprintf(buf, "%d\n", perf_reserved_percpu);
5531 static ssize_t
5532 perf_set_reserve_percpu(struct sysdev_class *class,
5533 struct sysdev_class_attribute *attr,
5534 const char *buf,
5535 size_t count)
5537 struct perf_cpu_context *cpuctx;
5538 unsigned long val;
5539 int err, cpu, mpt;
5541 err = strict_strtoul(buf, 10, &val);
5542 if (err)
5543 return err;
5544 if (val > perf_max_events)
5545 return -EINVAL;
5547 spin_lock(&perf_resource_lock);
5548 perf_reserved_percpu = val;
5549 for_each_online_cpu(cpu) {
5550 cpuctx = &per_cpu(perf_cpu_context, cpu);
5551 raw_spin_lock_irq(&cpuctx->ctx.lock);
5552 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5553 perf_max_events - perf_reserved_percpu);
5554 cpuctx->max_pertask = mpt;
5555 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5557 spin_unlock(&perf_resource_lock);
5559 return count;
5562 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5563 struct sysdev_class_attribute *attr,
5564 char *buf)
5566 return sprintf(buf, "%d\n", perf_overcommit);
5569 static ssize_t
5570 perf_set_overcommit(struct sysdev_class *class,
5571 struct sysdev_class_attribute *attr,
5572 const char *buf, size_t count)
5574 unsigned long val;
5575 int err;
5577 err = strict_strtoul(buf, 10, &val);
5578 if (err)
5579 return err;
5580 if (val > 1)
5581 return -EINVAL;
5583 spin_lock(&perf_resource_lock);
5584 perf_overcommit = val;
5585 spin_unlock(&perf_resource_lock);
5587 return count;
5590 static SYSDEV_CLASS_ATTR(
5591 reserve_percpu,
5592 0644,
5593 perf_show_reserve_percpu,
5594 perf_set_reserve_percpu
5597 static SYSDEV_CLASS_ATTR(
5598 overcommit,
5599 0644,
5600 perf_show_overcommit,
5601 perf_set_overcommit
5604 static struct attribute *perfclass_attrs[] = {
5605 &attr_reserve_percpu.attr,
5606 &attr_overcommit.attr,
5607 NULL
5610 static struct attribute_group perfclass_attr_group = {
5611 .attrs = perfclass_attrs,
5612 .name = "perf_events",
5615 static int __init perf_event_sysfs_init(void)
5617 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5618 &perfclass_attr_group);
5620 device_initcall(perf_event_sysfs_init);