memstick: init sysfs attributes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / libfs.c
blobb016af912ff22912b01b2c6c7438e41682177b10
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/mutex.h>
12 #include <linux/exportfs.h>
13 #include <linux/writeback.h>
14 #include <linux/buffer_head.h>
16 #include <asm/uaccess.h>
18 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
19 struct kstat *stat)
21 struct inode *inode = dentry->d_inode;
22 generic_fillattr(inode, stat);
23 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
24 return 0;
27 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
29 buf->f_type = dentry->d_sb->s_magic;
30 buf->f_bsize = PAGE_CACHE_SIZE;
31 buf->f_namelen = NAME_MAX;
32 return 0;
36 * Retaining negative dentries for an in-memory filesystem just wastes
37 * memory and lookup time: arrange for them to be deleted immediately.
39 static int simple_delete_dentry(struct dentry *dentry)
41 return 1;
45 * Lookup the data. This is trivial - if the dentry didn't already
46 * exist, we know it is negative. Set d_op to delete negative dentries.
48 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
50 static const struct dentry_operations simple_dentry_operations = {
51 .d_delete = simple_delete_dentry,
54 if (dentry->d_name.len > NAME_MAX)
55 return ERR_PTR(-ENAMETOOLONG);
56 dentry->d_op = &simple_dentry_operations;
57 d_add(dentry, NULL);
58 return NULL;
61 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
63 return 0;
66 int dcache_dir_open(struct inode *inode, struct file *file)
68 static struct qstr cursor_name = {.len = 1, .name = "."};
70 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
72 return file->private_data ? 0 : -ENOMEM;
75 int dcache_dir_close(struct inode *inode, struct file *file)
77 dput(file->private_data);
78 return 0;
81 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
83 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
84 switch (origin) {
85 case 1:
86 offset += file->f_pos;
87 case 0:
88 if (offset >= 0)
89 break;
90 default:
91 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
92 return -EINVAL;
94 if (offset != file->f_pos) {
95 file->f_pos = offset;
96 if (file->f_pos >= 2) {
97 struct list_head *p;
98 struct dentry *cursor = file->private_data;
99 loff_t n = file->f_pos - 2;
101 spin_lock(&dcache_lock);
102 list_del(&cursor->d_u.d_child);
103 p = file->f_path.dentry->d_subdirs.next;
104 while (n && p != &file->f_path.dentry->d_subdirs) {
105 struct dentry *next;
106 next = list_entry(p, struct dentry, d_u.d_child);
107 if (!d_unhashed(next) && next->d_inode)
108 n--;
109 p = p->next;
111 list_add_tail(&cursor->d_u.d_child, p);
112 spin_unlock(&dcache_lock);
115 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
116 return offset;
119 /* Relationship between i_mode and the DT_xxx types */
120 static inline unsigned char dt_type(struct inode *inode)
122 return (inode->i_mode >> 12) & 15;
126 * Directory is locked and all positive dentries in it are safe, since
127 * for ramfs-type trees they can't go away without unlink() or rmdir(),
128 * both impossible due to the lock on directory.
131 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
133 struct dentry *dentry = filp->f_path.dentry;
134 struct dentry *cursor = filp->private_data;
135 struct list_head *p, *q = &cursor->d_u.d_child;
136 ino_t ino;
137 int i = filp->f_pos;
139 switch (i) {
140 case 0:
141 ino = dentry->d_inode->i_ino;
142 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
143 break;
144 filp->f_pos++;
145 i++;
146 /* fallthrough */
147 case 1:
148 ino = parent_ino(dentry);
149 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
150 break;
151 filp->f_pos++;
152 i++;
153 /* fallthrough */
154 default:
155 spin_lock(&dcache_lock);
156 if (filp->f_pos == 2)
157 list_move(q, &dentry->d_subdirs);
159 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
160 struct dentry *next;
161 next = list_entry(p, struct dentry, d_u.d_child);
162 if (d_unhashed(next) || !next->d_inode)
163 continue;
165 spin_unlock(&dcache_lock);
166 if (filldir(dirent, next->d_name.name,
167 next->d_name.len, filp->f_pos,
168 next->d_inode->i_ino,
169 dt_type(next->d_inode)) < 0)
170 return 0;
171 spin_lock(&dcache_lock);
172 /* next is still alive */
173 list_move(q, p);
174 p = q;
175 filp->f_pos++;
177 spin_unlock(&dcache_lock);
179 return 0;
182 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
184 return -EISDIR;
187 const struct file_operations simple_dir_operations = {
188 .open = dcache_dir_open,
189 .release = dcache_dir_close,
190 .llseek = dcache_dir_lseek,
191 .read = generic_read_dir,
192 .readdir = dcache_readdir,
193 .fsync = simple_sync_file,
196 const struct inode_operations simple_dir_inode_operations = {
197 .lookup = simple_lookup,
200 static const struct super_operations simple_super_operations = {
201 .statfs = simple_statfs,
205 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
206 * will never be mountable)
208 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
209 const struct super_operations *ops, unsigned long magic,
210 struct vfsmount *mnt)
212 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
213 struct dentry *dentry;
214 struct inode *root;
215 struct qstr d_name = {.name = name, .len = strlen(name)};
217 if (IS_ERR(s))
218 return PTR_ERR(s);
220 s->s_flags = MS_NOUSER;
221 s->s_maxbytes = MAX_LFS_FILESIZE;
222 s->s_blocksize = PAGE_SIZE;
223 s->s_blocksize_bits = PAGE_SHIFT;
224 s->s_magic = magic;
225 s->s_op = ops ? ops : &simple_super_operations;
226 s->s_time_gran = 1;
227 root = new_inode(s);
228 if (!root)
229 goto Enomem;
231 * since this is the first inode, make it number 1. New inodes created
232 * after this must take care not to collide with it (by passing
233 * max_reserved of 1 to iunique).
235 root->i_ino = 1;
236 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
237 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
238 dentry = d_alloc(NULL, &d_name);
239 if (!dentry) {
240 iput(root);
241 goto Enomem;
243 dentry->d_sb = s;
244 dentry->d_parent = dentry;
245 d_instantiate(dentry, root);
246 s->s_root = dentry;
247 s->s_flags |= MS_ACTIVE;
248 simple_set_mnt(mnt, s);
249 return 0;
251 Enomem:
252 deactivate_locked_super(s);
253 return -ENOMEM;
256 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
258 struct inode *inode = old_dentry->d_inode;
260 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
261 inc_nlink(inode);
262 atomic_inc(&inode->i_count);
263 dget(dentry);
264 d_instantiate(dentry, inode);
265 return 0;
268 static inline int simple_positive(struct dentry *dentry)
270 return dentry->d_inode && !d_unhashed(dentry);
273 int simple_empty(struct dentry *dentry)
275 struct dentry *child;
276 int ret = 0;
278 spin_lock(&dcache_lock);
279 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
280 if (simple_positive(child))
281 goto out;
282 ret = 1;
283 out:
284 spin_unlock(&dcache_lock);
285 return ret;
288 int simple_unlink(struct inode *dir, struct dentry *dentry)
290 struct inode *inode = dentry->d_inode;
292 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
293 drop_nlink(inode);
294 dput(dentry);
295 return 0;
298 int simple_rmdir(struct inode *dir, struct dentry *dentry)
300 if (!simple_empty(dentry))
301 return -ENOTEMPTY;
303 drop_nlink(dentry->d_inode);
304 simple_unlink(dir, dentry);
305 drop_nlink(dir);
306 return 0;
309 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
310 struct inode *new_dir, struct dentry *new_dentry)
312 struct inode *inode = old_dentry->d_inode;
313 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
315 if (!simple_empty(new_dentry))
316 return -ENOTEMPTY;
318 if (new_dentry->d_inode) {
319 simple_unlink(new_dir, new_dentry);
320 if (they_are_dirs)
321 drop_nlink(old_dir);
322 } else if (they_are_dirs) {
323 drop_nlink(old_dir);
324 inc_nlink(new_dir);
327 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
328 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
330 return 0;
333 int simple_readpage(struct file *file, struct page *page)
335 clear_highpage(page);
336 flush_dcache_page(page);
337 SetPageUptodate(page);
338 unlock_page(page);
339 return 0;
342 int simple_write_begin(struct file *file, struct address_space *mapping,
343 loff_t pos, unsigned len, unsigned flags,
344 struct page **pagep, void **fsdata)
346 struct page *page;
347 pgoff_t index;
349 index = pos >> PAGE_CACHE_SHIFT;
351 page = grab_cache_page_write_begin(mapping, index, flags);
352 if (!page)
353 return -ENOMEM;
355 *pagep = page;
357 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
358 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
360 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
362 return 0;
366 * simple_write_end - .write_end helper for non-block-device FSes
367 * @available: See .write_end of address_space_operations
368 * @file: "
369 * @mapping: "
370 * @pos: "
371 * @len: "
372 * @copied: "
373 * @page: "
374 * @fsdata: "
376 * simple_write_end does the minimum needed for updating a page after writing is
377 * done. It has the same API signature as the .write_end of
378 * address_space_operations vector. So it can just be set onto .write_end for
379 * FSes that don't need any other processing. i_mutex is assumed to be held.
380 * Block based filesystems should use generic_write_end().
381 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
382 * is not called, so a filesystem that actually does store data in .write_inode
383 * should extend on what's done here with a call to mark_inode_dirty() in the
384 * case that i_size has changed.
386 int simple_write_end(struct file *file, struct address_space *mapping,
387 loff_t pos, unsigned len, unsigned copied,
388 struct page *page, void *fsdata)
390 struct inode *inode = page->mapping->host;
391 loff_t last_pos = pos + copied;
393 /* zero the stale part of the page if we did a short copy */
394 if (copied < len) {
395 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
397 zero_user(page, from + copied, len - copied);
400 if (!PageUptodate(page))
401 SetPageUptodate(page);
403 * No need to use i_size_read() here, the i_size
404 * cannot change under us because we hold the i_mutex.
406 if (last_pos > inode->i_size)
407 i_size_write(inode, last_pos);
409 set_page_dirty(page);
410 unlock_page(page);
411 page_cache_release(page);
413 return copied;
417 * the inodes created here are not hashed. If you use iunique to generate
418 * unique inode values later for this filesystem, then you must take care
419 * to pass it an appropriate max_reserved value to avoid collisions.
421 int simple_fill_super(struct super_block *s, unsigned long magic,
422 struct tree_descr *files)
424 struct inode *inode;
425 struct dentry *root;
426 struct dentry *dentry;
427 int i;
429 s->s_blocksize = PAGE_CACHE_SIZE;
430 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
431 s->s_magic = magic;
432 s->s_op = &simple_super_operations;
433 s->s_time_gran = 1;
435 inode = new_inode(s);
436 if (!inode)
437 return -ENOMEM;
439 * because the root inode is 1, the files array must not contain an
440 * entry at index 1
442 inode->i_ino = 1;
443 inode->i_mode = S_IFDIR | 0755;
444 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
445 inode->i_op = &simple_dir_inode_operations;
446 inode->i_fop = &simple_dir_operations;
447 inode->i_nlink = 2;
448 root = d_alloc_root(inode);
449 if (!root) {
450 iput(inode);
451 return -ENOMEM;
453 for (i = 0; !files->name || files->name[0]; i++, files++) {
454 if (!files->name)
455 continue;
457 /* warn if it tries to conflict with the root inode */
458 if (unlikely(i == 1))
459 printk(KERN_WARNING "%s: %s passed in a files array"
460 "with an index of 1!\n", __func__,
461 s->s_type->name);
463 dentry = d_alloc_name(root, files->name);
464 if (!dentry)
465 goto out;
466 inode = new_inode(s);
467 if (!inode)
468 goto out;
469 inode->i_mode = S_IFREG | files->mode;
470 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
471 inode->i_fop = files->ops;
472 inode->i_ino = i;
473 d_add(dentry, inode);
475 s->s_root = root;
476 return 0;
477 out:
478 d_genocide(root);
479 dput(root);
480 return -ENOMEM;
483 static DEFINE_SPINLOCK(pin_fs_lock);
485 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
487 struct vfsmount *mnt = NULL;
488 spin_lock(&pin_fs_lock);
489 if (unlikely(!*mount)) {
490 spin_unlock(&pin_fs_lock);
491 mnt = vfs_kern_mount(type, 0, type->name, NULL);
492 if (IS_ERR(mnt))
493 return PTR_ERR(mnt);
494 spin_lock(&pin_fs_lock);
495 if (!*mount)
496 *mount = mnt;
498 mntget(*mount);
499 ++*count;
500 spin_unlock(&pin_fs_lock);
501 mntput(mnt);
502 return 0;
505 void simple_release_fs(struct vfsmount **mount, int *count)
507 struct vfsmount *mnt;
508 spin_lock(&pin_fs_lock);
509 mnt = *mount;
510 if (!--*count)
511 *mount = NULL;
512 spin_unlock(&pin_fs_lock);
513 mntput(mnt);
517 * simple_read_from_buffer - copy data from the buffer to user space
518 * @to: the user space buffer to read to
519 * @count: the maximum number of bytes to read
520 * @ppos: the current position in the buffer
521 * @from: the buffer to read from
522 * @available: the size of the buffer
524 * The simple_read_from_buffer() function reads up to @count bytes from the
525 * buffer @from at offset @ppos into the user space address starting at @to.
527 * On success, the number of bytes read is returned and the offset @ppos is
528 * advanced by this number, or negative value is returned on error.
530 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
531 const void *from, size_t available)
533 loff_t pos = *ppos;
534 size_t ret;
536 if (pos < 0)
537 return -EINVAL;
538 if (pos >= available || !count)
539 return 0;
540 if (count > available - pos)
541 count = available - pos;
542 ret = copy_to_user(to, from + pos, count);
543 if (ret == count)
544 return -EFAULT;
545 count -= ret;
546 *ppos = pos + count;
547 return count;
551 * memory_read_from_buffer - copy data from the buffer
552 * @to: the kernel space buffer to read to
553 * @count: the maximum number of bytes to read
554 * @ppos: the current position in the buffer
555 * @from: the buffer to read from
556 * @available: the size of the buffer
558 * The memory_read_from_buffer() function reads up to @count bytes from the
559 * buffer @from at offset @ppos into the kernel space address starting at @to.
561 * On success, the number of bytes read is returned and the offset @ppos is
562 * advanced by this number, or negative value is returned on error.
564 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
565 const void *from, size_t available)
567 loff_t pos = *ppos;
569 if (pos < 0)
570 return -EINVAL;
571 if (pos >= available)
572 return 0;
573 if (count > available - pos)
574 count = available - pos;
575 memcpy(to, from + pos, count);
576 *ppos = pos + count;
578 return count;
582 * Transaction based IO.
583 * The file expects a single write which triggers the transaction, and then
584 * possibly a read which collects the result - which is stored in a
585 * file-local buffer.
588 void simple_transaction_set(struct file *file, size_t n)
590 struct simple_transaction_argresp *ar = file->private_data;
592 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
595 * The barrier ensures that ar->size will really remain zero until
596 * ar->data is ready for reading.
598 smp_mb();
599 ar->size = n;
602 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
604 struct simple_transaction_argresp *ar;
605 static DEFINE_SPINLOCK(simple_transaction_lock);
607 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
608 return ERR_PTR(-EFBIG);
610 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
611 if (!ar)
612 return ERR_PTR(-ENOMEM);
614 spin_lock(&simple_transaction_lock);
616 /* only one write allowed per open */
617 if (file->private_data) {
618 spin_unlock(&simple_transaction_lock);
619 free_page((unsigned long)ar);
620 return ERR_PTR(-EBUSY);
623 file->private_data = ar;
625 spin_unlock(&simple_transaction_lock);
627 if (copy_from_user(ar->data, buf, size))
628 return ERR_PTR(-EFAULT);
630 return ar->data;
633 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
635 struct simple_transaction_argresp *ar = file->private_data;
637 if (!ar)
638 return 0;
639 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
642 int simple_transaction_release(struct inode *inode, struct file *file)
644 free_page((unsigned long)file->private_data);
645 return 0;
648 /* Simple attribute files */
650 struct simple_attr {
651 int (*get)(void *, u64 *);
652 int (*set)(void *, u64);
653 char get_buf[24]; /* enough to store a u64 and "\n\0" */
654 char set_buf[24];
655 void *data;
656 const char *fmt; /* format for read operation */
657 struct mutex mutex; /* protects access to these buffers */
660 /* simple_attr_open is called by an actual attribute open file operation
661 * to set the attribute specific access operations. */
662 int simple_attr_open(struct inode *inode, struct file *file,
663 int (*get)(void *, u64 *), int (*set)(void *, u64),
664 const char *fmt)
666 struct simple_attr *attr;
668 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
669 if (!attr)
670 return -ENOMEM;
672 attr->get = get;
673 attr->set = set;
674 attr->data = inode->i_private;
675 attr->fmt = fmt;
676 mutex_init(&attr->mutex);
678 file->private_data = attr;
680 return nonseekable_open(inode, file);
683 int simple_attr_release(struct inode *inode, struct file *file)
685 kfree(file->private_data);
686 return 0;
689 /* read from the buffer that is filled with the get function */
690 ssize_t simple_attr_read(struct file *file, char __user *buf,
691 size_t len, loff_t *ppos)
693 struct simple_attr *attr;
694 size_t size;
695 ssize_t ret;
697 attr = file->private_data;
699 if (!attr->get)
700 return -EACCES;
702 ret = mutex_lock_interruptible(&attr->mutex);
703 if (ret)
704 return ret;
706 if (*ppos) { /* continued read */
707 size = strlen(attr->get_buf);
708 } else { /* first read */
709 u64 val;
710 ret = attr->get(attr->data, &val);
711 if (ret)
712 goto out;
714 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
715 attr->fmt, (unsigned long long)val);
718 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
719 out:
720 mutex_unlock(&attr->mutex);
721 return ret;
724 /* interpret the buffer as a number to call the set function with */
725 ssize_t simple_attr_write(struct file *file, const char __user *buf,
726 size_t len, loff_t *ppos)
728 struct simple_attr *attr;
729 u64 val;
730 size_t size;
731 ssize_t ret;
733 attr = file->private_data;
734 if (!attr->set)
735 return -EACCES;
737 ret = mutex_lock_interruptible(&attr->mutex);
738 if (ret)
739 return ret;
741 ret = -EFAULT;
742 size = min(sizeof(attr->set_buf) - 1, len);
743 if (copy_from_user(attr->set_buf, buf, size))
744 goto out;
746 attr->set_buf[size] = '\0';
747 val = simple_strtol(attr->set_buf, NULL, 0);
748 ret = attr->set(attr->data, val);
749 if (ret == 0)
750 ret = len; /* on success, claim we got the whole input */
751 out:
752 mutex_unlock(&attr->mutex);
753 return ret;
757 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
758 * @sb: filesystem to do the file handle conversion on
759 * @fid: file handle to convert
760 * @fh_len: length of the file handle in bytes
761 * @fh_type: type of file handle
762 * @get_inode: filesystem callback to retrieve inode
764 * This function decodes @fid as long as it has one of the well-known
765 * Linux filehandle types and calls @get_inode on it to retrieve the
766 * inode for the object specified in the file handle.
768 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
769 int fh_len, int fh_type, struct inode *(*get_inode)
770 (struct super_block *sb, u64 ino, u32 gen))
772 struct inode *inode = NULL;
774 if (fh_len < 2)
775 return NULL;
777 switch (fh_type) {
778 case FILEID_INO32_GEN:
779 case FILEID_INO32_GEN_PARENT:
780 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
781 break;
784 return d_obtain_alias(inode);
786 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
789 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
790 * @sb: filesystem to do the file handle conversion on
791 * @fid: file handle to convert
792 * @fh_len: length of the file handle in bytes
793 * @fh_type: type of file handle
794 * @get_inode: filesystem callback to retrieve inode
796 * This function decodes @fid as long as it has one of the well-known
797 * Linux filehandle types and calls @get_inode on it to retrieve the
798 * inode for the _parent_ object specified in the file handle if it
799 * is specified in the file handle, or NULL otherwise.
801 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
802 int fh_len, int fh_type, struct inode *(*get_inode)
803 (struct super_block *sb, u64 ino, u32 gen))
805 struct inode *inode = NULL;
807 if (fh_len <= 2)
808 return NULL;
810 switch (fh_type) {
811 case FILEID_INO32_GEN_PARENT:
812 inode = get_inode(sb, fid->i32.parent_ino,
813 (fh_len > 3 ? fid->i32.parent_gen : 0));
814 break;
817 return d_obtain_alias(inode);
819 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
821 int simple_fsync(struct file *file, struct dentry *dentry, int datasync)
823 struct writeback_control wbc = {
824 .sync_mode = WB_SYNC_ALL,
825 .nr_to_write = 0, /* metadata-only; caller takes care of data */
827 struct inode *inode = dentry->d_inode;
828 int err;
829 int ret;
831 ret = sync_mapping_buffers(inode->i_mapping);
832 if (!(inode->i_state & I_DIRTY))
833 return ret;
834 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
835 return ret;
837 err = sync_inode(inode, &wbc);
838 if (ret == 0)
839 ret = err;
840 return ret;
842 EXPORT_SYMBOL(simple_fsync);
844 EXPORT_SYMBOL(dcache_dir_close);
845 EXPORT_SYMBOL(dcache_dir_lseek);
846 EXPORT_SYMBOL(dcache_dir_open);
847 EXPORT_SYMBOL(dcache_readdir);
848 EXPORT_SYMBOL(generic_read_dir);
849 EXPORT_SYMBOL(get_sb_pseudo);
850 EXPORT_SYMBOL(simple_write_begin);
851 EXPORT_SYMBOL(simple_write_end);
852 EXPORT_SYMBOL(simple_dir_inode_operations);
853 EXPORT_SYMBOL(simple_dir_operations);
854 EXPORT_SYMBOL(simple_empty);
855 EXPORT_SYMBOL(simple_fill_super);
856 EXPORT_SYMBOL(simple_getattr);
857 EXPORT_SYMBOL(simple_link);
858 EXPORT_SYMBOL(simple_lookup);
859 EXPORT_SYMBOL(simple_pin_fs);
860 EXPORT_SYMBOL(simple_readpage);
861 EXPORT_SYMBOL(simple_release_fs);
862 EXPORT_SYMBOL(simple_rename);
863 EXPORT_SYMBOL(simple_rmdir);
864 EXPORT_SYMBOL(simple_statfs);
865 EXPORT_SYMBOL(simple_sync_file);
866 EXPORT_SYMBOL(simple_unlink);
867 EXPORT_SYMBOL(simple_read_from_buffer);
868 EXPORT_SYMBOL(memory_read_from_buffer);
869 EXPORT_SYMBOL(simple_transaction_set);
870 EXPORT_SYMBOL(simple_transaction_get);
871 EXPORT_SYMBOL(simple_transaction_read);
872 EXPORT_SYMBOL(simple_transaction_release);
873 EXPORT_SYMBOL_GPL(simple_attr_open);
874 EXPORT_SYMBOL_GPL(simple_attr_release);
875 EXPORT_SYMBOL_GPL(simple_attr_read);
876 EXPORT_SYMBOL_GPL(simple_attr_write);