slub: Add dummy functions for the !SLUB_DEBUG case
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slub.c
blobc1add106c4317f15743e10ab26bc340cdd5f0c27
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
86 * Overloading of page flags that are otherwise used for LRU management.
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
112 static inline int kmem_cache_debug(struct kmem_cache *s)
114 #ifdef CONFIG_SLUB_DEBUG
115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 return 0;
118 #endif
122 * Issues still to be resolved:
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 * - Variable sizing of the per node arrays
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
136 #define MIN_PARTIAL 5
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
143 #define MAX_PARTIAL 10
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156 * Set of flags that will prevent slab merging
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 SLAB_CACHE_DMA | SLAB_NOTRACK)
165 #define OO_SHIFT 16
166 #define OO_MASK ((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON 0x80000000UL /* Poison object */
172 static int kmem_size = sizeof(struct kmem_cache);
174 #ifdef CONFIG_SMP
175 static struct notifier_block slab_notifier;
176 #endif
178 static enum {
179 DOWN, /* No slab functionality available */
180 PARTIAL, /* Kmem_cache_node works */
181 UP, /* Everything works but does not show up in sysfs */
182 SYSFS /* Sysfs up */
183 } slab_state = DOWN;
185 /* A list of all slab caches on the system */
186 static DECLARE_RWSEM(slub_lock);
187 static LIST_HEAD(slab_caches);
190 * Tracking user of a slab.
192 struct track {
193 unsigned long addr; /* Called from address */
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
201 #ifdef CONFIG_SLUB_DEBUG
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s)
212 kfree(s);
215 #endif
217 static inline void stat(struct kmem_cache *s, enum stat_item si)
219 #ifdef CONFIG_SLUB_STATS
220 __this_cpu_inc(s->cpu_slab->stat[si]);
221 #endif
224 /********************************************************************
225 * Core slab cache functions
226 *******************************************************************/
228 int slab_is_available(void)
230 return slab_state >= UP;
233 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235 #ifdef CONFIG_NUMA
236 return s->node[node];
237 #else
238 return &s->local_node;
239 #endif
242 /* Verify that a pointer has an address that is valid within a slab page */
243 static inline int check_valid_pointer(struct kmem_cache *s,
244 struct page *page, const void *object)
246 void *base;
248 if (!object)
249 return 1;
251 base = page_address(page);
252 if (object < base || object >= base + page->objects * s->size ||
253 (object - base) % s->size) {
254 return 0;
257 return 1;
260 static inline void *get_freepointer(struct kmem_cache *s, void *object)
262 return *(void **)(object + s->offset);
265 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 *(void **)(object + s->offset) = fp;
270 /* Loop over all objects in a slab */
271 #define for_each_object(__p, __s, __addr, __objects) \
272 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
273 __p += (__s)->size)
275 /* Scan freelist */
276 #define for_each_free_object(__p, __s, __free) \
277 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
279 /* Determine object index from a given position */
280 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 return (p - addr) / s->size;
285 static inline struct kmem_cache_order_objects oo_make(int order,
286 unsigned long size)
288 struct kmem_cache_order_objects x = {
289 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
292 return x;
295 static inline int oo_order(struct kmem_cache_order_objects x)
297 return x.x >> OO_SHIFT;
300 static inline int oo_objects(struct kmem_cache_order_objects x)
302 return x.x & OO_MASK;
305 #ifdef CONFIG_SLUB_DEBUG
307 * Debug settings:
309 #ifdef CONFIG_SLUB_DEBUG_ON
310 static int slub_debug = DEBUG_DEFAULT_FLAGS;
311 #else
312 static int slub_debug;
313 #endif
315 static char *slub_debug_slabs;
316 static int disable_higher_order_debug;
319 * Object debugging
321 static void print_section(char *text, u8 *addr, unsigned int length)
323 int i, offset;
324 int newline = 1;
325 char ascii[17];
327 ascii[16] = 0;
329 for (i = 0; i < length; i++) {
330 if (newline) {
331 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
332 newline = 0;
334 printk(KERN_CONT " %02x", addr[i]);
335 offset = i % 16;
336 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
337 if (offset == 15) {
338 printk(KERN_CONT " %s\n", ascii);
339 newline = 1;
342 if (!newline) {
343 i %= 16;
344 while (i < 16) {
345 printk(KERN_CONT " ");
346 ascii[i] = ' ';
347 i++;
349 printk(KERN_CONT " %s\n", ascii);
353 static struct track *get_track(struct kmem_cache *s, void *object,
354 enum track_item alloc)
356 struct track *p;
358 if (s->offset)
359 p = object + s->offset + sizeof(void *);
360 else
361 p = object + s->inuse;
363 return p + alloc;
366 static void set_track(struct kmem_cache *s, void *object,
367 enum track_item alloc, unsigned long addr)
369 struct track *p = get_track(s, object, alloc);
371 if (addr) {
372 p->addr = addr;
373 p->cpu = smp_processor_id();
374 p->pid = current->pid;
375 p->when = jiffies;
376 } else
377 memset(p, 0, sizeof(struct track));
380 static void init_tracking(struct kmem_cache *s, void *object)
382 if (!(s->flags & SLAB_STORE_USER))
383 return;
385 set_track(s, object, TRACK_FREE, 0UL);
386 set_track(s, object, TRACK_ALLOC, 0UL);
389 static void print_track(const char *s, struct track *t)
391 if (!t->addr)
392 return;
394 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
395 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
398 static void print_tracking(struct kmem_cache *s, void *object)
400 if (!(s->flags & SLAB_STORE_USER))
401 return;
403 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
404 print_track("Freed", get_track(s, object, TRACK_FREE));
407 static void print_page_info(struct page *page)
409 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
410 page, page->objects, page->inuse, page->freelist, page->flags);
414 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
416 va_list args;
417 char buf[100];
419 va_start(args, fmt);
420 vsnprintf(buf, sizeof(buf), fmt, args);
421 va_end(args);
422 printk(KERN_ERR "========================================"
423 "=====================================\n");
424 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
425 printk(KERN_ERR "----------------------------------------"
426 "-------------------------------------\n\n");
429 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
431 va_list args;
432 char buf[100];
434 va_start(args, fmt);
435 vsnprintf(buf, sizeof(buf), fmt, args);
436 va_end(args);
437 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
440 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
442 unsigned int off; /* Offset of last byte */
443 u8 *addr = page_address(page);
445 print_tracking(s, p);
447 print_page_info(page);
449 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
450 p, p - addr, get_freepointer(s, p));
452 if (p > addr + 16)
453 print_section("Bytes b4", p - 16, 16);
455 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
457 if (s->flags & SLAB_RED_ZONE)
458 print_section("Redzone", p + s->objsize,
459 s->inuse - s->objsize);
461 if (s->offset)
462 off = s->offset + sizeof(void *);
463 else
464 off = s->inuse;
466 if (s->flags & SLAB_STORE_USER)
467 off += 2 * sizeof(struct track);
469 if (off != s->size)
470 /* Beginning of the filler is the free pointer */
471 print_section("Padding", p + off, s->size - off);
473 dump_stack();
476 static void object_err(struct kmem_cache *s, struct page *page,
477 u8 *object, char *reason)
479 slab_bug(s, "%s", reason);
480 print_trailer(s, page, object);
483 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
485 va_list args;
486 char buf[100];
488 va_start(args, fmt);
489 vsnprintf(buf, sizeof(buf), fmt, args);
490 va_end(args);
491 slab_bug(s, "%s", buf);
492 print_page_info(page);
493 dump_stack();
496 static void init_object(struct kmem_cache *s, void *object, int active)
498 u8 *p = object;
500 if (s->flags & __OBJECT_POISON) {
501 memset(p, POISON_FREE, s->objsize - 1);
502 p[s->objsize - 1] = POISON_END;
505 if (s->flags & SLAB_RED_ZONE)
506 memset(p + s->objsize,
507 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
508 s->inuse - s->objsize);
511 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
513 while (bytes) {
514 if (*start != (u8)value)
515 return start;
516 start++;
517 bytes--;
519 return NULL;
522 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
523 void *from, void *to)
525 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
526 memset(from, data, to - from);
529 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
530 u8 *object, char *what,
531 u8 *start, unsigned int value, unsigned int bytes)
533 u8 *fault;
534 u8 *end;
536 fault = check_bytes(start, value, bytes);
537 if (!fault)
538 return 1;
540 end = start + bytes;
541 while (end > fault && end[-1] == value)
542 end--;
544 slab_bug(s, "%s overwritten", what);
545 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
546 fault, end - 1, fault[0], value);
547 print_trailer(s, page, object);
549 restore_bytes(s, what, value, fault, end);
550 return 0;
554 * Object layout:
556 * object address
557 * Bytes of the object to be managed.
558 * If the freepointer may overlay the object then the free
559 * pointer is the first word of the object.
561 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
562 * 0xa5 (POISON_END)
564 * object + s->objsize
565 * Padding to reach word boundary. This is also used for Redzoning.
566 * Padding is extended by another word if Redzoning is enabled and
567 * objsize == inuse.
569 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
570 * 0xcc (RED_ACTIVE) for objects in use.
572 * object + s->inuse
573 * Meta data starts here.
575 * A. Free pointer (if we cannot overwrite object on free)
576 * B. Tracking data for SLAB_STORE_USER
577 * C. Padding to reach required alignment boundary or at mininum
578 * one word if debugging is on to be able to detect writes
579 * before the word boundary.
581 * Padding is done using 0x5a (POISON_INUSE)
583 * object + s->size
584 * Nothing is used beyond s->size.
586 * If slabcaches are merged then the objsize and inuse boundaries are mostly
587 * ignored. And therefore no slab options that rely on these boundaries
588 * may be used with merged slabcaches.
591 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
593 unsigned long off = s->inuse; /* The end of info */
595 if (s->offset)
596 /* Freepointer is placed after the object. */
597 off += sizeof(void *);
599 if (s->flags & SLAB_STORE_USER)
600 /* We also have user information there */
601 off += 2 * sizeof(struct track);
603 if (s->size == off)
604 return 1;
606 return check_bytes_and_report(s, page, p, "Object padding",
607 p + off, POISON_INUSE, s->size - off);
610 /* Check the pad bytes at the end of a slab page */
611 static int slab_pad_check(struct kmem_cache *s, struct page *page)
613 u8 *start;
614 u8 *fault;
615 u8 *end;
616 int length;
617 int remainder;
619 if (!(s->flags & SLAB_POISON))
620 return 1;
622 start = page_address(page);
623 length = (PAGE_SIZE << compound_order(page));
624 end = start + length;
625 remainder = length % s->size;
626 if (!remainder)
627 return 1;
629 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
630 if (!fault)
631 return 1;
632 while (end > fault && end[-1] == POISON_INUSE)
633 end--;
635 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
636 print_section("Padding", end - remainder, remainder);
638 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
639 return 0;
642 static int check_object(struct kmem_cache *s, struct page *page,
643 void *object, int active)
645 u8 *p = object;
646 u8 *endobject = object + s->objsize;
648 if (s->flags & SLAB_RED_ZONE) {
649 unsigned int red =
650 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
652 if (!check_bytes_and_report(s, page, object, "Redzone",
653 endobject, red, s->inuse - s->objsize))
654 return 0;
655 } else {
656 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
657 check_bytes_and_report(s, page, p, "Alignment padding",
658 endobject, POISON_INUSE, s->inuse - s->objsize);
662 if (s->flags & SLAB_POISON) {
663 if (!active && (s->flags & __OBJECT_POISON) &&
664 (!check_bytes_and_report(s, page, p, "Poison", p,
665 POISON_FREE, s->objsize - 1) ||
666 !check_bytes_and_report(s, page, p, "Poison",
667 p + s->objsize - 1, POISON_END, 1)))
668 return 0;
670 * check_pad_bytes cleans up on its own.
672 check_pad_bytes(s, page, p);
675 if (!s->offset && active)
677 * Object and freepointer overlap. Cannot check
678 * freepointer while object is allocated.
680 return 1;
682 /* Check free pointer validity */
683 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
684 object_err(s, page, p, "Freepointer corrupt");
686 * No choice but to zap it and thus lose the remainder
687 * of the free objects in this slab. May cause
688 * another error because the object count is now wrong.
690 set_freepointer(s, p, NULL);
691 return 0;
693 return 1;
696 static int check_slab(struct kmem_cache *s, struct page *page)
698 int maxobj;
700 VM_BUG_ON(!irqs_disabled());
702 if (!PageSlab(page)) {
703 slab_err(s, page, "Not a valid slab page");
704 return 0;
707 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
708 if (page->objects > maxobj) {
709 slab_err(s, page, "objects %u > max %u",
710 s->name, page->objects, maxobj);
711 return 0;
713 if (page->inuse > page->objects) {
714 slab_err(s, page, "inuse %u > max %u",
715 s->name, page->inuse, page->objects);
716 return 0;
718 /* Slab_pad_check fixes things up after itself */
719 slab_pad_check(s, page);
720 return 1;
724 * Determine if a certain object on a page is on the freelist. Must hold the
725 * slab lock to guarantee that the chains are in a consistent state.
727 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
729 int nr = 0;
730 void *fp = page->freelist;
731 void *object = NULL;
732 unsigned long max_objects;
734 while (fp && nr <= page->objects) {
735 if (fp == search)
736 return 1;
737 if (!check_valid_pointer(s, page, fp)) {
738 if (object) {
739 object_err(s, page, object,
740 "Freechain corrupt");
741 set_freepointer(s, object, NULL);
742 break;
743 } else {
744 slab_err(s, page, "Freepointer corrupt");
745 page->freelist = NULL;
746 page->inuse = page->objects;
747 slab_fix(s, "Freelist cleared");
748 return 0;
750 break;
752 object = fp;
753 fp = get_freepointer(s, object);
754 nr++;
757 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
758 if (max_objects > MAX_OBJS_PER_PAGE)
759 max_objects = MAX_OBJS_PER_PAGE;
761 if (page->objects != max_objects) {
762 slab_err(s, page, "Wrong number of objects. Found %d but "
763 "should be %d", page->objects, max_objects);
764 page->objects = max_objects;
765 slab_fix(s, "Number of objects adjusted.");
767 if (page->inuse != page->objects - nr) {
768 slab_err(s, page, "Wrong object count. Counter is %d but "
769 "counted were %d", page->inuse, page->objects - nr);
770 page->inuse = page->objects - nr;
771 slab_fix(s, "Object count adjusted.");
773 return search == NULL;
776 static void trace(struct kmem_cache *s, struct page *page, void *object,
777 int alloc)
779 if (s->flags & SLAB_TRACE) {
780 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
781 s->name,
782 alloc ? "alloc" : "free",
783 object, page->inuse,
784 page->freelist);
786 if (!alloc)
787 print_section("Object", (void *)object, s->objsize);
789 dump_stack();
794 * Hooks for other subsystems that check memory allocations. In a typical
795 * production configuration these hooks all should produce no code at all.
797 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
799 flags &= gfp_allowed_mask;
800 lockdep_trace_alloc(flags);
801 might_sleep_if(flags & __GFP_WAIT);
803 return should_failslab(s->objsize, flags, s->flags);
806 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
808 flags &= gfp_allowed_mask;
809 kmemcheck_slab_alloc(s, flags, object, s->objsize);
810 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
813 static inline void slab_free_hook(struct kmem_cache *s, void *x)
815 kmemleak_free_recursive(x, s->flags);
818 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
820 kmemcheck_slab_free(s, object, s->objsize);
821 debug_check_no_locks_freed(object, s->objsize);
822 if (!(s->flags & SLAB_DEBUG_OBJECTS))
823 debug_check_no_obj_freed(object, s->objsize);
827 * Tracking of fully allocated slabs for debugging purposes.
829 static void add_full(struct kmem_cache_node *n, struct page *page)
831 spin_lock(&n->list_lock);
832 list_add(&page->lru, &n->full);
833 spin_unlock(&n->list_lock);
836 static void remove_full(struct kmem_cache *s, struct page *page)
838 struct kmem_cache_node *n;
840 if (!(s->flags & SLAB_STORE_USER))
841 return;
843 n = get_node(s, page_to_nid(page));
845 spin_lock(&n->list_lock);
846 list_del(&page->lru);
847 spin_unlock(&n->list_lock);
850 /* Tracking of the number of slabs for debugging purposes */
851 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
853 struct kmem_cache_node *n = get_node(s, node);
855 return atomic_long_read(&n->nr_slabs);
858 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
860 return atomic_long_read(&n->nr_slabs);
863 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
865 struct kmem_cache_node *n = get_node(s, node);
868 * May be called early in order to allocate a slab for the
869 * kmem_cache_node structure. Solve the chicken-egg
870 * dilemma by deferring the increment of the count during
871 * bootstrap (see early_kmem_cache_node_alloc).
873 if (!NUMA_BUILD || n) {
874 atomic_long_inc(&n->nr_slabs);
875 atomic_long_add(objects, &n->total_objects);
878 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
880 struct kmem_cache_node *n = get_node(s, node);
882 atomic_long_dec(&n->nr_slabs);
883 atomic_long_sub(objects, &n->total_objects);
886 /* Object debug checks for alloc/free paths */
887 static void setup_object_debug(struct kmem_cache *s, struct page *page,
888 void *object)
890 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
891 return;
893 init_object(s, object, 0);
894 init_tracking(s, object);
897 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
898 void *object, unsigned long addr)
900 if (!check_slab(s, page))
901 goto bad;
903 if (!on_freelist(s, page, object)) {
904 object_err(s, page, object, "Object already allocated");
905 goto bad;
908 if (!check_valid_pointer(s, page, object)) {
909 object_err(s, page, object, "Freelist Pointer check fails");
910 goto bad;
913 if (!check_object(s, page, object, 0))
914 goto bad;
916 /* Success perform special debug activities for allocs */
917 if (s->flags & SLAB_STORE_USER)
918 set_track(s, object, TRACK_ALLOC, addr);
919 trace(s, page, object, 1);
920 init_object(s, object, 1);
921 return 1;
923 bad:
924 if (PageSlab(page)) {
926 * If this is a slab page then lets do the best we can
927 * to avoid issues in the future. Marking all objects
928 * as used avoids touching the remaining objects.
930 slab_fix(s, "Marking all objects used");
931 page->inuse = page->objects;
932 page->freelist = NULL;
934 return 0;
937 static noinline int free_debug_processing(struct kmem_cache *s,
938 struct page *page, void *object, unsigned long addr)
940 if (!check_slab(s, page))
941 goto fail;
943 if (!check_valid_pointer(s, page, object)) {
944 slab_err(s, page, "Invalid object pointer 0x%p", object);
945 goto fail;
948 if (on_freelist(s, page, object)) {
949 object_err(s, page, object, "Object already free");
950 goto fail;
953 if (!check_object(s, page, object, 1))
954 return 0;
956 if (unlikely(s != page->slab)) {
957 if (!PageSlab(page)) {
958 slab_err(s, page, "Attempt to free object(0x%p) "
959 "outside of slab", object);
960 } else if (!page->slab) {
961 printk(KERN_ERR
962 "SLUB <none>: no slab for object 0x%p.\n",
963 object);
964 dump_stack();
965 } else
966 object_err(s, page, object,
967 "page slab pointer corrupt.");
968 goto fail;
971 /* Special debug activities for freeing objects */
972 if (!PageSlubFrozen(page) && !page->freelist)
973 remove_full(s, page);
974 if (s->flags & SLAB_STORE_USER)
975 set_track(s, object, TRACK_FREE, addr);
976 trace(s, page, object, 0);
977 init_object(s, object, 0);
978 return 1;
980 fail:
981 slab_fix(s, "Object at 0x%p not freed", object);
982 return 0;
985 static int __init setup_slub_debug(char *str)
987 slub_debug = DEBUG_DEFAULT_FLAGS;
988 if (*str++ != '=' || !*str)
990 * No options specified. Switch on full debugging.
992 goto out;
994 if (*str == ',')
996 * No options but restriction on slabs. This means full
997 * debugging for slabs matching a pattern.
999 goto check_slabs;
1001 if (tolower(*str) == 'o') {
1003 * Avoid enabling debugging on caches if its minimum order
1004 * would increase as a result.
1006 disable_higher_order_debug = 1;
1007 goto out;
1010 slub_debug = 0;
1011 if (*str == '-')
1013 * Switch off all debugging measures.
1015 goto out;
1018 * Determine which debug features should be switched on
1020 for (; *str && *str != ','; str++) {
1021 switch (tolower(*str)) {
1022 case 'f':
1023 slub_debug |= SLAB_DEBUG_FREE;
1024 break;
1025 case 'z':
1026 slub_debug |= SLAB_RED_ZONE;
1027 break;
1028 case 'p':
1029 slub_debug |= SLAB_POISON;
1030 break;
1031 case 'u':
1032 slub_debug |= SLAB_STORE_USER;
1033 break;
1034 case 't':
1035 slub_debug |= SLAB_TRACE;
1036 break;
1037 case 'a':
1038 slub_debug |= SLAB_FAILSLAB;
1039 break;
1040 default:
1041 printk(KERN_ERR "slub_debug option '%c' "
1042 "unknown. skipped\n", *str);
1046 check_slabs:
1047 if (*str == ',')
1048 slub_debug_slabs = str + 1;
1049 out:
1050 return 1;
1053 __setup("slub_debug", setup_slub_debug);
1055 static unsigned long kmem_cache_flags(unsigned long objsize,
1056 unsigned long flags, const char *name,
1057 void (*ctor)(void *))
1060 * Enable debugging if selected on the kernel commandline.
1062 if (slub_debug && (!slub_debug_slabs ||
1063 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1064 flags |= slub_debug;
1066 return flags;
1068 #else
1069 static inline void setup_object_debug(struct kmem_cache *s,
1070 struct page *page, void *object) {}
1072 static inline int alloc_debug_processing(struct kmem_cache *s,
1073 struct page *page, void *object, unsigned long addr) { return 0; }
1075 static inline int free_debug_processing(struct kmem_cache *s,
1076 struct page *page, void *object, unsigned long addr) { return 0; }
1078 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1079 { return 1; }
1080 static inline int check_object(struct kmem_cache *s, struct page *page,
1081 void *object, int active) { return 1; }
1082 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1083 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1084 unsigned long flags, const char *name,
1085 void (*ctor)(void *))
1087 return flags;
1089 #define slub_debug 0
1091 #define disable_higher_order_debug 0
1093 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1094 { return 0; }
1095 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1096 { return 0; }
1097 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1098 int objects) {}
1099 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1100 int objects) {}
1102 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1103 { return 0; }
1105 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1106 void *object) {}
1108 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1110 static inline void slab_free_hook_irq(struct kmem_cache *s,
1111 void *object) {}
1113 #endif
1116 * Slab allocation and freeing
1118 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1119 struct kmem_cache_order_objects oo)
1121 int order = oo_order(oo);
1123 flags |= __GFP_NOTRACK;
1125 if (node == NUMA_NO_NODE)
1126 return alloc_pages(flags, order);
1127 else
1128 return alloc_pages_exact_node(node, flags, order);
1131 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1133 struct page *page;
1134 struct kmem_cache_order_objects oo = s->oo;
1135 gfp_t alloc_gfp;
1137 flags |= s->allocflags;
1140 * Let the initial higher-order allocation fail under memory pressure
1141 * so we fall-back to the minimum order allocation.
1143 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1145 page = alloc_slab_page(alloc_gfp, node, oo);
1146 if (unlikely(!page)) {
1147 oo = s->min;
1149 * Allocation may have failed due to fragmentation.
1150 * Try a lower order alloc if possible
1152 page = alloc_slab_page(flags, node, oo);
1153 if (!page)
1154 return NULL;
1156 stat(s, ORDER_FALLBACK);
1159 if (kmemcheck_enabled
1160 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1161 int pages = 1 << oo_order(oo);
1163 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1166 * Objects from caches that have a constructor don't get
1167 * cleared when they're allocated, so we need to do it here.
1169 if (s->ctor)
1170 kmemcheck_mark_uninitialized_pages(page, pages);
1171 else
1172 kmemcheck_mark_unallocated_pages(page, pages);
1175 page->objects = oo_objects(oo);
1176 mod_zone_page_state(page_zone(page),
1177 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1178 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1179 1 << oo_order(oo));
1181 return page;
1184 static void setup_object(struct kmem_cache *s, struct page *page,
1185 void *object)
1187 setup_object_debug(s, page, object);
1188 if (unlikely(s->ctor))
1189 s->ctor(object);
1192 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1194 struct page *page;
1195 void *start;
1196 void *last;
1197 void *p;
1199 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1201 page = allocate_slab(s,
1202 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1203 if (!page)
1204 goto out;
1206 inc_slabs_node(s, page_to_nid(page), page->objects);
1207 page->slab = s;
1208 page->flags |= 1 << PG_slab;
1210 start = page_address(page);
1212 if (unlikely(s->flags & SLAB_POISON))
1213 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1215 last = start;
1216 for_each_object(p, s, start, page->objects) {
1217 setup_object(s, page, last);
1218 set_freepointer(s, last, p);
1219 last = p;
1221 setup_object(s, page, last);
1222 set_freepointer(s, last, NULL);
1224 page->freelist = start;
1225 page->inuse = 0;
1226 out:
1227 return page;
1230 static void __free_slab(struct kmem_cache *s, struct page *page)
1232 int order = compound_order(page);
1233 int pages = 1 << order;
1235 if (kmem_cache_debug(s)) {
1236 void *p;
1238 slab_pad_check(s, page);
1239 for_each_object(p, s, page_address(page),
1240 page->objects)
1241 check_object(s, page, p, 0);
1244 kmemcheck_free_shadow(page, compound_order(page));
1246 mod_zone_page_state(page_zone(page),
1247 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1248 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1249 -pages);
1251 __ClearPageSlab(page);
1252 reset_page_mapcount(page);
1253 if (current->reclaim_state)
1254 current->reclaim_state->reclaimed_slab += pages;
1255 __free_pages(page, order);
1258 static void rcu_free_slab(struct rcu_head *h)
1260 struct page *page;
1262 page = container_of((struct list_head *)h, struct page, lru);
1263 __free_slab(page->slab, page);
1266 static void free_slab(struct kmem_cache *s, struct page *page)
1268 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1270 * RCU free overloads the RCU head over the LRU
1272 struct rcu_head *head = (void *)&page->lru;
1274 call_rcu(head, rcu_free_slab);
1275 } else
1276 __free_slab(s, page);
1279 static void discard_slab(struct kmem_cache *s, struct page *page)
1281 dec_slabs_node(s, page_to_nid(page), page->objects);
1282 free_slab(s, page);
1286 * Per slab locking using the pagelock
1288 static __always_inline void slab_lock(struct page *page)
1290 bit_spin_lock(PG_locked, &page->flags);
1293 static __always_inline void slab_unlock(struct page *page)
1295 __bit_spin_unlock(PG_locked, &page->flags);
1298 static __always_inline int slab_trylock(struct page *page)
1300 int rc = 1;
1302 rc = bit_spin_trylock(PG_locked, &page->flags);
1303 return rc;
1307 * Management of partially allocated slabs
1309 static void add_partial(struct kmem_cache_node *n,
1310 struct page *page, int tail)
1312 spin_lock(&n->list_lock);
1313 n->nr_partial++;
1314 if (tail)
1315 list_add_tail(&page->lru, &n->partial);
1316 else
1317 list_add(&page->lru, &n->partial);
1318 spin_unlock(&n->list_lock);
1321 static void remove_partial(struct kmem_cache *s, struct page *page)
1323 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1325 spin_lock(&n->list_lock);
1326 list_del(&page->lru);
1327 n->nr_partial--;
1328 spin_unlock(&n->list_lock);
1332 * Lock slab and remove from the partial list.
1334 * Must hold list_lock.
1336 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1337 struct page *page)
1339 if (slab_trylock(page)) {
1340 list_del(&page->lru);
1341 n->nr_partial--;
1342 __SetPageSlubFrozen(page);
1343 return 1;
1345 return 0;
1349 * Try to allocate a partial slab from a specific node.
1351 static struct page *get_partial_node(struct kmem_cache_node *n)
1353 struct page *page;
1356 * Racy check. If we mistakenly see no partial slabs then we
1357 * just allocate an empty slab. If we mistakenly try to get a
1358 * partial slab and there is none available then get_partials()
1359 * will return NULL.
1361 if (!n || !n->nr_partial)
1362 return NULL;
1364 spin_lock(&n->list_lock);
1365 list_for_each_entry(page, &n->partial, lru)
1366 if (lock_and_freeze_slab(n, page))
1367 goto out;
1368 page = NULL;
1369 out:
1370 spin_unlock(&n->list_lock);
1371 return page;
1375 * Get a page from somewhere. Search in increasing NUMA distances.
1377 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1379 #ifdef CONFIG_NUMA
1380 struct zonelist *zonelist;
1381 struct zoneref *z;
1382 struct zone *zone;
1383 enum zone_type high_zoneidx = gfp_zone(flags);
1384 struct page *page;
1387 * The defrag ratio allows a configuration of the tradeoffs between
1388 * inter node defragmentation and node local allocations. A lower
1389 * defrag_ratio increases the tendency to do local allocations
1390 * instead of attempting to obtain partial slabs from other nodes.
1392 * If the defrag_ratio is set to 0 then kmalloc() always
1393 * returns node local objects. If the ratio is higher then kmalloc()
1394 * may return off node objects because partial slabs are obtained
1395 * from other nodes and filled up.
1397 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1398 * defrag_ratio = 1000) then every (well almost) allocation will
1399 * first attempt to defrag slab caches on other nodes. This means
1400 * scanning over all nodes to look for partial slabs which may be
1401 * expensive if we do it every time we are trying to find a slab
1402 * with available objects.
1404 if (!s->remote_node_defrag_ratio ||
1405 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1406 return NULL;
1408 get_mems_allowed();
1409 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1410 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1411 struct kmem_cache_node *n;
1413 n = get_node(s, zone_to_nid(zone));
1415 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1416 n->nr_partial > s->min_partial) {
1417 page = get_partial_node(n);
1418 if (page) {
1419 put_mems_allowed();
1420 return page;
1424 put_mems_allowed();
1425 #endif
1426 return NULL;
1430 * Get a partial page, lock it and return it.
1432 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1434 struct page *page;
1435 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1437 page = get_partial_node(get_node(s, searchnode));
1438 if (page || node != -1)
1439 return page;
1441 return get_any_partial(s, flags);
1445 * Move a page back to the lists.
1447 * Must be called with the slab lock held.
1449 * On exit the slab lock will have been dropped.
1451 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1453 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1455 __ClearPageSlubFrozen(page);
1456 if (page->inuse) {
1458 if (page->freelist) {
1459 add_partial(n, page, tail);
1460 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1461 } else {
1462 stat(s, DEACTIVATE_FULL);
1463 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1464 add_full(n, page);
1466 slab_unlock(page);
1467 } else {
1468 stat(s, DEACTIVATE_EMPTY);
1469 if (n->nr_partial < s->min_partial) {
1471 * Adding an empty slab to the partial slabs in order
1472 * to avoid page allocator overhead. This slab needs
1473 * to come after the other slabs with objects in
1474 * so that the others get filled first. That way the
1475 * size of the partial list stays small.
1477 * kmem_cache_shrink can reclaim any empty slabs from
1478 * the partial list.
1480 add_partial(n, page, 1);
1481 slab_unlock(page);
1482 } else {
1483 slab_unlock(page);
1484 stat(s, FREE_SLAB);
1485 discard_slab(s, page);
1491 * Remove the cpu slab
1493 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1495 struct page *page = c->page;
1496 int tail = 1;
1498 if (page->freelist)
1499 stat(s, DEACTIVATE_REMOTE_FREES);
1501 * Merge cpu freelist into slab freelist. Typically we get here
1502 * because both freelists are empty. So this is unlikely
1503 * to occur.
1505 while (unlikely(c->freelist)) {
1506 void **object;
1508 tail = 0; /* Hot objects. Put the slab first */
1510 /* Retrieve object from cpu_freelist */
1511 object = c->freelist;
1512 c->freelist = get_freepointer(s, c->freelist);
1514 /* And put onto the regular freelist */
1515 set_freepointer(s, object, page->freelist);
1516 page->freelist = object;
1517 page->inuse--;
1519 c->page = NULL;
1520 unfreeze_slab(s, page, tail);
1523 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1525 stat(s, CPUSLAB_FLUSH);
1526 slab_lock(c->page);
1527 deactivate_slab(s, c);
1531 * Flush cpu slab.
1533 * Called from IPI handler with interrupts disabled.
1535 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1537 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1539 if (likely(c && c->page))
1540 flush_slab(s, c);
1543 static void flush_cpu_slab(void *d)
1545 struct kmem_cache *s = d;
1547 __flush_cpu_slab(s, smp_processor_id());
1550 static void flush_all(struct kmem_cache *s)
1552 on_each_cpu(flush_cpu_slab, s, 1);
1556 * Check if the objects in a per cpu structure fit numa
1557 * locality expectations.
1559 static inline int node_match(struct kmem_cache_cpu *c, int node)
1561 #ifdef CONFIG_NUMA
1562 if (node != NUMA_NO_NODE && c->node != node)
1563 return 0;
1564 #endif
1565 return 1;
1568 static int count_free(struct page *page)
1570 return page->objects - page->inuse;
1573 static unsigned long count_partial(struct kmem_cache_node *n,
1574 int (*get_count)(struct page *))
1576 unsigned long flags;
1577 unsigned long x = 0;
1578 struct page *page;
1580 spin_lock_irqsave(&n->list_lock, flags);
1581 list_for_each_entry(page, &n->partial, lru)
1582 x += get_count(page);
1583 spin_unlock_irqrestore(&n->list_lock, flags);
1584 return x;
1587 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1589 #ifdef CONFIG_SLUB_DEBUG
1590 return atomic_long_read(&n->total_objects);
1591 #else
1592 return 0;
1593 #endif
1596 static noinline void
1597 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1599 int node;
1601 printk(KERN_WARNING
1602 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1603 nid, gfpflags);
1604 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1605 "default order: %d, min order: %d\n", s->name, s->objsize,
1606 s->size, oo_order(s->oo), oo_order(s->min));
1608 if (oo_order(s->min) > get_order(s->objsize))
1609 printk(KERN_WARNING " %s debugging increased min order, use "
1610 "slub_debug=O to disable.\n", s->name);
1612 for_each_online_node(node) {
1613 struct kmem_cache_node *n = get_node(s, node);
1614 unsigned long nr_slabs;
1615 unsigned long nr_objs;
1616 unsigned long nr_free;
1618 if (!n)
1619 continue;
1621 nr_free = count_partial(n, count_free);
1622 nr_slabs = node_nr_slabs(n);
1623 nr_objs = node_nr_objs(n);
1625 printk(KERN_WARNING
1626 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1627 node, nr_slabs, nr_objs, nr_free);
1632 * Slow path. The lockless freelist is empty or we need to perform
1633 * debugging duties.
1635 * Interrupts are disabled.
1637 * Processing is still very fast if new objects have been freed to the
1638 * regular freelist. In that case we simply take over the regular freelist
1639 * as the lockless freelist and zap the regular freelist.
1641 * If that is not working then we fall back to the partial lists. We take the
1642 * first element of the freelist as the object to allocate now and move the
1643 * rest of the freelist to the lockless freelist.
1645 * And if we were unable to get a new slab from the partial slab lists then
1646 * we need to allocate a new slab. This is the slowest path since it involves
1647 * a call to the page allocator and the setup of a new slab.
1649 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1650 unsigned long addr, struct kmem_cache_cpu *c)
1652 void **object;
1653 struct page *new;
1655 /* We handle __GFP_ZERO in the caller */
1656 gfpflags &= ~__GFP_ZERO;
1658 if (!c->page)
1659 goto new_slab;
1661 slab_lock(c->page);
1662 if (unlikely(!node_match(c, node)))
1663 goto another_slab;
1665 stat(s, ALLOC_REFILL);
1667 load_freelist:
1668 object = c->page->freelist;
1669 if (unlikely(!object))
1670 goto another_slab;
1671 if (kmem_cache_debug(s))
1672 goto debug;
1674 c->freelist = get_freepointer(s, object);
1675 c->page->inuse = c->page->objects;
1676 c->page->freelist = NULL;
1677 c->node = page_to_nid(c->page);
1678 unlock_out:
1679 slab_unlock(c->page);
1680 stat(s, ALLOC_SLOWPATH);
1681 return object;
1683 another_slab:
1684 deactivate_slab(s, c);
1686 new_slab:
1687 new = get_partial(s, gfpflags, node);
1688 if (new) {
1689 c->page = new;
1690 stat(s, ALLOC_FROM_PARTIAL);
1691 goto load_freelist;
1694 gfpflags &= gfp_allowed_mask;
1695 if (gfpflags & __GFP_WAIT)
1696 local_irq_enable();
1698 new = new_slab(s, gfpflags, node);
1700 if (gfpflags & __GFP_WAIT)
1701 local_irq_disable();
1703 if (new) {
1704 c = __this_cpu_ptr(s->cpu_slab);
1705 stat(s, ALLOC_SLAB);
1706 if (c->page)
1707 flush_slab(s, c);
1708 slab_lock(new);
1709 __SetPageSlubFrozen(new);
1710 c->page = new;
1711 goto load_freelist;
1713 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1714 slab_out_of_memory(s, gfpflags, node);
1715 return NULL;
1716 debug:
1717 if (!alloc_debug_processing(s, c->page, object, addr))
1718 goto another_slab;
1720 c->page->inuse++;
1721 c->page->freelist = get_freepointer(s, object);
1722 c->node = -1;
1723 goto unlock_out;
1727 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1728 * have the fastpath folded into their functions. So no function call
1729 * overhead for requests that can be satisfied on the fastpath.
1731 * The fastpath works by first checking if the lockless freelist can be used.
1732 * If not then __slab_alloc is called for slow processing.
1734 * Otherwise we can simply pick the next object from the lockless free list.
1736 static __always_inline void *slab_alloc(struct kmem_cache *s,
1737 gfp_t gfpflags, int node, unsigned long addr)
1739 void **object;
1740 struct kmem_cache_cpu *c;
1741 unsigned long flags;
1743 if (slab_pre_alloc_hook(s, gfpflags))
1744 return NULL;
1746 local_irq_save(flags);
1747 c = __this_cpu_ptr(s->cpu_slab);
1748 object = c->freelist;
1749 if (unlikely(!object || !node_match(c, node)))
1751 object = __slab_alloc(s, gfpflags, node, addr, c);
1753 else {
1754 c->freelist = get_freepointer(s, object);
1755 stat(s, ALLOC_FASTPATH);
1757 local_irq_restore(flags);
1759 if (unlikely(gfpflags & __GFP_ZERO) && object)
1760 memset(object, 0, s->objsize);
1762 slab_post_alloc_hook(s, gfpflags, object);
1764 return object;
1767 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1769 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1771 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1773 return ret;
1775 EXPORT_SYMBOL(kmem_cache_alloc);
1777 #ifdef CONFIG_TRACING
1778 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1780 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1782 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1783 #endif
1785 #ifdef CONFIG_NUMA
1786 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1788 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1790 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1791 s->objsize, s->size, gfpflags, node);
1793 return ret;
1795 EXPORT_SYMBOL(kmem_cache_alloc_node);
1796 #endif
1798 #ifdef CONFIG_TRACING
1799 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1800 gfp_t gfpflags,
1801 int node)
1803 return slab_alloc(s, gfpflags, node, _RET_IP_);
1805 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1806 #endif
1809 * Slow patch handling. This may still be called frequently since objects
1810 * have a longer lifetime than the cpu slabs in most processing loads.
1812 * So we still attempt to reduce cache line usage. Just take the slab
1813 * lock and free the item. If there is no additional partial page
1814 * handling required then we can return immediately.
1816 static void __slab_free(struct kmem_cache *s, struct page *page,
1817 void *x, unsigned long addr)
1819 void *prior;
1820 void **object = (void *)x;
1822 stat(s, FREE_SLOWPATH);
1823 slab_lock(page);
1825 if (kmem_cache_debug(s))
1826 goto debug;
1828 checks_ok:
1829 prior = page->freelist;
1830 set_freepointer(s, object, prior);
1831 page->freelist = object;
1832 page->inuse--;
1834 if (unlikely(PageSlubFrozen(page))) {
1835 stat(s, FREE_FROZEN);
1836 goto out_unlock;
1839 if (unlikely(!page->inuse))
1840 goto slab_empty;
1843 * Objects left in the slab. If it was not on the partial list before
1844 * then add it.
1846 if (unlikely(!prior)) {
1847 add_partial(get_node(s, page_to_nid(page)), page, 1);
1848 stat(s, FREE_ADD_PARTIAL);
1851 out_unlock:
1852 slab_unlock(page);
1853 return;
1855 slab_empty:
1856 if (prior) {
1858 * Slab still on the partial list.
1860 remove_partial(s, page);
1861 stat(s, FREE_REMOVE_PARTIAL);
1863 slab_unlock(page);
1864 stat(s, FREE_SLAB);
1865 discard_slab(s, page);
1866 return;
1868 debug:
1869 if (!free_debug_processing(s, page, x, addr))
1870 goto out_unlock;
1871 goto checks_ok;
1875 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1876 * can perform fastpath freeing without additional function calls.
1878 * The fastpath is only possible if we are freeing to the current cpu slab
1879 * of this processor. This typically the case if we have just allocated
1880 * the item before.
1882 * If fastpath is not possible then fall back to __slab_free where we deal
1883 * with all sorts of special processing.
1885 static __always_inline void slab_free(struct kmem_cache *s,
1886 struct page *page, void *x, unsigned long addr)
1888 void **object = (void *)x;
1889 struct kmem_cache_cpu *c;
1890 unsigned long flags;
1892 slab_free_hook(s, x);
1894 local_irq_save(flags);
1895 c = __this_cpu_ptr(s->cpu_slab);
1897 slab_free_hook_irq(s, x);
1899 if (likely(page == c->page && c->node >= 0)) {
1900 set_freepointer(s, object, c->freelist);
1901 c->freelist = object;
1902 stat(s, FREE_FASTPATH);
1903 } else
1904 __slab_free(s, page, x, addr);
1906 local_irq_restore(flags);
1909 void kmem_cache_free(struct kmem_cache *s, void *x)
1911 struct page *page;
1913 page = virt_to_head_page(x);
1915 slab_free(s, page, x, _RET_IP_);
1917 trace_kmem_cache_free(_RET_IP_, x);
1919 EXPORT_SYMBOL(kmem_cache_free);
1921 /* Figure out on which slab page the object resides */
1922 static struct page *get_object_page(const void *x)
1924 struct page *page = virt_to_head_page(x);
1926 if (!PageSlab(page))
1927 return NULL;
1929 return page;
1933 * Object placement in a slab is made very easy because we always start at
1934 * offset 0. If we tune the size of the object to the alignment then we can
1935 * get the required alignment by putting one properly sized object after
1936 * another.
1938 * Notice that the allocation order determines the sizes of the per cpu
1939 * caches. Each processor has always one slab available for allocations.
1940 * Increasing the allocation order reduces the number of times that slabs
1941 * must be moved on and off the partial lists and is therefore a factor in
1942 * locking overhead.
1946 * Mininum / Maximum order of slab pages. This influences locking overhead
1947 * and slab fragmentation. A higher order reduces the number of partial slabs
1948 * and increases the number of allocations possible without having to
1949 * take the list_lock.
1951 static int slub_min_order;
1952 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1953 static int slub_min_objects;
1956 * Merge control. If this is set then no merging of slab caches will occur.
1957 * (Could be removed. This was introduced to pacify the merge skeptics.)
1959 static int slub_nomerge;
1962 * Calculate the order of allocation given an slab object size.
1964 * The order of allocation has significant impact on performance and other
1965 * system components. Generally order 0 allocations should be preferred since
1966 * order 0 does not cause fragmentation in the page allocator. Larger objects
1967 * be problematic to put into order 0 slabs because there may be too much
1968 * unused space left. We go to a higher order if more than 1/16th of the slab
1969 * would be wasted.
1971 * In order to reach satisfactory performance we must ensure that a minimum
1972 * number of objects is in one slab. Otherwise we may generate too much
1973 * activity on the partial lists which requires taking the list_lock. This is
1974 * less a concern for large slabs though which are rarely used.
1976 * slub_max_order specifies the order where we begin to stop considering the
1977 * number of objects in a slab as critical. If we reach slub_max_order then
1978 * we try to keep the page order as low as possible. So we accept more waste
1979 * of space in favor of a small page order.
1981 * Higher order allocations also allow the placement of more objects in a
1982 * slab and thereby reduce object handling overhead. If the user has
1983 * requested a higher mininum order then we start with that one instead of
1984 * the smallest order which will fit the object.
1986 static inline int slab_order(int size, int min_objects,
1987 int max_order, int fract_leftover)
1989 int order;
1990 int rem;
1991 int min_order = slub_min_order;
1993 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1994 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1996 for (order = max(min_order,
1997 fls(min_objects * size - 1) - PAGE_SHIFT);
1998 order <= max_order; order++) {
2000 unsigned long slab_size = PAGE_SIZE << order;
2002 if (slab_size < min_objects * size)
2003 continue;
2005 rem = slab_size % size;
2007 if (rem <= slab_size / fract_leftover)
2008 break;
2012 return order;
2015 static inline int calculate_order(int size)
2017 int order;
2018 int min_objects;
2019 int fraction;
2020 int max_objects;
2023 * Attempt to find best configuration for a slab. This
2024 * works by first attempting to generate a layout with
2025 * the best configuration and backing off gradually.
2027 * First we reduce the acceptable waste in a slab. Then
2028 * we reduce the minimum objects required in a slab.
2030 min_objects = slub_min_objects;
2031 if (!min_objects)
2032 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2033 max_objects = (PAGE_SIZE << slub_max_order)/size;
2034 min_objects = min(min_objects, max_objects);
2036 while (min_objects > 1) {
2037 fraction = 16;
2038 while (fraction >= 4) {
2039 order = slab_order(size, min_objects,
2040 slub_max_order, fraction);
2041 if (order <= slub_max_order)
2042 return order;
2043 fraction /= 2;
2045 min_objects--;
2049 * We were unable to place multiple objects in a slab. Now
2050 * lets see if we can place a single object there.
2052 order = slab_order(size, 1, slub_max_order, 1);
2053 if (order <= slub_max_order)
2054 return order;
2057 * Doh this slab cannot be placed using slub_max_order.
2059 order = slab_order(size, 1, MAX_ORDER, 1);
2060 if (order < MAX_ORDER)
2061 return order;
2062 return -ENOSYS;
2066 * Figure out what the alignment of the objects will be.
2068 static unsigned long calculate_alignment(unsigned long flags,
2069 unsigned long align, unsigned long size)
2072 * If the user wants hardware cache aligned objects then follow that
2073 * suggestion if the object is sufficiently large.
2075 * The hardware cache alignment cannot override the specified
2076 * alignment though. If that is greater then use it.
2078 if (flags & SLAB_HWCACHE_ALIGN) {
2079 unsigned long ralign = cache_line_size();
2080 while (size <= ralign / 2)
2081 ralign /= 2;
2082 align = max(align, ralign);
2085 if (align < ARCH_SLAB_MINALIGN)
2086 align = ARCH_SLAB_MINALIGN;
2088 return ALIGN(align, sizeof(void *));
2091 static void
2092 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2094 n->nr_partial = 0;
2095 spin_lock_init(&n->list_lock);
2096 INIT_LIST_HEAD(&n->partial);
2097 #ifdef CONFIG_SLUB_DEBUG
2098 atomic_long_set(&n->nr_slabs, 0);
2099 atomic_long_set(&n->total_objects, 0);
2100 INIT_LIST_HEAD(&n->full);
2101 #endif
2104 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2106 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2107 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2109 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2111 return s->cpu_slab != NULL;
2114 #ifdef CONFIG_NUMA
2115 static struct kmem_cache *kmem_cache_node;
2118 * No kmalloc_node yet so do it by hand. We know that this is the first
2119 * slab on the node for this slabcache. There are no concurrent accesses
2120 * possible.
2122 * Note that this function only works on the kmalloc_node_cache
2123 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2124 * memory on a fresh node that has no slab structures yet.
2126 static void early_kmem_cache_node_alloc(int node)
2128 struct page *page;
2129 struct kmem_cache_node *n;
2130 unsigned long flags;
2132 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2134 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2136 BUG_ON(!page);
2137 if (page_to_nid(page) != node) {
2138 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2139 "node %d\n", node);
2140 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2141 "in order to be able to continue\n");
2144 n = page->freelist;
2145 BUG_ON(!n);
2146 page->freelist = get_freepointer(kmem_cache_node, n);
2147 page->inuse++;
2148 kmem_cache_node->node[node] = n;
2149 #ifdef CONFIG_SLUB_DEBUG
2150 init_object(kmem_cache_node, n, 1);
2151 init_tracking(kmem_cache_node, n);
2152 #endif
2153 init_kmem_cache_node(n, kmem_cache_node);
2154 inc_slabs_node(kmem_cache_node, node, page->objects);
2157 * lockdep requires consistent irq usage for each lock
2158 * so even though there cannot be a race this early in
2159 * the boot sequence, we still disable irqs.
2161 local_irq_save(flags);
2162 add_partial(n, page, 0);
2163 local_irq_restore(flags);
2166 static void free_kmem_cache_nodes(struct kmem_cache *s)
2168 int node;
2170 for_each_node_state(node, N_NORMAL_MEMORY) {
2171 struct kmem_cache_node *n = s->node[node];
2173 if (n)
2174 kmem_cache_free(kmem_cache_node, n);
2176 s->node[node] = NULL;
2180 static int init_kmem_cache_nodes(struct kmem_cache *s)
2182 int node;
2184 for_each_node_state(node, N_NORMAL_MEMORY) {
2185 struct kmem_cache_node *n;
2187 if (slab_state == DOWN) {
2188 early_kmem_cache_node_alloc(node);
2189 continue;
2191 n = kmem_cache_alloc_node(kmem_cache_node,
2192 GFP_KERNEL, node);
2194 if (!n) {
2195 free_kmem_cache_nodes(s);
2196 return 0;
2199 s->node[node] = n;
2200 init_kmem_cache_node(n, s);
2202 return 1;
2204 #else
2205 static void free_kmem_cache_nodes(struct kmem_cache *s)
2209 static int init_kmem_cache_nodes(struct kmem_cache *s)
2211 init_kmem_cache_node(&s->local_node, s);
2212 return 1;
2214 #endif
2216 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2218 if (min < MIN_PARTIAL)
2219 min = MIN_PARTIAL;
2220 else if (min > MAX_PARTIAL)
2221 min = MAX_PARTIAL;
2222 s->min_partial = min;
2226 * calculate_sizes() determines the order and the distribution of data within
2227 * a slab object.
2229 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2231 unsigned long flags = s->flags;
2232 unsigned long size = s->objsize;
2233 unsigned long align = s->align;
2234 int order;
2237 * Round up object size to the next word boundary. We can only
2238 * place the free pointer at word boundaries and this determines
2239 * the possible location of the free pointer.
2241 size = ALIGN(size, sizeof(void *));
2243 #ifdef CONFIG_SLUB_DEBUG
2245 * Determine if we can poison the object itself. If the user of
2246 * the slab may touch the object after free or before allocation
2247 * then we should never poison the object itself.
2249 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2250 !s->ctor)
2251 s->flags |= __OBJECT_POISON;
2252 else
2253 s->flags &= ~__OBJECT_POISON;
2257 * If we are Redzoning then check if there is some space between the
2258 * end of the object and the free pointer. If not then add an
2259 * additional word to have some bytes to store Redzone information.
2261 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2262 size += sizeof(void *);
2263 #endif
2266 * With that we have determined the number of bytes in actual use
2267 * by the object. This is the potential offset to the free pointer.
2269 s->inuse = size;
2271 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2272 s->ctor)) {
2274 * Relocate free pointer after the object if it is not
2275 * permitted to overwrite the first word of the object on
2276 * kmem_cache_free.
2278 * This is the case if we do RCU, have a constructor or
2279 * destructor or are poisoning the objects.
2281 s->offset = size;
2282 size += sizeof(void *);
2285 #ifdef CONFIG_SLUB_DEBUG
2286 if (flags & SLAB_STORE_USER)
2288 * Need to store information about allocs and frees after
2289 * the object.
2291 size += 2 * sizeof(struct track);
2293 if (flags & SLAB_RED_ZONE)
2295 * Add some empty padding so that we can catch
2296 * overwrites from earlier objects rather than let
2297 * tracking information or the free pointer be
2298 * corrupted if a user writes before the start
2299 * of the object.
2301 size += sizeof(void *);
2302 #endif
2305 * Determine the alignment based on various parameters that the
2306 * user specified and the dynamic determination of cache line size
2307 * on bootup.
2309 align = calculate_alignment(flags, align, s->objsize);
2310 s->align = align;
2313 * SLUB stores one object immediately after another beginning from
2314 * offset 0. In order to align the objects we have to simply size
2315 * each object to conform to the alignment.
2317 size = ALIGN(size, align);
2318 s->size = size;
2319 if (forced_order >= 0)
2320 order = forced_order;
2321 else
2322 order = calculate_order(size);
2324 if (order < 0)
2325 return 0;
2327 s->allocflags = 0;
2328 if (order)
2329 s->allocflags |= __GFP_COMP;
2331 if (s->flags & SLAB_CACHE_DMA)
2332 s->allocflags |= SLUB_DMA;
2334 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2335 s->allocflags |= __GFP_RECLAIMABLE;
2338 * Determine the number of objects per slab
2340 s->oo = oo_make(order, size);
2341 s->min = oo_make(get_order(size), size);
2342 if (oo_objects(s->oo) > oo_objects(s->max))
2343 s->max = s->oo;
2345 return !!oo_objects(s->oo);
2349 static int kmem_cache_open(struct kmem_cache *s,
2350 const char *name, size_t size,
2351 size_t align, unsigned long flags,
2352 void (*ctor)(void *))
2354 memset(s, 0, kmem_size);
2355 s->name = name;
2356 s->ctor = ctor;
2357 s->objsize = size;
2358 s->align = align;
2359 s->flags = kmem_cache_flags(size, flags, name, ctor);
2361 if (!calculate_sizes(s, -1))
2362 goto error;
2363 if (disable_higher_order_debug) {
2365 * Disable debugging flags that store metadata if the min slab
2366 * order increased.
2368 if (get_order(s->size) > get_order(s->objsize)) {
2369 s->flags &= ~DEBUG_METADATA_FLAGS;
2370 s->offset = 0;
2371 if (!calculate_sizes(s, -1))
2372 goto error;
2377 * The larger the object size is, the more pages we want on the partial
2378 * list to avoid pounding the page allocator excessively.
2380 set_min_partial(s, ilog2(s->size));
2381 s->refcount = 1;
2382 #ifdef CONFIG_NUMA
2383 s->remote_node_defrag_ratio = 1000;
2384 #endif
2385 if (!init_kmem_cache_nodes(s))
2386 goto error;
2388 if (alloc_kmem_cache_cpus(s))
2389 return 1;
2391 free_kmem_cache_nodes(s);
2392 error:
2393 if (flags & SLAB_PANIC)
2394 panic("Cannot create slab %s size=%lu realsize=%u "
2395 "order=%u offset=%u flags=%lx\n",
2396 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2397 s->offset, flags);
2398 return 0;
2402 * Check if a given pointer is valid
2404 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2406 struct page *page;
2408 if (!kern_ptr_validate(object, s->size))
2409 return 0;
2411 page = get_object_page(object);
2413 if (!page || s != page->slab)
2414 /* No slab or wrong slab */
2415 return 0;
2417 if (!check_valid_pointer(s, page, object))
2418 return 0;
2421 * We could also check if the object is on the slabs freelist.
2422 * But this would be too expensive and it seems that the main
2423 * purpose of kmem_ptr_valid() is to check if the object belongs
2424 * to a certain slab.
2426 return 1;
2428 EXPORT_SYMBOL(kmem_ptr_validate);
2431 * Determine the size of a slab object
2433 unsigned int kmem_cache_size(struct kmem_cache *s)
2435 return s->objsize;
2437 EXPORT_SYMBOL(kmem_cache_size);
2439 const char *kmem_cache_name(struct kmem_cache *s)
2441 return s->name;
2443 EXPORT_SYMBOL(kmem_cache_name);
2445 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2446 const char *text)
2448 #ifdef CONFIG_SLUB_DEBUG
2449 void *addr = page_address(page);
2450 void *p;
2451 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2452 GFP_ATOMIC);
2454 if (!map)
2455 return;
2456 slab_err(s, page, "%s", text);
2457 slab_lock(page);
2458 for_each_free_object(p, s, page->freelist)
2459 set_bit(slab_index(p, s, addr), map);
2461 for_each_object(p, s, addr, page->objects) {
2463 if (!test_bit(slab_index(p, s, addr), map)) {
2464 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2465 p, p - addr);
2466 print_tracking(s, p);
2469 slab_unlock(page);
2470 kfree(map);
2471 #endif
2475 * Attempt to free all partial slabs on a node.
2477 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2479 unsigned long flags;
2480 struct page *page, *h;
2482 spin_lock_irqsave(&n->list_lock, flags);
2483 list_for_each_entry_safe(page, h, &n->partial, lru) {
2484 if (!page->inuse) {
2485 list_del(&page->lru);
2486 discard_slab(s, page);
2487 n->nr_partial--;
2488 } else {
2489 list_slab_objects(s, page,
2490 "Objects remaining on kmem_cache_close()");
2493 spin_unlock_irqrestore(&n->list_lock, flags);
2497 * Release all resources used by a slab cache.
2499 static inline int kmem_cache_close(struct kmem_cache *s)
2501 int node;
2503 flush_all(s);
2504 free_percpu(s->cpu_slab);
2505 /* Attempt to free all objects */
2506 for_each_node_state(node, N_NORMAL_MEMORY) {
2507 struct kmem_cache_node *n = get_node(s, node);
2509 free_partial(s, n);
2510 if (n->nr_partial || slabs_node(s, node))
2511 return 1;
2513 free_kmem_cache_nodes(s);
2514 return 0;
2518 * Close a cache and release the kmem_cache structure
2519 * (must be used for caches created using kmem_cache_create)
2521 void kmem_cache_destroy(struct kmem_cache *s)
2523 down_write(&slub_lock);
2524 s->refcount--;
2525 if (!s->refcount) {
2526 list_del(&s->list);
2527 if (kmem_cache_close(s)) {
2528 printk(KERN_ERR "SLUB %s: %s called for cache that "
2529 "still has objects.\n", s->name, __func__);
2530 dump_stack();
2532 if (s->flags & SLAB_DESTROY_BY_RCU)
2533 rcu_barrier();
2534 sysfs_slab_remove(s);
2536 up_write(&slub_lock);
2538 EXPORT_SYMBOL(kmem_cache_destroy);
2540 /********************************************************************
2541 * Kmalloc subsystem
2542 *******************************************************************/
2544 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2545 EXPORT_SYMBOL(kmalloc_caches);
2547 static struct kmem_cache *kmem_cache;
2549 #ifdef CONFIG_ZONE_DMA
2550 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2551 #endif
2553 static int __init setup_slub_min_order(char *str)
2555 get_option(&str, &slub_min_order);
2557 return 1;
2560 __setup("slub_min_order=", setup_slub_min_order);
2562 static int __init setup_slub_max_order(char *str)
2564 get_option(&str, &slub_max_order);
2565 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2567 return 1;
2570 __setup("slub_max_order=", setup_slub_max_order);
2572 static int __init setup_slub_min_objects(char *str)
2574 get_option(&str, &slub_min_objects);
2576 return 1;
2579 __setup("slub_min_objects=", setup_slub_min_objects);
2581 static int __init setup_slub_nomerge(char *str)
2583 slub_nomerge = 1;
2584 return 1;
2587 __setup("slub_nomerge", setup_slub_nomerge);
2589 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2590 int size, unsigned int flags)
2592 struct kmem_cache *s;
2594 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2597 * This function is called with IRQs disabled during early-boot on
2598 * single CPU so there's no need to take slub_lock here.
2600 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2601 flags, NULL))
2602 goto panic;
2604 list_add(&s->list, &slab_caches);
2605 return s;
2607 panic:
2608 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2609 return NULL;
2613 * Conversion table for small slabs sizes / 8 to the index in the
2614 * kmalloc array. This is necessary for slabs < 192 since we have non power
2615 * of two cache sizes there. The size of larger slabs can be determined using
2616 * fls.
2618 static s8 size_index[24] = {
2619 3, /* 8 */
2620 4, /* 16 */
2621 5, /* 24 */
2622 5, /* 32 */
2623 6, /* 40 */
2624 6, /* 48 */
2625 6, /* 56 */
2626 6, /* 64 */
2627 1, /* 72 */
2628 1, /* 80 */
2629 1, /* 88 */
2630 1, /* 96 */
2631 7, /* 104 */
2632 7, /* 112 */
2633 7, /* 120 */
2634 7, /* 128 */
2635 2, /* 136 */
2636 2, /* 144 */
2637 2, /* 152 */
2638 2, /* 160 */
2639 2, /* 168 */
2640 2, /* 176 */
2641 2, /* 184 */
2642 2 /* 192 */
2645 static inline int size_index_elem(size_t bytes)
2647 return (bytes - 1) / 8;
2650 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2652 int index;
2654 if (size <= 192) {
2655 if (!size)
2656 return ZERO_SIZE_PTR;
2658 index = size_index[size_index_elem(size)];
2659 } else
2660 index = fls(size - 1);
2662 #ifdef CONFIG_ZONE_DMA
2663 if (unlikely((flags & SLUB_DMA)))
2664 return kmalloc_dma_caches[index];
2666 #endif
2667 return kmalloc_caches[index];
2670 void *__kmalloc(size_t size, gfp_t flags)
2672 struct kmem_cache *s;
2673 void *ret;
2675 if (unlikely(size > SLUB_MAX_SIZE))
2676 return kmalloc_large(size, flags);
2678 s = get_slab(size, flags);
2680 if (unlikely(ZERO_OR_NULL_PTR(s)))
2681 return s;
2683 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2685 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2687 return ret;
2689 EXPORT_SYMBOL(__kmalloc);
2691 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2693 struct page *page;
2694 void *ptr = NULL;
2696 flags |= __GFP_COMP | __GFP_NOTRACK;
2697 page = alloc_pages_node(node, flags, get_order(size));
2698 if (page)
2699 ptr = page_address(page);
2701 kmemleak_alloc(ptr, size, 1, flags);
2702 return ptr;
2705 #ifdef CONFIG_NUMA
2706 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2708 struct kmem_cache *s;
2709 void *ret;
2711 if (unlikely(size > SLUB_MAX_SIZE)) {
2712 ret = kmalloc_large_node(size, flags, node);
2714 trace_kmalloc_node(_RET_IP_, ret,
2715 size, PAGE_SIZE << get_order(size),
2716 flags, node);
2718 return ret;
2721 s = get_slab(size, flags);
2723 if (unlikely(ZERO_OR_NULL_PTR(s)))
2724 return s;
2726 ret = slab_alloc(s, flags, node, _RET_IP_);
2728 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2730 return ret;
2732 EXPORT_SYMBOL(__kmalloc_node);
2733 #endif
2735 size_t ksize(const void *object)
2737 struct page *page;
2738 struct kmem_cache *s;
2740 if (unlikely(object == ZERO_SIZE_PTR))
2741 return 0;
2743 page = virt_to_head_page(object);
2745 if (unlikely(!PageSlab(page))) {
2746 WARN_ON(!PageCompound(page));
2747 return PAGE_SIZE << compound_order(page);
2749 s = page->slab;
2751 #ifdef CONFIG_SLUB_DEBUG
2753 * Debugging requires use of the padding between object
2754 * and whatever may come after it.
2756 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2757 return s->objsize;
2759 #endif
2761 * If we have the need to store the freelist pointer
2762 * back there or track user information then we can
2763 * only use the space before that information.
2765 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2766 return s->inuse;
2768 * Else we can use all the padding etc for the allocation
2770 return s->size;
2772 EXPORT_SYMBOL(ksize);
2774 void kfree(const void *x)
2776 struct page *page;
2777 void *object = (void *)x;
2779 trace_kfree(_RET_IP_, x);
2781 if (unlikely(ZERO_OR_NULL_PTR(x)))
2782 return;
2784 page = virt_to_head_page(x);
2785 if (unlikely(!PageSlab(page))) {
2786 BUG_ON(!PageCompound(page));
2787 kmemleak_free(x);
2788 put_page(page);
2789 return;
2791 slab_free(page->slab, page, object, _RET_IP_);
2793 EXPORT_SYMBOL(kfree);
2796 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2797 * the remaining slabs by the number of items in use. The slabs with the
2798 * most items in use come first. New allocations will then fill those up
2799 * and thus they can be removed from the partial lists.
2801 * The slabs with the least items are placed last. This results in them
2802 * being allocated from last increasing the chance that the last objects
2803 * are freed in them.
2805 int kmem_cache_shrink(struct kmem_cache *s)
2807 int node;
2808 int i;
2809 struct kmem_cache_node *n;
2810 struct page *page;
2811 struct page *t;
2812 int objects = oo_objects(s->max);
2813 struct list_head *slabs_by_inuse =
2814 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2815 unsigned long flags;
2817 if (!slabs_by_inuse)
2818 return -ENOMEM;
2820 flush_all(s);
2821 for_each_node_state(node, N_NORMAL_MEMORY) {
2822 n = get_node(s, node);
2824 if (!n->nr_partial)
2825 continue;
2827 for (i = 0; i < objects; i++)
2828 INIT_LIST_HEAD(slabs_by_inuse + i);
2830 spin_lock_irqsave(&n->list_lock, flags);
2833 * Build lists indexed by the items in use in each slab.
2835 * Note that concurrent frees may occur while we hold the
2836 * list_lock. page->inuse here is the upper limit.
2838 list_for_each_entry_safe(page, t, &n->partial, lru) {
2839 if (!page->inuse && slab_trylock(page)) {
2841 * Must hold slab lock here because slab_free
2842 * may have freed the last object and be
2843 * waiting to release the slab.
2845 list_del(&page->lru);
2846 n->nr_partial--;
2847 slab_unlock(page);
2848 discard_slab(s, page);
2849 } else {
2850 list_move(&page->lru,
2851 slabs_by_inuse + page->inuse);
2856 * Rebuild the partial list with the slabs filled up most
2857 * first and the least used slabs at the end.
2859 for (i = objects - 1; i >= 0; i--)
2860 list_splice(slabs_by_inuse + i, n->partial.prev);
2862 spin_unlock_irqrestore(&n->list_lock, flags);
2865 kfree(slabs_by_inuse);
2866 return 0;
2868 EXPORT_SYMBOL(kmem_cache_shrink);
2870 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2871 static int slab_mem_going_offline_callback(void *arg)
2873 struct kmem_cache *s;
2875 down_read(&slub_lock);
2876 list_for_each_entry(s, &slab_caches, list)
2877 kmem_cache_shrink(s);
2878 up_read(&slub_lock);
2880 return 0;
2883 static void slab_mem_offline_callback(void *arg)
2885 struct kmem_cache_node *n;
2886 struct kmem_cache *s;
2887 struct memory_notify *marg = arg;
2888 int offline_node;
2890 offline_node = marg->status_change_nid;
2893 * If the node still has available memory. we need kmem_cache_node
2894 * for it yet.
2896 if (offline_node < 0)
2897 return;
2899 down_read(&slub_lock);
2900 list_for_each_entry(s, &slab_caches, list) {
2901 n = get_node(s, offline_node);
2902 if (n) {
2904 * if n->nr_slabs > 0, slabs still exist on the node
2905 * that is going down. We were unable to free them,
2906 * and offline_pages() function shouldn't call this
2907 * callback. So, we must fail.
2909 BUG_ON(slabs_node(s, offline_node));
2911 s->node[offline_node] = NULL;
2912 kmem_cache_free(kmalloc_caches, n);
2915 up_read(&slub_lock);
2918 static int slab_mem_going_online_callback(void *arg)
2920 struct kmem_cache_node *n;
2921 struct kmem_cache *s;
2922 struct memory_notify *marg = arg;
2923 int nid = marg->status_change_nid;
2924 int ret = 0;
2927 * If the node's memory is already available, then kmem_cache_node is
2928 * already created. Nothing to do.
2930 if (nid < 0)
2931 return 0;
2934 * We are bringing a node online. No memory is available yet. We must
2935 * allocate a kmem_cache_node structure in order to bring the node
2936 * online.
2938 down_read(&slub_lock);
2939 list_for_each_entry(s, &slab_caches, list) {
2941 * XXX: kmem_cache_alloc_node will fallback to other nodes
2942 * since memory is not yet available from the node that
2943 * is brought up.
2945 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2946 if (!n) {
2947 ret = -ENOMEM;
2948 goto out;
2950 init_kmem_cache_node(n, s);
2951 s->node[nid] = n;
2953 out:
2954 up_read(&slub_lock);
2955 return ret;
2958 static int slab_memory_callback(struct notifier_block *self,
2959 unsigned long action, void *arg)
2961 int ret = 0;
2963 switch (action) {
2964 case MEM_GOING_ONLINE:
2965 ret = slab_mem_going_online_callback(arg);
2966 break;
2967 case MEM_GOING_OFFLINE:
2968 ret = slab_mem_going_offline_callback(arg);
2969 break;
2970 case MEM_OFFLINE:
2971 case MEM_CANCEL_ONLINE:
2972 slab_mem_offline_callback(arg);
2973 break;
2974 case MEM_ONLINE:
2975 case MEM_CANCEL_OFFLINE:
2976 break;
2978 if (ret)
2979 ret = notifier_from_errno(ret);
2980 else
2981 ret = NOTIFY_OK;
2982 return ret;
2985 #endif /* CONFIG_MEMORY_HOTPLUG */
2987 /********************************************************************
2988 * Basic setup of slabs
2989 *******************************************************************/
2992 * Used for early kmem_cache structures that were allocated using
2993 * the page allocator
2996 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2998 int node;
3000 list_add(&s->list, &slab_caches);
3001 s->refcount = -1;
3003 for_each_node_state(node, N_NORMAL_MEMORY) {
3004 struct kmem_cache_node *n = get_node(s, node);
3005 struct page *p;
3007 if (n) {
3008 list_for_each_entry(p, &n->partial, lru)
3009 p->slab = s;
3011 #ifdef CONFIG_SLAB_DEBUG
3012 list_for_each_entry(p, &n->full, lru)
3013 p->slab = s;
3014 #endif
3019 void __init kmem_cache_init(void)
3021 int i;
3022 int caches = 0;
3023 struct kmem_cache *temp_kmem_cache;
3024 int order;
3026 #ifdef CONFIG_NUMA
3027 struct kmem_cache *temp_kmem_cache_node;
3028 unsigned long kmalloc_size;
3030 kmem_size = offsetof(struct kmem_cache, node) +
3031 nr_node_ids * sizeof(struct kmem_cache_node *);
3033 /* Allocate two kmem_caches from the page allocator */
3034 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3035 order = get_order(2 * kmalloc_size);
3036 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3039 * Must first have the slab cache available for the allocations of the
3040 * struct kmem_cache_node's. There is special bootstrap code in
3041 * kmem_cache_open for slab_state == DOWN.
3043 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3045 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3046 sizeof(struct kmem_cache_node),
3047 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3049 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3050 #else
3051 /* Allocate a single kmem_cache from the page allocator */
3052 kmem_size = sizeof(struct kmem_cache);
3053 order = get_order(kmem_size);
3054 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3055 #endif
3057 /* Able to allocate the per node structures */
3058 slab_state = PARTIAL;
3060 temp_kmem_cache = kmem_cache;
3061 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3062 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3063 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3064 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3066 #ifdef CONFIG_NUMA
3068 * Allocate kmem_cache_node properly from the kmem_cache slab.
3069 * kmem_cache_node is separately allocated so no need to
3070 * update any list pointers.
3072 temp_kmem_cache_node = kmem_cache_node;
3074 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3075 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3077 kmem_cache_bootstrap_fixup(kmem_cache_node);
3079 caches++;
3080 #else
3082 * kmem_cache has kmem_cache_node embedded and we moved it!
3083 * Update the list heads
3085 INIT_LIST_HEAD(&kmem_cache->local_node.partial);
3086 list_splice(&temp_kmem_cache->local_node.partial, &kmem_cache->local_node.partial);
3087 #ifdef CONFIG_SLUB_DEBUG
3088 INIT_LIST_HEAD(&kmem_cache->local_node.full);
3089 list_splice(&temp_kmem_cache->local_node.full, &kmem_cache->local_node.full);
3090 #endif
3091 #endif
3092 kmem_cache_bootstrap_fixup(kmem_cache);
3093 caches++;
3094 /* Free temporary boot structure */
3095 free_pages((unsigned long)temp_kmem_cache, order);
3097 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3100 * Patch up the size_index table if we have strange large alignment
3101 * requirements for the kmalloc array. This is only the case for
3102 * MIPS it seems. The standard arches will not generate any code here.
3104 * Largest permitted alignment is 256 bytes due to the way we
3105 * handle the index determination for the smaller caches.
3107 * Make sure that nothing crazy happens if someone starts tinkering
3108 * around with ARCH_KMALLOC_MINALIGN
3110 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3111 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3113 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3114 int elem = size_index_elem(i);
3115 if (elem >= ARRAY_SIZE(size_index))
3116 break;
3117 size_index[elem] = KMALLOC_SHIFT_LOW;
3120 if (KMALLOC_MIN_SIZE == 64) {
3122 * The 96 byte size cache is not used if the alignment
3123 * is 64 byte.
3125 for (i = 64 + 8; i <= 96; i += 8)
3126 size_index[size_index_elem(i)] = 7;
3127 } else if (KMALLOC_MIN_SIZE == 128) {
3129 * The 192 byte sized cache is not used if the alignment
3130 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3131 * instead.
3133 for (i = 128 + 8; i <= 192; i += 8)
3134 size_index[size_index_elem(i)] = 8;
3137 /* Caches that are not of the two-to-the-power-of size */
3138 if (KMALLOC_MIN_SIZE <= 32) {
3139 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3140 caches++;
3143 if (KMALLOC_MIN_SIZE <= 64) {
3144 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3145 caches++;
3148 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3149 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3150 caches++;
3153 slab_state = UP;
3155 /* Provide the correct kmalloc names now that the caches are up */
3156 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3157 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3159 BUG_ON(!s);
3160 kmalloc_caches[i]->name = s;
3163 #ifdef CONFIG_SMP
3164 register_cpu_notifier(&slab_notifier);
3165 #endif
3167 #ifdef CONFIG_ZONE_DMA
3168 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3169 struct kmem_cache *s = kmalloc_caches[i];
3171 if (s && s->size) {
3172 char *name = kasprintf(GFP_NOWAIT,
3173 "dma-kmalloc-%d", s->objsize);
3175 BUG_ON(!name);
3176 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3177 s->objsize, SLAB_CACHE_DMA);
3180 #endif
3181 printk(KERN_INFO
3182 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3183 " CPUs=%d, Nodes=%d\n",
3184 caches, cache_line_size(),
3185 slub_min_order, slub_max_order, slub_min_objects,
3186 nr_cpu_ids, nr_node_ids);
3189 void __init kmem_cache_init_late(void)
3194 * Find a mergeable slab cache
3196 static int slab_unmergeable(struct kmem_cache *s)
3198 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3199 return 1;
3201 if (s->ctor)
3202 return 1;
3205 * We may have set a slab to be unmergeable during bootstrap.
3207 if (s->refcount < 0)
3208 return 1;
3210 return 0;
3213 static struct kmem_cache *find_mergeable(size_t size,
3214 size_t align, unsigned long flags, const char *name,
3215 void (*ctor)(void *))
3217 struct kmem_cache *s;
3219 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3220 return NULL;
3222 if (ctor)
3223 return NULL;
3225 size = ALIGN(size, sizeof(void *));
3226 align = calculate_alignment(flags, align, size);
3227 size = ALIGN(size, align);
3228 flags = kmem_cache_flags(size, flags, name, NULL);
3230 list_for_each_entry(s, &slab_caches, list) {
3231 if (slab_unmergeable(s))
3232 continue;
3234 if (size > s->size)
3235 continue;
3237 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3238 continue;
3240 * Check if alignment is compatible.
3241 * Courtesy of Adrian Drzewiecki
3243 if ((s->size & ~(align - 1)) != s->size)
3244 continue;
3246 if (s->size - size >= sizeof(void *))
3247 continue;
3249 return s;
3251 return NULL;
3254 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3255 size_t align, unsigned long flags, void (*ctor)(void *))
3257 struct kmem_cache *s;
3259 if (WARN_ON(!name))
3260 return NULL;
3262 down_write(&slub_lock);
3263 s = find_mergeable(size, align, flags, name, ctor);
3264 if (s) {
3265 s->refcount++;
3267 * Adjust the object sizes so that we clear
3268 * the complete object on kzalloc.
3270 s->objsize = max(s->objsize, (int)size);
3271 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3273 if (sysfs_slab_alias(s, name)) {
3274 s->refcount--;
3275 goto err;
3277 up_write(&slub_lock);
3278 return s;
3281 s = kmalloc(kmem_size, GFP_KERNEL);
3282 if (s) {
3283 if (kmem_cache_open(s, name,
3284 size, align, flags, ctor)) {
3285 list_add(&s->list, &slab_caches);
3286 if (sysfs_slab_add(s)) {
3287 list_del(&s->list);
3288 kfree(s);
3289 goto err;
3291 up_write(&slub_lock);
3292 return s;
3294 kfree(s);
3296 up_write(&slub_lock);
3298 err:
3299 if (flags & SLAB_PANIC)
3300 panic("Cannot create slabcache %s\n", name);
3301 else
3302 s = NULL;
3303 return s;
3305 EXPORT_SYMBOL(kmem_cache_create);
3307 #ifdef CONFIG_SMP
3309 * Use the cpu notifier to insure that the cpu slabs are flushed when
3310 * necessary.
3312 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3313 unsigned long action, void *hcpu)
3315 long cpu = (long)hcpu;
3316 struct kmem_cache *s;
3317 unsigned long flags;
3319 switch (action) {
3320 case CPU_UP_CANCELED:
3321 case CPU_UP_CANCELED_FROZEN:
3322 case CPU_DEAD:
3323 case CPU_DEAD_FROZEN:
3324 down_read(&slub_lock);
3325 list_for_each_entry(s, &slab_caches, list) {
3326 local_irq_save(flags);
3327 __flush_cpu_slab(s, cpu);
3328 local_irq_restore(flags);
3330 up_read(&slub_lock);
3331 break;
3332 default:
3333 break;
3335 return NOTIFY_OK;
3338 static struct notifier_block __cpuinitdata slab_notifier = {
3339 .notifier_call = slab_cpuup_callback
3342 #endif
3344 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3346 struct kmem_cache *s;
3347 void *ret;
3349 if (unlikely(size > SLUB_MAX_SIZE))
3350 return kmalloc_large(size, gfpflags);
3352 s = get_slab(size, gfpflags);
3354 if (unlikely(ZERO_OR_NULL_PTR(s)))
3355 return s;
3357 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3359 /* Honor the call site pointer we recieved. */
3360 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3362 return ret;
3365 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3366 int node, unsigned long caller)
3368 struct kmem_cache *s;
3369 void *ret;
3371 if (unlikely(size > SLUB_MAX_SIZE)) {
3372 ret = kmalloc_large_node(size, gfpflags, node);
3374 trace_kmalloc_node(caller, ret,
3375 size, PAGE_SIZE << get_order(size),
3376 gfpflags, node);
3378 return ret;
3381 s = get_slab(size, gfpflags);
3383 if (unlikely(ZERO_OR_NULL_PTR(s)))
3384 return s;
3386 ret = slab_alloc(s, gfpflags, node, caller);
3388 /* Honor the call site pointer we recieved. */
3389 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3391 return ret;
3394 #ifdef CONFIG_SLUB_DEBUG
3395 static int count_inuse(struct page *page)
3397 return page->inuse;
3400 static int count_total(struct page *page)
3402 return page->objects;
3405 static int validate_slab(struct kmem_cache *s, struct page *page,
3406 unsigned long *map)
3408 void *p;
3409 void *addr = page_address(page);
3411 if (!check_slab(s, page) ||
3412 !on_freelist(s, page, NULL))
3413 return 0;
3415 /* Now we know that a valid freelist exists */
3416 bitmap_zero(map, page->objects);
3418 for_each_free_object(p, s, page->freelist) {
3419 set_bit(slab_index(p, s, addr), map);
3420 if (!check_object(s, page, p, 0))
3421 return 0;
3424 for_each_object(p, s, addr, page->objects)
3425 if (!test_bit(slab_index(p, s, addr), map))
3426 if (!check_object(s, page, p, 1))
3427 return 0;
3428 return 1;
3431 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3432 unsigned long *map)
3434 if (slab_trylock(page)) {
3435 validate_slab(s, page, map);
3436 slab_unlock(page);
3437 } else
3438 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3439 s->name, page);
3442 static int validate_slab_node(struct kmem_cache *s,
3443 struct kmem_cache_node *n, unsigned long *map)
3445 unsigned long count = 0;
3446 struct page *page;
3447 unsigned long flags;
3449 spin_lock_irqsave(&n->list_lock, flags);
3451 list_for_each_entry(page, &n->partial, lru) {
3452 validate_slab_slab(s, page, map);
3453 count++;
3455 if (count != n->nr_partial)
3456 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3457 "counter=%ld\n", s->name, count, n->nr_partial);
3459 if (!(s->flags & SLAB_STORE_USER))
3460 goto out;
3462 list_for_each_entry(page, &n->full, lru) {
3463 validate_slab_slab(s, page, map);
3464 count++;
3466 if (count != atomic_long_read(&n->nr_slabs))
3467 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3468 "counter=%ld\n", s->name, count,
3469 atomic_long_read(&n->nr_slabs));
3471 out:
3472 spin_unlock_irqrestore(&n->list_lock, flags);
3473 return count;
3476 static long validate_slab_cache(struct kmem_cache *s)
3478 int node;
3479 unsigned long count = 0;
3480 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3481 sizeof(unsigned long), GFP_KERNEL);
3483 if (!map)
3484 return -ENOMEM;
3486 flush_all(s);
3487 for_each_node_state(node, N_NORMAL_MEMORY) {
3488 struct kmem_cache_node *n = get_node(s, node);
3490 count += validate_slab_node(s, n, map);
3492 kfree(map);
3493 return count;
3496 #ifdef SLUB_RESILIENCY_TEST
3497 static void resiliency_test(void)
3499 u8 *p;
3501 printk(KERN_ERR "SLUB resiliency testing\n");
3502 printk(KERN_ERR "-----------------------\n");
3503 printk(KERN_ERR "A. Corruption after allocation\n");
3505 p = kzalloc(16, GFP_KERNEL);
3506 p[16] = 0x12;
3507 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3508 " 0x12->0x%p\n\n", p + 16);
3510 validate_slab_cache(kmalloc_caches + 4);
3512 /* Hmmm... The next two are dangerous */
3513 p = kzalloc(32, GFP_KERNEL);
3514 p[32 + sizeof(void *)] = 0x34;
3515 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3516 " 0x34 -> -0x%p\n", p);
3517 printk(KERN_ERR
3518 "If allocated object is overwritten then not detectable\n\n");
3520 validate_slab_cache(kmalloc_caches + 5);
3521 p = kzalloc(64, GFP_KERNEL);
3522 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3523 *p = 0x56;
3524 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3526 printk(KERN_ERR
3527 "If allocated object is overwritten then not detectable\n\n");
3528 validate_slab_cache(kmalloc_caches + 6);
3530 printk(KERN_ERR "\nB. Corruption after free\n");
3531 p = kzalloc(128, GFP_KERNEL);
3532 kfree(p);
3533 *p = 0x78;
3534 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3535 validate_slab_cache(kmalloc_caches + 7);
3537 p = kzalloc(256, GFP_KERNEL);
3538 kfree(p);
3539 p[50] = 0x9a;
3540 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3542 validate_slab_cache(kmalloc_caches + 8);
3544 p = kzalloc(512, GFP_KERNEL);
3545 kfree(p);
3546 p[512] = 0xab;
3547 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3548 validate_slab_cache(kmalloc_caches + 9);
3550 #else
3551 static void resiliency_test(void) {};
3552 #endif
3555 * Generate lists of code addresses where slabcache objects are allocated
3556 * and freed.
3559 struct location {
3560 unsigned long count;
3561 unsigned long addr;
3562 long long sum_time;
3563 long min_time;
3564 long max_time;
3565 long min_pid;
3566 long max_pid;
3567 DECLARE_BITMAP(cpus, NR_CPUS);
3568 nodemask_t nodes;
3571 struct loc_track {
3572 unsigned long max;
3573 unsigned long count;
3574 struct location *loc;
3577 static void free_loc_track(struct loc_track *t)
3579 if (t->max)
3580 free_pages((unsigned long)t->loc,
3581 get_order(sizeof(struct location) * t->max));
3584 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3586 struct location *l;
3587 int order;
3589 order = get_order(sizeof(struct location) * max);
3591 l = (void *)__get_free_pages(flags, order);
3592 if (!l)
3593 return 0;
3595 if (t->count) {
3596 memcpy(l, t->loc, sizeof(struct location) * t->count);
3597 free_loc_track(t);
3599 t->max = max;
3600 t->loc = l;
3601 return 1;
3604 static int add_location(struct loc_track *t, struct kmem_cache *s,
3605 const struct track *track)
3607 long start, end, pos;
3608 struct location *l;
3609 unsigned long caddr;
3610 unsigned long age = jiffies - track->when;
3612 start = -1;
3613 end = t->count;
3615 for ( ; ; ) {
3616 pos = start + (end - start + 1) / 2;
3619 * There is nothing at "end". If we end up there
3620 * we need to add something to before end.
3622 if (pos == end)
3623 break;
3625 caddr = t->loc[pos].addr;
3626 if (track->addr == caddr) {
3628 l = &t->loc[pos];
3629 l->count++;
3630 if (track->when) {
3631 l->sum_time += age;
3632 if (age < l->min_time)
3633 l->min_time = age;
3634 if (age > l->max_time)
3635 l->max_time = age;
3637 if (track->pid < l->min_pid)
3638 l->min_pid = track->pid;
3639 if (track->pid > l->max_pid)
3640 l->max_pid = track->pid;
3642 cpumask_set_cpu(track->cpu,
3643 to_cpumask(l->cpus));
3645 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3646 return 1;
3649 if (track->addr < caddr)
3650 end = pos;
3651 else
3652 start = pos;
3656 * Not found. Insert new tracking element.
3658 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3659 return 0;
3661 l = t->loc + pos;
3662 if (pos < t->count)
3663 memmove(l + 1, l,
3664 (t->count - pos) * sizeof(struct location));
3665 t->count++;
3666 l->count = 1;
3667 l->addr = track->addr;
3668 l->sum_time = age;
3669 l->min_time = age;
3670 l->max_time = age;
3671 l->min_pid = track->pid;
3672 l->max_pid = track->pid;
3673 cpumask_clear(to_cpumask(l->cpus));
3674 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3675 nodes_clear(l->nodes);
3676 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3677 return 1;
3680 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3681 struct page *page, enum track_item alloc,
3682 long *map)
3684 void *addr = page_address(page);
3685 void *p;
3687 bitmap_zero(map, page->objects);
3688 for_each_free_object(p, s, page->freelist)
3689 set_bit(slab_index(p, s, addr), map);
3691 for_each_object(p, s, addr, page->objects)
3692 if (!test_bit(slab_index(p, s, addr), map))
3693 add_location(t, s, get_track(s, p, alloc));
3696 static int list_locations(struct kmem_cache *s, char *buf,
3697 enum track_item alloc)
3699 int len = 0;
3700 unsigned long i;
3701 struct loc_track t = { 0, 0, NULL };
3702 int node;
3703 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3704 sizeof(unsigned long), GFP_KERNEL);
3706 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3707 GFP_TEMPORARY)) {
3708 kfree(map);
3709 return sprintf(buf, "Out of memory\n");
3711 /* Push back cpu slabs */
3712 flush_all(s);
3714 for_each_node_state(node, N_NORMAL_MEMORY) {
3715 struct kmem_cache_node *n = get_node(s, node);
3716 unsigned long flags;
3717 struct page *page;
3719 if (!atomic_long_read(&n->nr_slabs))
3720 continue;
3722 spin_lock_irqsave(&n->list_lock, flags);
3723 list_for_each_entry(page, &n->partial, lru)
3724 process_slab(&t, s, page, alloc, map);
3725 list_for_each_entry(page, &n->full, lru)
3726 process_slab(&t, s, page, alloc, map);
3727 spin_unlock_irqrestore(&n->list_lock, flags);
3730 for (i = 0; i < t.count; i++) {
3731 struct location *l = &t.loc[i];
3733 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3734 break;
3735 len += sprintf(buf + len, "%7ld ", l->count);
3737 if (l->addr)
3738 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3739 else
3740 len += sprintf(buf + len, "<not-available>");
3742 if (l->sum_time != l->min_time) {
3743 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3744 l->min_time,
3745 (long)div_u64(l->sum_time, l->count),
3746 l->max_time);
3747 } else
3748 len += sprintf(buf + len, " age=%ld",
3749 l->min_time);
3751 if (l->min_pid != l->max_pid)
3752 len += sprintf(buf + len, " pid=%ld-%ld",
3753 l->min_pid, l->max_pid);
3754 else
3755 len += sprintf(buf + len, " pid=%ld",
3756 l->min_pid);
3758 if (num_online_cpus() > 1 &&
3759 !cpumask_empty(to_cpumask(l->cpus)) &&
3760 len < PAGE_SIZE - 60) {
3761 len += sprintf(buf + len, " cpus=");
3762 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3763 to_cpumask(l->cpus));
3766 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3767 len < PAGE_SIZE - 60) {
3768 len += sprintf(buf + len, " nodes=");
3769 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3770 l->nodes);
3773 len += sprintf(buf + len, "\n");
3776 free_loc_track(&t);
3777 kfree(map);
3778 if (!t.count)
3779 len += sprintf(buf, "No data\n");
3780 return len;
3783 enum slab_stat_type {
3784 SL_ALL, /* All slabs */
3785 SL_PARTIAL, /* Only partially allocated slabs */
3786 SL_CPU, /* Only slabs used for cpu caches */
3787 SL_OBJECTS, /* Determine allocated objects not slabs */
3788 SL_TOTAL /* Determine object capacity not slabs */
3791 #define SO_ALL (1 << SL_ALL)
3792 #define SO_PARTIAL (1 << SL_PARTIAL)
3793 #define SO_CPU (1 << SL_CPU)
3794 #define SO_OBJECTS (1 << SL_OBJECTS)
3795 #define SO_TOTAL (1 << SL_TOTAL)
3797 static ssize_t show_slab_objects(struct kmem_cache *s,
3798 char *buf, unsigned long flags)
3800 unsigned long total = 0;
3801 int node;
3802 int x;
3803 unsigned long *nodes;
3804 unsigned long *per_cpu;
3806 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3807 if (!nodes)
3808 return -ENOMEM;
3809 per_cpu = nodes + nr_node_ids;
3811 if (flags & SO_CPU) {
3812 int cpu;
3814 for_each_possible_cpu(cpu) {
3815 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3817 if (!c || c->node < 0)
3818 continue;
3820 if (c->page) {
3821 if (flags & SO_TOTAL)
3822 x = c->page->objects;
3823 else if (flags & SO_OBJECTS)
3824 x = c->page->inuse;
3825 else
3826 x = 1;
3828 total += x;
3829 nodes[c->node] += x;
3831 per_cpu[c->node]++;
3835 if (flags & SO_ALL) {
3836 for_each_node_state(node, N_NORMAL_MEMORY) {
3837 struct kmem_cache_node *n = get_node(s, node);
3839 if (flags & SO_TOTAL)
3840 x = atomic_long_read(&n->total_objects);
3841 else if (flags & SO_OBJECTS)
3842 x = atomic_long_read(&n->total_objects) -
3843 count_partial(n, count_free);
3845 else
3846 x = atomic_long_read(&n->nr_slabs);
3847 total += x;
3848 nodes[node] += x;
3851 } else if (flags & SO_PARTIAL) {
3852 for_each_node_state(node, N_NORMAL_MEMORY) {
3853 struct kmem_cache_node *n = get_node(s, node);
3855 if (flags & SO_TOTAL)
3856 x = count_partial(n, count_total);
3857 else if (flags & SO_OBJECTS)
3858 x = count_partial(n, count_inuse);
3859 else
3860 x = n->nr_partial;
3861 total += x;
3862 nodes[node] += x;
3865 x = sprintf(buf, "%lu", total);
3866 #ifdef CONFIG_NUMA
3867 for_each_node_state(node, N_NORMAL_MEMORY)
3868 if (nodes[node])
3869 x += sprintf(buf + x, " N%d=%lu",
3870 node, nodes[node]);
3871 #endif
3872 kfree(nodes);
3873 return x + sprintf(buf + x, "\n");
3876 static int any_slab_objects(struct kmem_cache *s)
3878 int node;
3880 for_each_online_node(node) {
3881 struct kmem_cache_node *n = get_node(s, node);
3883 if (!n)
3884 continue;
3886 if (atomic_long_read(&n->total_objects))
3887 return 1;
3889 return 0;
3892 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3893 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3895 struct slab_attribute {
3896 struct attribute attr;
3897 ssize_t (*show)(struct kmem_cache *s, char *buf);
3898 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3901 #define SLAB_ATTR_RO(_name) \
3902 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3904 #define SLAB_ATTR(_name) \
3905 static struct slab_attribute _name##_attr = \
3906 __ATTR(_name, 0644, _name##_show, _name##_store)
3908 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3910 return sprintf(buf, "%d\n", s->size);
3912 SLAB_ATTR_RO(slab_size);
3914 static ssize_t align_show(struct kmem_cache *s, char *buf)
3916 return sprintf(buf, "%d\n", s->align);
3918 SLAB_ATTR_RO(align);
3920 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3922 return sprintf(buf, "%d\n", s->objsize);
3924 SLAB_ATTR_RO(object_size);
3926 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3928 return sprintf(buf, "%d\n", oo_objects(s->oo));
3930 SLAB_ATTR_RO(objs_per_slab);
3932 static ssize_t order_store(struct kmem_cache *s,
3933 const char *buf, size_t length)
3935 unsigned long order;
3936 int err;
3938 err = strict_strtoul(buf, 10, &order);
3939 if (err)
3940 return err;
3942 if (order > slub_max_order || order < slub_min_order)
3943 return -EINVAL;
3945 calculate_sizes(s, order);
3946 return length;
3949 static ssize_t order_show(struct kmem_cache *s, char *buf)
3951 return sprintf(buf, "%d\n", oo_order(s->oo));
3953 SLAB_ATTR(order);
3955 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3957 return sprintf(buf, "%lu\n", s->min_partial);
3960 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3961 size_t length)
3963 unsigned long min;
3964 int err;
3966 err = strict_strtoul(buf, 10, &min);
3967 if (err)
3968 return err;
3970 set_min_partial(s, min);
3971 return length;
3973 SLAB_ATTR(min_partial);
3975 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3977 if (s->ctor) {
3978 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3980 return n + sprintf(buf + n, "\n");
3982 return 0;
3984 SLAB_ATTR_RO(ctor);
3986 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3988 return sprintf(buf, "%d\n", s->refcount - 1);
3990 SLAB_ATTR_RO(aliases);
3992 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3994 return show_slab_objects(s, buf, SO_ALL);
3996 SLAB_ATTR_RO(slabs);
3998 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4000 return show_slab_objects(s, buf, SO_PARTIAL);
4002 SLAB_ATTR_RO(partial);
4004 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4006 return show_slab_objects(s, buf, SO_CPU);
4008 SLAB_ATTR_RO(cpu_slabs);
4010 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4012 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4014 SLAB_ATTR_RO(objects);
4016 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4018 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4020 SLAB_ATTR_RO(objects_partial);
4022 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4024 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4026 SLAB_ATTR_RO(total_objects);
4028 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4033 static ssize_t sanity_checks_store(struct kmem_cache *s,
4034 const char *buf, size_t length)
4036 s->flags &= ~SLAB_DEBUG_FREE;
4037 if (buf[0] == '1')
4038 s->flags |= SLAB_DEBUG_FREE;
4039 return length;
4041 SLAB_ATTR(sanity_checks);
4043 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4045 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4048 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4049 size_t length)
4051 s->flags &= ~SLAB_TRACE;
4052 if (buf[0] == '1')
4053 s->flags |= SLAB_TRACE;
4054 return length;
4056 SLAB_ATTR(trace);
4058 #ifdef CONFIG_FAILSLAB
4059 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4064 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4065 size_t length)
4067 s->flags &= ~SLAB_FAILSLAB;
4068 if (buf[0] == '1')
4069 s->flags |= SLAB_FAILSLAB;
4070 return length;
4072 SLAB_ATTR(failslab);
4073 #endif
4075 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4080 static ssize_t reclaim_account_store(struct kmem_cache *s,
4081 const char *buf, size_t length)
4083 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4084 if (buf[0] == '1')
4085 s->flags |= SLAB_RECLAIM_ACCOUNT;
4086 return length;
4088 SLAB_ATTR(reclaim_account);
4090 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4094 SLAB_ATTR_RO(hwcache_align);
4096 #ifdef CONFIG_ZONE_DMA
4097 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4099 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4101 SLAB_ATTR_RO(cache_dma);
4102 #endif
4104 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4108 SLAB_ATTR_RO(destroy_by_rcu);
4110 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4115 static ssize_t red_zone_store(struct kmem_cache *s,
4116 const char *buf, size_t length)
4118 if (any_slab_objects(s))
4119 return -EBUSY;
4121 s->flags &= ~SLAB_RED_ZONE;
4122 if (buf[0] == '1')
4123 s->flags |= SLAB_RED_ZONE;
4124 calculate_sizes(s, -1);
4125 return length;
4127 SLAB_ATTR(red_zone);
4129 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4134 static ssize_t poison_store(struct kmem_cache *s,
4135 const char *buf, size_t length)
4137 if (any_slab_objects(s))
4138 return -EBUSY;
4140 s->flags &= ~SLAB_POISON;
4141 if (buf[0] == '1')
4142 s->flags |= SLAB_POISON;
4143 calculate_sizes(s, -1);
4144 return length;
4146 SLAB_ATTR(poison);
4148 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4150 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4153 static ssize_t store_user_store(struct kmem_cache *s,
4154 const char *buf, size_t length)
4156 if (any_slab_objects(s))
4157 return -EBUSY;
4159 s->flags &= ~SLAB_STORE_USER;
4160 if (buf[0] == '1')
4161 s->flags |= SLAB_STORE_USER;
4162 calculate_sizes(s, -1);
4163 return length;
4165 SLAB_ATTR(store_user);
4167 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4169 return 0;
4172 static ssize_t validate_store(struct kmem_cache *s,
4173 const char *buf, size_t length)
4175 int ret = -EINVAL;
4177 if (buf[0] == '1') {
4178 ret = validate_slab_cache(s);
4179 if (ret >= 0)
4180 ret = length;
4182 return ret;
4184 SLAB_ATTR(validate);
4186 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4188 return 0;
4191 static ssize_t shrink_store(struct kmem_cache *s,
4192 const char *buf, size_t length)
4194 if (buf[0] == '1') {
4195 int rc = kmem_cache_shrink(s);
4197 if (rc)
4198 return rc;
4199 } else
4200 return -EINVAL;
4201 return length;
4203 SLAB_ATTR(shrink);
4205 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4207 if (!(s->flags & SLAB_STORE_USER))
4208 return -ENOSYS;
4209 return list_locations(s, buf, TRACK_ALLOC);
4211 SLAB_ATTR_RO(alloc_calls);
4213 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4215 if (!(s->flags & SLAB_STORE_USER))
4216 return -ENOSYS;
4217 return list_locations(s, buf, TRACK_FREE);
4219 SLAB_ATTR_RO(free_calls);
4221 #ifdef CONFIG_NUMA
4222 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4224 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4227 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4228 const char *buf, size_t length)
4230 unsigned long ratio;
4231 int err;
4233 err = strict_strtoul(buf, 10, &ratio);
4234 if (err)
4235 return err;
4237 if (ratio <= 100)
4238 s->remote_node_defrag_ratio = ratio * 10;
4240 return length;
4242 SLAB_ATTR(remote_node_defrag_ratio);
4243 #endif
4245 #ifdef CONFIG_SLUB_STATS
4246 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4248 unsigned long sum = 0;
4249 int cpu;
4250 int len;
4251 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4253 if (!data)
4254 return -ENOMEM;
4256 for_each_online_cpu(cpu) {
4257 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4259 data[cpu] = x;
4260 sum += x;
4263 len = sprintf(buf, "%lu", sum);
4265 #ifdef CONFIG_SMP
4266 for_each_online_cpu(cpu) {
4267 if (data[cpu] && len < PAGE_SIZE - 20)
4268 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4270 #endif
4271 kfree(data);
4272 return len + sprintf(buf + len, "\n");
4275 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4277 int cpu;
4279 for_each_online_cpu(cpu)
4280 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4283 #define STAT_ATTR(si, text) \
4284 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4286 return show_stat(s, buf, si); \
4288 static ssize_t text##_store(struct kmem_cache *s, \
4289 const char *buf, size_t length) \
4291 if (buf[0] != '0') \
4292 return -EINVAL; \
4293 clear_stat(s, si); \
4294 return length; \
4296 SLAB_ATTR(text); \
4298 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4299 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4300 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4301 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4302 STAT_ATTR(FREE_FROZEN, free_frozen);
4303 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4304 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4305 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4306 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4307 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4308 STAT_ATTR(FREE_SLAB, free_slab);
4309 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4310 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4311 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4312 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4313 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4314 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4315 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4316 #endif
4318 static struct attribute *slab_attrs[] = {
4319 &slab_size_attr.attr,
4320 &object_size_attr.attr,
4321 &objs_per_slab_attr.attr,
4322 &order_attr.attr,
4323 &min_partial_attr.attr,
4324 &objects_attr.attr,
4325 &objects_partial_attr.attr,
4326 &total_objects_attr.attr,
4327 &slabs_attr.attr,
4328 &partial_attr.attr,
4329 &cpu_slabs_attr.attr,
4330 &ctor_attr.attr,
4331 &aliases_attr.attr,
4332 &align_attr.attr,
4333 &sanity_checks_attr.attr,
4334 &trace_attr.attr,
4335 &hwcache_align_attr.attr,
4336 &reclaim_account_attr.attr,
4337 &destroy_by_rcu_attr.attr,
4338 &red_zone_attr.attr,
4339 &poison_attr.attr,
4340 &store_user_attr.attr,
4341 &validate_attr.attr,
4342 &shrink_attr.attr,
4343 &alloc_calls_attr.attr,
4344 &free_calls_attr.attr,
4345 #ifdef CONFIG_ZONE_DMA
4346 &cache_dma_attr.attr,
4347 #endif
4348 #ifdef CONFIG_NUMA
4349 &remote_node_defrag_ratio_attr.attr,
4350 #endif
4351 #ifdef CONFIG_SLUB_STATS
4352 &alloc_fastpath_attr.attr,
4353 &alloc_slowpath_attr.attr,
4354 &free_fastpath_attr.attr,
4355 &free_slowpath_attr.attr,
4356 &free_frozen_attr.attr,
4357 &free_add_partial_attr.attr,
4358 &free_remove_partial_attr.attr,
4359 &alloc_from_partial_attr.attr,
4360 &alloc_slab_attr.attr,
4361 &alloc_refill_attr.attr,
4362 &free_slab_attr.attr,
4363 &cpuslab_flush_attr.attr,
4364 &deactivate_full_attr.attr,
4365 &deactivate_empty_attr.attr,
4366 &deactivate_to_head_attr.attr,
4367 &deactivate_to_tail_attr.attr,
4368 &deactivate_remote_frees_attr.attr,
4369 &order_fallback_attr.attr,
4370 #endif
4371 #ifdef CONFIG_FAILSLAB
4372 &failslab_attr.attr,
4373 #endif
4375 NULL
4378 static struct attribute_group slab_attr_group = {
4379 .attrs = slab_attrs,
4382 static ssize_t slab_attr_show(struct kobject *kobj,
4383 struct attribute *attr,
4384 char *buf)
4386 struct slab_attribute *attribute;
4387 struct kmem_cache *s;
4388 int err;
4390 attribute = to_slab_attr(attr);
4391 s = to_slab(kobj);
4393 if (!attribute->show)
4394 return -EIO;
4396 err = attribute->show(s, buf);
4398 return err;
4401 static ssize_t slab_attr_store(struct kobject *kobj,
4402 struct attribute *attr,
4403 const char *buf, size_t len)
4405 struct slab_attribute *attribute;
4406 struct kmem_cache *s;
4407 int err;
4409 attribute = to_slab_attr(attr);
4410 s = to_slab(kobj);
4412 if (!attribute->store)
4413 return -EIO;
4415 err = attribute->store(s, buf, len);
4417 return err;
4420 static void kmem_cache_release(struct kobject *kobj)
4422 struct kmem_cache *s = to_slab(kobj);
4424 kfree(s);
4427 static const struct sysfs_ops slab_sysfs_ops = {
4428 .show = slab_attr_show,
4429 .store = slab_attr_store,
4432 static struct kobj_type slab_ktype = {
4433 .sysfs_ops = &slab_sysfs_ops,
4434 .release = kmem_cache_release
4437 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4439 struct kobj_type *ktype = get_ktype(kobj);
4441 if (ktype == &slab_ktype)
4442 return 1;
4443 return 0;
4446 static const struct kset_uevent_ops slab_uevent_ops = {
4447 .filter = uevent_filter,
4450 static struct kset *slab_kset;
4452 #define ID_STR_LENGTH 64
4454 /* Create a unique string id for a slab cache:
4456 * Format :[flags-]size
4458 static char *create_unique_id(struct kmem_cache *s)
4460 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4461 char *p = name;
4463 BUG_ON(!name);
4465 *p++ = ':';
4467 * First flags affecting slabcache operations. We will only
4468 * get here for aliasable slabs so we do not need to support
4469 * too many flags. The flags here must cover all flags that
4470 * are matched during merging to guarantee that the id is
4471 * unique.
4473 if (s->flags & SLAB_CACHE_DMA)
4474 *p++ = 'd';
4475 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4476 *p++ = 'a';
4477 if (s->flags & SLAB_DEBUG_FREE)
4478 *p++ = 'F';
4479 if (!(s->flags & SLAB_NOTRACK))
4480 *p++ = 't';
4481 if (p != name + 1)
4482 *p++ = '-';
4483 p += sprintf(p, "%07d", s->size);
4484 BUG_ON(p > name + ID_STR_LENGTH - 1);
4485 return name;
4488 static int sysfs_slab_add(struct kmem_cache *s)
4490 int err;
4491 const char *name;
4492 int unmergeable;
4494 if (slab_state < SYSFS)
4495 /* Defer until later */
4496 return 0;
4498 unmergeable = slab_unmergeable(s);
4499 if (unmergeable) {
4501 * Slabcache can never be merged so we can use the name proper.
4502 * This is typically the case for debug situations. In that
4503 * case we can catch duplicate names easily.
4505 sysfs_remove_link(&slab_kset->kobj, s->name);
4506 name = s->name;
4507 } else {
4509 * Create a unique name for the slab as a target
4510 * for the symlinks.
4512 name = create_unique_id(s);
4515 s->kobj.kset = slab_kset;
4516 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4517 if (err) {
4518 kobject_put(&s->kobj);
4519 return err;
4522 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4523 if (err) {
4524 kobject_del(&s->kobj);
4525 kobject_put(&s->kobj);
4526 return err;
4528 kobject_uevent(&s->kobj, KOBJ_ADD);
4529 if (!unmergeable) {
4530 /* Setup first alias */
4531 sysfs_slab_alias(s, s->name);
4532 kfree(name);
4534 return 0;
4537 static void sysfs_slab_remove(struct kmem_cache *s)
4539 if (slab_state < SYSFS)
4541 * Sysfs has not been setup yet so no need to remove the
4542 * cache from sysfs.
4544 return;
4546 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4547 kobject_del(&s->kobj);
4548 kobject_put(&s->kobj);
4552 * Need to buffer aliases during bootup until sysfs becomes
4553 * available lest we lose that information.
4555 struct saved_alias {
4556 struct kmem_cache *s;
4557 const char *name;
4558 struct saved_alias *next;
4561 static struct saved_alias *alias_list;
4563 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4565 struct saved_alias *al;
4567 if (slab_state == SYSFS) {
4569 * If we have a leftover link then remove it.
4571 sysfs_remove_link(&slab_kset->kobj, name);
4572 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4575 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4576 if (!al)
4577 return -ENOMEM;
4579 al->s = s;
4580 al->name = name;
4581 al->next = alias_list;
4582 alias_list = al;
4583 return 0;
4586 static int __init slab_sysfs_init(void)
4588 struct kmem_cache *s;
4589 int err;
4591 down_write(&slub_lock);
4593 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4594 if (!slab_kset) {
4595 up_write(&slub_lock);
4596 printk(KERN_ERR "Cannot register slab subsystem.\n");
4597 return -ENOSYS;
4600 slab_state = SYSFS;
4602 list_for_each_entry(s, &slab_caches, list) {
4603 err = sysfs_slab_add(s);
4604 if (err)
4605 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4606 " to sysfs\n", s->name);
4609 while (alias_list) {
4610 struct saved_alias *al = alias_list;
4612 alias_list = alias_list->next;
4613 err = sysfs_slab_alias(al->s, al->name);
4614 if (err)
4615 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4616 " %s to sysfs\n", s->name);
4617 kfree(al);
4620 up_write(&slub_lock);
4621 resiliency_test();
4622 return 0;
4625 __initcall(slab_sysfs_init);
4626 #endif
4629 * The /proc/slabinfo ABI
4631 #ifdef CONFIG_SLABINFO
4632 static void print_slabinfo_header(struct seq_file *m)
4634 seq_puts(m, "slabinfo - version: 2.1\n");
4635 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4636 "<objperslab> <pagesperslab>");
4637 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4638 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4639 seq_putc(m, '\n');
4642 static void *s_start(struct seq_file *m, loff_t *pos)
4644 loff_t n = *pos;
4646 down_read(&slub_lock);
4647 if (!n)
4648 print_slabinfo_header(m);
4650 return seq_list_start(&slab_caches, *pos);
4653 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4655 return seq_list_next(p, &slab_caches, pos);
4658 static void s_stop(struct seq_file *m, void *p)
4660 up_read(&slub_lock);
4663 static int s_show(struct seq_file *m, void *p)
4665 unsigned long nr_partials = 0;
4666 unsigned long nr_slabs = 0;
4667 unsigned long nr_inuse = 0;
4668 unsigned long nr_objs = 0;
4669 unsigned long nr_free = 0;
4670 struct kmem_cache *s;
4671 int node;
4673 s = list_entry(p, struct kmem_cache, list);
4675 for_each_online_node(node) {
4676 struct kmem_cache_node *n = get_node(s, node);
4678 if (!n)
4679 continue;
4681 nr_partials += n->nr_partial;
4682 nr_slabs += atomic_long_read(&n->nr_slabs);
4683 nr_objs += atomic_long_read(&n->total_objects);
4684 nr_free += count_partial(n, count_free);
4687 nr_inuse = nr_objs - nr_free;
4689 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4690 nr_objs, s->size, oo_objects(s->oo),
4691 (1 << oo_order(s->oo)));
4692 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4693 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4694 0UL);
4695 seq_putc(m, '\n');
4696 return 0;
4699 static const struct seq_operations slabinfo_op = {
4700 .start = s_start,
4701 .next = s_next,
4702 .stop = s_stop,
4703 .show = s_show,
4706 static int slabinfo_open(struct inode *inode, struct file *file)
4708 return seq_open(file, &slabinfo_op);
4711 static const struct file_operations proc_slabinfo_operations = {
4712 .open = slabinfo_open,
4713 .read = seq_read,
4714 .llseek = seq_lseek,
4715 .release = seq_release,
4718 static int __init slab_proc_init(void)
4720 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4721 return 0;
4723 module_init(slab_proc_init);
4724 #endif /* CONFIG_SLABINFO */