2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
42 * Allow merged cfqqs to perform this amount of seeky I/O before
43 * deciding to break the queues up again.
45 #define CFQQ_COOP_TOUT (HZ)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
51 ((struct cfq_io_context *) (rq)->elevator_private)
52 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
54 static struct kmem_cache
*cfq_pool
;
55 static struct kmem_cache
*cfq_ioc_pool
;
57 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
58 static struct completion
*ioc_gone
;
59 static DEFINE_SPINLOCK(ioc_gone_lock
);
61 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
62 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
63 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
65 #define sample_valid(samples) ((samples) > 80)
68 * Most of our rbtree usage is for sorting with min extraction, so
69 * if we cache the leftmost node we don't have to walk down the tree
70 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
71 * move this into the elevator for the rq sorting as well.
77 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
80 * Per process-grouping structure
85 /* various state flags, see below */
88 struct cfq_data
*cfqd
;
89 /* service_tree member */
90 struct rb_node rb_node
;
91 /* service_tree key */
93 /* prio tree member */
94 struct rb_node p_node
;
95 /* prio tree root we belong to, if any */
96 struct rb_root
*p_root
;
97 /* sorted list of pending requests */
98 struct rb_root sort_list
;
99 /* if fifo isn't expired, next request to serve */
100 struct request
*next_rq
;
101 /* requests queued in sort_list */
103 /* currently allocated requests */
105 /* fifo list of requests in sort_list */
106 struct list_head fifo
;
108 unsigned long slice_end
;
110 unsigned int slice_dispatch
;
112 /* pending metadata requests */
114 /* number of requests that are on the dispatch list or inside driver */
117 /* io prio of this group */
118 unsigned short ioprio
, org_ioprio
;
119 unsigned short ioprio_class
, org_ioprio_class
;
121 unsigned int seek_samples
;
124 sector_t last_request_pos
;
125 unsigned long seeky_start
;
129 struct cfq_queue
*new_cfqq
;
133 * Per block device queue structure
136 struct request_queue
*queue
;
139 * rr list of queues with requests and the count of them
141 struct cfq_rb_root service_tree
;
144 * Each priority tree is sorted by next_request position. These
145 * trees are used when determining if two or more queues are
146 * interleaving requests (see cfq_close_cooperator).
148 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
150 unsigned int busy_queues
;
156 * queue-depth detection
161 int rq_in_driver_peak
;
164 * idle window management
166 struct timer_list idle_slice_timer
;
167 struct work_struct unplug_work
;
169 struct cfq_queue
*active_queue
;
170 struct cfq_io_context
*active_cic
;
173 * async queue for each priority case
175 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
176 struct cfq_queue
*async_idle_cfqq
;
178 sector_t last_position
;
181 * tunables, see top of file
183 unsigned int cfq_quantum
;
184 unsigned int cfq_fifo_expire
[2];
185 unsigned int cfq_back_penalty
;
186 unsigned int cfq_back_max
;
187 unsigned int cfq_slice
[2];
188 unsigned int cfq_slice_async_rq
;
189 unsigned int cfq_slice_idle
;
190 unsigned int cfq_latency
;
192 struct list_head cic_list
;
195 * Fallback dummy cfqq for extreme OOM conditions
197 struct cfq_queue oom_cfqq
;
199 unsigned long last_end_sync_rq
;
202 enum cfqq_state_flags
{
203 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
204 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
205 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
206 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
207 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
208 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
209 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
210 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
211 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
212 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
215 #define CFQ_CFQQ_FNS(name) \
216 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
218 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
220 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
222 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
224 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
226 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
230 CFQ_CFQQ_FNS(wait_request
);
231 CFQ_CFQQ_FNS(must_dispatch
);
232 CFQ_CFQQ_FNS(must_alloc_slice
);
233 CFQ_CFQQ_FNS(fifo_expire
);
234 CFQ_CFQQ_FNS(idle_window
);
235 CFQ_CFQQ_FNS(prio_changed
);
236 CFQ_CFQQ_FNS(slice_new
);
241 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
242 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
243 #define cfq_log(cfqd, fmt, args...) \
244 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
246 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
247 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
248 struct io_context
*, gfp_t
);
249 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
250 struct io_context
*);
252 static inline int rq_in_driver(struct cfq_data
*cfqd
)
254 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
257 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
260 return cic
->cfqq
[is_sync
];
263 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
264 struct cfq_queue
*cfqq
, bool is_sync
)
266 cic
->cfqq
[is_sync
] = cfqq
;
270 * We regard a request as SYNC, if it's either a read or has the SYNC bit
271 * set (in which case it could also be direct WRITE).
273 static inline bool cfq_bio_sync(struct bio
*bio
)
275 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
279 * scheduler run of queue, if there are requests pending and no one in the
280 * driver that will restart queueing
282 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
284 if (cfqd
->busy_queues
) {
285 cfq_log(cfqd
, "schedule dispatch");
286 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
290 static int cfq_queue_empty(struct request_queue
*q
)
292 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
294 return !cfqd
->busy_queues
;
298 * Scale schedule slice based on io priority. Use the sync time slice only
299 * if a queue is marked sync and has sync io queued. A sync queue with async
300 * io only, should not get full sync slice length.
302 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
305 const int base_slice
= cfqd
->cfq_slice
[sync
];
307 WARN_ON(prio
>= IOPRIO_BE_NR
);
309 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
313 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
315 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
319 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
321 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
322 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
326 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
327 * isn't valid until the first request from the dispatch is activated
328 * and the slice time set.
330 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
332 if (cfq_cfqq_slice_new(cfqq
))
334 if (time_before(jiffies
, cfqq
->slice_end
))
341 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
342 * We choose the request that is closest to the head right now. Distance
343 * behind the head is penalized and only allowed to a certain extent.
345 static struct request
*
346 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
348 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
349 unsigned long back_max
;
350 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
351 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
352 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
354 if (rq1
== NULL
|| rq1
== rq2
)
359 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
361 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
363 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
365 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
368 s1
= blk_rq_pos(rq1
);
369 s2
= blk_rq_pos(rq2
);
371 last
= cfqd
->last_position
;
374 * by definition, 1KiB is 2 sectors
376 back_max
= cfqd
->cfq_back_max
* 2;
379 * Strict one way elevator _except_ in the case where we allow
380 * short backward seeks which are biased as twice the cost of a
381 * similar forward seek.
385 else if (s1
+ back_max
>= last
)
386 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
388 wrap
|= CFQ_RQ1_WRAP
;
392 else if (s2
+ back_max
>= last
)
393 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
395 wrap
|= CFQ_RQ2_WRAP
;
397 /* Found required data */
400 * By doing switch() on the bit mask "wrap" we avoid having to
401 * check two variables for all permutations: --> faster!
404 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
420 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
423 * Since both rqs are wrapped,
424 * start with the one that's further behind head
425 * (--> only *one* back seek required),
426 * since back seek takes more time than forward.
436 * The below is leftmost cache rbtree addon
438 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
441 root
->left
= rb_first(&root
->rb
);
444 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
449 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
455 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
459 rb_erase_init(n
, &root
->rb
);
463 * would be nice to take fifo expire time into account as well
465 static struct request
*
466 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
467 struct request
*last
)
469 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
470 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
471 struct request
*next
= NULL
, *prev
= NULL
;
473 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
476 prev
= rb_entry_rq(rbprev
);
479 next
= rb_entry_rq(rbnext
);
481 rbnext
= rb_first(&cfqq
->sort_list
);
482 if (rbnext
&& rbnext
!= &last
->rb_node
)
483 next
= rb_entry_rq(rbnext
);
486 return cfq_choose_req(cfqd
, next
, prev
);
489 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
490 struct cfq_queue
*cfqq
)
493 * just an approximation, should be ok.
495 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
496 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
500 * The cfqd->service_tree holds all pending cfq_queue's that have
501 * requests waiting to be processed. It is sorted in the order that
502 * we will service the queues.
504 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
507 struct rb_node
**p
, *parent
;
508 struct cfq_queue
*__cfqq
;
509 unsigned long rb_key
;
512 if (cfq_class_idle(cfqq
)) {
513 rb_key
= CFQ_IDLE_DELAY
;
514 parent
= rb_last(&cfqd
->service_tree
.rb
);
515 if (parent
&& parent
!= &cfqq
->rb_node
) {
516 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
517 rb_key
+= __cfqq
->rb_key
;
520 } else if (!add_front
) {
522 * Get our rb key offset. Subtract any residual slice
523 * value carried from last service. A negative resid
524 * count indicates slice overrun, and this should position
525 * the next service time further away in the tree.
527 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
528 rb_key
-= cfqq
->slice_resid
;
529 cfqq
->slice_resid
= 0;
532 __cfqq
= cfq_rb_first(&cfqd
->service_tree
);
533 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
536 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
538 * same position, nothing more to do
540 if (rb_key
== cfqq
->rb_key
)
543 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
548 p
= &cfqd
->service_tree
.rb
.rb_node
;
553 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
556 * sort RT queues first, we always want to give
557 * preference to them. IDLE queues goes to the back.
558 * after that, sort on the next service time.
560 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
562 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
564 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
566 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
568 else if (time_before(rb_key
, __cfqq
->rb_key
))
573 if (n
== &(*p
)->rb_right
)
580 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
582 cfqq
->rb_key
= rb_key
;
583 rb_link_node(&cfqq
->rb_node
, parent
, p
);
584 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
587 static struct cfq_queue
*
588 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
589 sector_t sector
, struct rb_node
**ret_parent
,
590 struct rb_node
***rb_link
)
592 struct rb_node
**p
, *parent
;
593 struct cfq_queue
*cfqq
= NULL
;
601 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
604 * Sort strictly based on sector. Smallest to the left,
605 * largest to the right.
607 if (sector
> blk_rq_pos(cfqq
->next_rq
))
609 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
617 *ret_parent
= parent
;
623 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
625 struct rb_node
**p
, *parent
;
626 struct cfq_queue
*__cfqq
;
629 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
633 if (cfq_class_idle(cfqq
))
638 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
639 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
640 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
642 rb_link_node(&cfqq
->p_node
, parent
, p
);
643 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
649 * Update cfqq's position in the service tree.
651 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
654 * Resorting requires the cfqq to be on the RR list already.
656 if (cfq_cfqq_on_rr(cfqq
)) {
657 cfq_service_tree_add(cfqd
, cfqq
, 0);
658 cfq_prio_tree_add(cfqd
, cfqq
);
663 * add to busy list of queues for service, trying to be fair in ordering
664 * the pending list according to last request service
666 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
668 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
669 BUG_ON(cfq_cfqq_on_rr(cfqq
));
670 cfq_mark_cfqq_on_rr(cfqq
);
673 cfq_resort_rr_list(cfqd
, cfqq
);
677 * Called when the cfqq no longer has requests pending, remove it from
680 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
682 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
683 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
684 cfq_clear_cfqq_on_rr(cfqq
);
686 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
687 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
689 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
693 BUG_ON(!cfqd
->busy_queues
);
698 * rb tree support functions
700 static void cfq_del_rq_rb(struct request
*rq
)
702 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
703 struct cfq_data
*cfqd
= cfqq
->cfqd
;
704 const int sync
= rq_is_sync(rq
);
706 BUG_ON(!cfqq
->queued
[sync
]);
707 cfqq
->queued
[sync
]--;
709 elv_rb_del(&cfqq
->sort_list
, rq
);
711 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
712 cfq_del_cfqq_rr(cfqd
, cfqq
);
715 static void cfq_add_rq_rb(struct request
*rq
)
717 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
718 struct cfq_data
*cfqd
= cfqq
->cfqd
;
719 struct request
*__alias
, *prev
;
721 cfqq
->queued
[rq_is_sync(rq
)]++;
724 * looks a little odd, but the first insert might return an alias.
725 * if that happens, put the alias on the dispatch list
727 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
728 cfq_dispatch_insert(cfqd
->queue
, __alias
);
730 if (!cfq_cfqq_on_rr(cfqq
))
731 cfq_add_cfqq_rr(cfqd
, cfqq
);
734 * check if this request is a better next-serve candidate
736 prev
= cfqq
->next_rq
;
737 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
740 * adjust priority tree position, if ->next_rq changes
742 if (prev
!= cfqq
->next_rq
)
743 cfq_prio_tree_add(cfqd
, cfqq
);
745 BUG_ON(!cfqq
->next_rq
);
748 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
750 elv_rb_del(&cfqq
->sort_list
, rq
);
751 cfqq
->queued
[rq_is_sync(rq
)]--;
755 static struct request
*
756 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
758 struct task_struct
*tsk
= current
;
759 struct cfq_io_context
*cic
;
760 struct cfq_queue
*cfqq
;
762 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
766 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
768 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
770 return elv_rb_find(&cfqq
->sort_list
, sector
);
776 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
778 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
780 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
781 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
784 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
787 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
789 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
790 const int sync
= rq_is_sync(rq
);
792 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
793 cfqd
->rq_in_driver
[sync
]--;
794 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
798 static void cfq_remove_request(struct request
*rq
)
800 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
802 if (cfqq
->next_rq
== rq
)
803 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
805 list_del_init(&rq
->queuelist
);
808 cfqq
->cfqd
->rq_queued
--;
809 if (rq_is_meta(rq
)) {
810 WARN_ON(!cfqq
->meta_pending
);
811 cfqq
->meta_pending
--;
815 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
818 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
819 struct request
*__rq
;
821 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
822 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
824 return ELEVATOR_FRONT_MERGE
;
827 return ELEVATOR_NO_MERGE
;
830 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
833 if (type
== ELEVATOR_FRONT_MERGE
) {
834 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
836 cfq_reposition_rq_rb(cfqq
, req
);
841 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
842 struct request
*next
)
845 * reposition in fifo if next is older than rq
847 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
848 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
849 list_move(&rq
->queuelist
, &next
->queuelist
);
850 rq_set_fifo_time(rq
, rq_fifo_time(next
));
853 cfq_remove_request(next
);
856 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
859 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
860 struct cfq_io_context
*cic
;
861 struct cfq_queue
*cfqq
;
864 * Disallow merge of a sync bio into an async request.
866 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
870 * Lookup the cfqq that this bio will be queued with. Allow
871 * merge only if rq is queued there.
873 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
877 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
878 return cfqq
== RQ_CFQQ(rq
);
881 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
882 struct cfq_queue
*cfqq
)
885 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
887 cfqq
->slice_dispatch
= 0;
889 cfq_clear_cfqq_wait_request(cfqq
);
890 cfq_clear_cfqq_must_dispatch(cfqq
);
891 cfq_clear_cfqq_must_alloc_slice(cfqq
);
892 cfq_clear_cfqq_fifo_expire(cfqq
);
893 cfq_mark_cfqq_slice_new(cfqq
);
895 del_timer(&cfqd
->idle_slice_timer
);
898 cfqd
->active_queue
= cfqq
;
902 * current cfqq expired its slice (or was too idle), select new one
905 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
908 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
910 if (cfq_cfqq_wait_request(cfqq
))
911 del_timer(&cfqd
->idle_slice_timer
);
913 cfq_clear_cfqq_wait_request(cfqq
);
916 * store what was left of this slice, if the queue idled/timed out
918 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
919 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
920 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
923 cfq_resort_rr_list(cfqd
, cfqq
);
925 if (cfqq
== cfqd
->active_queue
)
926 cfqd
->active_queue
= NULL
;
928 if (cfqd
->active_cic
) {
929 put_io_context(cfqd
->active_cic
->ioc
);
930 cfqd
->active_cic
= NULL
;
934 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
936 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
939 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
943 * Get next queue for service. Unless we have a queue preemption,
944 * we'll simply select the first cfqq in the service tree.
946 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
948 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
951 return cfq_rb_first(&cfqd
->service_tree
);
955 * Get and set a new active queue for service.
957 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
958 struct cfq_queue
*cfqq
)
961 cfqq
= cfq_get_next_queue(cfqd
);
963 __cfq_set_active_queue(cfqd
, cfqq
);
967 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
970 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
971 return blk_rq_pos(rq
) - cfqd
->last_position
;
973 return cfqd
->last_position
- blk_rq_pos(rq
);
976 #define CFQQ_SEEK_THR 8 * 1024
977 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
979 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
982 sector_t sdist
= cfqq
->seek_mean
;
984 if (!sample_valid(cfqq
->seek_samples
))
985 sdist
= CFQQ_SEEK_THR
;
987 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
990 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
991 struct cfq_queue
*cur_cfqq
)
993 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
994 struct rb_node
*parent
, *node
;
995 struct cfq_queue
*__cfqq
;
996 sector_t sector
= cfqd
->last_position
;
998 if (RB_EMPTY_ROOT(root
))
1002 * First, if we find a request starting at the end of the last
1003 * request, choose it.
1005 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1010 * If the exact sector wasn't found, the parent of the NULL leaf
1011 * will contain the closest sector.
1013 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1014 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1017 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1018 node
= rb_next(&__cfqq
->p_node
);
1020 node
= rb_prev(&__cfqq
->p_node
);
1024 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1025 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1033 * cur_cfqq - passed in so that we don't decide that the current queue is
1034 * closely cooperating with itself.
1036 * So, basically we're assuming that that cur_cfqq has dispatched at least
1037 * one request, and that cfqd->last_position reflects a position on the disk
1038 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1041 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1042 struct cfq_queue
*cur_cfqq
)
1044 struct cfq_queue
*cfqq
;
1046 if (!cfq_cfqq_sync(cur_cfqq
))
1048 if (CFQQ_SEEKY(cur_cfqq
))
1052 * We should notice if some of the queues are cooperating, eg
1053 * working closely on the same area of the disk. In that case,
1054 * we can group them together and don't waste time idling.
1056 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1061 * It only makes sense to merge sync queues.
1063 if (!cfq_cfqq_sync(cfqq
))
1065 if (CFQQ_SEEKY(cfqq
))
1071 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1073 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1074 struct cfq_io_context
*cic
;
1078 * SSD device without seek penalty, disable idling. But only do so
1079 * for devices that support queuing, otherwise we still have a problem
1080 * with sync vs async workloads.
1082 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1085 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1086 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1089 * idle is disabled, either manually or by past process history
1091 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
1095 * still requests with the driver, don't idle
1097 if (rq_in_driver(cfqd
))
1101 * task has exited, don't wait
1103 cic
= cfqd
->active_cic
;
1104 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1108 * If our average think time is larger than the remaining time
1109 * slice, then don't idle. This avoids overrunning the allotted
1112 if (sample_valid(cic
->ttime_samples
) &&
1113 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1116 cfq_mark_cfqq_wait_request(cfqq
);
1119 * we don't want to idle for seeks, but we do want to allow
1120 * fair distribution of slice time for a process doing back-to-back
1121 * seeks. so allow a little bit of time for him to submit a new rq
1123 sl
= cfqd
->cfq_slice_idle
;
1124 if (sample_valid(cfqq
->seek_samples
) && CFQQ_SEEKY(cfqq
))
1125 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1127 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1128 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1132 * Move request from internal lists to the request queue dispatch list.
1134 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1136 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1137 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1139 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1141 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1142 cfq_remove_request(rq
);
1144 elv_dispatch_sort(q
, rq
);
1146 if (cfq_cfqq_sync(cfqq
))
1147 cfqd
->sync_flight
++;
1151 * return expired entry, or NULL to just start from scratch in rbtree
1153 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1155 struct request
*rq
= NULL
;
1157 if (cfq_cfqq_fifo_expire(cfqq
))
1160 cfq_mark_cfqq_fifo_expire(cfqq
);
1162 if (list_empty(&cfqq
->fifo
))
1165 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1166 if (time_before(jiffies
, rq_fifo_time(rq
)))
1169 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1174 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1176 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1178 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1180 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1184 * Must be called with the queue_lock held.
1186 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1188 int process_refs
, io_refs
;
1190 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1191 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1192 BUG_ON(process_refs
< 0);
1193 return process_refs
;
1196 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1198 int process_refs
, new_process_refs
;
1199 struct cfq_queue
*__cfqq
;
1202 * If there are no process references on the new_cfqq, then it is
1203 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1204 * chain may have dropped their last reference (not just their
1205 * last process reference).
1207 if (!cfqq_process_refs(new_cfqq
))
1210 /* Avoid a circular list and skip interim queue merges */
1211 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1217 process_refs
= cfqq_process_refs(cfqq
);
1218 new_process_refs
= cfqq_process_refs(new_cfqq
);
1220 * If the process for the cfqq has gone away, there is no
1221 * sense in merging the queues.
1223 if (process_refs
== 0 || new_process_refs
== 0)
1227 * Merge in the direction of the lesser amount of work.
1229 if (new_process_refs
>= process_refs
) {
1230 cfqq
->new_cfqq
= new_cfqq
;
1231 atomic_add(process_refs
, &new_cfqq
->ref
);
1233 new_cfqq
->new_cfqq
= cfqq
;
1234 atomic_add(new_process_refs
, &cfqq
->ref
);
1239 * Select a queue for service. If we have a current active queue,
1240 * check whether to continue servicing it, or retrieve and set a new one.
1242 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1244 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1246 cfqq
= cfqd
->active_queue
;
1251 * The active queue has run out of time, expire it and select new.
1253 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1257 * The active queue has requests and isn't expired, allow it to
1260 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1264 * If another queue has a request waiting within our mean seek
1265 * distance, let it run. The expire code will check for close
1266 * cooperators and put the close queue at the front of the service
1267 * tree. If possible, merge the expiring queue with the new cfqq.
1269 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
1271 if (!cfqq
->new_cfqq
)
1272 cfq_setup_merge(cfqq
, new_cfqq
);
1277 * No requests pending. If the active queue still has requests in
1278 * flight or is idling for a new request, allow either of these
1279 * conditions to happen (or time out) before selecting a new queue.
1281 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1282 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1288 cfq_slice_expired(cfqd
, 0);
1290 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1295 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1299 while (cfqq
->next_rq
) {
1300 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1304 BUG_ON(!list_empty(&cfqq
->fifo
));
1309 * Drain our current requests. Used for barriers and when switching
1310 * io schedulers on-the-fly.
1312 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1314 struct cfq_queue
*cfqq
;
1317 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1318 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1320 cfq_slice_expired(cfqd
, 0);
1322 BUG_ON(cfqd
->busy_queues
);
1324 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
1328 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1330 unsigned int max_dispatch
;
1333 * Drain async requests before we start sync IO
1335 if (cfq_cfqq_idle_window(cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
1339 * If this is an async queue and we have sync IO in flight, let it wait
1341 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1344 max_dispatch
= cfqd
->cfq_quantum
;
1345 if (cfq_class_idle(cfqq
))
1349 * Does this cfqq already have too much IO in flight?
1351 if (cfqq
->dispatched
>= max_dispatch
) {
1353 * idle queue must always only have a single IO in flight
1355 if (cfq_class_idle(cfqq
))
1359 * We have other queues, don't allow more IO from this one
1361 if (cfqd
->busy_queues
> 1)
1365 * Sole queue user, allow bigger slice
1371 * Async queues must wait a bit before being allowed dispatch.
1372 * We also ramp up the dispatch depth gradually for async IO,
1373 * based on the last sync IO we serviced
1375 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
1376 unsigned long last_sync
= jiffies
- cfqd
->last_end_sync_rq
;
1379 depth
= last_sync
/ cfqd
->cfq_slice
[1];
1380 if (!depth
&& !cfqq
->dispatched
)
1382 if (depth
< max_dispatch
)
1383 max_dispatch
= depth
;
1387 * If we're below the current max, allow a dispatch
1389 return cfqq
->dispatched
< max_dispatch
;
1393 * Dispatch a request from cfqq, moving them to the request queue
1396 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1400 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1402 if (!cfq_may_dispatch(cfqd
, cfqq
))
1406 * follow expired path, else get first next available
1408 rq
= cfq_check_fifo(cfqq
);
1413 * insert request into driver dispatch list
1415 cfq_dispatch_insert(cfqd
->queue
, rq
);
1417 if (!cfqd
->active_cic
) {
1418 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1420 atomic_long_inc(&cic
->ioc
->refcount
);
1421 cfqd
->active_cic
= cic
;
1428 * Find the cfqq that we need to service and move a request from that to the
1431 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1433 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1434 struct cfq_queue
*cfqq
;
1436 if (!cfqd
->busy_queues
)
1439 if (unlikely(force
))
1440 return cfq_forced_dispatch(cfqd
);
1442 cfqq
= cfq_select_queue(cfqd
);
1447 * Dispatch a request from this cfqq, if it is allowed
1449 if (!cfq_dispatch_request(cfqd
, cfqq
))
1452 cfqq
->slice_dispatch
++;
1453 cfq_clear_cfqq_must_dispatch(cfqq
);
1456 * expire an async queue immediately if it has used up its slice. idle
1457 * queue always expire after 1 dispatch round.
1459 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1460 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1461 cfq_class_idle(cfqq
))) {
1462 cfqq
->slice_end
= jiffies
+ 1;
1463 cfq_slice_expired(cfqd
, 0);
1466 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
1471 * task holds one reference to the queue, dropped when task exits. each rq
1472 * in-flight on this queue also holds a reference, dropped when rq is freed.
1474 * queue lock must be held here.
1476 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1478 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1480 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1482 if (!atomic_dec_and_test(&cfqq
->ref
))
1485 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1486 BUG_ON(rb_first(&cfqq
->sort_list
));
1487 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1488 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1490 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1491 __cfq_slice_expired(cfqd
, cfqq
, 0);
1492 cfq_schedule_dispatch(cfqd
);
1495 kmem_cache_free(cfq_pool
, cfqq
);
1499 * Must always be called with the rcu_read_lock() held
1502 __call_for_each_cic(struct io_context
*ioc
,
1503 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1505 struct cfq_io_context
*cic
;
1506 struct hlist_node
*n
;
1508 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1513 * Call func for each cic attached to this ioc.
1516 call_for_each_cic(struct io_context
*ioc
,
1517 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1520 __call_for_each_cic(ioc
, func
);
1524 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1526 struct cfq_io_context
*cic
;
1528 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1530 kmem_cache_free(cfq_ioc_pool
, cic
);
1531 elv_ioc_count_dec(cfq_ioc_count
);
1535 * CFQ scheduler is exiting, grab exit lock and check
1536 * the pending io context count. If it hits zero,
1537 * complete ioc_gone and set it back to NULL
1539 spin_lock(&ioc_gone_lock
);
1540 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
1544 spin_unlock(&ioc_gone_lock
);
1548 static void cfq_cic_free(struct cfq_io_context
*cic
)
1550 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1553 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1555 unsigned long flags
;
1557 BUG_ON(!cic
->dead_key
);
1559 spin_lock_irqsave(&ioc
->lock
, flags
);
1560 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1561 hlist_del_rcu(&cic
->cic_list
);
1562 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1568 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1569 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1570 * and ->trim() which is called with the task lock held
1572 static void cfq_free_io_context(struct io_context
*ioc
)
1575 * ioc->refcount is zero here, or we are called from elv_unregister(),
1576 * so no more cic's are allowed to be linked into this ioc. So it
1577 * should be ok to iterate over the known list, we will see all cic's
1578 * since no new ones are added.
1580 __call_for_each_cic(ioc
, cic_free_func
);
1583 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1585 struct cfq_queue
*__cfqq
, *next
;
1587 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1588 __cfq_slice_expired(cfqd
, cfqq
, 0);
1589 cfq_schedule_dispatch(cfqd
);
1593 * If this queue was scheduled to merge with another queue, be
1594 * sure to drop the reference taken on that queue (and others in
1595 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1597 __cfqq
= cfqq
->new_cfqq
;
1599 if (__cfqq
== cfqq
) {
1600 WARN(1, "cfqq->new_cfqq loop detected\n");
1603 next
= __cfqq
->new_cfqq
;
1604 cfq_put_queue(__cfqq
);
1608 cfq_put_queue(cfqq
);
1611 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1612 struct cfq_io_context
*cic
)
1614 struct io_context
*ioc
= cic
->ioc
;
1616 list_del_init(&cic
->queue_list
);
1619 * Make sure key == NULL is seen for dead queues
1622 cic
->dead_key
= (unsigned long) cic
->key
;
1626 if (rcu_dereference(ioc
->ioc_data
) == cic
) {
1628 spin_lock(&ioc
->lock
);
1629 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1630 spin_unlock(&ioc
->lock
);
1634 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1635 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1636 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1639 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1640 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1641 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1645 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1646 struct cfq_io_context
*cic
)
1648 struct cfq_data
*cfqd
= cic
->key
;
1651 struct request_queue
*q
= cfqd
->queue
;
1652 unsigned long flags
;
1654 spin_lock_irqsave(q
->queue_lock
, flags
);
1657 * Ensure we get a fresh copy of the ->key to prevent
1658 * race between exiting task and queue
1660 smp_read_barrier_depends();
1662 __cfq_exit_single_io_context(cfqd
, cic
);
1664 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1669 * The process that ioc belongs to has exited, we need to clean up
1670 * and put the internal structures we have that belongs to that process.
1672 static void cfq_exit_io_context(struct io_context
*ioc
)
1674 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1677 static struct cfq_io_context
*
1678 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1680 struct cfq_io_context
*cic
;
1682 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1685 cic
->last_end_request
= jiffies
;
1686 INIT_LIST_HEAD(&cic
->queue_list
);
1687 INIT_HLIST_NODE(&cic
->cic_list
);
1688 cic
->dtor
= cfq_free_io_context
;
1689 cic
->exit
= cfq_exit_io_context
;
1690 elv_ioc_count_inc(cfq_ioc_count
);
1696 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1698 struct task_struct
*tsk
= current
;
1701 if (!cfq_cfqq_prio_changed(cfqq
))
1704 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1705 switch (ioprio_class
) {
1707 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1708 case IOPRIO_CLASS_NONE
:
1710 * no prio set, inherit CPU scheduling settings
1712 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1713 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1715 case IOPRIO_CLASS_RT
:
1716 cfqq
->ioprio
= task_ioprio(ioc
);
1717 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1719 case IOPRIO_CLASS_BE
:
1720 cfqq
->ioprio
= task_ioprio(ioc
);
1721 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1723 case IOPRIO_CLASS_IDLE
:
1724 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1726 cfq_clear_cfqq_idle_window(cfqq
);
1731 * keep track of original prio settings in case we have to temporarily
1732 * elevate the priority of this queue
1734 cfqq
->org_ioprio
= cfqq
->ioprio
;
1735 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1736 cfq_clear_cfqq_prio_changed(cfqq
);
1739 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1741 struct cfq_data
*cfqd
= cic
->key
;
1742 struct cfq_queue
*cfqq
;
1743 unsigned long flags
;
1745 if (unlikely(!cfqd
))
1748 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1750 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
1752 struct cfq_queue
*new_cfqq
;
1753 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
1756 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
1757 cfq_put_queue(cfqq
);
1761 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
1763 cfq_mark_cfqq_prio_changed(cfqq
);
1765 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1768 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1770 call_for_each_cic(ioc
, changed_ioprio
);
1771 ioc
->ioprio_changed
= 0;
1774 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1775 pid_t pid
, bool is_sync
)
1777 RB_CLEAR_NODE(&cfqq
->rb_node
);
1778 RB_CLEAR_NODE(&cfqq
->p_node
);
1779 INIT_LIST_HEAD(&cfqq
->fifo
);
1781 atomic_set(&cfqq
->ref
, 0);
1784 cfq_mark_cfqq_prio_changed(cfqq
);
1787 if (!cfq_class_idle(cfqq
))
1788 cfq_mark_cfqq_idle_window(cfqq
);
1789 cfq_mark_cfqq_sync(cfqq
);
1794 static struct cfq_queue
*
1795 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
1796 struct io_context
*ioc
, gfp_t gfp_mask
)
1798 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1799 struct cfq_io_context
*cic
;
1802 cic
= cfq_cic_lookup(cfqd
, ioc
);
1803 /* cic always exists here */
1804 cfqq
= cic_to_cfqq(cic
, is_sync
);
1807 * Always try a new alloc if we fell back to the OOM cfqq
1808 * originally, since it should just be a temporary situation.
1810 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
1815 } else if (gfp_mask
& __GFP_WAIT
) {
1816 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1817 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1818 gfp_mask
| __GFP_ZERO
,
1820 spin_lock_irq(cfqd
->queue
->queue_lock
);
1824 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1825 gfp_mask
| __GFP_ZERO
,
1830 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
1831 cfq_init_prio_data(cfqq
, ioc
);
1832 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1834 cfqq
= &cfqd
->oom_cfqq
;
1838 kmem_cache_free(cfq_pool
, new_cfqq
);
1843 static struct cfq_queue
**
1844 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1846 switch (ioprio_class
) {
1847 case IOPRIO_CLASS_RT
:
1848 return &cfqd
->async_cfqq
[0][ioprio
];
1849 case IOPRIO_CLASS_BE
:
1850 return &cfqd
->async_cfqq
[1][ioprio
];
1851 case IOPRIO_CLASS_IDLE
:
1852 return &cfqd
->async_idle_cfqq
;
1858 static struct cfq_queue
*
1859 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
1862 const int ioprio
= task_ioprio(ioc
);
1863 const int ioprio_class
= task_ioprio_class(ioc
);
1864 struct cfq_queue
**async_cfqq
= NULL
;
1865 struct cfq_queue
*cfqq
= NULL
;
1868 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1873 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1876 * pin the queue now that it's allocated, scheduler exit will prune it
1878 if (!is_sync
&& !(*async_cfqq
)) {
1879 atomic_inc(&cfqq
->ref
);
1883 atomic_inc(&cfqq
->ref
);
1888 * We drop cfq io contexts lazily, so we may find a dead one.
1891 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1892 struct cfq_io_context
*cic
)
1894 unsigned long flags
;
1896 WARN_ON(!list_empty(&cic
->queue_list
));
1898 spin_lock_irqsave(&ioc
->lock
, flags
);
1900 BUG_ON(ioc
->ioc_data
== cic
);
1902 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1903 hlist_del_rcu(&cic
->cic_list
);
1904 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1909 static struct cfq_io_context
*
1910 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1912 struct cfq_io_context
*cic
;
1913 unsigned long flags
;
1922 * we maintain a last-hit cache, to avoid browsing over the tree
1924 cic
= rcu_dereference(ioc
->ioc_data
);
1925 if (cic
&& cic
->key
== cfqd
) {
1931 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1935 /* ->key must be copied to avoid race with cfq_exit_queue() */
1938 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1943 spin_lock_irqsave(&ioc
->lock
, flags
);
1944 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1945 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1953 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1954 * the process specific cfq io context when entered from the block layer.
1955 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1957 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1958 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1960 unsigned long flags
;
1963 ret
= radix_tree_preload(gfp_mask
);
1968 spin_lock_irqsave(&ioc
->lock
, flags
);
1969 ret
= radix_tree_insert(&ioc
->radix_root
,
1970 (unsigned long) cfqd
, cic
);
1972 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1973 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1975 radix_tree_preload_end();
1978 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1979 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1980 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1985 printk(KERN_ERR
"cfq: cic link failed!\n");
1991 * Setup general io context and cfq io context. There can be several cfq
1992 * io contexts per general io context, if this process is doing io to more
1993 * than one device managed by cfq.
1995 static struct cfq_io_context
*
1996 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1998 struct io_context
*ioc
= NULL
;
1999 struct cfq_io_context
*cic
;
2001 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2003 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2007 cic
= cfq_cic_lookup(cfqd
, ioc
);
2011 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2015 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2019 smp_read_barrier_depends();
2020 if (unlikely(ioc
->ioprio_changed
))
2021 cfq_ioc_set_ioprio(ioc
);
2027 put_io_context(ioc
);
2032 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2034 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2035 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2037 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2038 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2039 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
2043 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2049 if (!cfqq
->last_request_pos
)
2051 else if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
2052 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
2054 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
2057 * Don't allow the seek distance to get too large from the
2058 * odd fragment, pagein, etc
2060 if (cfqq
->seek_samples
<= 60) /* second&third seek */
2061 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*1024);
2063 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*64);
2065 cfqq
->seek_samples
= (7*cfqq
->seek_samples
+ 256) / 8;
2066 cfqq
->seek_total
= (7*cfqq
->seek_total
+ (u64
)256*sdist
) / 8;
2067 total
= cfqq
->seek_total
+ (cfqq
->seek_samples
/2);
2068 do_div(total
, cfqq
->seek_samples
);
2069 cfqq
->seek_mean
= (sector_t
)total
;
2072 * If this cfqq is shared between multiple processes, check to
2073 * make sure that those processes are still issuing I/Os within
2074 * the mean seek distance. If not, it may be time to break the
2075 * queues apart again.
2077 if (cfq_cfqq_coop(cfqq
)) {
2078 if (CFQQ_SEEKY(cfqq
) && !cfqq
->seeky_start
)
2079 cfqq
->seeky_start
= jiffies
;
2080 else if (!CFQQ_SEEKY(cfqq
))
2081 cfqq
->seeky_start
= 0;
2086 * Disable idle window if the process thinks too long or seeks so much that
2090 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2091 struct cfq_io_context
*cic
)
2093 int old_idle
, enable_idle
;
2096 * Don't idle for async or idle io prio class
2098 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
2101 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
2103 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
2104 (!cfqd
->cfq_latency
&& cfqd
->hw_tag
&& CFQQ_SEEKY(cfqq
)))
2106 else if (sample_valid(cic
->ttime_samples
)) {
2107 unsigned int slice_idle
= cfqd
->cfq_slice_idle
;
2108 if (sample_valid(cfqq
->seek_samples
) && CFQQ_SEEKY(cfqq
))
2109 slice_idle
= msecs_to_jiffies(CFQ_MIN_TT
);
2110 if (cic
->ttime_mean
> slice_idle
)
2116 if (old_idle
!= enable_idle
) {
2117 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
2119 cfq_mark_cfqq_idle_window(cfqq
);
2121 cfq_clear_cfqq_idle_window(cfqq
);
2126 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2127 * no or if we aren't sure, a 1 will cause a preempt.
2130 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
2133 struct cfq_queue
*cfqq
;
2135 cfqq
= cfqd
->active_queue
;
2139 if (cfq_slice_used(cfqq
))
2142 if (cfq_class_idle(new_cfqq
))
2145 if (cfq_class_idle(cfqq
))
2149 * if the new request is sync, but the currently running queue is
2150 * not, let the sync request have priority.
2152 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2156 * So both queues are sync. Let the new request get disk time if
2157 * it's a metadata request and the current queue is doing regular IO.
2159 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2163 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2165 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2168 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2172 * if this request is as-good as one we would expect from the
2173 * current cfqq, let it preempt
2175 if (cfq_rq_close(cfqd
, cfqq
, rq
))
2182 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2183 * let it have half of its nominal slice.
2185 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2187 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2188 cfq_slice_expired(cfqd
, 1);
2191 * Put the new queue at the front of the of the current list,
2192 * so we know that it will be selected next.
2194 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2196 cfq_service_tree_add(cfqd
, cfqq
, 1);
2198 cfqq
->slice_end
= 0;
2199 cfq_mark_cfqq_slice_new(cfqq
);
2203 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2204 * something we should do about it
2207 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2210 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2214 cfqq
->meta_pending
++;
2216 cfq_update_io_thinktime(cfqd
, cic
);
2217 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
2218 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2220 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2222 if (cfqq
== cfqd
->active_queue
) {
2224 * Remember that we saw a request from this process, but
2225 * don't start queuing just yet. Otherwise we risk seeing lots
2226 * of tiny requests, because we disrupt the normal plugging
2227 * and merging. If the request is already larger than a single
2228 * page, let it rip immediately. For that case we assume that
2229 * merging is already done. Ditto for a busy system that
2230 * has other work pending, don't risk delaying until the
2231 * idle timer unplug to continue working.
2233 if (cfq_cfqq_wait_request(cfqq
)) {
2234 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2235 cfqd
->busy_queues
> 1) {
2236 del_timer(&cfqd
->idle_slice_timer
);
2237 __blk_run_queue(cfqd
->queue
);
2239 cfq_mark_cfqq_must_dispatch(cfqq
);
2241 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2243 * not the active queue - expire current slice if it is
2244 * idle and has expired it's mean thinktime or this new queue
2245 * has some old slice time left and is of higher priority or
2246 * this new queue is RT and the current one is BE
2248 cfq_preempt_queue(cfqd
, cfqq
);
2249 __blk_run_queue(cfqd
->queue
);
2253 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2255 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2256 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2258 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2259 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2263 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
2264 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2266 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2270 * Update hw_tag based on peak queue depth over 50 samples under
2273 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2275 if (rq_in_driver(cfqd
) > cfqd
->rq_in_driver_peak
)
2276 cfqd
->rq_in_driver_peak
= rq_in_driver(cfqd
);
2278 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2279 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
2282 if (cfqd
->hw_tag_samples
++ < 50)
2285 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2290 cfqd
->hw_tag_samples
= 0;
2291 cfqd
->rq_in_driver_peak
= 0;
2294 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2296 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2297 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2298 const int sync
= rq_is_sync(rq
);
2302 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2304 cfq_update_hw_tag(cfqd
);
2306 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
2307 WARN_ON(!cfqq
->dispatched
);
2308 cfqd
->rq_in_driver
[sync
]--;
2311 if (cfq_cfqq_sync(cfqq
))
2312 cfqd
->sync_flight
--;
2315 RQ_CIC(rq
)->last_end_request
= now
;
2316 cfqd
->last_end_sync_rq
= now
;
2320 * If this is the active queue, check if it needs to be expired,
2321 * or if we want to idle in case it has no pending requests.
2323 if (cfqd
->active_queue
== cfqq
) {
2324 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2326 if (cfq_cfqq_slice_new(cfqq
)) {
2327 cfq_set_prio_slice(cfqd
, cfqq
);
2328 cfq_clear_cfqq_slice_new(cfqq
);
2331 * If there are no requests waiting in this queue, and
2332 * there are other queues ready to issue requests, AND
2333 * those other queues are issuing requests within our
2334 * mean seek distance, give them a chance to run instead
2337 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2338 cfq_slice_expired(cfqd
, 1);
2339 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
) &&
2340 sync
&& !rq_noidle(rq
))
2341 cfq_arm_slice_timer(cfqd
);
2344 if (!rq_in_driver(cfqd
))
2345 cfq_schedule_dispatch(cfqd
);
2349 * we temporarily boost lower priority queues if they are holding fs exclusive
2350 * resources. they are boosted to normal prio (CLASS_BE/4)
2352 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2354 if (has_fs_excl()) {
2356 * boost idle prio on transactions that would lock out other
2357 * users of the filesystem
2359 if (cfq_class_idle(cfqq
))
2360 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2361 if (cfqq
->ioprio
> IOPRIO_NORM
)
2362 cfqq
->ioprio
= IOPRIO_NORM
;
2365 * check if we need to unboost the queue
2367 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2368 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2369 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2370 cfqq
->ioprio
= cfqq
->org_ioprio
;
2374 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2376 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
2377 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2378 return ELV_MQUEUE_MUST
;
2381 return ELV_MQUEUE_MAY
;
2384 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2386 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2387 struct task_struct
*tsk
= current
;
2388 struct cfq_io_context
*cic
;
2389 struct cfq_queue
*cfqq
;
2392 * don't force setup of a queue from here, as a call to may_queue
2393 * does not necessarily imply that a request actually will be queued.
2394 * so just lookup a possibly existing queue, or return 'may queue'
2397 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2399 return ELV_MQUEUE_MAY
;
2401 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2403 cfq_init_prio_data(cfqq
, cic
->ioc
);
2404 cfq_prio_boost(cfqq
);
2406 return __cfq_may_queue(cfqq
);
2409 return ELV_MQUEUE_MAY
;
2413 * queue lock held here
2415 static void cfq_put_request(struct request
*rq
)
2417 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2420 const int rw
= rq_data_dir(rq
);
2422 BUG_ON(!cfqq
->allocated
[rw
]);
2423 cfqq
->allocated
[rw
]--;
2425 put_io_context(RQ_CIC(rq
)->ioc
);
2427 rq
->elevator_private
= NULL
;
2428 rq
->elevator_private2
= NULL
;
2430 cfq_put_queue(cfqq
);
2434 static struct cfq_queue
*
2435 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
2436 struct cfq_queue
*cfqq
)
2438 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
2439 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
2440 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
2441 cfq_put_queue(cfqq
);
2442 return cic_to_cfqq(cic
, 1);
2445 static int should_split_cfqq(struct cfq_queue
*cfqq
)
2447 if (cfqq
->seeky_start
&&
2448 time_after(jiffies
, cfqq
->seeky_start
+ CFQQ_COOP_TOUT
))
2454 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2455 * was the last process referring to said cfqq.
2457 static struct cfq_queue
*
2458 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
2460 if (cfqq_process_refs(cfqq
) == 1) {
2461 cfqq
->seeky_start
= 0;
2462 cfqq
->pid
= current
->pid
;
2463 cfq_clear_cfqq_coop(cfqq
);
2467 cic_set_cfqq(cic
, NULL
, 1);
2468 cfq_put_queue(cfqq
);
2472 * Allocate cfq data structures associated with this request.
2475 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2477 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2478 struct cfq_io_context
*cic
;
2479 const int rw
= rq_data_dir(rq
);
2480 const bool is_sync
= rq_is_sync(rq
);
2481 struct cfq_queue
*cfqq
;
2482 unsigned long flags
;
2484 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2486 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2488 spin_lock_irqsave(q
->queue_lock
, flags
);
2494 cfqq
= cic_to_cfqq(cic
, is_sync
);
2495 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2496 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2497 cic_set_cfqq(cic
, cfqq
, is_sync
);
2500 * If the queue was seeky for too long, break it apart.
2502 if (cfq_cfqq_coop(cfqq
) && should_split_cfqq(cfqq
)) {
2503 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
2504 cfqq
= split_cfqq(cic
, cfqq
);
2510 * Check to see if this queue is scheduled to merge with
2511 * another, closely cooperating queue. The merging of
2512 * queues happens here as it must be done in process context.
2513 * The reference on new_cfqq was taken in merge_cfqqs.
2516 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
2519 cfqq
->allocated
[rw
]++;
2520 atomic_inc(&cfqq
->ref
);
2522 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2524 rq
->elevator_private
= cic
;
2525 rq
->elevator_private2
= cfqq
;
2530 put_io_context(cic
->ioc
);
2532 cfq_schedule_dispatch(cfqd
);
2533 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2534 cfq_log(cfqd
, "set_request fail");
2538 static void cfq_kick_queue(struct work_struct
*work
)
2540 struct cfq_data
*cfqd
=
2541 container_of(work
, struct cfq_data
, unplug_work
);
2542 struct request_queue
*q
= cfqd
->queue
;
2544 spin_lock_irq(q
->queue_lock
);
2545 __blk_run_queue(cfqd
->queue
);
2546 spin_unlock_irq(q
->queue_lock
);
2550 * Timer running if the active_queue is currently idling inside its time slice
2552 static void cfq_idle_slice_timer(unsigned long data
)
2554 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2555 struct cfq_queue
*cfqq
;
2556 unsigned long flags
;
2559 cfq_log(cfqd
, "idle timer fired");
2561 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2563 cfqq
= cfqd
->active_queue
;
2568 * We saw a request before the queue expired, let it through
2570 if (cfq_cfqq_must_dispatch(cfqq
))
2576 if (cfq_slice_used(cfqq
))
2580 * only expire and reinvoke request handler, if there are
2581 * other queues with pending requests
2583 if (!cfqd
->busy_queues
)
2587 * not expired and it has a request pending, let it dispatch
2589 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2593 cfq_slice_expired(cfqd
, timed_out
);
2595 cfq_schedule_dispatch(cfqd
);
2597 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2600 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2602 del_timer_sync(&cfqd
->idle_slice_timer
);
2603 cancel_work_sync(&cfqd
->unplug_work
);
2606 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2610 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2611 if (cfqd
->async_cfqq
[0][i
])
2612 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2613 if (cfqd
->async_cfqq
[1][i
])
2614 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2617 if (cfqd
->async_idle_cfqq
)
2618 cfq_put_queue(cfqd
->async_idle_cfqq
);
2621 static void cfq_exit_queue(struct elevator_queue
*e
)
2623 struct cfq_data
*cfqd
= e
->elevator_data
;
2624 struct request_queue
*q
= cfqd
->queue
;
2626 cfq_shutdown_timer_wq(cfqd
);
2628 spin_lock_irq(q
->queue_lock
);
2630 if (cfqd
->active_queue
)
2631 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2633 while (!list_empty(&cfqd
->cic_list
)) {
2634 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2635 struct cfq_io_context
,
2638 __cfq_exit_single_io_context(cfqd
, cic
);
2641 cfq_put_async_queues(cfqd
);
2643 spin_unlock_irq(q
->queue_lock
);
2645 cfq_shutdown_timer_wq(cfqd
);
2650 static void *cfq_init_queue(struct request_queue
*q
)
2652 struct cfq_data
*cfqd
;
2655 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2659 cfqd
->service_tree
= CFQ_RB_ROOT
;
2662 * Not strictly needed (since RB_ROOT just clears the node and we
2663 * zeroed cfqd on alloc), but better be safe in case someone decides
2664 * to add magic to the rb code
2666 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2667 cfqd
->prio_trees
[i
] = RB_ROOT
;
2670 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2671 * Grab a permanent reference to it, so that the normal code flow
2672 * will not attempt to free it.
2674 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
2675 atomic_inc(&cfqd
->oom_cfqq
.ref
);
2677 INIT_LIST_HEAD(&cfqd
->cic_list
);
2681 init_timer(&cfqd
->idle_slice_timer
);
2682 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2683 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2685 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2687 cfqd
->cfq_quantum
= cfq_quantum
;
2688 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2689 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2690 cfqd
->cfq_back_max
= cfq_back_max
;
2691 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2692 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2693 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2694 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2695 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2696 cfqd
->cfq_latency
= 1;
2698 cfqd
->last_end_sync_rq
= jiffies
;
2702 static void cfq_slab_kill(void)
2705 * Caller already ensured that pending RCU callbacks are completed,
2706 * so we should have no busy allocations at this point.
2709 kmem_cache_destroy(cfq_pool
);
2711 kmem_cache_destroy(cfq_ioc_pool
);
2714 static int __init
cfq_slab_setup(void)
2716 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2720 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2731 * sysfs parts below -->
2734 cfq_var_show(unsigned int var
, char *page
)
2736 return sprintf(page
, "%d\n", var
);
2740 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2742 char *p
= (char *) page
;
2744 *var
= simple_strtoul(p
, &p
, 10);
2748 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2749 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2751 struct cfq_data *cfqd = e->elevator_data; \
2752 unsigned int __data = __VAR; \
2754 __data = jiffies_to_msecs(__data); \
2755 return cfq_var_show(__data, (page)); \
2757 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2758 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2759 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2760 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2761 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2762 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2763 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2764 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2765 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2766 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
2767 #undef SHOW_FUNCTION
2769 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2770 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2772 struct cfq_data *cfqd = e->elevator_data; \
2773 unsigned int __data; \
2774 int ret = cfq_var_store(&__data, (page), count); \
2775 if (__data < (MIN)) \
2777 else if (__data > (MAX)) \
2780 *(__PTR) = msecs_to_jiffies(__data); \
2782 *(__PTR) = __data; \
2785 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2786 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2788 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2790 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2791 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2793 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2794 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2795 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2796 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2798 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
2799 #undef STORE_FUNCTION
2801 #define CFQ_ATTR(name) \
2802 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2804 static struct elv_fs_entry cfq_attrs
[] = {
2806 CFQ_ATTR(fifo_expire_sync
),
2807 CFQ_ATTR(fifo_expire_async
),
2808 CFQ_ATTR(back_seek_max
),
2809 CFQ_ATTR(back_seek_penalty
),
2810 CFQ_ATTR(slice_sync
),
2811 CFQ_ATTR(slice_async
),
2812 CFQ_ATTR(slice_async_rq
),
2813 CFQ_ATTR(slice_idle
),
2814 CFQ_ATTR(low_latency
),
2818 static struct elevator_type iosched_cfq
= {
2820 .elevator_merge_fn
= cfq_merge
,
2821 .elevator_merged_fn
= cfq_merged_request
,
2822 .elevator_merge_req_fn
= cfq_merged_requests
,
2823 .elevator_allow_merge_fn
= cfq_allow_merge
,
2824 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2825 .elevator_add_req_fn
= cfq_insert_request
,
2826 .elevator_activate_req_fn
= cfq_activate_request
,
2827 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2828 .elevator_queue_empty_fn
= cfq_queue_empty
,
2829 .elevator_completed_req_fn
= cfq_completed_request
,
2830 .elevator_former_req_fn
= elv_rb_former_request
,
2831 .elevator_latter_req_fn
= elv_rb_latter_request
,
2832 .elevator_set_req_fn
= cfq_set_request
,
2833 .elevator_put_req_fn
= cfq_put_request
,
2834 .elevator_may_queue_fn
= cfq_may_queue
,
2835 .elevator_init_fn
= cfq_init_queue
,
2836 .elevator_exit_fn
= cfq_exit_queue
,
2837 .trim
= cfq_free_io_context
,
2839 .elevator_attrs
= cfq_attrs
,
2840 .elevator_name
= "cfq",
2841 .elevator_owner
= THIS_MODULE
,
2844 static int __init
cfq_init(void)
2847 * could be 0 on HZ < 1000 setups
2849 if (!cfq_slice_async
)
2850 cfq_slice_async
= 1;
2851 if (!cfq_slice_idle
)
2854 if (cfq_slab_setup())
2857 elv_register(&iosched_cfq
);
2862 static void __exit
cfq_exit(void)
2864 DECLARE_COMPLETION_ONSTACK(all_gone
);
2865 elv_unregister(&iosched_cfq
);
2866 ioc_gone
= &all_gone
;
2867 /* ioc_gone's update must be visible before reading ioc_count */
2871 * this also protects us from entering cfq_slab_kill() with
2872 * pending RCU callbacks
2874 if (elv_ioc_count_read(cfq_ioc_count
))
2875 wait_for_completion(&all_gone
);
2879 module_init(cfq_init
);
2880 module_exit(cfq_exit
);
2882 MODULE_AUTHOR("Jens Axboe");
2883 MODULE_LICENSE("GPL");
2884 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");