amd64_edac: Adjust channel counting to F15h
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / edac / amd64_edac.c
blob1ec014534e18e2c47f096fba31420c4e0089f207
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr __percpu *msrs;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances = ATOMIC_INIT(0);
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
31 static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
41 static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
53 static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
62 static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
69 [11] = 8192,
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
77 *FIXME: Produce a better mapping/linearisation.
81 struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84 } scrubrates[] = {
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
110 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
113 int err = 0;
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
120 return err;
123 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
126 int err = 0;
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
133 return err;
138 * Depending on the family, F2 DCT reads need special handling:
140 * K8: has a single DCT only
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
149 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
152 if (addr >= 0x100)
153 return -EINVAL;
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
158 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
164 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
167 u32 reg = 0;
168 u8 dct = 0;
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
201 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
203 u32 scrubval;
204 int i;
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
217 if (scrubrates[i].scrubval < min_rate)
218 continue;
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
230 scrubval = scrubrates[i].scrubval;
232 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
234 if (scrubval)
235 return scrubrates[i].bandwidth;
237 return 0;
240 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
242 struct amd64_pvt *pvt = mci->pvt_info;
244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
247 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
251 int i, retval = -EINVAL;
253 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
255 scrubval = scrubval & 0x001F;
257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
260 if (scrubrates[i].scrubval == scrubval) {
261 retval = scrubrates[i].bandwidth;
262 break;
265 return retval;
269 * returns true if the SysAddr given by sys_addr matches the
270 * DRAM base/limit associated with node_id
272 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
274 u64 addr;
276 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
277 * all ones if the most significant implemented address bit is 1.
278 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
279 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
280 * Application Programming.
282 addr = sys_addr & 0x000000ffffffffffull;
284 return ((addr >= get_dram_base(pvt, nid)) &&
285 (addr <= get_dram_limit(pvt, nid)));
289 * Attempt to map a SysAddr to a node. On success, return a pointer to the
290 * mem_ctl_info structure for the node that the SysAddr maps to.
292 * On failure, return NULL.
294 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
295 u64 sys_addr)
297 struct amd64_pvt *pvt;
298 int node_id;
299 u32 intlv_en, bits;
302 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
303 * 3.4.4.2) registers to map the SysAddr to a node ID.
305 pvt = mci->pvt_info;
308 * The value of this field should be the same for all DRAM Base
309 * registers. Therefore we arbitrarily choose to read it from the
310 * register for node 0.
312 intlv_en = dram_intlv_en(pvt, 0);
314 if (intlv_en == 0) {
315 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
316 if (amd64_base_limit_match(pvt, sys_addr, node_id))
317 goto found;
319 goto err_no_match;
322 if (unlikely((intlv_en != 0x01) &&
323 (intlv_en != 0x03) &&
324 (intlv_en != 0x07))) {
325 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
326 return NULL;
329 bits = (((u32) sys_addr) >> 12) & intlv_en;
331 for (node_id = 0; ; ) {
332 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
333 break; /* intlv_sel field matches */
335 if (++node_id >= DRAM_RANGES)
336 goto err_no_match;
339 /* sanity test for sys_addr */
340 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
341 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
342 "range for node %d with node interleaving enabled.\n",
343 __func__, sys_addr, node_id);
344 return NULL;
347 found:
348 return edac_mc_find(node_id);
350 err_no_match:
351 debugf2("sys_addr 0x%lx doesn't match any node\n",
352 (unsigned long)sys_addr);
354 return NULL;
358 * compute the CS base address of the @csrow on the DRAM controller @dct.
359 * For details see F2x[5C:40] in the processor's BKDG
361 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
362 u64 *base, u64 *mask)
364 u64 csbase, csmask, base_bits, mask_bits;
365 u8 addr_shift;
367 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow];
370 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
371 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
372 addr_shift = 4;
373 } else {
374 csbase = pvt->csels[dct].csbases[csrow];
375 csmask = pvt->csels[dct].csmasks[csrow >> 1];
376 addr_shift = 8;
378 if (boot_cpu_data.x86 == 0x15)
379 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
380 else
381 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
384 *base = (csbase & base_bits) << addr_shift;
386 *mask = ~0ULL;
387 /* poke holes for the csmask */
388 *mask &= ~(mask_bits << addr_shift);
389 /* OR them in */
390 *mask |= (csmask & mask_bits) << addr_shift;
393 #define for_each_chip_select(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
396 #define for_each_chip_select_mask(i, dct, pvt) \
397 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
400 * @input_addr is an InputAddr associated with the node given by mci. Return the
401 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
403 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
405 struct amd64_pvt *pvt;
406 int csrow;
407 u64 base, mask;
409 pvt = mci->pvt_info;
411 for_each_chip_select(csrow, 0, pvt) {
412 if (!csrow_enabled(csrow, 0, pvt))
413 continue;
415 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
417 mask = ~mask;
419 if ((input_addr & mask) == (base & mask)) {
420 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
421 (unsigned long)input_addr, csrow,
422 pvt->mc_node_id);
424 return csrow;
427 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
428 (unsigned long)input_addr, pvt->mc_node_id);
430 return -1;
434 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
435 * for the node represented by mci. Info is passed back in *hole_base,
436 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
437 * info is invalid. Info may be invalid for either of the following reasons:
439 * - The revision of the node is not E or greater. In this case, the DRAM Hole
440 * Address Register does not exist.
442 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
443 * indicating that its contents are not valid.
445 * The values passed back in *hole_base, *hole_offset, and *hole_size are
446 * complete 32-bit values despite the fact that the bitfields in the DHAR
447 * only represent bits 31-24 of the base and offset values.
449 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
450 u64 *hole_offset, u64 *hole_size)
452 struct amd64_pvt *pvt = mci->pvt_info;
453 u64 base;
455 /* only revE and later have the DRAM Hole Address Register */
456 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
457 debugf1(" revision %d for node %d does not support DHAR\n",
458 pvt->ext_model, pvt->mc_node_id);
459 return 1;
462 /* valid for Fam10h and above */
463 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
464 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
465 return 1;
468 if (!dhar_valid(pvt)) {
469 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
470 pvt->mc_node_id);
471 return 1;
474 /* This node has Memory Hoisting */
476 /* +------------------+--------------------+--------------------+-----
477 * | memory | DRAM hole | relocated |
478 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
479 * | | | DRAM hole |
480 * | | | [0x100000000, |
481 * | | | (0x100000000+ |
482 * | | | (0xffffffff-x))] |
483 * +------------------+--------------------+--------------------+-----
485 * Above is a diagram of physical memory showing the DRAM hole and the
486 * relocated addresses from the DRAM hole. As shown, the DRAM hole
487 * starts at address x (the base address) and extends through address
488 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
489 * addresses in the hole so that they start at 0x100000000.
492 base = dhar_base(pvt);
494 *hole_base = base;
495 *hole_size = (0x1ull << 32) - base;
497 if (boot_cpu_data.x86 > 0xf)
498 *hole_offset = f10_dhar_offset(pvt);
499 else
500 *hole_offset = k8_dhar_offset(pvt);
502 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
503 pvt->mc_node_id, (unsigned long)*hole_base,
504 (unsigned long)*hole_offset, (unsigned long)*hole_size);
506 return 0;
508 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
511 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
512 * assumed that sys_addr maps to the node given by mci.
514 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
515 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
516 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
517 * then it is also involved in translating a SysAddr to a DramAddr. Sections
518 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
519 * These parts of the documentation are unclear. I interpret them as follows:
521 * When node n receives a SysAddr, it processes the SysAddr as follows:
523 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
524 * Limit registers for node n. If the SysAddr is not within the range
525 * specified by the base and limit values, then node n ignores the Sysaddr
526 * (since it does not map to node n). Otherwise continue to step 2 below.
528 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
529 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
530 * the range of relocated addresses (starting at 0x100000000) from the DRAM
531 * hole. If not, skip to step 3 below. Else get the value of the
532 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
533 * offset defined by this value from the SysAddr.
535 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
536 * Base register for node n. To obtain the DramAddr, subtract the base
537 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
539 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
541 struct amd64_pvt *pvt = mci->pvt_info;
542 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
543 int ret = 0;
545 dram_base = get_dram_base(pvt, pvt->mc_node_id);
547 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
548 &hole_size);
549 if (!ret) {
550 if ((sys_addr >= (1ull << 32)) &&
551 (sys_addr < ((1ull << 32) + hole_size))) {
552 /* use DHAR to translate SysAddr to DramAddr */
553 dram_addr = sys_addr - hole_offset;
555 debugf2("using DHAR to translate SysAddr 0x%lx to "
556 "DramAddr 0x%lx\n",
557 (unsigned long)sys_addr,
558 (unsigned long)dram_addr);
560 return dram_addr;
565 * Translate the SysAddr to a DramAddr as shown near the start of
566 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
567 * only deals with 40-bit values. Therefore we discard bits 63-40 of
568 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
569 * discard are all 1s. Otherwise the bits we discard are all 0s. See
570 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
571 * Programmer's Manual Volume 1 Application Programming.
573 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
575 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
576 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
577 (unsigned long)dram_addr);
578 return dram_addr;
582 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
583 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
584 * for node interleaving.
586 static int num_node_interleave_bits(unsigned intlv_en)
588 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
589 int n;
591 BUG_ON(intlv_en > 7);
592 n = intlv_shift_table[intlv_en];
593 return n;
596 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
597 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
599 struct amd64_pvt *pvt;
600 int intlv_shift;
601 u64 input_addr;
603 pvt = mci->pvt_info;
606 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
607 * concerning translating a DramAddr to an InputAddr.
609 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
610 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
611 (dram_addr & 0xfff);
613 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
614 intlv_shift, (unsigned long)dram_addr,
615 (unsigned long)input_addr);
617 return input_addr;
621 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
622 * assumed that @sys_addr maps to the node given by mci.
624 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
626 u64 input_addr;
628 input_addr =
629 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
631 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
632 (unsigned long)sys_addr, (unsigned long)input_addr);
634 return input_addr;
639 * @input_addr is an InputAddr associated with the node represented by mci.
640 * Translate @input_addr to a DramAddr and return the result.
642 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
644 struct amd64_pvt *pvt;
645 int node_id, intlv_shift;
646 u64 bits, dram_addr;
647 u32 intlv_sel;
650 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
651 * shows how to translate a DramAddr to an InputAddr. Here we reverse
652 * this procedure. When translating from a DramAddr to an InputAddr, the
653 * bits used for node interleaving are discarded. Here we recover these
654 * bits from the IntlvSel field of the DRAM Limit register (section
655 * 3.4.4.2) for the node that input_addr is associated with.
657 pvt = mci->pvt_info;
658 node_id = pvt->mc_node_id;
659 BUG_ON((node_id < 0) || (node_id > 7));
661 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
663 if (intlv_shift == 0) {
664 debugf1(" InputAddr 0x%lx translates to DramAddr of "
665 "same value\n", (unsigned long)input_addr);
667 return input_addr;
670 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
671 (input_addr & 0xfff);
673 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
674 dram_addr = bits + (intlv_sel << 12);
676 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
677 "(%d node interleave bits)\n", (unsigned long)input_addr,
678 (unsigned long)dram_addr, intlv_shift);
680 return dram_addr;
684 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
685 * @dram_addr to a SysAddr.
687 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
689 struct amd64_pvt *pvt = mci->pvt_info;
690 u64 hole_base, hole_offset, hole_size, base, sys_addr;
691 int ret = 0;
693 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
694 &hole_size);
695 if (!ret) {
696 if ((dram_addr >= hole_base) &&
697 (dram_addr < (hole_base + hole_size))) {
698 sys_addr = dram_addr + hole_offset;
700 debugf1("using DHAR to translate DramAddr 0x%lx to "
701 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
704 return sys_addr;
708 base = get_dram_base(pvt, pvt->mc_node_id);
709 sys_addr = dram_addr + base;
712 * The sys_addr we have computed up to this point is a 40-bit value
713 * because the k8 deals with 40-bit values. However, the value we are
714 * supposed to return is a full 64-bit physical address. The AMD
715 * x86-64 architecture specifies that the most significant implemented
716 * address bit through bit 63 of a physical address must be either all
717 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
718 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
719 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
720 * Programming.
722 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
724 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
725 pvt->mc_node_id, (unsigned long)dram_addr,
726 (unsigned long)sys_addr);
728 return sys_addr;
732 * @input_addr is an InputAddr associated with the node given by mci. Translate
733 * @input_addr to a SysAddr.
735 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
736 u64 input_addr)
738 return dram_addr_to_sys_addr(mci,
739 input_addr_to_dram_addr(mci, input_addr));
743 * Find the minimum and maximum InputAddr values that map to the given @csrow.
744 * Pass back these values in *input_addr_min and *input_addr_max.
746 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
747 u64 *input_addr_min, u64 *input_addr_max)
749 struct amd64_pvt *pvt;
750 u64 base, mask;
752 pvt = mci->pvt_info;
753 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
755 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
757 *input_addr_min = base & ~mask;
758 *input_addr_max = base | mask;
761 /* Map the Error address to a PAGE and PAGE OFFSET. */
762 static inline void error_address_to_page_and_offset(u64 error_address,
763 u32 *page, u32 *offset)
765 *page = (u32) (error_address >> PAGE_SHIFT);
766 *offset = ((u32) error_address) & ~PAGE_MASK;
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
775 * error.
777 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
779 int csrow;
781 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
783 if (csrow == -1)
784 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
785 "address 0x%lx\n", (unsigned long)sys_addr);
786 return csrow;
789 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
791 static u16 extract_syndrome(struct err_regs *err)
793 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
797 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
798 * are ECC capable.
800 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
802 u8 bit;
803 enum dev_type edac_cap = EDAC_FLAG_NONE;
805 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
806 ? 19
807 : 17;
809 if (pvt->dclr0 & BIT(bit))
810 edac_cap = EDAC_FLAG_SECDED;
812 return edac_cap;
816 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
818 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
820 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
822 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
823 (dclr & BIT(16)) ? "un" : "",
824 (dclr & BIT(19)) ? "yes" : "no");
826 debugf1(" PAR/ERR parity: %s\n",
827 (dclr & BIT(8)) ? "enabled" : "disabled");
829 if (boot_cpu_data.x86 == 0x10)
830 debugf1(" DCT 128bit mode width: %s\n",
831 (dclr & BIT(11)) ? "128b" : "64b");
833 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
834 (dclr & BIT(12)) ? "yes" : "no",
835 (dclr & BIT(13)) ? "yes" : "no",
836 (dclr & BIT(14)) ? "yes" : "no",
837 (dclr & BIT(15)) ? "yes" : "no");
840 /* Display and decode various NB registers for debug purposes. */
841 static void dump_misc_regs(struct amd64_pvt *pvt)
843 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
845 debugf1(" NB two channel DRAM capable: %s\n",
846 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
848 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
849 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
850 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
852 amd64_dump_dramcfg_low(pvt->dclr0, 0);
854 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
856 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
857 "offset: 0x%08x\n",
858 pvt->dhar, dhar_base(pvt),
859 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
860 : f10_dhar_offset(pvt));
862 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
864 amd64_debug_display_dimm_sizes(0, pvt);
866 /* everything below this point is Fam10h and above */
867 if (boot_cpu_data.x86 == 0xf)
868 return;
870 amd64_debug_display_dimm_sizes(1, pvt);
872 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
874 /* Only if NOT ganged does dclr1 have valid info */
875 if (!dct_ganging_enabled(pvt))
876 amd64_dump_dramcfg_low(pvt->dclr1, 1);
880 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
882 static void prep_chip_selects(struct amd64_pvt *pvt)
884 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
885 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
886 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
887 } else {
888 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
889 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
894 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
896 static void read_dct_base_mask(struct amd64_pvt *pvt)
898 int cs;
900 prep_chip_selects(pvt);
902 for_each_chip_select(cs, 0, pvt) {
903 u32 reg0 = DCSB0 + (cs * 4);
904 u32 reg1 = DCSB1 + (cs * 4);
905 u32 *base0 = &pvt->csels[0].csbases[cs];
906 u32 *base1 = &pvt->csels[1].csbases[cs];
908 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
909 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
910 cs, *base0, reg0);
912 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
913 continue;
915 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
916 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
917 cs, *base1, reg1);
920 for_each_chip_select_mask(cs, 0, pvt) {
921 u32 reg0 = DCSM0 + (cs * 4);
922 u32 reg1 = DCSM1 + (cs * 4);
923 u32 *mask0 = &pvt->csels[0].csmasks[cs];
924 u32 *mask1 = &pvt->csels[1].csmasks[cs];
926 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
927 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
928 cs, *mask0, reg0);
930 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
931 continue;
933 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
934 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
935 cs, *mask1, reg1);
939 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
941 enum mem_type type;
943 /* F15h supports only DDR3 */
944 if (boot_cpu_data.x86 >= 0x15)
945 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
946 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
947 if (pvt->dchr0 & DDR3_MODE)
948 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
949 else
950 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
951 } else {
952 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
955 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
957 return type;
960 /* Get the number of DCT channels the memory controller is using. */
961 static int k8_early_channel_count(struct amd64_pvt *pvt)
963 int flag;
965 if (pvt->ext_model >= K8_REV_F)
966 /* RevF (NPT) and later */
967 flag = pvt->dclr0 & F10_WIDTH_128;
968 else
969 /* RevE and earlier */
970 flag = pvt->dclr0 & REVE_WIDTH_128;
972 /* not used */
973 pvt->dclr1 = 0;
975 return (flag) ? 2 : 1;
978 /* Extract the ERROR ADDRESS for the K8 CPUs */
979 static u64 k8_get_error_address(struct mem_ctl_info *mci,
980 struct err_regs *info)
982 return (((u64) (info->nbeah & 0xff)) << 32) +
983 (info->nbeal & ~0x03);
986 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
988 u32 off = range << 3;
990 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
991 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
993 if (boot_cpu_data.x86 == 0xf)
994 return;
996 if (!dram_rw(pvt, range))
997 return;
999 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1000 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1003 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1004 struct err_regs *err_info, u64 sys_addr)
1006 struct mem_ctl_info *src_mci;
1007 int channel, csrow;
1008 u32 page, offset;
1009 u16 syndrome;
1011 syndrome = extract_syndrome(err_info);
1013 /* CHIPKILL enabled */
1014 if (err_info->nbcfg & NBCFG_CHIPKILL) {
1015 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1016 if (channel < 0) {
1018 * Syndrome didn't map, so we don't know which of the
1019 * 2 DIMMs is in error. So we need to ID 'both' of them
1020 * as suspect.
1022 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1023 "error reporting race\n", syndrome);
1024 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1025 return;
1027 } else {
1029 * non-chipkill ecc mode
1031 * The k8 documentation is unclear about how to determine the
1032 * channel number when using non-chipkill memory. This method
1033 * was obtained from email communication with someone at AMD.
1034 * (Wish the email was placed in this comment - norsk)
1036 channel = ((sys_addr & BIT(3)) != 0);
1040 * Find out which node the error address belongs to. This may be
1041 * different from the node that detected the error.
1043 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1044 if (!src_mci) {
1045 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1046 (unsigned long)sys_addr);
1047 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1048 return;
1051 /* Now map the sys_addr to a CSROW */
1052 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1053 if (csrow < 0) {
1054 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1055 } else {
1056 error_address_to_page_and_offset(sys_addr, &page, &offset);
1058 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1059 channel, EDAC_MOD_STR);
1063 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1065 int *dbam_map;
1067 if (pvt->ext_model >= K8_REV_F)
1068 dbam_map = ddr2_dbam;
1069 else if (pvt->ext_model >= K8_REV_D)
1070 dbam_map = ddr2_dbam_revD;
1071 else
1072 dbam_map = ddr2_dbam_revCG;
1074 return dbam_map[cs_mode];
1078 * Get the number of DCT channels in use.
1080 * Return:
1081 * number of Memory Channels in operation
1082 * Pass back:
1083 * contents of the DCL0_LOW register
1085 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1087 int i, j, channels = 0;
1089 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1090 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128))
1091 return 2;
1094 * Need to check if in unganged mode: In such, there are 2 channels,
1095 * but they are not in 128 bit mode and thus the above 'dclr0' status
1096 * bit will be OFF.
1098 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1099 * their CSEnable bit on. If so, then SINGLE DIMM case.
1101 debugf0("Data width is not 128 bits - need more decoding\n");
1104 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1105 * is more than just one DIMM present in unganged mode. Need to check
1106 * both controllers since DIMMs can be placed in either one.
1108 for (i = 0; i < 2; i++) {
1109 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1111 for (j = 0; j < 4; j++) {
1112 if (DBAM_DIMM(j, dbam) > 0) {
1113 channels++;
1114 break;
1119 if (channels > 2)
1120 channels = 2;
1122 amd64_info("MCT channel count: %d\n", channels);
1124 return channels;
1127 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1129 int *dbam_map;
1131 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1132 dbam_map = ddr3_dbam;
1133 else
1134 dbam_map = ddr2_dbam;
1136 return dbam_map[cs_mode];
1139 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1140 struct err_regs *info)
1142 return (((u64) (info->nbeah & 0xffff)) << 32) +
1143 (info->nbeal & ~0x01);
1146 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1149 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1150 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1151 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1153 debugf0(" mode: %s, All DCTs on: %s\n",
1154 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1155 (dct_dram_enabled(pvt) ? "yes" : "no"));
1157 if (!dct_ganging_enabled(pvt))
1158 debugf0(" Address range split per DCT: %s\n",
1159 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1161 debugf0(" data interleave for ECC: %s, "
1162 "DRAM cleared since last warm reset: %s\n",
1163 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1164 (dct_memory_cleared(pvt) ? "yes" : "no"));
1166 debugf0(" channel interleave: %s, "
1167 "interleave bits selector: 0x%x\n",
1168 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1169 dct_sel_interleave_addr(pvt));
1172 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1176 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1177 * Interleaving Modes.
1179 static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1180 bool hi_range_sel, u8 intlv_en)
1182 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1184 if (dct_ganging_enabled(pvt))
1185 return 0;
1187 if (hi_range_sel)
1188 return dct_sel_high;
1191 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1193 if (dct_interleave_enabled(pvt)) {
1194 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1196 /* return DCT select function: 0=DCT0, 1=DCT1 */
1197 if (!intlv_addr)
1198 return sys_addr >> 6 & 1;
1200 if (intlv_addr & 0x2) {
1201 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1202 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1204 return ((sys_addr >> shift) & 1) ^ temp;
1207 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1210 if (dct_high_range_enabled(pvt))
1211 return ~dct_sel_high & 1;
1213 return 0;
1216 /* Convert the sys_addr to the normalized DCT address */
1217 static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1218 u64 sys_addr, bool hi_rng,
1219 u32 dct_sel_base_addr)
1221 u64 chan_off;
1222 u64 dram_base = get_dram_base(pvt, range);
1223 u64 hole_off = f10_dhar_offset(pvt);
1224 u32 hole_valid = dhar_valid(pvt);
1225 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1227 if (hi_rng) {
1229 * if
1230 * base address of high range is below 4Gb
1231 * (bits [47:27] at [31:11])
1232 * DRAM address space on this DCT is hoisted above 4Gb &&
1233 * sys_addr > 4Gb
1235 * remove hole offset from sys_addr
1236 * else
1237 * remove high range offset from sys_addr
1239 if ((!(dct_sel_base_addr >> 16) ||
1240 dct_sel_base_addr < dhar_base(pvt)) &&
1241 hole_valid &&
1242 (sys_addr >= BIT_64(32)))
1243 chan_off = hole_off;
1244 else
1245 chan_off = dct_sel_base_off;
1246 } else {
1248 * if
1249 * we have a valid hole &&
1250 * sys_addr > 4Gb
1252 * remove hole
1253 * else
1254 * remove dram base to normalize to DCT address
1256 if (hole_valid && (sys_addr >= BIT_64(32)))
1257 chan_off = hole_off;
1258 else
1259 chan_off = dram_base;
1262 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1265 /* Hack for the time being - Can we get this from BIOS?? */
1266 #define CH0SPARE_RANK 0
1267 #define CH1SPARE_RANK 1
1270 * checks if the csrow passed in is marked as SPARED, if so returns the new
1271 * spare row
1273 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1275 u32 swap_done;
1276 u32 bad_dram_cs;
1278 /* Depending on channel, isolate respective SPARING info */
1279 if (dct) {
1280 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1281 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1282 if (swap_done && (csrow == bad_dram_cs))
1283 csrow = CH1SPARE_RANK;
1284 } else {
1285 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1286 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1287 if (swap_done && (csrow == bad_dram_cs))
1288 csrow = CH0SPARE_RANK;
1290 return csrow;
1294 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1295 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1297 * Return:
1298 * -EINVAL: NOT FOUND
1299 * 0..csrow = Chip-Select Row
1301 static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1303 struct mem_ctl_info *mci;
1304 struct amd64_pvt *pvt;
1305 u64 cs_base, cs_mask;
1306 int cs_found = -EINVAL;
1307 int csrow;
1309 mci = mcis[nid];
1310 if (!mci)
1311 return cs_found;
1313 pvt = mci->pvt_info;
1315 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1317 for_each_chip_select(csrow, dct, pvt) {
1318 if (!csrow_enabled(csrow, dct, pvt))
1319 continue;
1321 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1323 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1324 csrow, cs_base, cs_mask);
1326 cs_mask = ~cs_mask;
1328 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1329 "(CSBase & ~CSMask)=0x%llx\n",
1330 (in_addr & cs_mask), (cs_base & cs_mask));
1332 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1333 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1335 debugf1(" MATCH csrow=%d\n", cs_found);
1336 break;
1339 return cs_found;
1342 /* For a given @dram_range, check if @sys_addr falls within it. */
1343 static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
1344 u64 sys_addr, int *nid, int *chan_sel)
1346 int cs_found = -EINVAL;
1347 u64 chan_addr;
1348 u32 tmp, dct_sel_base;
1349 u8 channel;
1350 bool high_range = false;
1352 u8 node_id = dram_dst_node(pvt, range);
1353 u8 intlv_en = dram_intlv_en(pvt, range);
1354 u32 intlv_sel = dram_intlv_sel(pvt, range);
1356 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1357 range, sys_addr, get_dram_limit(pvt, range));
1359 if (intlv_en &&
1360 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1361 return -EINVAL;
1363 dct_sel_base = dct_sel_baseaddr(pvt);
1366 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1367 * select between DCT0 and DCT1.
1369 if (dct_high_range_enabled(pvt) &&
1370 !dct_ganging_enabled(pvt) &&
1371 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1372 high_range = true;
1374 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1376 chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
1377 high_range, dct_sel_base);
1379 /* remove Node ID (in case of node interleaving) */
1380 tmp = chan_addr & 0xFC0;
1382 chan_addr = ((chan_addr >> hweight8(intlv_en)) & GENMASK(12, 47)) | tmp;
1384 /* remove channel interleave and hash */
1385 if (dct_interleave_enabled(pvt) &&
1386 !dct_high_range_enabled(pvt) &&
1387 !dct_ganging_enabled(pvt)) {
1388 if (dct_sel_interleave_addr(pvt) != 1)
1389 chan_addr = (chan_addr >> 1) & GENMASK(6, 63);
1390 else {
1391 tmp = chan_addr & 0xFC0;
1392 chan_addr = ((chan_addr & GENMASK(14, 63)) >> 1) | tmp;
1396 debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr);
1398 cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
1400 if (cs_found >= 0) {
1401 *nid = node_id;
1402 *chan_sel = channel;
1404 return cs_found;
1407 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1408 int *node, int *chan_sel)
1410 int range, cs_found = -EINVAL;
1412 for (range = 0; range < DRAM_RANGES; range++) {
1414 if (!dram_rw(pvt, range))
1415 continue;
1417 if ((get_dram_base(pvt, range) <= sys_addr) &&
1418 (get_dram_limit(pvt, range) >= sys_addr)) {
1420 cs_found = f10_match_to_this_node(pvt, range,
1421 sys_addr, node,
1422 chan_sel);
1423 if (cs_found >= 0)
1424 break;
1427 return cs_found;
1431 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1432 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1434 * The @sys_addr is usually an error address received from the hardware
1435 * (MCX_ADDR).
1437 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1438 struct err_regs *err_info,
1439 u64 sys_addr)
1441 struct amd64_pvt *pvt = mci->pvt_info;
1442 u32 page, offset;
1443 int nid, csrow, chan = 0;
1444 u16 syndrome;
1446 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1448 if (csrow < 0) {
1449 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1450 return;
1453 error_address_to_page_and_offset(sys_addr, &page, &offset);
1455 syndrome = extract_syndrome(err_info);
1458 * We need the syndromes for channel detection only when we're
1459 * ganged. Otherwise @chan should already contain the channel at
1460 * this point.
1462 if (dct_ganging_enabled(pvt))
1463 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1465 if (chan >= 0)
1466 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1467 EDAC_MOD_STR);
1468 else
1470 * Channel unknown, report all channels on this CSROW as failed.
1472 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1473 edac_mc_handle_ce(mci, page, offset, syndrome,
1474 csrow, chan, EDAC_MOD_STR);
1478 * debug routine to display the memory sizes of all logical DIMMs and its
1479 * CSROWs
1481 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1483 int dimm, size0, size1, factor = 0;
1484 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1485 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1487 if (boot_cpu_data.x86 == 0xf) {
1488 if (pvt->dclr0 & F10_WIDTH_128)
1489 factor = 1;
1491 /* K8 families < revF not supported yet */
1492 if (pvt->ext_model < K8_REV_F)
1493 return;
1494 else
1495 WARN_ON(ctrl != 0);
1498 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1499 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1500 : pvt->csels[0].csbases;
1502 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1504 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1506 /* Dump memory sizes for DIMM and its CSROWs */
1507 for (dimm = 0; dimm < 4; dimm++) {
1509 size0 = 0;
1510 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1511 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1513 size1 = 0;
1514 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1515 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1517 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1518 dimm * 2, size0 << factor,
1519 dimm * 2 + 1, size1 << factor);
1523 static struct amd64_family_type amd64_family_types[] = {
1524 [K8_CPUS] = {
1525 .ctl_name = "K8",
1526 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1527 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1528 .ops = {
1529 .early_channel_count = k8_early_channel_count,
1530 .get_error_address = k8_get_error_address,
1531 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1532 .dbam_to_cs = k8_dbam_to_chip_select,
1533 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1536 [F10_CPUS] = {
1537 .ctl_name = "F10h",
1538 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1539 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1540 .ops = {
1541 .early_channel_count = f1x_early_channel_count,
1542 .get_error_address = f10_get_error_address,
1543 .read_dram_ctl_register = f10_read_dram_ctl_register,
1544 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1545 .dbam_to_cs = f10_dbam_to_chip_select,
1546 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1549 [F15_CPUS] = {
1550 .ctl_name = "F15h",
1551 .ops = {
1552 .early_channel_count = f1x_early_channel_count,
1553 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1558 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1559 unsigned int device,
1560 struct pci_dev *related)
1562 struct pci_dev *dev = NULL;
1564 dev = pci_get_device(vendor, device, dev);
1565 while (dev) {
1566 if ((dev->bus->number == related->bus->number) &&
1567 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1568 break;
1569 dev = pci_get_device(vendor, device, dev);
1572 return dev;
1576 * These are tables of eigenvectors (one per line) which can be used for the
1577 * construction of the syndrome tables. The modified syndrome search algorithm
1578 * uses those to find the symbol in error and thus the DIMM.
1580 * Algorithm courtesy of Ross LaFetra from AMD.
1582 static u16 x4_vectors[] = {
1583 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1584 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1585 0x0001, 0x0002, 0x0004, 0x0008,
1586 0x1013, 0x3032, 0x4044, 0x8088,
1587 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1588 0x4857, 0xc4fe, 0x13cc, 0x3288,
1589 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1590 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1591 0x15c1, 0x2a42, 0x89ac, 0x4758,
1592 0x2b03, 0x1602, 0x4f0c, 0xca08,
1593 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1594 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1595 0x2b87, 0x164e, 0x642c, 0xdc18,
1596 0x40b9, 0x80de, 0x1094, 0x20e8,
1597 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1598 0x11c1, 0x2242, 0x84ac, 0x4c58,
1599 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1600 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1601 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1602 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1603 0x16b3, 0x3d62, 0x4f34, 0x8518,
1604 0x1e2f, 0x391a, 0x5cac, 0xf858,
1605 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1606 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1607 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1608 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1609 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1610 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1611 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1612 0x185d, 0x2ca6, 0x7914, 0x9e28,
1613 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1614 0x4199, 0x82ee, 0x19f4, 0x2e58,
1615 0x4807, 0xc40e, 0x130c, 0x3208,
1616 0x1905, 0x2e0a, 0x5804, 0xac08,
1617 0x213f, 0x132a, 0xadfc, 0x5ba8,
1618 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1621 static u16 x8_vectors[] = {
1622 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1623 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1624 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1625 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1626 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1627 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1628 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1629 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1630 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1631 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1632 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1633 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1634 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1635 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1636 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1637 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1638 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1639 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1640 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1643 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1644 int v_dim)
1646 unsigned int i, err_sym;
1648 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1649 u16 s = syndrome;
1650 int v_idx = err_sym * v_dim;
1651 int v_end = (err_sym + 1) * v_dim;
1653 /* walk over all 16 bits of the syndrome */
1654 for (i = 1; i < (1U << 16); i <<= 1) {
1656 /* if bit is set in that eigenvector... */
1657 if (v_idx < v_end && vectors[v_idx] & i) {
1658 u16 ev_comp = vectors[v_idx++];
1660 /* ... and bit set in the modified syndrome, */
1661 if (s & i) {
1662 /* remove it. */
1663 s ^= ev_comp;
1665 if (!s)
1666 return err_sym;
1669 } else if (s & i)
1670 /* can't get to zero, move to next symbol */
1671 break;
1675 debugf0("syndrome(%x) not found\n", syndrome);
1676 return -1;
1679 static int map_err_sym_to_channel(int err_sym, int sym_size)
1681 if (sym_size == 4)
1682 switch (err_sym) {
1683 case 0x20:
1684 case 0x21:
1685 return 0;
1686 break;
1687 case 0x22:
1688 case 0x23:
1689 return 1;
1690 break;
1691 default:
1692 return err_sym >> 4;
1693 break;
1695 /* x8 symbols */
1696 else
1697 switch (err_sym) {
1698 /* imaginary bits not in a DIMM */
1699 case 0x10:
1700 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1701 err_sym);
1702 return -1;
1703 break;
1705 case 0x11:
1706 return 0;
1707 break;
1708 case 0x12:
1709 return 1;
1710 break;
1711 default:
1712 return err_sym >> 3;
1713 break;
1715 return -1;
1718 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1720 struct amd64_pvt *pvt = mci->pvt_info;
1721 int err_sym = -1;
1723 if (pvt->syn_type == 8)
1724 err_sym = decode_syndrome(syndrome, x8_vectors,
1725 ARRAY_SIZE(x8_vectors),
1726 pvt->syn_type);
1727 else if (pvt->syn_type == 4)
1728 err_sym = decode_syndrome(syndrome, x4_vectors,
1729 ARRAY_SIZE(x4_vectors),
1730 pvt->syn_type);
1731 else {
1732 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1733 return err_sym;
1736 return map_err_sym_to_channel(err_sym, pvt->syn_type);
1740 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1741 * ADDRESS and process.
1743 static void amd64_handle_ce(struct mem_ctl_info *mci,
1744 struct err_regs *info)
1746 struct amd64_pvt *pvt = mci->pvt_info;
1747 u64 sys_addr;
1749 /* Ensure that the Error Address is VALID */
1750 if (!(info->nbsh & NBSH_VALID_ERROR_ADDR)) {
1751 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1752 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1753 return;
1756 sys_addr = pvt->ops->get_error_address(mci, info);
1758 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1760 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
1763 /* Handle any Un-correctable Errors (UEs) */
1764 static void amd64_handle_ue(struct mem_ctl_info *mci,
1765 struct err_regs *info)
1767 struct amd64_pvt *pvt = mci->pvt_info;
1768 struct mem_ctl_info *log_mci, *src_mci = NULL;
1769 int csrow;
1770 u64 sys_addr;
1771 u32 page, offset;
1773 log_mci = mci;
1775 if (!(info->nbsh & NBSH_VALID_ERROR_ADDR)) {
1776 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1777 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1778 return;
1781 sys_addr = pvt->ops->get_error_address(mci, info);
1784 * Find out which node the error address belongs to. This may be
1785 * different from the node that detected the error.
1787 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1788 if (!src_mci) {
1789 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1790 (unsigned long)sys_addr);
1791 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1792 return;
1795 log_mci = src_mci;
1797 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1798 if (csrow < 0) {
1799 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1800 (unsigned long)sys_addr);
1801 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1802 } else {
1803 error_address_to_page_and_offset(sys_addr, &page, &offset);
1804 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1808 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1809 struct err_regs *info)
1811 u16 ec = EC(info->nbsl);
1812 u8 xec = XEC(info->nbsl, 0x1f);
1813 int ecc_type = (info->nbsh >> 13) & 0x3;
1815 /* Bail early out if this was an 'observed' error */
1816 if (PP(ec) == NBSL_PP_OBS)
1817 return;
1819 /* Do only ECC errors */
1820 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1821 return;
1823 if (ecc_type == 2)
1824 amd64_handle_ce(mci, info);
1825 else if (ecc_type == 1)
1826 amd64_handle_ue(mci, info);
1829 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1831 struct mem_ctl_info *mci = mcis[node_id];
1832 struct err_regs regs;
1834 regs.nbsl = (u32) m->status;
1835 regs.nbsh = (u32)(m->status >> 32);
1836 regs.nbeal = (u32) m->addr;
1837 regs.nbeah = (u32)(m->addr >> 32);
1838 regs.nbcfg = nbcfg;
1840 __amd64_decode_bus_error(mci, &regs);
1844 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1845 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1847 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1849 /* Reserve the ADDRESS MAP Device */
1850 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1851 if (!pvt->F1) {
1852 amd64_err("error address map device not found: "
1853 "vendor %x device 0x%x (broken BIOS?)\n",
1854 PCI_VENDOR_ID_AMD, f1_id);
1855 return -ENODEV;
1858 /* Reserve the MISC Device */
1859 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1860 if (!pvt->F3) {
1861 pci_dev_put(pvt->F1);
1862 pvt->F1 = NULL;
1864 amd64_err("error F3 device not found: "
1865 "vendor %x device 0x%x (broken BIOS?)\n",
1866 PCI_VENDOR_ID_AMD, f3_id);
1868 return -ENODEV;
1870 debugf1("F1: %s\n", pci_name(pvt->F1));
1871 debugf1("F2: %s\n", pci_name(pvt->F2));
1872 debugf1("F3: %s\n", pci_name(pvt->F3));
1874 return 0;
1877 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1879 pci_dev_put(pvt->F1);
1880 pci_dev_put(pvt->F3);
1884 * Retrieve the hardware registers of the memory controller (this includes the
1885 * 'Address Map' and 'Misc' device regs)
1887 static void read_mc_regs(struct amd64_pvt *pvt)
1889 u64 msr_val;
1890 u32 tmp;
1891 int range;
1894 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1895 * those are Read-As-Zero
1897 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1898 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
1900 /* check first whether TOP_MEM2 is enabled */
1901 rdmsrl(MSR_K8_SYSCFG, msr_val);
1902 if (msr_val & (1U << 21)) {
1903 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1904 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1905 } else
1906 debugf0(" TOP_MEM2 disabled.\n");
1908 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1910 if (pvt->ops->read_dram_ctl_register)
1911 pvt->ops->read_dram_ctl_register(pvt);
1913 for (range = 0; range < DRAM_RANGES; range++) {
1914 u8 rw;
1916 /* read settings for this DRAM range */
1917 read_dram_base_limit_regs(pvt, range);
1919 rw = dram_rw(pvt, range);
1920 if (!rw)
1921 continue;
1923 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1924 range,
1925 get_dram_base(pvt, range),
1926 get_dram_limit(pvt, range));
1928 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1929 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1930 (rw & 0x1) ? "R" : "-",
1931 (rw & 0x2) ? "W" : "-",
1932 dram_intlv_sel(pvt, range),
1933 dram_dst_node(pvt, range));
1936 read_dct_base_mask(pvt);
1938 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1939 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1941 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1943 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1944 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1946 if (!dct_ganging_enabled(pvt)) {
1947 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1948 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1951 if (boot_cpu_data.x86 >= 0x10) {
1952 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
1953 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1956 if (boot_cpu_data.x86 == 0x10 &&
1957 boot_cpu_data.x86_model > 7 &&
1958 /* F3x180[EccSymbolSize]=1 => x8 symbols */
1959 tmp & BIT(25))
1960 pvt->syn_type = 8;
1961 else
1962 pvt->syn_type = 4;
1964 dump_misc_regs(pvt);
1968 * NOTE: CPU Revision Dependent code
1970 * Input:
1971 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
1972 * k8 private pointer to -->
1973 * DRAM Bank Address mapping register
1974 * node_id
1975 * DCL register where dual_channel_active is
1977 * The DBAM register consists of 4 sets of 4 bits each definitions:
1979 * Bits: CSROWs
1980 * 0-3 CSROWs 0 and 1
1981 * 4-7 CSROWs 2 and 3
1982 * 8-11 CSROWs 4 and 5
1983 * 12-15 CSROWs 6 and 7
1985 * Values range from: 0 to 15
1986 * The meaning of the values depends on CPU revision and dual-channel state,
1987 * see relevant BKDG more info.
1989 * The memory controller provides for total of only 8 CSROWs in its current
1990 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
1991 * single channel or two (2) DIMMs in dual channel mode.
1993 * The following code logic collapses the various tables for CSROW based on CPU
1994 * revision.
1996 * Returns:
1997 * The number of PAGE_SIZE pages on the specified CSROW number it
1998 * encompasses
2001 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2003 u32 cs_mode, nr_pages;
2006 * The math on this doesn't look right on the surface because x/2*4 can
2007 * be simplified to x*2 but this expression makes use of the fact that
2008 * it is integral math where 1/2=0. This intermediate value becomes the
2009 * number of bits to shift the DBAM register to extract the proper CSROW
2010 * field.
2012 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2014 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2017 * If dual channel then double the memory size of single channel.
2018 * Channel count is 1 or 2
2020 nr_pages <<= (pvt->channel_count - 1);
2022 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2023 debugf0(" nr_pages= %u channel-count = %d\n",
2024 nr_pages, pvt->channel_count);
2026 return nr_pages;
2030 * Initialize the array of csrow attribute instances, based on the values
2031 * from pci config hardware registers.
2033 static int init_csrows(struct mem_ctl_info *mci)
2035 struct csrow_info *csrow;
2036 struct amd64_pvt *pvt = mci->pvt_info;
2037 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2038 u32 val;
2039 int i, empty = 1;
2041 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2043 pvt->nbcfg = val;
2045 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2046 pvt->mc_node_id, val,
2047 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2049 for_each_chip_select(i, 0, pvt) {
2050 csrow = &mci->csrows[i];
2052 if (!csrow_enabled(i, 0, pvt)) {
2053 debugf1("----CSROW %d EMPTY for node %d\n", i,
2054 pvt->mc_node_id);
2055 continue;
2058 debugf1("----CSROW %d VALID for MC node %d\n",
2059 i, pvt->mc_node_id);
2061 empty = 0;
2062 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2063 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2064 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2065 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2066 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2067 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2069 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2070 csrow->page_mask = ~mask;
2071 /* 8 bytes of resolution */
2073 csrow->mtype = amd64_determine_memory_type(pvt, i);
2075 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2076 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2077 (unsigned long)input_addr_min,
2078 (unsigned long)input_addr_max);
2079 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2080 (unsigned long)sys_addr, csrow->page_mask);
2081 debugf1(" nr_pages: %u first_page: 0x%lx "
2082 "last_page: 0x%lx\n",
2083 (unsigned)csrow->nr_pages,
2084 csrow->first_page, csrow->last_page);
2087 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2089 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2090 csrow->edac_mode =
2091 (pvt->nbcfg & NBCFG_CHIPKILL) ?
2092 EDAC_S4ECD4ED : EDAC_SECDED;
2093 else
2094 csrow->edac_mode = EDAC_NONE;
2097 return empty;
2100 /* get all cores on this DCT */
2101 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2103 int cpu;
2105 for_each_online_cpu(cpu)
2106 if (amd_get_nb_id(cpu) == nid)
2107 cpumask_set_cpu(cpu, mask);
2110 /* check MCG_CTL on all the cpus on this node */
2111 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2113 cpumask_var_t mask;
2114 int cpu, nbe;
2115 bool ret = false;
2117 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2118 amd64_warn("%s: Error allocating mask\n", __func__);
2119 return false;
2122 get_cpus_on_this_dct_cpumask(mask, nid);
2124 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2126 for_each_cpu(cpu, mask) {
2127 struct msr *reg = per_cpu_ptr(msrs, cpu);
2128 nbe = reg->l & MSR_MCGCTL_NBE;
2130 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2131 cpu, reg->q,
2132 (nbe ? "enabled" : "disabled"));
2134 if (!nbe)
2135 goto out;
2137 ret = true;
2139 out:
2140 free_cpumask_var(mask);
2141 return ret;
2144 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2146 cpumask_var_t cmask;
2147 int cpu;
2149 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2150 amd64_warn("%s: error allocating mask\n", __func__);
2151 return false;
2154 get_cpus_on_this_dct_cpumask(cmask, nid);
2156 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2158 for_each_cpu(cpu, cmask) {
2160 struct msr *reg = per_cpu_ptr(msrs, cpu);
2162 if (on) {
2163 if (reg->l & MSR_MCGCTL_NBE)
2164 s->flags.nb_mce_enable = 1;
2166 reg->l |= MSR_MCGCTL_NBE;
2167 } else {
2169 * Turn off NB MCE reporting only when it was off before
2171 if (!s->flags.nb_mce_enable)
2172 reg->l &= ~MSR_MCGCTL_NBE;
2175 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2177 free_cpumask_var(cmask);
2179 return 0;
2182 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2183 struct pci_dev *F3)
2185 bool ret = true;
2186 u32 value, mask = 0x3; /* UECC/CECC enable */
2188 if (toggle_ecc_err_reporting(s, nid, ON)) {
2189 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2190 return false;
2193 amd64_read_pci_cfg(F3, NBCTL, &value);
2195 s->old_nbctl = value & mask;
2196 s->nbctl_valid = true;
2198 value |= mask;
2199 amd64_write_pci_cfg(F3, NBCTL, value);
2201 amd64_read_pci_cfg(F3, NBCFG, &value);
2203 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2204 nid, value, !!(value & NBCFG_ECC_ENABLE));
2206 if (!(value & NBCFG_ECC_ENABLE)) {
2207 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2209 s->flags.nb_ecc_prev = 0;
2211 /* Attempt to turn on DRAM ECC Enable */
2212 value |= NBCFG_ECC_ENABLE;
2213 amd64_write_pci_cfg(F3, NBCFG, value);
2215 amd64_read_pci_cfg(F3, NBCFG, &value);
2217 if (!(value & NBCFG_ECC_ENABLE)) {
2218 amd64_warn("Hardware rejected DRAM ECC enable,"
2219 "check memory DIMM configuration.\n");
2220 ret = false;
2221 } else {
2222 amd64_info("Hardware accepted DRAM ECC Enable\n");
2224 } else {
2225 s->flags.nb_ecc_prev = 1;
2228 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2229 nid, value, !!(value & NBCFG_ECC_ENABLE));
2231 return ret;
2234 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2235 struct pci_dev *F3)
2237 u32 value, mask = 0x3; /* UECC/CECC enable */
2240 if (!s->nbctl_valid)
2241 return;
2243 amd64_read_pci_cfg(F3, NBCTL, &value);
2244 value &= ~mask;
2245 value |= s->old_nbctl;
2247 amd64_write_pci_cfg(F3, NBCTL, value);
2249 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2250 if (!s->flags.nb_ecc_prev) {
2251 amd64_read_pci_cfg(F3, NBCFG, &value);
2252 value &= ~NBCFG_ECC_ENABLE;
2253 amd64_write_pci_cfg(F3, NBCFG, value);
2256 /* restore the NB Enable MCGCTL bit */
2257 if (toggle_ecc_err_reporting(s, nid, OFF))
2258 amd64_warn("Error restoring NB MCGCTL settings!\n");
2262 * EDAC requires that the BIOS have ECC enabled before
2263 * taking over the processing of ECC errors. A command line
2264 * option allows to force-enable hardware ECC later in
2265 * enable_ecc_error_reporting().
2267 static const char *ecc_msg =
2268 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2269 " Either enable ECC checking or force module loading by setting "
2270 "'ecc_enable_override'.\n"
2271 " (Note that use of the override may cause unknown side effects.)\n";
2273 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2275 u32 value;
2276 u8 ecc_en = 0;
2277 bool nb_mce_en = false;
2279 amd64_read_pci_cfg(F3, NBCFG, &value);
2281 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2282 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2284 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2285 if (!nb_mce_en)
2286 amd64_notice("NB MCE bank disabled, set MSR "
2287 "0x%08x[4] on node %d to enable.\n",
2288 MSR_IA32_MCG_CTL, nid);
2290 if (!ecc_en || !nb_mce_en) {
2291 amd64_notice("%s", ecc_msg);
2292 return false;
2294 return true;
2297 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2298 ARRAY_SIZE(amd64_inj_attrs) +
2301 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2303 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2305 unsigned int i = 0, j = 0;
2307 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2308 sysfs_attrs[i] = amd64_dbg_attrs[i];
2310 if (boot_cpu_data.x86 >= 0x10)
2311 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2312 sysfs_attrs[i] = amd64_inj_attrs[j];
2314 sysfs_attrs[i] = terminator;
2316 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2319 static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2321 struct amd64_pvt *pvt = mci->pvt_info;
2323 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2324 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2326 if (pvt->nbcap & NBCAP_SECDED)
2327 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2329 if (pvt->nbcap & NBCAP_CHIPKILL)
2330 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2332 mci->edac_cap = amd64_determine_edac_cap(pvt);
2333 mci->mod_name = EDAC_MOD_STR;
2334 mci->mod_ver = EDAC_AMD64_VERSION;
2335 mci->ctl_name = pvt->ctl_name;
2336 mci->dev_name = pci_name(pvt->F2);
2337 mci->ctl_page_to_phys = NULL;
2339 /* memory scrubber interface */
2340 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2341 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2345 * returns a pointer to the family descriptor on success, NULL otherwise.
2347 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2349 u8 fam = boot_cpu_data.x86;
2350 struct amd64_family_type *fam_type = NULL;
2352 switch (fam) {
2353 case 0xf:
2354 fam_type = &amd64_family_types[K8_CPUS];
2355 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2356 pvt->ctl_name = fam_type->ctl_name;
2357 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
2358 break;
2359 case 0x10:
2360 fam_type = &amd64_family_types[F10_CPUS];
2361 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2362 pvt->ctl_name = fam_type->ctl_name;
2363 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
2364 break;
2366 default:
2367 amd64_err("Unsupported family!\n");
2368 return NULL;
2371 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2373 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2374 (fam == 0xf ?
2375 (pvt->ext_model >= K8_REV_F ? "revF or later "
2376 : "revE or earlier ")
2377 : ""), pvt->mc_node_id);
2378 return fam_type;
2381 static int amd64_init_one_instance(struct pci_dev *F2)
2383 struct amd64_pvt *pvt = NULL;
2384 struct amd64_family_type *fam_type = NULL;
2385 struct mem_ctl_info *mci = NULL;
2386 int err = 0, ret;
2387 u8 nid = get_node_id(F2);
2389 ret = -ENOMEM;
2390 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2391 if (!pvt)
2392 goto err_ret;
2394 pvt->mc_node_id = nid;
2395 pvt->F2 = F2;
2397 ret = -EINVAL;
2398 fam_type = amd64_per_family_init(pvt);
2399 if (!fam_type)
2400 goto err_free;
2402 ret = -ENODEV;
2403 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2404 if (err)
2405 goto err_free;
2407 read_mc_regs(pvt);
2410 * We need to determine how many memory channels there are. Then use
2411 * that information for calculating the size of the dynamic instance
2412 * tables in the 'mci' structure.
2414 ret = -EINVAL;
2415 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2416 if (pvt->channel_count < 0)
2417 goto err_siblings;
2419 ret = -ENOMEM;
2420 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2421 if (!mci)
2422 goto err_siblings;
2424 mci->pvt_info = pvt;
2425 mci->dev = &pvt->F2->dev;
2427 setup_mci_misc_attrs(mci);
2429 if (init_csrows(mci))
2430 mci->edac_cap = EDAC_FLAG_NONE;
2432 set_mc_sysfs_attrs(mci);
2434 ret = -ENODEV;
2435 if (edac_mc_add_mc(mci)) {
2436 debugf1("failed edac_mc_add_mc()\n");
2437 goto err_add_mc;
2440 /* register stuff with EDAC MCE */
2441 if (report_gart_errors)
2442 amd_report_gart_errors(true);
2444 amd_register_ecc_decoder(amd64_decode_bus_error);
2446 mcis[nid] = mci;
2448 atomic_inc(&drv_instances);
2450 return 0;
2452 err_add_mc:
2453 edac_mc_free(mci);
2455 err_siblings:
2456 free_mc_sibling_devs(pvt);
2458 err_free:
2459 kfree(pvt);
2461 err_ret:
2462 return ret;
2465 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2466 const struct pci_device_id *mc_type)
2468 u8 nid = get_node_id(pdev);
2469 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2470 struct ecc_settings *s;
2471 int ret = 0;
2473 ret = pci_enable_device(pdev);
2474 if (ret < 0) {
2475 debugf0("ret=%d\n", ret);
2476 return -EIO;
2479 ret = -ENOMEM;
2480 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2481 if (!s)
2482 goto err_out;
2484 ecc_stngs[nid] = s;
2486 if (!ecc_enabled(F3, nid)) {
2487 ret = -ENODEV;
2489 if (!ecc_enable_override)
2490 goto err_enable;
2492 amd64_warn("Forcing ECC on!\n");
2494 if (!enable_ecc_error_reporting(s, nid, F3))
2495 goto err_enable;
2498 ret = amd64_init_one_instance(pdev);
2499 if (ret < 0) {
2500 amd64_err("Error probing instance: %d\n", nid);
2501 restore_ecc_error_reporting(s, nid, F3);
2504 return ret;
2506 err_enable:
2507 kfree(s);
2508 ecc_stngs[nid] = NULL;
2510 err_out:
2511 return ret;
2514 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2516 struct mem_ctl_info *mci;
2517 struct amd64_pvt *pvt;
2518 u8 nid = get_node_id(pdev);
2519 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2520 struct ecc_settings *s = ecc_stngs[nid];
2522 /* Remove from EDAC CORE tracking list */
2523 mci = edac_mc_del_mc(&pdev->dev);
2524 if (!mci)
2525 return;
2527 pvt = mci->pvt_info;
2529 restore_ecc_error_reporting(s, nid, F3);
2531 free_mc_sibling_devs(pvt);
2533 /* unregister from EDAC MCE */
2534 amd_report_gart_errors(false);
2535 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2537 kfree(ecc_stngs[nid]);
2538 ecc_stngs[nid] = NULL;
2540 /* Free the EDAC CORE resources */
2541 mci->pvt_info = NULL;
2542 mcis[nid] = NULL;
2544 kfree(pvt);
2545 edac_mc_free(mci);
2549 * This table is part of the interface for loading drivers for PCI devices. The
2550 * PCI core identifies what devices are on a system during boot, and then
2551 * inquiry this table to see if this driver is for a given device found.
2553 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2555 .vendor = PCI_VENDOR_ID_AMD,
2556 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2557 .subvendor = PCI_ANY_ID,
2558 .subdevice = PCI_ANY_ID,
2559 .class = 0,
2560 .class_mask = 0,
2563 .vendor = PCI_VENDOR_ID_AMD,
2564 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2565 .subvendor = PCI_ANY_ID,
2566 .subdevice = PCI_ANY_ID,
2567 .class = 0,
2568 .class_mask = 0,
2570 {0, }
2572 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2574 static struct pci_driver amd64_pci_driver = {
2575 .name = EDAC_MOD_STR,
2576 .probe = amd64_probe_one_instance,
2577 .remove = __devexit_p(amd64_remove_one_instance),
2578 .id_table = amd64_pci_table,
2581 static void setup_pci_device(void)
2583 struct mem_ctl_info *mci;
2584 struct amd64_pvt *pvt;
2586 if (amd64_ctl_pci)
2587 return;
2589 mci = mcis[0];
2590 if (mci) {
2592 pvt = mci->pvt_info;
2593 amd64_ctl_pci =
2594 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2596 if (!amd64_ctl_pci) {
2597 pr_warning("%s(): Unable to create PCI control\n",
2598 __func__);
2600 pr_warning("%s(): PCI error report via EDAC not set\n",
2601 __func__);
2606 static int __init amd64_edac_init(void)
2608 int err = -ENODEV;
2610 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2612 opstate_init();
2614 if (amd_cache_northbridges() < 0)
2615 goto err_ret;
2617 err = -ENOMEM;
2618 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2619 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2620 if (!(mcis && ecc_stngs))
2621 goto err_ret;
2623 msrs = msrs_alloc();
2624 if (!msrs)
2625 goto err_free;
2627 err = pci_register_driver(&amd64_pci_driver);
2628 if (err)
2629 goto err_pci;
2631 err = -ENODEV;
2632 if (!atomic_read(&drv_instances))
2633 goto err_no_instances;
2635 setup_pci_device();
2636 return 0;
2638 err_no_instances:
2639 pci_unregister_driver(&amd64_pci_driver);
2641 err_pci:
2642 msrs_free(msrs);
2643 msrs = NULL;
2645 err_free:
2646 kfree(mcis);
2647 mcis = NULL;
2649 kfree(ecc_stngs);
2650 ecc_stngs = NULL;
2652 err_ret:
2653 return err;
2656 static void __exit amd64_edac_exit(void)
2658 if (amd64_ctl_pci)
2659 edac_pci_release_generic_ctl(amd64_ctl_pci);
2661 pci_unregister_driver(&amd64_pci_driver);
2663 kfree(ecc_stngs);
2664 ecc_stngs = NULL;
2666 kfree(mcis);
2667 mcis = NULL;
2669 msrs_free(msrs);
2670 msrs = NULL;
2673 module_init(amd64_edac_init);
2674 module_exit(amd64_edac_exit);
2676 MODULE_LICENSE("GPL");
2677 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2678 "Dave Peterson, Thayne Harbaugh");
2679 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2680 EDAC_AMD64_VERSION);
2682 module_param(edac_op_state, int, 0444);
2683 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");