V4L/DVB: dvb: fix sparse warnings
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sunrpc / sched.c
blobaae6907fd546916317e69615dc1cb5e8040259c4
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
22 #include <linux/sunrpc/clnt.h>
24 #include "sunrpc.h"
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY RPCDBG_SCHED
28 #define RPC_TASK_MAGIC_ID 0xf00baa
29 #endif
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly;
42 static void rpc_async_schedule(struct work_struct *);
43 static void rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
47 * RPC tasks sit here while waiting for conditions to improve.
49 static struct rpc_wait_queue delay_queue;
52 * rpciod-related stuff
54 struct workqueue_struct *rpciod_workqueue;
57 * Disable the timer for a given RPC task. Should be called with
58 * queue->lock and bh_disabled in order to avoid races within
59 * rpc_run_timer().
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
64 if (task->tk_timeout == 0)
65 return;
66 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67 task->tk_timeout = 0;
68 list_del(&task->u.tk_wait.timer_list);
69 if (list_empty(&queue->timer_list.list))
70 del_timer(&queue->timer_list.timer);
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
76 queue->timer_list.expires = expires;
77 mod_timer(&queue->timer_list.timer, expires);
81 * Set up a timer for the current task.
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
86 if (!task->tk_timeout)
87 return;
89 dprintk("RPC: %5u setting alarm for %lu ms\n",
90 task->tk_pid, task->tk_timeout * 1000 / HZ);
92 task->u.tk_wait.expires = jiffies + task->tk_timeout;
93 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 * Add new request to a priority queue.
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
103 struct list_head *q;
104 struct rpc_task *t;
106 INIT_LIST_HEAD(&task->u.tk_wait.links);
107 q = &queue->tasks[task->tk_priority];
108 if (unlikely(task->tk_priority > queue->maxpriority))
109 q = &queue->tasks[queue->maxpriority];
110 list_for_each_entry(t, q, u.tk_wait.list) {
111 if (t->tk_owner == task->tk_owner) {
112 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
113 return;
116 list_add_tail(&task->u.tk_wait.list, q);
120 * Add new request to wait queue.
122 * Swapper tasks always get inserted at the head of the queue.
123 * This should avoid many nasty memory deadlocks and hopefully
124 * improve overall performance.
125 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
127 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
129 BUG_ON (RPC_IS_QUEUED(task));
131 if (RPC_IS_PRIORITY(queue))
132 __rpc_add_wait_queue_priority(queue, task);
133 else if (RPC_IS_SWAPPER(task))
134 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
135 else
136 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
137 task->tk_waitqueue = queue;
138 queue->qlen++;
139 rpc_set_queued(task);
141 dprintk("RPC: %5u added to queue %p \"%s\"\n",
142 task->tk_pid, queue, rpc_qname(queue));
146 * Remove request from a priority queue.
148 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
150 struct rpc_task *t;
152 if (!list_empty(&task->u.tk_wait.links)) {
153 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
154 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
155 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
160 * Remove request from queue.
161 * Note: must be called with spin lock held.
163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
165 __rpc_disable_timer(queue, task);
166 if (RPC_IS_PRIORITY(queue))
167 __rpc_remove_wait_queue_priority(task);
168 list_del(&task->u.tk_wait.list);
169 queue->qlen--;
170 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
171 task->tk_pid, queue, rpc_qname(queue));
174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
176 queue->priority = priority;
177 queue->count = 1 << (priority * 2);
180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
182 queue->owner = pid;
183 queue->nr = RPC_BATCH_COUNT;
186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
188 rpc_set_waitqueue_priority(queue, queue->maxpriority);
189 rpc_set_waitqueue_owner(queue, 0);
192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
194 int i;
196 spin_lock_init(&queue->lock);
197 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
198 INIT_LIST_HEAD(&queue->tasks[i]);
199 queue->maxpriority = nr_queues - 1;
200 rpc_reset_waitqueue_priority(queue);
201 queue->qlen = 0;
202 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
203 INIT_LIST_HEAD(&queue->timer_list.list);
204 #ifdef RPC_DEBUG
205 queue->name = qname;
206 #endif
209 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
211 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
213 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
215 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
217 __rpc_init_priority_wait_queue(queue, qname, 1);
219 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
221 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
223 del_timer_sync(&queue->timer_list.timer);
225 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
227 static int rpc_wait_bit_killable(void *word)
229 if (fatal_signal_pending(current))
230 return -ERESTARTSYS;
231 schedule();
232 return 0;
235 #ifdef RPC_DEBUG
236 static void rpc_task_set_debuginfo(struct rpc_task *task)
238 static atomic_t rpc_pid;
240 task->tk_magic = RPC_TASK_MAGIC_ID;
241 task->tk_pid = atomic_inc_return(&rpc_pid);
243 #else
244 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
247 #endif
249 static void rpc_set_active(struct rpc_task *task)
251 struct rpc_clnt *clnt;
252 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
253 return;
254 rpc_task_set_debuginfo(task);
255 /* Add to global list of all tasks */
256 clnt = task->tk_client;
257 if (clnt != NULL) {
258 spin_lock(&clnt->cl_lock);
259 list_add_tail(&task->tk_task, &clnt->cl_tasks);
260 spin_unlock(&clnt->cl_lock);
265 * Mark an RPC call as having completed by clearing the 'active' bit
267 static void rpc_mark_complete_task(struct rpc_task *task)
269 smp_mb__before_clear_bit();
270 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
271 smp_mb__after_clear_bit();
272 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
276 * Allow callers to wait for completion of an RPC call
278 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
280 if (action == NULL)
281 action = rpc_wait_bit_killable;
282 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
283 action, TASK_KILLABLE);
285 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
288 * Make an RPC task runnable.
290 * Note: If the task is ASYNC, this must be called with
291 * the spinlock held to protect the wait queue operation.
293 static void rpc_make_runnable(struct rpc_task *task)
295 rpc_clear_queued(task);
296 if (rpc_test_and_set_running(task))
297 return;
298 if (RPC_IS_ASYNC(task)) {
299 int status;
301 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
302 status = queue_work(rpciod_workqueue, &task->u.tk_work);
303 if (status < 0) {
304 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
305 task->tk_status = status;
306 return;
308 } else
309 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
313 * Prepare for sleeping on a wait queue.
314 * By always appending tasks to the list we ensure FIFO behavior.
315 * NB: An RPC task will only receive interrupt-driven events as long
316 * as it's on a wait queue.
318 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
319 rpc_action action)
321 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
322 task->tk_pid, rpc_qname(q), jiffies);
324 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
325 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
326 return;
329 __rpc_add_wait_queue(q, task);
331 BUG_ON(task->tk_callback != NULL);
332 task->tk_callback = action;
333 __rpc_add_timer(q, task);
336 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
337 rpc_action action)
339 /* Mark the task as being activated if so needed */
340 rpc_set_active(task);
343 * Protect the queue operations.
345 spin_lock_bh(&q->lock);
346 __rpc_sleep_on(q, task, action);
347 spin_unlock_bh(&q->lock);
349 EXPORT_SYMBOL_GPL(rpc_sleep_on);
352 * __rpc_do_wake_up_task - wake up a single rpc_task
353 * @queue: wait queue
354 * @task: task to be woken up
356 * Caller must hold queue->lock, and have cleared the task queued flag.
358 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
360 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
361 task->tk_pid, jiffies);
363 #ifdef RPC_DEBUG
364 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
365 #endif
366 /* Has the task been executed yet? If not, we cannot wake it up! */
367 if (!RPC_IS_ACTIVATED(task)) {
368 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
369 return;
372 __rpc_remove_wait_queue(queue, task);
374 rpc_make_runnable(task);
376 dprintk("RPC: __rpc_wake_up_task done\n");
380 * Wake up a queued task while the queue lock is being held
382 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
384 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
385 __rpc_do_wake_up_task(queue, task);
389 * Tests whether rpc queue is empty
391 int rpc_queue_empty(struct rpc_wait_queue *queue)
393 int res;
395 spin_lock_bh(&queue->lock);
396 res = queue->qlen;
397 spin_unlock_bh(&queue->lock);
398 return (res == 0);
400 EXPORT_SYMBOL_GPL(rpc_queue_empty);
403 * Wake up a task on a specific queue
405 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
407 spin_lock_bh(&queue->lock);
408 rpc_wake_up_task_queue_locked(queue, task);
409 spin_unlock_bh(&queue->lock);
411 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
414 * Wake up the specified task
416 static void rpc_wake_up_task(struct rpc_task *task)
418 rpc_wake_up_queued_task(task->tk_waitqueue, task);
422 * Wake up the next task on a priority queue.
424 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
426 struct list_head *q;
427 struct rpc_task *task;
430 * Service a batch of tasks from a single owner.
432 q = &queue->tasks[queue->priority];
433 if (!list_empty(q)) {
434 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
435 if (queue->owner == task->tk_owner) {
436 if (--queue->nr)
437 goto out;
438 list_move_tail(&task->u.tk_wait.list, q);
441 * Check if we need to switch queues.
443 if (--queue->count)
444 goto new_owner;
448 * Service the next queue.
450 do {
451 if (q == &queue->tasks[0])
452 q = &queue->tasks[queue->maxpriority];
453 else
454 q = q - 1;
455 if (!list_empty(q)) {
456 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
457 goto new_queue;
459 } while (q != &queue->tasks[queue->priority]);
461 rpc_reset_waitqueue_priority(queue);
462 return NULL;
464 new_queue:
465 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
466 new_owner:
467 rpc_set_waitqueue_owner(queue, task->tk_owner);
468 out:
469 rpc_wake_up_task_queue_locked(queue, task);
470 return task;
474 * Wake up the next task on the wait queue.
476 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
478 struct rpc_task *task = NULL;
480 dprintk("RPC: wake_up_next(%p \"%s\")\n",
481 queue, rpc_qname(queue));
482 spin_lock_bh(&queue->lock);
483 if (RPC_IS_PRIORITY(queue))
484 task = __rpc_wake_up_next_priority(queue);
485 else {
486 task_for_first(task, &queue->tasks[0])
487 rpc_wake_up_task_queue_locked(queue, task);
489 spin_unlock_bh(&queue->lock);
491 return task;
493 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
496 * rpc_wake_up - wake up all rpc_tasks
497 * @queue: rpc_wait_queue on which the tasks are sleeping
499 * Grabs queue->lock
501 void rpc_wake_up(struct rpc_wait_queue *queue)
503 struct rpc_task *task, *next;
504 struct list_head *head;
506 spin_lock_bh(&queue->lock);
507 head = &queue->tasks[queue->maxpriority];
508 for (;;) {
509 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
510 rpc_wake_up_task_queue_locked(queue, task);
511 if (head == &queue->tasks[0])
512 break;
513 head--;
515 spin_unlock_bh(&queue->lock);
517 EXPORT_SYMBOL_GPL(rpc_wake_up);
520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521 * @queue: rpc_wait_queue on which the tasks are sleeping
522 * @status: status value to set
524 * Grabs queue->lock
526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
528 struct rpc_task *task, *next;
529 struct list_head *head;
531 spin_lock_bh(&queue->lock);
532 head = &queue->tasks[queue->maxpriority];
533 for (;;) {
534 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
535 task->tk_status = status;
536 rpc_wake_up_task_queue_locked(queue, task);
538 if (head == &queue->tasks[0])
539 break;
540 head--;
542 spin_unlock_bh(&queue->lock);
544 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
546 static void __rpc_queue_timer_fn(unsigned long ptr)
548 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
549 struct rpc_task *task, *n;
550 unsigned long expires, now, timeo;
552 spin_lock(&queue->lock);
553 expires = now = jiffies;
554 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
555 timeo = task->u.tk_wait.expires;
556 if (time_after_eq(now, timeo)) {
557 dprintk("RPC: %5u timeout\n", task->tk_pid);
558 task->tk_status = -ETIMEDOUT;
559 rpc_wake_up_task_queue_locked(queue, task);
560 continue;
562 if (expires == now || time_after(expires, timeo))
563 expires = timeo;
565 if (!list_empty(&queue->timer_list.list))
566 rpc_set_queue_timer(queue, expires);
567 spin_unlock(&queue->lock);
570 static void __rpc_atrun(struct rpc_task *task)
572 task->tk_status = 0;
576 * Run a task at a later time
578 void rpc_delay(struct rpc_task *task, unsigned long delay)
580 task->tk_timeout = delay;
581 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
583 EXPORT_SYMBOL_GPL(rpc_delay);
586 * Helper to call task->tk_ops->rpc_call_prepare
588 void rpc_prepare_task(struct rpc_task *task)
590 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
594 * Helper that calls task->tk_ops->rpc_call_done if it exists
596 void rpc_exit_task(struct rpc_task *task)
598 task->tk_action = NULL;
599 if (task->tk_ops->rpc_call_done != NULL) {
600 task->tk_ops->rpc_call_done(task, task->tk_calldata);
601 if (task->tk_action != NULL) {
602 WARN_ON(RPC_ASSASSINATED(task));
603 /* Always release the RPC slot and buffer memory */
604 xprt_release(task);
608 EXPORT_SYMBOL_GPL(rpc_exit_task);
610 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
612 if (ops->rpc_release != NULL)
613 ops->rpc_release(calldata);
617 * This is the RPC `scheduler' (or rather, the finite state machine).
619 static void __rpc_execute(struct rpc_task *task)
621 struct rpc_wait_queue *queue;
622 int task_is_async = RPC_IS_ASYNC(task);
623 int status = 0;
625 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
626 task->tk_pid, task->tk_flags);
628 BUG_ON(RPC_IS_QUEUED(task));
630 for (;;) {
633 * Execute any pending callback.
635 if (task->tk_callback) {
636 void (*save_callback)(struct rpc_task *);
639 * We set tk_callback to NULL before calling it,
640 * in case it sets the tk_callback field itself:
642 save_callback = task->tk_callback;
643 task->tk_callback = NULL;
644 save_callback(task);
648 * Perform the next FSM step.
649 * tk_action may be NULL when the task has been killed
650 * by someone else.
652 if (!RPC_IS_QUEUED(task)) {
653 if (task->tk_action == NULL)
654 break;
655 task->tk_action(task);
659 * Lockless check for whether task is sleeping or not.
661 if (!RPC_IS_QUEUED(task))
662 continue;
664 * The queue->lock protects against races with
665 * rpc_make_runnable().
667 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
668 * rpc_task, rpc_make_runnable() can assign it to a
669 * different workqueue. We therefore cannot assume that the
670 * rpc_task pointer may still be dereferenced.
672 queue = task->tk_waitqueue;
673 spin_lock_bh(&queue->lock);
674 if (!RPC_IS_QUEUED(task)) {
675 spin_unlock_bh(&queue->lock);
676 continue;
678 rpc_clear_running(task);
679 spin_unlock_bh(&queue->lock);
680 if (task_is_async)
681 return;
683 /* sync task: sleep here */
684 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
685 status = out_of_line_wait_on_bit(&task->tk_runstate,
686 RPC_TASK_QUEUED, rpc_wait_bit_killable,
687 TASK_KILLABLE);
688 if (status == -ERESTARTSYS) {
690 * When a sync task receives a signal, it exits with
691 * -ERESTARTSYS. In order to catch any callbacks that
692 * clean up after sleeping on some queue, we don't
693 * break the loop here, but go around once more.
695 dprintk("RPC: %5u got signal\n", task->tk_pid);
696 task->tk_flags |= RPC_TASK_KILLED;
697 rpc_exit(task, -ERESTARTSYS);
698 rpc_wake_up_task(task);
700 rpc_set_running(task);
701 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
704 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
705 task->tk_status);
706 /* Release all resources associated with the task */
707 rpc_release_task(task);
711 * User-visible entry point to the scheduler.
713 * This may be called recursively if e.g. an async NFS task updates
714 * the attributes and finds that dirty pages must be flushed.
715 * NOTE: Upon exit of this function the task is guaranteed to be
716 * released. In particular note that tk_release() will have
717 * been called, so your task memory may have been freed.
719 void rpc_execute(struct rpc_task *task)
721 rpc_set_active(task);
722 rpc_set_running(task);
723 __rpc_execute(task);
726 static void rpc_async_schedule(struct work_struct *work)
728 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
732 * rpc_malloc - allocate an RPC buffer
733 * @task: RPC task that will use this buffer
734 * @size: requested byte size
736 * To prevent rpciod from hanging, this allocator never sleeps,
737 * returning NULL if the request cannot be serviced immediately.
738 * The caller can arrange to sleep in a way that is safe for rpciod.
740 * Most requests are 'small' (under 2KiB) and can be serviced from a
741 * mempool, ensuring that NFS reads and writes can always proceed,
742 * and that there is good locality of reference for these buffers.
744 * In order to avoid memory starvation triggering more writebacks of
745 * NFS requests, we avoid using GFP_KERNEL.
747 void *rpc_malloc(struct rpc_task *task, size_t size)
749 struct rpc_buffer *buf;
750 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
752 size += sizeof(struct rpc_buffer);
753 if (size <= RPC_BUFFER_MAXSIZE)
754 buf = mempool_alloc(rpc_buffer_mempool, gfp);
755 else
756 buf = kmalloc(size, gfp);
758 if (!buf)
759 return NULL;
761 buf->len = size;
762 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
763 task->tk_pid, size, buf);
764 return &buf->data;
766 EXPORT_SYMBOL_GPL(rpc_malloc);
769 * rpc_free - free buffer allocated via rpc_malloc
770 * @buffer: buffer to free
773 void rpc_free(void *buffer)
775 size_t size;
776 struct rpc_buffer *buf;
778 if (!buffer)
779 return;
781 buf = container_of(buffer, struct rpc_buffer, data);
782 size = buf->len;
784 dprintk("RPC: freeing buffer of size %zu at %p\n",
785 size, buf);
787 if (size <= RPC_BUFFER_MAXSIZE)
788 mempool_free(buf, rpc_buffer_mempool);
789 else
790 kfree(buf);
792 EXPORT_SYMBOL_GPL(rpc_free);
795 * Creation and deletion of RPC task structures
797 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
799 memset(task, 0, sizeof(*task));
800 atomic_set(&task->tk_count, 1);
801 task->tk_flags = task_setup_data->flags;
802 task->tk_ops = task_setup_data->callback_ops;
803 task->tk_calldata = task_setup_data->callback_data;
804 INIT_LIST_HEAD(&task->tk_task);
806 /* Initialize retry counters */
807 task->tk_garb_retry = 2;
808 task->tk_cred_retry = 2;
810 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
811 task->tk_owner = current->tgid;
813 /* Initialize workqueue for async tasks */
814 task->tk_workqueue = task_setup_data->workqueue;
816 task->tk_client = task_setup_data->rpc_client;
817 if (task->tk_client != NULL) {
818 kref_get(&task->tk_client->cl_kref);
819 if (task->tk_client->cl_softrtry)
820 task->tk_flags |= RPC_TASK_SOFT;
823 if (task->tk_ops->rpc_call_prepare != NULL)
824 task->tk_action = rpc_prepare_task;
826 if (task_setup_data->rpc_message != NULL) {
827 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
828 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
829 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
830 /* Bind the user cred */
831 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
832 if (task->tk_action == NULL)
833 rpc_call_start(task);
836 /* starting timestamp */
837 task->tk_start = jiffies;
839 dprintk("RPC: new task initialized, procpid %u\n",
840 task_pid_nr(current));
843 static struct rpc_task *
844 rpc_alloc_task(void)
846 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
850 * Create a new task for the specified client.
852 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
854 struct rpc_task *task = setup_data->task;
855 unsigned short flags = 0;
857 if (task == NULL) {
858 task = rpc_alloc_task();
859 if (task == NULL)
860 goto out;
861 flags = RPC_TASK_DYNAMIC;
864 rpc_init_task(task, setup_data);
866 task->tk_flags |= flags;
867 dprintk("RPC: allocated task %p\n", task);
868 out:
869 return task;
872 static void rpc_free_task(struct rpc_task *task)
874 const struct rpc_call_ops *tk_ops = task->tk_ops;
875 void *calldata = task->tk_calldata;
877 if (task->tk_flags & RPC_TASK_DYNAMIC) {
878 dprintk("RPC: %5u freeing task\n", task->tk_pid);
879 mempool_free(task, rpc_task_mempool);
881 rpc_release_calldata(tk_ops, calldata);
884 static void rpc_async_release(struct work_struct *work)
886 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
889 void rpc_put_task(struct rpc_task *task)
891 if (!atomic_dec_and_test(&task->tk_count))
892 return;
893 /* Release resources */
894 if (task->tk_rqstp)
895 xprt_release(task);
896 if (task->tk_msg.rpc_cred)
897 rpcauth_unbindcred(task);
898 if (task->tk_client) {
899 rpc_release_client(task->tk_client);
900 task->tk_client = NULL;
902 if (task->tk_workqueue != NULL) {
903 INIT_WORK(&task->u.tk_work, rpc_async_release);
904 queue_work(task->tk_workqueue, &task->u.tk_work);
905 } else
906 rpc_free_task(task);
908 EXPORT_SYMBOL_GPL(rpc_put_task);
910 static void rpc_release_task(struct rpc_task *task)
912 #ifdef RPC_DEBUG
913 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
914 #endif
915 dprintk("RPC: %5u release task\n", task->tk_pid);
917 if (!list_empty(&task->tk_task)) {
918 struct rpc_clnt *clnt = task->tk_client;
919 /* Remove from client task list */
920 spin_lock(&clnt->cl_lock);
921 list_del(&task->tk_task);
922 spin_unlock(&clnt->cl_lock);
924 BUG_ON (RPC_IS_QUEUED(task));
926 #ifdef RPC_DEBUG
927 task->tk_magic = 0;
928 #endif
929 /* Wake up anyone who is waiting for task completion */
930 rpc_mark_complete_task(task);
932 rpc_put_task(task);
936 * Kill all tasks for the given client.
937 * XXX: kill their descendants as well?
939 void rpc_killall_tasks(struct rpc_clnt *clnt)
941 struct rpc_task *rovr;
944 if (list_empty(&clnt->cl_tasks))
945 return;
946 dprintk("RPC: killing all tasks for client %p\n", clnt);
948 * Spin lock all_tasks to prevent changes...
950 spin_lock(&clnt->cl_lock);
951 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
952 if (! RPC_IS_ACTIVATED(rovr))
953 continue;
954 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
955 rovr->tk_flags |= RPC_TASK_KILLED;
956 rpc_exit(rovr, -EIO);
957 rpc_wake_up_task(rovr);
960 spin_unlock(&clnt->cl_lock);
962 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
964 int rpciod_up(void)
966 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
969 void rpciod_down(void)
971 module_put(THIS_MODULE);
975 * Start up the rpciod workqueue.
977 static int rpciod_start(void)
979 struct workqueue_struct *wq;
982 * Create the rpciod thread and wait for it to start.
984 dprintk("RPC: creating workqueue rpciod\n");
985 wq = create_workqueue("rpciod");
986 rpciod_workqueue = wq;
987 return rpciod_workqueue != NULL;
990 static void rpciod_stop(void)
992 struct workqueue_struct *wq = NULL;
994 if (rpciod_workqueue == NULL)
995 return;
996 dprintk("RPC: destroying workqueue rpciod\n");
998 wq = rpciod_workqueue;
999 rpciod_workqueue = NULL;
1000 destroy_workqueue(wq);
1003 void
1004 rpc_destroy_mempool(void)
1006 rpciod_stop();
1007 if (rpc_buffer_mempool)
1008 mempool_destroy(rpc_buffer_mempool);
1009 if (rpc_task_mempool)
1010 mempool_destroy(rpc_task_mempool);
1011 if (rpc_task_slabp)
1012 kmem_cache_destroy(rpc_task_slabp);
1013 if (rpc_buffer_slabp)
1014 kmem_cache_destroy(rpc_buffer_slabp);
1015 rpc_destroy_wait_queue(&delay_queue);
1019 rpc_init_mempool(void)
1022 * The following is not strictly a mempool initialisation,
1023 * but there is no harm in doing it here
1025 rpc_init_wait_queue(&delay_queue, "delayq");
1026 if (!rpciod_start())
1027 goto err_nomem;
1029 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1030 sizeof(struct rpc_task),
1031 0, SLAB_HWCACHE_ALIGN,
1032 NULL);
1033 if (!rpc_task_slabp)
1034 goto err_nomem;
1035 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1036 RPC_BUFFER_MAXSIZE,
1037 0, SLAB_HWCACHE_ALIGN,
1038 NULL);
1039 if (!rpc_buffer_slabp)
1040 goto err_nomem;
1041 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1042 rpc_task_slabp);
1043 if (!rpc_task_mempool)
1044 goto err_nomem;
1045 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1046 rpc_buffer_slabp);
1047 if (!rpc_buffer_mempool)
1048 goto err_nomem;
1049 return 0;
1050 err_nomem:
1051 rpc_destroy_mempool();
1052 return -ENOMEM;