V4L/DVB: dvb: fix sparse warnings
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / fib_trie.c
blobaf5d897928606df52c3f97483f860c934d2bf6fd
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <net/net_namespace.h>
75 #include <net/ip.h>
76 #include <net/protocol.h>
77 #include <net/route.h>
78 #include <net/tcp.h>
79 #include <net/sock.h>
80 #include <net/ip_fib.h>
81 #include "fib_lookup.h"
83 #define MAX_STAT_DEPTH 32
85 #define KEYLENGTH (8*sizeof(t_key))
87 typedef unsigned int t_key;
89 #define T_TNODE 0
90 #define T_LEAF 1
91 #define NODE_TYPE_MASK 0x1UL
92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94 #define IS_TNODE(n) (!(n->parent & T_LEAF))
95 #define IS_LEAF(n) (n->parent & T_LEAF)
97 struct node {
98 unsigned long parent;
99 t_key key;
102 struct leaf {
103 unsigned long parent;
104 t_key key;
105 struct hlist_head list;
106 struct rcu_head rcu;
109 struct leaf_info {
110 struct hlist_node hlist;
111 struct rcu_head rcu;
112 int plen;
113 struct list_head falh;
116 struct tnode {
117 unsigned long parent;
118 t_key key;
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 struct tnode *tnode_free;
128 struct node *child[0];
131 #ifdef CONFIG_IP_FIB_TRIE_STATS
132 struct trie_use_stats {
133 unsigned int gets;
134 unsigned int backtrack;
135 unsigned int semantic_match_passed;
136 unsigned int semantic_match_miss;
137 unsigned int null_node_hit;
138 unsigned int resize_node_skipped;
140 #endif
142 struct trie_stat {
143 unsigned int totdepth;
144 unsigned int maxdepth;
145 unsigned int tnodes;
146 unsigned int leaves;
147 unsigned int nullpointers;
148 unsigned int prefixes;
149 unsigned int nodesizes[MAX_STAT_DEPTH];
152 struct trie {
153 struct node *trie;
154 #ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156 #endif
159 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
160 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
161 int wasfull);
162 static struct node *resize(struct trie *t, struct tnode *tn);
163 static struct tnode *inflate(struct trie *t, struct tnode *tn);
164 static struct tnode *halve(struct trie *t, struct tnode *tn);
165 /* tnodes to free after resize(); protected by RTNL */
166 static struct tnode *tnode_free_head;
167 static size_t tnode_free_size;
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
174 static const int sync_pages = 128;
176 static struct kmem_cache *fn_alias_kmem __read_mostly;
177 static struct kmem_cache *trie_leaf_kmem __read_mostly;
179 static inline struct tnode *node_parent(struct node *node)
181 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
184 static inline struct tnode *node_parent_rcu(struct node *node)
186 struct tnode *ret = node_parent(node);
188 return rcu_dereference(ret);
191 /* Same as rcu_assign_pointer
192 * but that macro() assumes that value is a pointer.
194 static inline void node_set_parent(struct node *node, struct tnode *ptr)
196 smp_wmb();
197 node->parent = (unsigned long)ptr | NODE_TYPE(node);
200 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
202 BUG_ON(i >= 1U << tn->bits);
204 return tn->child[i];
207 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
209 struct node *ret = tnode_get_child(tn, i);
211 return rcu_dereference(ret);
214 static inline int tnode_child_length(const struct tnode *tn)
216 return 1 << tn->bits;
219 static inline t_key mask_pfx(t_key k, unsigned short l)
221 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
224 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
226 if (offset < KEYLENGTH)
227 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
228 else
229 return 0;
232 static inline int tkey_equals(t_key a, t_key b)
234 return a == b;
237 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239 if (bits == 0 || offset >= KEYLENGTH)
240 return 1;
241 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
242 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
245 static inline int tkey_mismatch(t_key a, int offset, t_key b)
247 t_key diff = a ^ b;
248 int i = offset;
250 if (!diff)
251 return 0;
252 while ((diff << i) >> (KEYLENGTH-1) == 0)
253 i++;
254 return i;
258 To understand this stuff, an understanding of keys and all their bits is
259 necessary. Every node in the trie has a key associated with it, but not
260 all of the bits in that key are significant.
262 Consider a node 'n' and its parent 'tp'.
264 If n is a leaf, every bit in its key is significant. Its presence is
265 necessitated by path compression, since during a tree traversal (when
266 searching for a leaf - unless we are doing an insertion) we will completely
267 ignore all skipped bits we encounter. Thus we need to verify, at the end of
268 a potentially successful search, that we have indeed been walking the
269 correct key path.
271 Note that we can never "miss" the correct key in the tree if present by
272 following the wrong path. Path compression ensures that segments of the key
273 that are the same for all keys with a given prefix are skipped, but the
274 skipped part *is* identical for each node in the subtrie below the skipped
275 bit! trie_insert() in this implementation takes care of that - note the
276 call to tkey_sub_equals() in trie_insert().
278 if n is an internal node - a 'tnode' here, the various parts of its key
279 have many different meanings.
281 Example:
282 _________________________________________________________________
283 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
284 -----------------------------------------------------------------
285 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
287 _________________________________________________________________
288 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
289 -----------------------------------------------------------------
290 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292 tp->pos = 7
293 tp->bits = 3
294 n->pos = 15
295 n->bits = 4
297 First, let's just ignore the bits that come before the parent tp, that is
298 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
299 not use them for anything.
301 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
302 index into the parent's child array. That is, they will be used to find
303 'n' among tp's children.
305 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
306 for the node n.
308 All the bits we have seen so far are significant to the node n. The rest
309 of the bits are really not needed or indeed known in n->key.
311 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
312 n's child array, and will of course be different for each child.
315 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
316 at this point.
320 static inline void check_tnode(const struct tnode *tn)
322 WARN_ON(tn && tn->pos+tn->bits > 32);
325 static const int halve_threshold = 25;
326 static const int inflate_threshold = 50;
327 static const int halve_threshold_root = 15;
328 static const int inflate_threshold_root = 30;
330 static void __alias_free_mem(struct rcu_head *head)
332 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
333 kmem_cache_free(fn_alias_kmem, fa);
336 static inline void alias_free_mem_rcu(struct fib_alias *fa)
338 call_rcu(&fa->rcu, __alias_free_mem);
341 static void __leaf_free_rcu(struct rcu_head *head)
343 struct leaf *l = container_of(head, struct leaf, rcu);
344 kmem_cache_free(trie_leaf_kmem, l);
347 static inline void free_leaf(struct leaf *l)
349 call_rcu_bh(&l->rcu, __leaf_free_rcu);
352 static void __leaf_info_free_rcu(struct rcu_head *head)
354 kfree(container_of(head, struct leaf_info, rcu));
357 static inline void free_leaf_info(struct leaf_info *leaf)
359 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
362 static struct tnode *tnode_alloc(size_t size)
364 if (size <= PAGE_SIZE)
365 return kzalloc(size, GFP_KERNEL);
366 else
367 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
370 static void __tnode_vfree(struct work_struct *arg)
372 struct tnode *tn = container_of(arg, struct tnode, work);
373 vfree(tn);
376 static void __tnode_free_rcu(struct rcu_head *head)
378 struct tnode *tn = container_of(head, struct tnode, rcu);
379 size_t size = sizeof(struct tnode) +
380 (sizeof(struct node *) << tn->bits);
382 if (size <= PAGE_SIZE)
383 kfree(tn);
384 else {
385 INIT_WORK(&tn->work, __tnode_vfree);
386 schedule_work(&tn->work);
390 static inline void tnode_free(struct tnode *tn)
392 if (IS_LEAF(tn))
393 free_leaf((struct leaf *) tn);
394 else
395 call_rcu(&tn->rcu, __tnode_free_rcu);
398 static void tnode_free_safe(struct tnode *tn)
400 BUG_ON(IS_LEAF(tn));
401 tn->tnode_free = tnode_free_head;
402 tnode_free_head = tn;
403 tnode_free_size += sizeof(struct tnode) +
404 (sizeof(struct node *) << tn->bits);
407 static void tnode_free_flush(void)
409 struct tnode *tn;
411 while ((tn = tnode_free_head)) {
412 tnode_free_head = tn->tnode_free;
413 tn->tnode_free = NULL;
414 tnode_free(tn);
417 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
418 tnode_free_size = 0;
419 synchronize_rcu();
423 static struct leaf *leaf_new(void)
425 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
426 if (l) {
427 l->parent = T_LEAF;
428 INIT_HLIST_HEAD(&l->list);
430 return l;
433 static struct leaf_info *leaf_info_new(int plen)
435 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
436 if (li) {
437 li->plen = plen;
438 INIT_LIST_HEAD(&li->falh);
440 return li;
443 static struct tnode *tnode_new(t_key key, int pos, int bits)
445 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
446 struct tnode *tn = tnode_alloc(sz);
448 if (tn) {
449 tn->parent = T_TNODE;
450 tn->pos = pos;
451 tn->bits = bits;
452 tn->key = key;
453 tn->full_children = 0;
454 tn->empty_children = 1<<bits;
457 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
458 (unsigned long) (sizeof(struct node) << bits));
459 return tn;
463 * Check whether a tnode 'n' is "full", i.e. it is an internal node
464 * and no bits are skipped. See discussion in dyntree paper p. 6
467 static inline int tnode_full(const struct tnode *tn, const struct node *n)
469 if (n == NULL || IS_LEAF(n))
470 return 0;
472 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
475 static inline void put_child(struct trie *t, struct tnode *tn, int i,
476 struct node *n)
478 tnode_put_child_reorg(tn, i, n, -1);
482 * Add a child at position i overwriting the old value.
483 * Update the value of full_children and empty_children.
486 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
487 int wasfull)
489 struct node *chi = tn->child[i];
490 int isfull;
492 BUG_ON(i >= 1<<tn->bits);
494 /* update emptyChildren */
495 if (n == NULL && chi != NULL)
496 tn->empty_children++;
497 else if (n != NULL && chi == NULL)
498 tn->empty_children--;
500 /* update fullChildren */
501 if (wasfull == -1)
502 wasfull = tnode_full(tn, chi);
504 isfull = tnode_full(tn, n);
505 if (wasfull && !isfull)
506 tn->full_children--;
507 else if (!wasfull && isfull)
508 tn->full_children++;
510 if (n)
511 node_set_parent(n, tn);
513 rcu_assign_pointer(tn->child[i], n);
516 #define MAX_WORK 10
517 static struct node *resize(struct trie *t, struct tnode *tn)
519 int i;
520 struct tnode *old_tn;
521 int inflate_threshold_use;
522 int halve_threshold_use;
523 int max_work;
525 if (!tn)
526 return NULL;
528 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
529 tn, inflate_threshold, halve_threshold);
531 /* No children */
532 if (tn->empty_children == tnode_child_length(tn)) {
533 tnode_free_safe(tn);
534 return NULL;
536 /* One child */
537 if (tn->empty_children == tnode_child_length(tn) - 1)
538 goto one_child;
540 * Double as long as the resulting node has a number of
541 * nonempty nodes that are above the threshold.
545 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
546 * the Helsinki University of Technology and Matti Tikkanen of Nokia
547 * Telecommunications, page 6:
548 * "A node is doubled if the ratio of non-empty children to all
549 * children in the *doubled* node is at least 'high'."
551 * 'high' in this instance is the variable 'inflate_threshold'. It
552 * is expressed as a percentage, so we multiply it with
553 * tnode_child_length() and instead of multiplying by 2 (since the
554 * child array will be doubled by inflate()) and multiplying
555 * the left-hand side by 100 (to handle the percentage thing) we
556 * multiply the left-hand side by 50.
558 * The left-hand side may look a bit weird: tnode_child_length(tn)
559 * - tn->empty_children is of course the number of non-null children
560 * in the current node. tn->full_children is the number of "full"
561 * children, that is non-null tnodes with a skip value of 0.
562 * All of those will be doubled in the resulting inflated tnode, so
563 * we just count them one extra time here.
565 * A clearer way to write this would be:
567 * to_be_doubled = tn->full_children;
568 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
569 * tn->full_children;
571 * new_child_length = tnode_child_length(tn) * 2;
573 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
574 * new_child_length;
575 * if (new_fill_factor >= inflate_threshold)
577 * ...and so on, tho it would mess up the while () loop.
579 * anyway,
580 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
581 * inflate_threshold
583 * avoid a division:
584 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
585 * inflate_threshold * new_child_length
587 * expand not_to_be_doubled and to_be_doubled, and shorten:
588 * 100 * (tnode_child_length(tn) - tn->empty_children +
589 * tn->full_children) >= inflate_threshold * new_child_length
591 * expand new_child_length:
592 * 100 * (tnode_child_length(tn) - tn->empty_children +
593 * tn->full_children) >=
594 * inflate_threshold * tnode_child_length(tn) * 2
596 * shorten again:
597 * 50 * (tn->full_children + tnode_child_length(tn) -
598 * tn->empty_children) >= inflate_threshold *
599 * tnode_child_length(tn)
603 check_tnode(tn);
605 /* Keep root node larger */
607 if (!node_parent((struct node*) tn)) {
608 inflate_threshold_use = inflate_threshold_root;
609 halve_threshold_use = halve_threshold_root;
611 else {
612 inflate_threshold_use = inflate_threshold;
613 halve_threshold_use = halve_threshold;
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
622 old_tn = tn;
623 tn = inflate(t, tn);
625 if (IS_ERR(tn)) {
626 tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629 #endif
630 break;
634 check_tnode(tn);
636 /* Return if at least one inflate is run */
637 if( max_work != MAX_WORK)
638 return (struct node *) tn;
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
647 100 * (tnode_child_length(tn) - tn->empty_children) <
648 halve_threshold_use * tnode_child_length(tn)) {
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656 #endif
657 break;
662 /* Only one child remains */
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 for (i = 0; i < tnode_child_length(tn); i++) {
666 struct node *n;
668 n = tn->child[i];
669 if (!n)
670 continue;
672 /* compress one level */
674 node_set_parent(n, NULL);
675 tnode_free_safe(tn);
676 return n;
679 return (struct node *) tn;
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
688 pr_debug("In inflate\n");
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
692 if (!tn)
693 return ERR_PTR(-ENOMEM);
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
702 for (i = 0; i < olen; i++) {
703 struct tnode *inode;
705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
715 if (!left)
716 goto nomem;
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
721 if (!right) {
722 tnode_free(left);
723 goto nomem;
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
731 for (i = 0; i < olen; i++) {
732 struct tnode *inode;
733 struct node *node = tnode_get_child(oldtnode, i);
734 struct tnode *left, *right;
735 int size, j;
737 /* An empty child */
738 if (node == NULL)
739 continue;
741 /* A leaf or an internal node with skipped bits */
743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 tn->pos + tn->bits - 1) {
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
761 tnode_free_safe(inode);
762 continue;
765 /* An internal node with more than two children */
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
784 /* Use the old key, but set the new significant
785 * bit to zero.
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
791 BUG_ON(!left);
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
796 BUG_ON(!right);
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
806 tnode_free_safe(inode);
808 tnode_free_safe(oldtnode);
809 return tn;
810 nomem:
812 int size = tnode_child_length(tn);
813 int j;
815 for (j = 0; j < size; j++)
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
819 tnode_free(tn);
821 return ERR_PTR(-ENOMEM);
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
832 pr_debug("In halve\n");
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
846 for (i = 0; i < olen; i += 2) {
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
850 /* Two nonempty children */
851 if (left && right) {
852 struct tnode *newn;
854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
856 if (!newn)
857 goto nomem;
859 put_child(t, tn, i/2, (struct node *)newn);
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
875 continue;
878 if (right == NULL) {
879 put_child(t, tn, i/2, left);
880 continue;
883 /* Two nonempty children */
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
890 tnode_free_safe(oldtnode);
891 return tn;
892 nomem:
894 int size = tnode_child_length(tn);
895 int j;
897 for (j = 0; j < size; j++)
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
901 tnode_free(tn);
903 return ERR_PTR(-ENOMEM);
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
912 struct hlist_head *head = &l->list;
913 struct hlist_node *node;
914 struct leaf_info *li;
916 hlist_for_each_entry_rcu(li, node, head, hlist)
917 if (li->plen == plen)
918 return li;
920 return NULL;
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
925 struct leaf_info *li = find_leaf_info(l, plen);
927 if (!li)
928 return NULL;
930 return &li->falh;
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
945 last = li;
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
954 /* rcu_read_lock needs to be hold by caller from readside */
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
959 int pos;
960 struct tnode *tn;
961 struct node *n;
963 pos = 0;
964 n = rcu_dereference(t->trie);
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
969 check_tnode(tn);
971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 pos = tn->pos + tn->bits;
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
977 } else
978 break;
980 /* Case we have found a leaf. Compare prefixes */
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
985 return NULL;
988 static void trie_rebalance(struct trie *t, struct tnode *tn)
990 int wasfull;
991 t_key cindex, key;
992 struct tnode *tp;
994 key = tn->key;
996 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct node *)tn, wasfull);
1004 tp = node_parent((struct node *) tn);
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct node *)tn);
1008 tnode_free_flush();
1009 if (!tp)
1010 break;
1011 tn = tp;
1014 /* Handle last (top) tnode */
1015 if (IS_TNODE(tn))
1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1018 rcu_assign_pointer(t->trie, (struct node *)tn);
1019 tnode_free_flush();
1021 return;
1024 /* only used from updater-side */
1026 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1028 int pos, newpos;
1029 struct tnode *tp = NULL, *tn = NULL;
1030 struct node *n;
1031 struct leaf *l;
1032 int missbit;
1033 struct list_head *fa_head = NULL;
1034 struct leaf_info *li;
1035 t_key cindex;
1037 pos = 0;
1038 n = t->trie;
1040 /* If we point to NULL, stop. Either the tree is empty and we should
1041 * just put a new leaf in if, or we have reached an empty child slot,
1042 * and we should just put our new leaf in that.
1043 * If we point to a T_TNODE, check if it matches our key. Note that
1044 * a T_TNODE might be skipping any number of bits - its 'pos' need
1045 * not be the parent's 'pos'+'bits'!
1047 * If it does match the current key, get pos/bits from it, extract
1048 * the index from our key, push the T_TNODE and walk the tree.
1050 * If it doesn't, we have to replace it with a new T_TNODE.
1052 * If we point to a T_LEAF, it might or might not have the same key
1053 * as we do. If it does, just change the value, update the T_LEAF's
1054 * value, and return it.
1055 * If it doesn't, we need to replace it with a T_TNODE.
1058 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1059 tn = (struct tnode *) n;
1061 check_tnode(tn);
1063 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1064 tp = tn;
1065 pos = tn->pos + tn->bits;
1066 n = tnode_get_child(tn,
1067 tkey_extract_bits(key,
1068 tn->pos,
1069 tn->bits));
1071 BUG_ON(n && node_parent(n) != tn);
1072 } else
1073 break;
1077 * n ----> NULL, LEAF or TNODE
1079 * tp is n's (parent) ----> NULL or TNODE
1082 BUG_ON(tp && IS_LEAF(tp));
1084 /* Case 1: n is a leaf. Compare prefixes */
1086 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1087 l = (struct leaf *) n;
1088 li = leaf_info_new(plen);
1090 if (!li)
1091 return NULL;
1093 fa_head = &li->falh;
1094 insert_leaf_info(&l->list, li);
1095 goto done;
1097 l = leaf_new();
1099 if (!l)
1100 return NULL;
1102 l->key = key;
1103 li = leaf_info_new(plen);
1105 if (!li) {
1106 free_leaf(l);
1107 return NULL;
1110 fa_head = &li->falh;
1111 insert_leaf_info(&l->list, li);
1113 if (t->trie && n == NULL) {
1114 /* Case 2: n is NULL, and will just insert a new leaf */
1116 node_set_parent((struct node *)l, tp);
1118 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1119 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1120 } else {
1121 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1123 * Add a new tnode here
1124 * first tnode need some special handling
1127 if (tp)
1128 pos = tp->pos+tp->bits;
1129 else
1130 pos = 0;
1132 if (n) {
1133 newpos = tkey_mismatch(key, pos, n->key);
1134 tn = tnode_new(n->key, newpos, 1);
1135 } else {
1136 newpos = 0;
1137 tn = tnode_new(key, newpos, 1); /* First tnode */
1140 if (!tn) {
1141 free_leaf_info(li);
1142 free_leaf(l);
1143 return NULL;
1146 node_set_parent((struct node *)tn, tp);
1148 missbit = tkey_extract_bits(key, newpos, 1);
1149 put_child(t, tn, missbit, (struct node *)l);
1150 put_child(t, tn, 1-missbit, n);
1152 if (tp) {
1153 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1154 put_child(t, (struct tnode *)tp, cindex,
1155 (struct node *)tn);
1156 } else {
1157 rcu_assign_pointer(t->trie, (struct node *)tn);
1158 tp = tn;
1162 if (tp && tp->pos + tp->bits > 32)
1163 pr_warning("fib_trie"
1164 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1165 tp, tp->pos, tp->bits, key, plen);
1167 /* Rebalance the trie */
1169 trie_rebalance(t, tp);
1170 done:
1171 return fa_head;
1175 * Caller must hold RTNL.
1177 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1179 struct trie *t = (struct trie *) tb->tb_data;
1180 struct fib_alias *fa, *new_fa;
1181 struct list_head *fa_head = NULL;
1182 struct fib_info *fi;
1183 int plen = cfg->fc_dst_len;
1184 u8 tos = cfg->fc_tos;
1185 u32 key, mask;
1186 int err;
1187 struct leaf *l;
1189 if (plen > 32)
1190 return -EINVAL;
1192 key = ntohl(cfg->fc_dst);
1194 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1196 mask = ntohl(inet_make_mask(plen));
1198 if (key & ~mask)
1199 return -EINVAL;
1201 key = key & mask;
1203 fi = fib_create_info(cfg);
1204 if (IS_ERR(fi)) {
1205 err = PTR_ERR(fi);
1206 goto err;
1209 l = fib_find_node(t, key);
1210 fa = NULL;
1212 if (l) {
1213 fa_head = get_fa_head(l, plen);
1214 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1217 /* Now fa, if non-NULL, points to the first fib alias
1218 * with the same keys [prefix,tos,priority], if such key already
1219 * exists or to the node before which we will insert new one.
1221 * If fa is NULL, we will need to allocate a new one and
1222 * insert to the head of f.
1224 * If f is NULL, no fib node matched the destination key
1225 * and we need to allocate a new one of those as well.
1228 if (fa && fa->fa_tos == tos &&
1229 fa->fa_info->fib_priority == fi->fib_priority) {
1230 struct fib_alias *fa_first, *fa_match;
1232 err = -EEXIST;
1233 if (cfg->fc_nlflags & NLM_F_EXCL)
1234 goto out;
1236 /* We have 2 goals:
1237 * 1. Find exact match for type, scope, fib_info to avoid
1238 * duplicate routes
1239 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1241 fa_match = NULL;
1242 fa_first = fa;
1243 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1244 list_for_each_entry_continue(fa, fa_head, fa_list) {
1245 if (fa->fa_tos != tos)
1246 break;
1247 if (fa->fa_info->fib_priority != fi->fib_priority)
1248 break;
1249 if (fa->fa_type == cfg->fc_type &&
1250 fa->fa_scope == cfg->fc_scope &&
1251 fa->fa_info == fi) {
1252 fa_match = fa;
1253 break;
1257 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1258 struct fib_info *fi_drop;
1259 u8 state;
1261 fa = fa_first;
1262 if (fa_match) {
1263 if (fa == fa_match)
1264 err = 0;
1265 goto out;
1267 err = -ENOBUFS;
1268 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1269 if (new_fa == NULL)
1270 goto out;
1272 fi_drop = fa->fa_info;
1273 new_fa->fa_tos = fa->fa_tos;
1274 new_fa->fa_info = fi;
1275 new_fa->fa_type = cfg->fc_type;
1276 new_fa->fa_scope = cfg->fc_scope;
1277 state = fa->fa_state;
1278 new_fa->fa_state = state & ~FA_S_ACCESSED;
1280 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1281 alias_free_mem_rcu(fa);
1283 fib_release_info(fi_drop);
1284 if (state & FA_S_ACCESSED)
1285 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1286 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1287 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1289 goto succeeded;
1291 /* Error if we find a perfect match which
1292 * uses the same scope, type, and nexthop
1293 * information.
1295 if (fa_match)
1296 goto out;
1298 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1299 fa = fa_first;
1301 err = -ENOENT;
1302 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1303 goto out;
1305 err = -ENOBUFS;
1306 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1307 if (new_fa == NULL)
1308 goto out;
1310 new_fa->fa_info = fi;
1311 new_fa->fa_tos = tos;
1312 new_fa->fa_type = cfg->fc_type;
1313 new_fa->fa_scope = cfg->fc_scope;
1314 new_fa->fa_state = 0;
1316 * Insert new entry to the list.
1319 if (!fa_head) {
1320 fa_head = fib_insert_node(t, key, plen);
1321 if (unlikely(!fa_head)) {
1322 err = -ENOMEM;
1323 goto out_free_new_fa;
1327 list_add_tail_rcu(&new_fa->fa_list,
1328 (fa ? &fa->fa_list : fa_head));
1330 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1331 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1332 &cfg->fc_nlinfo, 0);
1333 succeeded:
1334 return 0;
1336 out_free_new_fa:
1337 kmem_cache_free(fn_alias_kmem, new_fa);
1338 out:
1339 fib_release_info(fi);
1340 err:
1341 return err;
1344 /* should be called with rcu_read_lock */
1345 static int check_leaf(struct trie *t, struct leaf *l,
1346 t_key key, const struct flowi *flp,
1347 struct fib_result *res)
1349 struct leaf_info *li;
1350 struct hlist_head *hhead = &l->list;
1351 struct hlist_node *node;
1353 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1354 int err;
1355 int plen = li->plen;
1356 __be32 mask = inet_make_mask(plen);
1358 if (l->key != (key & ntohl(mask)))
1359 continue;
1361 err = fib_semantic_match(&li->falh, flp, res, plen);
1363 #ifdef CONFIG_IP_FIB_TRIE_STATS
1364 if (err <= 0)
1365 t->stats.semantic_match_passed++;
1366 else
1367 t->stats.semantic_match_miss++;
1368 #endif
1369 if (err <= 0)
1370 return err;
1373 return 1;
1376 int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
1377 struct fib_result *res)
1379 struct trie *t = (struct trie *) tb->tb_data;
1380 int ret;
1381 struct node *n;
1382 struct tnode *pn;
1383 int pos, bits;
1384 t_key key = ntohl(flp->fl4_dst);
1385 int chopped_off;
1386 t_key cindex = 0;
1387 int current_prefix_length = KEYLENGTH;
1388 struct tnode *cn;
1389 t_key node_prefix, key_prefix, pref_mismatch;
1390 int mp;
1392 rcu_read_lock();
1394 n = rcu_dereference(t->trie);
1395 if (!n)
1396 goto failed;
1398 #ifdef CONFIG_IP_FIB_TRIE_STATS
1399 t->stats.gets++;
1400 #endif
1402 /* Just a leaf? */
1403 if (IS_LEAF(n)) {
1404 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1405 goto found;
1408 pn = (struct tnode *) n;
1409 chopped_off = 0;
1411 while (pn) {
1412 pos = pn->pos;
1413 bits = pn->bits;
1415 if (!chopped_off)
1416 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1417 pos, bits);
1419 n = tnode_get_child_rcu(pn, cindex);
1421 if (n == NULL) {
1422 #ifdef CONFIG_IP_FIB_TRIE_STATS
1423 t->stats.null_node_hit++;
1424 #endif
1425 goto backtrace;
1428 if (IS_LEAF(n)) {
1429 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1430 if (ret > 0)
1431 goto backtrace;
1432 goto found;
1435 cn = (struct tnode *)n;
1438 * It's a tnode, and we can do some extra checks here if we
1439 * like, to avoid descending into a dead-end branch.
1440 * This tnode is in the parent's child array at index
1441 * key[p_pos..p_pos+p_bits] but potentially with some bits
1442 * chopped off, so in reality the index may be just a
1443 * subprefix, padded with zero at the end.
1444 * We can also take a look at any skipped bits in this
1445 * tnode - everything up to p_pos is supposed to be ok,
1446 * and the non-chopped bits of the index (se previous
1447 * paragraph) are also guaranteed ok, but the rest is
1448 * considered unknown.
1450 * The skipped bits are key[pos+bits..cn->pos].
1453 /* If current_prefix_length < pos+bits, we are already doing
1454 * actual prefix matching, which means everything from
1455 * pos+(bits-chopped_off) onward must be zero along some
1456 * branch of this subtree - otherwise there is *no* valid
1457 * prefix present. Here we can only check the skipped
1458 * bits. Remember, since we have already indexed into the
1459 * parent's child array, we know that the bits we chopped of
1460 * *are* zero.
1463 /* NOTA BENE: Checking only skipped bits
1464 for the new node here */
1466 if (current_prefix_length < pos+bits) {
1467 if (tkey_extract_bits(cn->key, current_prefix_length,
1468 cn->pos - current_prefix_length)
1469 || !(cn->child[0]))
1470 goto backtrace;
1474 * If chopped_off=0, the index is fully validated and we
1475 * only need to look at the skipped bits for this, the new,
1476 * tnode. What we actually want to do is to find out if
1477 * these skipped bits match our key perfectly, or if we will
1478 * have to count on finding a matching prefix further down,
1479 * because if we do, we would like to have some way of
1480 * verifying the existence of such a prefix at this point.
1483 /* The only thing we can do at this point is to verify that
1484 * any such matching prefix can indeed be a prefix to our
1485 * key, and if the bits in the node we are inspecting that
1486 * do not match our key are not ZERO, this cannot be true.
1487 * Thus, find out where there is a mismatch (before cn->pos)
1488 * and verify that all the mismatching bits are zero in the
1489 * new tnode's key.
1493 * Note: We aren't very concerned about the piece of
1494 * the key that precede pn->pos+pn->bits, since these
1495 * have already been checked. The bits after cn->pos
1496 * aren't checked since these are by definition
1497 * "unknown" at this point. Thus, what we want to see
1498 * is if we are about to enter the "prefix matching"
1499 * state, and in that case verify that the skipped
1500 * bits that will prevail throughout this subtree are
1501 * zero, as they have to be if we are to find a
1502 * matching prefix.
1505 node_prefix = mask_pfx(cn->key, cn->pos);
1506 key_prefix = mask_pfx(key, cn->pos);
1507 pref_mismatch = key_prefix^node_prefix;
1508 mp = 0;
1511 * In short: If skipped bits in this node do not match
1512 * the search key, enter the "prefix matching"
1513 * state.directly.
1515 if (pref_mismatch) {
1516 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1517 mp++;
1518 pref_mismatch = pref_mismatch << 1;
1520 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1522 if (key_prefix != 0)
1523 goto backtrace;
1525 if (current_prefix_length >= cn->pos)
1526 current_prefix_length = mp;
1529 pn = (struct tnode *)n; /* Descend */
1530 chopped_off = 0;
1531 continue;
1533 backtrace:
1534 chopped_off++;
1536 /* As zero don't change the child key (cindex) */
1537 while ((chopped_off <= pn->bits)
1538 && !(cindex & (1<<(chopped_off-1))))
1539 chopped_off++;
1541 /* Decrease current_... with bits chopped off */
1542 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1543 current_prefix_length = pn->pos + pn->bits
1544 - chopped_off;
1547 * Either we do the actual chop off according or if we have
1548 * chopped off all bits in this tnode walk up to our parent.
1551 if (chopped_off <= pn->bits) {
1552 cindex &= ~(1 << (chopped_off-1));
1553 } else {
1554 struct tnode *parent = node_parent_rcu((struct node *) pn);
1555 if (!parent)
1556 goto failed;
1558 /* Get Child's index */
1559 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1560 pn = parent;
1561 chopped_off = 0;
1563 #ifdef CONFIG_IP_FIB_TRIE_STATS
1564 t->stats.backtrack++;
1565 #endif
1566 goto backtrace;
1569 failed:
1570 ret = 1;
1571 found:
1572 rcu_read_unlock();
1573 return ret;
1577 * Remove the leaf and return parent.
1579 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1581 struct tnode *tp = node_parent((struct node *) l);
1583 pr_debug("entering trie_leaf_remove(%p)\n", l);
1585 if (tp) {
1586 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1587 put_child(t, (struct tnode *)tp, cindex, NULL);
1588 trie_rebalance(t, tp);
1589 } else
1590 rcu_assign_pointer(t->trie, NULL);
1592 free_leaf(l);
1596 * Caller must hold RTNL.
1598 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1600 struct trie *t = (struct trie *) tb->tb_data;
1601 u32 key, mask;
1602 int plen = cfg->fc_dst_len;
1603 u8 tos = cfg->fc_tos;
1604 struct fib_alias *fa, *fa_to_delete;
1605 struct list_head *fa_head;
1606 struct leaf *l;
1607 struct leaf_info *li;
1609 if (plen > 32)
1610 return -EINVAL;
1612 key = ntohl(cfg->fc_dst);
1613 mask = ntohl(inet_make_mask(plen));
1615 if (key & ~mask)
1616 return -EINVAL;
1618 key = key & mask;
1619 l = fib_find_node(t, key);
1621 if (!l)
1622 return -ESRCH;
1624 fa_head = get_fa_head(l, plen);
1625 fa = fib_find_alias(fa_head, tos, 0);
1627 if (!fa)
1628 return -ESRCH;
1630 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1632 fa_to_delete = NULL;
1633 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1634 list_for_each_entry_continue(fa, fa_head, fa_list) {
1635 struct fib_info *fi = fa->fa_info;
1637 if (fa->fa_tos != tos)
1638 break;
1640 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1641 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1642 fa->fa_scope == cfg->fc_scope) &&
1643 (!cfg->fc_protocol ||
1644 fi->fib_protocol == cfg->fc_protocol) &&
1645 fib_nh_match(cfg, fi) == 0) {
1646 fa_to_delete = fa;
1647 break;
1651 if (!fa_to_delete)
1652 return -ESRCH;
1654 fa = fa_to_delete;
1655 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1656 &cfg->fc_nlinfo, 0);
1658 l = fib_find_node(t, key);
1659 li = find_leaf_info(l, plen);
1661 list_del_rcu(&fa->fa_list);
1663 if (list_empty(fa_head)) {
1664 hlist_del_rcu(&li->hlist);
1665 free_leaf_info(li);
1668 if (hlist_empty(&l->list))
1669 trie_leaf_remove(t, l);
1671 if (fa->fa_state & FA_S_ACCESSED)
1672 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1674 fib_release_info(fa->fa_info);
1675 alias_free_mem_rcu(fa);
1676 return 0;
1679 static int trie_flush_list(struct list_head *head)
1681 struct fib_alias *fa, *fa_node;
1682 int found = 0;
1684 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1685 struct fib_info *fi = fa->fa_info;
1687 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1688 list_del_rcu(&fa->fa_list);
1689 fib_release_info(fa->fa_info);
1690 alias_free_mem_rcu(fa);
1691 found++;
1694 return found;
1697 static int trie_flush_leaf(struct leaf *l)
1699 int found = 0;
1700 struct hlist_head *lih = &l->list;
1701 struct hlist_node *node, *tmp;
1702 struct leaf_info *li = NULL;
1704 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1705 found += trie_flush_list(&li->falh);
1707 if (list_empty(&li->falh)) {
1708 hlist_del_rcu(&li->hlist);
1709 free_leaf_info(li);
1712 return found;
1716 * Scan for the next right leaf starting at node p->child[idx]
1717 * Since we have back pointer, no recursion necessary.
1719 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1721 do {
1722 t_key idx;
1724 if (c)
1725 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1726 else
1727 idx = 0;
1729 while (idx < 1u << p->bits) {
1730 c = tnode_get_child_rcu(p, idx++);
1731 if (!c)
1732 continue;
1734 if (IS_LEAF(c)) {
1735 prefetch(p->child[idx]);
1736 return (struct leaf *) c;
1739 /* Rescan start scanning in new node */
1740 p = (struct tnode *) c;
1741 idx = 0;
1744 /* Node empty, walk back up to parent */
1745 c = (struct node *) p;
1746 } while ( (p = node_parent_rcu(c)) != NULL);
1748 return NULL; /* Root of trie */
1751 static struct leaf *trie_firstleaf(struct trie *t)
1753 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1755 if (!n)
1756 return NULL;
1758 if (IS_LEAF(n)) /* trie is just a leaf */
1759 return (struct leaf *) n;
1761 return leaf_walk_rcu(n, NULL);
1764 static struct leaf *trie_nextleaf(struct leaf *l)
1766 struct node *c = (struct node *) l;
1767 struct tnode *p = node_parent_rcu(c);
1769 if (!p)
1770 return NULL; /* trie with just one leaf */
1772 return leaf_walk_rcu(p, c);
1775 static struct leaf *trie_leafindex(struct trie *t, int index)
1777 struct leaf *l = trie_firstleaf(t);
1779 while (l && index-- > 0)
1780 l = trie_nextleaf(l);
1782 return l;
1787 * Caller must hold RTNL.
1789 int fib_table_flush(struct fib_table *tb)
1791 struct trie *t = (struct trie *) tb->tb_data;
1792 struct leaf *l, *ll = NULL;
1793 int found = 0;
1795 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1796 found += trie_flush_leaf(l);
1798 if (ll && hlist_empty(&ll->list))
1799 trie_leaf_remove(t, ll);
1800 ll = l;
1803 if (ll && hlist_empty(&ll->list))
1804 trie_leaf_remove(t, ll);
1806 pr_debug("trie_flush found=%d\n", found);
1807 return found;
1810 void fib_table_select_default(struct fib_table *tb,
1811 const struct flowi *flp,
1812 struct fib_result *res)
1814 struct trie *t = (struct trie *) tb->tb_data;
1815 int order, last_idx;
1816 struct fib_info *fi = NULL;
1817 struct fib_info *last_resort;
1818 struct fib_alias *fa = NULL;
1819 struct list_head *fa_head;
1820 struct leaf *l;
1822 last_idx = -1;
1823 last_resort = NULL;
1824 order = -1;
1826 rcu_read_lock();
1828 l = fib_find_node(t, 0);
1829 if (!l)
1830 goto out;
1832 fa_head = get_fa_head(l, 0);
1833 if (!fa_head)
1834 goto out;
1836 if (list_empty(fa_head))
1837 goto out;
1839 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1840 struct fib_info *next_fi = fa->fa_info;
1842 if (fa->fa_scope != res->scope ||
1843 fa->fa_type != RTN_UNICAST)
1844 continue;
1846 if (next_fi->fib_priority > res->fi->fib_priority)
1847 break;
1848 if (!next_fi->fib_nh[0].nh_gw ||
1849 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1850 continue;
1851 fa->fa_state |= FA_S_ACCESSED;
1853 if (fi == NULL) {
1854 if (next_fi != res->fi)
1855 break;
1856 } else if (!fib_detect_death(fi, order, &last_resort,
1857 &last_idx, tb->tb_default)) {
1858 fib_result_assign(res, fi);
1859 tb->tb_default = order;
1860 goto out;
1862 fi = next_fi;
1863 order++;
1865 if (order <= 0 || fi == NULL) {
1866 tb->tb_default = -1;
1867 goto out;
1870 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1871 tb->tb_default)) {
1872 fib_result_assign(res, fi);
1873 tb->tb_default = order;
1874 goto out;
1876 if (last_idx >= 0)
1877 fib_result_assign(res, last_resort);
1878 tb->tb_default = last_idx;
1879 out:
1880 rcu_read_unlock();
1883 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1884 struct fib_table *tb,
1885 struct sk_buff *skb, struct netlink_callback *cb)
1887 int i, s_i;
1888 struct fib_alias *fa;
1889 __be32 xkey = htonl(key);
1891 s_i = cb->args[5];
1892 i = 0;
1894 /* rcu_read_lock is hold by caller */
1896 list_for_each_entry_rcu(fa, fah, fa_list) {
1897 if (i < s_i) {
1898 i++;
1899 continue;
1902 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1903 cb->nlh->nlmsg_seq,
1904 RTM_NEWROUTE,
1905 tb->tb_id,
1906 fa->fa_type,
1907 fa->fa_scope,
1908 xkey,
1909 plen,
1910 fa->fa_tos,
1911 fa->fa_info, NLM_F_MULTI) < 0) {
1912 cb->args[5] = i;
1913 return -1;
1915 i++;
1917 cb->args[5] = i;
1918 return skb->len;
1921 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1922 struct sk_buff *skb, struct netlink_callback *cb)
1924 struct leaf_info *li;
1925 struct hlist_node *node;
1926 int i, s_i;
1928 s_i = cb->args[4];
1929 i = 0;
1931 /* rcu_read_lock is hold by caller */
1932 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1933 if (i < s_i) {
1934 i++;
1935 continue;
1938 if (i > s_i)
1939 cb->args[5] = 0;
1941 if (list_empty(&li->falh))
1942 continue;
1944 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1945 cb->args[4] = i;
1946 return -1;
1948 i++;
1951 cb->args[4] = i;
1952 return skb->len;
1955 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1956 struct netlink_callback *cb)
1958 struct leaf *l;
1959 struct trie *t = (struct trie *) tb->tb_data;
1960 t_key key = cb->args[2];
1961 int count = cb->args[3];
1963 rcu_read_lock();
1964 /* Dump starting at last key.
1965 * Note: 0.0.0.0/0 (ie default) is first key.
1967 if (count == 0)
1968 l = trie_firstleaf(t);
1969 else {
1970 /* Normally, continue from last key, but if that is missing
1971 * fallback to using slow rescan
1973 l = fib_find_node(t, key);
1974 if (!l)
1975 l = trie_leafindex(t, count);
1978 while (l) {
1979 cb->args[2] = l->key;
1980 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1981 cb->args[3] = count;
1982 rcu_read_unlock();
1983 return -1;
1986 ++count;
1987 l = trie_nextleaf(l);
1988 memset(&cb->args[4], 0,
1989 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1991 cb->args[3] = count;
1992 rcu_read_unlock();
1994 return skb->len;
1997 void __init fib_hash_init(void)
1999 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2000 sizeof(struct fib_alias),
2001 0, SLAB_PANIC, NULL);
2003 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2004 max(sizeof(struct leaf),
2005 sizeof(struct leaf_info)),
2006 0, SLAB_PANIC, NULL);
2010 /* Fix more generic FIB names for init later */
2011 struct fib_table *fib_hash_table(u32 id)
2013 struct fib_table *tb;
2014 struct trie *t;
2016 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2017 GFP_KERNEL);
2018 if (tb == NULL)
2019 return NULL;
2021 tb->tb_id = id;
2022 tb->tb_default = -1;
2024 t = (struct trie *) tb->tb_data;
2025 memset(t, 0, sizeof(*t));
2027 if (id == RT_TABLE_LOCAL)
2028 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2030 return tb;
2033 #ifdef CONFIG_PROC_FS
2034 /* Depth first Trie walk iterator */
2035 struct fib_trie_iter {
2036 struct seq_net_private p;
2037 struct fib_table *tb;
2038 struct tnode *tnode;
2039 unsigned index;
2040 unsigned depth;
2043 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2045 struct tnode *tn = iter->tnode;
2046 unsigned cindex = iter->index;
2047 struct tnode *p;
2049 /* A single entry routing table */
2050 if (!tn)
2051 return NULL;
2053 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2054 iter->tnode, iter->index, iter->depth);
2055 rescan:
2056 while (cindex < (1<<tn->bits)) {
2057 struct node *n = tnode_get_child_rcu(tn, cindex);
2059 if (n) {
2060 if (IS_LEAF(n)) {
2061 iter->tnode = tn;
2062 iter->index = cindex + 1;
2063 } else {
2064 /* push down one level */
2065 iter->tnode = (struct tnode *) n;
2066 iter->index = 0;
2067 ++iter->depth;
2069 return n;
2072 ++cindex;
2075 /* Current node exhausted, pop back up */
2076 p = node_parent_rcu((struct node *)tn);
2077 if (p) {
2078 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2079 tn = p;
2080 --iter->depth;
2081 goto rescan;
2084 /* got root? */
2085 return NULL;
2088 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2089 struct trie *t)
2091 struct node *n;
2093 if (!t)
2094 return NULL;
2096 n = rcu_dereference(t->trie);
2097 if (!n)
2098 return NULL;
2100 if (IS_TNODE(n)) {
2101 iter->tnode = (struct tnode *) n;
2102 iter->index = 0;
2103 iter->depth = 1;
2104 } else {
2105 iter->tnode = NULL;
2106 iter->index = 0;
2107 iter->depth = 0;
2110 return n;
2113 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2115 struct node *n;
2116 struct fib_trie_iter iter;
2118 memset(s, 0, sizeof(*s));
2120 rcu_read_lock();
2121 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2122 if (IS_LEAF(n)) {
2123 struct leaf *l = (struct leaf *)n;
2124 struct leaf_info *li;
2125 struct hlist_node *tmp;
2127 s->leaves++;
2128 s->totdepth += iter.depth;
2129 if (iter.depth > s->maxdepth)
2130 s->maxdepth = iter.depth;
2132 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2133 ++s->prefixes;
2134 } else {
2135 const struct tnode *tn = (const struct tnode *) n;
2136 int i;
2138 s->tnodes++;
2139 if (tn->bits < MAX_STAT_DEPTH)
2140 s->nodesizes[tn->bits]++;
2142 for (i = 0; i < (1<<tn->bits); i++)
2143 if (!tn->child[i])
2144 s->nullpointers++;
2147 rcu_read_unlock();
2151 * This outputs /proc/net/fib_triestats
2153 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2155 unsigned i, max, pointers, bytes, avdepth;
2157 if (stat->leaves)
2158 avdepth = stat->totdepth*100 / stat->leaves;
2159 else
2160 avdepth = 0;
2162 seq_printf(seq, "\tAver depth: %u.%02d\n",
2163 avdepth / 100, avdepth % 100);
2164 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2166 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2167 bytes = sizeof(struct leaf) * stat->leaves;
2169 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2170 bytes += sizeof(struct leaf_info) * stat->prefixes;
2172 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2173 bytes += sizeof(struct tnode) * stat->tnodes;
2175 max = MAX_STAT_DEPTH;
2176 while (max > 0 && stat->nodesizes[max-1] == 0)
2177 max--;
2179 pointers = 0;
2180 for (i = 1; i <= max; i++)
2181 if (stat->nodesizes[i] != 0) {
2182 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2183 pointers += (1<<i) * stat->nodesizes[i];
2185 seq_putc(seq, '\n');
2186 seq_printf(seq, "\tPointers: %u\n", pointers);
2188 bytes += sizeof(struct node *) * pointers;
2189 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2190 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2193 #ifdef CONFIG_IP_FIB_TRIE_STATS
2194 static void trie_show_usage(struct seq_file *seq,
2195 const struct trie_use_stats *stats)
2197 seq_printf(seq, "\nCounters:\n---------\n");
2198 seq_printf(seq, "gets = %u\n", stats->gets);
2199 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2200 seq_printf(seq, "semantic match passed = %u\n",
2201 stats->semantic_match_passed);
2202 seq_printf(seq, "semantic match miss = %u\n",
2203 stats->semantic_match_miss);
2204 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2205 seq_printf(seq, "skipped node resize = %u\n\n",
2206 stats->resize_node_skipped);
2208 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2210 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2212 if (tb->tb_id == RT_TABLE_LOCAL)
2213 seq_puts(seq, "Local:\n");
2214 else if (tb->tb_id == RT_TABLE_MAIN)
2215 seq_puts(seq, "Main:\n");
2216 else
2217 seq_printf(seq, "Id %d:\n", tb->tb_id);
2221 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2223 struct net *net = (struct net *)seq->private;
2224 unsigned int h;
2226 seq_printf(seq,
2227 "Basic info: size of leaf:"
2228 " %Zd bytes, size of tnode: %Zd bytes.\n",
2229 sizeof(struct leaf), sizeof(struct tnode));
2231 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2232 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2233 struct hlist_node *node;
2234 struct fib_table *tb;
2236 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2237 struct trie *t = (struct trie *) tb->tb_data;
2238 struct trie_stat stat;
2240 if (!t)
2241 continue;
2243 fib_table_print(seq, tb);
2245 trie_collect_stats(t, &stat);
2246 trie_show_stats(seq, &stat);
2247 #ifdef CONFIG_IP_FIB_TRIE_STATS
2248 trie_show_usage(seq, &t->stats);
2249 #endif
2253 return 0;
2256 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2258 return single_open_net(inode, file, fib_triestat_seq_show);
2261 static const struct file_operations fib_triestat_fops = {
2262 .owner = THIS_MODULE,
2263 .open = fib_triestat_seq_open,
2264 .read = seq_read,
2265 .llseek = seq_lseek,
2266 .release = single_release_net,
2269 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2271 struct fib_trie_iter *iter = seq->private;
2272 struct net *net = seq_file_net(seq);
2273 loff_t idx = 0;
2274 unsigned int h;
2276 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2277 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2278 struct hlist_node *node;
2279 struct fib_table *tb;
2281 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2282 struct node *n;
2284 for (n = fib_trie_get_first(iter,
2285 (struct trie *) tb->tb_data);
2286 n; n = fib_trie_get_next(iter))
2287 if (pos == idx++) {
2288 iter->tb = tb;
2289 return n;
2294 return NULL;
2297 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2298 __acquires(RCU)
2300 rcu_read_lock();
2301 return fib_trie_get_idx(seq, *pos);
2304 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2306 struct fib_trie_iter *iter = seq->private;
2307 struct net *net = seq_file_net(seq);
2308 struct fib_table *tb = iter->tb;
2309 struct hlist_node *tb_node;
2310 unsigned int h;
2311 struct node *n;
2313 ++*pos;
2314 /* next node in same table */
2315 n = fib_trie_get_next(iter);
2316 if (n)
2317 return n;
2319 /* walk rest of this hash chain */
2320 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2321 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2322 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2323 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2324 if (n)
2325 goto found;
2328 /* new hash chain */
2329 while (++h < FIB_TABLE_HASHSZ) {
2330 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2331 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2332 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2333 if (n)
2334 goto found;
2337 return NULL;
2339 found:
2340 iter->tb = tb;
2341 return n;
2344 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2345 __releases(RCU)
2347 rcu_read_unlock();
2350 static void seq_indent(struct seq_file *seq, int n)
2352 while (n-- > 0) seq_puts(seq, " ");
2355 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2357 switch (s) {
2358 case RT_SCOPE_UNIVERSE: return "universe";
2359 case RT_SCOPE_SITE: return "site";
2360 case RT_SCOPE_LINK: return "link";
2361 case RT_SCOPE_HOST: return "host";
2362 case RT_SCOPE_NOWHERE: return "nowhere";
2363 default:
2364 snprintf(buf, len, "scope=%d", s);
2365 return buf;
2369 static const char *const rtn_type_names[__RTN_MAX] = {
2370 [RTN_UNSPEC] = "UNSPEC",
2371 [RTN_UNICAST] = "UNICAST",
2372 [RTN_LOCAL] = "LOCAL",
2373 [RTN_BROADCAST] = "BROADCAST",
2374 [RTN_ANYCAST] = "ANYCAST",
2375 [RTN_MULTICAST] = "MULTICAST",
2376 [RTN_BLACKHOLE] = "BLACKHOLE",
2377 [RTN_UNREACHABLE] = "UNREACHABLE",
2378 [RTN_PROHIBIT] = "PROHIBIT",
2379 [RTN_THROW] = "THROW",
2380 [RTN_NAT] = "NAT",
2381 [RTN_XRESOLVE] = "XRESOLVE",
2384 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2386 if (t < __RTN_MAX && rtn_type_names[t])
2387 return rtn_type_names[t];
2388 snprintf(buf, len, "type %u", t);
2389 return buf;
2392 /* Pretty print the trie */
2393 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2395 const struct fib_trie_iter *iter = seq->private;
2396 struct node *n = v;
2398 if (!node_parent_rcu(n))
2399 fib_table_print(seq, iter->tb);
2401 if (IS_TNODE(n)) {
2402 struct tnode *tn = (struct tnode *) n;
2403 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2405 seq_indent(seq, iter->depth-1);
2406 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2407 &prf, tn->pos, tn->bits, tn->full_children,
2408 tn->empty_children);
2410 } else {
2411 struct leaf *l = (struct leaf *) n;
2412 struct leaf_info *li;
2413 struct hlist_node *node;
2414 __be32 val = htonl(l->key);
2416 seq_indent(seq, iter->depth);
2417 seq_printf(seq, " |-- %pI4\n", &val);
2419 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2420 struct fib_alias *fa;
2422 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2423 char buf1[32], buf2[32];
2425 seq_indent(seq, iter->depth+1);
2426 seq_printf(seq, " /%d %s %s", li->plen,
2427 rtn_scope(buf1, sizeof(buf1),
2428 fa->fa_scope),
2429 rtn_type(buf2, sizeof(buf2),
2430 fa->fa_type));
2431 if (fa->fa_tos)
2432 seq_printf(seq, " tos=%d", fa->fa_tos);
2433 seq_putc(seq, '\n');
2438 return 0;
2441 static const struct seq_operations fib_trie_seq_ops = {
2442 .start = fib_trie_seq_start,
2443 .next = fib_trie_seq_next,
2444 .stop = fib_trie_seq_stop,
2445 .show = fib_trie_seq_show,
2448 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2450 return seq_open_net(inode, file, &fib_trie_seq_ops,
2451 sizeof(struct fib_trie_iter));
2454 static const struct file_operations fib_trie_fops = {
2455 .owner = THIS_MODULE,
2456 .open = fib_trie_seq_open,
2457 .read = seq_read,
2458 .llseek = seq_lseek,
2459 .release = seq_release_net,
2462 struct fib_route_iter {
2463 struct seq_net_private p;
2464 struct trie *main_trie;
2465 loff_t pos;
2466 t_key key;
2469 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2471 struct leaf *l = NULL;
2472 struct trie *t = iter->main_trie;
2474 /* use cache location of last found key */
2475 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2476 pos -= iter->pos;
2477 else {
2478 iter->pos = 0;
2479 l = trie_firstleaf(t);
2482 while (l && pos-- > 0) {
2483 iter->pos++;
2484 l = trie_nextleaf(l);
2487 if (l)
2488 iter->key = pos; /* remember it */
2489 else
2490 iter->pos = 0; /* forget it */
2492 return l;
2495 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2496 __acquires(RCU)
2498 struct fib_route_iter *iter = seq->private;
2499 struct fib_table *tb;
2501 rcu_read_lock();
2502 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2503 if (!tb)
2504 return NULL;
2506 iter->main_trie = (struct trie *) tb->tb_data;
2507 if (*pos == 0)
2508 return SEQ_START_TOKEN;
2509 else
2510 return fib_route_get_idx(iter, *pos - 1);
2513 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2515 struct fib_route_iter *iter = seq->private;
2516 struct leaf *l = v;
2518 ++*pos;
2519 if (v == SEQ_START_TOKEN) {
2520 iter->pos = 0;
2521 l = trie_firstleaf(iter->main_trie);
2522 } else {
2523 iter->pos++;
2524 l = trie_nextleaf(l);
2527 if (l)
2528 iter->key = l->key;
2529 else
2530 iter->pos = 0;
2531 return l;
2534 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2535 __releases(RCU)
2537 rcu_read_unlock();
2540 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2542 static unsigned type2flags[RTN_MAX + 1] = {
2543 [7] = RTF_REJECT, [8] = RTF_REJECT,
2545 unsigned flags = type2flags[type];
2547 if (fi && fi->fib_nh->nh_gw)
2548 flags |= RTF_GATEWAY;
2549 if (mask == htonl(0xFFFFFFFF))
2550 flags |= RTF_HOST;
2551 flags |= RTF_UP;
2552 return flags;
2556 * This outputs /proc/net/route.
2557 * The format of the file is not supposed to be changed
2558 * and needs to be same as fib_hash output to avoid breaking
2559 * legacy utilities
2561 static int fib_route_seq_show(struct seq_file *seq, void *v)
2563 struct leaf *l = v;
2564 struct leaf_info *li;
2565 struct hlist_node *node;
2567 if (v == SEQ_START_TOKEN) {
2568 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2569 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2570 "\tWindow\tIRTT");
2571 return 0;
2574 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2575 struct fib_alias *fa;
2576 __be32 mask, prefix;
2578 mask = inet_make_mask(li->plen);
2579 prefix = htonl(l->key);
2581 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2582 const struct fib_info *fi = fa->fa_info;
2583 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2584 int len;
2586 if (fa->fa_type == RTN_BROADCAST
2587 || fa->fa_type == RTN_MULTICAST)
2588 continue;
2590 if (fi)
2591 seq_printf(seq,
2592 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2593 "%d\t%08X\t%d\t%u\t%u%n",
2594 fi->fib_dev ? fi->fib_dev->name : "*",
2595 prefix,
2596 fi->fib_nh->nh_gw, flags, 0, 0,
2597 fi->fib_priority,
2598 mask,
2599 (fi->fib_advmss ?
2600 fi->fib_advmss + 40 : 0),
2601 fi->fib_window,
2602 fi->fib_rtt >> 3, &len);
2603 else
2604 seq_printf(seq,
2605 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2606 "%d\t%08X\t%d\t%u\t%u%n",
2607 prefix, 0, flags, 0, 0, 0,
2608 mask, 0, 0, 0, &len);
2610 seq_printf(seq, "%*s\n", 127 - len, "");
2614 return 0;
2617 static const struct seq_operations fib_route_seq_ops = {
2618 .start = fib_route_seq_start,
2619 .next = fib_route_seq_next,
2620 .stop = fib_route_seq_stop,
2621 .show = fib_route_seq_show,
2624 static int fib_route_seq_open(struct inode *inode, struct file *file)
2626 return seq_open_net(inode, file, &fib_route_seq_ops,
2627 sizeof(struct fib_route_iter));
2630 static const struct file_operations fib_route_fops = {
2631 .owner = THIS_MODULE,
2632 .open = fib_route_seq_open,
2633 .read = seq_read,
2634 .llseek = seq_lseek,
2635 .release = seq_release_net,
2638 int __net_init fib_proc_init(struct net *net)
2640 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2641 goto out1;
2643 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2644 &fib_triestat_fops))
2645 goto out2;
2647 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2648 goto out3;
2650 return 0;
2652 out3:
2653 proc_net_remove(net, "fib_triestat");
2654 out2:
2655 proc_net_remove(net, "fib_trie");
2656 out1:
2657 return -ENOMEM;
2660 void __net_exit fib_proc_exit(struct net *net)
2662 proc_net_remove(net, "fib_trie");
2663 proc_net_remove(net, "fib_triestat");
2664 proc_net_remove(net, "route");
2667 #endif /* CONFIG_PROC_FS */