stackprotector: use canary at end of stack to indicate overruns at oops time
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blobd428336e7aa13018814bd0106e1508e3d0c8dcc4
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cgroup.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/rcupdate.h>
41 #include <linux/ptrace.h>
42 #include <linux/mount.h>
43 #include <linux/audit.h>
44 #include <linux/memcontrol.h>
45 #include <linux/profile.h>
46 #include <linux/rmap.h>
47 #include <linux/acct.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/freezer.h>
51 #include <linux/delayacct.h>
52 #include <linux/taskstats_kern.h>
53 #include <linux/random.h>
54 #include <linux/tty.h>
55 #include <linux/proc_fs.h>
56 #include <linux/blkdev.h>
57 #include <linux/magic.h>
59 #include <asm/pgtable.h>
60 #include <asm/pgalloc.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/cacheflush.h>
64 #include <asm/tlbflush.h>
67 * Protected counters by write_lock_irq(&tasklist_lock)
69 unsigned long total_forks; /* Handle normal Linux uptimes. */
70 int nr_threads; /* The idle threads do not count.. */
72 int max_threads; /* tunable limit on nr_threads */
74 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
76 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
78 int nr_processes(void)
80 int cpu;
81 int total = 0;
83 for_each_online_cpu(cpu)
84 total += per_cpu(process_counts, cpu);
86 return total;
89 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
90 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
91 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
92 static struct kmem_cache *task_struct_cachep;
93 #endif
95 /* SLAB cache for signal_struct structures (tsk->signal) */
96 static struct kmem_cache *signal_cachep;
98 /* SLAB cache for sighand_struct structures (tsk->sighand) */
99 struct kmem_cache *sighand_cachep;
101 /* SLAB cache for files_struct structures (tsk->files) */
102 struct kmem_cache *files_cachep;
104 /* SLAB cache for fs_struct structures (tsk->fs) */
105 struct kmem_cache *fs_cachep;
107 /* SLAB cache for vm_area_struct structures */
108 struct kmem_cache *vm_area_cachep;
110 /* SLAB cache for mm_struct structures (tsk->mm) */
111 static struct kmem_cache *mm_cachep;
113 void free_task(struct task_struct *tsk)
115 prop_local_destroy_single(&tsk->dirties);
116 free_thread_info(tsk->stack);
117 rt_mutex_debug_task_free(tsk);
118 free_task_struct(tsk);
120 EXPORT_SYMBOL(free_task);
122 void __put_task_struct(struct task_struct *tsk)
124 WARN_ON(!tsk->exit_state);
125 WARN_ON(atomic_read(&tsk->usage));
126 WARN_ON(tsk == current);
128 security_task_free(tsk);
129 free_uid(tsk->user);
130 put_group_info(tsk->group_info);
131 delayacct_tsk_free(tsk);
133 if (!profile_handoff_task(tsk))
134 free_task(tsk);
138 * macro override instead of weak attribute alias, to workaround
139 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
141 #ifndef arch_task_cache_init
142 #define arch_task_cache_init()
143 #endif
145 void __init fork_init(unsigned long mempages)
147 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
148 #ifndef ARCH_MIN_TASKALIGN
149 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
150 #endif
151 /* create a slab on which task_structs can be allocated */
152 task_struct_cachep =
153 kmem_cache_create("task_struct", sizeof(struct task_struct),
154 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
155 #endif
157 /* do the arch specific task caches init */
158 arch_task_cache_init();
161 * The default maximum number of threads is set to a safe
162 * value: the thread structures can take up at most half
163 * of memory.
165 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
168 * we need to allow at least 20 threads to boot a system
170 if(max_threads < 20)
171 max_threads = 20;
173 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
174 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
175 init_task.signal->rlim[RLIMIT_SIGPENDING] =
176 init_task.signal->rlim[RLIMIT_NPROC];
179 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
180 struct task_struct *src)
182 *dst = *src;
183 return 0;
186 static struct task_struct *dup_task_struct(struct task_struct *orig)
188 struct task_struct *tsk;
189 struct thread_info *ti;
190 unsigned long *stackend;
192 int err;
194 prepare_to_copy(orig);
196 tsk = alloc_task_struct();
197 if (!tsk)
198 return NULL;
200 ti = alloc_thread_info(tsk);
201 if (!ti) {
202 free_task_struct(tsk);
203 return NULL;
206 err = arch_dup_task_struct(tsk, orig);
207 if (err)
208 goto out;
210 tsk->stack = ti;
212 err = prop_local_init_single(&tsk->dirties);
213 if (err)
214 goto out;
216 setup_thread_stack(tsk, orig);
217 stackend = end_of_stack(tsk);
218 *stackend = STACK_END_MAGIC; /* for overflow detection */
220 #ifdef CONFIG_CC_STACKPROTECTOR
221 tsk->stack_canary = get_random_int();
222 #endif
224 /* One for us, one for whoever does the "release_task()" (usually parent) */
225 atomic_set(&tsk->usage,2);
226 atomic_set(&tsk->fs_excl, 0);
227 #ifdef CONFIG_BLK_DEV_IO_TRACE
228 tsk->btrace_seq = 0;
229 #endif
230 tsk->splice_pipe = NULL;
231 return tsk;
233 out:
234 free_thread_info(ti);
235 free_task_struct(tsk);
236 return NULL;
239 #ifdef CONFIG_MMU
240 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
242 struct vm_area_struct *mpnt, *tmp, **pprev;
243 struct rb_node **rb_link, *rb_parent;
244 int retval;
245 unsigned long charge;
246 struct mempolicy *pol;
248 down_write(&oldmm->mmap_sem);
249 flush_cache_dup_mm(oldmm);
251 * Not linked in yet - no deadlock potential:
253 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
255 mm->locked_vm = 0;
256 mm->mmap = NULL;
257 mm->mmap_cache = NULL;
258 mm->free_area_cache = oldmm->mmap_base;
259 mm->cached_hole_size = ~0UL;
260 mm->map_count = 0;
261 cpus_clear(mm->cpu_vm_mask);
262 mm->mm_rb = RB_ROOT;
263 rb_link = &mm->mm_rb.rb_node;
264 rb_parent = NULL;
265 pprev = &mm->mmap;
267 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
268 struct file *file;
270 if (mpnt->vm_flags & VM_DONTCOPY) {
271 long pages = vma_pages(mpnt);
272 mm->total_vm -= pages;
273 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
274 -pages);
275 continue;
277 charge = 0;
278 if (mpnt->vm_flags & VM_ACCOUNT) {
279 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
280 if (security_vm_enough_memory(len))
281 goto fail_nomem;
282 charge = len;
284 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
285 if (!tmp)
286 goto fail_nomem;
287 *tmp = *mpnt;
288 pol = mpol_dup(vma_policy(mpnt));
289 retval = PTR_ERR(pol);
290 if (IS_ERR(pol))
291 goto fail_nomem_policy;
292 vma_set_policy(tmp, pol);
293 tmp->vm_flags &= ~VM_LOCKED;
294 tmp->vm_mm = mm;
295 tmp->vm_next = NULL;
296 anon_vma_link(tmp);
297 file = tmp->vm_file;
298 if (file) {
299 struct inode *inode = file->f_path.dentry->d_inode;
300 get_file(file);
301 if (tmp->vm_flags & VM_DENYWRITE)
302 atomic_dec(&inode->i_writecount);
304 /* insert tmp into the share list, just after mpnt */
305 spin_lock(&file->f_mapping->i_mmap_lock);
306 tmp->vm_truncate_count = mpnt->vm_truncate_count;
307 flush_dcache_mmap_lock(file->f_mapping);
308 vma_prio_tree_add(tmp, mpnt);
309 flush_dcache_mmap_unlock(file->f_mapping);
310 spin_unlock(&file->f_mapping->i_mmap_lock);
314 * Link in the new vma and copy the page table entries.
316 *pprev = tmp;
317 pprev = &tmp->vm_next;
319 __vma_link_rb(mm, tmp, rb_link, rb_parent);
320 rb_link = &tmp->vm_rb.rb_right;
321 rb_parent = &tmp->vm_rb;
323 mm->map_count++;
324 retval = copy_page_range(mm, oldmm, mpnt);
326 if (tmp->vm_ops && tmp->vm_ops->open)
327 tmp->vm_ops->open(tmp);
329 if (retval)
330 goto out;
332 /* a new mm has just been created */
333 arch_dup_mmap(oldmm, mm);
334 retval = 0;
335 out:
336 up_write(&mm->mmap_sem);
337 flush_tlb_mm(oldmm);
338 up_write(&oldmm->mmap_sem);
339 return retval;
340 fail_nomem_policy:
341 kmem_cache_free(vm_area_cachep, tmp);
342 fail_nomem:
343 retval = -ENOMEM;
344 vm_unacct_memory(charge);
345 goto out;
348 static inline int mm_alloc_pgd(struct mm_struct * mm)
350 mm->pgd = pgd_alloc(mm);
351 if (unlikely(!mm->pgd))
352 return -ENOMEM;
353 return 0;
356 static inline void mm_free_pgd(struct mm_struct * mm)
358 pgd_free(mm, mm->pgd);
360 #else
361 #define dup_mmap(mm, oldmm) (0)
362 #define mm_alloc_pgd(mm) (0)
363 #define mm_free_pgd(mm)
364 #endif /* CONFIG_MMU */
366 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
368 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
369 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
371 #include <linux/init_task.h>
373 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
375 atomic_set(&mm->mm_users, 1);
376 atomic_set(&mm->mm_count, 1);
377 init_rwsem(&mm->mmap_sem);
378 INIT_LIST_HEAD(&mm->mmlist);
379 mm->flags = (current->mm) ? current->mm->flags
380 : MMF_DUMP_FILTER_DEFAULT;
381 mm->core_waiters = 0;
382 mm->nr_ptes = 0;
383 set_mm_counter(mm, file_rss, 0);
384 set_mm_counter(mm, anon_rss, 0);
385 spin_lock_init(&mm->page_table_lock);
386 rwlock_init(&mm->ioctx_list_lock);
387 mm->ioctx_list = NULL;
388 mm->free_area_cache = TASK_UNMAPPED_BASE;
389 mm->cached_hole_size = ~0UL;
390 mm_init_owner(mm, p);
392 if (likely(!mm_alloc_pgd(mm))) {
393 mm->def_flags = 0;
394 return mm;
397 free_mm(mm);
398 return NULL;
402 * Allocate and initialize an mm_struct.
404 struct mm_struct * mm_alloc(void)
406 struct mm_struct * mm;
408 mm = allocate_mm();
409 if (mm) {
410 memset(mm, 0, sizeof(*mm));
411 mm = mm_init(mm, current);
413 return mm;
417 * Called when the last reference to the mm
418 * is dropped: either by a lazy thread or by
419 * mmput. Free the page directory and the mm.
421 void __mmdrop(struct mm_struct *mm)
423 BUG_ON(mm == &init_mm);
424 mm_free_pgd(mm);
425 destroy_context(mm);
426 free_mm(mm);
428 EXPORT_SYMBOL_GPL(__mmdrop);
431 * Decrement the use count and release all resources for an mm.
433 void mmput(struct mm_struct *mm)
435 might_sleep();
437 if (atomic_dec_and_test(&mm->mm_users)) {
438 exit_aio(mm);
439 exit_mmap(mm);
440 set_mm_exe_file(mm, NULL);
441 if (!list_empty(&mm->mmlist)) {
442 spin_lock(&mmlist_lock);
443 list_del(&mm->mmlist);
444 spin_unlock(&mmlist_lock);
446 put_swap_token(mm);
447 mmdrop(mm);
450 EXPORT_SYMBOL_GPL(mmput);
453 * get_task_mm - acquire a reference to the task's mm
455 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
456 * this kernel workthread has transiently adopted a user mm with use_mm,
457 * to do its AIO) is not set and if so returns a reference to it, after
458 * bumping up the use count. User must release the mm via mmput()
459 * after use. Typically used by /proc and ptrace.
461 struct mm_struct *get_task_mm(struct task_struct *task)
463 struct mm_struct *mm;
465 task_lock(task);
466 mm = task->mm;
467 if (mm) {
468 if (task->flags & PF_BORROWED_MM)
469 mm = NULL;
470 else
471 atomic_inc(&mm->mm_users);
473 task_unlock(task);
474 return mm;
476 EXPORT_SYMBOL_GPL(get_task_mm);
478 /* Please note the differences between mmput and mm_release.
479 * mmput is called whenever we stop holding onto a mm_struct,
480 * error success whatever.
482 * mm_release is called after a mm_struct has been removed
483 * from the current process.
485 * This difference is important for error handling, when we
486 * only half set up a mm_struct for a new process and need to restore
487 * the old one. Because we mmput the new mm_struct before
488 * restoring the old one. . .
489 * Eric Biederman 10 January 1998
491 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
493 struct completion *vfork_done = tsk->vfork_done;
495 /* Get rid of any cached register state */
496 deactivate_mm(tsk, mm);
498 /* notify parent sleeping on vfork() */
499 if (vfork_done) {
500 tsk->vfork_done = NULL;
501 complete(vfork_done);
505 * If we're exiting normally, clear a user-space tid field if
506 * requested. We leave this alone when dying by signal, to leave
507 * the value intact in a core dump, and to save the unnecessary
508 * trouble otherwise. Userland only wants this done for a sys_exit.
510 if (tsk->clear_child_tid
511 && !(tsk->flags & PF_SIGNALED)
512 && atomic_read(&mm->mm_users) > 1) {
513 u32 __user * tidptr = tsk->clear_child_tid;
514 tsk->clear_child_tid = NULL;
517 * We don't check the error code - if userspace has
518 * not set up a proper pointer then tough luck.
520 put_user(0, tidptr);
521 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
526 * Allocate a new mm structure and copy contents from the
527 * mm structure of the passed in task structure.
529 struct mm_struct *dup_mm(struct task_struct *tsk)
531 struct mm_struct *mm, *oldmm = current->mm;
532 int err;
534 if (!oldmm)
535 return NULL;
537 mm = allocate_mm();
538 if (!mm)
539 goto fail_nomem;
541 memcpy(mm, oldmm, sizeof(*mm));
543 /* Initializing for Swap token stuff */
544 mm->token_priority = 0;
545 mm->last_interval = 0;
547 if (!mm_init(mm, tsk))
548 goto fail_nomem;
550 if (init_new_context(tsk, mm))
551 goto fail_nocontext;
553 dup_mm_exe_file(oldmm, mm);
555 err = dup_mmap(mm, oldmm);
556 if (err)
557 goto free_pt;
559 mm->hiwater_rss = get_mm_rss(mm);
560 mm->hiwater_vm = mm->total_vm;
562 return mm;
564 free_pt:
565 mmput(mm);
567 fail_nomem:
568 return NULL;
570 fail_nocontext:
572 * If init_new_context() failed, we cannot use mmput() to free the mm
573 * because it calls destroy_context()
575 mm_free_pgd(mm);
576 free_mm(mm);
577 return NULL;
580 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
582 struct mm_struct * mm, *oldmm;
583 int retval;
585 tsk->min_flt = tsk->maj_flt = 0;
586 tsk->nvcsw = tsk->nivcsw = 0;
588 tsk->mm = NULL;
589 tsk->active_mm = NULL;
592 * Are we cloning a kernel thread?
594 * We need to steal a active VM for that..
596 oldmm = current->mm;
597 if (!oldmm)
598 return 0;
600 if (clone_flags & CLONE_VM) {
601 atomic_inc(&oldmm->mm_users);
602 mm = oldmm;
603 goto good_mm;
606 retval = -ENOMEM;
607 mm = dup_mm(tsk);
608 if (!mm)
609 goto fail_nomem;
611 good_mm:
612 /* Initializing for Swap token stuff */
613 mm->token_priority = 0;
614 mm->last_interval = 0;
616 tsk->mm = mm;
617 tsk->active_mm = mm;
618 return 0;
620 fail_nomem:
621 return retval;
624 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
626 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
627 /* We don't need to lock fs - think why ;-) */
628 if (fs) {
629 atomic_set(&fs->count, 1);
630 rwlock_init(&fs->lock);
631 fs->umask = old->umask;
632 read_lock(&old->lock);
633 fs->root = old->root;
634 path_get(&old->root);
635 fs->pwd = old->pwd;
636 path_get(&old->pwd);
637 if (old->altroot.dentry) {
638 fs->altroot = old->altroot;
639 path_get(&old->altroot);
640 } else {
641 fs->altroot.mnt = NULL;
642 fs->altroot.dentry = NULL;
644 read_unlock(&old->lock);
646 return fs;
649 struct fs_struct *copy_fs_struct(struct fs_struct *old)
651 return __copy_fs_struct(old);
654 EXPORT_SYMBOL_GPL(copy_fs_struct);
656 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
658 if (clone_flags & CLONE_FS) {
659 atomic_inc(&current->fs->count);
660 return 0;
662 tsk->fs = __copy_fs_struct(current->fs);
663 if (!tsk->fs)
664 return -ENOMEM;
665 return 0;
668 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
670 struct files_struct *oldf, *newf;
671 int error = 0;
674 * A background process may not have any files ...
676 oldf = current->files;
677 if (!oldf)
678 goto out;
680 if (clone_flags & CLONE_FILES) {
681 atomic_inc(&oldf->count);
682 goto out;
685 newf = dup_fd(oldf, &error);
686 if (!newf)
687 goto out;
689 tsk->files = newf;
690 error = 0;
691 out:
692 return error;
695 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
697 #ifdef CONFIG_BLOCK
698 struct io_context *ioc = current->io_context;
700 if (!ioc)
701 return 0;
703 * Share io context with parent, if CLONE_IO is set
705 if (clone_flags & CLONE_IO) {
706 tsk->io_context = ioc_task_link(ioc);
707 if (unlikely(!tsk->io_context))
708 return -ENOMEM;
709 } else if (ioprio_valid(ioc->ioprio)) {
710 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
711 if (unlikely(!tsk->io_context))
712 return -ENOMEM;
714 tsk->io_context->ioprio = ioc->ioprio;
716 #endif
717 return 0;
720 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
722 struct sighand_struct *sig;
724 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
725 atomic_inc(&current->sighand->count);
726 return 0;
728 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
729 rcu_assign_pointer(tsk->sighand, sig);
730 if (!sig)
731 return -ENOMEM;
732 atomic_set(&sig->count, 1);
733 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
734 return 0;
737 void __cleanup_sighand(struct sighand_struct *sighand)
739 if (atomic_dec_and_test(&sighand->count))
740 kmem_cache_free(sighand_cachep, sighand);
743 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
745 struct signal_struct *sig;
746 int ret;
748 if (clone_flags & CLONE_THREAD) {
749 atomic_inc(&current->signal->count);
750 atomic_inc(&current->signal->live);
751 return 0;
753 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
754 tsk->signal = sig;
755 if (!sig)
756 return -ENOMEM;
758 ret = copy_thread_group_keys(tsk);
759 if (ret < 0) {
760 kmem_cache_free(signal_cachep, sig);
761 return ret;
764 atomic_set(&sig->count, 1);
765 atomic_set(&sig->live, 1);
766 init_waitqueue_head(&sig->wait_chldexit);
767 sig->flags = 0;
768 sig->group_exit_code = 0;
769 sig->group_exit_task = NULL;
770 sig->group_stop_count = 0;
771 sig->curr_target = tsk;
772 init_sigpending(&sig->shared_pending);
773 INIT_LIST_HEAD(&sig->posix_timers);
775 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
776 sig->it_real_incr.tv64 = 0;
777 sig->real_timer.function = it_real_fn;
779 sig->it_virt_expires = cputime_zero;
780 sig->it_virt_incr = cputime_zero;
781 sig->it_prof_expires = cputime_zero;
782 sig->it_prof_incr = cputime_zero;
784 sig->leader = 0; /* session leadership doesn't inherit */
785 sig->tty_old_pgrp = NULL;
787 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
788 sig->gtime = cputime_zero;
789 sig->cgtime = cputime_zero;
790 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
791 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
792 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
793 sig->sum_sched_runtime = 0;
794 INIT_LIST_HEAD(&sig->cpu_timers[0]);
795 INIT_LIST_HEAD(&sig->cpu_timers[1]);
796 INIT_LIST_HEAD(&sig->cpu_timers[2]);
797 taskstats_tgid_init(sig);
799 task_lock(current->group_leader);
800 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
801 task_unlock(current->group_leader);
803 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
805 * New sole thread in the process gets an expiry time
806 * of the whole CPU time limit.
808 tsk->it_prof_expires =
809 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
811 acct_init_pacct(&sig->pacct);
813 tty_audit_fork(sig);
815 return 0;
818 void __cleanup_signal(struct signal_struct *sig)
820 exit_thread_group_keys(sig);
821 kmem_cache_free(signal_cachep, sig);
824 static void cleanup_signal(struct task_struct *tsk)
826 struct signal_struct *sig = tsk->signal;
828 atomic_dec(&sig->live);
830 if (atomic_dec_and_test(&sig->count))
831 __cleanup_signal(sig);
834 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
836 unsigned long new_flags = p->flags;
838 new_flags &= ~PF_SUPERPRIV;
839 new_flags |= PF_FORKNOEXEC;
840 if (!(clone_flags & CLONE_PTRACE))
841 p->ptrace = 0;
842 p->flags = new_flags;
843 clear_freeze_flag(p);
846 asmlinkage long sys_set_tid_address(int __user *tidptr)
848 current->clear_child_tid = tidptr;
850 return task_pid_vnr(current);
853 static void rt_mutex_init_task(struct task_struct *p)
855 spin_lock_init(&p->pi_lock);
856 #ifdef CONFIG_RT_MUTEXES
857 plist_head_init(&p->pi_waiters, &p->pi_lock);
858 p->pi_blocked_on = NULL;
859 #endif
862 #ifdef CONFIG_MM_OWNER
863 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
865 mm->owner = p;
867 #endif /* CONFIG_MM_OWNER */
870 * This creates a new process as a copy of the old one,
871 * but does not actually start it yet.
873 * It copies the registers, and all the appropriate
874 * parts of the process environment (as per the clone
875 * flags). The actual kick-off is left to the caller.
877 static struct task_struct *copy_process(unsigned long clone_flags,
878 unsigned long stack_start,
879 struct pt_regs *regs,
880 unsigned long stack_size,
881 int __user *child_tidptr,
882 struct pid *pid)
884 int retval;
885 struct task_struct *p;
886 int cgroup_callbacks_done = 0;
888 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
889 return ERR_PTR(-EINVAL);
892 * Thread groups must share signals as well, and detached threads
893 * can only be started up within the thread group.
895 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
896 return ERR_PTR(-EINVAL);
899 * Shared signal handlers imply shared VM. By way of the above,
900 * thread groups also imply shared VM. Blocking this case allows
901 * for various simplifications in other code.
903 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
904 return ERR_PTR(-EINVAL);
906 retval = security_task_create(clone_flags);
907 if (retval)
908 goto fork_out;
910 retval = -ENOMEM;
911 p = dup_task_struct(current);
912 if (!p)
913 goto fork_out;
915 rt_mutex_init_task(p);
917 #ifdef CONFIG_TRACE_IRQFLAGS
918 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
919 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
920 #endif
921 retval = -EAGAIN;
922 if (atomic_read(&p->user->processes) >=
923 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
924 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
925 p->user != current->nsproxy->user_ns->root_user)
926 goto bad_fork_free;
929 atomic_inc(&p->user->__count);
930 atomic_inc(&p->user->processes);
931 get_group_info(p->group_info);
934 * If multiple threads are within copy_process(), then this check
935 * triggers too late. This doesn't hurt, the check is only there
936 * to stop root fork bombs.
938 if (nr_threads >= max_threads)
939 goto bad_fork_cleanup_count;
941 if (!try_module_get(task_thread_info(p)->exec_domain->module))
942 goto bad_fork_cleanup_count;
944 if (p->binfmt && !try_module_get(p->binfmt->module))
945 goto bad_fork_cleanup_put_domain;
947 p->did_exec = 0;
948 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
949 copy_flags(clone_flags, p);
950 INIT_LIST_HEAD(&p->children);
951 INIT_LIST_HEAD(&p->sibling);
952 #ifdef CONFIG_PREEMPT_RCU
953 p->rcu_read_lock_nesting = 0;
954 p->rcu_flipctr_idx = 0;
955 #endif /* #ifdef CONFIG_PREEMPT_RCU */
956 p->vfork_done = NULL;
957 spin_lock_init(&p->alloc_lock);
959 clear_tsk_thread_flag(p, TIF_SIGPENDING);
960 init_sigpending(&p->pending);
962 p->utime = cputime_zero;
963 p->stime = cputime_zero;
964 p->gtime = cputime_zero;
965 p->utimescaled = cputime_zero;
966 p->stimescaled = cputime_zero;
967 p->prev_utime = cputime_zero;
968 p->prev_stime = cputime_zero;
970 #ifdef CONFIG_DETECT_SOFTLOCKUP
971 p->last_switch_count = 0;
972 p->last_switch_timestamp = 0;
973 #endif
975 #ifdef CONFIG_TASK_XACCT
976 p->rchar = 0; /* I/O counter: bytes read */
977 p->wchar = 0; /* I/O counter: bytes written */
978 p->syscr = 0; /* I/O counter: read syscalls */
979 p->syscw = 0; /* I/O counter: write syscalls */
980 #endif
981 task_io_accounting_init(p);
982 acct_clear_integrals(p);
984 p->it_virt_expires = cputime_zero;
985 p->it_prof_expires = cputime_zero;
986 p->it_sched_expires = 0;
987 INIT_LIST_HEAD(&p->cpu_timers[0]);
988 INIT_LIST_HEAD(&p->cpu_timers[1]);
989 INIT_LIST_HEAD(&p->cpu_timers[2]);
991 p->lock_depth = -1; /* -1 = no lock */
992 do_posix_clock_monotonic_gettime(&p->start_time);
993 p->real_start_time = p->start_time;
994 monotonic_to_bootbased(&p->real_start_time);
995 #ifdef CONFIG_SECURITY
996 p->security = NULL;
997 #endif
998 p->cap_bset = current->cap_bset;
999 p->io_context = NULL;
1000 p->audit_context = NULL;
1001 cgroup_fork(p);
1002 #ifdef CONFIG_NUMA
1003 p->mempolicy = mpol_dup(p->mempolicy);
1004 if (IS_ERR(p->mempolicy)) {
1005 retval = PTR_ERR(p->mempolicy);
1006 p->mempolicy = NULL;
1007 goto bad_fork_cleanup_cgroup;
1009 mpol_fix_fork_child_flag(p);
1010 #endif
1011 #ifdef CONFIG_TRACE_IRQFLAGS
1012 p->irq_events = 0;
1013 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1014 p->hardirqs_enabled = 1;
1015 #else
1016 p->hardirqs_enabled = 0;
1017 #endif
1018 p->hardirq_enable_ip = 0;
1019 p->hardirq_enable_event = 0;
1020 p->hardirq_disable_ip = _THIS_IP_;
1021 p->hardirq_disable_event = 0;
1022 p->softirqs_enabled = 1;
1023 p->softirq_enable_ip = _THIS_IP_;
1024 p->softirq_enable_event = 0;
1025 p->softirq_disable_ip = 0;
1026 p->softirq_disable_event = 0;
1027 p->hardirq_context = 0;
1028 p->softirq_context = 0;
1029 #endif
1030 #ifdef CONFIG_LOCKDEP
1031 p->lockdep_depth = 0; /* no locks held yet */
1032 p->curr_chain_key = 0;
1033 p->lockdep_recursion = 0;
1034 #endif
1036 #ifdef CONFIG_DEBUG_MUTEXES
1037 p->blocked_on = NULL; /* not blocked yet */
1038 #endif
1040 /* Perform scheduler related setup. Assign this task to a CPU. */
1041 sched_fork(p, clone_flags);
1043 if ((retval = security_task_alloc(p)))
1044 goto bad_fork_cleanup_policy;
1045 if ((retval = audit_alloc(p)))
1046 goto bad_fork_cleanup_security;
1047 /* copy all the process information */
1048 if ((retval = copy_semundo(clone_flags, p)))
1049 goto bad_fork_cleanup_audit;
1050 if ((retval = copy_files(clone_flags, p)))
1051 goto bad_fork_cleanup_semundo;
1052 if ((retval = copy_fs(clone_flags, p)))
1053 goto bad_fork_cleanup_files;
1054 if ((retval = copy_sighand(clone_flags, p)))
1055 goto bad_fork_cleanup_fs;
1056 if ((retval = copy_signal(clone_flags, p)))
1057 goto bad_fork_cleanup_sighand;
1058 if ((retval = copy_mm(clone_flags, p)))
1059 goto bad_fork_cleanup_signal;
1060 if ((retval = copy_keys(clone_flags, p)))
1061 goto bad_fork_cleanup_mm;
1062 if ((retval = copy_namespaces(clone_flags, p)))
1063 goto bad_fork_cleanup_keys;
1064 if ((retval = copy_io(clone_flags, p)))
1065 goto bad_fork_cleanup_namespaces;
1066 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1067 if (retval)
1068 goto bad_fork_cleanup_io;
1070 if (pid != &init_struct_pid) {
1071 retval = -ENOMEM;
1072 pid = alloc_pid(task_active_pid_ns(p));
1073 if (!pid)
1074 goto bad_fork_cleanup_io;
1076 if (clone_flags & CLONE_NEWPID) {
1077 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1078 if (retval < 0)
1079 goto bad_fork_free_pid;
1083 p->pid = pid_nr(pid);
1084 p->tgid = p->pid;
1085 if (clone_flags & CLONE_THREAD)
1086 p->tgid = current->tgid;
1088 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1090 * Clear TID on mm_release()?
1092 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1093 #ifdef CONFIG_FUTEX
1094 p->robust_list = NULL;
1095 #ifdef CONFIG_COMPAT
1096 p->compat_robust_list = NULL;
1097 #endif
1098 INIT_LIST_HEAD(&p->pi_state_list);
1099 p->pi_state_cache = NULL;
1100 #endif
1102 * sigaltstack should be cleared when sharing the same VM
1104 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1105 p->sas_ss_sp = p->sas_ss_size = 0;
1108 * Syscall tracing should be turned off in the child regardless
1109 * of CLONE_PTRACE.
1111 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1112 #ifdef TIF_SYSCALL_EMU
1113 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1114 #endif
1115 clear_all_latency_tracing(p);
1117 /* Our parent execution domain becomes current domain
1118 These must match for thread signalling to apply */
1119 p->parent_exec_id = p->self_exec_id;
1121 /* ok, now we should be set up.. */
1122 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1123 p->pdeath_signal = 0;
1124 p->exit_state = 0;
1127 * Ok, make it visible to the rest of the system.
1128 * We dont wake it up yet.
1130 p->group_leader = p;
1131 INIT_LIST_HEAD(&p->thread_group);
1132 INIT_LIST_HEAD(&p->ptrace_children);
1133 INIT_LIST_HEAD(&p->ptrace_list);
1135 /* Now that the task is set up, run cgroup callbacks if
1136 * necessary. We need to run them before the task is visible
1137 * on the tasklist. */
1138 cgroup_fork_callbacks(p);
1139 cgroup_callbacks_done = 1;
1141 /* Need tasklist lock for parent etc handling! */
1142 write_lock_irq(&tasklist_lock);
1145 * The task hasn't been attached yet, so its cpus_allowed mask will
1146 * not be changed, nor will its assigned CPU.
1148 * The cpus_allowed mask of the parent may have changed after it was
1149 * copied first time - so re-copy it here, then check the child's CPU
1150 * to ensure it is on a valid CPU (and if not, just force it back to
1151 * parent's CPU). This avoids alot of nasty races.
1153 p->cpus_allowed = current->cpus_allowed;
1154 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1155 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1156 !cpu_online(task_cpu(p))))
1157 set_task_cpu(p, smp_processor_id());
1159 /* CLONE_PARENT re-uses the old parent */
1160 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1161 p->real_parent = current->real_parent;
1162 else
1163 p->real_parent = current;
1164 p->parent = p->real_parent;
1166 spin_lock(&current->sighand->siglock);
1169 * Process group and session signals need to be delivered to just the
1170 * parent before the fork or both the parent and the child after the
1171 * fork. Restart if a signal comes in before we add the new process to
1172 * it's process group.
1173 * A fatal signal pending means that current will exit, so the new
1174 * thread can't slip out of an OOM kill (or normal SIGKILL).
1176 recalc_sigpending();
1177 if (signal_pending(current)) {
1178 spin_unlock(&current->sighand->siglock);
1179 write_unlock_irq(&tasklist_lock);
1180 retval = -ERESTARTNOINTR;
1181 goto bad_fork_free_pid;
1184 if (clone_flags & CLONE_THREAD) {
1185 p->group_leader = current->group_leader;
1186 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1188 if (!cputime_eq(current->signal->it_virt_expires,
1189 cputime_zero) ||
1190 !cputime_eq(current->signal->it_prof_expires,
1191 cputime_zero) ||
1192 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1193 !list_empty(&current->signal->cpu_timers[0]) ||
1194 !list_empty(&current->signal->cpu_timers[1]) ||
1195 !list_empty(&current->signal->cpu_timers[2])) {
1197 * Have child wake up on its first tick to check
1198 * for process CPU timers.
1200 p->it_prof_expires = jiffies_to_cputime(1);
1204 if (likely(p->pid)) {
1205 add_parent(p);
1206 if (unlikely(p->ptrace & PT_PTRACED))
1207 __ptrace_link(p, current->parent);
1209 if (thread_group_leader(p)) {
1210 if (clone_flags & CLONE_NEWPID)
1211 p->nsproxy->pid_ns->child_reaper = p;
1213 p->signal->leader_pid = pid;
1214 p->signal->tty = current->signal->tty;
1215 set_task_pgrp(p, task_pgrp_nr(current));
1216 set_task_session(p, task_session_nr(current));
1217 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1218 attach_pid(p, PIDTYPE_SID, task_session(current));
1219 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1220 __get_cpu_var(process_counts)++;
1222 attach_pid(p, PIDTYPE_PID, pid);
1223 nr_threads++;
1226 total_forks++;
1227 spin_unlock(&current->sighand->siglock);
1228 write_unlock_irq(&tasklist_lock);
1229 proc_fork_connector(p);
1230 cgroup_post_fork(p);
1231 return p;
1233 bad_fork_free_pid:
1234 if (pid != &init_struct_pid)
1235 free_pid(pid);
1236 bad_fork_cleanup_io:
1237 put_io_context(p->io_context);
1238 bad_fork_cleanup_namespaces:
1239 exit_task_namespaces(p);
1240 bad_fork_cleanup_keys:
1241 exit_keys(p);
1242 bad_fork_cleanup_mm:
1243 if (p->mm)
1244 mmput(p->mm);
1245 bad_fork_cleanup_signal:
1246 cleanup_signal(p);
1247 bad_fork_cleanup_sighand:
1248 __cleanup_sighand(p->sighand);
1249 bad_fork_cleanup_fs:
1250 exit_fs(p); /* blocking */
1251 bad_fork_cleanup_files:
1252 exit_files(p); /* blocking */
1253 bad_fork_cleanup_semundo:
1254 exit_sem(p);
1255 bad_fork_cleanup_audit:
1256 audit_free(p);
1257 bad_fork_cleanup_security:
1258 security_task_free(p);
1259 bad_fork_cleanup_policy:
1260 #ifdef CONFIG_NUMA
1261 mpol_put(p->mempolicy);
1262 bad_fork_cleanup_cgroup:
1263 #endif
1264 cgroup_exit(p, cgroup_callbacks_done);
1265 delayacct_tsk_free(p);
1266 if (p->binfmt)
1267 module_put(p->binfmt->module);
1268 bad_fork_cleanup_put_domain:
1269 module_put(task_thread_info(p)->exec_domain->module);
1270 bad_fork_cleanup_count:
1271 put_group_info(p->group_info);
1272 atomic_dec(&p->user->processes);
1273 free_uid(p->user);
1274 bad_fork_free:
1275 free_task(p);
1276 fork_out:
1277 return ERR_PTR(retval);
1280 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1282 memset(regs, 0, sizeof(struct pt_regs));
1283 return regs;
1286 struct task_struct * __cpuinit fork_idle(int cpu)
1288 struct task_struct *task;
1289 struct pt_regs regs;
1291 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1292 &init_struct_pid);
1293 if (!IS_ERR(task))
1294 init_idle(task, cpu);
1296 return task;
1299 static int fork_traceflag(unsigned clone_flags)
1301 if (clone_flags & CLONE_UNTRACED)
1302 return 0;
1303 else if (clone_flags & CLONE_VFORK) {
1304 if (current->ptrace & PT_TRACE_VFORK)
1305 return PTRACE_EVENT_VFORK;
1306 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1307 if (current->ptrace & PT_TRACE_CLONE)
1308 return PTRACE_EVENT_CLONE;
1309 } else if (current->ptrace & PT_TRACE_FORK)
1310 return PTRACE_EVENT_FORK;
1312 return 0;
1316 * Ok, this is the main fork-routine.
1318 * It copies the process, and if successful kick-starts
1319 * it and waits for it to finish using the VM if required.
1321 long do_fork(unsigned long clone_flags,
1322 unsigned long stack_start,
1323 struct pt_regs *regs,
1324 unsigned long stack_size,
1325 int __user *parent_tidptr,
1326 int __user *child_tidptr)
1328 struct task_struct *p;
1329 int trace = 0;
1330 long nr;
1333 * We hope to recycle these flags after 2.6.26
1335 if (unlikely(clone_flags & CLONE_STOPPED)) {
1336 static int __read_mostly count = 100;
1338 if (count > 0 && printk_ratelimit()) {
1339 char comm[TASK_COMM_LEN];
1341 count--;
1342 printk(KERN_INFO "fork(): process `%s' used deprecated "
1343 "clone flags 0x%lx\n",
1344 get_task_comm(comm, current),
1345 clone_flags & CLONE_STOPPED);
1349 if (unlikely(current->ptrace)) {
1350 trace = fork_traceflag (clone_flags);
1351 if (trace)
1352 clone_flags |= CLONE_PTRACE;
1355 p = copy_process(clone_flags, stack_start, regs, stack_size,
1356 child_tidptr, NULL);
1358 * Do this prior waking up the new thread - the thread pointer
1359 * might get invalid after that point, if the thread exits quickly.
1361 if (!IS_ERR(p)) {
1362 struct completion vfork;
1364 nr = task_pid_vnr(p);
1366 if (clone_flags & CLONE_PARENT_SETTID)
1367 put_user(nr, parent_tidptr);
1369 if (clone_flags & CLONE_VFORK) {
1370 p->vfork_done = &vfork;
1371 init_completion(&vfork);
1374 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1376 * We'll start up with an immediate SIGSTOP.
1378 sigaddset(&p->pending.signal, SIGSTOP);
1379 set_tsk_thread_flag(p, TIF_SIGPENDING);
1382 if (!(clone_flags & CLONE_STOPPED))
1383 wake_up_new_task(p, clone_flags);
1384 else
1385 __set_task_state(p, TASK_STOPPED);
1387 if (unlikely (trace)) {
1388 current->ptrace_message = nr;
1389 ptrace_notify ((trace << 8) | SIGTRAP);
1392 if (clone_flags & CLONE_VFORK) {
1393 freezer_do_not_count();
1394 wait_for_completion(&vfork);
1395 freezer_count();
1396 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1397 current->ptrace_message = nr;
1398 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1401 } else {
1402 nr = PTR_ERR(p);
1404 return nr;
1407 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1408 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1409 #endif
1411 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1413 struct sighand_struct *sighand = data;
1415 spin_lock_init(&sighand->siglock);
1416 init_waitqueue_head(&sighand->signalfd_wqh);
1419 void __init proc_caches_init(void)
1421 sighand_cachep = kmem_cache_create("sighand_cache",
1422 sizeof(struct sighand_struct), 0,
1423 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1424 sighand_ctor);
1425 signal_cachep = kmem_cache_create("signal_cache",
1426 sizeof(struct signal_struct), 0,
1427 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1428 files_cachep = kmem_cache_create("files_cache",
1429 sizeof(struct files_struct), 0,
1430 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1431 fs_cachep = kmem_cache_create("fs_cache",
1432 sizeof(struct fs_struct), 0,
1433 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1434 vm_area_cachep = kmem_cache_create("vm_area_struct",
1435 sizeof(struct vm_area_struct), 0,
1436 SLAB_PANIC, NULL);
1437 mm_cachep = kmem_cache_create("mm_struct",
1438 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1439 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1443 * Check constraints on flags passed to the unshare system call and
1444 * force unsharing of additional process context as appropriate.
1446 static void check_unshare_flags(unsigned long *flags_ptr)
1449 * If unsharing a thread from a thread group, must also
1450 * unshare vm.
1452 if (*flags_ptr & CLONE_THREAD)
1453 *flags_ptr |= CLONE_VM;
1456 * If unsharing vm, must also unshare signal handlers.
1458 if (*flags_ptr & CLONE_VM)
1459 *flags_ptr |= CLONE_SIGHAND;
1462 * If unsharing signal handlers and the task was created
1463 * using CLONE_THREAD, then must unshare the thread
1465 if ((*flags_ptr & CLONE_SIGHAND) &&
1466 (atomic_read(&current->signal->count) > 1))
1467 *flags_ptr |= CLONE_THREAD;
1470 * If unsharing namespace, must also unshare filesystem information.
1472 if (*flags_ptr & CLONE_NEWNS)
1473 *flags_ptr |= CLONE_FS;
1477 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1479 static int unshare_thread(unsigned long unshare_flags)
1481 if (unshare_flags & CLONE_THREAD)
1482 return -EINVAL;
1484 return 0;
1488 * Unshare the filesystem structure if it is being shared
1490 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1492 struct fs_struct *fs = current->fs;
1494 if ((unshare_flags & CLONE_FS) &&
1495 (fs && atomic_read(&fs->count) > 1)) {
1496 *new_fsp = __copy_fs_struct(current->fs);
1497 if (!*new_fsp)
1498 return -ENOMEM;
1501 return 0;
1505 * Unsharing of sighand is not supported yet
1507 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1509 struct sighand_struct *sigh = current->sighand;
1511 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1512 return -EINVAL;
1513 else
1514 return 0;
1518 * Unshare vm if it is being shared
1520 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1522 struct mm_struct *mm = current->mm;
1524 if ((unshare_flags & CLONE_VM) &&
1525 (mm && atomic_read(&mm->mm_users) > 1)) {
1526 return -EINVAL;
1529 return 0;
1533 * Unshare file descriptor table if it is being shared
1535 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1537 struct files_struct *fd = current->files;
1538 int error = 0;
1540 if ((unshare_flags & CLONE_FILES) &&
1541 (fd && atomic_read(&fd->count) > 1)) {
1542 *new_fdp = dup_fd(fd, &error);
1543 if (!*new_fdp)
1544 return error;
1547 return 0;
1551 * unshare allows a process to 'unshare' part of the process
1552 * context which was originally shared using clone. copy_*
1553 * functions used by do_fork() cannot be used here directly
1554 * because they modify an inactive task_struct that is being
1555 * constructed. Here we are modifying the current, active,
1556 * task_struct.
1558 asmlinkage long sys_unshare(unsigned long unshare_flags)
1560 int err = 0;
1561 struct fs_struct *fs, *new_fs = NULL;
1562 struct sighand_struct *new_sigh = NULL;
1563 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1564 struct files_struct *fd, *new_fd = NULL;
1565 struct nsproxy *new_nsproxy = NULL;
1566 int do_sysvsem = 0;
1568 check_unshare_flags(&unshare_flags);
1570 /* Return -EINVAL for all unsupported flags */
1571 err = -EINVAL;
1572 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1573 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1574 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1575 CLONE_NEWNET))
1576 goto bad_unshare_out;
1579 * CLONE_NEWIPC must also detach from the undolist: after switching
1580 * to a new ipc namespace, the semaphore arrays from the old
1581 * namespace are unreachable.
1583 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1584 do_sysvsem = 1;
1585 if ((err = unshare_thread(unshare_flags)))
1586 goto bad_unshare_out;
1587 if ((err = unshare_fs(unshare_flags, &new_fs)))
1588 goto bad_unshare_cleanup_thread;
1589 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1590 goto bad_unshare_cleanup_fs;
1591 if ((err = unshare_vm(unshare_flags, &new_mm)))
1592 goto bad_unshare_cleanup_sigh;
1593 if ((err = unshare_fd(unshare_flags, &new_fd)))
1594 goto bad_unshare_cleanup_vm;
1595 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1596 new_fs)))
1597 goto bad_unshare_cleanup_fd;
1599 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1600 if (do_sysvsem) {
1602 * CLONE_SYSVSEM is equivalent to sys_exit().
1604 exit_sem(current);
1607 if (new_nsproxy) {
1608 switch_task_namespaces(current, new_nsproxy);
1609 new_nsproxy = NULL;
1612 task_lock(current);
1614 if (new_fs) {
1615 fs = current->fs;
1616 current->fs = new_fs;
1617 new_fs = fs;
1620 if (new_mm) {
1621 mm = current->mm;
1622 active_mm = current->active_mm;
1623 current->mm = new_mm;
1624 current->active_mm = new_mm;
1625 activate_mm(active_mm, new_mm);
1626 new_mm = mm;
1629 if (new_fd) {
1630 fd = current->files;
1631 current->files = new_fd;
1632 new_fd = fd;
1635 task_unlock(current);
1638 if (new_nsproxy)
1639 put_nsproxy(new_nsproxy);
1641 bad_unshare_cleanup_fd:
1642 if (new_fd)
1643 put_files_struct(new_fd);
1645 bad_unshare_cleanup_vm:
1646 if (new_mm)
1647 mmput(new_mm);
1649 bad_unshare_cleanup_sigh:
1650 if (new_sigh)
1651 if (atomic_dec_and_test(&new_sigh->count))
1652 kmem_cache_free(sighand_cachep, new_sigh);
1654 bad_unshare_cleanup_fs:
1655 if (new_fs)
1656 put_fs_struct(new_fs);
1658 bad_unshare_cleanup_thread:
1659 bad_unshare_out:
1660 return err;
1664 * Helper to unshare the files of the current task.
1665 * We don't want to expose copy_files internals to
1666 * the exec layer of the kernel.
1669 int unshare_files(struct files_struct **displaced)
1671 struct task_struct *task = current;
1672 struct files_struct *copy = NULL;
1673 int error;
1675 error = unshare_fd(CLONE_FILES, &copy);
1676 if (error || !copy) {
1677 *displaced = NULL;
1678 return error;
1680 *displaced = task->files;
1681 task_lock(task);
1682 task->files = copy;
1683 task_unlock(task);
1684 return 0;