Staging: sep: Use kzalloc when needed
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ocfs2 / aops.c
blobf1e962cb3b73084699a182933b7760926c36880e
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
35 #include "ocfs2.h"
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
73 status = ocfs2_read_inode_block(inode, &bh);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
78 fe = (struct ocfs2_dinode *) bh->b_data;
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
115 brelse(buffer_cache_bh);
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 err = 0;
123 bail:
124 brelse(bh);
126 mlog_exit(err);
127 return err;
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
161 if (max_blocks < count)
162 count = max_blocks;
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
207 bail:
208 if (err < 0)
209 err = -EIO;
211 mlog_exit(err);
212 return err;
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
228 size = i_size_read(inode);
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
247 SetPageUptodate(page);
249 return 0;
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 int ret;
255 struct buffer_head *di_bh = NULL;
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
270 brelse(di_bh);
271 return ret;
274 static int ocfs2_readpage(struct file *file, struct page *page)
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284 if (ret != 0) {
285 if (ret == AOP_TRUNCATED_PAGE)
286 unlock = 0;
287 mlog_errno(ret);
288 goto out;
291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292 ret = AOP_TRUNCATED_PAGE;
293 goto out_inode_unlock;
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 * and notice that the page they just read isn't needed.
304 * XXX sys_readahead() seems to get that wrong?
306 if (start >= i_size_read(inode)) {
307 zero_user(page, 0, PAGE_SIZE);
308 SetPageUptodate(page);
309 ret = 0;
310 goto out_alloc;
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
315 else
316 ret = block_read_full_page(page, ocfs2_get_block);
317 unlock = 0;
319 out_alloc:
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322 ocfs2_inode_unlock(inode, 0);
323 out:
324 if (unlock)
325 unlock_page(page);
326 mlog_exit(ret);
327 return ret;
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379 out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
383 return err;
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399 int ret;
401 mlog_entry("(0x%p)\n", page);
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
405 mlog_exit(ret);
407 return ret;
410 /* Taken from ext3. We don't necessarily need the full blown
411 * functionality yet, but IMHO it's better to cut and paste the whole
412 * thing so we can avoid introducing our own bugs (and easily pick up
413 * their fixes when they happen) --Mark */
414 int walk_page_buffers( handle_t *handle,
415 struct buffer_head *head,
416 unsigned from,
417 unsigned to,
418 int *partial,
419 int (*fn)( handle_t *handle,
420 struct buffer_head *bh))
422 struct buffer_head *bh;
423 unsigned block_start, block_end;
424 unsigned blocksize = head->b_size;
425 int err, ret = 0;
426 struct buffer_head *next;
428 for ( bh = head, block_start = 0;
429 ret == 0 && (bh != head || !block_start);
430 block_start = block_end, bh = next)
432 next = bh->b_this_page;
433 block_end = block_start + blocksize;
434 if (block_end <= from || block_start >= to) {
435 if (partial && !buffer_uptodate(bh))
436 *partial = 1;
437 continue;
439 err = (*fn)(handle, bh);
440 if (!ret)
441 ret = err;
443 return ret;
446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
448 sector_t status;
449 u64 p_blkno = 0;
450 int err = 0;
451 struct inode *inode = mapping->host;
453 mlog_entry("(block = %llu)\n", (unsigned long long)block);
455 /* We don't need to lock journal system files, since they aren't
456 * accessed concurrently from multiple nodes.
458 if (!INODE_JOURNAL(inode)) {
459 err = ocfs2_inode_lock(inode, NULL, 0);
460 if (err) {
461 if (err != -ENOENT)
462 mlog_errno(err);
463 goto bail;
465 down_read(&OCFS2_I(inode)->ip_alloc_sem);
468 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
469 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
470 NULL);
472 if (!INODE_JOURNAL(inode)) {
473 up_read(&OCFS2_I(inode)->ip_alloc_sem);
474 ocfs2_inode_unlock(inode, 0);
477 if (err) {
478 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
479 (unsigned long long)block);
480 mlog_errno(err);
481 goto bail;
484 bail:
485 status = err ? 0 : p_blkno;
487 mlog_exit((int)status);
489 return status;
493 * TODO: Make this into a generic get_blocks function.
495 * From do_direct_io in direct-io.c:
496 * "So what we do is to permit the ->get_blocks function to populate
497 * bh.b_size with the size of IO which is permitted at this offset and
498 * this i_blkbits."
500 * This function is called directly from get_more_blocks in direct-io.c.
502 * called like this: dio->get_blocks(dio->inode, fs_startblk,
503 * fs_count, map_bh, dio->rw == WRITE);
505 * Note that we never bother to allocate blocks here, and thus ignore the
506 * create argument.
508 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
509 struct buffer_head *bh_result, int create)
511 int ret;
512 u64 p_blkno, inode_blocks, contig_blocks;
513 unsigned int ext_flags;
514 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
515 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
517 /* This function won't even be called if the request isn't all
518 * nicely aligned and of the right size, so there's no need
519 * for us to check any of that. */
521 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
523 /* This figures out the size of the next contiguous block, and
524 * our logical offset */
525 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
526 &contig_blocks, &ext_flags);
527 if (ret) {
528 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
529 (unsigned long long)iblock);
530 ret = -EIO;
531 goto bail;
534 /* We should already CoW the refcounted extent in case of create. */
535 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
538 * get_more_blocks() expects us to describe a hole by clearing
539 * the mapped bit on bh_result().
541 * Consider an unwritten extent as a hole.
543 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
544 map_bh(bh_result, inode->i_sb, p_blkno);
545 else
546 clear_buffer_mapped(bh_result);
548 /* make sure we don't map more than max_blocks blocks here as
549 that's all the kernel will handle at this point. */
550 if (max_blocks < contig_blocks)
551 contig_blocks = max_blocks;
552 bh_result->b_size = contig_blocks << blocksize_bits;
553 bail:
554 return ret;
558 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
559 * particularly interested in the aio/dio case. Like the core uses
560 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
561 * truncation on another.
563 static void ocfs2_dio_end_io(struct kiocb *iocb,
564 loff_t offset,
565 ssize_t bytes,
566 void *private,
567 int ret,
568 bool is_async)
570 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
571 int level;
573 /* this io's submitter should not have unlocked this before we could */
574 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
576 ocfs2_iocb_clear_rw_locked(iocb);
578 level = ocfs2_iocb_rw_locked_level(iocb);
579 if (!level)
580 up_read(&inode->i_alloc_sem);
581 ocfs2_rw_unlock(inode, level);
583 if (is_async)
584 aio_complete(iocb, ret, 0);
588 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
589 * from ext3. PageChecked() bits have been removed as OCFS2 does not
590 * do journalled data.
592 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
594 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
596 jbd2_journal_invalidatepage(journal, page, offset);
599 static int ocfs2_releasepage(struct page *page, gfp_t wait)
601 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
603 if (!page_has_buffers(page))
604 return 0;
605 return jbd2_journal_try_to_free_buffers(journal, page, wait);
608 static ssize_t ocfs2_direct_IO(int rw,
609 struct kiocb *iocb,
610 const struct iovec *iov,
611 loff_t offset,
612 unsigned long nr_segs)
614 struct file *file = iocb->ki_filp;
615 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
616 int ret;
618 mlog_entry_void();
621 * Fallback to buffered I/O if we see an inode without
622 * extents.
624 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
625 return 0;
627 /* Fallback to buffered I/O if we are appending. */
628 if (i_size_read(inode) <= offset)
629 return 0;
631 ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
632 iov, offset, nr_segs,
633 ocfs2_direct_IO_get_blocks,
634 ocfs2_dio_end_io, NULL, 0);
636 mlog_exit(ret);
637 return ret;
640 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
641 u32 cpos,
642 unsigned int *start,
643 unsigned int *end)
645 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
647 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
648 unsigned int cpp;
650 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
652 cluster_start = cpos % cpp;
653 cluster_start = cluster_start << osb->s_clustersize_bits;
655 cluster_end = cluster_start + osb->s_clustersize;
658 BUG_ON(cluster_start > PAGE_SIZE);
659 BUG_ON(cluster_end > PAGE_SIZE);
661 if (start)
662 *start = cluster_start;
663 if (end)
664 *end = cluster_end;
668 * 'from' and 'to' are the region in the page to avoid zeroing.
670 * If pagesize > clustersize, this function will avoid zeroing outside
671 * of the cluster boundary.
673 * from == to == 0 is code for "zero the entire cluster region"
675 static void ocfs2_clear_page_regions(struct page *page,
676 struct ocfs2_super *osb, u32 cpos,
677 unsigned from, unsigned to)
679 void *kaddr;
680 unsigned int cluster_start, cluster_end;
682 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
684 kaddr = kmap_atomic(page, KM_USER0);
686 if (from || to) {
687 if (from > cluster_start)
688 memset(kaddr + cluster_start, 0, from - cluster_start);
689 if (to < cluster_end)
690 memset(kaddr + to, 0, cluster_end - to);
691 } else {
692 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
695 kunmap_atomic(kaddr, KM_USER0);
699 * Nonsparse file systems fully allocate before we get to the write
700 * code. This prevents ocfs2_write() from tagging the write as an
701 * allocating one, which means ocfs2_map_page_blocks() might try to
702 * read-in the blocks at the tail of our file. Avoid reading them by
703 * testing i_size against each block offset.
705 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
706 unsigned int block_start)
708 u64 offset = page_offset(page) + block_start;
710 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
711 return 1;
713 if (i_size_read(inode) > offset)
714 return 1;
716 return 0;
720 * Some of this taken from __block_write_begin(). We already have our
721 * mapping by now though, and the entire write will be allocating or
722 * it won't, so not much need to use BH_New.
724 * This will also skip zeroing, which is handled externally.
726 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
727 struct inode *inode, unsigned int from,
728 unsigned int to, int new)
730 int ret = 0;
731 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
732 unsigned int block_end, block_start;
733 unsigned int bsize = 1 << inode->i_blkbits;
735 if (!page_has_buffers(page))
736 create_empty_buffers(page, bsize, 0);
738 head = page_buffers(page);
739 for (bh = head, block_start = 0; bh != head || !block_start;
740 bh = bh->b_this_page, block_start += bsize) {
741 block_end = block_start + bsize;
743 clear_buffer_new(bh);
746 * Ignore blocks outside of our i/o range -
747 * they may belong to unallocated clusters.
749 if (block_start >= to || block_end <= from) {
750 if (PageUptodate(page))
751 set_buffer_uptodate(bh);
752 continue;
756 * For an allocating write with cluster size >= page
757 * size, we always write the entire page.
759 if (new)
760 set_buffer_new(bh);
762 if (!buffer_mapped(bh)) {
763 map_bh(bh, inode->i_sb, *p_blkno);
764 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
767 if (PageUptodate(page)) {
768 if (!buffer_uptodate(bh))
769 set_buffer_uptodate(bh);
770 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
771 !buffer_new(bh) &&
772 ocfs2_should_read_blk(inode, page, block_start) &&
773 (block_start < from || block_end > to)) {
774 ll_rw_block(READ, 1, &bh);
775 *wait_bh++=bh;
778 *p_blkno = *p_blkno + 1;
782 * If we issued read requests - let them complete.
784 while(wait_bh > wait) {
785 wait_on_buffer(*--wait_bh);
786 if (!buffer_uptodate(*wait_bh))
787 ret = -EIO;
790 if (ret == 0 || !new)
791 return ret;
794 * If we get -EIO above, zero out any newly allocated blocks
795 * to avoid exposing stale data.
797 bh = head;
798 block_start = 0;
799 do {
800 block_end = block_start + bsize;
801 if (block_end <= from)
802 goto next_bh;
803 if (block_start >= to)
804 break;
806 zero_user(page, block_start, bh->b_size);
807 set_buffer_uptodate(bh);
808 mark_buffer_dirty(bh);
810 next_bh:
811 block_start = block_end;
812 bh = bh->b_this_page;
813 } while (bh != head);
815 return ret;
818 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
819 #define OCFS2_MAX_CTXT_PAGES 1
820 #else
821 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
822 #endif
824 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
827 * Describe the state of a single cluster to be written to.
829 struct ocfs2_write_cluster_desc {
830 u32 c_cpos;
831 u32 c_phys;
833 * Give this a unique field because c_phys eventually gets
834 * filled.
836 unsigned c_new;
837 unsigned c_unwritten;
838 unsigned c_needs_zero;
841 struct ocfs2_write_ctxt {
842 /* Logical cluster position / len of write */
843 u32 w_cpos;
844 u32 w_clen;
846 /* First cluster allocated in a nonsparse extend */
847 u32 w_first_new_cpos;
849 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
852 * This is true if page_size > cluster_size.
854 * It triggers a set of special cases during write which might
855 * have to deal with allocating writes to partial pages.
857 unsigned int w_large_pages;
860 * Pages involved in this write.
862 * w_target_page is the page being written to by the user.
864 * w_pages is an array of pages which always contains
865 * w_target_page, and in the case of an allocating write with
866 * page_size < cluster size, it will contain zero'd and mapped
867 * pages adjacent to w_target_page which need to be written
868 * out in so that future reads from that region will get
869 * zero's.
871 unsigned int w_num_pages;
872 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
873 struct page *w_target_page;
876 * ocfs2_write_end() uses this to know what the real range to
877 * write in the target should be.
879 unsigned int w_target_from;
880 unsigned int w_target_to;
883 * We could use journal_current_handle() but this is cleaner,
884 * IMHO -Mark
886 handle_t *w_handle;
888 struct buffer_head *w_di_bh;
890 struct ocfs2_cached_dealloc_ctxt w_dealloc;
893 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
895 int i;
897 for(i = 0; i < num_pages; i++) {
898 if (pages[i]) {
899 unlock_page(pages[i]);
900 mark_page_accessed(pages[i]);
901 page_cache_release(pages[i]);
906 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
908 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
910 brelse(wc->w_di_bh);
911 kfree(wc);
914 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
915 struct ocfs2_super *osb, loff_t pos,
916 unsigned len, struct buffer_head *di_bh)
918 u32 cend;
919 struct ocfs2_write_ctxt *wc;
921 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
922 if (!wc)
923 return -ENOMEM;
925 wc->w_cpos = pos >> osb->s_clustersize_bits;
926 wc->w_first_new_cpos = UINT_MAX;
927 cend = (pos + len - 1) >> osb->s_clustersize_bits;
928 wc->w_clen = cend - wc->w_cpos + 1;
929 get_bh(di_bh);
930 wc->w_di_bh = di_bh;
932 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
933 wc->w_large_pages = 1;
934 else
935 wc->w_large_pages = 0;
937 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
939 *wcp = wc;
941 return 0;
945 * If a page has any new buffers, zero them out here, and mark them uptodate
946 * and dirty so they'll be written out (in order to prevent uninitialised
947 * block data from leaking). And clear the new bit.
949 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
951 unsigned int block_start, block_end;
952 struct buffer_head *head, *bh;
954 BUG_ON(!PageLocked(page));
955 if (!page_has_buffers(page))
956 return;
958 bh = head = page_buffers(page);
959 block_start = 0;
960 do {
961 block_end = block_start + bh->b_size;
963 if (buffer_new(bh)) {
964 if (block_end > from && block_start < to) {
965 if (!PageUptodate(page)) {
966 unsigned start, end;
968 start = max(from, block_start);
969 end = min(to, block_end);
971 zero_user_segment(page, start, end);
972 set_buffer_uptodate(bh);
975 clear_buffer_new(bh);
976 mark_buffer_dirty(bh);
980 block_start = block_end;
981 bh = bh->b_this_page;
982 } while (bh != head);
986 * Only called when we have a failure during allocating write to write
987 * zero's to the newly allocated region.
989 static void ocfs2_write_failure(struct inode *inode,
990 struct ocfs2_write_ctxt *wc,
991 loff_t user_pos, unsigned user_len)
993 int i;
994 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
995 to = user_pos + user_len;
996 struct page *tmppage;
998 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1000 for(i = 0; i < wc->w_num_pages; i++) {
1001 tmppage = wc->w_pages[i];
1003 if (page_has_buffers(tmppage)) {
1004 if (ocfs2_should_order_data(inode))
1005 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1007 block_commit_write(tmppage, from, to);
1012 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1013 struct ocfs2_write_ctxt *wc,
1014 struct page *page, u32 cpos,
1015 loff_t user_pos, unsigned user_len,
1016 int new)
1018 int ret;
1019 unsigned int map_from = 0, map_to = 0;
1020 unsigned int cluster_start, cluster_end;
1021 unsigned int user_data_from = 0, user_data_to = 0;
1023 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1024 &cluster_start, &cluster_end);
1026 if (page == wc->w_target_page) {
1027 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1028 map_to = map_from + user_len;
1030 if (new)
1031 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1032 cluster_start, cluster_end,
1033 new);
1034 else
1035 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1036 map_from, map_to, new);
1037 if (ret) {
1038 mlog_errno(ret);
1039 goto out;
1042 user_data_from = map_from;
1043 user_data_to = map_to;
1044 if (new) {
1045 map_from = cluster_start;
1046 map_to = cluster_end;
1048 } else {
1050 * If we haven't allocated the new page yet, we
1051 * shouldn't be writing it out without copying user
1052 * data. This is likely a math error from the caller.
1054 BUG_ON(!new);
1056 map_from = cluster_start;
1057 map_to = cluster_end;
1059 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1060 cluster_start, cluster_end, new);
1061 if (ret) {
1062 mlog_errno(ret);
1063 goto out;
1068 * Parts of newly allocated pages need to be zero'd.
1070 * Above, we have also rewritten 'to' and 'from' - as far as
1071 * the rest of the function is concerned, the entire cluster
1072 * range inside of a page needs to be written.
1074 * We can skip this if the page is up to date - it's already
1075 * been zero'd from being read in as a hole.
1077 if (new && !PageUptodate(page))
1078 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1079 cpos, user_data_from, user_data_to);
1081 flush_dcache_page(page);
1083 out:
1084 return ret;
1088 * This function will only grab one clusters worth of pages.
1090 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1091 struct ocfs2_write_ctxt *wc,
1092 u32 cpos, loff_t user_pos,
1093 unsigned user_len, int new,
1094 struct page *mmap_page)
1096 int ret = 0, i;
1097 unsigned long start, target_index, end_index, index;
1098 struct inode *inode = mapping->host;
1099 loff_t last_byte;
1101 target_index = user_pos >> PAGE_CACHE_SHIFT;
1104 * Figure out how many pages we'll be manipulating here. For
1105 * non allocating write, we just change the one
1106 * page. Otherwise, we'll need a whole clusters worth. If we're
1107 * writing past i_size, we only need enough pages to cover the
1108 * last page of the write.
1110 if (new) {
1111 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1112 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1114 * We need the index *past* the last page we could possibly
1115 * touch. This is the page past the end of the write or
1116 * i_size, whichever is greater.
1118 last_byte = max(user_pos + user_len, i_size_read(inode));
1119 BUG_ON(last_byte < 1);
1120 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1121 if ((start + wc->w_num_pages) > end_index)
1122 wc->w_num_pages = end_index - start;
1123 } else {
1124 wc->w_num_pages = 1;
1125 start = target_index;
1128 for(i = 0; i < wc->w_num_pages; i++) {
1129 index = start + i;
1131 if (index == target_index && mmap_page) {
1133 * ocfs2_pagemkwrite() is a little different
1134 * and wants us to directly use the page
1135 * passed in.
1137 lock_page(mmap_page);
1139 if (mmap_page->mapping != mapping) {
1140 unlock_page(mmap_page);
1142 * Sanity check - the locking in
1143 * ocfs2_pagemkwrite() should ensure
1144 * that this code doesn't trigger.
1146 ret = -EINVAL;
1147 mlog_errno(ret);
1148 goto out;
1151 page_cache_get(mmap_page);
1152 wc->w_pages[i] = mmap_page;
1153 } else {
1154 wc->w_pages[i] = find_or_create_page(mapping, index,
1155 GFP_NOFS);
1156 if (!wc->w_pages[i]) {
1157 ret = -ENOMEM;
1158 mlog_errno(ret);
1159 goto out;
1163 if (index == target_index)
1164 wc->w_target_page = wc->w_pages[i];
1166 out:
1167 return ret;
1171 * Prepare a single cluster for write one cluster into the file.
1173 static int ocfs2_write_cluster(struct address_space *mapping,
1174 u32 phys, unsigned int unwritten,
1175 unsigned int should_zero,
1176 struct ocfs2_alloc_context *data_ac,
1177 struct ocfs2_alloc_context *meta_ac,
1178 struct ocfs2_write_ctxt *wc, u32 cpos,
1179 loff_t user_pos, unsigned user_len)
1181 int ret, i, new;
1182 u64 v_blkno, p_blkno;
1183 struct inode *inode = mapping->host;
1184 struct ocfs2_extent_tree et;
1186 new = phys == 0 ? 1 : 0;
1187 if (new) {
1188 u32 tmp_pos;
1191 * This is safe to call with the page locks - it won't take
1192 * any additional semaphores or cluster locks.
1194 tmp_pos = cpos;
1195 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1196 &tmp_pos, 1, 0, wc->w_di_bh,
1197 wc->w_handle, data_ac,
1198 meta_ac, NULL);
1200 * This shouldn't happen because we must have already
1201 * calculated the correct meta data allocation required. The
1202 * internal tree allocation code should know how to increase
1203 * transaction credits itself.
1205 * If need be, we could handle -EAGAIN for a
1206 * RESTART_TRANS here.
1208 mlog_bug_on_msg(ret == -EAGAIN,
1209 "Inode %llu: EAGAIN return during allocation.\n",
1210 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1211 if (ret < 0) {
1212 mlog_errno(ret);
1213 goto out;
1215 } else if (unwritten) {
1216 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1217 wc->w_di_bh);
1218 ret = ocfs2_mark_extent_written(inode, &et,
1219 wc->w_handle, cpos, 1, phys,
1220 meta_ac, &wc->w_dealloc);
1221 if (ret < 0) {
1222 mlog_errno(ret);
1223 goto out;
1227 if (should_zero)
1228 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1229 else
1230 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1233 * The only reason this should fail is due to an inability to
1234 * find the extent added.
1236 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1237 NULL);
1238 if (ret < 0) {
1239 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1240 "at logical block %llu",
1241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1242 (unsigned long long)v_blkno);
1243 goto out;
1246 BUG_ON(p_blkno == 0);
1248 for(i = 0; i < wc->w_num_pages; i++) {
1249 int tmpret;
1251 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1252 wc->w_pages[i], cpos,
1253 user_pos, user_len,
1254 should_zero);
1255 if (tmpret) {
1256 mlog_errno(tmpret);
1257 if (ret == 0)
1258 ret = tmpret;
1263 * We only have cleanup to do in case of allocating write.
1265 if (ret && new)
1266 ocfs2_write_failure(inode, wc, user_pos, user_len);
1268 out:
1270 return ret;
1273 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1274 struct ocfs2_alloc_context *data_ac,
1275 struct ocfs2_alloc_context *meta_ac,
1276 struct ocfs2_write_ctxt *wc,
1277 loff_t pos, unsigned len)
1279 int ret, i;
1280 loff_t cluster_off;
1281 unsigned int local_len = len;
1282 struct ocfs2_write_cluster_desc *desc;
1283 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1285 for (i = 0; i < wc->w_clen; i++) {
1286 desc = &wc->w_desc[i];
1289 * We have to make sure that the total write passed in
1290 * doesn't extend past a single cluster.
1292 local_len = len;
1293 cluster_off = pos & (osb->s_clustersize - 1);
1294 if ((cluster_off + local_len) > osb->s_clustersize)
1295 local_len = osb->s_clustersize - cluster_off;
1297 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1298 desc->c_unwritten,
1299 desc->c_needs_zero,
1300 data_ac, meta_ac,
1301 wc, desc->c_cpos, pos, local_len);
1302 if (ret) {
1303 mlog_errno(ret);
1304 goto out;
1307 len -= local_len;
1308 pos += local_len;
1311 ret = 0;
1312 out:
1313 return ret;
1317 * ocfs2_write_end() wants to know which parts of the target page it
1318 * should complete the write on. It's easiest to compute them ahead of
1319 * time when a more complete view of the write is available.
1321 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1322 struct ocfs2_write_ctxt *wc,
1323 loff_t pos, unsigned len, int alloc)
1325 struct ocfs2_write_cluster_desc *desc;
1327 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1328 wc->w_target_to = wc->w_target_from + len;
1330 if (alloc == 0)
1331 return;
1334 * Allocating write - we may have different boundaries based
1335 * on page size and cluster size.
1337 * NOTE: We can no longer compute one value from the other as
1338 * the actual write length and user provided length may be
1339 * different.
1342 if (wc->w_large_pages) {
1344 * We only care about the 1st and last cluster within
1345 * our range and whether they should be zero'd or not. Either
1346 * value may be extended out to the start/end of a
1347 * newly allocated cluster.
1349 desc = &wc->w_desc[0];
1350 if (desc->c_needs_zero)
1351 ocfs2_figure_cluster_boundaries(osb,
1352 desc->c_cpos,
1353 &wc->w_target_from,
1354 NULL);
1356 desc = &wc->w_desc[wc->w_clen - 1];
1357 if (desc->c_needs_zero)
1358 ocfs2_figure_cluster_boundaries(osb,
1359 desc->c_cpos,
1360 NULL,
1361 &wc->w_target_to);
1362 } else {
1363 wc->w_target_from = 0;
1364 wc->w_target_to = PAGE_CACHE_SIZE;
1369 * Populate each single-cluster write descriptor in the write context
1370 * with information about the i/o to be done.
1372 * Returns the number of clusters that will have to be allocated, as
1373 * well as a worst case estimate of the number of extent records that
1374 * would have to be created during a write to an unwritten region.
1376 static int ocfs2_populate_write_desc(struct inode *inode,
1377 struct ocfs2_write_ctxt *wc,
1378 unsigned int *clusters_to_alloc,
1379 unsigned int *extents_to_split)
1381 int ret;
1382 struct ocfs2_write_cluster_desc *desc;
1383 unsigned int num_clusters = 0;
1384 unsigned int ext_flags = 0;
1385 u32 phys = 0;
1386 int i;
1388 *clusters_to_alloc = 0;
1389 *extents_to_split = 0;
1391 for (i = 0; i < wc->w_clen; i++) {
1392 desc = &wc->w_desc[i];
1393 desc->c_cpos = wc->w_cpos + i;
1395 if (num_clusters == 0) {
1397 * Need to look up the next extent record.
1399 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1400 &num_clusters, &ext_flags);
1401 if (ret) {
1402 mlog_errno(ret);
1403 goto out;
1406 /* We should already CoW the refcountd extent. */
1407 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1410 * Assume worst case - that we're writing in
1411 * the middle of the extent.
1413 * We can assume that the write proceeds from
1414 * left to right, in which case the extent
1415 * insert code is smart enough to coalesce the
1416 * next splits into the previous records created.
1418 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1419 *extents_to_split = *extents_to_split + 2;
1420 } else if (phys) {
1422 * Only increment phys if it doesn't describe
1423 * a hole.
1425 phys++;
1429 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1430 * file that got extended. w_first_new_cpos tells us
1431 * where the newly allocated clusters are so we can
1432 * zero them.
1434 if (desc->c_cpos >= wc->w_first_new_cpos) {
1435 BUG_ON(phys == 0);
1436 desc->c_needs_zero = 1;
1439 desc->c_phys = phys;
1440 if (phys == 0) {
1441 desc->c_new = 1;
1442 desc->c_needs_zero = 1;
1443 *clusters_to_alloc = *clusters_to_alloc + 1;
1446 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1447 desc->c_unwritten = 1;
1448 desc->c_needs_zero = 1;
1451 num_clusters--;
1454 ret = 0;
1455 out:
1456 return ret;
1459 static int ocfs2_write_begin_inline(struct address_space *mapping,
1460 struct inode *inode,
1461 struct ocfs2_write_ctxt *wc)
1463 int ret;
1464 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1465 struct page *page;
1466 handle_t *handle;
1467 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1469 page = find_or_create_page(mapping, 0, GFP_NOFS);
1470 if (!page) {
1471 ret = -ENOMEM;
1472 mlog_errno(ret);
1473 goto out;
1476 * If we don't set w_num_pages then this page won't get unlocked
1477 * and freed on cleanup of the write context.
1479 wc->w_pages[0] = wc->w_target_page = page;
1480 wc->w_num_pages = 1;
1482 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1483 if (IS_ERR(handle)) {
1484 ret = PTR_ERR(handle);
1485 mlog_errno(ret);
1486 goto out;
1489 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1490 OCFS2_JOURNAL_ACCESS_WRITE);
1491 if (ret) {
1492 ocfs2_commit_trans(osb, handle);
1494 mlog_errno(ret);
1495 goto out;
1498 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1499 ocfs2_set_inode_data_inline(inode, di);
1501 if (!PageUptodate(page)) {
1502 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1503 if (ret) {
1504 ocfs2_commit_trans(osb, handle);
1506 goto out;
1510 wc->w_handle = handle;
1511 out:
1512 return ret;
1515 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1517 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1519 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1520 return 1;
1521 return 0;
1524 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1525 struct inode *inode, loff_t pos,
1526 unsigned len, struct page *mmap_page,
1527 struct ocfs2_write_ctxt *wc)
1529 int ret, written = 0;
1530 loff_t end = pos + len;
1531 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1532 struct ocfs2_dinode *di = NULL;
1534 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1535 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1536 oi->ip_dyn_features);
1539 * Handle inodes which already have inline data 1st.
1541 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1542 if (mmap_page == NULL &&
1543 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1544 goto do_inline_write;
1547 * The write won't fit - we have to give this inode an
1548 * inline extent list now.
1550 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1551 if (ret)
1552 mlog_errno(ret);
1553 goto out;
1557 * Check whether the inode can accept inline data.
1559 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1560 return 0;
1563 * Check whether the write can fit.
1565 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1566 if (mmap_page ||
1567 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1568 return 0;
1570 do_inline_write:
1571 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1572 if (ret) {
1573 mlog_errno(ret);
1574 goto out;
1578 * This signals to the caller that the data can be written
1579 * inline.
1581 written = 1;
1582 out:
1583 return written ? written : ret;
1587 * This function only does anything for file systems which can't
1588 * handle sparse files.
1590 * What we want to do here is fill in any hole between the current end
1591 * of allocation and the end of our write. That way the rest of the
1592 * write path can treat it as an non-allocating write, which has no
1593 * special case code for sparse/nonsparse files.
1595 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1596 struct buffer_head *di_bh,
1597 loff_t pos, unsigned len,
1598 struct ocfs2_write_ctxt *wc)
1600 int ret;
1601 loff_t newsize = pos + len;
1603 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1605 if (newsize <= i_size_read(inode))
1606 return 0;
1608 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1609 if (ret)
1610 mlog_errno(ret);
1612 wc->w_first_new_cpos =
1613 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1615 return ret;
1618 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1619 loff_t pos)
1621 int ret = 0;
1623 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1624 if (pos > i_size_read(inode))
1625 ret = ocfs2_zero_extend(inode, di_bh, pos);
1627 return ret;
1630 int ocfs2_write_begin_nolock(struct file *filp,
1631 struct address_space *mapping,
1632 loff_t pos, unsigned len, unsigned flags,
1633 struct page **pagep, void **fsdata,
1634 struct buffer_head *di_bh, struct page *mmap_page)
1636 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1637 unsigned int clusters_to_alloc, extents_to_split;
1638 struct ocfs2_write_ctxt *wc;
1639 struct inode *inode = mapping->host;
1640 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1641 struct ocfs2_dinode *di;
1642 struct ocfs2_alloc_context *data_ac = NULL;
1643 struct ocfs2_alloc_context *meta_ac = NULL;
1644 handle_t *handle;
1645 struct ocfs2_extent_tree et;
1647 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1648 if (ret) {
1649 mlog_errno(ret);
1650 return ret;
1653 if (ocfs2_supports_inline_data(osb)) {
1654 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1655 mmap_page, wc);
1656 if (ret == 1) {
1657 ret = 0;
1658 goto success;
1660 if (ret < 0) {
1661 mlog_errno(ret);
1662 goto out;
1666 if (ocfs2_sparse_alloc(osb))
1667 ret = ocfs2_zero_tail(inode, di_bh, pos);
1668 else
1669 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1670 wc);
1671 if (ret) {
1672 mlog_errno(ret);
1673 goto out;
1676 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1677 if (ret < 0) {
1678 mlog_errno(ret);
1679 goto out;
1680 } else if (ret == 1) {
1681 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1682 wc->w_cpos, wc->w_clen, UINT_MAX);
1683 if (ret) {
1684 mlog_errno(ret);
1685 goto out;
1689 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1690 &extents_to_split);
1691 if (ret) {
1692 mlog_errno(ret);
1693 goto out;
1696 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1699 * We set w_target_from, w_target_to here so that
1700 * ocfs2_write_end() knows which range in the target page to
1701 * write out. An allocation requires that we write the entire
1702 * cluster range.
1704 if (clusters_to_alloc || extents_to_split) {
1706 * XXX: We are stretching the limits of
1707 * ocfs2_lock_allocators(). It greatly over-estimates
1708 * the work to be done.
1710 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1711 " clusters_to_add = %u, extents_to_split = %u\n",
1712 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1713 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1714 clusters_to_alloc, extents_to_split);
1716 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1717 wc->w_di_bh);
1718 ret = ocfs2_lock_allocators(inode, &et,
1719 clusters_to_alloc, extents_to_split,
1720 &data_ac, &meta_ac);
1721 if (ret) {
1722 mlog_errno(ret);
1723 goto out;
1726 if (data_ac)
1727 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1729 credits = ocfs2_calc_extend_credits(inode->i_sb,
1730 &di->id2.i_list,
1731 clusters_to_alloc);
1736 * We have to zero sparse allocated clusters, unwritten extent clusters,
1737 * and non-sparse clusters we just extended. For non-sparse writes,
1738 * we know zeros will only be needed in the first and/or last cluster.
1740 if (clusters_to_alloc || extents_to_split ||
1741 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1742 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1743 cluster_of_pages = 1;
1744 else
1745 cluster_of_pages = 0;
1747 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1749 handle = ocfs2_start_trans(osb, credits);
1750 if (IS_ERR(handle)) {
1751 ret = PTR_ERR(handle);
1752 mlog_errno(ret);
1753 goto out;
1756 wc->w_handle = handle;
1758 if (clusters_to_alloc) {
1759 ret = dquot_alloc_space_nodirty(inode,
1760 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1761 if (ret)
1762 goto out_commit;
1765 * We don't want this to fail in ocfs2_write_end(), so do it
1766 * here.
1768 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1769 OCFS2_JOURNAL_ACCESS_WRITE);
1770 if (ret) {
1771 mlog_errno(ret);
1772 goto out_quota;
1776 * Fill our page array first. That way we've grabbed enough so
1777 * that we can zero and flush if we error after adding the
1778 * extent.
1780 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1781 cluster_of_pages, mmap_page);
1782 if (ret) {
1783 mlog_errno(ret);
1784 goto out_quota;
1787 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1788 len);
1789 if (ret) {
1790 mlog_errno(ret);
1791 goto out_quota;
1794 if (data_ac)
1795 ocfs2_free_alloc_context(data_ac);
1796 if (meta_ac)
1797 ocfs2_free_alloc_context(meta_ac);
1799 success:
1800 *pagep = wc->w_target_page;
1801 *fsdata = wc;
1802 return 0;
1803 out_quota:
1804 if (clusters_to_alloc)
1805 dquot_free_space(inode,
1806 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1807 out_commit:
1808 ocfs2_commit_trans(osb, handle);
1810 out:
1811 ocfs2_free_write_ctxt(wc);
1813 if (data_ac)
1814 ocfs2_free_alloc_context(data_ac);
1815 if (meta_ac)
1816 ocfs2_free_alloc_context(meta_ac);
1817 return ret;
1820 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1821 loff_t pos, unsigned len, unsigned flags,
1822 struct page **pagep, void **fsdata)
1824 int ret;
1825 struct buffer_head *di_bh = NULL;
1826 struct inode *inode = mapping->host;
1828 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1829 if (ret) {
1830 mlog_errno(ret);
1831 return ret;
1835 * Take alloc sem here to prevent concurrent lookups. That way
1836 * the mapping, zeroing and tree manipulation within
1837 * ocfs2_write() will be safe against ->readpage(). This
1838 * should also serve to lock out allocation from a shared
1839 * writeable region.
1841 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1843 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1844 fsdata, di_bh, NULL);
1845 if (ret) {
1846 mlog_errno(ret);
1847 goto out_fail;
1850 brelse(di_bh);
1852 return 0;
1854 out_fail:
1855 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1857 brelse(di_bh);
1858 ocfs2_inode_unlock(inode, 1);
1860 return ret;
1863 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1864 unsigned len, unsigned *copied,
1865 struct ocfs2_dinode *di,
1866 struct ocfs2_write_ctxt *wc)
1868 void *kaddr;
1870 if (unlikely(*copied < len)) {
1871 if (!PageUptodate(wc->w_target_page)) {
1872 *copied = 0;
1873 return;
1877 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1878 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1879 kunmap_atomic(kaddr, KM_USER0);
1881 mlog(0, "Data written to inode at offset %llu. "
1882 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1883 (unsigned long long)pos, *copied,
1884 le16_to_cpu(di->id2.i_data.id_count),
1885 le16_to_cpu(di->i_dyn_features));
1888 int ocfs2_write_end_nolock(struct address_space *mapping,
1889 loff_t pos, unsigned len, unsigned copied,
1890 struct page *page, void *fsdata)
1892 int i;
1893 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1894 struct inode *inode = mapping->host;
1895 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1896 struct ocfs2_write_ctxt *wc = fsdata;
1897 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1898 handle_t *handle = wc->w_handle;
1899 struct page *tmppage;
1901 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1902 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1903 goto out_write_size;
1906 if (unlikely(copied < len)) {
1907 if (!PageUptodate(wc->w_target_page))
1908 copied = 0;
1910 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1911 start+len);
1913 flush_dcache_page(wc->w_target_page);
1915 for(i = 0; i < wc->w_num_pages; i++) {
1916 tmppage = wc->w_pages[i];
1918 if (tmppage == wc->w_target_page) {
1919 from = wc->w_target_from;
1920 to = wc->w_target_to;
1922 BUG_ON(from > PAGE_CACHE_SIZE ||
1923 to > PAGE_CACHE_SIZE ||
1924 to < from);
1925 } else {
1927 * Pages adjacent to the target (if any) imply
1928 * a hole-filling write in which case we want
1929 * to flush their entire range.
1931 from = 0;
1932 to = PAGE_CACHE_SIZE;
1935 if (page_has_buffers(tmppage)) {
1936 if (ocfs2_should_order_data(inode))
1937 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1938 block_commit_write(tmppage, from, to);
1942 out_write_size:
1943 pos += copied;
1944 if (pos > inode->i_size) {
1945 i_size_write(inode, pos);
1946 mark_inode_dirty(inode);
1948 inode->i_blocks = ocfs2_inode_sector_count(inode);
1949 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1950 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1951 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1952 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1953 ocfs2_journal_dirty(handle, wc->w_di_bh);
1955 ocfs2_commit_trans(osb, handle);
1957 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1959 ocfs2_free_write_ctxt(wc);
1961 return copied;
1964 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1965 loff_t pos, unsigned len, unsigned copied,
1966 struct page *page, void *fsdata)
1968 int ret;
1969 struct inode *inode = mapping->host;
1971 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1973 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1974 ocfs2_inode_unlock(inode, 1);
1976 return ret;
1979 const struct address_space_operations ocfs2_aops = {
1980 .readpage = ocfs2_readpage,
1981 .readpages = ocfs2_readpages,
1982 .writepage = ocfs2_writepage,
1983 .write_begin = ocfs2_write_begin,
1984 .write_end = ocfs2_write_end,
1985 .bmap = ocfs2_bmap,
1986 .sync_page = block_sync_page,
1987 .direct_IO = ocfs2_direct_IO,
1988 .invalidatepage = ocfs2_invalidatepage,
1989 .releasepage = ocfs2_releasepage,
1990 .migratepage = buffer_migrate_page,
1991 .is_partially_uptodate = block_is_partially_uptodate,
1992 .error_remove_page = generic_error_remove_page,