2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
96 #include <linux/netfilter.h>
98 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
99 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
100 unsigned long nr_segs
, loff_t pos
);
101 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
102 unsigned long nr_segs
, loff_t pos
);
103 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
105 static int sock_close(struct inode
*inode
, struct file
*file
);
106 static unsigned int sock_poll(struct file
*file
,
107 struct poll_table_struct
*wait
);
108 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
110 static long compat_sock_ioctl(struct file
*file
,
111 unsigned int cmd
, unsigned long arg
);
113 static int sock_fasync(int fd
, struct file
*filp
, int on
);
114 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
115 int offset
, size_t size
, loff_t
*ppos
, int more
);
116 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
117 struct pipe_inode_info
*pipe
, size_t len
,
121 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
122 * in the operation structures but are done directly via the socketcall() multiplexor.
125 static const struct file_operations socket_file_ops
= {
126 .owner
= THIS_MODULE
,
128 .aio_read
= sock_aio_read
,
129 .aio_write
= sock_aio_write
,
131 .unlocked_ioctl
= sock_ioctl
,
133 .compat_ioctl
= compat_sock_ioctl
,
136 .open
= sock_no_open
, /* special open code to disallow open via /proc */
137 .release
= sock_close
,
138 .fasync
= sock_fasync
,
139 .sendpage
= sock_sendpage
,
140 .splice_write
= generic_splice_sendpage
,
141 .splice_read
= sock_splice_read
,
145 * The protocol list. Each protocol is registered in here.
148 static DEFINE_SPINLOCK(net_family_lock
);
149 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
152 * Statistics counters of the socket lists
155 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
159 * Move socket addresses back and forth across the kernel/user
160 * divide and look after the messy bits.
163 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
164 16 for IP, 16 for IPX,
167 must be at least one bigger than
168 the AF_UNIX size (see net/unix/af_unix.c
173 * move_addr_to_kernel - copy a socket address into kernel space
174 * @uaddr: Address in user space
175 * @kaddr: Address in kernel space
176 * @ulen: Length in user space
178 * The address is copied into kernel space. If the provided address is
179 * too long an error code of -EINVAL is returned. If the copy gives
180 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
185 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
189 if (copy_from_user(kaddr
, uaddr
, ulen
))
191 return audit_sockaddr(ulen
, kaddr
);
195 * move_addr_to_user - copy an address to user space
196 * @kaddr: kernel space address
197 * @klen: length of address in kernel
198 * @uaddr: user space address
199 * @ulen: pointer to user length field
201 * The value pointed to by ulen on entry is the buffer length available.
202 * This is overwritten with the buffer space used. -EINVAL is returned
203 * if an overlong buffer is specified or a negative buffer size. -EFAULT
204 * is returned if either the buffer or the length field are not
206 * After copying the data up to the limit the user specifies, the true
207 * length of the data is written over the length limit the user
208 * specified. Zero is returned for a success.
211 int move_addr_to_user(struct sockaddr
*kaddr
, int klen
, void __user
*uaddr
,
217 err
= get_user(len
, ulen
);
222 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
225 if (audit_sockaddr(klen
, kaddr
))
227 if (copy_to_user(uaddr
, kaddr
, len
))
231 * "fromlen shall refer to the value before truncation.."
234 return __put_user(klen
, ulen
);
237 #define SOCKFS_MAGIC 0x534F434B
239 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
241 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
243 struct socket_alloc
*ei
;
245 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
248 init_waitqueue_head(&ei
->socket
.wait
);
250 ei
->socket
.fasync_list
= NULL
;
251 ei
->socket
.state
= SS_UNCONNECTED
;
252 ei
->socket
.flags
= 0;
253 ei
->socket
.ops
= NULL
;
254 ei
->socket
.sk
= NULL
;
255 ei
->socket
.file
= NULL
;
257 return &ei
->vfs_inode
;
260 static void sock_destroy_inode(struct inode
*inode
)
262 kmem_cache_free(sock_inode_cachep
,
263 container_of(inode
, struct socket_alloc
, vfs_inode
));
266 static void init_once(struct kmem_cache
*cachep
, void *foo
)
268 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
270 inode_init_once(&ei
->vfs_inode
);
273 static int init_inodecache(void)
275 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
276 sizeof(struct socket_alloc
),
278 (SLAB_HWCACHE_ALIGN
|
279 SLAB_RECLAIM_ACCOUNT
|
282 if (sock_inode_cachep
== NULL
)
287 static struct super_operations sockfs_ops
= {
288 .alloc_inode
= sock_alloc_inode
,
289 .destroy_inode
=sock_destroy_inode
,
290 .statfs
= simple_statfs
,
293 static int sockfs_get_sb(struct file_system_type
*fs_type
,
294 int flags
, const char *dev_name
, void *data
,
295 struct vfsmount
*mnt
)
297 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
301 static struct vfsmount
*sock_mnt __read_mostly
;
303 static struct file_system_type sock_fs_type
= {
305 .get_sb
= sockfs_get_sb
,
306 .kill_sb
= kill_anon_super
,
309 static int sockfs_delete_dentry(struct dentry
*dentry
)
312 * At creation time, we pretended this dentry was hashed
313 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 * At delete time, we restore the truth : not hashed.
315 * (so that dput() can proceed correctly)
317 dentry
->d_flags
|= DCACHE_UNHASHED
;
322 * sockfs_dname() is called from d_path().
324 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
326 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
327 dentry
->d_inode
->i_ino
);
330 static struct dentry_operations sockfs_dentry_operations
= {
331 .d_delete
= sockfs_delete_dentry
,
332 .d_dname
= sockfs_dname
,
336 * Obtains the first available file descriptor and sets it up for use.
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
352 static int sock_alloc_fd(struct file
**filep
)
356 fd
= get_unused_fd();
357 if (likely(fd
>= 0)) {
358 struct file
*file
= get_empty_filp();
361 if (unlikely(!file
)) {
370 static int sock_attach_fd(struct socket
*sock
, struct file
*file
)
372 struct dentry
*dentry
;
373 struct qstr name
= { .name
= "" };
375 dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &name
);
376 if (unlikely(!dentry
))
379 dentry
->d_op
= &sockfs_dentry_operations
;
381 * We dont want to push this dentry into global dentry hash table.
382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 * This permits a working /proc/$pid/fd/XXX on sockets
385 dentry
->d_flags
&= ~DCACHE_UNHASHED
;
386 d_instantiate(dentry
, SOCK_INODE(sock
));
389 init_file(file
, sock_mnt
, dentry
, FMODE_READ
| FMODE_WRITE
,
391 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
392 file
->f_flags
= O_RDWR
;
394 file
->private_data
= sock
;
399 int sock_map_fd(struct socket
*sock
)
401 struct file
*newfile
;
402 int fd
= sock_alloc_fd(&newfile
);
404 if (likely(fd
>= 0)) {
405 int err
= sock_attach_fd(sock
, newfile
);
407 if (unlikely(err
< 0)) {
412 fd_install(fd
, newfile
);
417 static struct socket
*sock_from_file(struct file
*file
, int *err
)
419 if (file
->f_op
== &socket_file_ops
)
420 return file
->private_data
; /* set in sock_map_fd */
427 * sockfd_lookup - Go from a file number to its socket slot
429 * @err: pointer to an error code return
431 * The file handle passed in is locked and the socket it is bound
432 * too is returned. If an error occurs the err pointer is overwritten
433 * with a negative errno code and NULL is returned. The function checks
434 * for both invalid handles and passing a handle which is not a socket.
436 * On a success the socket object pointer is returned.
439 struct socket
*sockfd_lookup(int fd
, int *err
)
450 sock
= sock_from_file(file
, err
);
456 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
462 file
= fget_light(fd
, fput_needed
);
464 sock
= sock_from_file(file
, err
);
467 fput_light(file
, *fput_needed
);
473 * sock_alloc - allocate a socket
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
480 static struct socket
*sock_alloc(void)
485 inode
= new_inode(sock_mnt
->mnt_sb
);
489 sock
= SOCKET_I(inode
);
491 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
492 inode
->i_uid
= current
->fsuid
;
493 inode
->i_gid
= current
->fsgid
;
495 get_cpu_var(sockets_in_use
)++;
496 put_cpu_var(sockets_in_use
);
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
506 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
511 const struct file_operations bad_sock_fops
= {
512 .owner
= THIS_MODULE
,
513 .open
= sock_no_open
,
517 * sock_release - close a socket
518 * @sock: socket to close
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
525 void sock_release(struct socket
*sock
)
528 struct module
*owner
= sock
->ops
->owner
;
530 sock
->ops
->release(sock
);
535 if (sock
->fasync_list
)
536 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
538 get_cpu_var(sockets_in_use
)--;
539 put_cpu_var(sockets_in_use
);
541 iput(SOCK_INODE(sock
));
547 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
548 struct msghdr
*msg
, size_t size
)
550 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
558 err
= security_socket_sendmsg(sock
, msg
, size
);
562 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
565 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
568 struct sock_iocb siocb
;
571 init_sync_kiocb(&iocb
, NULL
);
572 iocb
.private = &siocb
;
573 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
574 if (-EIOCBQUEUED
== ret
)
575 ret
= wait_on_sync_kiocb(&iocb
);
579 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
580 struct kvec
*vec
, size_t num
, size_t size
)
582 mm_segment_t oldfs
= get_fs();
587 * the following is safe, since for compiler definitions of kvec and
588 * iovec are identical, yielding the same in-core layout and alignment
590 msg
->msg_iov
= (struct iovec
*)vec
;
591 msg
->msg_iovlen
= num
;
592 result
= sock_sendmsg(sock
, msg
, size
);
598 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
600 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
603 ktime_t kt
= skb
->tstamp
;
605 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
607 /* Race occurred between timestamp enabling and packet
608 receiving. Fill in the current time for now. */
610 kt
= ktime_get_real();
612 tv
= ktime_to_timeval(kt
);
613 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
, sizeof(tv
), &tv
);
616 /* Race occurred between timestamp enabling and packet
617 receiving. Fill in the current time for now. */
619 kt
= ktime_get_real();
621 ts
= ktime_to_timespec(kt
);
622 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
, sizeof(ts
), &ts
);
626 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
628 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
629 struct msghdr
*msg
, size_t size
, int flags
)
632 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
640 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
644 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
647 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
648 size_t size
, int flags
)
651 struct sock_iocb siocb
;
654 init_sync_kiocb(&iocb
, NULL
);
655 iocb
.private = &siocb
;
656 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
657 if (-EIOCBQUEUED
== ret
)
658 ret
= wait_on_sync_kiocb(&iocb
);
662 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
663 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
665 mm_segment_t oldfs
= get_fs();
670 * the following is safe, since for compiler definitions of kvec and
671 * iovec are identical, yielding the same in-core layout and alignment
673 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
674 result
= sock_recvmsg(sock
, msg
, size
, flags
);
679 static void sock_aio_dtor(struct kiocb
*iocb
)
681 kfree(iocb
->private);
684 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
685 int offset
, size_t size
, loff_t
*ppos
, int more
)
690 sock
= file
->private_data
;
692 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
696 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
699 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
700 struct pipe_inode_info
*pipe
, size_t len
,
703 struct socket
*sock
= file
->private_data
;
705 if (unlikely(!sock
->ops
->splice_read
))
708 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
711 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
712 struct sock_iocb
*siocb
)
714 if (!is_sync_kiocb(iocb
)) {
715 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
718 iocb
->ki_dtor
= sock_aio_dtor
;
722 iocb
->private = siocb
;
726 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
727 struct file
*file
, const struct iovec
*iov
,
728 unsigned long nr_segs
)
730 struct socket
*sock
= file
->private_data
;
734 for (i
= 0; i
< nr_segs
; i
++)
735 size
+= iov
[i
].iov_len
;
737 msg
->msg_name
= NULL
;
738 msg
->msg_namelen
= 0;
739 msg
->msg_control
= NULL
;
740 msg
->msg_controllen
= 0;
741 msg
->msg_iov
= (struct iovec
*)iov
;
742 msg
->msg_iovlen
= nr_segs
;
743 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
745 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
748 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
749 unsigned long nr_segs
, loff_t pos
)
751 struct sock_iocb siocb
, *x
;
756 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
760 x
= alloc_sock_iocb(iocb
, &siocb
);
763 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
766 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
767 struct file
*file
, const struct iovec
*iov
,
768 unsigned long nr_segs
)
770 struct socket
*sock
= file
->private_data
;
774 for (i
= 0; i
< nr_segs
; i
++)
775 size
+= iov
[i
].iov_len
;
777 msg
->msg_name
= NULL
;
778 msg
->msg_namelen
= 0;
779 msg
->msg_control
= NULL
;
780 msg
->msg_controllen
= 0;
781 msg
->msg_iov
= (struct iovec
*)iov
;
782 msg
->msg_iovlen
= nr_segs
;
783 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
784 if (sock
->type
== SOCK_SEQPACKET
)
785 msg
->msg_flags
|= MSG_EOR
;
787 return __sock_sendmsg(iocb
, sock
, msg
, size
);
790 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
791 unsigned long nr_segs
, loff_t pos
)
793 struct sock_iocb siocb
, *x
;
798 x
= alloc_sock_iocb(iocb
, &siocb
);
802 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
806 * Atomic setting of ioctl hooks to avoid race
807 * with module unload.
810 static DEFINE_MUTEX(br_ioctl_mutex
);
811 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
) = NULL
;
813 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
815 mutex_lock(&br_ioctl_mutex
);
816 br_ioctl_hook
= hook
;
817 mutex_unlock(&br_ioctl_mutex
);
820 EXPORT_SYMBOL(brioctl_set
);
822 static DEFINE_MUTEX(vlan_ioctl_mutex
);
823 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
825 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
827 mutex_lock(&vlan_ioctl_mutex
);
828 vlan_ioctl_hook
= hook
;
829 mutex_unlock(&vlan_ioctl_mutex
);
832 EXPORT_SYMBOL(vlan_ioctl_set
);
834 static DEFINE_MUTEX(dlci_ioctl_mutex
);
835 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
837 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
839 mutex_lock(&dlci_ioctl_mutex
);
840 dlci_ioctl_hook
= hook
;
841 mutex_unlock(&dlci_ioctl_mutex
);
844 EXPORT_SYMBOL(dlci_ioctl_set
);
847 * With an ioctl, arg may well be a user mode pointer, but we don't know
848 * what to do with it - that's up to the protocol still.
851 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
855 void __user
*argp
= (void __user
*)arg
;
859 sock
= file
->private_data
;
862 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
863 err
= dev_ioctl(net
, cmd
, argp
);
865 #ifdef CONFIG_WIRELESS_EXT
866 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
867 err
= dev_ioctl(net
, cmd
, argp
);
869 #endif /* CONFIG_WIRELESS_EXT */
874 if (get_user(pid
, (int __user
*)argp
))
876 err
= f_setown(sock
->file
, pid
, 1);
880 err
= put_user(f_getown(sock
->file
),
889 request_module("bridge");
891 mutex_lock(&br_ioctl_mutex
);
893 err
= br_ioctl_hook(net
, cmd
, argp
);
894 mutex_unlock(&br_ioctl_mutex
);
899 if (!vlan_ioctl_hook
)
900 request_module("8021q");
902 mutex_lock(&vlan_ioctl_mutex
);
904 err
= vlan_ioctl_hook(net
, argp
);
905 mutex_unlock(&vlan_ioctl_mutex
);
910 if (!dlci_ioctl_hook
)
911 request_module("dlci");
913 mutex_lock(&dlci_ioctl_mutex
);
915 err
= dlci_ioctl_hook(cmd
, argp
);
916 mutex_unlock(&dlci_ioctl_mutex
);
919 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
922 * If this ioctl is unknown try to hand it down
925 if (err
== -ENOIOCTLCMD
)
926 err
= dev_ioctl(net
, cmd
, argp
);
932 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
935 struct socket
*sock
= NULL
;
937 err
= security_socket_create(family
, type
, protocol
, 1);
948 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
961 /* No kernel lock held - perfect */
962 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
967 * We can't return errors to poll, so it's either yes or no.
969 sock
= file
->private_data
;
970 return sock
->ops
->poll(file
, sock
, wait
);
973 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
975 struct socket
*sock
= file
->private_data
;
977 return sock
->ops
->mmap(file
, sock
, vma
);
980 static int sock_close(struct inode
*inode
, struct file
*filp
)
983 * It was possible the inode is NULL we were
984 * closing an unfinished socket.
988 printk(KERN_DEBUG
"sock_close: NULL inode\n");
991 sock_fasync(-1, filp
, 0);
992 sock_release(SOCKET_I(inode
));
997 * Update the socket async list
999 * Fasync_list locking strategy.
1001 * 1. fasync_list is modified only under process context socket lock
1002 * i.e. under semaphore.
1003 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1004 * or under socket lock.
1005 * 3. fasync_list can be used from softirq context, so that
1006 * modification under socket lock have to be enhanced with
1007 * write_lock_bh(&sk->sk_callback_lock).
1011 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1013 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
1014 struct socket
*sock
;
1018 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
1023 sock
= filp
->private_data
;
1033 prev
= &(sock
->fasync_list
);
1035 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
1036 if (fa
->fa_file
== filp
)
1041 write_lock_bh(&sk
->sk_callback_lock
);
1043 write_unlock_bh(&sk
->sk_callback_lock
);
1048 fna
->fa_file
= filp
;
1050 fna
->magic
= FASYNC_MAGIC
;
1051 fna
->fa_next
= sock
->fasync_list
;
1052 write_lock_bh(&sk
->sk_callback_lock
);
1053 sock
->fasync_list
= fna
;
1054 write_unlock_bh(&sk
->sk_callback_lock
);
1057 write_lock_bh(&sk
->sk_callback_lock
);
1058 *prev
= fa
->fa_next
;
1059 write_unlock_bh(&sk
->sk_callback_lock
);
1065 release_sock(sock
->sk
);
1069 /* This function may be called only under socket lock or callback_lock */
1071 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1073 if (!sock
|| !sock
->fasync_list
)
1076 case SOCK_WAKE_WAITD
:
1077 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1080 case SOCK_WAKE_SPACE
:
1081 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1086 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1089 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1094 static int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1095 struct socket
**res
, int kern
)
1098 struct socket
*sock
;
1099 const struct net_proto_family
*pf
;
1102 * Check protocol is in range
1104 if (family
< 0 || family
>= NPROTO
)
1105 return -EAFNOSUPPORT
;
1106 if (type
< 0 || type
>= SOCK_MAX
)
1111 This uglymoron is moved from INET layer to here to avoid
1112 deadlock in module load.
1114 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1118 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1124 err
= security_socket_create(family
, type
, protocol
, kern
);
1129 * Allocate the socket and allow the family to set things up. if
1130 * the protocol is 0, the family is instructed to select an appropriate
1133 sock
= sock_alloc();
1135 if (net_ratelimit())
1136 printk(KERN_WARNING
"socket: no more sockets\n");
1137 return -ENFILE
; /* Not exactly a match, but its the
1138 closest posix thing */
1143 #if defined(CONFIG_KMOD)
1144 /* Attempt to load a protocol module if the find failed.
1146 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1147 * requested real, full-featured networking support upon configuration.
1148 * Otherwise module support will break!
1150 if (net_families
[family
] == NULL
)
1151 request_module("net-pf-%d", family
);
1155 pf
= rcu_dereference(net_families
[family
]);
1156 err
= -EAFNOSUPPORT
;
1161 * We will call the ->create function, that possibly is in a loadable
1162 * module, so we have to bump that loadable module refcnt first.
1164 if (!try_module_get(pf
->owner
))
1167 /* Now protected by module ref count */
1170 err
= pf
->create(net
, sock
, protocol
);
1172 goto out_module_put
;
1175 * Now to bump the refcnt of the [loadable] module that owns this
1176 * socket at sock_release time we decrement its refcnt.
1178 if (!try_module_get(sock
->ops
->owner
))
1179 goto out_module_busy
;
1182 * Now that we're done with the ->create function, the [loadable]
1183 * module can have its refcnt decremented
1185 module_put(pf
->owner
);
1186 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1188 goto out_sock_release
;
1194 err
= -EAFNOSUPPORT
;
1197 module_put(pf
->owner
);
1204 goto out_sock_release
;
1207 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1209 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1212 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1214 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1217 asmlinkage
long sys_socket(int family
, int type
, int protocol
)
1220 struct socket
*sock
;
1222 retval
= sock_create(family
, type
, protocol
, &sock
);
1226 retval
= sock_map_fd(sock
);
1231 /* It may be already another descriptor 8) Not kernel problem. */
1240 * Create a pair of connected sockets.
1243 asmlinkage
long sys_socketpair(int family
, int type
, int protocol
,
1244 int __user
*usockvec
)
1246 struct socket
*sock1
, *sock2
;
1248 struct file
*newfile1
, *newfile2
;
1251 * Obtain the first socket and check if the underlying protocol
1252 * supports the socketpair call.
1255 err
= sock_create(family
, type
, protocol
, &sock1
);
1259 err
= sock_create(family
, type
, protocol
, &sock2
);
1263 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1265 goto out_release_both
;
1267 fd1
= sock_alloc_fd(&newfile1
);
1268 if (unlikely(fd1
< 0)) {
1270 goto out_release_both
;
1273 fd2
= sock_alloc_fd(&newfile2
);
1274 if (unlikely(fd2
< 0)) {
1278 goto out_release_both
;
1281 err
= sock_attach_fd(sock1
, newfile1
);
1282 if (unlikely(err
< 0)) {
1286 err
= sock_attach_fd(sock2
, newfile2
);
1287 if (unlikely(err
< 0)) {
1292 err
= audit_fd_pair(fd1
, fd2
);
1299 fd_install(fd1
, newfile1
);
1300 fd_install(fd2
, newfile2
);
1301 /* fd1 and fd2 may be already another descriptors.
1302 * Not kernel problem.
1305 err
= put_user(fd1
, &usockvec
[0]);
1307 err
= put_user(fd2
, &usockvec
[1]);
1316 sock_release(sock2
);
1318 sock_release(sock1
);
1324 sock_release(sock1
);
1327 sock_release(sock2
);
1335 * Bind a name to a socket. Nothing much to do here since it's
1336 * the protocol's responsibility to handle the local address.
1338 * We move the socket address to kernel space before we call
1339 * the protocol layer (having also checked the address is ok).
1342 asmlinkage
long sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1344 struct socket
*sock
;
1345 struct sockaddr_storage address
;
1346 int err
, fput_needed
;
1348 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1350 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1352 err
= security_socket_bind(sock
,
1353 (struct sockaddr
*)&address
,
1356 err
= sock
->ops
->bind(sock
,
1360 fput_light(sock
->file
, fput_needed
);
1366 * Perform a listen. Basically, we allow the protocol to do anything
1367 * necessary for a listen, and if that works, we mark the socket as
1368 * ready for listening.
1371 asmlinkage
long sys_listen(int fd
, int backlog
)
1373 struct socket
*sock
;
1374 int err
, fput_needed
;
1377 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1379 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1380 if ((unsigned)backlog
> somaxconn
)
1381 backlog
= somaxconn
;
1383 err
= security_socket_listen(sock
, backlog
);
1385 err
= sock
->ops
->listen(sock
, backlog
);
1387 fput_light(sock
->file
, fput_needed
);
1393 * For accept, we attempt to create a new socket, set up the link
1394 * with the client, wake up the client, then return the new
1395 * connected fd. We collect the address of the connector in kernel
1396 * space and move it to user at the very end. This is unclean because
1397 * we open the socket then return an error.
1399 * 1003.1g adds the ability to recvmsg() to query connection pending
1400 * status to recvmsg. We need to add that support in a way thats
1401 * clean when we restucture accept also.
1404 asmlinkage
long sys_accept(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1405 int __user
*upeer_addrlen
)
1407 struct socket
*sock
, *newsock
;
1408 struct file
*newfile
;
1409 int err
, len
, newfd
, fput_needed
;
1410 struct sockaddr_storage address
;
1412 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1417 if (!(newsock
= sock_alloc()))
1420 newsock
->type
= sock
->type
;
1421 newsock
->ops
= sock
->ops
;
1424 * We don't need try_module_get here, as the listening socket (sock)
1425 * has the protocol module (sock->ops->owner) held.
1427 __module_get(newsock
->ops
->owner
);
1429 newfd
= sock_alloc_fd(&newfile
);
1430 if (unlikely(newfd
< 0)) {
1432 sock_release(newsock
);
1436 err
= sock_attach_fd(newsock
, newfile
);
1440 err
= security_socket_accept(sock
, newsock
);
1444 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1448 if (upeer_sockaddr
) {
1449 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1451 err
= -ECONNABORTED
;
1454 err
= move_addr_to_user((struct sockaddr
*)&address
,
1455 len
, upeer_sockaddr
, upeer_addrlen
);
1460 /* File flags are not inherited via accept() unlike another OSes. */
1462 fd_install(newfd
, newfile
);
1465 security_socket_post_accept(sock
, newsock
);
1468 fput_light(sock
->file
, fput_needed
);
1472 sock_release(newsock
);
1474 put_unused_fd(newfd
);
1478 put_unused_fd(newfd
);
1483 * Attempt to connect to a socket with the server address. The address
1484 * is in user space so we verify it is OK and move it to kernel space.
1486 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1489 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1490 * other SEQPACKET protocols that take time to connect() as it doesn't
1491 * include the -EINPROGRESS status for such sockets.
1494 asmlinkage
long sys_connect(int fd
, struct sockaddr __user
*uservaddr
,
1497 struct socket
*sock
;
1498 struct sockaddr_storage address
;
1499 int err
, fput_needed
;
1501 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1504 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1509 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1513 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1514 sock
->file
->f_flags
);
1516 fput_light(sock
->file
, fput_needed
);
1522 * Get the local address ('name') of a socket object. Move the obtained
1523 * name to user space.
1526 asmlinkage
long sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1527 int __user
*usockaddr_len
)
1529 struct socket
*sock
;
1530 struct sockaddr_storage address
;
1531 int len
, err
, fput_needed
;
1533 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1537 err
= security_socket_getsockname(sock
);
1541 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1544 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1547 fput_light(sock
->file
, fput_needed
);
1553 * Get the remote address ('name') of a socket object. Move the obtained
1554 * name to user space.
1557 asmlinkage
long sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1558 int __user
*usockaddr_len
)
1560 struct socket
*sock
;
1561 struct sockaddr_storage address
;
1562 int len
, err
, fput_needed
;
1564 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1566 err
= security_socket_getpeername(sock
);
1568 fput_light(sock
->file
, fput_needed
);
1573 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1576 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1578 fput_light(sock
->file
, fput_needed
);
1584 * Send a datagram to a given address. We move the address into kernel
1585 * space and check the user space data area is readable before invoking
1589 asmlinkage
long sys_sendto(int fd
, void __user
*buff
, size_t len
,
1590 unsigned flags
, struct sockaddr __user
*addr
,
1593 struct socket
*sock
;
1594 struct sockaddr_storage address
;
1600 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1604 iov
.iov_base
= buff
;
1606 msg
.msg_name
= NULL
;
1609 msg
.msg_control
= NULL
;
1610 msg
.msg_controllen
= 0;
1611 msg
.msg_namelen
= 0;
1613 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1616 msg
.msg_name
= (struct sockaddr
*)&address
;
1617 msg
.msg_namelen
= addr_len
;
1619 if (sock
->file
->f_flags
& O_NONBLOCK
)
1620 flags
|= MSG_DONTWAIT
;
1621 msg
.msg_flags
= flags
;
1622 err
= sock_sendmsg(sock
, &msg
, len
);
1625 fput_light(sock
->file
, fput_needed
);
1631 * Send a datagram down a socket.
1634 asmlinkage
long sys_send(int fd
, void __user
*buff
, size_t len
, unsigned flags
)
1636 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1640 * Receive a frame from the socket and optionally record the address of the
1641 * sender. We verify the buffers are writable and if needed move the
1642 * sender address from kernel to user space.
1645 asmlinkage
long sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
,
1646 unsigned flags
, struct sockaddr __user
*addr
,
1647 int __user
*addr_len
)
1649 struct socket
*sock
;
1652 struct sockaddr_storage address
;
1656 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1660 msg
.msg_control
= NULL
;
1661 msg
.msg_controllen
= 0;
1665 iov
.iov_base
= ubuf
;
1666 msg
.msg_name
= (struct sockaddr
*)&address
;
1667 msg
.msg_namelen
= sizeof(address
);
1668 if (sock
->file
->f_flags
& O_NONBLOCK
)
1669 flags
|= MSG_DONTWAIT
;
1670 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1672 if (err
>= 0 && addr
!= NULL
) {
1673 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1674 msg
.msg_namelen
, addr
, addr_len
);
1679 fput_light(sock
->file
, fput_needed
);
1685 * Receive a datagram from a socket.
1688 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1691 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1695 * Set a socket option. Because we don't know the option lengths we have
1696 * to pass the user mode parameter for the protocols to sort out.
1699 asmlinkage
long sys_setsockopt(int fd
, int level
, int optname
,
1700 char __user
*optval
, int optlen
)
1702 int err
, fput_needed
;
1703 struct socket
*sock
;
1708 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1710 err
= security_socket_setsockopt(sock
, level
, optname
);
1714 if (level
== SOL_SOCKET
)
1716 sock_setsockopt(sock
, level
, optname
, optval
,
1720 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1723 fput_light(sock
->file
, fput_needed
);
1729 * Get a socket option. Because we don't know the option lengths we have
1730 * to pass a user mode parameter for the protocols to sort out.
1733 asmlinkage
long sys_getsockopt(int fd
, int level
, int optname
,
1734 char __user
*optval
, int __user
*optlen
)
1736 int err
, fput_needed
;
1737 struct socket
*sock
;
1739 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1741 err
= security_socket_getsockopt(sock
, level
, optname
);
1745 if (level
== SOL_SOCKET
)
1747 sock_getsockopt(sock
, level
, optname
, optval
,
1751 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1754 fput_light(sock
->file
, fput_needed
);
1760 * Shutdown a socket.
1763 asmlinkage
long sys_shutdown(int fd
, int how
)
1765 int err
, fput_needed
;
1766 struct socket
*sock
;
1768 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1770 err
= security_socket_shutdown(sock
, how
);
1772 err
= sock
->ops
->shutdown(sock
, how
);
1773 fput_light(sock
->file
, fput_needed
);
1778 /* A couple of helpful macros for getting the address of the 32/64 bit
1779 * fields which are the same type (int / unsigned) on our platforms.
1781 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1782 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1783 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1786 * BSD sendmsg interface
1789 asmlinkage
long sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
1791 struct compat_msghdr __user
*msg_compat
=
1792 (struct compat_msghdr __user
*)msg
;
1793 struct socket
*sock
;
1794 struct sockaddr_storage address
;
1795 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1796 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1797 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1798 /* 20 is size of ipv6_pktinfo */
1799 unsigned char *ctl_buf
= ctl
;
1800 struct msghdr msg_sys
;
1801 int err
, ctl_len
, iov_size
, total_len
;
1805 if (MSG_CMSG_COMPAT
& flags
) {
1806 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1809 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1812 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1816 /* do not move before msg_sys is valid */
1818 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1821 /* Check whether to allocate the iovec area */
1823 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1824 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1825 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1830 /* This will also move the address data into kernel space */
1831 if (MSG_CMSG_COMPAT
& flags
) {
1832 err
= verify_compat_iovec(&msg_sys
, iov
,
1833 (struct sockaddr
*)&address
,
1836 err
= verify_iovec(&msg_sys
, iov
,
1837 (struct sockaddr
*)&address
,
1845 if (msg_sys
.msg_controllen
> INT_MAX
)
1847 ctl_len
= msg_sys
.msg_controllen
;
1848 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1850 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1854 ctl_buf
= msg_sys
.msg_control
;
1855 ctl_len
= msg_sys
.msg_controllen
;
1856 } else if (ctl_len
) {
1857 if (ctl_len
> sizeof(ctl
)) {
1858 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1859 if (ctl_buf
== NULL
)
1864 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1865 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1866 * checking falls down on this.
1868 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1871 msg_sys
.msg_control
= ctl_buf
;
1873 msg_sys
.msg_flags
= flags
;
1875 if (sock
->file
->f_flags
& O_NONBLOCK
)
1876 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1877 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1881 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1883 if (iov
!= iovstack
)
1884 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1886 fput_light(sock
->file
, fput_needed
);
1892 * BSD recvmsg interface
1895 asmlinkage
long sys_recvmsg(int fd
, struct msghdr __user
*msg
,
1898 struct compat_msghdr __user
*msg_compat
=
1899 (struct compat_msghdr __user
*)msg
;
1900 struct socket
*sock
;
1901 struct iovec iovstack
[UIO_FASTIOV
];
1902 struct iovec
*iov
= iovstack
;
1903 struct msghdr msg_sys
;
1904 unsigned long cmsg_ptr
;
1905 int err
, iov_size
, total_len
, len
;
1908 /* kernel mode address */
1909 struct sockaddr_storage addr
;
1911 /* user mode address pointers */
1912 struct sockaddr __user
*uaddr
;
1913 int __user
*uaddr_len
;
1915 if (MSG_CMSG_COMPAT
& flags
) {
1916 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1919 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1922 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1927 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1930 /* Check whether to allocate the iovec area */
1932 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1933 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1934 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1940 * Save the user-mode address (verify_iovec will change the
1941 * kernel msghdr to use the kernel address space)
1944 uaddr
= (__force
void __user
*)msg_sys
.msg_name
;
1945 uaddr_len
= COMPAT_NAMELEN(msg
);
1946 if (MSG_CMSG_COMPAT
& flags
) {
1947 err
= verify_compat_iovec(&msg_sys
, iov
,
1948 (struct sockaddr
*)&addr
,
1951 err
= verify_iovec(&msg_sys
, iov
,
1952 (struct sockaddr
*)&addr
,
1958 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
1959 msg_sys
.msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
1961 if (sock
->file
->f_flags
& O_NONBLOCK
)
1962 flags
|= MSG_DONTWAIT
;
1963 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
1968 if (uaddr
!= NULL
) {
1969 err
= move_addr_to_user((struct sockaddr
*)&addr
,
1970 msg_sys
.msg_namelen
, uaddr
,
1975 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
1979 if (MSG_CMSG_COMPAT
& flags
)
1980 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1981 &msg_compat
->msg_controllen
);
1983 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1984 &msg
->msg_controllen
);
1990 if (iov
!= iovstack
)
1991 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1993 fput_light(sock
->file
, fput_needed
);
1998 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2000 /* Argument list sizes for sys_socketcall */
2001 #define AL(x) ((x) * sizeof(unsigned long))
2002 static const unsigned char nargs
[18]={
2003 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2004 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2005 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
2011 * System call vectors.
2013 * Argument checking cleaned up. Saved 20% in size.
2014 * This function doesn't need to set the kernel lock because
2015 * it is set by the callees.
2018 asmlinkage
long sys_socketcall(int call
, unsigned long __user
*args
)
2021 unsigned long a0
, a1
;
2024 if (call
< 1 || call
> SYS_RECVMSG
)
2027 /* copy_from_user should be SMP safe. */
2028 if (copy_from_user(a
, args
, nargs
[call
]))
2031 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2040 err
= sys_socket(a0
, a1
, a
[2]);
2043 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2046 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2049 err
= sys_listen(a0
, a1
);
2053 sys_accept(a0
, (struct sockaddr __user
*)a1
,
2054 (int __user
*)a
[2]);
2056 case SYS_GETSOCKNAME
:
2058 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2059 (int __user
*)a
[2]);
2061 case SYS_GETPEERNAME
:
2063 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2064 (int __user
*)a
[2]);
2066 case SYS_SOCKETPAIR
:
2067 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2070 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2073 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2074 (struct sockaddr __user
*)a
[4], a
[5]);
2077 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2080 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2081 (struct sockaddr __user
*)a
[4],
2082 (int __user
*)a
[5]);
2085 err
= sys_shutdown(a0
, a1
);
2087 case SYS_SETSOCKOPT
:
2088 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2090 case SYS_GETSOCKOPT
:
2092 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2093 (int __user
*)a
[4]);
2096 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2099 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2108 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2111 * sock_register - add a socket protocol handler
2112 * @ops: description of protocol
2114 * This function is called by a protocol handler that wants to
2115 * advertise its address family, and have it linked into the
2116 * socket interface. The value ops->family coresponds to the
2117 * socket system call protocol family.
2119 int sock_register(const struct net_proto_family
*ops
)
2123 if (ops
->family
>= NPROTO
) {
2124 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2129 spin_lock(&net_family_lock
);
2130 if (net_families
[ops
->family
])
2133 net_families
[ops
->family
] = ops
;
2136 spin_unlock(&net_family_lock
);
2138 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2143 * sock_unregister - remove a protocol handler
2144 * @family: protocol family to remove
2146 * This function is called by a protocol handler that wants to
2147 * remove its address family, and have it unlinked from the
2148 * new socket creation.
2150 * If protocol handler is a module, then it can use module reference
2151 * counts to protect against new references. If protocol handler is not
2152 * a module then it needs to provide its own protection in
2153 * the ops->create routine.
2155 void sock_unregister(int family
)
2157 BUG_ON(family
< 0 || family
>= NPROTO
);
2159 spin_lock(&net_family_lock
);
2160 net_families
[family
] = NULL
;
2161 spin_unlock(&net_family_lock
);
2165 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2168 static int __init
sock_init(void)
2171 * Initialize sock SLAB cache.
2177 * Initialize skbuff SLAB cache
2182 * Initialize the protocols module.
2186 register_filesystem(&sock_fs_type
);
2187 sock_mnt
= kern_mount(&sock_fs_type
);
2189 /* The real protocol initialization is performed in later initcalls.
2192 #ifdef CONFIG_NETFILTER
2199 core_initcall(sock_init
); /* early initcall */
2201 #ifdef CONFIG_PROC_FS
2202 void socket_seq_show(struct seq_file
*seq
)
2207 for_each_possible_cpu(cpu
)
2208 counter
+= per_cpu(sockets_in_use
, cpu
);
2210 /* It can be negative, by the way. 8) */
2214 seq_printf(seq
, "sockets: used %d\n", counter
);
2216 #endif /* CONFIG_PROC_FS */
2218 #ifdef CONFIG_COMPAT
2219 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2222 struct socket
*sock
= file
->private_data
;
2223 int ret
= -ENOIOCTLCMD
;
2230 if (sock
->ops
->compat_ioctl
)
2231 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2233 if (ret
== -ENOIOCTLCMD
&&
2234 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
2235 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
2241 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2243 return sock
->ops
->bind(sock
, addr
, addrlen
);
2246 int kernel_listen(struct socket
*sock
, int backlog
)
2248 return sock
->ops
->listen(sock
, backlog
);
2251 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2253 struct sock
*sk
= sock
->sk
;
2256 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2261 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2263 sock_release(*newsock
);
2268 (*newsock
)->ops
= sock
->ops
;
2274 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2277 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2280 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2283 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2286 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2289 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2292 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2293 char *optval
, int *optlen
)
2295 mm_segment_t oldfs
= get_fs();
2299 if (level
== SOL_SOCKET
)
2300 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2302 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2308 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2309 char *optval
, int optlen
)
2311 mm_segment_t oldfs
= get_fs();
2315 if (level
== SOL_SOCKET
)
2316 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2318 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2324 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2325 size_t size
, int flags
)
2327 if (sock
->ops
->sendpage
)
2328 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2330 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2333 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2335 mm_segment_t oldfs
= get_fs();
2339 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2345 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
2347 return sock
->ops
->shutdown(sock
, how
);
2350 EXPORT_SYMBOL(sock_create
);
2351 EXPORT_SYMBOL(sock_create_kern
);
2352 EXPORT_SYMBOL(sock_create_lite
);
2353 EXPORT_SYMBOL(sock_map_fd
);
2354 EXPORT_SYMBOL(sock_recvmsg
);
2355 EXPORT_SYMBOL(sock_register
);
2356 EXPORT_SYMBOL(sock_release
);
2357 EXPORT_SYMBOL(sock_sendmsg
);
2358 EXPORT_SYMBOL(sock_unregister
);
2359 EXPORT_SYMBOL(sock_wake_async
);
2360 EXPORT_SYMBOL(sockfd_lookup
);
2361 EXPORT_SYMBOL(kernel_sendmsg
);
2362 EXPORT_SYMBOL(kernel_recvmsg
);
2363 EXPORT_SYMBOL(kernel_bind
);
2364 EXPORT_SYMBOL(kernel_listen
);
2365 EXPORT_SYMBOL(kernel_accept
);
2366 EXPORT_SYMBOL(kernel_connect
);
2367 EXPORT_SYMBOL(kernel_getsockname
);
2368 EXPORT_SYMBOL(kernel_getpeername
);
2369 EXPORT_SYMBOL(kernel_getsockopt
);
2370 EXPORT_SYMBOL(kernel_setsockopt
);
2371 EXPORT_SYMBOL(kernel_sendpage
);
2372 EXPORT_SYMBOL(kernel_sock_ioctl
);
2373 EXPORT_SYMBOL(kernel_sock_shutdown
);