2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2006 Macq Electronique SA.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/ptrace.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
47 #include <asm/uaccess.h>
49 #include <asm/pgtable.h>
50 #include <asm/cacheflush.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
59 #include <asm/8xx_immap.h>
60 #include <asm/mpc8xx.h>
64 #if defined(CONFIG_FEC2)
65 #define FEC_MAX_PORTS 2
67 #define FEC_MAX_PORTS 1
70 #if defined(CONFIG_FADS) || defined(CONFIG_RPXCLASSIC) || defined(CONFIG_M5272)
71 #define HAVE_mii_link_interrupt
75 * Define the fixed address of the FEC hardware.
77 static unsigned int fec_hw
[] = {
78 #if defined(CONFIG_M5272)
80 #elif defined(CONFIG_M527x)
83 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
85 #elif defined(CONFIG_M520x)
87 #elif defined(CONFIG_M532x)
88 (MCF_MBAR
+0xfc030000),
90 &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
),
94 static unsigned char fec_mac_default
[] = {
95 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
99 * Some hardware gets it MAC address out of local flash memory.
100 * if this is non-zero then assume it is the address to get MAC from.
102 #if defined(CONFIG_NETtel)
103 #define FEC_FLASHMAC 0xf0006006
104 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
105 #define FEC_FLASHMAC 0xf0006000
106 #elif defined(CONFIG_CANCam)
107 #define FEC_FLASHMAC 0xf0020000
108 #elif defined (CONFIG_M5272C3)
109 #define FEC_FLASHMAC (0xffe04000 + 4)
110 #elif defined(CONFIG_MOD5272)
111 #define FEC_FLASHMAC 0xffc0406b
113 #define FEC_FLASHMAC 0
116 /* Forward declarations of some structures to support different PHYs
121 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
128 const phy_cmd_t
*config
;
129 const phy_cmd_t
*startup
;
130 const phy_cmd_t
*ack_int
;
131 const phy_cmd_t
*shutdown
;
134 /* The number of Tx and Rx buffers. These are allocated from the page
135 * pool. The code may assume these are power of two, so it it best
136 * to keep them that size.
137 * We don't need to allocate pages for the transmitter. We just use
138 * the skbuffer directly.
140 #define FEC_ENET_RX_PAGES 8
141 #define FEC_ENET_RX_FRSIZE 2048
142 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
143 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
144 #define FEC_ENET_TX_FRSIZE 2048
145 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
146 #define TX_RING_SIZE 16 /* Must be power of two */
147 #define TX_RING_MOD_MASK 15 /* for this to work */
149 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
150 #error "FEC: descriptor ring size constants too large"
153 /* Interrupt events/masks.
155 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
156 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
157 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
158 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
159 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
160 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
161 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
162 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
163 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
164 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
166 /* The FEC stores dest/src/type, data, and checksum for receive packets.
168 #define PKT_MAXBUF_SIZE 1518
169 #define PKT_MINBUF_SIZE 64
170 #define PKT_MAXBLR_SIZE 1520
174 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
175 * size bits. Other FEC hardware does not, so we need to take that into
176 * account when setting it.
178 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
179 defined(CONFIG_M520x) || defined(CONFIG_M532x)
180 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
182 #define OPT_FRAME_SIZE 0
185 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
186 * tx_bd_base always point to the base of the buffer descriptors. The
187 * cur_rx and cur_tx point to the currently available buffer.
188 * The dirty_tx tracks the current buffer that is being sent by the
189 * controller. The cur_tx and dirty_tx are equal under both completely
190 * empty and completely full conditions. The empty/ready indicator in
191 * the buffer descriptor determines the actual condition.
193 struct fec_enet_private
{
194 /* Hardware registers of the FEC device */
197 struct net_device
*netdev
;
199 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
200 unsigned char *tx_bounce
[TX_RING_SIZE
];
201 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
205 /* CPM dual port RAM relative addresses.
207 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
209 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
210 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
212 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
214 /* hold while accessing the mii_list_t() elements */
221 phy_info_t
const *phy
;
222 struct work_struct phy_task
;
225 uint mii_phy_task_queued
;
236 static int fec_enet_open(struct net_device
*dev
);
237 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
238 static void fec_enet_mii(struct net_device
*dev
);
239 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
240 static void fec_enet_tx(struct net_device
*dev
);
241 static void fec_enet_rx(struct net_device
*dev
);
242 static int fec_enet_close(struct net_device
*dev
);
243 static void set_multicast_list(struct net_device
*dev
);
244 static void fec_restart(struct net_device
*dev
, int duplex
);
245 static void fec_stop(struct net_device
*dev
);
246 static void fec_set_mac_address(struct net_device
*dev
);
249 /* MII processing. We keep this as simple as possible. Requests are
250 * placed on the list (if there is room). When the request is finished
251 * by the MII, an optional function may be called.
253 typedef struct mii_list
{
255 void (*mii_func
)(uint val
, struct net_device
*dev
);
256 struct mii_list
*mii_next
;
260 static mii_list_t mii_cmds
[NMII
];
261 static mii_list_t
*mii_free
;
262 static mii_list_t
*mii_head
;
263 static mii_list_t
*mii_tail
;
265 static int mii_queue(struct net_device
*dev
, int request
,
266 void (*func
)(uint
, struct net_device
*));
268 /* Make MII read/write commands for the FEC.
270 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
271 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
275 /* Transmitter timeout.
277 #define TX_TIMEOUT (2*HZ)
279 /* Register definitions for the PHY.
282 #define MII_REG_CR 0 /* Control Register */
283 #define MII_REG_SR 1 /* Status Register */
284 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
285 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
286 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
287 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
288 #define MII_REG_ANER 6 /* A-N Expansion Register */
289 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
290 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
292 /* values for phy_status */
294 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
295 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
296 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
297 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
298 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
299 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
300 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
302 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
303 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
304 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
305 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
306 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
307 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
308 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
309 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
313 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
315 struct fec_enet_private
*fep
;
316 volatile fec_t
*fecp
;
318 unsigned short status
;
321 fep
= netdev_priv(dev
);
322 fecp
= (volatile fec_t
*)dev
->base_addr
;
325 /* Link is down or autonegotiation is in progress. */
329 spin_lock_irqsave(&fep
->hw_lock
, flags
);
330 /* Fill in a Tx ring entry */
333 status
= bdp
->cbd_sc
;
334 #ifndef final_version
335 if (status
& BD_ENET_TX_READY
) {
336 /* Ooops. All transmit buffers are full. Bail out.
337 * This should not happen, since dev->tbusy should be set.
339 printk("%s: tx queue full!.\n", dev
->name
);
340 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
345 /* Clear all of the status flags.
347 status
&= ~BD_ENET_TX_STATS
;
349 /* Set buffer length and buffer pointer.
351 bdp
->cbd_bufaddr
= __pa(skb
->data
);
352 bdp
->cbd_datlen
= skb
->len
;
355 * On some FEC implementations data must be aligned on
356 * 4-byte boundaries. Use bounce buffers to copy data
357 * and get it aligned. Ugh.
359 if (bdp
->cbd_bufaddr
& 0x3) {
361 index
= bdp
- fep
->tx_bd_base
;
362 memcpy(fep
->tx_bounce
[index
], (void *) bdp
->cbd_bufaddr
, bdp
->cbd_datlen
);
363 bdp
->cbd_bufaddr
= __pa(fep
->tx_bounce
[index
]);
368 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
370 dev
->stats
.tx_bytes
+= skb
->len
;
371 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
373 /* Push the data cache so the CPM does not get stale memory
376 flush_dcache_range((unsigned long)skb
->data
,
377 (unsigned long)skb
->data
+ skb
->len
);
379 /* Send it on its way. Tell FEC it's ready, interrupt when done,
380 * it's the last BD of the frame, and to put the CRC on the end.
383 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
384 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
385 bdp
->cbd_sc
= status
;
387 dev
->trans_start
= jiffies
;
389 /* Trigger transmission start */
390 fecp
->fec_x_des_active
= 0;
392 /* If this was the last BD in the ring, start at the beginning again.
394 if (status
& BD_ENET_TX_WRAP
) {
395 bdp
= fep
->tx_bd_base
;
400 if (bdp
== fep
->dirty_tx
) {
402 netif_stop_queue(dev
);
405 fep
->cur_tx
= (cbd_t
*)bdp
;
407 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
413 fec_timeout(struct net_device
*dev
)
415 struct fec_enet_private
*fep
= netdev_priv(dev
);
417 printk("%s: transmit timed out.\n", dev
->name
);
418 dev
->stats
.tx_errors
++;
419 #ifndef final_version
424 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
425 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
426 (unsigned long)fep
->dirty_tx
,
427 (unsigned long)fep
->cur_rx
);
429 bdp
= fep
->tx_bd_base
;
430 printk(" tx: %u buffers\n", TX_RING_SIZE
);
431 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
432 printk(" %08x: %04x %04x %08x\n",
436 (int) bdp
->cbd_bufaddr
);
440 bdp
= fep
->rx_bd_base
;
441 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE
);
442 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
443 printk(" %08x: %04x %04x %08x\n",
447 (int) bdp
->cbd_bufaddr
);
452 fec_restart(dev
, fep
->full_duplex
);
453 netif_wake_queue(dev
);
456 /* The interrupt handler.
457 * This is called from the MPC core interrupt.
460 fec_enet_interrupt(int irq
, void * dev_id
)
462 struct net_device
*dev
= dev_id
;
463 volatile fec_t
*fecp
;
465 irqreturn_t ret
= IRQ_NONE
;
467 fecp
= (volatile fec_t
*)dev
->base_addr
;
469 /* Get the interrupt events that caused us to be here.
472 int_events
= fecp
->fec_ievent
;
473 fecp
->fec_ievent
= int_events
;
475 /* Handle receive event in its own function.
477 if (int_events
& FEC_ENET_RXF
) {
482 /* Transmit OK, or non-fatal error. Update the buffer
483 descriptors. FEC handles all errors, we just discover
484 them as part of the transmit process.
486 if (int_events
& FEC_ENET_TXF
) {
491 if (int_events
& FEC_ENET_MII
) {
496 } while (int_events
);
503 fec_enet_tx(struct net_device
*dev
)
505 struct fec_enet_private
*fep
;
507 unsigned short status
;
510 fep
= netdev_priv(dev
);
511 spin_lock_irq(&fep
->hw_lock
);
514 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
515 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
517 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
518 /* Check for errors. */
519 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
520 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
522 dev
->stats
.tx_errors
++;
523 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
524 dev
->stats
.tx_heartbeat_errors
++;
525 if (status
& BD_ENET_TX_LC
) /* Late collision */
526 dev
->stats
.tx_window_errors
++;
527 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
528 dev
->stats
.tx_aborted_errors
++;
529 if (status
& BD_ENET_TX_UN
) /* Underrun */
530 dev
->stats
.tx_fifo_errors
++;
531 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
532 dev
->stats
.tx_carrier_errors
++;
534 dev
->stats
.tx_packets
++;
537 #ifndef final_version
538 if (status
& BD_ENET_TX_READY
)
539 printk("HEY! Enet xmit interrupt and TX_READY.\n");
541 /* Deferred means some collisions occurred during transmit,
542 * but we eventually sent the packet OK.
544 if (status
& BD_ENET_TX_DEF
)
545 dev
->stats
.collisions
++;
547 /* Free the sk buffer associated with this last transmit.
549 dev_kfree_skb_any(skb
);
550 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
551 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
553 /* Update pointer to next buffer descriptor to be transmitted.
555 if (status
& BD_ENET_TX_WRAP
)
556 bdp
= fep
->tx_bd_base
;
560 /* Since we have freed up a buffer, the ring is no longer
565 if (netif_queue_stopped(dev
))
566 netif_wake_queue(dev
);
569 fep
->dirty_tx
= (cbd_t
*)bdp
;
570 spin_unlock_irq(&fep
->hw_lock
);
574 /* During a receive, the cur_rx points to the current incoming buffer.
575 * When we update through the ring, if the next incoming buffer has
576 * not been given to the system, we just set the empty indicator,
577 * effectively tossing the packet.
580 fec_enet_rx(struct net_device
*dev
)
582 struct fec_enet_private
*fep
;
583 volatile fec_t
*fecp
;
585 unsigned short status
;
594 fep
= netdev_priv(dev
);
595 fecp
= (volatile fec_t
*)dev
->base_addr
;
597 spin_lock_irq(&fep
->hw_lock
);
599 /* First, grab all of the stats for the incoming packet.
600 * These get messed up if we get called due to a busy condition.
604 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
606 #ifndef final_version
607 /* Since we have allocated space to hold a complete frame,
608 * the last indicator should be set.
610 if ((status
& BD_ENET_RX_LAST
) == 0)
611 printk("FEC ENET: rcv is not +last\n");
615 goto rx_processing_done
;
617 /* Check for errors. */
618 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
619 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
620 dev
->stats
.rx_errors
++;
621 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
622 /* Frame too long or too short. */
623 dev
->stats
.rx_length_errors
++;
625 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
626 dev
->stats
.rx_frame_errors
++;
627 if (status
& BD_ENET_RX_CR
) /* CRC Error */
628 dev
->stats
.rx_crc_errors
++;
629 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
630 dev
->stats
.rx_fifo_errors
++;
633 /* Report late collisions as a frame error.
634 * On this error, the BD is closed, but we don't know what we
635 * have in the buffer. So, just drop this frame on the floor.
637 if (status
& BD_ENET_RX_CL
) {
638 dev
->stats
.rx_errors
++;
639 dev
->stats
.rx_frame_errors
++;
640 goto rx_processing_done
;
643 /* Process the incoming frame.
645 dev
->stats
.rx_packets
++;
646 pkt_len
= bdp
->cbd_datlen
;
647 dev
->stats
.rx_bytes
+= pkt_len
;
648 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
650 /* This does 16 byte alignment, exactly what we need.
651 * The packet length includes FCS, but we don't want to
652 * include that when passing upstream as it messes up
653 * bridging applications.
655 skb
= dev_alloc_skb(pkt_len
-4);
658 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
659 dev
->stats
.rx_dropped
++;
661 skb_put(skb
,pkt_len
-4); /* Make room */
662 skb_copy_to_linear_data(skb
, data
, pkt_len
-4);
663 skb
->protocol
=eth_type_trans(skb
,dev
);
668 /* Clear the status flags for this buffer.
670 status
&= ~BD_ENET_RX_STATS
;
672 /* Mark the buffer empty.
674 status
|= BD_ENET_RX_EMPTY
;
675 bdp
->cbd_sc
= status
;
677 /* Update BD pointer to next entry.
679 if (status
& BD_ENET_RX_WRAP
)
680 bdp
= fep
->rx_bd_base
;
685 /* Doing this here will keep the FEC running while we process
686 * incoming frames. On a heavily loaded network, we should be
687 * able to keep up at the expense of system resources.
689 fecp
->fec_r_des_active
= 0;
691 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
692 fep
->cur_rx
= (cbd_t
*)bdp
;
695 /* Doing this here will allow us to process all frames in the
696 * ring before the FEC is allowed to put more there. On a heavily
697 * loaded network, some frames may be lost. Unfortunately, this
698 * increases the interrupt overhead since we can potentially work
699 * our way back to the interrupt return only to come right back
702 fecp
->fec_r_des_active
= 0;
705 spin_unlock_irq(&fep
->hw_lock
);
709 /* called from interrupt context */
711 fec_enet_mii(struct net_device
*dev
)
713 struct fec_enet_private
*fep
;
718 fep
= netdev_priv(dev
);
719 spin_lock_irq(&fep
->mii_lock
);
722 mii_reg
= ep
->fec_mii_data
;
724 if ((mip
= mii_head
) == NULL
) {
725 printk("MII and no head!\n");
729 if (mip
->mii_func
!= NULL
)
730 (*(mip
->mii_func
))(mii_reg
, dev
);
732 mii_head
= mip
->mii_next
;
733 mip
->mii_next
= mii_free
;
736 if ((mip
= mii_head
) != NULL
)
737 ep
->fec_mii_data
= mip
->mii_regval
;
740 spin_unlock_irq(&fep
->mii_lock
);
744 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
746 struct fec_enet_private
*fep
;
751 /* Add PHY address to register command.
753 fep
= netdev_priv(dev
);
754 spin_lock_irqsave(&fep
->mii_lock
, flags
);
756 regval
|= fep
->phy_addr
<< 23;
759 if ((mip
= mii_free
) != NULL
) {
760 mii_free
= mip
->mii_next
;
761 mip
->mii_regval
= regval
;
762 mip
->mii_func
= func
;
763 mip
->mii_next
= NULL
;
765 mii_tail
->mii_next
= mip
;
768 mii_head
= mii_tail
= mip
;
769 fep
->hwp
->fec_mii_data
= regval
;
775 spin_unlock_irqrestore(&fep
->mii_lock
, flags
);
779 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
784 for (; c
->mii_data
!= mk_mii_end
; c
++)
785 mii_queue(dev
, c
->mii_data
, c
->funct
);
788 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
790 struct fec_enet_private
*fep
= netdev_priv(dev
);
791 volatile uint
*s
= &(fep
->phy_status
);
794 status
= *s
& ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
796 if (mii_reg
& 0x0004)
797 status
|= PHY_STAT_LINK
;
798 if (mii_reg
& 0x0010)
799 status
|= PHY_STAT_FAULT
;
800 if (mii_reg
& 0x0020)
801 status
|= PHY_STAT_ANC
;
805 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
807 struct fec_enet_private
*fep
= netdev_priv(dev
);
808 volatile uint
*s
= &(fep
->phy_status
);
811 status
= *s
& ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
813 if (mii_reg
& 0x1000)
814 status
|= PHY_CONF_ANE
;
815 if (mii_reg
& 0x4000)
816 status
|= PHY_CONF_LOOP
;
820 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
822 struct fec_enet_private
*fep
= netdev_priv(dev
);
823 volatile uint
*s
= &(fep
->phy_status
);
826 status
= *s
& ~(PHY_CONF_SPMASK
);
828 if (mii_reg
& 0x0020)
829 status
|= PHY_CONF_10HDX
;
830 if (mii_reg
& 0x0040)
831 status
|= PHY_CONF_10FDX
;
832 if (mii_reg
& 0x0080)
833 status
|= PHY_CONF_100HDX
;
834 if (mii_reg
& 0x00100)
835 status
|= PHY_CONF_100FDX
;
839 /* ------------------------------------------------------------------------- */
840 /* The Level one LXT970 is used by many boards */
842 #define MII_LXT970_MIRROR 16 /* Mirror register */
843 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
844 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
845 #define MII_LXT970_CONFIG 19 /* Configuration Register */
846 #define MII_LXT970_CSR 20 /* Chip Status Register */
848 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
850 struct fec_enet_private
*fep
= netdev_priv(dev
);
851 volatile uint
*s
= &(fep
->phy_status
);
854 status
= *s
& ~(PHY_STAT_SPMASK
);
855 if (mii_reg
& 0x0800) {
856 if (mii_reg
& 0x1000)
857 status
|= PHY_STAT_100FDX
;
859 status
|= PHY_STAT_100HDX
;
861 if (mii_reg
& 0x1000)
862 status
|= PHY_STAT_10FDX
;
864 status
|= PHY_STAT_10HDX
;
869 static phy_cmd_t
const phy_cmd_lxt970_config
[] = {
870 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
871 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
874 static phy_cmd_t
const phy_cmd_lxt970_startup
[] = { /* enable interrupts */
875 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
876 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
879 static phy_cmd_t
const phy_cmd_lxt970_ack_int
[] = {
880 /* read SR and ISR to acknowledge */
881 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
882 { mk_mii_read(MII_LXT970_ISR
), NULL
},
884 /* find out the current status */
885 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
888 static phy_cmd_t
const phy_cmd_lxt970_shutdown
[] = { /* disable interrupts */
889 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
892 static phy_info_t
const phy_info_lxt970
= {
895 .config
= phy_cmd_lxt970_config
,
896 .startup
= phy_cmd_lxt970_startup
,
897 .ack_int
= phy_cmd_lxt970_ack_int
,
898 .shutdown
= phy_cmd_lxt970_shutdown
901 /* ------------------------------------------------------------------------- */
902 /* The Level one LXT971 is used on some of my custom boards */
904 /* register definitions for the 971 */
906 #define MII_LXT971_PCR 16 /* Port Control Register */
907 #define MII_LXT971_SR2 17 /* Status Register 2 */
908 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
909 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
910 #define MII_LXT971_LCR 20 /* LED Control Register */
911 #define MII_LXT971_TCR 30 /* Transmit Control Register */
914 * I had some nice ideas of running the MDIO faster...
915 * The 971 should support 8MHz and I tried it, but things acted really
916 * weird, so 2.5 MHz ought to be enough for anyone...
919 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
921 struct fec_enet_private
*fep
= netdev_priv(dev
);
922 volatile uint
*s
= &(fep
->phy_status
);
925 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
927 if (mii_reg
& 0x0400) {
929 status
|= PHY_STAT_LINK
;
933 if (mii_reg
& 0x0080)
934 status
|= PHY_STAT_ANC
;
935 if (mii_reg
& 0x4000) {
936 if (mii_reg
& 0x0200)
937 status
|= PHY_STAT_100FDX
;
939 status
|= PHY_STAT_100HDX
;
941 if (mii_reg
& 0x0200)
942 status
|= PHY_STAT_10FDX
;
944 status
|= PHY_STAT_10HDX
;
946 if (mii_reg
& 0x0008)
947 status
|= PHY_STAT_FAULT
;
952 static phy_cmd_t
const phy_cmd_lxt971_config
[] = {
953 /* limit to 10MBit because my prototype board
954 * doesn't work with 100. */
955 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
956 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
957 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
960 static phy_cmd_t
const phy_cmd_lxt971_startup
[] = { /* enable interrupts */
961 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
962 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
963 { mk_mii_write(MII_LXT971_LCR
, 0xd422), NULL
}, /* LED config */
964 /* Somehow does the 971 tell me that the link is down
965 * the first read after power-up.
966 * read here to get a valid value in ack_int */
967 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
970 static phy_cmd_t
const phy_cmd_lxt971_ack_int
[] = {
971 /* acknowledge the int before reading status ! */
972 { mk_mii_read(MII_LXT971_ISR
), NULL
},
973 /* find out the current status */
974 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
975 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
978 static phy_cmd_t
const phy_cmd_lxt971_shutdown
[] = { /* disable interrupts */
979 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
982 static phy_info_t
const phy_info_lxt971
= {
985 .config
= phy_cmd_lxt971_config
,
986 .startup
= phy_cmd_lxt971_startup
,
987 .ack_int
= phy_cmd_lxt971_ack_int
,
988 .shutdown
= phy_cmd_lxt971_shutdown
991 /* ------------------------------------------------------------------------- */
992 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
994 /* register definitions */
996 #define MII_QS6612_MCR 17 /* Mode Control Register */
997 #define MII_QS6612_FTR 27 /* Factory Test Register */
998 #define MII_QS6612_MCO 28 /* Misc. Control Register */
999 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1000 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1001 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1003 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
1005 struct fec_enet_private
*fep
= netdev_priv(dev
);
1006 volatile uint
*s
= &(fep
->phy_status
);
1009 status
= *s
& ~(PHY_STAT_SPMASK
);
1011 switch((mii_reg
>> 2) & 7) {
1012 case 1: status
|= PHY_STAT_10HDX
; break;
1013 case 2: status
|= PHY_STAT_100HDX
; break;
1014 case 5: status
|= PHY_STAT_10FDX
; break;
1015 case 6: status
|= PHY_STAT_100FDX
; break;
1021 static phy_cmd_t
const phy_cmd_qs6612_config
[] = {
1022 /* The PHY powers up isolated on the RPX,
1023 * so send a command to allow operation.
1025 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1027 /* parse cr and anar to get some info */
1028 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1029 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1032 static phy_cmd_t
const phy_cmd_qs6612_startup
[] = { /* enable interrupts */
1033 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1034 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1037 static phy_cmd_t
const phy_cmd_qs6612_ack_int
[] = {
1038 /* we need to read ISR, SR and ANER to acknowledge */
1039 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1040 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1041 { mk_mii_read(MII_REG_ANER
), NULL
},
1043 /* read pcr to get info */
1044 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1047 static phy_cmd_t
const phy_cmd_qs6612_shutdown
[] = { /* disable interrupts */
1048 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1051 static phy_info_t
const phy_info_qs6612
= {
1054 .config
= phy_cmd_qs6612_config
,
1055 .startup
= phy_cmd_qs6612_startup
,
1056 .ack_int
= phy_cmd_qs6612_ack_int
,
1057 .shutdown
= phy_cmd_qs6612_shutdown
1060 /* ------------------------------------------------------------------------- */
1061 /* AMD AM79C874 phy */
1063 /* register definitions for the 874 */
1065 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1066 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1067 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1068 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1069 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1070 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1071 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1073 static void mii_parse_am79c874_dr(uint mii_reg
, struct net_device
*dev
)
1075 struct fec_enet_private
*fep
= netdev_priv(dev
);
1076 volatile uint
*s
= &(fep
->phy_status
);
1079 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_ANC
);
1081 if (mii_reg
& 0x0080)
1082 status
|= PHY_STAT_ANC
;
1083 if (mii_reg
& 0x0400)
1084 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_100FDX
: PHY_STAT_100HDX
);
1086 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_10FDX
: PHY_STAT_10HDX
);
1091 static phy_cmd_t
const phy_cmd_am79c874_config
[] = {
1092 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1093 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1094 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1097 static phy_cmd_t
const phy_cmd_am79c874_startup
[] = { /* enable interrupts */
1098 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1099 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1100 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1103 static phy_cmd_t
const phy_cmd_am79c874_ack_int
[] = {
1104 /* find out the current status */
1105 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1106 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1107 /* we only need to read ISR to acknowledge */
1108 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1111 static phy_cmd_t
const phy_cmd_am79c874_shutdown
[] = { /* disable interrupts */
1112 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1115 static phy_info_t
const phy_info_am79c874
= {
1118 .config
= phy_cmd_am79c874_config
,
1119 .startup
= phy_cmd_am79c874_startup
,
1120 .ack_int
= phy_cmd_am79c874_ack_int
,
1121 .shutdown
= phy_cmd_am79c874_shutdown
1125 /* ------------------------------------------------------------------------- */
1126 /* Kendin KS8721BL phy */
1128 /* register definitions for the 8721 */
1130 #define MII_KS8721BL_RXERCR 21
1131 #define MII_KS8721BL_ICSR 22
1132 #define MII_KS8721BL_PHYCR 31
1134 static phy_cmd_t
const phy_cmd_ks8721bl_config
[] = {
1135 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1136 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1139 static phy_cmd_t
const phy_cmd_ks8721bl_startup
[] = { /* enable interrupts */
1140 { mk_mii_write(MII_KS8721BL_ICSR
, 0xff00), NULL
},
1141 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1142 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1145 static phy_cmd_t
const phy_cmd_ks8721bl_ack_int
[] = {
1146 /* find out the current status */
1147 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1148 /* we only need to read ISR to acknowledge */
1149 { mk_mii_read(MII_KS8721BL_ICSR
), NULL
},
1152 static phy_cmd_t
const phy_cmd_ks8721bl_shutdown
[] = { /* disable interrupts */
1153 { mk_mii_write(MII_KS8721BL_ICSR
, 0x0000), NULL
},
1156 static phy_info_t
const phy_info_ks8721bl
= {
1159 .config
= phy_cmd_ks8721bl_config
,
1160 .startup
= phy_cmd_ks8721bl_startup
,
1161 .ack_int
= phy_cmd_ks8721bl_ack_int
,
1162 .shutdown
= phy_cmd_ks8721bl_shutdown
1165 /* ------------------------------------------------------------------------- */
1166 /* register definitions for the DP83848 */
1168 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1170 static void mii_parse_dp8384x_sr2(uint mii_reg
, struct net_device
*dev
)
1172 struct fec_enet_private
*fep
= dev
->priv
;
1173 volatile uint
*s
= &(fep
->phy_status
);
1175 *s
&= ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
1178 if (mii_reg
& 0x0001) {
1180 *s
|= PHY_STAT_LINK
;
1183 /* Status of link */
1184 if (mii_reg
& 0x0010) /* Autonegotioation complete */
1186 if (mii_reg
& 0x0002) { /* 10MBps? */
1187 if (mii_reg
& 0x0004) /* Full Duplex? */
1188 *s
|= PHY_STAT_10FDX
;
1190 *s
|= PHY_STAT_10HDX
;
1191 } else { /* 100 Mbps? */
1192 if (mii_reg
& 0x0004) /* Full Duplex? */
1193 *s
|= PHY_STAT_100FDX
;
1195 *s
|= PHY_STAT_100HDX
;
1197 if (mii_reg
& 0x0008)
1198 *s
|= PHY_STAT_FAULT
;
1201 static phy_info_t phy_info_dp83848
= {
1205 (const phy_cmd_t
[]) { /* config */
1206 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1207 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1208 { mk_mii_read(MII_DP8384X_PHYSTST
), mii_parse_dp8384x_sr2
},
1211 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1212 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1213 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1216 (const phy_cmd_t
[]) { /* ack_int - never happens, no interrupt */
1219 (const phy_cmd_t
[]) { /* shutdown */
1224 /* ------------------------------------------------------------------------- */
1226 static phy_info_t
const * const phy_info
[] = {
1236 /* ------------------------------------------------------------------------- */
1237 #ifdef HAVE_mii_link_interrupt
1238 #ifdef CONFIG_RPXCLASSIC
1240 mii_link_interrupt(void *dev_id
);
1243 mii_link_interrupt(int irq
, void * dev_id
);
1247 #if defined(CONFIG_M5272)
1249 * Code specific to Coldfire 5272 setup.
1251 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1253 volatile unsigned long *icrp
;
1254 static const struct idesc
{
1257 irq_handler_t handler
;
1259 { "fec(RX)", 86, fec_enet_interrupt
},
1260 { "fec(TX)", 87, fec_enet_interrupt
},
1261 { "fec(OTHER)", 88, fec_enet_interrupt
},
1262 { "fec(MII)", 66, mii_link_interrupt
},
1266 /* Setup interrupt handlers. */
1267 for (idp
= id
; idp
->name
; idp
++) {
1268 if (request_irq(idp
->irq
, idp
->handler
, IRQF_DISABLED
, idp
->name
, dev
) != 0)
1269 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, idp
->irq
);
1272 /* Unmask interrupt at ColdFire 5272 SIM */
1273 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR3
);
1275 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1279 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1281 volatile fec_t
*fecp
;
1284 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1285 fecp
->fec_x_cntrl
= 0x00;
1288 * Set MII speed to 2.5 MHz
1289 * See 5272 manual section 11.5.8: MSCR
1291 fep
->phy_speed
= ((((MCF_CLK
/ 4) / (2500000 / 10)) + 5) / 10) * 2;
1292 fecp
->fec_mii_speed
= fep
->phy_speed
;
1294 fec_restart(dev
, 0);
1297 static void __inline__
fec_get_mac(struct net_device
*dev
)
1299 struct fec_enet_private
*fep
= netdev_priv(dev
);
1300 volatile fec_t
*fecp
;
1301 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1307 * Get MAC address from FLASH.
1308 * If it is all 1's or 0's, use the default.
1310 iap
= (unsigned char *)FEC_FLASHMAC
;
1311 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1312 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1313 iap
= fec_mac_default
;
1314 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1315 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1316 iap
= fec_mac_default
;
1318 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1319 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1323 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1325 /* Adjust MAC if using default MAC address */
1326 if (iap
== fec_mac_default
)
1327 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1330 static void __inline__
fec_enable_phy_intr(void)
1334 static void __inline__
fec_disable_phy_intr(void)
1336 volatile unsigned long *icrp
;
1337 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1341 static void __inline__
fec_phy_ack_intr(void)
1343 volatile unsigned long *icrp
;
1344 /* Acknowledge the interrupt */
1345 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1349 static void __inline__
fec_localhw_setup(void)
1354 * Do not need to make region uncached on 5272.
1356 static void __inline__
fec_uncache(unsigned long addr
)
1360 /* ------------------------------------------------------------------------- */
1362 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1365 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1366 * the 5270/5271/5274/5275 and 5280/5282 setups.
1368 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1370 struct fec_enet_private
*fep
;
1372 static const struct idesc
{
1382 fep
= netdev_priv(dev
);
1383 b
= (fep
->index
) ? 128 : 64;
1385 /* Setup interrupt handlers. */
1386 for (idp
= id
; idp
->name
; idp
++) {
1387 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, IRQF_DISABLED
, idp
->name
, dev
) != 0)
1388 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1391 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1393 volatile unsigned char *icrp
;
1394 volatile unsigned long *imrp
;
1397 b
= (fep
->index
) ? MCFICM_INTC1
: MCFICM_INTC0
;
1398 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ b
+
1400 for (i
= 23, ilip
= 0x28; (i
< 36); i
++)
1403 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1405 *imrp
&= ~0x0000000f;
1406 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1408 *imrp
&= ~0xff800001;
1411 #if defined(CONFIG_M528x)
1412 /* Set up gpio outputs for MII lines */
1414 volatile u16
*gpio_paspar
;
1415 volatile u8
*gpio_pehlpar
;
1417 gpio_paspar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100056);
1418 gpio_pehlpar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100058);
1419 *gpio_paspar
|= 0x0f00;
1420 *gpio_pehlpar
= 0xc0;
1424 #if defined(CONFIG_M527x)
1425 /* Set up gpio outputs for MII lines */
1427 volatile u8
*gpio_par_fec
;
1428 volatile u16
*gpio_par_feci2c
;
1430 gpio_par_feci2c
= (volatile u16
*)(MCF_IPSBAR
+ 0x100082);
1431 /* Set up gpio outputs for FEC0 MII lines */
1432 gpio_par_fec
= (volatile u8
*)(MCF_IPSBAR
+ 0x100078);
1434 *gpio_par_feci2c
|= 0x0f00;
1435 *gpio_par_fec
|= 0xc0;
1437 #if defined(CONFIG_FEC2)
1438 /* Set up gpio outputs for FEC1 MII lines */
1439 gpio_par_fec
= (volatile u8
*)(MCF_IPSBAR
+ 0x100079);
1441 *gpio_par_feci2c
|= 0x00a0;
1442 *gpio_par_fec
|= 0xc0;
1443 #endif /* CONFIG_FEC2 */
1445 #endif /* CONFIG_M527x */
1448 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1450 volatile fec_t
*fecp
;
1453 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1454 fecp
->fec_x_cntrl
= 0x00;
1457 * Set MII speed to 2.5 MHz
1458 * See 5282 manual section 17.5.4.7: MSCR
1460 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1461 fecp
->fec_mii_speed
= fep
->phy_speed
;
1463 fec_restart(dev
, 0);
1466 static void __inline__
fec_get_mac(struct net_device
*dev
)
1468 struct fec_enet_private
*fep
= netdev_priv(dev
);
1469 volatile fec_t
*fecp
;
1470 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1476 * Get MAC address from FLASH.
1477 * If it is all 1's or 0's, use the default.
1480 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1481 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1482 iap
= fec_mac_default
;
1483 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1484 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1485 iap
= fec_mac_default
;
1487 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1488 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1492 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1494 /* Adjust MAC if using default MAC address */
1495 if (iap
== fec_mac_default
)
1496 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1499 static void __inline__
fec_enable_phy_intr(void)
1503 static void __inline__
fec_disable_phy_intr(void)
1507 static void __inline__
fec_phy_ack_intr(void)
1511 static void __inline__
fec_localhw_setup(void)
1516 * Do not need to make region uncached on 5272.
1518 static void __inline__
fec_uncache(unsigned long addr
)
1522 /* ------------------------------------------------------------------------- */
1524 #elif defined(CONFIG_M520x)
1527 * Code specific to Coldfire 520x
1529 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1531 struct fec_enet_private
*fep
;
1533 static const struct idesc
{
1543 fep
= netdev_priv(dev
);
1546 /* Setup interrupt handlers. */
1547 for (idp
= id
; idp
->name
; idp
++) {
1548 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, IRQF_DISABLED
, idp
->name
,dev
) != 0)
1549 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1552 /* Unmask interrupts at ColdFire interrupt controller */
1554 volatile unsigned char *icrp
;
1555 volatile unsigned long *imrp
;
1557 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1559 for (b
= 36; (b
< 49); b
++)
1561 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1563 *imrp
&= ~0x0001FFF0;
1565 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FEC
) |= 0xf0;
1566 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FECI2C
) |= 0x0f;
1569 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1571 volatile fec_t
*fecp
;
1574 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1575 fecp
->fec_x_cntrl
= 0x00;
1578 * Set MII speed to 2.5 MHz
1579 * See 5282 manual section 17.5.4.7: MSCR
1581 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1582 fecp
->fec_mii_speed
= fep
->phy_speed
;
1584 fec_restart(dev
, 0);
1587 static void __inline__
fec_get_mac(struct net_device
*dev
)
1589 struct fec_enet_private
*fep
= netdev_priv(dev
);
1590 volatile fec_t
*fecp
;
1591 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1597 * Get MAC address from FLASH.
1598 * If it is all 1's or 0's, use the default.
1601 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1602 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1603 iap
= fec_mac_default
;
1604 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1605 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1606 iap
= fec_mac_default
;
1608 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1609 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1613 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1615 /* Adjust MAC if using default MAC address */
1616 if (iap
== fec_mac_default
)
1617 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1620 static void __inline__
fec_enable_phy_intr(void)
1624 static void __inline__
fec_disable_phy_intr(void)
1628 static void __inline__
fec_phy_ack_intr(void)
1632 static void __inline__
fec_localhw_setup(void)
1636 static void __inline__
fec_uncache(unsigned long addr
)
1640 /* ------------------------------------------------------------------------- */
1642 #elif defined(CONFIG_M532x)
1644 * Code specific for M532x
1646 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1648 struct fec_enet_private
*fep
;
1650 static const struct idesc
{
1660 fep
= netdev_priv(dev
);
1661 b
= (fep
->index
) ? 128 : 64;
1663 /* Setup interrupt handlers. */
1664 for (idp
= id
; idp
->name
; idp
++) {
1665 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, IRQF_DISABLED
, idp
->name
,dev
) != 0)
1666 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1667 idp
->name
, b
+idp
->irq
);
1670 /* Unmask interrupts */
1671 MCF_INTC0_ICR36
= 0x2;
1672 MCF_INTC0_ICR37
= 0x2;
1673 MCF_INTC0_ICR38
= 0x2;
1674 MCF_INTC0_ICR39
= 0x2;
1675 MCF_INTC0_ICR40
= 0x2;
1676 MCF_INTC0_ICR41
= 0x2;
1677 MCF_INTC0_ICR42
= 0x2;
1678 MCF_INTC0_ICR43
= 0x2;
1679 MCF_INTC0_ICR44
= 0x2;
1680 MCF_INTC0_ICR45
= 0x2;
1681 MCF_INTC0_ICR46
= 0x2;
1682 MCF_INTC0_ICR47
= 0x2;
1683 MCF_INTC0_ICR48
= 0x2;
1685 MCF_INTC0_IMRH
&= ~(
1686 MCF_INTC_IMRH_INT_MASK36
|
1687 MCF_INTC_IMRH_INT_MASK37
|
1688 MCF_INTC_IMRH_INT_MASK38
|
1689 MCF_INTC_IMRH_INT_MASK39
|
1690 MCF_INTC_IMRH_INT_MASK40
|
1691 MCF_INTC_IMRH_INT_MASK41
|
1692 MCF_INTC_IMRH_INT_MASK42
|
1693 MCF_INTC_IMRH_INT_MASK43
|
1694 MCF_INTC_IMRH_INT_MASK44
|
1695 MCF_INTC_IMRH_INT_MASK45
|
1696 MCF_INTC_IMRH_INT_MASK46
|
1697 MCF_INTC_IMRH_INT_MASK47
|
1698 MCF_INTC_IMRH_INT_MASK48
);
1700 /* Set up gpio outputs for MII lines */
1701 MCF_GPIO_PAR_FECI2C
|= (0 |
1702 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC
|
1703 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO
);
1704 MCF_GPIO_PAR_FEC
= (0 |
1705 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC
|
1706 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC
);
1709 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1711 volatile fec_t
*fecp
;
1714 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1715 fecp
->fec_x_cntrl
= 0x00;
1718 * Set MII speed to 2.5 MHz
1720 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1721 fecp
->fec_mii_speed
= fep
->phy_speed
;
1723 fec_restart(dev
, 0);
1726 static void __inline__
fec_get_mac(struct net_device
*dev
)
1728 struct fec_enet_private
*fep
= netdev_priv(dev
);
1729 volatile fec_t
*fecp
;
1730 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1736 * Get MAC address from FLASH.
1737 * If it is all 1's or 0's, use the default.
1740 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1741 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1742 iap
= fec_mac_default
;
1743 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1744 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1745 iap
= fec_mac_default
;
1747 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1748 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1752 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1754 /* Adjust MAC if using default MAC address */
1755 if (iap
== fec_mac_default
)
1756 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1759 static void __inline__
fec_enable_phy_intr(void)
1763 static void __inline__
fec_disable_phy_intr(void)
1767 static void __inline__
fec_phy_ack_intr(void)
1771 static void __inline__
fec_localhw_setup(void)
1776 * Do not need to make region uncached on 532x.
1778 static void __inline__
fec_uncache(unsigned long addr
)
1782 /* ------------------------------------------------------------------------- */
1788 * Code specific to the MPC860T setup.
1790 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1792 volatile immap_t
*immap
;
1794 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1796 if (request_8xxirq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1797 panic("Could not allocate FEC IRQ!");
1799 #ifdef CONFIG_RPXCLASSIC
1800 /* Make Port C, bit 15 an input that causes interrupts.
1802 immap
->im_ioport
.iop_pcpar
&= ~0x0001;
1803 immap
->im_ioport
.iop_pcdir
&= ~0x0001;
1804 immap
->im_ioport
.iop_pcso
&= ~0x0001;
1805 immap
->im_ioport
.iop_pcint
|= 0x0001;
1806 cpm_install_handler(CPMVEC_PIO_PC15
, mii_link_interrupt
, dev
);
1808 /* Make LEDS reflect Link status.
1810 *((uint
*) RPX_CSR_ADDR
) &= ~BCSR2_FETHLEDMODE
;
1813 if (request_8xxirq(SIU_IRQ2
, mii_link_interrupt
, 0, "mii", dev
) != 0)
1814 panic("Could not allocate MII IRQ!");
1818 static void __inline__
fec_get_mac(struct net_device
*dev
)
1823 memcpy(dev
->dev_addr
, bd
->bi_enetaddr
, ETH_ALEN
);
1825 #ifdef CONFIG_RPXCLASSIC
1826 /* The Embedded Planet boards have only one MAC address in
1827 * the EEPROM, but can have two Ethernet ports. For the
1828 * FEC port, we create another address by setting one of
1829 * the address bits above something that would have (up to
1830 * now) been allocated.
1832 dev
->dev_adrd
[3] |= 0x80;
1836 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1838 extern uint
_get_IMMR(void);
1839 volatile immap_t
*immap
;
1840 volatile fec_t
*fecp
;
1843 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1845 /* Configure all of port D for MII.
1847 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1849 /* Bits moved from Rev. D onward.
1851 if ((_get_IMMR() & 0xffff) < 0x0501)
1852 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1854 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1856 /* Set MII speed to 2.5 MHz
1858 fecp
->fec_mii_speed
= fep
->phy_speed
=
1859 ((bd
->bi_busfreq
* 1000000) / 2500000) & 0x7e;
1862 static void __inline__
fec_enable_phy_intr(void)
1864 volatile fec_t
*fecp
;
1868 /* Enable MII command finished interrupt
1870 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1873 static void __inline__
fec_disable_phy_intr(void)
1877 static void __inline__
fec_phy_ack_intr(void)
1881 static void __inline__
fec_localhw_setup(void)
1883 volatile fec_t
*fecp
;
1886 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1887 /* Enable big endian and don't care about SDMA FC.
1889 fecp
->fec_fun_code
= 0x78000000;
1892 static void __inline__
fec_uncache(unsigned long addr
)
1895 pte
= va_to_pte(mem_addr
);
1896 pte_val(*pte
) |= _PAGE_NO_CACHE
;
1897 flush_tlb_page(init_mm
.mmap
, mem_addr
);
1902 /* ------------------------------------------------------------------------- */
1904 static void mii_display_status(struct net_device
*dev
)
1906 struct fec_enet_private
*fep
= netdev_priv(dev
);
1907 volatile uint
*s
= &(fep
->phy_status
);
1909 if (!fep
->link
&& !fep
->old_link
) {
1910 /* Link is still down - don't print anything */
1914 printk("%s: status: ", dev
->name
);
1917 printk("link down");
1921 switch(*s
& PHY_STAT_SPMASK
) {
1922 case PHY_STAT_100FDX
: printk(", 100MBit Full Duplex"); break;
1923 case PHY_STAT_100HDX
: printk(", 100MBit Half Duplex"); break;
1924 case PHY_STAT_10FDX
: printk(", 10MBit Full Duplex"); break;
1925 case PHY_STAT_10HDX
: printk(", 10MBit Half Duplex"); break;
1927 printk(", Unknown speed/duplex");
1930 if (*s
& PHY_STAT_ANC
)
1931 printk(", auto-negotiation complete");
1934 if (*s
& PHY_STAT_FAULT
)
1935 printk(", remote fault");
1940 static void mii_display_config(struct work_struct
*work
)
1942 struct fec_enet_private
*fep
= container_of(work
, struct fec_enet_private
, phy_task
);
1943 struct net_device
*dev
= fep
->netdev
;
1944 uint status
= fep
->phy_status
;
1947 ** When we get here, phy_task is already removed from
1948 ** the workqueue. It is thus safe to allow to reuse it.
1950 fep
->mii_phy_task_queued
= 0;
1951 printk("%s: config: auto-negotiation ", dev
->name
);
1953 if (status
& PHY_CONF_ANE
)
1958 if (status
& PHY_CONF_100FDX
)
1960 if (status
& PHY_CONF_100HDX
)
1962 if (status
& PHY_CONF_10FDX
)
1964 if (status
& PHY_CONF_10HDX
)
1966 if (!(status
& PHY_CONF_SPMASK
))
1967 printk(", No speed/duplex selected?");
1969 if (status
& PHY_CONF_LOOP
)
1970 printk(", loopback enabled");
1974 fep
->sequence_done
= 1;
1977 static void mii_relink(struct work_struct
*work
)
1979 struct fec_enet_private
*fep
= container_of(work
, struct fec_enet_private
, phy_task
);
1980 struct net_device
*dev
= fep
->netdev
;
1984 ** When we get here, phy_task is already removed from
1985 ** the workqueue. It is thus safe to allow to reuse it.
1987 fep
->mii_phy_task_queued
= 0;
1988 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1989 mii_display_status(dev
);
1990 fep
->old_link
= fep
->link
;
1995 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1997 fec_restart(dev
, duplex
);
2002 enable_irq(fep
->mii_irq
);
2007 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2008 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
2010 struct fec_enet_private
*fep
= netdev_priv(dev
);
2013 ** We cannot queue phy_task twice in the workqueue. It
2014 ** would cause an endless loop in the workqueue.
2015 ** Fortunately, if the last mii_relink entry has not yet been
2016 ** executed now, it will do the job for the current interrupt,
2017 ** which is just what we want.
2019 if (fep
->mii_phy_task_queued
)
2022 fep
->mii_phy_task_queued
= 1;
2023 INIT_WORK(&fep
->phy_task
, mii_relink
);
2024 schedule_work(&fep
->phy_task
);
2027 /* mii_queue_config is called in interrupt context from fec_enet_mii */
2028 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
2030 struct fec_enet_private
*fep
= netdev_priv(dev
);
2032 if (fep
->mii_phy_task_queued
)
2035 fep
->mii_phy_task_queued
= 1;
2036 INIT_WORK(&fep
->phy_task
, mii_display_config
);
2037 schedule_work(&fep
->phy_task
);
2040 phy_cmd_t
const phy_cmd_relink
[] = {
2041 { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
2044 phy_cmd_t
const phy_cmd_config
[] = {
2045 { mk_mii_read(MII_REG_CR
), mii_queue_config
},
2049 /* Read remainder of PHY ID.
2052 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
2054 struct fec_enet_private
*fep
;
2057 fep
= netdev_priv(dev
);
2058 fep
->phy_id
|= (mii_reg
& 0xffff);
2059 printk("fec: PHY @ 0x%x, ID 0x%08x", fep
->phy_addr
, fep
->phy_id
);
2061 for(i
= 0; phy_info
[i
]; i
++) {
2062 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
2067 printk(" -- %s\n", phy_info
[i
]->name
);
2069 printk(" -- unknown PHY!\n");
2071 fep
->phy
= phy_info
[i
];
2072 fep
->phy_id_done
= 1;
2075 /* Scan all of the MII PHY addresses looking for someone to respond
2076 * with a valid ID. This usually happens quickly.
2079 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
2081 struct fec_enet_private
*fep
;
2082 volatile fec_t
*fecp
;
2085 fep
= netdev_priv(dev
);
2088 if (fep
->phy_addr
< 32) {
2089 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff && phytype
!= 0) {
2091 /* Got first part of ID, now get remainder.
2093 fep
->phy_id
= phytype
<< 16;
2094 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
),
2098 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
2102 printk("FEC: No PHY device found.\n");
2103 /* Disable external MII interface */
2104 fecp
->fec_mii_speed
= fep
->phy_speed
= 0;
2105 fec_disable_phy_intr();
2109 /* This interrupt occurs when the PHY detects a link change.
2111 #ifdef HAVE_mii_link_interrupt
2112 #ifdef CONFIG_RPXCLASSIC
2114 mii_link_interrupt(void *dev_id
)
2117 mii_link_interrupt(int irq
, void * dev_id
)
2120 struct net_device
*dev
= dev_id
;
2121 struct fec_enet_private
*fep
= netdev_priv(dev
);
2126 disable_irq(fep
->mii_irq
); /* disable now, enable later */
2129 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2130 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
2137 fec_enet_open(struct net_device
*dev
)
2139 struct fec_enet_private
*fep
= netdev_priv(dev
);
2141 /* I should reset the ring buffers here, but I don't yet know
2142 * a simple way to do that.
2144 fec_set_mac_address(dev
);
2146 fep
->sequence_done
= 0;
2150 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2151 mii_do_cmd(dev
, fep
->phy
->config
);
2152 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
2154 /* Poll until the PHY tells us its configuration
2156 * Request is initiated by mii_do_cmd above, but answer
2157 * comes by interrupt.
2158 * This should take about 25 usec per register at 2.5 MHz,
2159 * and we read approximately 5 registers.
2161 while(!fep
->sequence_done
)
2164 mii_do_cmd(dev
, fep
->phy
->startup
);
2166 /* Set the initial link state to true. A lot of hardware
2167 * based on this device does not implement a PHY interrupt,
2168 * so we are never notified of link change.
2172 fep
->link
= 1; /* lets just try it and see */
2173 /* no phy, go full duplex, it's most likely a hub chip */
2174 fec_restart(dev
, 1);
2177 netif_start_queue(dev
);
2179 return 0; /* Success */
2183 fec_enet_close(struct net_device
*dev
)
2185 struct fec_enet_private
*fep
= netdev_priv(dev
);
2187 /* Don't know what to do yet.
2190 netif_stop_queue(dev
);
2196 /* Set or clear the multicast filter for this adaptor.
2197 * Skeleton taken from sunlance driver.
2198 * The CPM Ethernet implementation allows Multicast as well as individual
2199 * MAC address filtering. Some of the drivers check to make sure it is
2200 * a group multicast address, and discard those that are not. I guess I
2201 * will do the same for now, but just remove the test if you want
2202 * individual filtering as well (do the upper net layers want or support
2203 * this kind of feature?).
2206 #define HASH_BITS 6 /* #bits in hash */
2207 #define CRC32_POLY 0xEDB88320
2209 static void set_multicast_list(struct net_device
*dev
)
2211 struct fec_enet_private
*fep
;
2213 struct dev_mc_list
*dmi
;
2214 unsigned int i
, j
, bit
, data
, crc
;
2217 fep
= netdev_priv(dev
);
2220 if (dev
->flags
&IFF_PROMISC
) {
2221 ep
->fec_r_cntrl
|= 0x0008;
2224 ep
->fec_r_cntrl
&= ~0x0008;
2226 if (dev
->flags
& IFF_ALLMULTI
) {
2227 /* Catch all multicast addresses, so set the
2228 * filter to all 1's.
2230 ep
->fec_grp_hash_table_high
= 0xffffffff;
2231 ep
->fec_grp_hash_table_low
= 0xffffffff;
2233 /* Clear filter and add the addresses in hash register.
2235 ep
->fec_grp_hash_table_high
= 0;
2236 ep
->fec_grp_hash_table_low
= 0;
2240 for (j
= 0; j
< dev
->mc_count
; j
++, dmi
= dmi
->next
)
2242 /* Only support group multicast for now.
2244 if (!(dmi
->dmi_addr
[0] & 1))
2247 /* calculate crc32 value of mac address
2251 for (i
= 0; i
< dmi
->dmi_addrlen
; i
++)
2253 data
= dmi
->dmi_addr
[i
];
2254 for (bit
= 0; bit
< 8; bit
++, data
>>= 1)
2257 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2261 /* only upper 6 bits (HASH_BITS) are used
2262 which point to specific bit in he hash registers
2264 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
2267 ep
->fec_grp_hash_table_high
|= 1 << (hash
- 32);
2269 ep
->fec_grp_hash_table_low
|= 1 << hash
;
2275 /* Set a MAC change in hardware.
2278 fec_set_mac_address(struct net_device
*dev
)
2280 volatile fec_t
*fecp
;
2282 fecp
= ((struct fec_enet_private
*)netdev_priv(dev
))->hwp
;
2284 /* Set station address. */
2285 fecp
->fec_addr_low
= dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
2286 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24);
2287 fecp
->fec_addr_high
= (dev
->dev_addr
[5] << 16) |
2288 (dev
->dev_addr
[4] << 24);
2292 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2295 * XXX: We need to clean up on failure exits here.
2297 int __init
fec_enet_init(struct net_device
*dev
)
2299 struct fec_enet_private
*fep
= netdev_priv(dev
);
2300 unsigned long mem_addr
;
2301 volatile cbd_t
*bdp
;
2303 volatile fec_t
*fecp
;
2305 static int index
= 0;
2307 /* Only allow us to be probed once. */
2308 if (index
>= FEC_MAX_PORTS
)
2311 /* Allocate memory for buffer descriptors.
2313 mem_addr
= __get_free_page(GFP_KERNEL
);
2314 if (mem_addr
== 0) {
2315 printk("FEC: allocate descriptor memory failed?\n");
2319 spin_lock_init(&fep
->hw_lock
);
2320 spin_lock_init(&fep
->mii_lock
);
2322 /* Create an Ethernet device instance.
2324 fecp
= (volatile fec_t
*) fec_hw
[index
];
2330 /* Whack a reset. We should wait for this.
2332 fecp
->fec_ecntrl
= 1;
2335 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2336 * this needs some work to get unique addresses.
2338 * This is our default MAC address unless the user changes
2339 * it via eth_mac_addr (our dev->set_mac_addr handler).
2343 cbd_base
= (cbd_t
*)mem_addr
;
2344 /* XXX: missing check for allocation failure */
2346 fec_uncache(mem_addr
);
2348 /* Set receive and transmit descriptor base.
2350 fep
->rx_bd_base
= cbd_base
;
2351 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
2353 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2354 fep
->cur_rx
= fep
->rx_bd_base
;
2356 fep
->skb_cur
= fep
->skb_dirty
= 0;
2358 /* Initialize the receive buffer descriptors.
2360 bdp
= fep
->rx_bd_base
;
2361 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
2365 mem_addr
= __get_free_page(GFP_KERNEL
);
2366 /* XXX: missing check for allocation failure */
2368 fec_uncache(mem_addr
);
2370 /* Initialize the BD for every fragment in the page.
2372 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
2373 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2374 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2375 mem_addr
+= FEC_ENET_RX_FRSIZE
;
2380 /* Set the last buffer to wrap.
2383 bdp
->cbd_sc
|= BD_SC_WRAP
;
2385 /* ...and the same for transmmit.
2387 bdp
= fep
->tx_bd_base
;
2388 for (i
=0, j
=FEC_ENET_TX_FRPPG
; i
<TX_RING_SIZE
; i
++) {
2389 if (j
>= FEC_ENET_TX_FRPPG
) {
2390 mem_addr
= __get_free_page(GFP_KERNEL
);
2393 mem_addr
+= FEC_ENET_TX_FRSIZE
;
2396 fep
->tx_bounce
[i
] = (unsigned char *) mem_addr
;
2398 /* Initialize the BD for every fragment in the page.
2401 bdp
->cbd_bufaddr
= 0;
2405 /* Set the last buffer to wrap.
2408 bdp
->cbd_sc
|= BD_SC_WRAP
;
2410 /* Set receive and transmit descriptor base.
2412 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2413 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2415 /* Install our interrupt handlers. This varies depending on
2418 fec_request_intrs(dev
);
2420 fecp
->fec_grp_hash_table_high
= 0;
2421 fecp
->fec_grp_hash_table_low
= 0;
2422 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2423 fecp
->fec_ecntrl
= 2;
2424 fecp
->fec_r_des_active
= 0;
2425 #ifndef CONFIG_M5272
2426 fecp
->fec_hash_table_high
= 0;
2427 fecp
->fec_hash_table_low
= 0;
2430 dev
->base_addr
= (unsigned long)fecp
;
2432 /* The FEC Ethernet specific entries in the device structure. */
2433 dev
->open
= fec_enet_open
;
2434 dev
->hard_start_xmit
= fec_enet_start_xmit
;
2435 dev
->tx_timeout
= fec_timeout
;
2436 dev
->watchdog_timeo
= TX_TIMEOUT
;
2437 dev
->stop
= fec_enet_close
;
2438 dev
->set_multicast_list
= set_multicast_list
;
2440 for (i
=0; i
<NMII
-1; i
++)
2441 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
2442 mii_free
= mii_cmds
;
2444 /* setup MII interface */
2445 fec_set_mii(dev
, fep
);
2447 /* Clear and enable interrupts */
2448 fecp
->fec_ievent
= 0xffc00000;
2449 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_RXF
| FEC_ENET_MII
);
2451 /* Queue up command to detect the PHY and initialize the
2452 * remainder of the interface.
2454 fep
->phy_id_done
= 0;
2456 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
2462 /* This function is called to start or restart the FEC during a link
2463 * change. This only happens when switching between half and full
2467 fec_restart(struct net_device
*dev
, int duplex
)
2469 struct fec_enet_private
*fep
;
2470 volatile cbd_t
*bdp
;
2471 volatile fec_t
*fecp
;
2474 fep
= netdev_priv(dev
);
2477 /* Whack a reset. We should wait for this.
2479 fecp
->fec_ecntrl
= 1;
2482 /* Clear any outstanding interrupt.
2484 fecp
->fec_ievent
= 0xffc00000;
2485 fec_enable_phy_intr();
2487 /* Set station address.
2489 fec_set_mac_address(dev
);
2491 /* Reset all multicast.
2493 fecp
->fec_grp_hash_table_high
= 0;
2494 fecp
->fec_grp_hash_table_low
= 0;
2496 /* Set maximum receive buffer size.
2498 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2500 fec_localhw_setup();
2502 /* Set receive and transmit descriptor base.
2504 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2505 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2507 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2508 fep
->cur_rx
= fep
->rx_bd_base
;
2510 /* Reset SKB transmit buffers.
2512 fep
->skb_cur
= fep
->skb_dirty
= 0;
2513 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2514 if (fep
->tx_skbuff
[i
] != NULL
) {
2515 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
2516 fep
->tx_skbuff
[i
] = NULL
;
2520 /* Initialize the receive buffer descriptors.
2522 bdp
= fep
->rx_bd_base
;
2523 for (i
=0; i
<RX_RING_SIZE
; i
++) {
2525 /* Initialize the BD for every fragment in the page.
2527 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2531 /* Set the last buffer to wrap.
2534 bdp
->cbd_sc
|= BD_SC_WRAP
;
2536 /* ...and the same for transmmit.
2538 bdp
= fep
->tx_bd_base
;
2539 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2541 /* Initialize the BD for every fragment in the page.
2544 bdp
->cbd_bufaddr
= 0;
2548 /* Set the last buffer to wrap.
2551 bdp
->cbd_sc
|= BD_SC_WRAP
;
2556 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;/* MII enable */
2557 fecp
->fec_x_cntrl
= 0x04; /* FD enable */
2559 /* MII enable|No Rcv on Xmit */
2560 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x06;
2561 fecp
->fec_x_cntrl
= 0x00;
2563 fep
->full_duplex
= duplex
;
2567 fecp
->fec_mii_speed
= fep
->phy_speed
;
2569 /* And last, enable the transmit and receive processing.
2571 fecp
->fec_ecntrl
= 2;
2572 fecp
->fec_r_des_active
= 0;
2574 /* Enable interrupts we wish to service.
2576 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_RXF
| FEC_ENET_MII
);
2580 fec_stop(struct net_device
*dev
)
2582 volatile fec_t
*fecp
;
2583 struct fec_enet_private
*fep
;
2585 fep
= netdev_priv(dev
);
2589 ** We cannot expect a graceful transmit stop without link !!!
2593 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
2595 if (!(fecp
->fec_ievent
& FEC_ENET_GRA
))
2596 printk("fec_stop : Graceful transmit stop did not complete !\n");
2599 /* Whack a reset. We should wait for this.
2601 fecp
->fec_ecntrl
= 1;
2604 /* Clear outstanding MII command interrupts.
2606 fecp
->fec_ievent
= FEC_ENET_MII
;
2607 fec_enable_phy_intr();
2609 fecp
->fec_imask
= FEC_ENET_MII
;
2610 fecp
->fec_mii_speed
= fep
->phy_speed
;
2613 static int __init
fec_enet_module_init(void)
2615 struct net_device
*dev
;
2617 DECLARE_MAC_BUF(mac
);
2619 printk("FEC ENET Version 0.2\n");
2621 for (i
= 0; (i
< FEC_MAX_PORTS
); i
++) {
2622 dev
= alloc_etherdev(sizeof(struct fec_enet_private
));
2625 err
= fec_enet_init(dev
);
2630 if (register_netdev(dev
) != 0) {
2631 /* XXX: missing cleanup here */
2636 printk("%s: ethernet %s\n",
2637 dev
->name
, print_mac(mac
, dev
->dev_addr
));
2642 module_init(fec_enet_module_init
);
2644 MODULE_LICENSE("GPL");