Add parameter to add_partial to avoid having two functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slub.c
blobe160f28ab0512c41e7ca7ed5e563af3cfb5118bd
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
111 static inline int SlabFrozen(struct page *page)
113 return page->flags & FROZEN;
116 static inline void SetSlabFrozen(struct page *page)
118 page->flags |= FROZEN;
121 static inline void ClearSlabFrozen(struct page *page)
123 page->flags &= ~FROZEN;
126 static inline int SlabDebug(struct page *page)
128 return page->flags & SLABDEBUG;
131 static inline void SetSlabDebug(struct page *page)
133 page->flags |= SLABDEBUG;
136 static inline void ClearSlabDebug(struct page *page)
138 page->flags &= ~SLABDEBUG;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
152 #if PAGE_SHIFT <= 12
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
160 #else
163 * Large page machines are customarily able to handle larger
164 * page orders.
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
169 #endif
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 5
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size() L1_CACHE_BYTES
211 #endif
213 static int kmem_size = sizeof(struct kmem_cache);
215 #ifdef CONFIG_SMP
216 static struct notifier_block slab_notifier;
217 #endif
219 static enum {
220 DOWN, /* No slab functionality available */
221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
222 UP, /* Everything works but does not show up in sysfs */
223 SYSFS /* Sysfs up */
224 } slab_state = DOWN;
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock);
228 static LIST_HEAD(slab_caches);
231 * Tracking user of a slab.
233 struct track {
234 void *addr; /* Called from address */
235 int cpu; /* Was running on cpu */
236 int pid; /* Pid context */
237 unsigned long when; /* When did the operation occur */
240 enum track_item { TRACK_ALLOC, TRACK_FREE };
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache *);
244 static int sysfs_slab_alias(struct kmem_cache *, const char *);
245 static void sysfs_slab_remove(struct kmem_cache *);
246 #else
247 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
249 { return 0; }
250 static inline void sysfs_slab_remove(struct kmem_cache *s)
252 kfree(s);
254 #endif
256 /********************************************************************
257 * Core slab cache functions
258 *******************************************************************/
260 int slab_is_available(void)
262 return slab_state >= UP;
265 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
267 #ifdef CONFIG_NUMA
268 return s->node[node];
269 #else
270 return &s->local_node;
271 #endif
274 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
276 #ifdef CONFIG_SMP
277 return s->cpu_slab[cpu];
278 #else
279 return &s->cpu_slab;
280 #endif
283 static inline int check_valid_pointer(struct kmem_cache *s,
284 struct page *page, const void *object)
286 void *base;
288 if (!object)
289 return 1;
291 base = page_address(page);
292 if (object < base || object >= base + s->objects * s->size ||
293 (object - base) % s->size) {
294 return 0;
297 return 1;
301 * Slow version of get and set free pointer.
303 * This version requires touching the cache lines of kmem_cache which
304 * we avoid to do in the fast alloc free paths. There we obtain the offset
305 * from the page struct.
307 static inline void *get_freepointer(struct kmem_cache *s, void *object)
309 return *(void **)(object + s->offset);
312 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
314 *(void **)(object + s->offset) = fp;
317 /* Loop over all objects in a slab */
318 #define for_each_object(__p, __s, __addr) \
319 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
320 __p += (__s)->size)
322 /* Scan freelist */
323 #define for_each_free_object(__p, __s, __free) \
324 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
326 /* Determine object index from a given position */
327 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
329 return (p - addr) / s->size;
332 #ifdef CONFIG_SLUB_DEBUG
334 * Debug settings:
336 #ifdef CONFIG_SLUB_DEBUG_ON
337 static int slub_debug = DEBUG_DEFAULT_FLAGS;
338 #else
339 static int slub_debug;
340 #endif
342 static char *slub_debug_slabs;
345 * Object debugging
347 static void print_section(char *text, u8 *addr, unsigned int length)
349 int i, offset;
350 int newline = 1;
351 char ascii[17];
353 ascii[16] = 0;
355 for (i = 0; i < length; i++) {
356 if (newline) {
357 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
358 newline = 0;
360 printk(" %02x", addr[i]);
361 offset = i % 16;
362 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
363 if (offset == 15) {
364 printk(" %s\n",ascii);
365 newline = 1;
368 if (!newline) {
369 i %= 16;
370 while (i < 16) {
371 printk(" ");
372 ascii[i] = ' ';
373 i++;
375 printk(" %s\n", ascii);
379 static struct track *get_track(struct kmem_cache *s, void *object,
380 enum track_item alloc)
382 struct track *p;
384 if (s->offset)
385 p = object + s->offset + sizeof(void *);
386 else
387 p = object + s->inuse;
389 return p + alloc;
392 static void set_track(struct kmem_cache *s, void *object,
393 enum track_item alloc, void *addr)
395 struct track *p;
397 if (s->offset)
398 p = object + s->offset + sizeof(void *);
399 else
400 p = object + s->inuse;
402 p += alloc;
403 if (addr) {
404 p->addr = addr;
405 p->cpu = smp_processor_id();
406 p->pid = current ? current->pid : -1;
407 p->when = jiffies;
408 } else
409 memset(p, 0, sizeof(struct track));
412 static void init_tracking(struct kmem_cache *s, void *object)
414 if (!(s->flags & SLAB_STORE_USER))
415 return;
417 set_track(s, object, TRACK_FREE, NULL);
418 set_track(s, object, TRACK_ALLOC, NULL);
421 static void print_track(const char *s, struct track *t)
423 if (!t->addr)
424 return;
426 printk(KERN_ERR "INFO: %s in ", s);
427 __print_symbol("%s", (unsigned long)t->addr);
428 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
431 static void print_tracking(struct kmem_cache *s, void *object)
433 if (!(s->flags & SLAB_STORE_USER))
434 return;
436 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
437 print_track("Freed", get_track(s, object, TRACK_FREE));
440 static void print_page_info(struct page *page)
442 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
443 page, page->inuse, page->freelist, page->flags);
447 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
449 va_list args;
450 char buf[100];
452 va_start(args, fmt);
453 vsnprintf(buf, sizeof(buf), fmt, args);
454 va_end(args);
455 printk(KERN_ERR "========================================"
456 "=====================================\n");
457 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
458 printk(KERN_ERR "----------------------------------------"
459 "-------------------------------------\n\n");
462 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
464 va_list args;
465 char buf[100];
467 va_start(args, fmt);
468 vsnprintf(buf, sizeof(buf), fmt, args);
469 va_end(args);
470 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
473 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
475 unsigned int off; /* Offset of last byte */
476 u8 *addr = page_address(page);
478 print_tracking(s, p);
480 print_page_info(page);
482 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
483 p, p - addr, get_freepointer(s, p));
485 if (p > addr + 16)
486 print_section("Bytes b4", p - 16, 16);
488 print_section("Object", p, min(s->objsize, 128));
490 if (s->flags & SLAB_RED_ZONE)
491 print_section("Redzone", p + s->objsize,
492 s->inuse - s->objsize);
494 if (s->offset)
495 off = s->offset + sizeof(void *);
496 else
497 off = s->inuse;
499 if (s->flags & SLAB_STORE_USER)
500 off += 2 * sizeof(struct track);
502 if (off != s->size)
503 /* Beginning of the filler is the free pointer */
504 print_section("Padding", p + off, s->size - off);
506 dump_stack();
509 static void object_err(struct kmem_cache *s, struct page *page,
510 u8 *object, char *reason)
512 slab_bug(s, reason);
513 print_trailer(s, page, object);
516 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
518 va_list args;
519 char buf[100];
521 va_start(args, fmt);
522 vsnprintf(buf, sizeof(buf), fmt, args);
523 va_end(args);
524 slab_bug(s, fmt);
525 print_page_info(page);
526 dump_stack();
529 static void init_object(struct kmem_cache *s, void *object, int active)
531 u8 *p = object;
533 if (s->flags & __OBJECT_POISON) {
534 memset(p, POISON_FREE, s->objsize - 1);
535 p[s->objsize -1] = POISON_END;
538 if (s->flags & SLAB_RED_ZONE)
539 memset(p + s->objsize,
540 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
541 s->inuse - s->objsize);
544 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
546 while (bytes) {
547 if (*start != (u8)value)
548 return start;
549 start++;
550 bytes--;
552 return NULL;
555 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
556 void *from, void *to)
558 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
559 memset(from, data, to - from);
562 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
563 u8 *object, char *what,
564 u8* start, unsigned int value, unsigned int bytes)
566 u8 *fault;
567 u8 *end;
569 fault = check_bytes(start, value, bytes);
570 if (!fault)
571 return 1;
573 end = start + bytes;
574 while (end > fault && end[-1] == value)
575 end--;
577 slab_bug(s, "%s overwritten", what);
578 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
579 fault, end - 1, fault[0], value);
580 print_trailer(s, page, object);
582 restore_bytes(s, what, value, fault, end);
583 return 0;
587 * Object layout:
589 * object address
590 * Bytes of the object to be managed.
591 * If the freepointer may overlay the object then the free
592 * pointer is the first word of the object.
594 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
595 * 0xa5 (POISON_END)
597 * object + s->objsize
598 * Padding to reach word boundary. This is also used for Redzoning.
599 * Padding is extended by another word if Redzoning is enabled and
600 * objsize == inuse.
602 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
603 * 0xcc (RED_ACTIVE) for objects in use.
605 * object + s->inuse
606 * Meta data starts here.
608 * A. Free pointer (if we cannot overwrite object on free)
609 * B. Tracking data for SLAB_STORE_USER
610 * C. Padding to reach required alignment boundary or at mininum
611 * one word if debuggin is on to be able to detect writes
612 * before the word boundary.
614 * Padding is done using 0x5a (POISON_INUSE)
616 * object + s->size
617 * Nothing is used beyond s->size.
619 * If slabcaches are merged then the objsize and inuse boundaries are mostly
620 * ignored. And therefore no slab options that rely on these boundaries
621 * may be used with merged slabcaches.
624 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
626 unsigned long off = s->inuse; /* The end of info */
628 if (s->offset)
629 /* Freepointer is placed after the object. */
630 off += sizeof(void *);
632 if (s->flags & SLAB_STORE_USER)
633 /* We also have user information there */
634 off += 2 * sizeof(struct track);
636 if (s->size == off)
637 return 1;
639 return check_bytes_and_report(s, page, p, "Object padding",
640 p + off, POISON_INUSE, s->size - off);
643 static int slab_pad_check(struct kmem_cache *s, struct page *page)
645 u8 *start;
646 u8 *fault;
647 u8 *end;
648 int length;
649 int remainder;
651 if (!(s->flags & SLAB_POISON))
652 return 1;
654 start = page_address(page);
655 end = start + (PAGE_SIZE << s->order);
656 length = s->objects * s->size;
657 remainder = end - (start + length);
658 if (!remainder)
659 return 1;
661 fault = check_bytes(start + length, POISON_INUSE, remainder);
662 if (!fault)
663 return 1;
664 while (end > fault && end[-1] == POISON_INUSE)
665 end--;
667 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
668 print_section("Padding", start, length);
670 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
671 return 0;
674 static int check_object(struct kmem_cache *s, struct page *page,
675 void *object, int active)
677 u8 *p = object;
678 u8 *endobject = object + s->objsize;
680 if (s->flags & SLAB_RED_ZONE) {
681 unsigned int red =
682 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
684 if (!check_bytes_and_report(s, page, object, "Redzone",
685 endobject, red, s->inuse - s->objsize))
686 return 0;
687 } else {
688 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
689 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
690 POISON_INUSE, s->inuse - s->objsize);
693 if (s->flags & SLAB_POISON) {
694 if (!active && (s->flags & __OBJECT_POISON) &&
695 (!check_bytes_and_report(s, page, p, "Poison", p,
696 POISON_FREE, s->objsize - 1) ||
697 !check_bytes_and_report(s, page, p, "Poison",
698 p + s->objsize -1, POISON_END, 1)))
699 return 0;
701 * check_pad_bytes cleans up on its own.
703 check_pad_bytes(s, page, p);
706 if (!s->offset && active)
708 * Object and freepointer overlap. Cannot check
709 * freepointer while object is allocated.
711 return 1;
713 /* Check free pointer validity */
714 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
715 object_err(s, page, p, "Freepointer corrupt");
717 * No choice but to zap it and thus loose the remainder
718 * of the free objects in this slab. May cause
719 * another error because the object count is now wrong.
721 set_freepointer(s, p, NULL);
722 return 0;
724 return 1;
727 static int check_slab(struct kmem_cache *s, struct page *page)
729 VM_BUG_ON(!irqs_disabled());
731 if (!PageSlab(page)) {
732 slab_err(s, page, "Not a valid slab page");
733 return 0;
735 if (page->inuse > s->objects) {
736 slab_err(s, page, "inuse %u > max %u",
737 s->name, page->inuse, s->objects);
738 return 0;
740 /* Slab_pad_check fixes things up after itself */
741 slab_pad_check(s, page);
742 return 1;
746 * Determine if a certain object on a page is on the freelist. Must hold the
747 * slab lock to guarantee that the chains are in a consistent state.
749 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
751 int nr = 0;
752 void *fp = page->freelist;
753 void *object = NULL;
755 while (fp && nr <= s->objects) {
756 if (fp == search)
757 return 1;
758 if (!check_valid_pointer(s, page, fp)) {
759 if (object) {
760 object_err(s, page, object,
761 "Freechain corrupt");
762 set_freepointer(s, object, NULL);
763 break;
764 } else {
765 slab_err(s, page, "Freepointer corrupt");
766 page->freelist = NULL;
767 page->inuse = s->objects;
768 slab_fix(s, "Freelist cleared");
769 return 0;
771 break;
773 object = fp;
774 fp = get_freepointer(s, object);
775 nr++;
778 if (page->inuse != s->objects - nr) {
779 slab_err(s, page, "Wrong object count. Counter is %d but "
780 "counted were %d", page->inuse, s->objects - nr);
781 page->inuse = s->objects - nr;
782 slab_fix(s, "Object count adjusted.");
784 return search == NULL;
787 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
789 if (s->flags & SLAB_TRACE) {
790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 s->name,
792 alloc ? "alloc" : "free",
793 object, page->inuse,
794 page->freelist);
796 if (!alloc)
797 print_section("Object", (void *)object, s->objsize);
799 dump_stack();
804 * Tracking of fully allocated slabs for debugging purposes.
806 static void add_full(struct kmem_cache_node *n, struct page *page)
808 spin_lock(&n->list_lock);
809 list_add(&page->lru, &n->full);
810 spin_unlock(&n->list_lock);
813 static void remove_full(struct kmem_cache *s, struct page *page)
815 struct kmem_cache_node *n;
817 if (!(s->flags & SLAB_STORE_USER))
818 return;
820 n = get_node(s, page_to_nid(page));
822 spin_lock(&n->list_lock);
823 list_del(&page->lru);
824 spin_unlock(&n->list_lock);
827 static void setup_object_debug(struct kmem_cache *s, struct page *page,
828 void *object)
830 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
831 return;
833 init_object(s, object, 0);
834 init_tracking(s, object);
837 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
838 void *object, void *addr)
840 if (!check_slab(s, page))
841 goto bad;
843 if (object && !on_freelist(s, page, object)) {
844 object_err(s, page, object, "Object already allocated");
845 goto bad;
848 if (!check_valid_pointer(s, page, object)) {
849 object_err(s, page, object, "Freelist Pointer check fails");
850 goto bad;
853 if (object && !check_object(s, page, object, 0))
854 goto bad;
856 /* Success perform special debug activities for allocs */
857 if (s->flags & SLAB_STORE_USER)
858 set_track(s, object, TRACK_ALLOC, addr);
859 trace(s, page, object, 1);
860 init_object(s, object, 1);
861 return 1;
863 bad:
864 if (PageSlab(page)) {
866 * If this is a slab page then lets do the best we can
867 * to avoid issues in the future. Marking all objects
868 * as used avoids touching the remaining objects.
870 slab_fix(s, "Marking all objects used");
871 page->inuse = s->objects;
872 page->freelist = NULL;
874 return 0;
877 static int free_debug_processing(struct kmem_cache *s, struct page *page,
878 void *object, void *addr)
880 if (!check_slab(s, page))
881 goto fail;
883 if (!check_valid_pointer(s, page, object)) {
884 slab_err(s, page, "Invalid object pointer 0x%p", object);
885 goto fail;
888 if (on_freelist(s, page, object)) {
889 object_err(s, page, object, "Object already free");
890 goto fail;
893 if (!check_object(s, page, object, 1))
894 return 0;
896 if (unlikely(s != page->slab)) {
897 if (!PageSlab(page))
898 slab_err(s, page, "Attempt to free object(0x%p) "
899 "outside of slab", object);
900 else
901 if (!page->slab) {
902 printk(KERN_ERR
903 "SLUB <none>: no slab for object 0x%p.\n",
904 object);
905 dump_stack();
907 else
908 object_err(s, page, object,
909 "page slab pointer corrupt.");
910 goto fail;
913 /* Special debug activities for freeing objects */
914 if (!SlabFrozen(page) && !page->freelist)
915 remove_full(s, page);
916 if (s->flags & SLAB_STORE_USER)
917 set_track(s, object, TRACK_FREE, addr);
918 trace(s, page, object, 0);
919 init_object(s, object, 0);
920 return 1;
922 fail:
923 slab_fix(s, "Object at 0x%p not freed", object);
924 return 0;
927 static int __init setup_slub_debug(char *str)
929 slub_debug = DEBUG_DEFAULT_FLAGS;
930 if (*str++ != '=' || !*str)
932 * No options specified. Switch on full debugging.
934 goto out;
936 if (*str == ',')
938 * No options but restriction on slabs. This means full
939 * debugging for slabs matching a pattern.
941 goto check_slabs;
943 slub_debug = 0;
944 if (*str == '-')
946 * Switch off all debugging measures.
948 goto out;
951 * Determine which debug features should be switched on
953 for ( ;*str && *str != ','; str++) {
954 switch (tolower(*str)) {
955 case 'f':
956 slub_debug |= SLAB_DEBUG_FREE;
957 break;
958 case 'z':
959 slub_debug |= SLAB_RED_ZONE;
960 break;
961 case 'p':
962 slub_debug |= SLAB_POISON;
963 break;
964 case 'u':
965 slub_debug |= SLAB_STORE_USER;
966 break;
967 case 't':
968 slub_debug |= SLAB_TRACE;
969 break;
970 default:
971 printk(KERN_ERR "slub_debug option '%c' "
972 "unknown. skipped\n",*str);
976 check_slabs:
977 if (*str == ',')
978 slub_debug_slabs = str + 1;
979 out:
980 return 1;
983 __setup("slub_debug", setup_slub_debug);
985 static unsigned long kmem_cache_flags(unsigned long objsize,
986 unsigned long flags, const char *name,
987 void (*ctor)(struct kmem_cache *, void *))
990 * The page->offset field is only 16 bit wide. This is an offset
991 * in units of words from the beginning of an object. If the slab
992 * size is bigger then we cannot move the free pointer behind the
993 * object anymore.
995 * On 32 bit platforms the limit is 256k. On 64bit platforms
996 * the limit is 512k.
998 * Debugging or ctor may create a need to move the free
999 * pointer. Fail if this happens.
1001 if (objsize >= 65535 * sizeof(void *)) {
1002 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1003 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1004 BUG_ON(ctor);
1005 } else {
1007 * Enable debugging if selected on the kernel commandline.
1009 if (slub_debug && (!slub_debug_slabs ||
1010 strncmp(slub_debug_slabs, name,
1011 strlen(slub_debug_slabs)) == 0))
1012 flags |= slub_debug;
1015 return flags;
1017 #else
1018 static inline void setup_object_debug(struct kmem_cache *s,
1019 struct page *page, void *object) {}
1021 static inline int alloc_debug_processing(struct kmem_cache *s,
1022 struct page *page, void *object, void *addr) { return 0; }
1024 static inline int free_debug_processing(struct kmem_cache *s,
1025 struct page *page, void *object, void *addr) { return 0; }
1027 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1028 { return 1; }
1029 static inline int check_object(struct kmem_cache *s, struct page *page,
1030 void *object, int active) { return 1; }
1031 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1032 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1033 unsigned long flags, const char *name,
1034 void (*ctor)(struct kmem_cache *, void *))
1036 return flags;
1038 #define slub_debug 0
1039 #endif
1041 * Slab allocation and freeing
1043 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1045 struct page * page;
1046 int pages = 1 << s->order;
1048 if (s->order)
1049 flags |= __GFP_COMP;
1051 if (s->flags & SLAB_CACHE_DMA)
1052 flags |= SLUB_DMA;
1054 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1055 flags |= __GFP_RECLAIMABLE;
1057 if (node == -1)
1058 page = alloc_pages(flags, s->order);
1059 else
1060 page = alloc_pages_node(node, flags, s->order);
1062 if (!page)
1063 return NULL;
1065 mod_zone_page_state(page_zone(page),
1066 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1067 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1068 pages);
1070 return page;
1073 static void setup_object(struct kmem_cache *s, struct page *page,
1074 void *object)
1076 setup_object_debug(s, page, object);
1077 if (unlikely(s->ctor))
1078 s->ctor(s, object);
1081 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1083 struct page *page;
1084 struct kmem_cache_node *n;
1085 void *start;
1086 void *last;
1087 void *p;
1089 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1091 page = allocate_slab(s,
1092 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1093 if (!page)
1094 goto out;
1096 n = get_node(s, page_to_nid(page));
1097 if (n)
1098 atomic_long_inc(&n->nr_slabs);
1099 page->slab = s;
1100 page->flags |= 1 << PG_slab;
1101 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1102 SLAB_STORE_USER | SLAB_TRACE))
1103 SetSlabDebug(page);
1105 start = page_address(page);
1107 if (unlikely(s->flags & SLAB_POISON))
1108 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1110 last = start;
1111 for_each_object(p, s, start) {
1112 setup_object(s, page, last);
1113 set_freepointer(s, last, p);
1114 last = p;
1116 setup_object(s, page, last);
1117 set_freepointer(s, last, NULL);
1119 page->freelist = start;
1120 page->inuse = 0;
1121 out:
1122 return page;
1125 static void __free_slab(struct kmem_cache *s, struct page *page)
1127 int pages = 1 << s->order;
1129 if (unlikely(SlabDebug(page))) {
1130 void *p;
1132 slab_pad_check(s, page);
1133 for_each_object(p, s, page_address(page))
1134 check_object(s, page, p, 0);
1135 ClearSlabDebug(page);
1138 mod_zone_page_state(page_zone(page),
1139 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1140 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1141 - pages);
1143 __free_pages(page, s->order);
1146 static void rcu_free_slab(struct rcu_head *h)
1148 struct page *page;
1150 page = container_of((struct list_head *)h, struct page, lru);
1151 __free_slab(page->slab, page);
1154 static void free_slab(struct kmem_cache *s, struct page *page)
1156 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1158 * RCU free overloads the RCU head over the LRU
1160 struct rcu_head *head = (void *)&page->lru;
1162 call_rcu(head, rcu_free_slab);
1163 } else
1164 __free_slab(s, page);
1167 static void discard_slab(struct kmem_cache *s, struct page *page)
1169 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1171 atomic_long_dec(&n->nr_slabs);
1172 reset_page_mapcount(page);
1173 __ClearPageSlab(page);
1174 free_slab(s, page);
1178 * Per slab locking using the pagelock
1180 static __always_inline void slab_lock(struct page *page)
1182 bit_spin_lock(PG_locked, &page->flags);
1185 static __always_inline void slab_unlock(struct page *page)
1187 bit_spin_unlock(PG_locked, &page->flags);
1190 static __always_inline int slab_trylock(struct page *page)
1192 int rc = 1;
1194 rc = bit_spin_trylock(PG_locked, &page->flags);
1195 return rc;
1199 * Management of partially allocated slabs
1201 static void add_partial(struct kmem_cache_node *n,
1202 struct page *page, int tail)
1204 spin_lock(&n->list_lock);
1205 n->nr_partial++;
1206 if (tail)
1207 list_add_tail(&page->lru, &n->partial);
1208 else
1209 list_add(&page->lru, &n->partial);
1210 spin_unlock(&n->list_lock);
1213 static void remove_partial(struct kmem_cache *s,
1214 struct page *page)
1216 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1218 spin_lock(&n->list_lock);
1219 list_del(&page->lru);
1220 n->nr_partial--;
1221 spin_unlock(&n->list_lock);
1225 * Lock slab and remove from the partial list.
1227 * Must hold list_lock.
1229 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1231 if (slab_trylock(page)) {
1232 list_del(&page->lru);
1233 n->nr_partial--;
1234 SetSlabFrozen(page);
1235 return 1;
1237 return 0;
1241 * Try to allocate a partial slab from a specific node.
1243 static struct page *get_partial_node(struct kmem_cache_node *n)
1245 struct page *page;
1248 * Racy check. If we mistakenly see no partial slabs then we
1249 * just allocate an empty slab. If we mistakenly try to get a
1250 * partial slab and there is none available then get_partials()
1251 * will return NULL.
1253 if (!n || !n->nr_partial)
1254 return NULL;
1256 spin_lock(&n->list_lock);
1257 list_for_each_entry(page, &n->partial, lru)
1258 if (lock_and_freeze_slab(n, page))
1259 goto out;
1260 page = NULL;
1261 out:
1262 spin_unlock(&n->list_lock);
1263 return page;
1267 * Get a page from somewhere. Search in increasing NUMA distances.
1269 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1271 #ifdef CONFIG_NUMA
1272 struct zonelist *zonelist;
1273 struct zone **z;
1274 struct page *page;
1277 * The defrag ratio allows a configuration of the tradeoffs between
1278 * inter node defragmentation and node local allocations. A lower
1279 * defrag_ratio increases the tendency to do local allocations
1280 * instead of attempting to obtain partial slabs from other nodes.
1282 * If the defrag_ratio is set to 0 then kmalloc() always
1283 * returns node local objects. If the ratio is higher then kmalloc()
1284 * may return off node objects because partial slabs are obtained
1285 * from other nodes and filled up.
1287 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1288 * defrag_ratio = 1000) then every (well almost) allocation will
1289 * first attempt to defrag slab caches on other nodes. This means
1290 * scanning over all nodes to look for partial slabs which may be
1291 * expensive if we do it every time we are trying to find a slab
1292 * with available objects.
1294 if (!s->remote_node_defrag_ratio ||
1295 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1296 return NULL;
1298 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1299 ->node_zonelists[gfp_zone(flags)];
1300 for (z = zonelist->zones; *z; z++) {
1301 struct kmem_cache_node *n;
1303 n = get_node(s, zone_to_nid(*z));
1305 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1306 n->nr_partial > MIN_PARTIAL) {
1307 page = get_partial_node(n);
1308 if (page)
1309 return page;
1312 #endif
1313 return NULL;
1317 * Get a partial page, lock it and return it.
1319 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1321 struct page *page;
1322 int searchnode = (node == -1) ? numa_node_id() : node;
1324 page = get_partial_node(get_node(s, searchnode));
1325 if (page || (flags & __GFP_THISNODE))
1326 return page;
1328 return get_any_partial(s, flags);
1332 * Move a page back to the lists.
1334 * Must be called with the slab lock held.
1336 * On exit the slab lock will have been dropped.
1338 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1340 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1342 ClearSlabFrozen(page);
1343 if (page->inuse) {
1345 if (page->freelist)
1346 add_partial(n, page, tail);
1347 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1348 add_full(n, page);
1349 slab_unlock(page);
1351 } else {
1352 if (n->nr_partial < MIN_PARTIAL) {
1354 * Adding an empty slab to the partial slabs in order
1355 * to avoid page allocator overhead. This slab needs
1356 * to come after the other slabs with objects in
1357 * order to fill them up. That way the size of the
1358 * partial list stays small. kmem_cache_shrink can
1359 * reclaim empty slabs from the partial list.
1361 add_partial(n, page, 1);
1362 slab_unlock(page);
1363 } else {
1364 slab_unlock(page);
1365 discard_slab(s, page);
1371 * Remove the cpu slab
1373 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1375 struct page *page = c->page;
1376 int tail = 1;
1378 * Merge cpu freelist into freelist. Typically we get here
1379 * because both freelists are empty. So this is unlikely
1380 * to occur.
1382 while (unlikely(c->freelist)) {
1383 void **object;
1385 tail = 0; /* Hot objects. Put the slab first */
1387 /* Retrieve object from cpu_freelist */
1388 object = c->freelist;
1389 c->freelist = c->freelist[c->offset];
1391 /* And put onto the regular freelist */
1392 object[c->offset] = page->freelist;
1393 page->freelist = object;
1394 page->inuse--;
1396 c->page = NULL;
1397 unfreeze_slab(s, page, tail);
1400 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1402 slab_lock(c->page);
1403 deactivate_slab(s, c);
1407 * Flush cpu slab.
1408 * Called from IPI handler with interrupts disabled.
1410 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1412 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1414 if (likely(c && c->page))
1415 flush_slab(s, c);
1418 static void flush_cpu_slab(void *d)
1420 struct kmem_cache *s = d;
1422 __flush_cpu_slab(s, smp_processor_id());
1425 static void flush_all(struct kmem_cache *s)
1427 #ifdef CONFIG_SMP
1428 on_each_cpu(flush_cpu_slab, s, 1, 1);
1429 #else
1430 unsigned long flags;
1432 local_irq_save(flags);
1433 flush_cpu_slab(s);
1434 local_irq_restore(flags);
1435 #endif
1439 * Check if the objects in a per cpu structure fit numa
1440 * locality expectations.
1442 static inline int node_match(struct kmem_cache_cpu *c, int node)
1444 #ifdef CONFIG_NUMA
1445 if (node != -1 && c->node != node)
1446 return 0;
1447 #endif
1448 return 1;
1452 * Slow path. The lockless freelist is empty or we need to perform
1453 * debugging duties.
1455 * Interrupts are disabled.
1457 * Processing is still very fast if new objects have been freed to the
1458 * regular freelist. In that case we simply take over the regular freelist
1459 * as the lockless freelist and zap the regular freelist.
1461 * If that is not working then we fall back to the partial lists. We take the
1462 * first element of the freelist as the object to allocate now and move the
1463 * rest of the freelist to the lockless freelist.
1465 * And if we were unable to get a new slab from the partial slab lists then
1466 * we need to allocate a new slab. This is slowest path since we may sleep.
1468 static void *__slab_alloc(struct kmem_cache *s,
1469 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1471 void **object;
1472 struct page *new;
1474 if (!c->page)
1475 goto new_slab;
1477 slab_lock(c->page);
1478 if (unlikely(!node_match(c, node)))
1479 goto another_slab;
1480 load_freelist:
1481 object = c->page->freelist;
1482 if (unlikely(!object))
1483 goto another_slab;
1484 if (unlikely(SlabDebug(c->page)))
1485 goto debug;
1487 object = c->page->freelist;
1488 c->freelist = object[c->offset];
1489 c->page->inuse = s->objects;
1490 c->page->freelist = NULL;
1491 c->node = page_to_nid(c->page);
1492 slab_unlock(c->page);
1493 return object;
1495 another_slab:
1496 deactivate_slab(s, c);
1498 new_slab:
1499 new = get_partial(s, gfpflags, node);
1500 if (new) {
1501 c->page = new;
1502 goto load_freelist;
1505 if (gfpflags & __GFP_WAIT)
1506 local_irq_enable();
1508 new = new_slab(s, gfpflags, node);
1510 if (gfpflags & __GFP_WAIT)
1511 local_irq_disable();
1513 if (new) {
1514 c = get_cpu_slab(s, smp_processor_id());
1515 if (c->page)
1516 flush_slab(s, c);
1517 slab_lock(new);
1518 SetSlabFrozen(new);
1519 c->page = new;
1520 goto load_freelist;
1522 return NULL;
1523 debug:
1524 object = c->page->freelist;
1525 if (!alloc_debug_processing(s, c->page, object, addr))
1526 goto another_slab;
1528 c->page->inuse++;
1529 c->page->freelist = object[c->offset];
1530 c->node = -1;
1531 slab_unlock(c->page);
1532 return object;
1536 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1537 * have the fastpath folded into their functions. So no function call
1538 * overhead for requests that can be satisfied on the fastpath.
1540 * The fastpath works by first checking if the lockless freelist can be used.
1541 * If not then __slab_alloc is called for slow processing.
1543 * Otherwise we can simply pick the next object from the lockless free list.
1545 static void __always_inline *slab_alloc(struct kmem_cache *s,
1546 gfp_t gfpflags, int node, void *addr)
1548 void **object;
1549 unsigned long flags;
1550 struct kmem_cache_cpu *c;
1552 local_irq_save(flags);
1553 c = get_cpu_slab(s, smp_processor_id());
1554 if (unlikely(!c->freelist || !node_match(c, node)))
1556 object = __slab_alloc(s, gfpflags, node, addr, c);
1558 else {
1559 object = c->freelist;
1560 c->freelist = object[c->offset];
1562 local_irq_restore(flags);
1564 if (unlikely((gfpflags & __GFP_ZERO) && object))
1565 memset(object, 0, c->objsize);
1567 return object;
1570 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1572 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1574 EXPORT_SYMBOL(kmem_cache_alloc);
1576 #ifdef CONFIG_NUMA
1577 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1579 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1581 EXPORT_SYMBOL(kmem_cache_alloc_node);
1582 #endif
1585 * Slow patch handling. This may still be called frequently since objects
1586 * have a longer lifetime than the cpu slabs in most processing loads.
1588 * So we still attempt to reduce cache line usage. Just take the slab
1589 * lock and free the item. If there is no additional partial page
1590 * handling required then we can return immediately.
1592 static void __slab_free(struct kmem_cache *s, struct page *page,
1593 void *x, void *addr, unsigned int offset)
1595 void *prior;
1596 void **object = (void *)x;
1598 slab_lock(page);
1600 if (unlikely(SlabDebug(page)))
1601 goto debug;
1602 checks_ok:
1603 prior = object[offset] = page->freelist;
1604 page->freelist = object;
1605 page->inuse--;
1607 if (unlikely(SlabFrozen(page)))
1608 goto out_unlock;
1610 if (unlikely(!page->inuse))
1611 goto slab_empty;
1614 * Objects left in the slab. If it
1615 * was not on the partial list before
1616 * then add it.
1618 if (unlikely(!prior))
1619 add_partial(get_node(s, page_to_nid(page)), page, 1);
1621 out_unlock:
1622 slab_unlock(page);
1623 return;
1625 slab_empty:
1626 if (prior)
1628 * Slab still on the partial list.
1630 remove_partial(s, page);
1632 slab_unlock(page);
1633 discard_slab(s, page);
1634 return;
1636 debug:
1637 if (!free_debug_processing(s, page, x, addr))
1638 goto out_unlock;
1639 goto checks_ok;
1643 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1644 * can perform fastpath freeing without additional function calls.
1646 * The fastpath is only possible if we are freeing to the current cpu slab
1647 * of this processor. This typically the case if we have just allocated
1648 * the item before.
1650 * If fastpath is not possible then fall back to __slab_free where we deal
1651 * with all sorts of special processing.
1653 static void __always_inline slab_free(struct kmem_cache *s,
1654 struct page *page, void *x, void *addr)
1656 void **object = (void *)x;
1657 unsigned long flags;
1658 struct kmem_cache_cpu *c;
1660 local_irq_save(flags);
1661 debug_check_no_locks_freed(object, s->objsize);
1662 c = get_cpu_slab(s, smp_processor_id());
1663 if (likely(page == c->page && c->node >= 0)) {
1664 object[c->offset] = c->freelist;
1665 c->freelist = object;
1666 } else
1667 __slab_free(s, page, x, addr, c->offset);
1669 local_irq_restore(flags);
1672 void kmem_cache_free(struct kmem_cache *s, void *x)
1674 struct page *page;
1676 page = virt_to_head_page(x);
1678 slab_free(s, page, x, __builtin_return_address(0));
1680 EXPORT_SYMBOL(kmem_cache_free);
1682 /* Figure out on which slab object the object resides */
1683 static struct page *get_object_page(const void *x)
1685 struct page *page = virt_to_head_page(x);
1687 if (!PageSlab(page))
1688 return NULL;
1690 return page;
1694 * Object placement in a slab is made very easy because we always start at
1695 * offset 0. If we tune the size of the object to the alignment then we can
1696 * get the required alignment by putting one properly sized object after
1697 * another.
1699 * Notice that the allocation order determines the sizes of the per cpu
1700 * caches. Each processor has always one slab available for allocations.
1701 * Increasing the allocation order reduces the number of times that slabs
1702 * must be moved on and off the partial lists and is therefore a factor in
1703 * locking overhead.
1707 * Mininum / Maximum order of slab pages. This influences locking overhead
1708 * and slab fragmentation. A higher order reduces the number of partial slabs
1709 * and increases the number of allocations possible without having to
1710 * take the list_lock.
1712 static int slub_min_order;
1713 static int slub_max_order = DEFAULT_MAX_ORDER;
1714 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1717 * Merge control. If this is set then no merging of slab caches will occur.
1718 * (Could be removed. This was introduced to pacify the merge skeptics.)
1720 static int slub_nomerge;
1723 * Calculate the order of allocation given an slab object size.
1725 * The order of allocation has significant impact on performance and other
1726 * system components. Generally order 0 allocations should be preferred since
1727 * order 0 does not cause fragmentation in the page allocator. Larger objects
1728 * be problematic to put into order 0 slabs because there may be too much
1729 * unused space left. We go to a higher order if more than 1/8th of the slab
1730 * would be wasted.
1732 * In order to reach satisfactory performance we must ensure that a minimum
1733 * number of objects is in one slab. Otherwise we may generate too much
1734 * activity on the partial lists which requires taking the list_lock. This is
1735 * less a concern for large slabs though which are rarely used.
1737 * slub_max_order specifies the order where we begin to stop considering the
1738 * number of objects in a slab as critical. If we reach slub_max_order then
1739 * we try to keep the page order as low as possible. So we accept more waste
1740 * of space in favor of a small page order.
1742 * Higher order allocations also allow the placement of more objects in a
1743 * slab and thereby reduce object handling overhead. If the user has
1744 * requested a higher mininum order then we start with that one instead of
1745 * the smallest order which will fit the object.
1747 static inline int slab_order(int size, int min_objects,
1748 int max_order, int fract_leftover)
1750 int order;
1751 int rem;
1752 int min_order = slub_min_order;
1754 for (order = max(min_order,
1755 fls(min_objects * size - 1) - PAGE_SHIFT);
1756 order <= max_order; order++) {
1758 unsigned long slab_size = PAGE_SIZE << order;
1760 if (slab_size < min_objects * size)
1761 continue;
1763 rem = slab_size % size;
1765 if (rem <= slab_size / fract_leftover)
1766 break;
1770 return order;
1773 static inline int calculate_order(int size)
1775 int order;
1776 int min_objects;
1777 int fraction;
1780 * Attempt to find best configuration for a slab. This
1781 * works by first attempting to generate a layout with
1782 * the best configuration and backing off gradually.
1784 * First we reduce the acceptable waste in a slab. Then
1785 * we reduce the minimum objects required in a slab.
1787 min_objects = slub_min_objects;
1788 while (min_objects > 1) {
1789 fraction = 8;
1790 while (fraction >= 4) {
1791 order = slab_order(size, min_objects,
1792 slub_max_order, fraction);
1793 if (order <= slub_max_order)
1794 return order;
1795 fraction /= 2;
1797 min_objects /= 2;
1801 * We were unable to place multiple objects in a slab. Now
1802 * lets see if we can place a single object there.
1804 order = slab_order(size, 1, slub_max_order, 1);
1805 if (order <= slub_max_order)
1806 return order;
1809 * Doh this slab cannot be placed using slub_max_order.
1811 order = slab_order(size, 1, MAX_ORDER, 1);
1812 if (order <= MAX_ORDER)
1813 return order;
1814 return -ENOSYS;
1818 * Figure out what the alignment of the objects will be.
1820 static unsigned long calculate_alignment(unsigned long flags,
1821 unsigned long align, unsigned long size)
1824 * If the user wants hardware cache aligned objects then
1825 * follow that suggestion if the object is sufficiently
1826 * large.
1828 * The hardware cache alignment cannot override the
1829 * specified alignment though. If that is greater
1830 * then use it.
1832 if ((flags & SLAB_HWCACHE_ALIGN) &&
1833 size > cache_line_size() / 2)
1834 return max_t(unsigned long, align, cache_line_size());
1836 if (align < ARCH_SLAB_MINALIGN)
1837 return ARCH_SLAB_MINALIGN;
1839 return ALIGN(align, sizeof(void *));
1842 static void init_kmem_cache_cpu(struct kmem_cache *s,
1843 struct kmem_cache_cpu *c)
1845 c->page = NULL;
1846 c->freelist = NULL;
1847 c->node = 0;
1848 c->offset = s->offset / sizeof(void *);
1849 c->objsize = s->objsize;
1852 static void init_kmem_cache_node(struct kmem_cache_node *n)
1854 n->nr_partial = 0;
1855 atomic_long_set(&n->nr_slabs, 0);
1856 spin_lock_init(&n->list_lock);
1857 INIT_LIST_HEAD(&n->partial);
1858 #ifdef CONFIG_SLUB_DEBUG
1859 INIT_LIST_HEAD(&n->full);
1860 #endif
1863 #ifdef CONFIG_SMP
1865 * Per cpu array for per cpu structures.
1867 * The per cpu array places all kmem_cache_cpu structures from one processor
1868 * close together meaning that it becomes possible that multiple per cpu
1869 * structures are contained in one cacheline. This may be particularly
1870 * beneficial for the kmalloc caches.
1872 * A desktop system typically has around 60-80 slabs. With 100 here we are
1873 * likely able to get per cpu structures for all caches from the array defined
1874 * here. We must be able to cover all kmalloc caches during bootstrap.
1876 * If the per cpu array is exhausted then fall back to kmalloc
1877 * of individual cachelines. No sharing is possible then.
1879 #define NR_KMEM_CACHE_CPU 100
1881 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1882 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1884 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1885 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1887 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1888 int cpu, gfp_t flags)
1890 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1892 if (c)
1893 per_cpu(kmem_cache_cpu_free, cpu) =
1894 (void *)c->freelist;
1895 else {
1896 /* Table overflow: So allocate ourselves */
1897 c = kmalloc_node(
1898 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1899 flags, cpu_to_node(cpu));
1900 if (!c)
1901 return NULL;
1904 init_kmem_cache_cpu(s, c);
1905 return c;
1908 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1910 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1911 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1912 kfree(c);
1913 return;
1915 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1916 per_cpu(kmem_cache_cpu_free, cpu) = c;
1919 static void free_kmem_cache_cpus(struct kmem_cache *s)
1921 int cpu;
1923 for_each_online_cpu(cpu) {
1924 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1926 if (c) {
1927 s->cpu_slab[cpu] = NULL;
1928 free_kmem_cache_cpu(c, cpu);
1933 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1935 int cpu;
1937 for_each_online_cpu(cpu) {
1938 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1940 if (c)
1941 continue;
1943 c = alloc_kmem_cache_cpu(s, cpu, flags);
1944 if (!c) {
1945 free_kmem_cache_cpus(s);
1946 return 0;
1948 s->cpu_slab[cpu] = c;
1950 return 1;
1954 * Initialize the per cpu array.
1956 static void init_alloc_cpu_cpu(int cpu)
1958 int i;
1960 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1961 return;
1963 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1964 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1966 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1969 static void __init init_alloc_cpu(void)
1971 int cpu;
1973 for_each_online_cpu(cpu)
1974 init_alloc_cpu_cpu(cpu);
1977 #else
1978 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1979 static inline void init_alloc_cpu(void) {}
1981 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1983 init_kmem_cache_cpu(s, &s->cpu_slab);
1984 return 1;
1986 #endif
1988 #ifdef CONFIG_NUMA
1990 * No kmalloc_node yet so do it by hand. We know that this is the first
1991 * slab on the node for this slabcache. There are no concurrent accesses
1992 * possible.
1994 * Note that this function only works on the kmalloc_node_cache
1995 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1996 * memory on a fresh node that has no slab structures yet.
1998 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1999 int node)
2001 struct page *page;
2002 struct kmem_cache_node *n;
2004 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2006 page = new_slab(kmalloc_caches, gfpflags, node);
2008 BUG_ON(!page);
2009 if (page_to_nid(page) != node) {
2010 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2011 "node %d\n", node);
2012 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2013 "in order to be able to continue\n");
2016 n = page->freelist;
2017 BUG_ON(!n);
2018 page->freelist = get_freepointer(kmalloc_caches, n);
2019 page->inuse++;
2020 kmalloc_caches->node[node] = n;
2021 #ifdef CONFIG_SLUB_DEBUG
2022 init_object(kmalloc_caches, n, 1);
2023 init_tracking(kmalloc_caches, n);
2024 #endif
2025 init_kmem_cache_node(n);
2026 atomic_long_inc(&n->nr_slabs);
2027 add_partial(n, page, 0);
2028 return n;
2031 static void free_kmem_cache_nodes(struct kmem_cache *s)
2033 int node;
2035 for_each_node_state(node, N_NORMAL_MEMORY) {
2036 struct kmem_cache_node *n = s->node[node];
2037 if (n && n != &s->local_node)
2038 kmem_cache_free(kmalloc_caches, n);
2039 s->node[node] = NULL;
2043 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2045 int node;
2046 int local_node;
2048 if (slab_state >= UP)
2049 local_node = page_to_nid(virt_to_page(s));
2050 else
2051 local_node = 0;
2053 for_each_node_state(node, N_NORMAL_MEMORY) {
2054 struct kmem_cache_node *n;
2056 if (local_node == node)
2057 n = &s->local_node;
2058 else {
2059 if (slab_state == DOWN) {
2060 n = early_kmem_cache_node_alloc(gfpflags,
2061 node);
2062 continue;
2064 n = kmem_cache_alloc_node(kmalloc_caches,
2065 gfpflags, node);
2067 if (!n) {
2068 free_kmem_cache_nodes(s);
2069 return 0;
2073 s->node[node] = n;
2074 init_kmem_cache_node(n);
2076 return 1;
2078 #else
2079 static void free_kmem_cache_nodes(struct kmem_cache *s)
2083 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2085 init_kmem_cache_node(&s->local_node);
2086 return 1;
2088 #endif
2091 * calculate_sizes() determines the order and the distribution of data within
2092 * a slab object.
2094 static int calculate_sizes(struct kmem_cache *s)
2096 unsigned long flags = s->flags;
2097 unsigned long size = s->objsize;
2098 unsigned long align = s->align;
2101 * Determine if we can poison the object itself. If the user of
2102 * the slab may touch the object after free or before allocation
2103 * then we should never poison the object itself.
2105 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2106 !s->ctor)
2107 s->flags |= __OBJECT_POISON;
2108 else
2109 s->flags &= ~__OBJECT_POISON;
2112 * Round up object size to the next word boundary. We can only
2113 * place the free pointer at word boundaries and this determines
2114 * the possible location of the free pointer.
2116 size = ALIGN(size, sizeof(void *));
2118 #ifdef CONFIG_SLUB_DEBUG
2120 * If we are Redzoning then check if there is some space between the
2121 * end of the object and the free pointer. If not then add an
2122 * additional word to have some bytes to store Redzone information.
2124 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2125 size += sizeof(void *);
2126 #endif
2129 * With that we have determined the number of bytes in actual use
2130 * by the object. This is the potential offset to the free pointer.
2132 s->inuse = size;
2134 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2135 s->ctor)) {
2137 * Relocate free pointer after the object if it is not
2138 * permitted to overwrite the first word of the object on
2139 * kmem_cache_free.
2141 * This is the case if we do RCU, have a constructor or
2142 * destructor or are poisoning the objects.
2144 s->offset = size;
2145 size += sizeof(void *);
2148 #ifdef CONFIG_SLUB_DEBUG
2149 if (flags & SLAB_STORE_USER)
2151 * Need to store information about allocs and frees after
2152 * the object.
2154 size += 2 * sizeof(struct track);
2156 if (flags & SLAB_RED_ZONE)
2158 * Add some empty padding so that we can catch
2159 * overwrites from earlier objects rather than let
2160 * tracking information or the free pointer be
2161 * corrupted if an user writes before the start
2162 * of the object.
2164 size += sizeof(void *);
2165 #endif
2168 * Determine the alignment based on various parameters that the
2169 * user specified and the dynamic determination of cache line size
2170 * on bootup.
2172 align = calculate_alignment(flags, align, s->objsize);
2175 * SLUB stores one object immediately after another beginning from
2176 * offset 0. In order to align the objects we have to simply size
2177 * each object to conform to the alignment.
2179 size = ALIGN(size, align);
2180 s->size = size;
2182 s->order = calculate_order(size);
2183 if (s->order < 0)
2184 return 0;
2187 * Determine the number of objects per slab
2189 s->objects = (PAGE_SIZE << s->order) / size;
2191 return !!s->objects;
2195 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2196 const char *name, size_t size,
2197 size_t align, unsigned long flags,
2198 void (*ctor)(struct kmem_cache *, void *))
2200 memset(s, 0, kmem_size);
2201 s->name = name;
2202 s->ctor = ctor;
2203 s->objsize = size;
2204 s->align = align;
2205 s->flags = kmem_cache_flags(size, flags, name, ctor);
2207 if (!calculate_sizes(s))
2208 goto error;
2210 s->refcount = 1;
2211 #ifdef CONFIG_NUMA
2212 s->remote_node_defrag_ratio = 100;
2213 #endif
2214 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2215 goto error;
2217 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2218 return 1;
2219 free_kmem_cache_nodes(s);
2220 error:
2221 if (flags & SLAB_PANIC)
2222 panic("Cannot create slab %s size=%lu realsize=%u "
2223 "order=%u offset=%u flags=%lx\n",
2224 s->name, (unsigned long)size, s->size, s->order,
2225 s->offset, flags);
2226 return 0;
2230 * Check if a given pointer is valid
2232 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2234 struct page * page;
2236 page = get_object_page(object);
2238 if (!page || s != page->slab)
2239 /* No slab or wrong slab */
2240 return 0;
2242 if (!check_valid_pointer(s, page, object))
2243 return 0;
2246 * We could also check if the object is on the slabs freelist.
2247 * But this would be too expensive and it seems that the main
2248 * purpose of kmem_ptr_valid is to check if the object belongs
2249 * to a certain slab.
2251 return 1;
2253 EXPORT_SYMBOL(kmem_ptr_validate);
2256 * Determine the size of a slab object
2258 unsigned int kmem_cache_size(struct kmem_cache *s)
2260 return s->objsize;
2262 EXPORT_SYMBOL(kmem_cache_size);
2264 const char *kmem_cache_name(struct kmem_cache *s)
2266 return s->name;
2268 EXPORT_SYMBOL(kmem_cache_name);
2271 * Attempt to free all slabs on a node. Return the number of slabs we
2272 * were unable to free.
2274 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2275 struct list_head *list)
2277 int slabs_inuse = 0;
2278 unsigned long flags;
2279 struct page *page, *h;
2281 spin_lock_irqsave(&n->list_lock, flags);
2282 list_for_each_entry_safe(page, h, list, lru)
2283 if (!page->inuse) {
2284 list_del(&page->lru);
2285 discard_slab(s, page);
2286 } else
2287 slabs_inuse++;
2288 spin_unlock_irqrestore(&n->list_lock, flags);
2289 return slabs_inuse;
2293 * Release all resources used by a slab cache.
2295 static inline int kmem_cache_close(struct kmem_cache *s)
2297 int node;
2299 flush_all(s);
2301 /* Attempt to free all objects */
2302 free_kmem_cache_cpus(s);
2303 for_each_node_state(node, N_NORMAL_MEMORY) {
2304 struct kmem_cache_node *n = get_node(s, node);
2306 n->nr_partial -= free_list(s, n, &n->partial);
2307 if (atomic_long_read(&n->nr_slabs))
2308 return 1;
2310 free_kmem_cache_nodes(s);
2311 return 0;
2315 * Close a cache and release the kmem_cache structure
2316 * (must be used for caches created using kmem_cache_create)
2318 void kmem_cache_destroy(struct kmem_cache *s)
2320 down_write(&slub_lock);
2321 s->refcount--;
2322 if (!s->refcount) {
2323 list_del(&s->list);
2324 up_write(&slub_lock);
2325 if (kmem_cache_close(s))
2326 WARN_ON(1);
2327 sysfs_slab_remove(s);
2328 } else
2329 up_write(&slub_lock);
2331 EXPORT_SYMBOL(kmem_cache_destroy);
2333 /********************************************************************
2334 * Kmalloc subsystem
2335 *******************************************************************/
2337 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2338 EXPORT_SYMBOL(kmalloc_caches);
2340 #ifdef CONFIG_ZONE_DMA
2341 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2342 #endif
2344 static int __init setup_slub_min_order(char *str)
2346 get_option (&str, &slub_min_order);
2348 return 1;
2351 __setup("slub_min_order=", setup_slub_min_order);
2353 static int __init setup_slub_max_order(char *str)
2355 get_option (&str, &slub_max_order);
2357 return 1;
2360 __setup("slub_max_order=", setup_slub_max_order);
2362 static int __init setup_slub_min_objects(char *str)
2364 get_option (&str, &slub_min_objects);
2366 return 1;
2369 __setup("slub_min_objects=", setup_slub_min_objects);
2371 static int __init setup_slub_nomerge(char *str)
2373 slub_nomerge = 1;
2374 return 1;
2377 __setup("slub_nomerge", setup_slub_nomerge);
2379 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2380 const char *name, int size, gfp_t gfp_flags)
2382 unsigned int flags = 0;
2384 if (gfp_flags & SLUB_DMA)
2385 flags = SLAB_CACHE_DMA;
2387 down_write(&slub_lock);
2388 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2389 flags, NULL))
2390 goto panic;
2392 list_add(&s->list, &slab_caches);
2393 up_write(&slub_lock);
2394 if (sysfs_slab_add(s))
2395 goto panic;
2396 return s;
2398 panic:
2399 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2402 #ifdef CONFIG_ZONE_DMA
2404 static void sysfs_add_func(struct work_struct *w)
2406 struct kmem_cache *s;
2408 down_write(&slub_lock);
2409 list_for_each_entry(s, &slab_caches, list) {
2410 if (s->flags & __SYSFS_ADD_DEFERRED) {
2411 s->flags &= ~__SYSFS_ADD_DEFERRED;
2412 sysfs_slab_add(s);
2415 up_write(&slub_lock);
2418 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2420 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2422 struct kmem_cache *s;
2423 char *text;
2424 size_t realsize;
2426 s = kmalloc_caches_dma[index];
2427 if (s)
2428 return s;
2430 /* Dynamically create dma cache */
2431 if (flags & __GFP_WAIT)
2432 down_write(&slub_lock);
2433 else {
2434 if (!down_write_trylock(&slub_lock))
2435 goto out;
2438 if (kmalloc_caches_dma[index])
2439 goto unlock_out;
2441 realsize = kmalloc_caches[index].objsize;
2442 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2443 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2445 if (!s || !text || !kmem_cache_open(s, flags, text,
2446 realsize, ARCH_KMALLOC_MINALIGN,
2447 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2448 kfree(s);
2449 kfree(text);
2450 goto unlock_out;
2453 list_add(&s->list, &slab_caches);
2454 kmalloc_caches_dma[index] = s;
2456 schedule_work(&sysfs_add_work);
2458 unlock_out:
2459 up_write(&slub_lock);
2460 out:
2461 return kmalloc_caches_dma[index];
2463 #endif
2466 * Conversion table for small slabs sizes / 8 to the index in the
2467 * kmalloc array. This is necessary for slabs < 192 since we have non power
2468 * of two cache sizes there. The size of larger slabs can be determined using
2469 * fls.
2471 static s8 size_index[24] = {
2472 3, /* 8 */
2473 4, /* 16 */
2474 5, /* 24 */
2475 5, /* 32 */
2476 6, /* 40 */
2477 6, /* 48 */
2478 6, /* 56 */
2479 6, /* 64 */
2480 1, /* 72 */
2481 1, /* 80 */
2482 1, /* 88 */
2483 1, /* 96 */
2484 7, /* 104 */
2485 7, /* 112 */
2486 7, /* 120 */
2487 7, /* 128 */
2488 2, /* 136 */
2489 2, /* 144 */
2490 2, /* 152 */
2491 2, /* 160 */
2492 2, /* 168 */
2493 2, /* 176 */
2494 2, /* 184 */
2495 2 /* 192 */
2498 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2500 int index;
2502 if (size <= 192) {
2503 if (!size)
2504 return ZERO_SIZE_PTR;
2506 index = size_index[(size - 1) / 8];
2507 } else
2508 index = fls(size - 1);
2510 #ifdef CONFIG_ZONE_DMA
2511 if (unlikely((flags & SLUB_DMA)))
2512 return dma_kmalloc_cache(index, flags);
2514 #endif
2515 return &kmalloc_caches[index];
2518 void *__kmalloc(size_t size, gfp_t flags)
2520 struct kmem_cache *s;
2522 if (unlikely(size > PAGE_SIZE / 2))
2523 return (void *)__get_free_pages(flags | __GFP_COMP,
2524 get_order(size));
2526 s = get_slab(size, flags);
2528 if (unlikely(ZERO_OR_NULL_PTR(s)))
2529 return s;
2531 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2533 EXPORT_SYMBOL(__kmalloc);
2535 #ifdef CONFIG_NUMA
2536 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2538 struct kmem_cache *s;
2540 if (unlikely(size > PAGE_SIZE / 2))
2541 return (void *)__get_free_pages(flags | __GFP_COMP,
2542 get_order(size));
2544 s = get_slab(size, flags);
2546 if (unlikely(ZERO_OR_NULL_PTR(s)))
2547 return s;
2549 return slab_alloc(s, flags, node, __builtin_return_address(0));
2551 EXPORT_SYMBOL(__kmalloc_node);
2552 #endif
2554 size_t ksize(const void *object)
2556 struct page *page;
2557 struct kmem_cache *s;
2559 BUG_ON(!object);
2560 if (unlikely(object == ZERO_SIZE_PTR))
2561 return 0;
2563 page = virt_to_head_page(object);
2564 BUG_ON(!page);
2566 if (unlikely(!PageSlab(page)))
2567 return PAGE_SIZE << compound_order(page);
2569 s = page->slab;
2570 BUG_ON(!s);
2573 * Debugging requires use of the padding between object
2574 * and whatever may come after it.
2576 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2577 return s->objsize;
2580 * If we have the need to store the freelist pointer
2581 * back there or track user information then we can
2582 * only use the space before that information.
2584 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2585 return s->inuse;
2588 * Else we can use all the padding etc for the allocation
2590 return s->size;
2592 EXPORT_SYMBOL(ksize);
2594 void kfree(const void *x)
2596 struct page *page;
2598 if (unlikely(ZERO_OR_NULL_PTR(x)))
2599 return;
2601 page = virt_to_head_page(x);
2602 if (unlikely(!PageSlab(page))) {
2603 put_page(page);
2604 return;
2606 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2608 EXPORT_SYMBOL(kfree);
2610 static unsigned long count_partial(struct kmem_cache_node *n)
2612 unsigned long flags;
2613 unsigned long x = 0;
2614 struct page *page;
2616 spin_lock_irqsave(&n->list_lock, flags);
2617 list_for_each_entry(page, &n->partial, lru)
2618 x += page->inuse;
2619 spin_unlock_irqrestore(&n->list_lock, flags);
2620 return x;
2624 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2625 * the remaining slabs by the number of items in use. The slabs with the
2626 * most items in use come first. New allocations will then fill those up
2627 * and thus they can be removed from the partial lists.
2629 * The slabs with the least items are placed last. This results in them
2630 * being allocated from last increasing the chance that the last objects
2631 * are freed in them.
2633 int kmem_cache_shrink(struct kmem_cache *s)
2635 int node;
2636 int i;
2637 struct kmem_cache_node *n;
2638 struct page *page;
2639 struct page *t;
2640 struct list_head *slabs_by_inuse =
2641 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2642 unsigned long flags;
2644 if (!slabs_by_inuse)
2645 return -ENOMEM;
2647 flush_all(s);
2648 for_each_node_state(node, N_NORMAL_MEMORY) {
2649 n = get_node(s, node);
2651 if (!n->nr_partial)
2652 continue;
2654 for (i = 0; i < s->objects; i++)
2655 INIT_LIST_HEAD(slabs_by_inuse + i);
2657 spin_lock_irqsave(&n->list_lock, flags);
2660 * Build lists indexed by the items in use in each slab.
2662 * Note that concurrent frees may occur while we hold the
2663 * list_lock. page->inuse here is the upper limit.
2665 list_for_each_entry_safe(page, t, &n->partial, lru) {
2666 if (!page->inuse && slab_trylock(page)) {
2668 * Must hold slab lock here because slab_free
2669 * may have freed the last object and be
2670 * waiting to release the slab.
2672 list_del(&page->lru);
2673 n->nr_partial--;
2674 slab_unlock(page);
2675 discard_slab(s, page);
2676 } else {
2677 list_move(&page->lru,
2678 slabs_by_inuse + page->inuse);
2683 * Rebuild the partial list with the slabs filled up most
2684 * first and the least used slabs at the end.
2686 for (i = s->objects - 1; i >= 0; i--)
2687 list_splice(slabs_by_inuse + i, n->partial.prev);
2689 spin_unlock_irqrestore(&n->list_lock, flags);
2692 kfree(slabs_by_inuse);
2693 return 0;
2695 EXPORT_SYMBOL(kmem_cache_shrink);
2697 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2698 static int slab_mem_going_offline_callback(void *arg)
2700 struct kmem_cache *s;
2702 down_read(&slub_lock);
2703 list_for_each_entry(s, &slab_caches, list)
2704 kmem_cache_shrink(s);
2705 up_read(&slub_lock);
2707 return 0;
2710 static void slab_mem_offline_callback(void *arg)
2712 struct kmem_cache_node *n;
2713 struct kmem_cache *s;
2714 struct memory_notify *marg = arg;
2715 int offline_node;
2717 offline_node = marg->status_change_nid;
2720 * If the node still has available memory. we need kmem_cache_node
2721 * for it yet.
2723 if (offline_node < 0)
2724 return;
2726 down_read(&slub_lock);
2727 list_for_each_entry(s, &slab_caches, list) {
2728 n = get_node(s, offline_node);
2729 if (n) {
2731 * if n->nr_slabs > 0, slabs still exist on the node
2732 * that is going down. We were unable to free them,
2733 * and offline_pages() function shoudn't call this
2734 * callback. So, we must fail.
2736 BUG_ON(atomic_long_read(&n->nr_slabs));
2738 s->node[offline_node] = NULL;
2739 kmem_cache_free(kmalloc_caches, n);
2742 up_read(&slub_lock);
2745 static int slab_mem_going_online_callback(void *arg)
2747 struct kmem_cache_node *n;
2748 struct kmem_cache *s;
2749 struct memory_notify *marg = arg;
2750 int nid = marg->status_change_nid;
2751 int ret = 0;
2754 * If the node's memory is already available, then kmem_cache_node is
2755 * already created. Nothing to do.
2757 if (nid < 0)
2758 return 0;
2761 * We are bringing a node online. No memory is availabe yet. We must
2762 * allocate a kmem_cache_node structure in order to bring the node
2763 * online.
2765 down_read(&slub_lock);
2766 list_for_each_entry(s, &slab_caches, list) {
2768 * XXX: kmem_cache_alloc_node will fallback to other nodes
2769 * since memory is not yet available from the node that
2770 * is brought up.
2772 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2773 if (!n) {
2774 ret = -ENOMEM;
2775 goto out;
2777 init_kmem_cache_node(n);
2778 s->node[nid] = n;
2780 out:
2781 up_read(&slub_lock);
2782 return ret;
2785 static int slab_memory_callback(struct notifier_block *self,
2786 unsigned long action, void *arg)
2788 int ret = 0;
2790 switch (action) {
2791 case MEM_GOING_ONLINE:
2792 ret = slab_mem_going_online_callback(arg);
2793 break;
2794 case MEM_GOING_OFFLINE:
2795 ret = slab_mem_going_offline_callback(arg);
2796 break;
2797 case MEM_OFFLINE:
2798 case MEM_CANCEL_ONLINE:
2799 slab_mem_offline_callback(arg);
2800 break;
2801 case MEM_ONLINE:
2802 case MEM_CANCEL_OFFLINE:
2803 break;
2806 ret = notifier_from_errno(ret);
2807 return ret;
2810 #endif /* CONFIG_MEMORY_HOTPLUG */
2812 /********************************************************************
2813 * Basic setup of slabs
2814 *******************************************************************/
2816 void __init kmem_cache_init(void)
2818 int i;
2819 int caches = 0;
2821 init_alloc_cpu();
2823 #ifdef CONFIG_NUMA
2825 * Must first have the slab cache available for the allocations of the
2826 * struct kmem_cache_node's. There is special bootstrap code in
2827 * kmem_cache_open for slab_state == DOWN.
2829 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2830 sizeof(struct kmem_cache_node), GFP_KERNEL);
2831 kmalloc_caches[0].refcount = -1;
2832 caches++;
2834 hotplug_memory_notifier(slab_memory_callback, 1);
2835 #endif
2837 /* Able to allocate the per node structures */
2838 slab_state = PARTIAL;
2840 /* Caches that are not of the two-to-the-power-of size */
2841 if (KMALLOC_MIN_SIZE <= 64) {
2842 create_kmalloc_cache(&kmalloc_caches[1],
2843 "kmalloc-96", 96, GFP_KERNEL);
2844 caches++;
2846 if (KMALLOC_MIN_SIZE <= 128) {
2847 create_kmalloc_cache(&kmalloc_caches[2],
2848 "kmalloc-192", 192, GFP_KERNEL);
2849 caches++;
2852 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2853 create_kmalloc_cache(&kmalloc_caches[i],
2854 "kmalloc", 1 << i, GFP_KERNEL);
2855 caches++;
2860 * Patch up the size_index table if we have strange large alignment
2861 * requirements for the kmalloc array. This is only the case for
2862 * mips it seems. The standard arches will not generate any code here.
2864 * Largest permitted alignment is 256 bytes due to the way we
2865 * handle the index determination for the smaller caches.
2867 * Make sure that nothing crazy happens if someone starts tinkering
2868 * around with ARCH_KMALLOC_MINALIGN
2870 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2871 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2873 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2874 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2876 slab_state = UP;
2878 /* Provide the correct kmalloc names now that the caches are up */
2879 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2880 kmalloc_caches[i]. name =
2881 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2883 #ifdef CONFIG_SMP
2884 register_cpu_notifier(&slab_notifier);
2885 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2886 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2887 #else
2888 kmem_size = sizeof(struct kmem_cache);
2889 #endif
2892 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2893 " CPUs=%d, Nodes=%d\n",
2894 caches, cache_line_size(),
2895 slub_min_order, slub_max_order, slub_min_objects,
2896 nr_cpu_ids, nr_node_ids);
2900 * Find a mergeable slab cache
2902 static int slab_unmergeable(struct kmem_cache *s)
2904 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2905 return 1;
2907 if (s->ctor)
2908 return 1;
2911 * We may have set a slab to be unmergeable during bootstrap.
2913 if (s->refcount < 0)
2914 return 1;
2916 return 0;
2919 static struct kmem_cache *find_mergeable(size_t size,
2920 size_t align, unsigned long flags, const char *name,
2921 void (*ctor)(struct kmem_cache *, void *))
2923 struct kmem_cache *s;
2925 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2926 return NULL;
2928 if (ctor)
2929 return NULL;
2931 size = ALIGN(size, sizeof(void *));
2932 align = calculate_alignment(flags, align, size);
2933 size = ALIGN(size, align);
2934 flags = kmem_cache_flags(size, flags, name, NULL);
2936 list_for_each_entry(s, &slab_caches, list) {
2937 if (slab_unmergeable(s))
2938 continue;
2940 if (size > s->size)
2941 continue;
2943 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2944 continue;
2946 * Check if alignment is compatible.
2947 * Courtesy of Adrian Drzewiecki
2949 if ((s->size & ~(align -1)) != s->size)
2950 continue;
2952 if (s->size - size >= sizeof(void *))
2953 continue;
2955 return s;
2957 return NULL;
2960 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2961 size_t align, unsigned long flags,
2962 void (*ctor)(struct kmem_cache *, void *))
2964 struct kmem_cache *s;
2966 down_write(&slub_lock);
2967 s = find_mergeable(size, align, flags, name, ctor);
2968 if (s) {
2969 int cpu;
2971 s->refcount++;
2973 * Adjust the object sizes so that we clear
2974 * the complete object on kzalloc.
2976 s->objsize = max(s->objsize, (int)size);
2979 * And then we need to update the object size in the
2980 * per cpu structures
2982 for_each_online_cpu(cpu)
2983 get_cpu_slab(s, cpu)->objsize = s->objsize;
2984 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2985 up_write(&slub_lock);
2986 if (sysfs_slab_alias(s, name))
2987 goto err;
2988 return s;
2990 s = kmalloc(kmem_size, GFP_KERNEL);
2991 if (s) {
2992 if (kmem_cache_open(s, GFP_KERNEL, name,
2993 size, align, flags, ctor)) {
2994 list_add(&s->list, &slab_caches);
2995 up_write(&slub_lock);
2996 if (sysfs_slab_add(s))
2997 goto err;
2998 return s;
3000 kfree(s);
3002 up_write(&slub_lock);
3004 err:
3005 if (flags & SLAB_PANIC)
3006 panic("Cannot create slabcache %s\n", name);
3007 else
3008 s = NULL;
3009 return s;
3011 EXPORT_SYMBOL(kmem_cache_create);
3013 #ifdef CONFIG_SMP
3015 * Use the cpu notifier to insure that the cpu slabs are flushed when
3016 * necessary.
3018 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3019 unsigned long action, void *hcpu)
3021 long cpu = (long)hcpu;
3022 struct kmem_cache *s;
3023 unsigned long flags;
3025 switch (action) {
3026 case CPU_UP_PREPARE:
3027 case CPU_UP_PREPARE_FROZEN:
3028 init_alloc_cpu_cpu(cpu);
3029 down_read(&slub_lock);
3030 list_for_each_entry(s, &slab_caches, list)
3031 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3032 GFP_KERNEL);
3033 up_read(&slub_lock);
3034 break;
3036 case CPU_UP_CANCELED:
3037 case CPU_UP_CANCELED_FROZEN:
3038 case CPU_DEAD:
3039 case CPU_DEAD_FROZEN:
3040 down_read(&slub_lock);
3041 list_for_each_entry(s, &slab_caches, list) {
3042 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3044 local_irq_save(flags);
3045 __flush_cpu_slab(s, cpu);
3046 local_irq_restore(flags);
3047 free_kmem_cache_cpu(c, cpu);
3048 s->cpu_slab[cpu] = NULL;
3050 up_read(&slub_lock);
3051 break;
3052 default:
3053 break;
3055 return NOTIFY_OK;
3058 static struct notifier_block __cpuinitdata slab_notifier =
3059 { &slab_cpuup_callback, NULL, 0 };
3061 #endif
3063 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3065 struct kmem_cache *s;
3067 if (unlikely(size > PAGE_SIZE / 2))
3068 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3069 get_order(size));
3070 s = get_slab(size, gfpflags);
3072 if (unlikely(ZERO_OR_NULL_PTR(s)))
3073 return s;
3075 return slab_alloc(s, gfpflags, -1, caller);
3078 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3079 int node, void *caller)
3081 struct kmem_cache *s;
3083 if (unlikely(size > PAGE_SIZE / 2))
3084 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3085 get_order(size));
3086 s = get_slab(size, gfpflags);
3088 if (unlikely(ZERO_OR_NULL_PTR(s)))
3089 return s;
3091 return slab_alloc(s, gfpflags, node, caller);
3094 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3095 static int validate_slab(struct kmem_cache *s, struct page *page,
3096 unsigned long *map)
3098 void *p;
3099 void *addr = page_address(page);
3101 if (!check_slab(s, page) ||
3102 !on_freelist(s, page, NULL))
3103 return 0;
3105 /* Now we know that a valid freelist exists */
3106 bitmap_zero(map, s->objects);
3108 for_each_free_object(p, s, page->freelist) {
3109 set_bit(slab_index(p, s, addr), map);
3110 if (!check_object(s, page, p, 0))
3111 return 0;
3114 for_each_object(p, s, addr)
3115 if (!test_bit(slab_index(p, s, addr), map))
3116 if (!check_object(s, page, p, 1))
3117 return 0;
3118 return 1;
3121 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3122 unsigned long *map)
3124 if (slab_trylock(page)) {
3125 validate_slab(s, page, map);
3126 slab_unlock(page);
3127 } else
3128 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3129 s->name, page);
3131 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3132 if (!SlabDebug(page))
3133 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3134 "on slab 0x%p\n", s->name, page);
3135 } else {
3136 if (SlabDebug(page))
3137 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3138 "slab 0x%p\n", s->name, page);
3142 static int validate_slab_node(struct kmem_cache *s,
3143 struct kmem_cache_node *n, unsigned long *map)
3145 unsigned long count = 0;
3146 struct page *page;
3147 unsigned long flags;
3149 spin_lock_irqsave(&n->list_lock, flags);
3151 list_for_each_entry(page, &n->partial, lru) {
3152 validate_slab_slab(s, page, map);
3153 count++;
3155 if (count != n->nr_partial)
3156 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3157 "counter=%ld\n", s->name, count, n->nr_partial);
3159 if (!(s->flags & SLAB_STORE_USER))
3160 goto out;
3162 list_for_each_entry(page, &n->full, lru) {
3163 validate_slab_slab(s, page, map);
3164 count++;
3166 if (count != atomic_long_read(&n->nr_slabs))
3167 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3168 "counter=%ld\n", s->name, count,
3169 atomic_long_read(&n->nr_slabs));
3171 out:
3172 spin_unlock_irqrestore(&n->list_lock, flags);
3173 return count;
3176 static long validate_slab_cache(struct kmem_cache *s)
3178 int node;
3179 unsigned long count = 0;
3180 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3181 sizeof(unsigned long), GFP_KERNEL);
3183 if (!map)
3184 return -ENOMEM;
3186 flush_all(s);
3187 for_each_node_state(node, N_NORMAL_MEMORY) {
3188 struct kmem_cache_node *n = get_node(s, node);
3190 count += validate_slab_node(s, n, map);
3192 kfree(map);
3193 return count;
3196 #ifdef SLUB_RESILIENCY_TEST
3197 static void resiliency_test(void)
3199 u8 *p;
3201 printk(KERN_ERR "SLUB resiliency testing\n");
3202 printk(KERN_ERR "-----------------------\n");
3203 printk(KERN_ERR "A. Corruption after allocation\n");
3205 p = kzalloc(16, GFP_KERNEL);
3206 p[16] = 0x12;
3207 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3208 " 0x12->0x%p\n\n", p + 16);
3210 validate_slab_cache(kmalloc_caches + 4);
3212 /* Hmmm... The next two are dangerous */
3213 p = kzalloc(32, GFP_KERNEL);
3214 p[32 + sizeof(void *)] = 0x34;
3215 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3216 " 0x34 -> -0x%p\n", p);
3217 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3219 validate_slab_cache(kmalloc_caches + 5);
3220 p = kzalloc(64, GFP_KERNEL);
3221 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3222 *p = 0x56;
3223 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3225 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3226 validate_slab_cache(kmalloc_caches + 6);
3228 printk(KERN_ERR "\nB. Corruption after free\n");
3229 p = kzalloc(128, GFP_KERNEL);
3230 kfree(p);
3231 *p = 0x78;
3232 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3233 validate_slab_cache(kmalloc_caches + 7);
3235 p = kzalloc(256, GFP_KERNEL);
3236 kfree(p);
3237 p[50] = 0x9a;
3238 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3239 validate_slab_cache(kmalloc_caches + 8);
3241 p = kzalloc(512, GFP_KERNEL);
3242 kfree(p);
3243 p[512] = 0xab;
3244 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3245 validate_slab_cache(kmalloc_caches + 9);
3247 #else
3248 static void resiliency_test(void) {};
3249 #endif
3252 * Generate lists of code addresses where slabcache objects are allocated
3253 * and freed.
3256 struct location {
3257 unsigned long count;
3258 void *addr;
3259 long long sum_time;
3260 long min_time;
3261 long max_time;
3262 long min_pid;
3263 long max_pid;
3264 cpumask_t cpus;
3265 nodemask_t nodes;
3268 struct loc_track {
3269 unsigned long max;
3270 unsigned long count;
3271 struct location *loc;
3274 static void free_loc_track(struct loc_track *t)
3276 if (t->max)
3277 free_pages((unsigned long)t->loc,
3278 get_order(sizeof(struct location) * t->max));
3281 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3283 struct location *l;
3284 int order;
3286 order = get_order(sizeof(struct location) * max);
3288 l = (void *)__get_free_pages(flags, order);
3289 if (!l)
3290 return 0;
3292 if (t->count) {
3293 memcpy(l, t->loc, sizeof(struct location) * t->count);
3294 free_loc_track(t);
3296 t->max = max;
3297 t->loc = l;
3298 return 1;
3301 static int add_location(struct loc_track *t, struct kmem_cache *s,
3302 const struct track *track)
3304 long start, end, pos;
3305 struct location *l;
3306 void *caddr;
3307 unsigned long age = jiffies - track->when;
3309 start = -1;
3310 end = t->count;
3312 for ( ; ; ) {
3313 pos = start + (end - start + 1) / 2;
3316 * There is nothing at "end". If we end up there
3317 * we need to add something to before end.
3319 if (pos == end)
3320 break;
3322 caddr = t->loc[pos].addr;
3323 if (track->addr == caddr) {
3325 l = &t->loc[pos];
3326 l->count++;
3327 if (track->when) {
3328 l->sum_time += age;
3329 if (age < l->min_time)
3330 l->min_time = age;
3331 if (age > l->max_time)
3332 l->max_time = age;
3334 if (track->pid < l->min_pid)
3335 l->min_pid = track->pid;
3336 if (track->pid > l->max_pid)
3337 l->max_pid = track->pid;
3339 cpu_set(track->cpu, l->cpus);
3341 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3342 return 1;
3345 if (track->addr < caddr)
3346 end = pos;
3347 else
3348 start = pos;
3352 * Not found. Insert new tracking element.
3354 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3355 return 0;
3357 l = t->loc + pos;
3358 if (pos < t->count)
3359 memmove(l + 1, l,
3360 (t->count - pos) * sizeof(struct location));
3361 t->count++;
3362 l->count = 1;
3363 l->addr = track->addr;
3364 l->sum_time = age;
3365 l->min_time = age;
3366 l->max_time = age;
3367 l->min_pid = track->pid;
3368 l->max_pid = track->pid;
3369 cpus_clear(l->cpus);
3370 cpu_set(track->cpu, l->cpus);
3371 nodes_clear(l->nodes);
3372 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3373 return 1;
3376 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3377 struct page *page, enum track_item alloc)
3379 void *addr = page_address(page);
3380 DECLARE_BITMAP(map, s->objects);
3381 void *p;
3383 bitmap_zero(map, s->objects);
3384 for_each_free_object(p, s, page->freelist)
3385 set_bit(slab_index(p, s, addr), map);
3387 for_each_object(p, s, addr)
3388 if (!test_bit(slab_index(p, s, addr), map))
3389 add_location(t, s, get_track(s, p, alloc));
3392 static int list_locations(struct kmem_cache *s, char *buf,
3393 enum track_item alloc)
3395 int len = 0;
3396 unsigned long i;
3397 struct loc_track t = { 0, 0, NULL };
3398 int node;
3400 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3401 GFP_TEMPORARY))
3402 return sprintf(buf, "Out of memory\n");
3404 /* Push back cpu slabs */
3405 flush_all(s);
3407 for_each_node_state(node, N_NORMAL_MEMORY) {
3408 struct kmem_cache_node *n = get_node(s, node);
3409 unsigned long flags;
3410 struct page *page;
3412 if (!atomic_long_read(&n->nr_slabs))
3413 continue;
3415 spin_lock_irqsave(&n->list_lock, flags);
3416 list_for_each_entry(page, &n->partial, lru)
3417 process_slab(&t, s, page, alloc);
3418 list_for_each_entry(page, &n->full, lru)
3419 process_slab(&t, s, page, alloc);
3420 spin_unlock_irqrestore(&n->list_lock, flags);
3423 for (i = 0; i < t.count; i++) {
3424 struct location *l = &t.loc[i];
3426 if (len > PAGE_SIZE - 100)
3427 break;
3428 len += sprintf(buf + len, "%7ld ", l->count);
3430 if (l->addr)
3431 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3432 else
3433 len += sprintf(buf + len, "<not-available>");
3435 if (l->sum_time != l->min_time) {
3436 unsigned long remainder;
3438 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3439 l->min_time,
3440 div_long_long_rem(l->sum_time, l->count, &remainder),
3441 l->max_time);
3442 } else
3443 len += sprintf(buf + len, " age=%ld",
3444 l->min_time);
3446 if (l->min_pid != l->max_pid)
3447 len += sprintf(buf + len, " pid=%ld-%ld",
3448 l->min_pid, l->max_pid);
3449 else
3450 len += sprintf(buf + len, " pid=%ld",
3451 l->min_pid);
3453 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3454 len < PAGE_SIZE - 60) {
3455 len += sprintf(buf + len, " cpus=");
3456 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3457 l->cpus);
3460 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3461 len < PAGE_SIZE - 60) {
3462 len += sprintf(buf + len, " nodes=");
3463 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3464 l->nodes);
3467 len += sprintf(buf + len, "\n");
3470 free_loc_track(&t);
3471 if (!t.count)
3472 len += sprintf(buf, "No data\n");
3473 return len;
3476 enum slab_stat_type {
3477 SL_FULL,
3478 SL_PARTIAL,
3479 SL_CPU,
3480 SL_OBJECTS
3483 #define SO_FULL (1 << SL_FULL)
3484 #define SO_PARTIAL (1 << SL_PARTIAL)
3485 #define SO_CPU (1 << SL_CPU)
3486 #define SO_OBJECTS (1 << SL_OBJECTS)
3488 static unsigned long slab_objects(struct kmem_cache *s,
3489 char *buf, unsigned long flags)
3491 unsigned long total = 0;
3492 int cpu;
3493 int node;
3494 int x;
3495 unsigned long *nodes;
3496 unsigned long *per_cpu;
3498 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3499 per_cpu = nodes + nr_node_ids;
3501 for_each_possible_cpu(cpu) {
3502 struct page *page;
3503 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3505 if (!c)
3506 continue;
3508 page = c->page;
3509 node = c->node;
3510 if (node < 0)
3511 continue;
3512 if (page) {
3513 if (flags & SO_CPU) {
3514 if (flags & SO_OBJECTS)
3515 x = page->inuse;
3516 else
3517 x = 1;
3518 total += x;
3519 nodes[node] += x;
3521 per_cpu[node]++;
3525 for_each_node_state(node, N_NORMAL_MEMORY) {
3526 struct kmem_cache_node *n = get_node(s, node);
3528 if (flags & SO_PARTIAL) {
3529 if (flags & SO_OBJECTS)
3530 x = count_partial(n);
3531 else
3532 x = n->nr_partial;
3533 total += x;
3534 nodes[node] += x;
3537 if (flags & SO_FULL) {
3538 int full_slabs = atomic_long_read(&n->nr_slabs)
3539 - per_cpu[node]
3540 - n->nr_partial;
3542 if (flags & SO_OBJECTS)
3543 x = full_slabs * s->objects;
3544 else
3545 x = full_slabs;
3546 total += x;
3547 nodes[node] += x;
3551 x = sprintf(buf, "%lu", total);
3552 #ifdef CONFIG_NUMA
3553 for_each_node_state(node, N_NORMAL_MEMORY)
3554 if (nodes[node])
3555 x += sprintf(buf + x, " N%d=%lu",
3556 node, nodes[node]);
3557 #endif
3558 kfree(nodes);
3559 return x + sprintf(buf + x, "\n");
3562 static int any_slab_objects(struct kmem_cache *s)
3564 int node;
3565 int cpu;
3567 for_each_possible_cpu(cpu) {
3568 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3570 if (c && c->page)
3571 return 1;
3574 for_each_online_node(node) {
3575 struct kmem_cache_node *n = get_node(s, node);
3577 if (!n)
3578 continue;
3580 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3581 return 1;
3583 return 0;
3586 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3587 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3589 struct slab_attribute {
3590 struct attribute attr;
3591 ssize_t (*show)(struct kmem_cache *s, char *buf);
3592 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3595 #define SLAB_ATTR_RO(_name) \
3596 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3598 #define SLAB_ATTR(_name) \
3599 static struct slab_attribute _name##_attr = \
3600 __ATTR(_name, 0644, _name##_show, _name##_store)
3602 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3604 return sprintf(buf, "%d\n", s->size);
3606 SLAB_ATTR_RO(slab_size);
3608 static ssize_t align_show(struct kmem_cache *s, char *buf)
3610 return sprintf(buf, "%d\n", s->align);
3612 SLAB_ATTR_RO(align);
3614 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3616 return sprintf(buf, "%d\n", s->objsize);
3618 SLAB_ATTR_RO(object_size);
3620 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3622 return sprintf(buf, "%d\n", s->objects);
3624 SLAB_ATTR_RO(objs_per_slab);
3626 static ssize_t order_show(struct kmem_cache *s, char *buf)
3628 return sprintf(buf, "%d\n", s->order);
3630 SLAB_ATTR_RO(order);
3632 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3634 if (s->ctor) {
3635 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3637 return n + sprintf(buf + n, "\n");
3639 return 0;
3641 SLAB_ATTR_RO(ctor);
3643 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3645 return sprintf(buf, "%d\n", s->refcount - 1);
3647 SLAB_ATTR_RO(aliases);
3649 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3651 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3653 SLAB_ATTR_RO(slabs);
3655 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3657 return slab_objects(s, buf, SO_PARTIAL);
3659 SLAB_ATTR_RO(partial);
3661 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3663 return slab_objects(s, buf, SO_CPU);
3665 SLAB_ATTR_RO(cpu_slabs);
3667 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3669 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3671 SLAB_ATTR_RO(objects);
3673 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3675 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3678 static ssize_t sanity_checks_store(struct kmem_cache *s,
3679 const char *buf, size_t length)
3681 s->flags &= ~SLAB_DEBUG_FREE;
3682 if (buf[0] == '1')
3683 s->flags |= SLAB_DEBUG_FREE;
3684 return length;
3686 SLAB_ATTR(sanity_checks);
3688 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3690 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3693 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3694 size_t length)
3696 s->flags &= ~SLAB_TRACE;
3697 if (buf[0] == '1')
3698 s->flags |= SLAB_TRACE;
3699 return length;
3701 SLAB_ATTR(trace);
3703 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3705 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3708 static ssize_t reclaim_account_store(struct kmem_cache *s,
3709 const char *buf, size_t length)
3711 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3712 if (buf[0] == '1')
3713 s->flags |= SLAB_RECLAIM_ACCOUNT;
3714 return length;
3716 SLAB_ATTR(reclaim_account);
3718 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3720 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3722 SLAB_ATTR_RO(hwcache_align);
3724 #ifdef CONFIG_ZONE_DMA
3725 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3727 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3729 SLAB_ATTR_RO(cache_dma);
3730 #endif
3732 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3734 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3736 SLAB_ATTR_RO(destroy_by_rcu);
3738 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3740 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3743 static ssize_t red_zone_store(struct kmem_cache *s,
3744 const char *buf, size_t length)
3746 if (any_slab_objects(s))
3747 return -EBUSY;
3749 s->flags &= ~SLAB_RED_ZONE;
3750 if (buf[0] == '1')
3751 s->flags |= SLAB_RED_ZONE;
3752 calculate_sizes(s);
3753 return length;
3755 SLAB_ATTR(red_zone);
3757 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3762 static ssize_t poison_store(struct kmem_cache *s,
3763 const char *buf, size_t length)
3765 if (any_slab_objects(s))
3766 return -EBUSY;
3768 s->flags &= ~SLAB_POISON;
3769 if (buf[0] == '1')
3770 s->flags |= SLAB_POISON;
3771 calculate_sizes(s);
3772 return length;
3774 SLAB_ATTR(poison);
3776 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3781 static ssize_t store_user_store(struct kmem_cache *s,
3782 const char *buf, size_t length)
3784 if (any_slab_objects(s))
3785 return -EBUSY;
3787 s->flags &= ~SLAB_STORE_USER;
3788 if (buf[0] == '1')
3789 s->flags |= SLAB_STORE_USER;
3790 calculate_sizes(s);
3791 return length;
3793 SLAB_ATTR(store_user);
3795 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3797 return 0;
3800 static ssize_t validate_store(struct kmem_cache *s,
3801 const char *buf, size_t length)
3803 int ret = -EINVAL;
3805 if (buf[0] == '1') {
3806 ret = validate_slab_cache(s);
3807 if (ret >= 0)
3808 ret = length;
3810 return ret;
3812 SLAB_ATTR(validate);
3814 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3816 return 0;
3819 static ssize_t shrink_store(struct kmem_cache *s,
3820 const char *buf, size_t length)
3822 if (buf[0] == '1') {
3823 int rc = kmem_cache_shrink(s);
3825 if (rc)
3826 return rc;
3827 } else
3828 return -EINVAL;
3829 return length;
3831 SLAB_ATTR(shrink);
3833 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3835 if (!(s->flags & SLAB_STORE_USER))
3836 return -ENOSYS;
3837 return list_locations(s, buf, TRACK_ALLOC);
3839 SLAB_ATTR_RO(alloc_calls);
3841 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3843 if (!(s->flags & SLAB_STORE_USER))
3844 return -ENOSYS;
3845 return list_locations(s, buf, TRACK_FREE);
3847 SLAB_ATTR_RO(free_calls);
3849 #ifdef CONFIG_NUMA
3850 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
3852 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
3855 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
3856 const char *buf, size_t length)
3858 int n = simple_strtoul(buf, NULL, 10);
3860 if (n < 100)
3861 s->remote_node_defrag_ratio = n * 10;
3862 return length;
3864 SLAB_ATTR(remote_node_defrag_ratio);
3865 #endif
3867 static struct attribute * slab_attrs[] = {
3868 &slab_size_attr.attr,
3869 &object_size_attr.attr,
3870 &objs_per_slab_attr.attr,
3871 &order_attr.attr,
3872 &objects_attr.attr,
3873 &slabs_attr.attr,
3874 &partial_attr.attr,
3875 &cpu_slabs_attr.attr,
3876 &ctor_attr.attr,
3877 &aliases_attr.attr,
3878 &align_attr.attr,
3879 &sanity_checks_attr.attr,
3880 &trace_attr.attr,
3881 &hwcache_align_attr.attr,
3882 &reclaim_account_attr.attr,
3883 &destroy_by_rcu_attr.attr,
3884 &red_zone_attr.attr,
3885 &poison_attr.attr,
3886 &store_user_attr.attr,
3887 &validate_attr.attr,
3888 &shrink_attr.attr,
3889 &alloc_calls_attr.attr,
3890 &free_calls_attr.attr,
3891 #ifdef CONFIG_ZONE_DMA
3892 &cache_dma_attr.attr,
3893 #endif
3894 #ifdef CONFIG_NUMA
3895 &remote_node_defrag_ratio_attr.attr,
3896 #endif
3897 NULL
3900 static struct attribute_group slab_attr_group = {
3901 .attrs = slab_attrs,
3904 static ssize_t slab_attr_show(struct kobject *kobj,
3905 struct attribute *attr,
3906 char *buf)
3908 struct slab_attribute *attribute;
3909 struct kmem_cache *s;
3910 int err;
3912 attribute = to_slab_attr(attr);
3913 s = to_slab(kobj);
3915 if (!attribute->show)
3916 return -EIO;
3918 err = attribute->show(s, buf);
3920 return err;
3923 static ssize_t slab_attr_store(struct kobject *kobj,
3924 struct attribute *attr,
3925 const char *buf, size_t len)
3927 struct slab_attribute *attribute;
3928 struct kmem_cache *s;
3929 int err;
3931 attribute = to_slab_attr(attr);
3932 s = to_slab(kobj);
3934 if (!attribute->store)
3935 return -EIO;
3937 err = attribute->store(s, buf, len);
3939 return err;
3942 static void kmem_cache_release(struct kobject *kobj)
3944 struct kmem_cache *s = to_slab(kobj);
3946 kfree(s);
3949 static struct sysfs_ops slab_sysfs_ops = {
3950 .show = slab_attr_show,
3951 .store = slab_attr_store,
3954 static struct kobj_type slab_ktype = {
3955 .sysfs_ops = &slab_sysfs_ops,
3956 .release = kmem_cache_release
3959 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3961 struct kobj_type *ktype = get_ktype(kobj);
3963 if (ktype == &slab_ktype)
3964 return 1;
3965 return 0;
3968 static struct kset_uevent_ops slab_uevent_ops = {
3969 .filter = uevent_filter,
3972 static struct kset *slab_kset;
3974 #define ID_STR_LENGTH 64
3976 /* Create a unique string id for a slab cache:
3977 * format
3978 * :[flags-]size:[memory address of kmemcache]
3980 static char *create_unique_id(struct kmem_cache *s)
3982 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3983 char *p = name;
3985 BUG_ON(!name);
3987 *p++ = ':';
3989 * First flags affecting slabcache operations. We will only
3990 * get here for aliasable slabs so we do not need to support
3991 * too many flags. The flags here must cover all flags that
3992 * are matched during merging to guarantee that the id is
3993 * unique.
3995 if (s->flags & SLAB_CACHE_DMA)
3996 *p++ = 'd';
3997 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3998 *p++ = 'a';
3999 if (s->flags & SLAB_DEBUG_FREE)
4000 *p++ = 'F';
4001 if (p != name + 1)
4002 *p++ = '-';
4003 p += sprintf(p, "%07d", s->size);
4004 BUG_ON(p > name + ID_STR_LENGTH - 1);
4005 return name;
4008 static int sysfs_slab_add(struct kmem_cache *s)
4010 int err;
4011 const char *name;
4012 int unmergeable;
4014 if (slab_state < SYSFS)
4015 /* Defer until later */
4016 return 0;
4018 unmergeable = slab_unmergeable(s);
4019 if (unmergeable) {
4021 * Slabcache can never be merged so we can use the name proper.
4022 * This is typically the case for debug situations. In that
4023 * case we can catch duplicate names easily.
4025 sysfs_remove_link(&slab_kset->kobj, s->name);
4026 name = s->name;
4027 } else {
4029 * Create a unique name for the slab as a target
4030 * for the symlinks.
4032 name = create_unique_id(s);
4035 s->kobj.kset = slab_kset;
4036 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4037 if (err) {
4038 kobject_put(&s->kobj);
4039 return err;
4042 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4043 if (err)
4044 return err;
4045 kobject_uevent(&s->kobj, KOBJ_ADD);
4046 if (!unmergeable) {
4047 /* Setup first alias */
4048 sysfs_slab_alias(s, s->name);
4049 kfree(name);
4051 return 0;
4054 static void sysfs_slab_remove(struct kmem_cache *s)
4056 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4057 kobject_del(&s->kobj);
4058 kobject_put(&s->kobj);
4062 * Need to buffer aliases during bootup until sysfs becomes
4063 * available lest we loose that information.
4065 struct saved_alias {
4066 struct kmem_cache *s;
4067 const char *name;
4068 struct saved_alias *next;
4071 static struct saved_alias *alias_list;
4073 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4075 struct saved_alias *al;
4077 if (slab_state == SYSFS) {
4079 * If we have a leftover link then remove it.
4081 sysfs_remove_link(&slab_kset->kobj, name);
4082 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4085 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4086 if (!al)
4087 return -ENOMEM;
4089 al->s = s;
4090 al->name = name;
4091 al->next = alias_list;
4092 alias_list = al;
4093 return 0;
4096 static int __init slab_sysfs_init(void)
4098 struct kmem_cache *s;
4099 int err;
4101 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4102 if (!slab_kset) {
4103 printk(KERN_ERR "Cannot register slab subsystem.\n");
4104 return -ENOSYS;
4107 slab_state = SYSFS;
4109 list_for_each_entry(s, &slab_caches, list) {
4110 err = sysfs_slab_add(s);
4111 if (err)
4112 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4113 " to sysfs\n", s->name);
4116 while (alias_list) {
4117 struct saved_alias *al = alias_list;
4119 alias_list = alias_list->next;
4120 err = sysfs_slab_alias(al->s, al->name);
4121 if (err)
4122 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4123 " %s to sysfs\n", s->name);
4124 kfree(al);
4127 resiliency_test();
4128 return 0;
4131 __initcall(slab_sysfs_init);
4132 #endif
4135 * The /proc/slabinfo ABI
4137 #ifdef CONFIG_SLABINFO
4139 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4140 size_t count, loff_t *ppos)
4142 return -EINVAL;
4146 static void print_slabinfo_header(struct seq_file *m)
4148 seq_puts(m, "slabinfo - version: 2.1\n");
4149 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4150 "<objperslab> <pagesperslab>");
4151 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4152 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4153 seq_putc(m, '\n');
4156 static void *s_start(struct seq_file *m, loff_t *pos)
4158 loff_t n = *pos;
4160 down_read(&slub_lock);
4161 if (!n)
4162 print_slabinfo_header(m);
4164 return seq_list_start(&slab_caches, *pos);
4167 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4169 return seq_list_next(p, &slab_caches, pos);
4172 static void s_stop(struct seq_file *m, void *p)
4174 up_read(&slub_lock);
4177 static int s_show(struct seq_file *m, void *p)
4179 unsigned long nr_partials = 0;
4180 unsigned long nr_slabs = 0;
4181 unsigned long nr_inuse = 0;
4182 unsigned long nr_objs;
4183 struct kmem_cache *s;
4184 int node;
4186 s = list_entry(p, struct kmem_cache, list);
4188 for_each_online_node(node) {
4189 struct kmem_cache_node *n = get_node(s, node);
4191 if (!n)
4192 continue;
4194 nr_partials += n->nr_partial;
4195 nr_slabs += atomic_long_read(&n->nr_slabs);
4196 nr_inuse += count_partial(n);
4199 nr_objs = nr_slabs * s->objects;
4200 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4202 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4203 nr_objs, s->size, s->objects, (1 << s->order));
4204 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4205 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4206 0UL);
4207 seq_putc(m, '\n');
4208 return 0;
4211 const struct seq_operations slabinfo_op = {
4212 .start = s_start,
4213 .next = s_next,
4214 .stop = s_stop,
4215 .show = s_show,
4218 #endif /* CONFIG_SLABINFO */