V4L/DVB (11063): au8522: power down the digital demod when not in use
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slob.c
blob0bfa680a8981127307d1d922231dca3d66f9b2bd
1 /*
2 * SLOB Allocator: Simple List Of Blocks
4 * Matt Mackall <mpm@selenic.com> 12/30/03
6 * NUMA support by Paul Mundt, 2007.
8 * How SLOB works:
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62 #include <linux/mm.h>
63 #include <linux/cache.h>
64 #include <linux/init.h>
65 #include <linux/module.h>
66 #include <linux/rcupdate.h>
67 #include <linux/list.h>
68 #include <asm/atomic.h>
71 * slob_block has a field 'units', which indicates size of block if +ve,
72 * or offset of next block if -ve (in SLOB_UNITs).
74 * Free blocks of size 1 unit simply contain the offset of the next block.
75 * Those with larger size contain their size in the first SLOB_UNIT of
76 * memory, and the offset of the next free block in the second SLOB_UNIT.
78 #if PAGE_SIZE <= (32767 * 2)
79 typedef s16 slobidx_t;
80 #else
81 typedef s32 slobidx_t;
82 #endif
84 struct slob_block {
85 slobidx_t units;
87 typedef struct slob_block slob_t;
90 * We use struct page fields to manage some slob allocation aspects,
91 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
92 * just define our own struct page type variant here.
94 struct slob_page {
95 union {
96 struct {
97 unsigned long flags; /* mandatory */
98 atomic_t _count; /* mandatory */
99 slobidx_t units; /* free units left in page */
100 unsigned long pad[2];
101 slob_t *free; /* first free slob_t in page */
102 struct list_head list; /* linked list of free pages */
104 struct page page;
107 static inline void struct_slob_page_wrong_size(void)
108 { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
111 * free_slob_page: call before a slob_page is returned to the page allocator.
113 static inline void free_slob_page(struct slob_page *sp)
115 reset_page_mapcount(&sp->page);
116 sp->page.mapping = NULL;
120 * All partially free slob pages go on these lists.
122 #define SLOB_BREAK1 256
123 #define SLOB_BREAK2 1024
124 static LIST_HEAD(free_slob_small);
125 static LIST_HEAD(free_slob_medium);
126 static LIST_HEAD(free_slob_large);
129 * is_slob_page: True for all slob pages (false for bigblock pages)
131 static inline int is_slob_page(struct slob_page *sp)
133 return PageSlobPage((struct page *)sp);
136 static inline void set_slob_page(struct slob_page *sp)
138 __SetPageSlobPage((struct page *)sp);
141 static inline void clear_slob_page(struct slob_page *sp)
143 __ClearPageSlobPage((struct page *)sp);
146 static inline struct slob_page *slob_page(const void *addr)
148 return (struct slob_page *)virt_to_page(addr);
152 * slob_page_free: true for pages on free_slob_pages list.
154 static inline int slob_page_free(struct slob_page *sp)
156 return PageSlobFree((struct page *)sp);
159 static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
161 list_add(&sp->list, list);
162 __SetPageSlobFree((struct page *)sp);
165 static inline void clear_slob_page_free(struct slob_page *sp)
167 list_del(&sp->list);
168 __ClearPageSlobFree((struct page *)sp);
171 #define SLOB_UNIT sizeof(slob_t)
172 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
173 #define SLOB_ALIGN L1_CACHE_BYTES
176 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
177 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
178 * the block using call_rcu.
180 struct slob_rcu {
181 struct rcu_head head;
182 int size;
186 * slob_lock protects all slob allocator structures.
188 static DEFINE_SPINLOCK(slob_lock);
191 * Encode the given size and next info into a free slob block s.
193 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
195 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
196 slobidx_t offset = next - base;
198 if (size > 1) {
199 s[0].units = size;
200 s[1].units = offset;
201 } else
202 s[0].units = -offset;
206 * Return the size of a slob block.
208 static slobidx_t slob_units(slob_t *s)
210 if (s->units > 0)
211 return s->units;
212 return 1;
216 * Return the next free slob block pointer after this one.
218 static slob_t *slob_next(slob_t *s)
220 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
221 slobidx_t next;
223 if (s[0].units < 0)
224 next = -s[0].units;
225 else
226 next = s[1].units;
227 return base+next;
231 * Returns true if s is the last free block in its page.
233 static int slob_last(slob_t *s)
235 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
238 static void *slob_new_pages(gfp_t gfp, int order, int node)
240 void *page;
242 #ifdef CONFIG_NUMA
243 if (node != -1)
244 page = alloc_pages_node(node, gfp, order);
245 else
246 #endif
247 page = alloc_pages(gfp, order);
249 if (!page)
250 return NULL;
252 return page_address(page);
255 static void slob_free_pages(void *b, int order)
257 free_pages((unsigned long)b, order);
261 * Allocate a slob block within a given slob_page sp.
263 static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
265 slob_t *prev, *cur, *aligned = NULL;
266 int delta = 0, units = SLOB_UNITS(size);
268 for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
269 slobidx_t avail = slob_units(cur);
271 if (align) {
272 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
273 delta = aligned - cur;
275 if (avail >= units + delta) { /* room enough? */
276 slob_t *next;
278 if (delta) { /* need to fragment head to align? */
279 next = slob_next(cur);
280 set_slob(aligned, avail - delta, next);
281 set_slob(cur, delta, aligned);
282 prev = cur;
283 cur = aligned;
284 avail = slob_units(cur);
287 next = slob_next(cur);
288 if (avail == units) { /* exact fit? unlink. */
289 if (prev)
290 set_slob(prev, slob_units(prev), next);
291 else
292 sp->free = next;
293 } else { /* fragment */
294 if (prev)
295 set_slob(prev, slob_units(prev), cur + units);
296 else
297 sp->free = cur + units;
298 set_slob(cur + units, avail - units, next);
301 sp->units -= units;
302 if (!sp->units)
303 clear_slob_page_free(sp);
304 return cur;
306 if (slob_last(cur))
307 return NULL;
312 * slob_alloc: entry point into the slob allocator.
314 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
316 struct slob_page *sp;
317 struct list_head *prev;
318 struct list_head *slob_list;
319 slob_t *b = NULL;
320 unsigned long flags;
322 if (size < SLOB_BREAK1)
323 slob_list = &free_slob_small;
324 else if (size < SLOB_BREAK2)
325 slob_list = &free_slob_medium;
326 else
327 slob_list = &free_slob_large;
329 spin_lock_irqsave(&slob_lock, flags);
330 /* Iterate through each partially free page, try to find room */
331 list_for_each_entry(sp, slob_list, list) {
332 #ifdef CONFIG_NUMA
334 * If there's a node specification, search for a partial
335 * page with a matching node id in the freelist.
337 if (node != -1 && page_to_nid(&sp->page) != node)
338 continue;
339 #endif
340 /* Enough room on this page? */
341 if (sp->units < SLOB_UNITS(size))
342 continue;
344 /* Attempt to alloc */
345 prev = sp->list.prev;
346 b = slob_page_alloc(sp, size, align);
347 if (!b)
348 continue;
350 /* Improve fragment distribution and reduce our average
351 * search time by starting our next search here. (see
352 * Knuth vol 1, sec 2.5, pg 449) */
353 if (prev != slob_list->prev &&
354 slob_list->next != prev->next)
355 list_move_tail(slob_list, prev->next);
356 break;
358 spin_unlock_irqrestore(&slob_lock, flags);
360 /* Not enough space: must allocate a new page */
361 if (!b) {
362 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
363 if (!b)
364 return NULL;
365 sp = slob_page(b);
366 set_slob_page(sp);
368 spin_lock_irqsave(&slob_lock, flags);
369 sp->units = SLOB_UNITS(PAGE_SIZE);
370 sp->free = b;
371 INIT_LIST_HEAD(&sp->list);
372 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
373 set_slob_page_free(sp, slob_list);
374 b = slob_page_alloc(sp, size, align);
375 BUG_ON(!b);
376 spin_unlock_irqrestore(&slob_lock, flags);
378 if (unlikely((gfp & __GFP_ZERO) && b))
379 memset(b, 0, size);
380 return b;
384 * slob_free: entry point into the slob allocator.
386 static void slob_free(void *block, int size)
388 struct slob_page *sp;
389 slob_t *prev, *next, *b = (slob_t *)block;
390 slobidx_t units;
391 unsigned long flags;
393 if (unlikely(ZERO_OR_NULL_PTR(block)))
394 return;
395 BUG_ON(!size);
397 sp = slob_page(block);
398 units = SLOB_UNITS(size);
400 spin_lock_irqsave(&slob_lock, flags);
402 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
403 /* Go directly to page allocator. Do not pass slob allocator */
404 if (slob_page_free(sp))
405 clear_slob_page_free(sp);
406 spin_unlock_irqrestore(&slob_lock, flags);
407 clear_slob_page(sp);
408 free_slob_page(sp);
409 free_page((unsigned long)b);
410 return;
413 if (!slob_page_free(sp)) {
414 /* This slob page is about to become partially free. Easy! */
415 sp->units = units;
416 sp->free = b;
417 set_slob(b, units,
418 (void *)((unsigned long)(b +
419 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
420 set_slob_page_free(sp, &free_slob_small);
421 goto out;
425 * Otherwise the page is already partially free, so find reinsertion
426 * point.
428 sp->units += units;
430 if (b < sp->free) {
431 if (b + units == sp->free) {
432 units += slob_units(sp->free);
433 sp->free = slob_next(sp->free);
435 set_slob(b, units, sp->free);
436 sp->free = b;
437 } else {
438 prev = sp->free;
439 next = slob_next(prev);
440 while (b > next) {
441 prev = next;
442 next = slob_next(prev);
445 if (!slob_last(prev) && b + units == next) {
446 units += slob_units(next);
447 set_slob(b, units, slob_next(next));
448 } else
449 set_slob(b, units, next);
451 if (prev + slob_units(prev) == b) {
452 units = slob_units(b) + slob_units(prev);
453 set_slob(prev, units, slob_next(b));
454 } else
455 set_slob(prev, slob_units(prev), b);
457 out:
458 spin_unlock_irqrestore(&slob_lock, flags);
462 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
465 #ifndef ARCH_KMALLOC_MINALIGN
466 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
467 #endif
469 #ifndef ARCH_SLAB_MINALIGN
470 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
471 #endif
473 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
475 unsigned int *m;
476 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
478 if (size < PAGE_SIZE - align) {
479 if (!size)
480 return ZERO_SIZE_PTR;
482 m = slob_alloc(size + align, gfp, align, node);
483 if (!m)
484 return NULL;
485 *m = size;
486 return (void *)m + align;
487 } else {
488 void *ret;
490 ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
491 if (ret) {
492 struct page *page;
493 page = virt_to_page(ret);
494 page->private = size;
496 return ret;
499 EXPORT_SYMBOL(__kmalloc_node);
501 void kfree(const void *block)
503 struct slob_page *sp;
505 if (unlikely(ZERO_OR_NULL_PTR(block)))
506 return;
508 sp = slob_page(block);
509 if (is_slob_page(sp)) {
510 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
511 unsigned int *m = (unsigned int *)(block - align);
512 slob_free(m, *m + align);
513 } else
514 put_page(&sp->page);
516 EXPORT_SYMBOL(kfree);
518 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
519 size_t ksize(const void *block)
521 struct slob_page *sp;
523 BUG_ON(!block);
524 if (unlikely(block == ZERO_SIZE_PTR))
525 return 0;
527 sp = slob_page(block);
528 if (is_slob_page(sp)) {
529 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
530 unsigned int *m = (unsigned int *)(block - align);
531 return SLOB_UNITS(*m) * SLOB_UNIT;
532 } else
533 return sp->page.private;
535 EXPORT_SYMBOL(ksize);
537 struct kmem_cache {
538 unsigned int size, align;
539 unsigned long flags;
540 const char *name;
541 void (*ctor)(void *);
544 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
545 size_t align, unsigned long flags, void (*ctor)(void *))
547 struct kmem_cache *c;
549 c = slob_alloc(sizeof(struct kmem_cache),
550 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
552 if (c) {
553 c->name = name;
554 c->size = size;
555 if (flags & SLAB_DESTROY_BY_RCU) {
556 /* leave room for rcu footer at the end of object */
557 c->size += sizeof(struct slob_rcu);
559 c->flags = flags;
560 c->ctor = ctor;
561 /* ignore alignment unless it's forced */
562 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
563 if (c->align < ARCH_SLAB_MINALIGN)
564 c->align = ARCH_SLAB_MINALIGN;
565 if (c->align < align)
566 c->align = align;
567 } else if (flags & SLAB_PANIC)
568 panic("Cannot create slab cache %s\n", name);
570 return c;
572 EXPORT_SYMBOL(kmem_cache_create);
574 void kmem_cache_destroy(struct kmem_cache *c)
576 slob_free(c, sizeof(struct kmem_cache));
578 EXPORT_SYMBOL(kmem_cache_destroy);
580 void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
582 void *b;
584 if (c->size < PAGE_SIZE)
585 b = slob_alloc(c->size, flags, c->align, node);
586 else
587 b = slob_new_pages(flags, get_order(c->size), node);
589 if (c->ctor)
590 c->ctor(b);
592 return b;
594 EXPORT_SYMBOL(kmem_cache_alloc_node);
596 static void __kmem_cache_free(void *b, int size)
598 if (size < PAGE_SIZE)
599 slob_free(b, size);
600 else
601 slob_free_pages(b, get_order(size));
604 static void kmem_rcu_free(struct rcu_head *head)
606 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
607 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
609 __kmem_cache_free(b, slob_rcu->size);
612 void kmem_cache_free(struct kmem_cache *c, void *b)
614 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
615 struct slob_rcu *slob_rcu;
616 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
617 INIT_RCU_HEAD(&slob_rcu->head);
618 slob_rcu->size = c->size;
619 call_rcu(&slob_rcu->head, kmem_rcu_free);
620 } else {
621 __kmem_cache_free(b, c->size);
624 EXPORT_SYMBOL(kmem_cache_free);
626 unsigned int kmem_cache_size(struct kmem_cache *c)
628 return c->size;
630 EXPORT_SYMBOL(kmem_cache_size);
632 const char *kmem_cache_name(struct kmem_cache *c)
634 return c->name;
636 EXPORT_SYMBOL(kmem_cache_name);
638 int kmem_cache_shrink(struct kmem_cache *d)
640 return 0;
642 EXPORT_SYMBOL(kmem_cache_shrink);
644 int kmem_ptr_validate(struct kmem_cache *a, const void *b)
646 return 0;
649 static unsigned int slob_ready __read_mostly;
651 int slab_is_available(void)
653 return slob_ready;
656 void __init kmem_cache_init(void)
658 slob_ready = 1;