[media] TM6000: Clean-up i2c initialization
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob297d1a0eedb0e68d8b9327f530ba477c93b1222e
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168 if (!overrun)
169 break;
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 ktime_t now;
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
230 #endif
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
242 struct cfs_rq;
244 static LIST_HEAD(task_groups);
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
262 struct rt_bandwidth rt_bandwidth;
263 #endif
265 struct rcu_head rcu;
266 struct list_head list;
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group.children);
287 #endif
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
317 u64 exec_clock;
318 u64 min_vruntime;
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last;
332 unsigned int nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
348 #ifdef CONFIG_SMP
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
360 unsigned long h_load;
363 * this cpu's part of tg->shares
365 unsigned long shares;
368 * load.weight at the time we set shares
370 unsigned long rq_weight;
371 #endif
372 #endif
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
408 #ifdef CONFIG_SMP
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
470 struct cfs_rq cfs;
471 struct rt_rq rt;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
493 u64 clock;
494 u64 clock_task;
496 atomic_t nr_iowait;
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
502 unsigned long cpu_power;
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
514 unsigned long avg_load_per_task;
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
556 /* BKL stats */
557 unsigned int bkl_count;
558 #endif
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
566 static inline int cpu_of(struct rq *rq)
568 #ifdef CONFIG_SMP
569 return rq->cpu;
570 #else
571 return 0;
572 #endif
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group *task_group(struct task_struct *p)
608 struct cgroup_subsys_state *css;
610 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
611 lockdep_is_held(&task_rq(p)->lock));
612 return container_of(css, struct task_group, css);
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621 #endif
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626 #endif
629 #else /* CONFIG_CGROUP_SCHED */
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
634 return NULL;
637 #endif /* CONFIG_CGROUP_SCHED */
639 static void update_rq_clock_task(struct rq *rq, s64 delta);
641 static void update_rq_clock(struct rq *rq)
643 s64 delta;
645 if (rq->skip_clock_update)
646 return;
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
663 * runqueue_is_locked
664 * @cpu: the processor in question.
666 * Returns true if the current cpu runqueue is locked.
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
670 int runqueue_is_locked(int cpu)
672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
676 * Debugging: various feature bits
679 #define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
682 enum {
683 #include "sched_features.h"
686 #undef SCHED_FEAT
688 #define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
691 const_debug unsigned int sysctl_sched_features =
692 #include "sched_features.h"
695 #undef SCHED_FEAT
697 #ifdef CONFIG_SCHED_DEBUG
698 #define SCHED_FEAT(name, enabled) \
699 #name ,
701 static __read_mostly char *sched_feat_names[] = {
702 #include "sched_features.h"
703 NULL
706 #undef SCHED_FEAT
708 static int sched_feat_show(struct seq_file *m, void *v)
710 int i;
712 for (i = 0; sched_feat_names[i]; i++) {
713 if (!(sysctl_sched_features & (1UL << i)))
714 seq_puts(m, "NO_");
715 seq_printf(m, "%s ", sched_feat_names[i]);
717 seq_puts(m, "\n");
719 return 0;
722 static ssize_t
723 sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
726 char buf[64];
727 char *cmp;
728 int neg = 0;
729 int i;
731 if (cnt > 63)
732 cnt = 63;
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
737 buf[cnt] = 0;
738 cmp = strstrip(buf);
740 if (strncmp(buf, "NO_", 3) == 0) {
741 neg = 1;
742 cmp += 3;
745 for (i = 0; sched_feat_names[i]; i++) {
746 if (strcmp(cmp, sched_feat_names[i]) == 0) {
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
755 if (!sched_feat_names[i])
756 return -EINVAL;
758 *ppos += cnt;
760 return cnt;
763 static int sched_feat_open(struct inode *inode, struct file *filp)
765 return single_open(filp, sched_feat_show, NULL);
768 static const struct file_operations sched_feat_fops = {
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
776 static __init int sched_init_debug(void)
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
781 return 0;
783 late_initcall(sched_init_debug);
785 #endif
787 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
793 const_debug unsigned int sysctl_sched_nr_migrate = 32;
796 * ratelimit for updating the group shares.
797 * default: 0.25ms
799 unsigned int sysctl_sched_shares_ratelimit = 250000;
800 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
805 * default: 4
807 unsigned int sysctl_sched_shares_thresh = 4;
810 * period over which we average the RT time consumption, measured
811 * in ms.
813 * default: 1s
815 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
818 * period over which we measure -rt task cpu usage in us.
819 * default: 1s
821 unsigned int sysctl_sched_rt_period = 1000000;
823 static __read_mostly int scheduler_running;
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
829 int sysctl_sched_rt_runtime = 950000;
831 static inline u64 global_rt_period(void)
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
836 static inline u64 global_rt_runtime(void)
838 if (sysctl_sched_rt_runtime < 0)
839 return RUNTIME_INF;
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
844 #ifndef prepare_arch_switch
845 # define prepare_arch_switch(next) do { } while (0)
846 #endif
847 #ifndef finish_arch_switch
848 # define finish_arch_switch(prev) do { } while (0)
849 #endif
851 static inline int task_current(struct rq *rq, struct task_struct *p)
853 return rq->curr == p;
856 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
857 static inline int task_running(struct rq *rq, struct task_struct *p)
859 return task_current(rq, p);
862 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
866 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
868 #ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871 #endif
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
879 raw_spin_unlock_irq(&rq->lock);
882 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
883 static inline int task_running(struct rq *rq, struct task_struct *p)
885 #ifdef CONFIG_SMP
886 return p->oncpu;
887 #else
888 return task_current(rq, p);
889 #endif
892 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
894 #ifdef CONFIG_SMP
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
900 next->oncpu = 1;
901 #endif
902 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 raw_spin_unlock_irq(&rq->lock);
904 #else
905 raw_spin_unlock(&rq->lock);
906 #endif
909 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911 #ifdef CONFIG_SMP
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
917 smp_wmb();
918 prev->oncpu = 0;
919 #endif
920 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
922 #endif
924 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
930 static inline int task_is_waking(struct task_struct *p)
932 return unlikely(p->state == TASK_WAKING);
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
939 static inline struct rq *__task_rq_lock(struct task_struct *p)
940 __acquires(rq->lock)
942 struct rq *rq;
944 for (;;) {
945 rq = task_rq(p);
946 raw_spin_lock(&rq->lock);
947 if (likely(rq == task_rq(p)))
948 return rq;
949 raw_spin_unlock(&rq->lock);
954 * task_rq_lock - lock the runqueue a given task resides on and disable
955 * interrupts. Note the ordering: we can safely lookup the task_rq without
956 * explicitly disabling preemption.
958 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
959 __acquires(rq->lock)
961 struct rq *rq;
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
966 raw_spin_lock(&rq->lock);
967 if (likely(rq == task_rq(p)))
968 return rq;
969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
973 static void __task_rq_unlock(struct rq *rq)
974 __releases(rq->lock)
976 raw_spin_unlock(&rq->lock);
979 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
980 __releases(rq->lock)
982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
986 * this_rq_lock - lock this runqueue and disable interrupts.
988 static struct rq *this_rq_lock(void)
989 __acquires(rq->lock)
991 struct rq *rq;
993 local_irq_disable();
994 rq = this_rq();
995 raw_spin_lock(&rq->lock);
997 return rq;
1000 #ifdef CONFIG_SCHED_HRTICK
1002 * Use HR-timers to deliver accurate preemption points.
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1017 static inline int hrtick_enabled(struct rq *rq)
1019 if (!sched_feat(HRTICK))
1020 return 0;
1021 if (!cpu_active(cpu_of(rq)))
1022 return 0;
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026 static void hrtick_clear(struct rq *rq)
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1036 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042 raw_spin_lock(&rq->lock);
1043 update_rq_clock(rq);
1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045 raw_spin_unlock(&rq->lock);
1047 return HRTIMER_NORESTART;
1050 #ifdef CONFIG_SMP
1052 * called from hardirq (IPI) context
1054 static void __hrtick_start(void *arg)
1056 struct rq *rq = arg;
1058 raw_spin_lock(&rq->lock);
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
1061 raw_spin_unlock(&rq->lock);
1065 * Called to set the hrtick timer state.
1067 * called with rq->lock held and irqs disabled
1069 static void hrtick_start(struct rq *rq, u64 delay)
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1074 hrtimer_set_expires(timer, time);
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1080 rq->hrtick_csd_pending = 1;
1084 static int
1085 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 int cpu = (int)(long)hcpu;
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
1096 hrtick_clear(cpu_rq(cpu));
1097 return NOTIFY_OK;
1100 return NOTIFY_DONE;
1103 static __init void init_hrtick(void)
1105 hotcpu_notifier(hotplug_hrtick, 0);
1107 #else
1109 * Called to set the hrtick timer state.
1111 * called with rq->lock held and irqs disabled
1113 static void hrtick_start(struct rq *rq, u64 delay)
1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1116 HRTIMER_MODE_REL_PINNED, 0);
1119 static inline void init_hrtick(void)
1122 #endif /* CONFIG_SMP */
1124 static void init_rq_hrtick(struct rq *rq)
1126 #ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132 #endif
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
1137 #else /* CONFIG_SCHED_HRTICK */
1138 static inline void hrtick_clear(struct rq *rq)
1142 static inline void init_rq_hrtick(struct rq *rq)
1146 static inline void init_hrtick(void)
1149 #endif /* CONFIG_SCHED_HRTICK */
1152 * resched_task - mark a task 'to be rescheduled now'.
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1158 #ifdef CONFIG_SMP
1160 #ifndef tsk_is_polling
1161 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162 #endif
1164 static void resched_task(struct task_struct *p)
1166 int cpu;
1168 assert_raw_spin_locked(&task_rq(p)->lock);
1170 if (test_tsk_need_resched(p))
1171 return;
1173 set_tsk_need_resched(p);
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1185 static void resched_cpu(int cpu)
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1191 return;
1192 resched_task(cpu_curr(cpu));
1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
1196 #ifdef CONFIG_NO_HZ
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1205 int get_nohz_timer_target(void)
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1216 return cpu;
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1228 void wake_up_idle_cpu(int cpu)
1230 struct rq *rq = cpu_rq(cpu);
1232 if (cpu == smp_processor_id())
1233 return;
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1242 if (rq->curr != rq->idle)
1243 return;
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1250 set_tsk_need_resched(rq->idle);
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1258 #endif /* CONFIG_NO_HZ */
1260 static u64 sched_avg_period(void)
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1265 static void sched_avg_update(struct rq *rq)
1267 s64 period = sched_avg_period();
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1275 asm("" : "+rm" (rq->age_stamp));
1276 rq->age_stamp += period;
1277 rq->rt_avg /= 2;
1281 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1287 #else /* !CONFIG_SMP */
1288 static void resched_task(struct task_struct *p)
1290 assert_raw_spin_locked(&task_rq(p)->lock);
1291 set_tsk_need_resched(p);
1294 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1298 static void sched_avg_update(struct rq *rq)
1301 #endif /* CONFIG_SMP */
1303 #if BITS_PER_LONG == 32
1304 # define WMULT_CONST (~0UL)
1305 #else
1306 # define WMULT_CONST (1UL << 32)
1307 #endif
1309 #define WMULT_SHIFT 32
1312 * Shift right and round:
1314 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1317 * delta *= weight / lw
1319 static unsigned long
1320 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1323 u64 tmp;
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1327 lw->inv_weight = 1;
1328 else
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1330 / (lw->weight+1);
1333 tmp = (u64)delta_exec * weight;
1335 * Check whether we'd overflow the 64-bit multiplication:
1337 if (unlikely(tmp > WMULT_CONST))
1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1339 WMULT_SHIFT/2);
1340 else
1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1346 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1348 lw->weight += inc;
1349 lw->inv_weight = 0;
1352 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1354 lw->weight -= dec;
1355 lw->inv_weight = 0;
1359 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1360 * of tasks with abnormal "nice" values across CPUs the contribution that
1361 * each task makes to its run queue's load is weighted according to its
1362 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1363 * scaled version of the new time slice allocation that they receive on time
1364 * slice expiry etc.
1367 #define WEIGHT_IDLEPRIO 3
1368 #define WMULT_IDLEPRIO 1431655765
1371 * Nice levels are multiplicative, with a gentle 10% change for every
1372 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1373 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1374 * that remained on nice 0.
1376 * The "10% effect" is relative and cumulative: from _any_ nice level,
1377 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1378 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1379 * If a task goes up by ~10% and another task goes down by ~10% then
1380 * the relative distance between them is ~25%.)
1382 static const int prio_to_weight[40] = {
1383 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1384 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1385 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1386 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1387 /* 0 */ 1024, 820, 655, 526, 423,
1388 /* 5 */ 335, 272, 215, 172, 137,
1389 /* 10 */ 110, 87, 70, 56, 45,
1390 /* 15 */ 36, 29, 23, 18, 15,
1394 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1396 * In cases where the weight does not change often, we can use the
1397 * precalculated inverse to speed up arithmetics by turning divisions
1398 * into multiplications:
1400 static const u32 prio_to_wmult[40] = {
1401 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1402 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1403 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1404 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1405 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1406 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1407 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1408 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1411 /* Time spent by the tasks of the cpu accounting group executing in ... */
1412 enum cpuacct_stat_index {
1413 CPUACCT_STAT_USER, /* ... user mode */
1414 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1416 CPUACCT_STAT_NSTATS,
1419 #ifdef CONFIG_CGROUP_CPUACCT
1420 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1421 static void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val);
1423 #else
1424 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1425 static inline void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val) {}
1427 #endif
1429 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1431 update_load_add(&rq->load, load);
1434 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1436 update_load_sub(&rq->load, load);
1439 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1440 typedef int (*tg_visitor)(struct task_group *, void *);
1443 * Iterate the full tree, calling @down when first entering a node and @up when
1444 * leaving it for the final time.
1446 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1448 struct task_group *parent, *child;
1449 int ret;
1451 rcu_read_lock();
1452 parent = &root_task_group;
1453 down:
1454 ret = (*down)(parent, data);
1455 if (ret)
1456 goto out_unlock;
1457 list_for_each_entry_rcu(child, &parent->children, siblings) {
1458 parent = child;
1459 goto down;
1462 continue;
1464 ret = (*up)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1468 child = parent;
1469 parent = parent->parent;
1470 if (parent)
1471 goto up;
1472 out_unlock:
1473 rcu_read_unlock();
1475 return ret;
1478 static int tg_nop(struct task_group *tg, void *data)
1480 return 0;
1482 #endif
1484 #ifdef CONFIG_SMP
1485 /* Used instead of source_load when we know the type == 0 */
1486 static unsigned long weighted_cpuload(const int cpu)
1488 return cpu_rq(cpu)->load.weight;
1492 * Return a low guess at the load of a migration-source cpu weighted
1493 * according to the scheduling class and "nice" value.
1495 * We want to under-estimate the load of migration sources, to
1496 * balance conservatively.
1498 static unsigned long source_load(int cpu, int type)
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1506 return min(rq->cpu_load[type-1], total);
1510 * Return a high guess at the load of a migration-target cpu weighted
1511 * according to the scheduling class and "nice" value.
1513 static unsigned long target_load(int cpu, int type)
1515 struct rq *rq = cpu_rq(cpu);
1516 unsigned long total = weighted_cpuload(cpu);
1518 if (type == 0 || !sched_feat(LB_BIAS))
1519 return total;
1521 return max(rq->cpu_load[type-1], total);
1524 static unsigned long power_of(int cpu)
1526 return cpu_rq(cpu)->cpu_power;
1529 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1531 static unsigned long cpu_avg_load_per_task(int cpu)
1533 struct rq *rq = cpu_rq(cpu);
1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
1538 else
1539 rq->avg_load_per_task = 0;
1541 return rq->avg_load_per_task;
1544 #ifdef CONFIG_FAIR_GROUP_SCHED
1546 static __read_mostly unsigned long __percpu *update_shares_data;
1548 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1551 * Calculate and set the cpu's group shares.
1553 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
1556 unsigned long *usd_rq_weight)
1558 unsigned long shares, rq_weight;
1559 int boost = 0;
1561 rq_weight = usd_rq_weight[cpu];
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
1580 raw_spin_lock_irqsave(&rq->lock, flags);
1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583 __set_se_shares(tg->se[cpu], shares);
1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
1593 static int tg_shares_up(struct task_group *tg, void *data)
1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596 unsigned long *usd_rq_weight;
1597 struct sched_domain *sd = data;
1598 unsigned long flags;
1599 int i;
1601 if (!tg->se[0])
1602 return 0;
1604 local_irq_save(flags);
1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1607 for_each_cpu(i, sched_domain_span(sd)) {
1608 weight = tg->cfs_rq[i]->load.weight;
1609 usd_rq_weight[i] = weight;
1611 rq_weight += weight;
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1620 sum_weight += weight;
1621 shares += tg->cfs_rq[i]->shares;
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
1633 for_each_cpu(i, sched_domain_span(sd))
1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1636 local_irq_restore(flags);
1638 return 0;
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
1646 static int tg_load_down(struct task_group *tg, void *data)
1648 unsigned long load;
1649 long cpu = (long)data;
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1659 tg->cfs_rq[cpu]->h_load = load;
1661 return 0;
1664 static void update_shares(struct sched_domain *sd)
1666 s64 elapsed;
1667 u64 now;
1669 if (root_task_group_empty())
1670 return;
1672 now = local_clock();
1673 elapsed = now - sd->last_update;
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
1681 static void update_h_load(long cpu)
1683 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1686 #else
1688 static inline void update_shares(struct sched_domain *sd)
1692 #endif
1694 #ifdef CONFIG_PREEMPT
1696 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1699 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1700 * way at the expense of forcing extra atomic operations in all
1701 * invocations. This assures that the double_lock is acquired using the
1702 * same underlying policy as the spinlock_t on this architecture, which
1703 * reduces latency compared to the unfair variant below. However, it
1704 * also adds more overhead and therefore may reduce throughput.
1706 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1711 raw_spin_unlock(&this_rq->lock);
1712 double_rq_lock(this_rq, busiest);
1714 return 1;
1717 #else
1719 * Unfair double_lock_balance: Optimizes throughput at the expense of
1720 * latency by eliminating extra atomic operations when the locks are
1721 * already in proper order on entry. This favors lower cpu-ids and will
1722 * grant the double lock to lower cpus over higher ids under contention,
1723 * regardless of entry order into the function.
1725 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1726 __releases(this_rq->lock)
1727 __acquires(busiest->lock)
1728 __acquires(this_rq->lock)
1730 int ret = 0;
1732 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1733 if (busiest < this_rq) {
1734 raw_spin_unlock(&this_rq->lock);
1735 raw_spin_lock(&busiest->lock);
1736 raw_spin_lock_nested(&this_rq->lock,
1737 SINGLE_DEPTH_NESTING);
1738 ret = 1;
1739 } else
1740 raw_spin_lock_nested(&busiest->lock,
1741 SINGLE_DEPTH_NESTING);
1743 return ret;
1746 #endif /* CONFIG_PREEMPT */
1749 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1751 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1753 if (unlikely(!irqs_disabled())) {
1754 /* printk() doesn't work good under rq->lock */
1755 raw_spin_unlock(&this_rq->lock);
1756 BUG_ON(1);
1759 return _double_lock_balance(this_rq, busiest);
1762 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(busiest->lock)
1765 raw_spin_unlock(&busiest->lock);
1766 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1770 * double_rq_lock - safely lock two runqueues
1772 * Note this does not disable interrupts like task_rq_lock,
1773 * you need to do so manually before calling.
1775 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1776 __acquires(rq1->lock)
1777 __acquires(rq2->lock)
1779 BUG_ON(!irqs_disabled());
1780 if (rq1 == rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 __acquire(rq2->lock); /* Fake it out ;) */
1783 } else {
1784 if (rq1 < rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1787 } else {
1788 raw_spin_lock(&rq2->lock);
1789 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1795 * double_rq_unlock - safely unlock two runqueues
1797 * Note this does not restore interrupts like task_rq_unlock,
1798 * you need to do so manually after calling.
1800 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1801 __releases(rq1->lock)
1802 __releases(rq2->lock)
1804 raw_spin_unlock(&rq1->lock);
1805 if (rq1 != rq2)
1806 raw_spin_unlock(&rq2->lock);
1807 else
1808 __release(rq2->lock);
1811 #endif
1813 #ifdef CONFIG_FAIR_GROUP_SCHED
1814 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1816 #ifdef CONFIG_SMP
1817 cfs_rq->shares = shares;
1818 #endif
1820 #endif
1822 static void calc_load_account_idle(struct rq *this_rq);
1823 static void update_sysctl(void);
1824 static int get_update_sysctl_factor(void);
1825 static void update_cpu_load(struct rq *this_rq);
1827 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1829 set_task_rq(p, cpu);
1830 #ifdef CONFIG_SMP
1832 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1833 * successfuly executed on another CPU. We must ensure that updates of
1834 * per-task data have been completed by this moment.
1836 smp_wmb();
1837 task_thread_info(p)->cpu = cpu;
1838 #endif
1841 static const struct sched_class rt_sched_class;
1843 #define sched_class_highest (&stop_sched_class)
1844 #define for_each_class(class) \
1845 for (class = sched_class_highest; class; class = class->next)
1847 #include "sched_stats.h"
1849 static void inc_nr_running(struct rq *rq)
1851 rq->nr_running++;
1854 static void dec_nr_running(struct rq *rq)
1856 rq->nr_running--;
1859 static void set_load_weight(struct task_struct *p)
1862 * SCHED_IDLE tasks get minimal weight:
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1867 return;
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1874 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1876 update_rq_clock(rq);
1877 sched_info_queued(p);
1878 p->sched_class->enqueue_task(rq, p, flags);
1879 p->se.on_rq = 1;
1882 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1884 update_rq_clock(rq);
1885 sched_info_dequeued(p);
1886 p->sched_class->dequeue_task(rq, p, flags);
1887 p->se.on_rq = 0;
1891 * activate_task - move a task to the runqueue.
1893 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible--;
1898 enqueue_task(rq, p, flags);
1899 inc_nr_running(rq);
1903 * deactivate_task - remove a task from the runqueue.
1905 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1907 if (task_contributes_to_load(p))
1908 rq->nr_uninterruptible++;
1910 dequeue_task(rq, p, flags);
1911 dec_nr_running(rq);
1914 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1917 * There are no locks covering percpu hardirq/softirq time.
1918 * They are only modified in account_system_vtime, on corresponding CPU
1919 * with interrupts disabled. So, writes are safe.
1920 * They are read and saved off onto struct rq in update_rq_clock().
1921 * This may result in other CPU reading this CPU's irq time and can
1922 * race with irq/account_system_vtime on this CPU. We would either get old
1923 * or new value with a side effect of accounting a slice of irq time to wrong
1924 * task when irq is in progress while we read rq->clock. That is a worthy
1925 * compromise in place of having locks on each irq in account_system_time.
1927 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1928 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1930 static DEFINE_PER_CPU(u64, irq_start_time);
1931 static int sched_clock_irqtime;
1933 void enable_sched_clock_irqtime(void)
1935 sched_clock_irqtime = 1;
1938 void disable_sched_clock_irqtime(void)
1940 sched_clock_irqtime = 0;
1943 #ifndef CONFIG_64BIT
1944 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1946 static inline void irq_time_write_begin(void)
1948 __this_cpu_inc(irq_time_seq.sequence);
1949 smp_wmb();
1952 static inline void irq_time_write_end(void)
1954 smp_wmb();
1955 __this_cpu_inc(irq_time_seq.sequence);
1958 static inline u64 irq_time_read(int cpu)
1960 u64 irq_time;
1961 unsigned seq;
1963 do {
1964 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1965 irq_time = per_cpu(cpu_softirq_time, cpu) +
1966 per_cpu(cpu_hardirq_time, cpu);
1967 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1969 return irq_time;
1971 #else /* CONFIG_64BIT */
1972 static inline void irq_time_write_begin(void)
1976 static inline void irq_time_write_end(void)
1980 static inline u64 irq_time_read(int cpu)
1982 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1984 #endif /* CONFIG_64BIT */
1987 * Called before incrementing preempt_count on {soft,}irq_enter
1988 * and before decrementing preempt_count on {soft,}irq_exit.
1990 void account_system_vtime(struct task_struct *curr)
1992 unsigned long flags;
1993 s64 delta;
1994 int cpu;
1996 if (!sched_clock_irqtime)
1997 return;
1999 local_irq_save(flags);
2001 cpu = smp_processor_id();
2002 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2003 __this_cpu_add(irq_start_time, delta);
2005 irq_time_write_begin();
2007 * We do not account for softirq time from ksoftirqd here.
2008 * We want to continue accounting softirq time to ksoftirqd thread
2009 * in that case, so as not to confuse scheduler with a special task
2010 * that do not consume any time, but still wants to run.
2012 if (hardirq_count())
2013 __this_cpu_add(cpu_hardirq_time, delta);
2014 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
2015 __this_cpu_add(cpu_softirq_time, delta);
2017 irq_time_write_end();
2018 local_irq_restore(flags);
2020 EXPORT_SYMBOL_GPL(account_system_vtime);
2022 static void update_rq_clock_task(struct rq *rq, s64 delta)
2024 s64 irq_delta;
2026 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2029 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2030 * this case when a previous update_rq_clock() happened inside a
2031 * {soft,}irq region.
2033 * When this happens, we stop ->clock_task and only update the
2034 * prev_irq_time stamp to account for the part that fit, so that a next
2035 * update will consume the rest. This ensures ->clock_task is
2036 * monotonic.
2038 * It does however cause some slight miss-attribution of {soft,}irq
2039 * time, a more accurate solution would be to update the irq_time using
2040 * the current rq->clock timestamp, except that would require using
2041 * atomic ops.
2043 if (irq_delta > delta)
2044 irq_delta = delta;
2046 rq->prev_irq_time += irq_delta;
2047 delta -= irq_delta;
2048 rq->clock_task += delta;
2050 if (irq_delta && sched_feat(NONIRQ_POWER))
2051 sched_rt_avg_update(rq, irq_delta);
2054 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2056 static void update_rq_clock_task(struct rq *rq, s64 delta)
2058 rq->clock_task += delta;
2061 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2063 #include "sched_idletask.c"
2064 #include "sched_fair.c"
2065 #include "sched_rt.c"
2066 #include "sched_stoptask.c"
2067 #ifdef CONFIG_SCHED_DEBUG
2068 # include "sched_debug.c"
2069 #endif
2071 void sched_set_stop_task(int cpu, struct task_struct *stop)
2073 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2074 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2076 if (stop) {
2078 * Make it appear like a SCHED_FIFO task, its something
2079 * userspace knows about and won't get confused about.
2081 * Also, it will make PI more or less work without too
2082 * much confusion -- but then, stop work should not
2083 * rely on PI working anyway.
2085 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2087 stop->sched_class = &stop_sched_class;
2090 cpu_rq(cpu)->stop = stop;
2092 if (old_stop) {
2094 * Reset it back to a normal scheduling class so that
2095 * it can die in pieces.
2097 old_stop->sched_class = &rt_sched_class;
2102 * __normal_prio - return the priority that is based on the static prio
2104 static inline int __normal_prio(struct task_struct *p)
2106 return p->static_prio;
2110 * Calculate the expected normal priority: i.e. priority
2111 * without taking RT-inheritance into account. Might be
2112 * boosted by interactivity modifiers. Changes upon fork,
2113 * setprio syscalls, and whenever the interactivity
2114 * estimator recalculates.
2116 static inline int normal_prio(struct task_struct *p)
2118 int prio;
2120 if (task_has_rt_policy(p))
2121 prio = MAX_RT_PRIO-1 - p->rt_priority;
2122 else
2123 prio = __normal_prio(p);
2124 return prio;
2128 * Calculate the current priority, i.e. the priority
2129 * taken into account by the scheduler. This value might
2130 * be boosted by RT tasks, or might be boosted by
2131 * interactivity modifiers. Will be RT if the task got
2132 * RT-boosted. If not then it returns p->normal_prio.
2134 static int effective_prio(struct task_struct *p)
2136 p->normal_prio = normal_prio(p);
2138 * If we are RT tasks or we were boosted to RT priority,
2139 * keep the priority unchanged. Otherwise, update priority
2140 * to the normal priority:
2142 if (!rt_prio(p->prio))
2143 return p->normal_prio;
2144 return p->prio;
2148 * task_curr - is this task currently executing on a CPU?
2149 * @p: the task in question.
2151 inline int task_curr(const struct task_struct *p)
2153 return cpu_curr(task_cpu(p)) == p;
2156 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2157 const struct sched_class *prev_class,
2158 int oldprio, int running)
2160 if (prev_class != p->sched_class) {
2161 if (prev_class->switched_from)
2162 prev_class->switched_from(rq, p, running);
2163 p->sched_class->switched_to(rq, p, running);
2164 } else
2165 p->sched_class->prio_changed(rq, p, oldprio, running);
2168 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2170 const struct sched_class *class;
2172 if (p->sched_class == rq->curr->sched_class) {
2173 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2174 } else {
2175 for_each_class(class) {
2176 if (class == rq->curr->sched_class)
2177 break;
2178 if (class == p->sched_class) {
2179 resched_task(rq->curr);
2180 break;
2186 * A queue event has occurred, and we're going to schedule. In
2187 * this case, we can save a useless back to back clock update.
2189 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2190 rq->skip_clock_update = 1;
2193 #ifdef CONFIG_SMP
2195 * Is this task likely cache-hot:
2197 static int
2198 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2200 s64 delta;
2202 if (p->sched_class != &fair_sched_class)
2203 return 0;
2205 if (unlikely(p->policy == SCHED_IDLE))
2206 return 0;
2209 * Buddy candidates are cache hot:
2211 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2212 (&p->se == cfs_rq_of(&p->se)->next ||
2213 &p->se == cfs_rq_of(&p->se)->last))
2214 return 1;
2216 if (sysctl_sched_migration_cost == -1)
2217 return 1;
2218 if (sysctl_sched_migration_cost == 0)
2219 return 0;
2221 delta = now - p->se.exec_start;
2223 return delta < (s64)sysctl_sched_migration_cost;
2226 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2228 #ifdef CONFIG_SCHED_DEBUG
2230 * We should never call set_task_cpu() on a blocked task,
2231 * ttwu() will sort out the placement.
2233 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2234 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2235 #endif
2237 trace_sched_migrate_task(p, new_cpu);
2239 if (task_cpu(p) != new_cpu) {
2240 p->se.nr_migrations++;
2241 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2244 __set_task_cpu(p, new_cpu);
2247 struct migration_arg {
2248 struct task_struct *task;
2249 int dest_cpu;
2252 static int migration_cpu_stop(void *data);
2255 * The task's runqueue lock must be held.
2256 * Returns true if you have to wait for migration thread.
2258 static bool migrate_task(struct task_struct *p, int dest_cpu)
2260 struct rq *rq = task_rq(p);
2263 * If the task is not on a runqueue (and not running), then
2264 * the next wake-up will properly place the task.
2266 return p->se.on_rq || task_running(rq, p);
2270 * wait_task_inactive - wait for a thread to unschedule.
2272 * If @match_state is nonzero, it's the @p->state value just checked and
2273 * not expected to change. If it changes, i.e. @p might have woken up,
2274 * then return zero. When we succeed in waiting for @p to be off its CPU,
2275 * we return a positive number (its total switch count). If a second call
2276 * a short while later returns the same number, the caller can be sure that
2277 * @p has remained unscheduled the whole time.
2279 * The caller must ensure that the task *will* unschedule sometime soon,
2280 * else this function might spin for a *long* time. This function can't
2281 * be called with interrupts off, or it may introduce deadlock with
2282 * smp_call_function() if an IPI is sent by the same process we are
2283 * waiting to become inactive.
2285 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2287 unsigned long flags;
2288 int running, on_rq;
2289 unsigned long ncsw;
2290 struct rq *rq;
2292 for (;;) {
2294 * We do the initial early heuristics without holding
2295 * any task-queue locks at all. We'll only try to get
2296 * the runqueue lock when things look like they will
2297 * work out!
2299 rq = task_rq(p);
2302 * If the task is actively running on another CPU
2303 * still, just relax and busy-wait without holding
2304 * any locks.
2306 * NOTE! Since we don't hold any locks, it's not
2307 * even sure that "rq" stays as the right runqueue!
2308 * But we don't care, since "task_running()" will
2309 * return false if the runqueue has changed and p
2310 * is actually now running somewhere else!
2312 while (task_running(rq, p)) {
2313 if (match_state && unlikely(p->state != match_state))
2314 return 0;
2315 cpu_relax();
2319 * Ok, time to look more closely! We need the rq
2320 * lock now, to be *sure*. If we're wrong, we'll
2321 * just go back and repeat.
2323 rq = task_rq_lock(p, &flags);
2324 trace_sched_wait_task(p);
2325 running = task_running(rq, p);
2326 on_rq = p->se.on_rq;
2327 ncsw = 0;
2328 if (!match_state || p->state == match_state)
2329 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2330 task_rq_unlock(rq, &flags);
2333 * If it changed from the expected state, bail out now.
2335 if (unlikely(!ncsw))
2336 break;
2339 * Was it really running after all now that we
2340 * checked with the proper locks actually held?
2342 * Oops. Go back and try again..
2344 if (unlikely(running)) {
2345 cpu_relax();
2346 continue;
2350 * It's not enough that it's not actively running,
2351 * it must be off the runqueue _entirely_, and not
2352 * preempted!
2354 * So if it was still runnable (but just not actively
2355 * running right now), it's preempted, and we should
2356 * yield - it could be a while.
2358 if (unlikely(on_rq)) {
2359 schedule_timeout_uninterruptible(1);
2360 continue;
2364 * Ahh, all good. It wasn't running, and it wasn't
2365 * runnable, which means that it will never become
2366 * running in the future either. We're all done!
2368 break;
2371 return ncsw;
2374 /***
2375 * kick_process - kick a running thread to enter/exit the kernel
2376 * @p: the to-be-kicked thread
2378 * Cause a process which is running on another CPU to enter
2379 * kernel-mode, without any delay. (to get signals handled.)
2381 * NOTE: this function doesnt have to take the runqueue lock,
2382 * because all it wants to ensure is that the remote task enters
2383 * the kernel. If the IPI races and the task has been migrated
2384 * to another CPU then no harm is done and the purpose has been
2385 * achieved as well.
2387 void kick_process(struct task_struct *p)
2389 int cpu;
2391 preempt_disable();
2392 cpu = task_cpu(p);
2393 if ((cpu != smp_processor_id()) && task_curr(p))
2394 smp_send_reschedule(cpu);
2395 preempt_enable();
2397 EXPORT_SYMBOL_GPL(kick_process);
2398 #endif /* CONFIG_SMP */
2401 * task_oncpu_function_call - call a function on the cpu on which a task runs
2402 * @p: the task to evaluate
2403 * @func: the function to be called
2404 * @info: the function call argument
2406 * Calls the function @func when the task is currently running. This might
2407 * be on the current CPU, which just calls the function directly
2409 void task_oncpu_function_call(struct task_struct *p,
2410 void (*func) (void *info), void *info)
2412 int cpu;
2414 preempt_disable();
2415 cpu = task_cpu(p);
2416 if (task_curr(p))
2417 smp_call_function_single(cpu, func, info, 1);
2418 preempt_enable();
2421 #ifdef CONFIG_SMP
2423 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2425 static int select_fallback_rq(int cpu, struct task_struct *p)
2427 int dest_cpu;
2428 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2430 /* Look for allowed, online CPU in same node. */
2431 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2432 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2433 return dest_cpu;
2435 /* Any allowed, online CPU? */
2436 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2437 if (dest_cpu < nr_cpu_ids)
2438 return dest_cpu;
2440 /* No more Mr. Nice Guy. */
2441 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2442 dest_cpu = cpuset_cpus_allowed_fallback(p);
2444 * Don't tell them about moving exiting tasks or
2445 * kernel threads (both mm NULL), since they never
2446 * leave kernel.
2448 if (p->mm && printk_ratelimit()) {
2449 printk(KERN_INFO "process %d (%s) no "
2450 "longer affine to cpu%d\n",
2451 task_pid_nr(p), p->comm, cpu);
2455 return dest_cpu;
2459 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2461 static inline
2462 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2464 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2467 * In order not to call set_task_cpu() on a blocking task we need
2468 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2469 * cpu.
2471 * Since this is common to all placement strategies, this lives here.
2473 * [ this allows ->select_task() to simply return task_cpu(p) and
2474 * not worry about this generic constraint ]
2476 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2477 !cpu_online(cpu)))
2478 cpu = select_fallback_rq(task_cpu(p), p);
2480 return cpu;
2483 static void update_avg(u64 *avg, u64 sample)
2485 s64 diff = sample - *avg;
2486 *avg += diff >> 3;
2488 #endif
2490 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2491 bool is_sync, bool is_migrate, bool is_local,
2492 unsigned long en_flags)
2494 schedstat_inc(p, se.statistics.nr_wakeups);
2495 if (is_sync)
2496 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2497 if (is_migrate)
2498 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2499 if (is_local)
2500 schedstat_inc(p, se.statistics.nr_wakeups_local);
2501 else
2502 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2504 activate_task(rq, p, en_flags);
2507 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2508 int wake_flags, bool success)
2510 trace_sched_wakeup(p, success);
2511 check_preempt_curr(rq, p, wake_flags);
2513 p->state = TASK_RUNNING;
2514 #ifdef CONFIG_SMP
2515 if (p->sched_class->task_woken)
2516 p->sched_class->task_woken(rq, p);
2518 if (unlikely(rq->idle_stamp)) {
2519 u64 delta = rq->clock - rq->idle_stamp;
2520 u64 max = 2*sysctl_sched_migration_cost;
2522 if (delta > max)
2523 rq->avg_idle = max;
2524 else
2525 update_avg(&rq->avg_idle, delta);
2526 rq->idle_stamp = 0;
2528 #endif
2529 /* if a worker is waking up, notify workqueue */
2530 if ((p->flags & PF_WQ_WORKER) && success)
2531 wq_worker_waking_up(p, cpu_of(rq));
2535 * try_to_wake_up - wake up a thread
2536 * @p: the thread to be awakened
2537 * @state: the mask of task states that can be woken
2538 * @wake_flags: wake modifier flags (WF_*)
2540 * Put it on the run-queue if it's not already there. The "current"
2541 * thread is always on the run-queue (except when the actual
2542 * re-schedule is in progress), and as such you're allowed to do
2543 * the simpler "current->state = TASK_RUNNING" to mark yourself
2544 * runnable without the overhead of this.
2546 * Returns %true if @p was woken up, %false if it was already running
2547 * or @state didn't match @p's state.
2549 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2550 int wake_flags)
2552 int cpu, orig_cpu, this_cpu, success = 0;
2553 unsigned long flags;
2554 unsigned long en_flags = ENQUEUE_WAKEUP;
2555 struct rq *rq;
2557 this_cpu = get_cpu();
2559 smp_wmb();
2560 rq = task_rq_lock(p, &flags);
2561 if (!(p->state & state))
2562 goto out;
2564 if (p->se.on_rq)
2565 goto out_running;
2567 cpu = task_cpu(p);
2568 orig_cpu = cpu;
2570 #ifdef CONFIG_SMP
2571 if (unlikely(task_running(rq, p)))
2572 goto out_activate;
2575 * In order to handle concurrent wakeups and release the rq->lock
2576 * we put the task in TASK_WAKING state.
2578 * First fix up the nr_uninterruptible count:
2580 if (task_contributes_to_load(p)) {
2581 if (likely(cpu_online(orig_cpu)))
2582 rq->nr_uninterruptible--;
2583 else
2584 this_rq()->nr_uninterruptible--;
2586 p->state = TASK_WAKING;
2588 if (p->sched_class->task_waking) {
2589 p->sched_class->task_waking(rq, p);
2590 en_flags |= ENQUEUE_WAKING;
2593 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2594 if (cpu != orig_cpu)
2595 set_task_cpu(p, cpu);
2596 __task_rq_unlock(rq);
2598 rq = cpu_rq(cpu);
2599 raw_spin_lock(&rq->lock);
2602 * We migrated the task without holding either rq->lock, however
2603 * since the task is not on the task list itself, nobody else
2604 * will try and migrate the task, hence the rq should match the
2605 * cpu we just moved it to.
2607 WARN_ON(task_cpu(p) != cpu);
2608 WARN_ON(p->state != TASK_WAKING);
2610 #ifdef CONFIG_SCHEDSTATS
2611 schedstat_inc(rq, ttwu_count);
2612 if (cpu == this_cpu)
2613 schedstat_inc(rq, ttwu_local);
2614 else {
2615 struct sched_domain *sd;
2616 for_each_domain(this_cpu, sd) {
2617 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2618 schedstat_inc(sd, ttwu_wake_remote);
2619 break;
2623 #endif /* CONFIG_SCHEDSTATS */
2625 out_activate:
2626 #endif /* CONFIG_SMP */
2627 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2628 cpu == this_cpu, en_flags);
2629 success = 1;
2630 out_running:
2631 ttwu_post_activation(p, rq, wake_flags, success);
2632 out:
2633 task_rq_unlock(rq, &flags);
2634 put_cpu();
2636 return success;
2640 * try_to_wake_up_local - try to wake up a local task with rq lock held
2641 * @p: the thread to be awakened
2643 * Put @p on the run-queue if it's not alredy there. The caller must
2644 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2645 * the current task. this_rq() stays locked over invocation.
2647 static void try_to_wake_up_local(struct task_struct *p)
2649 struct rq *rq = task_rq(p);
2650 bool success = false;
2652 BUG_ON(rq != this_rq());
2653 BUG_ON(p == current);
2654 lockdep_assert_held(&rq->lock);
2656 if (!(p->state & TASK_NORMAL))
2657 return;
2659 if (!p->se.on_rq) {
2660 if (likely(!task_running(rq, p))) {
2661 schedstat_inc(rq, ttwu_count);
2662 schedstat_inc(rq, ttwu_local);
2664 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2665 success = true;
2667 ttwu_post_activation(p, rq, 0, success);
2671 * wake_up_process - Wake up a specific process
2672 * @p: The process to be woken up.
2674 * Attempt to wake up the nominated process and move it to the set of runnable
2675 * processes. Returns 1 if the process was woken up, 0 if it was already
2676 * running.
2678 * It may be assumed that this function implies a write memory barrier before
2679 * changing the task state if and only if any tasks are woken up.
2681 int wake_up_process(struct task_struct *p)
2683 return try_to_wake_up(p, TASK_ALL, 0);
2685 EXPORT_SYMBOL(wake_up_process);
2687 int wake_up_state(struct task_struct *p, unsigned int state)
2689 return try_to_wake_up(p, state, 0);
2693 * Perform scheduler related setup for a newly forked process p.
2694 * p is forked by current.
2696 * __sched_fork() is basic setup used by init_idle() too:
2698 static void __sched_fork(struct task_struct *p)
2700 p->se.exec_start = 0;
2701 p->se.sum_exec_runtime = 0;
2702 p->se.prev_sum_exec_runtime = 0;
2703 p->se.nr_migrations = 0;
2705 #ifdef CONFIG_SCHEDSTATS
2706 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2707 #endif
2709 INIT_LIST_HEAD(&p->rt.run_list);
2710 p->se.on_rq = 0;
2711 INIT_LIST_HEAD(&p->se.group_node);
2713 #ifdef CONFIG_PREEMPT_NOTIFIERS
2714 INIT_HLIST_HEAD(&p->preempt_notifiers);
2715 #endif
2719 * fork()/clone()-time setup:
2721 void sched_fork(struct task_struct *p, int clone_flags)
2723 int cpu = get_cpu();
2725 __sched_fork(p);
2727 * We mark the process as running here. This guarantees that
2728 * nobody will actually run it, and a signal or other external
2729 * event cannot wake it up and insert it on the runqueue either.
2731 p->state = TASK_RUNNING;
2734 * Revert to default priority/policy on fork if requested.
2736 if (unlikely(p->sched_reset_on_fork)) {
2737 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2738 p->policy = SCHED_NORMAL;
2739 p->normal_prio = p->static_prio;
2742 if (PRIO_TO_NICE(p->static_prio) < 0) {
2743 p->static_prio = NICE_TO_PRIO(0);
2744 p->normal_prio = p->static_prio;
2745 set_load_weight(p);
2749 * We don't need the reset flag anymore after the fork. It has
2750 * fulfilled its duty:
2752 p->sched_reset_on_fork = 0;
2756 * Make sure we do not leak PI boosting priority to the child.
2758 p->prio = current->normal_prio;
2760 if (!rt_prio(p->prio))
2761 p->sched_class = &fair_sched_class;
2763 if (p->sched_class->task_fork)
2764 p->sched_class->task_fork(p);
2767 * The child is not yet in the pid-hash so no cgroup attach races,
2768 * and the cgroup is pinned to this child due to cgroup_fork()
2769 * is ran before sched_fork().
2771 * Silence PROVE_RCU.
2773 rcu_read_lock();
2774 set_task_cpu(p, cpu);
2775 rcu_read_unlock();
2777 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2778 if (likely(sched_info_on()))
2779 memset(&p->sched_info, 0, sizeof(p->sched_info));
2780 #endif
2781 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2782 p->oncpu = 0;
2783 #endif
2784 #ifdef CONFIG_PREEMPT
2785 /* Want to start with kernel preemption disabled. */
2786 task_thread_info(p)->preempt_count = 1;
2787 #endif
2788 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2790 put_cpu();
2794 * wake_up_new_task - wake up a newly created task for the first time.
2796 * This function will do some initial scheduler statistics housekeeping
2797 * that must be done for every newly created context, then puts the task
2798 * on the runqueue and wakes it.
2800 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2802 unsigned long flags;
2803 struct rq *rq;
2804 int cpu __maybe_unused = get_cpu();
2806 #ifdef CONFIG_SMP
2807 rq = task_rq_lock(p, &flags);
2808 p->state = TASK_WAKING;
2811 * Fork balancing, do it here and not earlier because:
2812 * - cpus_allowed can change in the fork path
2813 * - any previously selected cpu might disappear through hotplug
2815 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2816 * without people poking at ->cpus_allowed.
2818 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2819 set_task_cpu(p, cpu);
2821 p->state = TASK_RUNNING;
2822 task_rq_unlock(rq, &flags);
2823 #endif
2825 rq = task_rq_lock(p, &flags);
2826 activate_task(rq, p, 0);
2827 trace_sched_wakeup_new(p, 1);
2828 check_preempt_curr(rq, p, WF_FORK);
2829 #ifdef CONFIG_SMP
2830 if (p->sched_class->task_woken)
2831 p->sched_class->task_woken(rq, p);
2832 #endif
2833 task_rq_unlock(rq, &flags);
2834 put_cpu();
2837 #ifdef CONFIG_PREEMPT_NOTIFIERS
2840 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2841 * @notifier: notifier struct to register
2843 void preempt_notifier_register(struct preempt_notifier *notifier)
2845 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2847 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2850 * preempt_notifier_unregister - no longer interested in preemption notifications
2851 * @notifier: notifier struct to unregister
2853 * This is safe to call from within a preemption notifier.
2855 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2857 hlist_del(&notifier->link);
2859 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2861 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2863 struct preempt_notifier *notifier;
2864 struct hlist_node *node;
2866 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2867 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2870 static void
2871 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2872 struct task_struct *next)
2874 struct preempt_notifier *notifier;
2875 struct hlist_node *node;
2877 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2878 notifier->ops->sched_out(notifier, next);
2881 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2883 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2887 static void
2888 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2889 struct task_struct *next)
2893 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2896 * prepare_task_switch - prepare to switch tasks
2897 * @rq: the runqueue preparing to switch
2898 * @prev: the current task that is being switched out
2899 * @next: the task we are going to switch to.
2901 * This is called with the rq lock held and interrupts off. It must
2902 * be paired with a subsequent finish_task_switch after the context
2903 * switch.
2905 * prepare_task_switch sets up locking and calls architecture specific
2906 * hooks.
2908 static inline void
2909 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2910 struct task_struct *next)
2912 fire_sched_out_preempt_notifiers(prev, next);
2913 prepare_lock_switch(rq, next);
2914 prepare_arch_switch(next);
2918 * finish_task_switch - clean up after a task-switch
2919 * @rq: runqueue associated with task-switch
2920 * @prev: the thread we just switched away from.
2922 * finish_task_switch must be called after the context switch, paired
2923 * with a prepare_task_switch call before the context switch.
2924 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2925 * and do any other architecture-specific cleanup actions.
2927 * Note that we may have delayed dropping an mm in context_switch(). If
2928 * so, we finish that here outside of the runqueue lock. (Doing it
2929 * with the lock held can cause deadlocks; see schedule() for
2930 * details.)
2932 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2933 __releases(rq->lock)
2935 struct mm_struct *mm = rq->prev_mm;
2936 long prev_state;
2938 rq->prev_mm = NULL;
2941 * A task struct has one reference for the use as "current".
2942 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2943 * schedule one last time. The schedule call will never return, and
2944 * the scheduled task must drop that reference.
2945 * The test for TASK_DEAD must occur while the runqueue locks are
2946 * still held, otherwise prev could be scheduled on another cpu, die
2947 * there before we look at prev->state, and then the reference would
2948 * be dropped twice.
2949 * Manfred Spraul <manfred@colorfullife.com>
2951 prev_state = prev->state;
2952 finish_arch_switch(prev);
2953 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2954 local_irq_disable();
2955 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2956 perf_event_task_sched_in(current);
2957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2958 local_irq_enable();
2959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2960 finish_lock_switch(rq, prev);
2962 fire_sched_in_preempt_notifiers(current);
2963 if (mm)
2964 mmdrop(mm);
2965 if (unlikely(prev_state == TASK_DEAD)) {
2967 * Remove function-return probe instances associated with this
2968 * task and put them back on the free list.
2970 kprobe_flush_task(prev);
2971 put_task_struct(prev);
2975 #ifdef CONFIG_SMP
2977 /* assumes rq->lock is held */
2978 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2980 if (prev->sched_class->pre_schedule)
2981 prev->sched_class->pre_schedule(rq, prev);
2984 /* rq->lock is NOT held, but preemption is disabled */
2985 static inline void post_schedule(struct rq *rq)
2987 if (rq->post_schedule) {
2988 unsigned long flags;
2990 raw_spin_lock_irqsave(&rq->lock, flags);
2991 if (rq->curr->sched_class->post_schedule)
2992 rq->curr->sched_class->post_schedule(rq);
2993 raw_spin_unlock_irqrestore(&rq->lock, flags);
2995 rq->post_schedule = 0;
2999 #else
3001 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3005 static inline void post_schedule(struct rq *rq)
3009 #endif
3012 * schedule_tail - first thing a freshly forked thread must call.
3013 * @prev: the thread we just switched away from.
3015 asmlinkage void schedule_tail(struct task_struct *prev)
3016 __releases(rq->lock)
3018 struct rq *rq = this_rq();
3020 finish_task_switch(rq, prev);
3023 * FIXME: do we need to worry about rq being invalidated by the
3024 * task_switch?
3026 post_schedule(rq);
3028 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3029 /* In this case, finish_task_switch does not reenable preemption */
3030 preempt_enable();
3031 #endif
3032 if (current->set_child_tid)
3033 put_user(task_pid_vnr(current), current->set_child_tid);
3037 * context_switch - switch to the new MM and the new
3038 * thread's register state.
3040 static inline void
3041 context_switch(struct rq *rq, struct task_struct *prev,
3042 struct task_struct *next)
3044 struct mm_struct *mm, *oldmm;
3046 prepare_task_switch(rq, prev, next);
3047 trace_sched_switch(prev, next);
3048 mm = next->mm;
3049 oldmm = prev->active_mm;
3051 * For paravirt, this is coupled with an exit in switch_to to
3052 * combine the page table reload and the switch backend into
3053 * one hypercall.
3055 arch_start_context_switch(prev);
3057 if (!mm) {
3058 next->active_mm = oldmm;
3059 atomic_inc(&oldmm->mm_count);
3060 enter_lazy_tlb(oldmm, next);
3061 } else
3062 switch_mm(oldmm, mm, next);
3064 if (!prev->mm) {
3065 prev->active_mm = NULL;
3066 rq->prev_mm = oldmm;
3069 * Since the runqueue lock will be released by the next
3070 * task (which is an invalid locking op but in the case
3071 * of the scheduler it's an obvious special-case), so we
3072 * do an early lockdep release here:
3074 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3075 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3076 #endif
3078 /* Here we just switch the register state and the stack. */
3079 switch_to(prev, next, prev);
3081 barrier();
3083 * this_rq must be evaluated again because prev may have moved
3084 * CPUs since it called schedule(), thus the 'rq' on its stack
3085 * frame will be invalid.
3087 finish_task_switch(this_rq(), prev);
3091 * nr_running, nr_uninterruptible and nr_context_switches:
3093 * externally visible scheduler statistics: current number of runnable
3094 * threads, current number of uninterruptible-sleeping threads, total
3095 * number of context switches performed since bootup.
3097 unsigned long nr_running(void)
3099 unsigned long i, sum = 0;
3101 for_each_online_cpu(i)
3102 sum += cpu_rq(i)->nr_running;
3104 return sum;
3107 unsigned long nr_uninterruptible(void)
3109 unsigned long i, sum = 0;
3111 for_each_possible_cpu(i)
3112 sum += cpu_rq(i)->nr_uninterruptible;
3115 * Since we read the counters lockless, it might be slightly
3116 * inaccurate. Do not allow it to go below zero though:
3118 if (unlikely((long)sum < 0))
3119 sum = 0;
3121 return sum;
3124 unsigned long long nr_context_switches(void)
3126 int i;
3127 unsigned long long sum = 0;
3129 for_each_possible_cpu(i)
3130 sum += cpu_rq(i)->nr_switches;
3132 return sum;
3135 unsigned long nr_iowait(void)
3137 unsigned long i, sum = 0;
3139 for_each_possible_cpu(i)
3140 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3142 return sum;
3145 unsigned long nr_iowait_cpu(int cpu)
3147 struct rq *this = cpu_rq(cpu);
3148 return atomic_read(&this->nr_iowait);
3151 unsigned long this_cpu_load(void)
3153 struct rq *this = this_rq();
3154 return this->cpu_load[0];
3158 /* Variables and functions for calc_load */
3159 static atomic_long_t calc_load_tasks;
3160 static unsigned long calc_load_update;
3161 unsigned long avenrun[3];
3162 EXPORT_SYMBOL(avenrun);
3164 static long calc_load_fold_active(struct rq *this_rq)
3166 long nr_active, delta = 0;
3168 nr_active = this_rq->nr_running;
3169 nr_active += (long) this_rq->nr_uninterruptible;
3171 if (nr_active != this_rq->calc_load_active) {
3172 delta = nr_active - this_rq->calc_load_active;
3173 this_rq->calc_load_active = nr_active;
3176 return delta;
3179 static unsigned long
3180 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3182 load *= exp;
3183 load += active * (FIXED_1 - exp);
3184 load += 1UL << (FSHIFT - 1);
3185 return load >> FSHIFT;
3188 #ifdef CONFIG_NO_HZ
3190 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3192 * When making the ILB scale, we should try to pull this in as well.
3194 static atomic_long_t calc_load_tasks_idle;
3196 static void calc_load_account_idle(struct rq *this_rq)
3198 long delta;
3200 delta = calc_load_fold_active(this_rq);
3201 if (delta)
3202 atomic_long_add(delta, &calc_load_tasks_idle);
3205 static long calc_load_fold_idle(void)
3207 long delta = 0;
3210 * Its got a race, we don't care...
3212 if (atomic_long_read(&calc_load_tasks_idle))
3213 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3215 return delta;
3219 * fixed_power_int - compute: x^n, in O(log n) time
3221 * @x: base of the power
3222 * @frac_bits: fractional bits of @x
3223 * @n: power to raise @x to.
3225 * By exploiting the relation between the definition of the natural power
3226 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3227 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3228 * (where: n_i \elem {0, 1}, the binary vector representing n),
3229 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3230 * of course trivially computable in O(log_2 n), the length of our binary
3231 * vector.
3233 static unsigned long
3234 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3236 unsigned long result = 1UL << frac_bits;
3238 if (n) for (;;) {
3239 if (n & 1) {
3240 result *= x;
3241 result += 1UL << (frac_bits - 1);
3242 result >>= frac_bits;
3244 n >>= 1;
3245 if (!n)
3246 break;
3247 x *= x;
3248 x += 1UL << (frac_bits - 1);
3249 x >>= frac_bits;
3252 return result;
3256 * a1 = a0 * e + a * (1 - e)
3258 * a2 = a1 * e + a * (1 - e)
3259 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3260 * = a0 * e^2 + a * (1 - e) * (1 + e)
3262 * a3 = a2 * e + a * (1 - e)
3263 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3264 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3266 * ...
3268 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3269 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3270 * = a0 * e^n + a * (1 - e^n)
3272 * [1] application of the geometric series:
3274 * n 1 - x^(n+1)
3275 * S_n := \Sum x^i = -------------
3276 * i=0 1 - x
3278 static unsigned long
3279 calc_load_n(unsigned long load, unsigned long exp,
3280 unsigned long active, unsigned int n)
3283 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3287 * NO_HZ can leave us missing all per-cpu ticks calling
3288 * calc_load_account_active(), but since an idle CPU folds its delta into
3289 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3290 * in the pending idle delta if our idle period crossed a load cycle boundary.
3292 * Once we've updated the global active value, we need to apply the exponential
3293 * weights adjusted to the number of cycles missed.
3295 static void calc_global_nohz(unsigned long ticks)
3297 long delta, active, n;
3299 if (time_before(jiffies, calc_load_update))
3300 return;
3303 * If we crossed a calc_load_update boundary, make sure to fold
3304 * any pending idle changes, the respective CPUs might have
3305 * missed the tick driven calc_load_account_active() update
3306 * due to NO_HZ.
3308 delta = calc_load_fold_idle();
3309 if (delta)
3310 atomic_long_add(delta, &calc_load_tasks);
3313 * If we were idle for multiple load cycles, apply them.
3315 if (ticks >= LOAD_FREQ) {
3316 n = ticks / LOAD_FREQ;
3318 active = atomic_long_read(&calc_load_tasks);
3319 active = active > 0 ? active * FIXED_1 : 0;
3321 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3322 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3323 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3325 calc_load_update += n * LOAD_FREQ;
3329 * Its possible the remainder of the above division also crosses
3330 * a LOAD_FREQ period, the regular check in calc_global_load()
3331 * which comes after this will take care of that.
3333 * Consider us being 11 ticks before a cycle completion, and us
3334 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3335 * age us 4 cycles, and the test in calc_global_load() will
3336 * pick up the final one.
3339 #else
3340 static void calc_load_account_idle(struct rq *this_rq)
3344 static inline long calc_load_fold_idle(void)
3346 return 0;
3349 static void calc_global_nohz(unsigned long ticks)
3352 #endif
3355 * get_avenrun - get the load average array
3356 * @loads: pointer to dest load array
3357 * @offset: offset to add
3358 * @shift: shift count to shift the result left
3360 * These values are estimates at best, so no need for locking.
3362 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3364 loads[0] = (avenrun[0] + offset) << shift;
3365 loads[1] = (avenrun[1] + offset) << shift;
3366 loads[2] = (avenrun[2] + offset) << shift;
3370 * calc_load - update the avenrun load estimates 10 ticks after the
3371 * CPUs have updated calc_load_tasks.
3373 void calc_global_load(unsigned long ticks)
3375 long active;
3377 calc_global_nohz(ticks);
3379 if (time_before(jiffies, calc_load_update + 10))
3380 return;
3382 active = atomic_long_read(&calc_load_tasks);
3383 active = active > 0 ? active * FIXED_1 : 0;
3385 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3386 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3387 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3389 calc_load_update += LOAD_FREQ;
3393 * Called from update_cpu_load() to periodically update this CPU's
3394 * active count.
3396 static void calc_load_account_active(struct rq *this_rq)
3398 long delta;
3400 if (time_before(jiffies, this_rq->calc_load_update))
3401 return;
3403 delta = calc_load_fold_active(this_rq);
3404 delta += calc_load_fold_idle();
3405 if (delta)
3406 atomic_long_add(delta, &calc_load_tasks);
3408 this_rq->calc_load_update += LOAD_FREQ;
3412 * The exact cpuload at various idx values, calculated at every tick would be
3413 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3415 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3416 * on nth tick when cpu may be busy, then we have:
3417 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3418 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3420 * decay_load_missed() below does efficient calculation of
3421 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3422 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3424 * The calculation is approximated on a 128 point scale.
3425 * degrade_zero_ticks is the number of ticks after which load at any
3426 * particular idx is approximated to be zero.
3427 * degrade_factor is a precomputed table, a row for each load idx.
3428 * Each column corresponds to degradation factor for a power of two ticks,
3429 * based on 128 point scale.
3430 * Example:
3431 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3432 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3434 * With this power of 2 load factors, we can degrade the load n times
3435 * by looking at 1 bits in n and doing as many mult/shift instead of
3436 * n mult/shifts needed by the exact degradation.
3438 #define DEGRADE_SHIFT 7
3439 static const unsigned char
3440 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3441 static const unsigned char
3442 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3443 {0, 0, 0, 0, 0, 0, 0, 0},
3444 {64, 32, 8, 0, 0, 0, 0, 0},
3445 {96, 72, 40, 12, 1, 0, 0},
3446 {112, 98, 75, 43, 15, 1, 0},
3447 {120, 112, 98, 76, 45, 16, 2} };
3450 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3451 * would be when CPU is idle and so we just decay the old load without
3452 * adding any new load.
3454 static unsigned long
3455 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3457 int j = 0;
3459 if (!missed_updates)
3460 return load;
3462 if (missed_updates >= degrade_zero_ticks[idx])
3463 return 0;
3465 if (idx == 1)
3466 return load >> missed_updates;
3468 while (missed_updates) {
3469 if (missed_updates % 2)
3470 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3472 missed_updates >>= 1;
3473 j++;
3475 return load;
3479 * Update rq->cpu_load[] statistics. This function is usually called every
3480 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3481 * every tick. We fix it up based on jiffies.
3483 static void update_cpu_load(struct rq *this_rq)
3485 unsigned long this_load = this_rq->load.weight;
3486 unsigned long curr_jiffies = jiffies;
3487 unsigned long pending_updates;
3488 int i, scale;
3490 this_rq->nr_load_updates++;
3492 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3493 if (curr_jiffies == this_rq->last_load_update_tick)
3494 return;
3496 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3497 this_rq->last_load_update_tick = curr_jiffies;
3499 /* Update our load: */
3500 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3501 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3502 unsigned long old_load, new_load;
3504 /* scale is effectively 1 << i now, and >> i divides by scale */
3506 old_load = this_rq->cpu_load[i];
3507 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3508 new_load = this_load;
3510 * Round up the averaging division if load is increasing. This
3511 * prevents us from getting stuck on 9 if the load is 10, for
3512 * example.
3514 if (new_load > old_load)
3515 new_load += scale - 1;
3517 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3520 sched_avg_update(this_rq);
3523 static void update_cpu_load_active(struct rq *this_rq)
3525 update_cpu_load(this_rq);
3527 calc_load_account_active(this_rq);
3530 #ifdef CONFIG_SMP
3533 * sched_exec - execve() is a valuable balancing opportunity, because at
3534 * this point the task has the smallest effective memory and cache footprint.
3536 void sched_exec(void)
3538 struct task_struct *p = current;
3539 unsigned long flags;
3540 struct rq *rq;
3541 int dest_cpu;
3543 rq = task_rq_lock(p, &flags);
3544 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3545 if (dest_cpu == smp_processor_id())
3546 goto unlock;
3549 * select_task_rq() can race against ->cpus_allowed
3551 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3552 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3553 struct migration_arg arg = { p, dest_cpu };
3555 task_rq_unlock(rq, &flags);
3556 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3557 return;
3559 unlock:
3560 task_rq_unlock(rq, &flags);
3563 #endif
3565 DEFINE_PER_CPU(struct kernel_stat, kstat);
3567 EXPORT_PER_CPU_SYMBOL(kstat);
3570 * Return any ns on the sched_clock that have not yet been accounted in
3571 * @p in case that task is currently running.
3573 * Called with task_rq_lock() held on @rq.
3575 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3577 u64 ns = 0;
3579 if (task_current(rq, p)) {
3580 update_rq_clock(rq);
3581 ns = rq->clock_task - p->se.exec_start;
3582 if ((s64)ns < 0)
3583 ns = 0;
3586 return ns;
3589 unsigned long long task_delta_exec(struct task_struct *p)
3591 unsigned long flags;
3592 struct rq *rq;
3593 u64 ns = 0;
3595 rq = task_rq_lock(p, &flags);
3596 ns = do_task_delta_exec(p, rq);
3597 task_rq_unlock(rq, &flags);
3599 return ns;
3603 * Return accounted runtime for the task.
3604 * In case the task is currently running, return the runtime plus current's
3605 * pending runtime that have not been accounted yet.
3607 unsigned long long task_sched_runtime(struct task_struct *p)
3609 unsigned long flags;
3610 struct rq *rq;
3611 u64 ns = 0;
3613 rq = task_rq_lock(p, &flags);
3614 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3615 task_rq_unlock(rq, &flags);
3617 return ns;
3621 * Return sum_exec_runtime for the thread group.
3622 * In case the task is currently running, return the sum plus current's
3623 * pending runtime that have not been accounted yet.
3625 * Note that the thread group might have other running tasks as well,
3626 * so the return value not includes other pending runtime that other
3627 * running tasks might have.
3629 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3631 struct task_cputime totals;
3632 unsigned long flags;
3633 struct rq *rq;
3634 u64 ns;
3636 rq = task_rq_lock(p, &flags);
3637 thread_group_cputime(p, &totals);
3638 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3639 task_rq_unlock(rq, &flags);
3641 return ns;
3645 * Account user cpu time to a process.
3646 * @p: the process that the cpu time gets accounted to
3647 * @cputime: the cpu time spent in user space since the last update
3648 * @cputime_scaled: cputime scaled by cpu frequency
3650 void account_user_time(struct task_struct *p, cputime_t cputime,
3651 cputime_t cputime_scaled)
3653 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3654 cputime64_t tmp;
3656 /* Add user time to process. */
3657 p->utime = cputime_add(p->utime, cputime);
3658 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3659 account_group_user_time(p, cputime);
3661 /* Add user time to cpustat. */
3662 tmp = cputime_to_cputime64(cputime);
3663 if (TASK_NICE(p) > 0)
3664 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3665 else
3666 cpustat->user = cputime64_add(cpustat->user, tmp);
3668 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3669 /* Account for user time used */
3670 acct_update_integrals(p);
3674 * Account guest cpu time to a process.
3675 * @p: the process that the cpu time gets accounted to
3676 * @cputime: the cpu time spent in virtual machine since the last update
3677 * @cputime_scaled: cputime scaled by cpu frequency
3679 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3680 cputime_t cputime_scaled)
3682 cputime64_t tmp;
3683 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3685 tmp = cputime_to_cputime64(cputime);
3687 /* Add guest time to process. */
3688 p->utime = cputime_add(p->utime, cputime);
3689 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3690 account_group_user_time(p, cputime);
3691 p->gtime = cputime_add(p->gtime, cputime);
3693 /* Add guest time to cpustat. */
3694 if (TASK_NICE(p) > 0) {
3695 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3696 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3697 } else {
3698 cpustat->user = cputime64_add(cpustat->user, tmp);
3699 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3704 * Account system cpu time to a process.
3705 * @p: the process that the cpu time gets accounted to
3706 * @hardirq_offset: the offset to subtract from hardirq_count()
3707 * @cputime: the cpu time spent in kernel space since the last update
3708 * @cputime_scaled: cputime scaled by cpu frequency
3710 void account_system_time(struct task_struct *p, int hardirq_offset,
3711 cputime_t cputime, cputime_t cputime_scaled)
3713 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3714 cputime64_t tmp;
3716 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3717 account_guest_time(p, cputime, cputime_scaled);
3718 return;
3721 /* Add system time to process. */
3722 p->stime = cputime_add(p->stime, cputime);
3723 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3724 account_group_system_time(p, cputime);
3726 /* Add system time to cpustat. */
3727 tmp = cputime_to_cputime64(cputime);
3728 if (hardirq_count() - hardirq_offset)
3729 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3730 else if (in_serving_softirq())
3731 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3732 else
3733 cpustat->system = cputime64_add(cpustat->system, tmp);
3735 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3737 /* Account for system time used */
3738 acct_update_integrals(p);
3742 * Account for involuntary wait time.
3743 * @steal: the cpu time spent in involuntary wait
3745 void account_steal_time(cputime_t cputime)
3747 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3748 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3750 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3754 * Account for idle time.
3755 * @cputime: the cpu time spent in idle wait
3757 void account_idle_time(cputime_t cputime)
3759 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3760 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3761 struct rq *rq = this_rq();
3763 if (atomic_read(&rq->nr_iowait) > 0)
3764 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3765 else
3766 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3769 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3772 * Account a single tick of cpu time.
3773 * @p: the process that the cpu time gets accounted to
3774 * @user_tick: indicates if the tick is a user or a system tick
3776 void account_process_tick(struct task_struct *p, int user_tick)
3778 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3779 struct rq *rq = this_rq();
3781 if (user_tick)
3782 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3783 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3784 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3785 one_jiffy_scaled);
3786 else
3787 account_idle_time(cputime_one_jiffy);
3791 * Account multiple ticks of steal time.
3792 * @p: the process from which the cpu time has been stolen
3793 * @ticks: number of stolen ticks
3795 void account_steal_ticks(unsigned long ticks)
3797 account_steal_time(jiffies_to_cputime(ticks));
3801 * Account multiple ticks of idle time.
3802 * @ticks: number of stolen ticks
3804 void account_idle_ticks(unsigned long ticks)
3806 account_idle_time(jiffies_to_cputime(ticks));
3809 #endif
3812 * Use precise platform statistics if available:
3814 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3815 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3817 *ut = p->utime;
3818 *st = p->stime;
3821 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3823 struct task_cputime cputime;
3825 thread_group_cputime(p, &cputime);
3827 *ut = cputime.utime;
3828 *st = cputime.stime;
3830 #else
3832 #ifndef nsecs_to_cputime
3833 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3834 #endif
3836 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3838 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3841 * Use CFS's precise accounting:
3843 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3845 if (total) {
3846 u64 temp = rtime;
3848 temp *= utime;
3849 do_div(temp, total);
3850 utime = (cputime_t)temp;
3851 } else
3852 utime = rtime;
3855 * Compare with previous values, to keep monotonicity:
3857 p->prev_utime = max(p->prev_utime, utime);
3858 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3860 *ut = p->prev_utime;
3861 *st = p->prev_stime;
3865 * Must be called with siglock held.
3867 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3869 struct signal_struct *sig = p->signal;
3870 struct task_cputime cputime;
3871 cputime_t rtime, utime, total;
3873 thread_group_cputime(p, &cputime);
3875 total = cputime_add(cputime.utime, cputime.stime);
3876 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3878 if (total) {
3879 u64 temp = rtime;
3881 temp *= cputime.utime;
3882 do_div(temp, total);
3883 utime = (cputime_t)temp;
3884 } else
3885 utime = rtime;
3887 sig->prev_utime = max(sig->prev_utime, utime);
3888 sig->prev_stime = max(sig->prev_stime,
3889 cputime_sub(rtime, sig->prev_utime));
3891 *ut = sig->prev_utime;
3892 *st = sig->prev_stime;
3894 #endif
3897 * This function gets called by the timer code, with HZ frequency.
3898 * We call it with interrupts disabled.
3900 * It also gets called by the fork code, when changing the parent's
3901 * timeslices.
3903 void scheduler_tick(void)
3905 int cpu = smp_processor_id();
3906 struct rq *rq = cpu_rq(cpu);
3907 struct task_struct *curr = rq->curr;
3909 sched_clock_tick();
3911 raw_spin_lock(&rq->lock);
3912 update_rq_clock(rq);
3913 update_cpu_load_active(rq);
3914 curr->sched_class->task_tick(rq, curr, 0);
3915 raw_spin_unlock(&rq->lock);
3917 perf_event_task_tick();
3919 #ifdef CONFIG_SMP
3920 rq->idle_at_tick = idle_cpu(cpu);
3921 trigger_load_balance(rq, cpu);
3922 #endif
3925 notrace unsigned long get_parent_ip(unsigned long addr)
3927 if (in_lock_functions(addr)) {
3928 addr = CALLER_ADDR2;
3929 if (in_lock_functions(addr))
3930 addr = CALLER_ADDR3;
3932 return addr;
3935 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3936 defined(CONFIG_PREEMPT_TRACER))
3938 void __kprobes add_preempt_count(int val)
3940 #ifdef CONFIG_DEBUG_PREEMPT
3942 * Underflow?
3944 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3945 return;
3946 #endif
3947 preempt_count() += val;
3948 #ifdef CONFIG_DEBUG_PREEMPT
3950 * Spinlock count overflowing soon?
3952 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3953 PREEMPT_MASK - 10);
3954 #endif
3955 if (preempt_count() == val)
3956 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3958 EXPORT_SYMBOL(add_preempt_count);
3960 void __kprobes sub_preempt_count(int val)
3962 #ifdef CONFIG_DEBUG_PREEMPT
3964 * Underflow?
3966 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3967 return;
3969 * Is the spinlock portion underflowing?
3971 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3972 !(preempt_count() & PREEMPT_MASK)))
3973 return;
3974 #endif
3976 if (preempt_count() == val)
3977 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3978 preempt_count() -= val;
3980 EXPORT_SYMBOL(sub_preempt_count);
3982 #endif
3985 * Print scheduling while atomic bug:
3987 static noinline void __schedule_bug(struct task_struct *prev)
3989 struct pt_regs *regs = get_irq_regs();
3991 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3992 prev->comm, prev->pid, preempt_count());
3994 debug_show_held_locks(prev);
3995 print_modules();
3996 if (irqs_disabled())
3997 print_irqtrace_events(prev);
3999 if (regs)
4000 show_regs(regs);
4001 else
4002 dump_stack();
4006 * Various schedule()-time debugging checks and statistics:
4008 static inline void schedule_debug(struct task_struct *prev)
4011 * Test if we are atomic. Since do_exit() needs to call into
4012 * schedule() atomically, we ignore that path for now.
4013 * Otherwise, whine if we are scheduling when we should not be.
4015 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4016 __schedule_bug(prev);
4018 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4020 schedstat_inc(this_rq(), sched_count);
4021 #ifdef CONFIG_SCHEDSTATS
4022 if (unlikely(prev->lock_depth >= 0)) {
4023 schedstat_inc(this_rq(), bkl_count);
4024 schedstat_inc(prev, sched_info.bkl_count);
4026 #endif
4029 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4031 if (prev->se.on_rq)
4032 update_rq_clock(rq);
4033 prev->sched_class->put_prev_task(rq, prev);
4037 * Pick up the highest-prio task:
4039 static inline struct task_struct *
4040 pick_next_task(struct rq *rq)
4042 const struct sched_class *class;
4043 struct task_struct *p;
4046 * Optimization: we know that if all tasks are in
4047 * the fair class we can call that function directly:
4049 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4050 p = fair_sched_class.pick_next_task(rq);
4051 if (likely(p))
4052 return p;
4055 for_each_class(class) {
4056 p = class->pick_next_task(rq);
4057 if (p)
4058 return p;
4061 BUG(); /* the idle class will always have a runnable task */
4065 * schedule() is the main scheduler function.
4067 asmlinkage void __sched schedule(void)
4069 struct task_struct *prev, *next;
4070 unsigned long *switch_count;
4071 struct rq *rq;
4072 int cpu;
4074 need_resched:
4075 preempt_disable();
4076 cpu = smp_processor_id();
4077 rq = cpu_rq(cpu);
4078 rcu_note_context_switch(cpu);
4079 prev = rq->curr;
4081 release_kernel_lock(prev);
4082 need_resched_nonpreemptible:
4084 schedule_debug(prev);
4086 if (sched_feat(HRTICK))
4087 hrtick_clear(rq);
4089 raw_spin_lock_irq(&rq->lock);
4091 switch_count = &prev->nivcsw;
4092 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4093 if (unlikely(signal_pending_state(prev->state, prev))) {
4094 prev->state = TASK_RUNNING;
4095 } else {
4097 * If a worker is going to sleep, notify and
4098 * ask workqueue whether it wants to wake up a
4099 * task to maintain concurrency. If so, wake
4100 * up the task.
4102 if (prev->flags & PF_WQ_WORKER) {
4103 struct task_struct *to_wakeup;
4105 to_wakeup = wq_worker_sleeping(prev, cpu);
4106 if (to_wakeup)
4107 try_to_wake_up_local(to_wakeup);
4109 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4111 switch_count = &prev->nvcsw;
4114 pre_schedule(rq, prev);
4116 if (unlikely(!rq->nr_running))
4117 idle_balance(cpu, rq);
4119 put_prev_task(rq, prev);
4120 next = pick_next_task(rq);
4121 clear_tsk_need_resched(prev);
4122 rq->skip_clock_update = 0;
4124 if (likely(prev != next)) {
4125 sched_info_switch(prev, next);
4126 perf_event_task_sched_out(prev, next);
4128 rq->nr_switches++;
4129 rq->curr = next;
4130 ++*switch_count;
4132 context_switch(rq, prev, next); /* unlocks the rq */
4134 * The context switch have flipped the stack from under us
4135 * and restored the local variables which were saved when
4136 * this task called schedule() in the past. prev == current
4137 * is still correct, but it can be moved to another cpu/rq.
4139 cpu = smp_processor_id();
4140 rq = cpu_rq(cpu);
4141 } else
4142 raw_spin_unlock_irq(&rq->lock);
4144 post_schedule(rq);
4146 if (unlikely(reacquire_kernel_lock(prev)))
4147 goto need_resched_nonpreemptible;
4149 preempt_enable_no_resched();
4150 if (need_resched())
4151 goto need_resched;
4153 EXPORT_SYMBOL(schedule);
4155 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4157 * Look out! "owner" is an entirely speculative pointer
4158 * access and not reliable.
4160 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4162 unsigned int cpu;
4163 struct rq *rq;
4165 if (!sched_feat(OWNER_SPIN))
4166 return 0;
4168 #ifdef CONFIG_DEBUG_PAGEALLOC
4170 * Need to access the cpu field knowing that
4171 * DEBUG_PAGEALLOC could have unmapped it if
4172 * the mutex owner just released it and exited.
4174 if (probe_kernel_address(&owner->cpu, cpu))
4175 return 0;
4176 #else
4177 cpu = owner->cpu;
4178 #endif
4181 * Even if the access succeeded (likely case),
4182 * the cpu field may no longer be valid.
4184 if (cpu >= nr_cpumask_bits)
4185 return 0;
4188 * We need to validate that we can do a
4189 * get_cpu() and that we have the percpu area.
4191 if (!cpu_online(cpu))
4192 return 0;
4194 rq = cpu_rq(cpu);
4196 for (;;) {
4198 * Owner changed, break to re-assess state.
4200 if (lock->owner != owner) {
4202 * If the lock has switched to a different owner,
4203 * we likely have heavy contention. Return 0 to quit
4204 * optimistic spinning and not contend further:
4206 if (lock->owner)
4207 return 0;
4208 break;
4212 * Is that owner really running on that cpu?
4214 if (task_thread_info(rq->curr) != owner || need_resched())
4215 return 0;
4217 cpu_relax();
4220 return 1;
4222 #endif
4224 #ifdef CONFIG_PREEMPT
4226 * this is the entry point to schedule() from in-kernel preemption
4227 * off of preempt_enable. Kernel preemptions off return from interrupt
4228 * occur there and call schedule directly.
4230 asmlinkage void __sched notrace preempt_schedule(void)
4232 struct thread_info *ti = current_thread_info();
4235 * If there is a non-zero preempt_count or interrupts are disabled,
4236 * we do not want to preempt the current task. Just return..
4238 if (likely(ti->preempt_count || irqs_disabled()))
4239 return;
4241 do {
4242 add_preempt_count_notrace(PREEMPT_ACTIVE);
4243 schedule();
4244 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4247 * Check again in case we missed a preemption opportunity
4248 * between schedule and now.
4250 barrier();
4251 } while (need_resched());
4253 EXPORT_SYMBOL(preempt_schedule);
4256 * this is the entry point to schedule() from kernel preemption
4257 * off of irq context.
4258 * Note, that this is called and return with irqs disabled. This will
4259 * protect us against recursive calling from irq.
4261 asmlinkage void __sched preempt_schedule_irq(void)
4263 struct thread_info *ti = current_thread_info();
4265 /* Catch callers which need to be fixed */
4266 BUG_ON(ti->preempt_count || !irqs_disabled());
4268 do {
4269 add_preempt_count(PREEMPT_ACTIVE);
4270 local_irq_enable();
4271 schedule();
4272 local_irq_disable();
4273 sub_preempt_count(PREEMPT_ACTIVE);
4276 * Check again in case we missed a preemption opportunity
4277 * between schedule and now.
4279 barrier();
4280 } while (need_resched());
4283 #endif /* CONFIG_PREEMPT */
4285 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4286 void *key)
4288 return try_to_wake_up(curr->private, mode, wake_flags);
4290 EXPORT_SYMBOL(default_wake_function);
4293 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4294 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4295 * number) then we wake all the non-exclusive tasks and one exclusive task.
4297 * There are circumstances in which we can try to wake a task which has already
4298 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4299 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4301 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4302 int nr_exclusive, int wake_flags, void *key)
4304 wait_queue_t *curr, *next;
4306 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4307 unsigned flags = curr->flags;
4309 if (curr->func(curr, mode, wake_flags, key) &&
4310 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4311 break;
4316 * __wake_up - wake up threads blocked on a waitqueue.
4317 * @q: the waitqueue
4318 * @mode: which threads
4319 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4320 * @key: is directly passed to the wakeup function
4322 * It may be assumed that this function implies a write memory barrier before
4323 * changing the task state if and only if any tasks are woken up.
4325 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4326 int nr_exclusive, void *key)
4328 unsigned long flags;
4330 spin_lock_irqsave(&q->lock, flags);
4331 __wake_up_common(q, mode, nr_exclusive, 0, key);
4332 spin_unlock_irqrestore(&q->lock, flags);
4334 EXPORT_SYMBOL(__wake_up);
4337 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4339 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4341 __wake_up_common(q, mode, 1, 0, NULL);
4343 EXPORT_SYMBOL_GPL(__wake_up_locked);
4345 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4347 __wake_up_common(q, mode, 1, 0, key);
4351 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4352 * @q: the waitqueue
4353 * @mode: which threads
4354 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4355 * @key: opaque value to be passed to wakeup targets
4357 * The sync wakeup differs that the waker knows that it will schedule
4358 * away soon, so while the target thread will be woken up, it will not
4359 * be migrated to another CPU - ie. the two threads are 'synchronized'
4360 * with each other. This can prevent needless bouncing between CPUs.
4362 * On UP it can prevent extra preemption.
4364 * It may be assumed that this function implies a write memory barrier before
4365 * changing the task state if and only if any tasks are woken up.
4367 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4368 int nr_exclusive, void *key)
4370 unsigned long flags;
4371 int wake_flags = WF_SYNC;
4373 if (unlikely(!q))
4374 return;
4376 if (unlikely(!nr_exclusive))
4377 wake_flags = 0;
4379 spin_lock_irqsave(&q->lock, flags);
4380 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4381 spin_unlock_irqrestore(&q->lock, flags);
4383 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4386 * __wake_up_sync - see __wake_up_sync_key()
4388 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4390 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4392 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4395 * complete: - signals a single thread waiting on this completion
4396 * @x: holds the state of this particular completion
4398 * This will wake up a single thread waiting on this completion. Threads will be
4399 * awakened in the same order in which they were queued.
4401 * See also complete_all(), wait_for_completion() and related routines.
4403 * It may be assumed that this function implies a write memory barrier before
4404 * changing the task state if and only if any tasks are woken up.
4406 void complete(struct completion *x)
4408 unsigned long flags;
4410 spin_lock_irqsave(&x->wait.lock, flags);
4411 x->done++;
4412 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4413 spin_unlock_irqrestore(&x->wait.lock, flags);
4415 EXPORT_SYMBOL(complete);
4418 * complete_all: - signals all threads waiting on this completion
4419 * @x: holds the state of this particular completion
4421 * This will wake up all threads waiting on this particular completion event.
4423 * It may be assumed that this function implies a write memory barrier before
4424 * changing the task state if and only if any tasks are woken up.
4426 void complete_all(struct completion *x)
4428 unsigned long flags;
4430 spin_lock_irqsave(&x->wait.lock, flags);
4431 x->done += UINT_MAX/2;
4432 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4433 spin_unlock_irqrestore(&x->wait.lock, flags);
4435 EXPORT_SYMBOL(complete_all);
4437 static inline long __sched
4438 do_wait_for_common(struct completion *x, long timeout, int state)
4440 if (!x->done) {
4441 DECLARE_WAITQUEUE(wait, current);
4443 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4444 do {
4445 if (signal_pending_state(state, current)) {
4446 timeout = -ERESTARTSYS;
4447 break;
4449 __set_current_state(state);
4450 spin_unlock_irq(&x->wait.lock);
4451 timeout = schedule_timeout(timeout);
4452 spin_lock_irq(&x->wait.lock);
4453 } while (!x->done && timeout);
4454 __remove_wait_queue(&x->wait, &wait);
4455 if (!x->done)
4456 return timeout;
4458 x->done--;
4459 return timeout ?: 1;
4462 static long __sched
4463 wait_for_common(struct completion *x, long timeout, int state)
4465 might_sleep();
4467 spin_lock_irq(&x->wait.lock);
4468 timeout = do_wait_for_common(x, timeout, state);
4469 spin_unlock_irq(&x->wait.lock);
4470 return timeout;
4474 * wait_for_completion: - waits for completion of a task
4475 * @x: holds the state of this particular completion
4477 * This waits to be signaled for completion of a specific task. It is NOT
4478 * interruptible and there is no timeout.
4480 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4481 * and interrupt capability. Also see complete().
4483 void __sched wait_for_completion(struct completion *x)
4485 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4487 EXPORT_SYMBOL(wait_for_completion);
4490 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4491 * @x: holds the state of this particular completion
4492 * @timeout: timeout value in jiffies
4494 * This waits for either a completion of a specific task to be signaled or for a
4495 * specified timeout to expire. The timeout is in jiffies. It is not
4496 * interruptible.
4498 unsigned long __sched
4499 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4501 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4503 EXPORT_SYMBOL(wait_for_completion_timeout);
4506 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4507 * @x: holds the state of this particular completion
4509 * This waits for completion of a specific task to be signaled. It is
4510 * interruptible.
4512 int __sched wait_for_completion_interruptible(struct completion *x)
4514 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4515 if (t == -ERESTARTSYS)
4516 return t;
4517 return 0;
4519 EXPORT_SYMBOL(wait_for_completion_interruptible);
4522 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4523 * @x: holds the state of this particular completion
4524 * @timeout: timeout value in jiffies
4526 * This waits for either a completion of a specific task to be signaled or for a
4527 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4529 unsigned long __sched
4530 wait_for_completion_interruptible_timeout(struct completion *x,
4531 unsigned long timeout)
4533 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4535 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4538 * wait_for_completion_killable: - waits for completion of a task (killable)
4539 * @x: holds the state of this particular completion
4541 * This waits to be signaled for completion of a specific task. It can be
4542 * interrupted by a kill signal.
4544 int __sched wait_for_completion_killable(struct completion *x)
4546 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4547 if (t == -ERESTARTSYS)
4548 return t;
4549 return 0;
4551 EXPORT_SYMBOL(wait_for_completion_killable);
4554 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4555 * @x: holds the state of this particular completion
4556 * @timeout: timeout value in jiffies
4558 * This waits for either a completion of a specific task to be
4559 * signaled or for a specified timeout to expire. It can be
4560 * interrupted by a kill signal. The timeout is in jiffies.
4562 unsigned long __sched
4563 wait_for_completion_killable_timeout(struct completion *x,
4564 unsigned long timeout)
4566 return wait_for_common(x, timeout, TASK_KILLABLE);
4568 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4571 * try_wait_for_completion - try to decrement a completion without blocking
4572 * @x: completion structure
4574 * Returns: 0 if a decrement cannot be done without blocking
4575 * 1 if a decrement succeeded.
4577 * If a completion is being used as a counting completion,
4578 * attempt to decrement the counter without blocking. This
4579 * enables us to avoid waiting if the resource the completion
4580 * is protecting is not available.
4582 bool try_wait_for_completion(struct completion *x)
4584 unsigned long flags;
4585 int ret = 1;
4587 spin_lock_irqsave(&x->wait.lock, flags);
4588 if (!x->done)
4589 ret = 0;
4590 else
4591 x->done--;
4592 spin_unlock_irqrestore(&x->wait.lock, flags);
4593 return ret;
4595 EXPORT_SYMBOL(try_wait_for_completion);
4598 * completion_done - Test to see if a completion has any waiters
4599 * @x: completion structure
4601 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4602 * 1 if there are no waiters.
4605 bool completion_done(struct completion *x)
4607 unsigned long flags;
4608 int ret = 1;
4610 spin_lock_irqsave(&x->wait.lock, flags);
4611 if (!x->done)
4612 ret = 0;
4613 spin_unlock_irqrestore(&x->wait.lock, flags);
4614 return ret;
4616 EXPORT_SYMBOL(completion_done);
4618 static long __sched
4619 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4621 unsigned long flags;
4622 wait_queue_t wait;
4624 init_waitqueue_entry(&wait, current);
4626 __set_current_state(state);
4628 spin_lock_irqsave(&q->lock, flags);
4629 __add_wait_queue(q, &wait);
4630 spin_unlock(&q->lock);
4631 timeout = schedule_timeout(timeout);
4632 spin_lock_irq(&q->lock);
4633 __remove_wait_queue(q, &wait);
4634 spin_unlock_irqrestore(&q->lock, flags);
4636 return timeout;
4639 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4641 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4643 EXPORT_SYMBOL(interruptible_sleep_on);
4645 long __sched
4646 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4648 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4650 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4652 void __sched sleep_on(wait_queue_head_t *q)
4654 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4656 EXPORT_SYMBOL(sleep_on);
4658 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4660 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4662 EXPORT_SYMBOL(sleep_on_timeout);
4664 #ifdef CONFIG_RT_MUTEXES
4667 * rt_mutex_setprio - set the current priority of a task
4668 * @p: task
4669 * @prio: prio value (kernel-internal form)
4671 * This function changes the 'effective' priority of a task. It does
4672 * not touch ->normal_prio like __setscheduler().
4674 * Used by the rt_mutex code to implement priority inheritance logic.
4676 void rt_mutex_setprio(struct task_struct *p, int prio)
4678 unsigned long flags;
4679 int oldprio, on_rq, running;
4680 struct rq *rq;
4681 const struct sched_class *prev_class;
4683 BUG_ON(prio < 0 || prio > MAX_PRIO);
4685 rq = task_rq_lock(p, &flags);
4687 trace_sched_pi_setprio(p, prio);
4688 oldprio = p->prio;
4689 prev_class = p->sched_class;
4690 on_rq = p->se.on_rq;
4691 running = task_current(rq, p);
4692 if (on_rq)
4693 dequeue_task(rq, p, 0);
4694 if (running)
4695 p->sched_class->put_prev_task(rq, p);
4697 if (rt_prio(prio))
4698 p->sched_class = &rt_sched_class;
4699 else
4700 p->sched_class = &fair_sched_class;
4702 p->prio = prio;
4704 if (running)
4705 p->sched_class->set_curr_task(rq);
4706 if (on_rq) {
4707 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4709 check_class_changed(rq, p, prev_class, oldprio, running);
4711 task_rq_unlock(rq, &flags);
4714 #endif
4716 void set_user_nice(struct task_struct *p, long nice)
4718 int old_prio, delta, on_rq;
4719 unsigned long flags;
4720 struct rq *rq;
4722 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4723 return;
4725 * We have to be careful, if called from sys_setpriority(),
4726 * the task might be in the middle of scheduling on another CPU.
4728 rq = task_rq_lock(p, &flags);
4730 * The RT priorities are set via sched_setscheduler(), but we still
4731 * allow the 'normal' nice value to be set - but as expected
4732 * it wont have any effect on scheduling until the task is
4733 * SCHED_FIFO/SCHED_RR:
4735 if (task_has_rt_policy(p)) {
4736 p->static_prio = NICE_TO_PRIO(nice);
4737 goto out_unlock;
4739 on_rq = p->se.on_rq;
4740 if (on_rq)
4741 dequeue_task(rq, p, 0);
4743 p->static_prio = NICE_TO_PRIO(nice);
4744 set_load_weight(p);
4745 old_prio = p->prio;
4746 p->prio = effective_prio(p);
4747 delta = p->prio - old_prio;
4749 if (on_rq) {
4750 enqueue_task(rq, p, 0);
4752 * If the task increased its priority or is running and
4753 * lowered its priority, then reschedule its CPU:
4755 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4756 resched_task(rq->curr);
4758 out_unlock:
4759 task_rq_unlock(rq, &flags);
4761 EXPORT_SYMBOL(set_user_nice);
4764 * can_nice - check if a task can reduce its nice value
4765 * @p: task
4766 * @nice: nice value
4768 int can_nice(const struct task_struct *p, const int nice)
4770 /* convert nice value [19,-20] to rlimit style value [1,40] */
4771 int nice_rlim = 20 - nice;
4773 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4774 capable(CAP_SYS_NICE));
4777 #ifdef __ARCH_WANT_SYS_NICE
4780 * sys_nice - change the priority of the current process.
4781 * @increment: priority increment
4783 * sys_setpriority is a more generic, but much slower function that
4784 * does similar things.
4786 SYSCALL_DEFINE1(nice, int, increment)
4788 long nice, retval;
4791 * Setpriority might change our priority at the same moment.
4792 * We don't have to worry. Conceptually one call occurs first
4793 * and we have a single winner.
4795 if (increment < -40)
4796 increment = -40;
4797 if (increment > 40)
4798 increment = 40;
4800 nice = TASK_NICE(current) + increment;
4801 if (nice < -20)
4802 nice = -20;
4803 if (nice > 19)
4804 nice = 19;
4806 if (increment < 0 && !can_nice(current, nice))
4807 return -EPERM;
4809 retval = security_task_setnice(current, nice);
4810 if (retval)
4811 return retval;
4813 set_user_nice(current, nice);
4814 return 0;
4817 #endif
4820 * task_prio - return the priority value of a given task.
4821 * @p: the task in question.
4823 * This is the priority value as seen by users in /proc.
4824 * RT tasks are offset by -200. Normal tasks are centered
4825 * around 0, value goes from -16 to +15.
4827 int task_prio(const struct task_struct *p)
4829 return p->prio - MAX_RT_PRIO;
4833 * task_nice - return the nice value of a given task.
4834 * @p: the task in question.
4836 int task_nice(const struct task_struct *p)
4838 return TASK_NICE(p);
4840 EXPORT_SYMBOL(task_nice);
4843 * idle_cpu - is a given cpu idle currently?
4844 * @cpu: the processor in question.
4846 int idle_cpu(int cpu)
4848 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4852 * idle_task - return the idle task for a given cpu.
4853 * @cpu: the processor in question.
4855 struct task_struct *idle_task(int cpu)
4857 return cpu_rq(cpu)->idle;
4861 * find_process_by_pid - find a process with a matching PID value.
4862 * @pid: the pid in question.
4864 static struct task_struct *find_process_by_pid(pid_t pid)
4866 return pid ? find_task_by_vpid(pid) : current;
4869 /* Actually do priority change: must hold rq lock. */
4870 static void
4871 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4873 BUG_ON(p->se.on_rq);
4875 p->policy = policy;
4876 p->rt_priority = prio;
4877 p->normal_prio = normal_prio(p);
4878 /* we are holding p->pi_lock already */
4879 p->prio = rt_mutex_getprio(p);
4880 if (rt_prio(p->prio))
4881 p->sched_class = &rt_sched_class;
4882 else
4883 p->sched_class = &fair_sched_class;
4884 set_load_weight(p);
4888 * check the target process has a UID that matches the current process's
4890 static bool check_same_owner(struct task_struct *p)
4892 const struct cred *cred = current_cred(), *pcred;
4893 bool match;
4895 rcu_read_lock();
4896 pcred = __task_cred(p);
4897 match = (cred->euid == pcred->euid ||
4898 cred->euid == pcred->uid);
4899 rcu_read_unlock();
4900 return match;
4903 static int __sched_setscheduler(struct task_struct *p, int policy,
4904 struct sched_param *param, bool user)
4906 int retval, oldprio, oldpolicy = -1, on_rq, running;
4907 unsigned long flags;
4908 const struct sched_class *prev_class;
4909 struct rq *rq;
4910 int reset_on_fork;
4912 /* may grab non-irq protected spin_locks */
4913 BUG_ON(in_interrupt());
4914 recheck:
4915 /* double check policy once rq lock held */
4916 if (policy < 0) {
4917 reset_on_fork = p->sched_reset_on_fork;
4918 policy = oldpolicy = p->policy;
4919 } else {
4920 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4921 policy &= ~SCHED_RESET_ON_FORK;
4923 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4924 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4925 policy != SCHED_IDLE)
4926 return -EINVAL;
4930 * Valid priorities for SCHED_FIFO and SCHED_RR are
4931 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4932 * SCHED_BATCH and SCHED_IDLE is 0.
4934 if (param->sched_priority < 0 ||
4935 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4936 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4937 return -EINVAL;
4938 if (rt_policy(policy) != (param->sched_priority != 0))
4939 return -EINVAL;
4942 * Allow unprivileged RT tasks to decrease priority:
4944 if (user && !capable(CAP_SYS_NICE)) {
4945 if (rt_policy(policy)) {
4946 unsigned long rlim_rtprio =
4947 task_rlimit(p, RLIMIT_RTPRIO);
4949 /* can't set/change the rt policy */
4950 if (policy != p->policy && !rlim_rtprio)
4951 return -EPERM;
4953 /* can't increase priority */
4954 if (param->sched_priority > p->rt_priority &&
4955 param->sched_priority > rlim_rtprio)
4956 return -EPERM;
4959 * Like positive nice levels, dont allow tasks to
4960 * move out of SCHED_IDLE either:
4962 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4963 return -EPERM;
4965 /* can't change other user's priorities */
4966 if (!check_same_owner(p))
4967 return -EPERM;
4969 /* Normal users shall not reset the sched_reset_on_fork flag */
4970 if (p->sched_reset_on_fork && !reset_on_fork)
4971 return -EPERM;
4974 if (user) {
4975 retval = security_task_setscheduler(p);
4976 if (retval)
4977 return retval;
4981 * make sure no PI-waiters arrive (or leave) while we are
4982 * changing the priority of the task:
4984 raw_spin_lock_irqsave(&p->pi_lock, flags);
4986 * To be able to change p->policy safely, the apropriate
4987 * runqueue lock must be held.
4989 rq = __task_rq_lock(p);
4992 * Changing the policy of the stop threads its a very bad idea
4994 if (p == rq->stop) {
4995 __task_rq_unlock(rq);
4996 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4997 return -EINVAL;
5000 #ifdef CONFIG_RT_GROUP_SCHED
5001 if (user) {
5003 * Do not allow realtime tasks into groups that have no runtime
5004 * assigned.
5006 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5007 task_group(p)->rt_bandwidth.rt_runtime == 0) {
5008 __task_rq_unlock(rq);
5009 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5010 return -EPERM;
5013 #endif
5015 /* recheck policy now with rq lock held */
5016 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5017 policy = oldpolicy = -1;
5018 __task_rq_unlock(rq);
5019 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5020 goto recheck;
5022 on_rq = p->se.on_rq;
5023 running = task_current(rq, p);
5024 if (on_rq)
5025 deactivate_task(rq, p, 0);
5026 if (running)
5027 p->sched_class->put_prev_task(rq, p);
5029 p->sched_reset_on_fork = reset_on_fork;
5031 oldprio = p->prio;
5032 prev_class = p->sched_class;
5033 __setscheduler(rq, p, policy, param->sched_priority);
5035 if (running)
5036 p->sched_class->set_curr_task(rq);
5037 if (on_rq) {
5038 activate_task(rq, p, 0);
5040 check_class_changed(rq, p, prev_class, oldprio, running);
5042 __task_rq_unlock(rq);
5043 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5045 rt_mutex_adjust_pi(p);
5047 return 0;
5051 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5052 * @p: the task in question.
5053 * @policy: new policy.
5054 * @param: structure containing the new RT priority.
5056 * NOTE that the task may be already dead.
5058 int sched_setscheduler(struct task_struct *p, int policy,
5059 struct sched_param *param)
5061 return __sched_setscheduler(p, policy, param, true);
5063 EXPORT_SYMBOL_GPL(sched_setscheduler);
5066 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5067 * @p: the task in question.
5068 * @policy: new policy.
5069 * @param: structure containing the new RT priority.
5071 * Just like sched_setscheduler, only don't bother checking if the
5072 * current context has permission. For example, this is needed in
5073 * stop_machine(): we create temporary high priority worker threads,
5074 * but our caller might not have that capability.
5076 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5077 struct sched_param *param)
5079 return __sched_setscheduler(p, policy, param, false);
5082 static int
5083 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5085 struct sched_param lparam;
5086 struct task_struct *p;
5087 int retval;
5089 if (!param || pid < 0)
5090 return -EINVAL;
5091 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5092 return -EFAULT;
5094 rcu_read_lock();
5095 retval = -ESRCH;
5096 p = find_process_by_pid(pid);
5097 if (p != NULL)
5098 retval = sched_setscheduler(p, policy, &lparam);
5099 rcu_read_unlock();
5101 return retval;
5105 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5106 * @pid: the pid in question.
5107 * @policy: new policy.
5108 * @param: structure containing the new RT priority.
5110 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5111 struct sched_param __user *, param)
5113 /* negative values for policy are not valid */
5114 if (policy < 0)
5115 return -EINVAL;
5117 return do_sched_setscheduler(pid, policy, param);
5121 * sys_sched_setparam - set/change the RT priority of a thread
5122 * @pid: the pid in question.
5123 * @param: structure containing the new RT priority.
5125 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5127 return do_sched_setscheduler(pid, -1, param);
5131 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5132 * @pid: the pid in question.
5134 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5136 struct task_struct *p;
5137 int retval;
5139 if (pid < 0)
5140 return -EINVAL;
5142 retval = -ESRCH;
5143 rcu_read_lock();
5144 p = find_process_by_pid(pid);
5145 if (p) {
5146 retval = security_task_getscheduler(p);
5147 if (!retval)
5148 retval = p->policy
5149 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5151 rcu_read_unlock();
5152 return retval;
5156 * sys_sched_getparam - get the RT priority of a thread
5157 * @pid: the pid in question.
5158 * @param: structure containing the RT priority.
5160 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5162 struct sched_param lp;
5163 struct task_struct *p;
5164 int retval;
5166 if (!param || pid < 0)
5167 return -EINVAL;
5169 rcu_read_lock();
5170 p = find_process_by_pid(pid);
5171 retval = -ESRCH;
5172 if (!p)
5173 goto out_unlock;
5175 retval = security_task_getscheduler(p);
5176 if (retval)
5177 goto out_unlock;
5179 lp.sched_priority = p->rt_priority;
5180 rcu_read_unlock();
5183 * This one might sleep, we cannot do it with a spinlock held ...
5185 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5187 return retval;
5189 out_unlock:
5190 rcu_read_unlock();
5191 return retval;
5194 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5196 cpumask_var_t cpus_allowed, new_mask;
5197 struct task_struct *p;
5198 int retval;
5200 get_online_cpus();
5201 rcu_read_lock();
5203 p = find_process_by_pid(pid);
5204 if (!p) {
5205 rcu_read_unlock();
5206 put_online_cpus();
5207 return -ESRCH;
5210 /* Prevent p going away */
5211 get_task_struct(p);
5212 rcu_read_unlock();
5214 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5215 retval = -ENOMEM;
5216 goto out_put_task;
5218 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5219 retval = -ENOMEM;
5220 goto out_free_cpus_allowed;
5222 retval = -EPERM;
5223 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5224 goto out_unlock;
5226 retval = security_task_setscheduler(p);
5227 if (retval)
5228 goto out_unlock;
5230 cpuset_cpus_allowed(p, cpus_allowed);
5231 cpumask_and(new_mask, in_mask, cpus_allowed);
5232 again:
5233 retval = set_cpus_allowed_ptr(p, new_mask);
5235 if (!retval) {
5236 cpuset_cpus_allowed(p, cpus_allowed);
5237 if (!cpumask_subset(new_mask, cpus_allowed)) {
5239 * We must have raced with a concurrent cpuset
5240 * update. Just reset the cpus_allowed to the
5241 * cpuset's cpus_allowed
5243 cpumask_copy(new_mask, cpus_allowed);
5244 goto again;
5247 out_unlock:
5248 free_cpumask_var(new_mask);
5249 out_free_cpus_allowed:
5250 free_cpumask_var(cpus_allowed);
5251 out_put_task:
5252 put_task_struct(p);
5253 put_online_cpus();
5254 return retval;
5257 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5258 struct cpumask *new_mask)
5260 if (len < cpumask_size())
5261 cpumask_clear(new_mask);
5262 else if (len > cpumask_size())
5263 len = cpumask_size();
5265 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5269 * sys_sched_setaffinity - set the cpu affinity of a process
5270 * @pid: pid of the process
5271 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5272 * @user_mask_ptr: user-space pointer to the new cpu mask
5274 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5275 unsigned long __user *, user_mask_ptr)
5277 cpumask_var_t new_mask;
5278 int retval;
5280 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5281 return -ENOMEM;
5283 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5284 if (retval == 0)
5285 retval = sched_setaffinity(pid, new_mask);
5286 free_cpumask_var(new_mask);
5287 return retval;
5290 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5292 struct task_struct *p;
5293 unsigned long flags;
5294 struct rq *rq;
5295 int retval;
5297 get_online_cpus();
5298 rcu_read_lock();
5300 retval = -ESRCH;
5301 p = find_process_by_pid(pid);
5302 if (!p)
5303 goto out_unlock;
5305 retval = security_task_getscheduler(p);
5306 if (retval)
5307 goto out_unlock;
5309 rq = task_rq_lock(p, &flags);
5310 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5311 task_rq_unlock(rq, &flags);
5313 out_unlock:
5314 rcu_read_unlock();
5315 put_online_cpus();
5317 return retval;
5321 * sys_sched_getaffinity - get the cpu affinity of a process
5322 * @pid: pid of the process
5323 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5324 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5326 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5327 unsigned long __user *, user_mask_ptr)
5329 int ret;
5330 cpumask_var_t mask;
5332 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5333 return -EINVAL;
5334 if (len & (sizeof(unsigned long)-1))
5335 return -EINVAL;
5337 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5338 return -ENOMEM;
5340 ret = sched_getaffinity(pid, mask);
5341 if (ret == 0) {
5342 size_t retlen = min_t(size_t, len, cpumask_size());
5344 if (copy_to_user(user_mask_ptr, mask, retlen))
5345 ret = -EFAULT;
5346 else
5347 ret = retlen;
5349 free_cpumask_var(mask);
5351 return ret;
5355 * sys_sched_yield - yield the current processor to other threads.
5357 * This function yields the current CPU to other tasks. If there are no
5358 * other threads running on this CPU then this function will return.
5360 SYSCALL_DEFINE0(sched_yield)
5362 struct rq *rq = this_rq_lock();
5364 schedstat_inc(rq, yld_count);
5365 current->sched_class->yield_task(rq);
5368 * Since we are going to call schedule() anyway, there's
5369 * no need to preempt or enable interrupts:
5371 __release(rq->lock);
5372 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5373 do_raw_spin_unlock(&rq->lock);
5374 preempt_enable_no_resched();
5376 schedule();
5378 return 0;
5381 static inline int should_resched(void)
5383 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5386 static void __cond_resched(void)
5388 add_preempt_count(PREEMPT_ACTIVE);
5389 schedule();
5390 sub_preempt_count(PREEMPT_ACTIVE);
5393 int __sched _cond_resched(void)
5395 if (should_resched()) {
5396 __cond_resched();
5397 return 1;
5399 return 0;
5401 EXPORT_SYMBOL(_cond_resched);
5404 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5405 * call schedule, and on return reacquire the lock.
5407 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5408 * operations here to prevent schedule() from being called twice (once via
5409 * spin_unlock(), once by hand).
5411 int __cond_resched_lock(spinlock_t *lock)
5413 int resched = should_resched();
5414 int ret = 0;
5416 lockdep_assert_held(lock);
5418 if (spin_needbreak(lock) || resched) {
5419 spin_unlock(lock);
5420 if (resched)
5421 __cond_resched();
5422 else
5423 cpu_relax();
5424 ret = 1;
5425 spin_lock(lock);
5427 return ret;
5429 EXPORT_SYMBOL(__cond_resched_lock);
5431 int __sched __cond_resched_softirq(void)
5433 BUG_ON(!in_softirq());
5435 if (should_resched()) {
5436 local_bh_enable();
5437 __cond_resched();
5438 local_bh_disable();
5439 return 1;
5441 return 0;
5443 EXPORT_SYMBOL(__cond_resched_softirq);
5446 * yield - yield the current processor to other threads.
5448 * This is a shortcut for kernel-space yielding - it marks the
5449 * thread runnable and calls sys_sched_yield().
5451 void __sched yield(void)
5453 set_current_state(TASK_RUNNING);
5454 sys_sched_yield();
5456 EXPORT_SYMBOL(yield);
5459 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5460 * that process accounting knows that this is a task in IO wait state.
5462 void __sched io_schedule(void)
5464 struct rq *rq = raw_rq();
5466 delayacct_blkio_start();
5467 atomic_inc(&rq->nr_iowait);
5468 current->in_iowait = 1;
5469 schedule();
5470 current->in_iowait = 0;
5471 atomic_dec(&rq->nr_iowait);
5472 delayacct_blkio_end();
5474 EXPORT_SYMBOL(io_schedule);
5476 long __sched io_schedule_timeout(long timeout)
5478 struct rq *rq = raw_rq();
5479 long ret;
5481 delayacct_blkio_start();
5482 atomic_inc(&rq->nr_iowait);
5483 current->in_iowait = 1;
5484 ret = schedule_timeout(timeout);
5485 current->in_iowait = 0;
5486 atomic_dec(&rq->nr_iowait);
5487 delayacct_blkio_end();
5488 return ret;
5492 * sys_sched_get_priority_max - return maximum RT priority.
5493 * @policy: scheduling class.
5495 * this syscall returns the maximum rt_priority that can be used
5496 * by a given scheduling class.
5498 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5500 int ret = -EINVAL;
5502 switch (policy) {
5503 case SCHED_FIFO:
5504 case SCHED_RR:
5505 ret = MAX_USER_RT_PRIO-1;
5506 break;
5507 case SCHED_NORMAL:
5508 case SCHED_BATCH:
5509 case SCHED_IDLE:
5510 ret = 0;
5511 break;
5513 return ret;
5517 * sys_sched_get_priority_min - return minimum RT priority.
5518 * @policy: scheduling class.
5520 * this syscall returns the minimum rt_priority that can be used
5521 * by a given scheduling class.
5523 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5525 int ret = -EINVAL;
5527 switch (policy) {
5528 case SCHED_FIFO:
5529 case SCHED_RR:
5530 ret = 1;
5531 break;
5532 case SCHED_NORMAL:
5533 case SCHED_BATCH:
5534 case SCHED_IDLE:
5535 ret = 0;
5537 return ret;
5541 * sys_sched_rr_get_interval - return the default timeslice of a process.
5542 * @pid: pid of the process.
5543 * @interval: userspace pointer to the timeslice value.
5545 * this syscall writes the default timeslice value of a given process
5546 * into the user-space timespec buffer. A value of '0' means infinity.
5548 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5549 struct timespec __user *, interval)
5551 struct task_struct *p;
5552 unsigned int time_slice;
5553 unsigned long flags;
5554 struct rq *rq;
5555 int retval;
5556 struct timespec t;
5558 if (pid < 0)
5559 return -EINVAL;
5561 retval = -ESRCH;
5562 rcu_read_lock();
5563 p = find_process_by_pid(pid);
5564 if (!p)
5565 goto out_unlock;
5567 retval = security_task_getscheduler(p);
5568 if (retval)
5569 goto out_unlock;
5571 rq = task_rq_lock(p, &flags);
5572 time_slice = p->sched_class->get_rr_interval(rq, p);
5573 task_rq_unlock(rq, &flags);
5575 rcu_read_unlock();
5576 jiffies_to_timespec(time_slice, &t);
5577 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5578 return retval;
5580 out_unlock:
5581 rcu_read_unlock();
5582 return retval;
5585 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5587 void sched_show_task(struct task_struct *p)
5589 unsigned long free = 0;
5590 unsigned state;
5592 state = p->state ? __ffs(p->state) + 1 : 0;
5593 printk(KERN_INFO "%-13.13s %c", p->comm,
5594 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5595 #if BITS_PER_LONG == 32
5596 if (state == TASK_RUNNING)
5597 printk(KERN_CONT " running ");
5598 else
5599 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5600 #else
5601 if (state == TASK_RUNNING)
5602 printk(KERN_CONT " running task ");
5603 else
5604 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5605 #endif
5606 #ifdef CONFIG_DEBUG_STACK_USAGE
5607 free = stack_not_used(p);
5608 #endif
5609 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5610 task_pid_nr(p), task_pid_nr(p->real_parent),
5611 (unsigned long)task_thread_info(p)->flags);
5613 show_stack(p, NULL);
5616 void show_state_filter(unsigned long state_filter)
5618 struct task_struct *g, *p;
5620 #if BITS_PER_LONG == 32
5621 printk(KERN_INFO
5622 " task PC stack pid father\n");
5623 #else
5624 printk(KERN_INFO
5625 " task PC stack pid father\n");
5626 #endif
5627 read_lock(&tasklist_lock);
5628 do_each_thread(g, p) {
5630 * reset the NMI-timeout, listing all files on a slow
5631 * console might take alot of time:
5633 touch_nmi_watchdog();
5634 if (!state_filter || (p->state & state_filter))
5635 sched_show_task(p);
5636 } while_each_thread(g, p);
5638 touch_all_softlockup_watchdogs();
5640 #ifdef CONFIG_SCHED_DEBUG
5641 sysrq_sched_debug_show();
5642 #endif
5643 read_unlock(&tasklist_lock);
5645 * Only show locks if all tasks are dumped:
5647 if (!state_filter)
5648 debug_show_all_locks();
5651 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5653 idle->sched_class = &idle_sched_class;
5657 * init_idle - set up an idle thread for a given CPU
5658 * @idle: task in question
5659 * @cpu: cpu the idle task belongs to
5661 * NOTE: this function does not set the idle thread's NEED_RESCHED
5662 * flag, to make booting more robust.
5664 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5666 struct rq *rq = cpu_rq(cpu);
5667 unsigned long flags;
5669 raw_spin_lock_irqsave(&rq->lock, flags);
5671 __sched_fork(idle);
5672 idle->state = TASK_RUNNING;
5673 idle->se.exec_start = sched_clock();
5675 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5677 * We're having a chicken and egg problem, even though we are
5678 * holding rq->lock, the cpu isn't yet set to this cpu so the
5679 * lockdep check in task_group() will fail.
5681 * Similar case to sched_fork(). / Alternatively we could
5682 * use task_rq_lock() here and obtain the other rq->lock.
5684 * Silence PROVE_RCU
5686 rcu_read_lock();
5687 __set_task_cpu(idle, cpu);
5688 rcu_read_unlock();
5690 rq->curr = rq->idle = idle;
5691 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5692 idle->oncpu = 1;
5693 #endif
5694 raw_spin_unlock_irqrestore(&rq->lock, flags);
5696 /* Set the preempt count _outside_ the spinlocks! */
5697 #if defined(CONFIG_PREEMPT)
5698 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5699 #else
5700 task_thread_info(idle)->preempt_count = 0;
5701 #endif
5703 * The idle tasks have their own, simple scheduling class:
5705 idle->sched_class = &idle_sched_class;
5706 ftrace_graph_init_task(idle);
5710 * In a system that switches off the HZ timer nohz_cpu_mask
5711 * indicates which cpus entered this state. This is used
5712 * in the rcu update to wait only for active cpus. For system
5713 * which do not switch off the HZ timer nohz_cpu_mask should
5714 * always be CPU_BITS_NONE.
5716 cpumask_var_t nohz_cpu_mask;
5719 * Increase the granularity value when there are more CPUs,
5720 * because with more CPUs the 'effective latency' as visible
5721 * to users decreases. But the relationship is not linear,
5722 * so pick a second-best guess by going with the log2 of the
5723 * number of CPUs.
5725 * This idea comes from the SD scheduler of Con Kolivas:
5727 static int get_update_sysctl_factor(void)
5729 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5730 unsigned int factor;
5732 switch (sysctl_sched_tunable_scaling) {
5733 case SCHED_TUNABLESCALING_NONE:
5734 factor = 1;
5735 break;
5736 case SCHED_TUNABLESCALING_LINEAR:
5737 factor = cpus;
5738 break;
5739 case SCHED_TUNABLESCALING_LOG:
5740 default:
5741 factor = 1 + ilog2(cpus);
5742 break;
5745 return factor;
5748 static void update_sysctl(void)
5750 unsigned int factor = get_update_sysctl_factor();
5752 #define SET_SYSCTL(name) \
5753 (sysctl_##name = (factor) * normalized_sysctl_##name)
5754 SET_SYSCTL(sched_min_granularity);
5755 SET_SYSCTL(sched_latency);
5756 SET_SYSCTL(sched_wakeup_granularity);
5757 SET_SYSCTL(sched_shares_ratelimit);
5758 #undef SET_SYSCTL
5761 static inline void sched_init_granularity(void)
5763 update_sysctl();
5766 #ifdef CONFIG_SMP
5768 * This is how migration works:
5770 * 1) we invoke migration_cpu_stop() on the target CPU using
5771 * stop_one_cpu().
5772 * 2) stopper starts to run (implicitly forcing the migrated thread
5773 * off the CPU)
5774 * 3) it checks whether the migrated task is still in the wrong runqueue.
5775 * 4) if it's in the wrong runqueue then the migration thread removes
5776 * it and puts it into the right queue.
5777 * 5) stopper completes and stop_one_cpu() returns and the migration
5778 * is done.
5782 * Change a given task's CPU affinity. Migrate the thread to a
5783 * proper CPU and schedule it away if the CPU it's executing on
5784 * is removed from the allowed bitmask.
5786 * NOTE: the caller must have a valid reference to the task, the
5787 * task must not exit() & deallocate itself prematurely. The
5788 * call is not atomic; no spinlocks may be held.
5790 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5792 unsigned long flags;
5793 struct rq *rq;
5794 unsigned int dest_cpu;
5795 int ret = 0;
5798 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5799 * drop the rq->lock and still rely on ->cpus_allowed.
5801 again:
5802 while (task_is_waking(p))
5803 cpu_relax();
5804 rq = task_rq_lock(p, &flags);
5805 if (task_is_waking(p)) {
5806 task_rq_unlock(rq, &flags);
5807 goto again;
5810 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5811 ret = -EINVAL;
5812 goto out;
5815 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5816 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5817 ret = -EINVAL;
5818 goto out;
5821 if (p->sched_class->set_cpus_allowed)
5822 p->sched_class->set_cpus_allowed(p, new_mask);
5823 else {
5824 cpumask_copy(&p->cpus_allowed, new_mask);
5825 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5828 /* Can the task run on the task's current CPU? If so, we're done */
5829 if (cpumask_test_cpu(task_cpu(p), new_mask))
5830 goto out;
5832 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5833 if (migrate_task(p, dest_cpu)) {
5834 struct migration_arg arg = { p, dest_cpu };
5835 /* Need help from migration thread: drop lock and wait. */
5836 task_rq_unlock(rq, &flags);
5837 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5838 tlb_migrate_finish(p->mm);
5839 return 0;
5841 out:
5842 task_rq_unlock(rq, &flags);
5844 return ret;
5846 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5849 * Move (not current) task off this cpu, onto dest cpu. We're doing
5850 * this because either it can't run here any more (set_cpus_allowed()
5851 * away from this CPU, or CPU going down), or because we're
5852 * attempting to rebalance this task on exec (sched_exec).
5854 * So we race with normal scheduler movements, but that's OK, as long
5855 * as the task is no longer on this CPU.
5857 * Returns non-zero if task was successfully migrated.
5859 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5861 struct rq *rq_dest, *rq_src;
5862 int ret = 0;
5864 if (unlikely(!cpu_active(dest_cpu)))
5865 return ret;
5867 rq_src = cpu_rq(src_cpu);
5868 rq_dest = cpu_rq(dest_cpu);
5870 double_rq_lock(rq_src, rq_dest);
5871 /* Already moved. */
5872 if (task_cpu(p) != src_cpu)
5873 goto done;
5874 /* Affinity changed (again). */
5875 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5876 goto fail;
5879 * If we're not on a rq, the next wake-up will ensure we're
5880 * placed properly.
5882 if (p->se.on_rq) {
5883 deactivate_task(rq_src, p, 0);
5884 set_task_cpu(p, dest_cpu);
5885 activate_task(rq_dest, p, 0);
5886 check_preempt_curr(rq_dest, p, 0);
5888 done:
5889 ret = 1;
5890 fail:
5891 double_rq_unlock(rq_src, rq_dest);
5892 return ret;
5896 * migration_cpu_stop - this will be executed by a highprio stopper thread
5897 * and performs thread migration by bumping thread off CPU then
5898 * 'pushing' onto another runqueue.
5900 static int migration_cpu_stop(void *data)
5902 struct migration_arg *arg = data;
5905 * The original target cpu might have gone down and we might
5906 * be on another cpu but it doesn't matter.
5908 local_irq_disable();
5909 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5910 local_irq_enable();
5911 return 0;
5914 #ifdef CONFIG_HOTPLUG_CPU
5916 * Figure out where task on dead CPU should go, use force if necessary.
5918 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5920 struct rq *rq = cpu_rq(dead_cpu);
5921 int needs_cpu, uninitialized_var(dest_cpu);
5922 unsigned long flags;
5924 local_irq_save(flags);
5926 raw_spin_lock(&rq->lock);
5927 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5928 if (needs_cpu)
5929 dest_cpu = select_fallback_rq(dead_cpu, p);
5930 raw_spin_unlock(&rq->lock);
5932 * It can only fail if we race with set_cpus_allowed(),
5933 * in the racer should migrate the task anyway.
5935 if (needs_cpu)
5936 __migrate_task(p, dead_cpu, dest_cpu);
5937 local_irq_restore(flags);
5941 * While a dead CPU has no uninterruptible tasks queued at this point,
5942 * it might still have a nonzero ->nr_uninterruptible counter, because
5943 * for performance reasons the counter is not stricly tracking tasks to
5944 * their home CPUs. So we just add the counter to another CPU's counter,
5945 * to keep the global sum constant after CPU-down:
5947 static void migrate_nr_uninterruptible(struct rq *rq_src)
5949 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5950 unsigned long flags;
5952 local_irq_save(flags);
5953 double_rq_lock(rq_src, rq_dest);
5954 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5955 rq_src->nr_uninterruptible = 0;
5956 double_rq_unlock(rq_src, rq_dest);
5957 local_irq_restore(flags);
5960 /* Run through task list and migrate tasks from the dead cpu. */
5961 static void migrate_live_tasks(int src_cpu)
5963 struct task_struct *p, *t;
5965 read_lock(&tasklist_lock);
5967 do_each_thread(t, p) {
5968 if (p == current)
5969 continue;
5971 if (task_cpu(p) == src_cpu)
5972 move_task_off_dead_cpu(src_cpu, p);
5973 } while_each_thread(t, p);
5975 read_unlock(&tasklist_lock);
5979 * Schedules idle task to be the next runnable task on current CPU.
5980 * It does so by boosting its priority to highest possible.
5981 * Used by CPU offline code.
5983 void sched_idle_next(void)
5985 int this_cpu = smp_processor_id();
5986 struct rq *rq = cpu_rq(this_cpu);
5987 struct task_struct *p = rq->idle;
5988 unsigned long flags;
5990 /* cpu has to be offline */
5991 BUG_ON(cpu_online(this_cpu));
5994 * Strictly not necessary since rest of the CPUs are stopped by now
5995 * and interrupts disabled on the current cpu.
5997 raw_spin_lock_irqsave(&rq->lock, flags);
5999 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6001 activate_task(rq, p, 0);
6003 raw_spin_unlock_irqrestore(&rq->lock, flags);
6007 * Ensures that the idle task is using init_mm right before its cpu goes
6008 * offline.
6010 void idle_task_exit(void)
6012 struct mm_struct *mm = current->active_mm;
6014 BUG_ON(cpu_online(smp_processor_id()));
6016 if (mm != &init_mm)
6017 switch_mm(mm, &init_mm, current);
6018 mmdrop(mm);
6021 /* called under rq->lock with disabled interrupts */
6022 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6024 struct rq *rq = cpu_rq(dead_cpu);
6026 /* Must be exiting, otherwise would be on tasklist. */
6027 BUG_ON(!p->exit_state);
6029 /* Cannot have done final schedule yet: would have vanished. */
6030 BUG_ON(p->state == TASK_DEAD);
6032 get_task_struct(p);
6035 * Drop lock around migration; if someone else moves it,
6036 * that's OK. No task can be added to this CPU, so iteration is
6037 * fine.
6039 raw_spin_unlock_irq(&rq->lock);
6040 move_task_off_dead_cpu(dead_cpu, p);
6041 raw_spin_lock_irq(&rq->lock);
6043 put_task_struct(p);
6046 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6047 static void migrate_dead_tasks(unsigned int dead_cpu)
6049 struct rq *rq = cpu_rq(dead_cpu);
6050 struct task_struct *next;
6052 for ( ; ; ) {
6053 if (!rq->nr_running)
6054 break;
6055 next = pick_next_task(rq);
6056 if (!next)
6057 break;
6058 next->sched_class->put_prev_task(rq, next);
6059 migrate_dead(dead_cpu, next);
6065 * remove the tasks which were accounted by rq from calc_load_tasks.
6067 static void calc_global_load_remove(struct rq *rq)
6069 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6070 rq->calc_load_active = 0;
6072 #endif /* CONFIG_HOTPLUG_CPU */
6074 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6076 static struct ctl_table sd_ctl_dir[] = {
6078 .procname = "sched_domain",
6079 .mode = 0555,
6084 static struct ctl_table sd_ctl_root[] = {
6086 .procname = "kernel",
6087 .mode = 0555,
6088 .child = sd_ctl_dir,
6093 static struct ctl_table *sd_alloc_ctl_entry(int n)
6095 struct ctl_table *entry =
6096 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6098 return entry;
6101 static void sd_free_ctl_entry(struct ctl_table **tablep)
6103 struct ctl_table *entry;
6106 * In the intermediate directories, both the child directory and
6107 * procname are dynamically allocated and could fail but the mode
6108 * will always be set. In the lowest directory the names are
6109 * static strings and all have proc handlers.
6111 for (entry = *tablep; entry->mode; entry++) {
6112 if (entry->child)
6113 sd_free_ctl_entry(&entry->child);
6114 if (entry->proc_handler == NULL)
6115 kfree(entry->procname);
6118 kfree(*tablep);
6119 *tablep = NULL;
6122 static void
6123 set_table_entry(struct ctl_table *entry,
6124 const char *procname, void *data, int maxlen,
6125 mode_t mode, proc_handler *proc_handler)
6127 entry->procname = procname;
6128 entry->data = data;
6129 entry->maxlen = maxlen;
6130 entry->mode = mode;
6131 entry->proc_handler = proc_handler;
6134 static struct ctl_table *
6135 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6137 struct ctl_table *table = sd_alloc_ctl_entry(13);
6139 if (table == NULL)
6140 return NULL;
6142 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6143 sizeof(long), 0644, proc_doulongvec_minmax);
6144 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6145 sizeof(long), 0644, proc_doulongvec_minmax);
6146 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6147 sizeof(int), 0644, proc_dointvec_minmax);
6148 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6149 sizeof(int), 0644, proc_dointvec_minmax);
6150 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6151 sizeof(int), 0644, proc_dointvec_minmax);
6152 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6153 sizeof(int), 0644, proc_dointvec_minmax);
6154 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6155 sizeof(int), 0644, proc_dointvec_minmax);
6156 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6157 sizeof(int), 0644, proc_dointvec_minmax);
6158 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6159 sizeof(int), 0644, proc_dointvec_minmax);
6160 set_table_entry(&table[9], "cache_nice_tries",
6161 &sd->cache_nice_tries,
6162 sizeof(int), 0644, proc_dointvec_minmax);
6163 set_table_entry(&table[10], "flags", &sd->flags,
6164 sizeof(int), 0644, proc_dointvec_minmax);
6165 set_table_entry(&table[11], "name", sd->name,
6166 CORENAME_MAX_SIZE, 0444, proc_dostring);
6167 /* &table[12] is terminator */
6169 return table;
6172 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6174 struct ctl_table *entry, *table;
6175 struct sched_domain *sd;
6176 int domain_num = 0, i;
6177 char buf[32];
6179 for_each_domain(cpu, sd)
6180 domain_num++;
6181 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6182 if (table == NULL)
6183 return NULL;
6185 i = 0;
6186 for_each_domain(cpu, sd) {
6187 snprintf(buf, 32, "domain%d", i);
6188 entry->procname = kstrdup(buf, GFP_KERNEL);
6189 entry->mode = 0555;
6190 entry->child = sd_alloc_ctl_domain_table(sd);
6191 entry++;
6192 i++;
6194 return table;
6197 static struct ctl_table_header *sd_sysctl_header;
6198 static void register_sched_domain_sysctl(void)
6200 int i, cpu_num = num_possible_cpus();
6201 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6202 char buf[32];
6204 WARN_ON(sd_ctl_dir[0].child);
6205 sd_ctl_dir[0].child = entry;
6207 if (entry == NULL)
6208 return;
6210 for_each_possible_cpu(i) {
6211 snprintf(buf, 32, "cpu%d", i);
6212 entry->procname = kstrdup(buf, GFP_KERNEL);
6213 entry->mode = 0555;
6214 entry->child = sd_alloc_ctl_cpu_table(i);
6215 entry++;
6218 WARN_ON(sd_sysctl_header);
6219 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6222 /* may be called multiple times per register */
6223 static void unregister_sched_domain_sysctl(void)
6225 if (sd_sysctl_header)
6226 unregister_sysctl_table(sd_sysctl_header);
6227 sd_sysctl_header = NULL;
6228 if (sd_ctl_dir[0].child)
6229 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6231 #else
6232 static void register_sched_domain_sysctl(void)
6235 static void unregister_sched_domain_sysctl(void)
6238 #endif
6240 static void set_rq_online(struct rq *rq)
6242 if (!rq->online) {
6243 const struct sched_class *class;
6245 cpumask_set_cpu(rq->cpu, rq->rd->online);
6246 rq->online = 1;
6248 for_each_class(class) {
6249 if (class->rq_online)
6250 class->rq_online(rq);
6255 static void set_rq_offline(struct rq *rq)
6257 if (rq->online) {
6258 const struct sched_class *class;
6260 for_each_class(class) {
6261 if (class->rq_offline)
6262 class->rq_offline(rq);
6265 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6266 rq->online = 0;
6271 * migration_call - callback that gets triggered when a CPU is added.
6272 * Here we can start up the necessary migration thread for the new CPU.
6274 static int __cpuinit
6275 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6277 int cpu = (long)hcpu;
6278 unsigned long flags;
6279 struct rq *rq = cpu_rq(cpu);
6281 switch (action) {
6283 case CPU_UP_PREPARE:
6284 case CPU_UP_PREPARE_FROZEN:
6285 rq->calc_load_update = calc_load_update;
6286 break;
6288 case CPU_ONLINE:
6289 case CPU_ONLINE_FROZEN:
6290 /* Update our root-domain */
6291 raw_spin_lock_irqsave(&rq->lock, flags);
6292 if (rq->rd) {
6293 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6295 set_rq_online(rq);
6297 raw_spin_unlock_irqrestore(&rq->lock, flags);
6298 break;
6300 #ifdef CONFIG_HOTPLUG_CPU
6301 case CPU_DEAD:
6302 case CPU_DEAD_FROZEN:
6303 migrate_live_tasks(cpu);
6304 /* Idle task back to normal (off runqueue, low prio) */
6305 raw_spin_lock_irq(&rq->lock);
6306 deactivate_task(rq, rq->idle, 0);
6307 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6308 rq->idle->sched_class = &idle_sched_class;
6309 migrate_dead_tasks(cpu);
6310 raw_spin_unlock_irq(&rq->lock);
6311 migrate_nr_uninterruptible(rq);
6312 BUG_ON(rq->nr_running != 0);
6313 calc_global_load_remove(rq);
6314 break;
6316 case CPU_DYING:
6317 case CPU_DYING_FROZEN:
6318 /* Update our root-domain */
6319 raw_spin_lock_irqsave(&rq->lock, flags);
6320 if (rq->rd) {
6321 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6322 set_rq_offline(rq);
6324 raw_spin_unlock_irqrestore(&rq->lock, flags);
6325 break;
6326 #endif
6328 return NOTIFY_OK;
6332 * Register at high priority so that task migration (migrate_all_tasks)
6333 * happens before everything else. This has to be lower priority than
6334 * the notifier in the perf_event subsystem, though.
6336 static struct notifier_block __cpuinitdata migration_notifier = {
6337 .notifier_call = migration_call,
6338 .priority = CPU_PRI_MIGRATION,
6341 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6342 unsigned long action, void *hcpu)
6344 switch (action & ~CPU_TASKS_FROZEN) {
6345 case CPU_ONLINE:
6346 case CPU_DOWN_FAILED:
6347 set_cpu_active((long)hcpu, true);
6348 return NOTIFY_OK;
6349 default:
6350 return NOTIFY_DONE;
6354 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6355 unsigned long action, void *hcpu)
6357 switch (action & ~CPU_TASKS_FROZEN) {
6358 case CPU_DOWN_PREPARE:
6359 set_cpu_active((long)hcpu, false);
6360 return NOTIFY_OK;
6361 default:
6362 return NOTIFY_DONE;
6366 static int __init migration_init(void)
6368 void *cpu = (void *)(long)smp_processor_id();
6369 int err;
6371 /* Initialize migration for the boot CPU */
6372 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6373 BUG_ON(err == NOTIFY_BAD);
6374 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6375 register_cpu_notifier(&migration_notifier);
6377 /* Register cpu active notifiers */
6378 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6379 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6381 return 0;
6383 early_initcall(migration_init);
6384 #endif
6386 #ifdef CONFIG_SMP
6388 #ifdef CONFIG_SCHED_DEBUG
6390 static __read_mostly int sched_domain_debug_enabled;
6392 static int __init sched_domain_debug_setup(char *str)
6394 sched_domain_debug_enabled = 1;
6396 return 0;
6398 early_param("sched_debug", sched_domain_debug_setup);
6400 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6401 struct cpumask *groupmask)
6403 struct sched_group *group = sd->groups;
6404 char str[256];
6406 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6407 cpumask_clear(groupmask);
6409 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6411 if (!(sd->flags & SD_LOAD_BALANCE)) {
6412 printk("does not load-balance\n");
6413 if (sd->parent)
6414 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6415 " has parent");
6416 return -1;
6419 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6421 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6422 printk(KERN_ERR "ERROR: domain->span does not contain "
6423 "CPU%d\n", cpu);
6425 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6426 printk(KERN_ERR "ERROR: domain->groups does not contain"
6427 " CPU%d\n", cpu);
6430 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6431 do {
6432 if (!group) {
6433 printk("\n");
6434 printk(KERN_ERR "ERROR: group is NULL\n");
6435 break;
6438 if (!group->cpu_power) {
6439 printk(KERN_CONT "\n");
6440 printk(KERN_ERR "ERROR: domain->cpu_power not "
6441 "set\n");
6442 break;
6445 if (!cpumask_weight(sched_group_cpus(group))) {
6446 printk(KERN_CONT "\n");
6447 printk(KERN_ERR "ERROR: empty group\n");
6448 break;
6451 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6452 printk(KERN_CONT "\n");
6453 printk(KERN_ERR "ERROR: repeated CPUs\n");
6454 break;
6457 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6459 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6461 printk(KERN_CONT " %s", str);
6462 if (group->cpu_power != SCHED_LOAD_SCALE) {
6463 printk(KERN_CONT " (cpu_power = %d)",
6464 group->cpu_power);
6467 group = group->next;
6468 } while (group != sd->groups);
6469 printk(KERN_CONT "\n");
6471 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6472 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6474 if (sd->parent &&
6475 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6476 printk(KERN_ERR "ERROR: parent span is not a superset "
6477 "of domain->span\n");
6478 return 0;
6481 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6483 cpumask_var_t groupmask;
6484 int level = 0;
6486 if (!sched_domain_debug_enabled)
6487 return;
6489 if (!sd) {
6490 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6491 return;
6494 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6496 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6497 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6498 return;
6501 for (;;) {
6502 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6503 break;
6504 level++;
6505 sd = sd->parent;
6506 if (!sd)
6507 break;
6509 free_cpumask_var(groupmask);
6511 #else /* !CONFIG_SCHED_DEBUG */
6512 # define sched_domain_debug(sd, cpu) do { } while (0)
6513 #endif /* CONFIG_SCHED_DEBUG */
6515 static int sd_degenerate(struct sched_domain *sd)
6517 if (cpumask_weight(sched_domain_span(sd)) == 1)
6518 return 1;
6520 /* Following flags need at least 2 groups */
6521 if (sd->flags & (SD_LOAD_BALANCE |
6522 SD_BALANCE_NEWIDLE |
6523 SD_BALANCE_FORK |
6524 SD_BALANCE_EXEC |
6525 SD_SHARE_CPUPOWER |
6526 SD_SHARE_PKG_RESOURCES)) {
6527 if (sd->groups != sd->groups->next)
6528 return 0;
6531 /* Following flags don't use groups */
6532 if (sd->flags & (SD_WAKE_AFFINE))
6533 return 0;
6535 return 1;
6538 static int
6539 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6541 unsigned long cflags = sd->flags, pflags = parent->flags;
6543 if (sd_degenerate(parent))
6544 return 1;
6546 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6547 return 0;
6549 /* Flags needing groups don't count if only 1 group in parent */
6550 if (parent->groups == parent->groups->next) {
6551 pflags &= ~(SD_LOAD_BALANCE |
6552 SD_BALANCE_NEWIDLE |
6553 SD_BALANCE_FORK |
6554 SD_BALANCE_EXEC |
6555 SD_SHARE_CPUPOWER |
6556 SD_SHARE_PKG_RESOURCES);
6557 if (nr_node_ids == 1)
6558 pflags &= ~SD_SERIALIZE;
6560 if (~cflags & pflags)
6561 return 0;
6563 return 1;
6566 static void free_rootdomain(struct root_domain *rd)
6568 synchronize_sched();
6570 cpupri_cleanup(&rd->cpupri);
6572 free_cpumask_var(rd->rto_mask);
6573 free_cpumask_var(rd->online);
6574 free_cpumask_var(rd->span);
6575 kfree(rd);
6578 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6580 struct root_domain *old_rd = NULL;
6581 unsigned long flags;
6583 raw_spin_lock_irqsave(&rq->lock, flags);
6585 if (rq->rd) {
6586 old_rd = rq->rd;
6588 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6589 set_rq_offline(rq);
6591 cpumask_clear_cpu(rq->cpu, old_rd->span);
6594 * If we dont want to free the old_rt yet then
6595 * set old_rd to NULL to skip the freeing later
6596 * in this function:
6598 if (!atomic_dec_and_test(&old_rd->refcount))
6599 old_rd = NULL;
6602 atomic_inc(&rd->refcount);
6603 rq->rd = rd;
6605 cpumask_set_cpu(rq->cpu, rd->span);
6606 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6607 set_rq_online(rq);
6609 raw_spin_unlock_irqrestore(&rq->lock, flags);
6611 if (old_rd)
6612 free_rootdomain(old_rd);
6615 static int init_rootdomain(struct root_domain *rd)
6617 memset(rd, 0, sizeof(*rd));
6619 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6620 goto out;
6621 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6622 goto free_span;
6623 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6624 goto free_online;
6626 if (cpupri_init(&rd->cpupri) != 0)
6627 goto free_rto_mask;
6628 return 0;
6630 free_rto_mask:
6631 free_cpumask_var(rd->rto_mask);
6632 free_online:
6633 free_cpumask_var(rd->online);
6634 free_span:
6635 free_cpumask_var(rd->span);
6636 out:
6637 return -ENOMEM;
6640 static void init_defrootdomain(void)
6642 init_rootdomain(&def_root_domain);
6644 atomic_set(&def_root_domain.refcount, 1);
6647 static struct root_domain *alloc_rootdomain(void)
6649 struct root_domain *rd;
6651 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6652 if (!rd)
6653 return NULL;
6655 if (init_rootdomain(rd) != 0) {
6656 kfree(rd);
6657 return NULL;
6660 return rd;
6664 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6665 * hold the hotplug lock.
6667 static void
6668 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6670 struct rq *rq = cpu_rq(cpu);
6671 struct sched_domain *tmp;
6673 for (tmp = sd; tmp; tmp = tmp->parent)
6674 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6676 /* Remove the sched domains which do not contribute to scheduling. */
6677 for (tmp = sd; tmp; ) {
6678 struct sched_domain *parent = tmp->parent;
6679 if (!parent)
6680 break;
6682 if (sd_parent_degenerate(tmp, parent)) {
6683 tmp->parent = parent->parent;
6684 if (parent->parent)
6685 parent->parent->child = tmp;
6686 } else
6687 tmp = tmp->parent;
6690 if (sd && sd_degenerate(sd)) {
6691 sd = sd->parent;
6692 if (sd)
6693 sd->child = NULL;
6696 sched_domain_debug(sd, cpu);
6698 rq_attach_root(rq, rd);
6699 rcu_assign_pointer(rq->sd, sd);
6702 /* cpus with isolated domains */
6703 static cpumask_var_t cpu_isolated_map;
6705 /* Setup the mask of cpus configured for isolated domains */
6706 static int __init isolated_cpu_setup(char *str)
6708 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6709 cpulist_parse(str, cpu_isolated_map);
6710 return 1;
6713 __setup("isolcpus=", isolated_cpu_setup);
6716 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6717 * to a function which identifies what group(along with sched group) a CPU
6718 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6719 * (due to the fact that we keep track of groups covered with a struct cpumask).
6721 * init_sched_build_groups will build a circular linked list of the groups
6722 * covered by the given span, and will set each group's ->cpumask correctly,
6723 * and ->cpu_power to 0.
6725 static void
6726 init_sched_build_groups(const struct cpumask *span,
6727 const struct cpumask *cpu_map,
6728 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6729 struct sched_group **sg,
6730 struct cpumask *tmpmask),
6731 struct cpumask *covered, struct cpumask *tmpmask)
6733 struct sched_group *first = NULL, *last = NULL;
6734 int i;
6736 cpumask_clear(covered);
6738 for_each_cpu(i, span) {
6739 struct sched_group *sg;
6740 int group = group_fn(i, cpu_map, &sg, tmpmask);
6741 int j;
6743 if (cpumask_test_cpu(i, covered))
6744 continue;
6746 cpumask_clear(sched_group_cpus(sg));
6747 sg->cpu_power = 0;
6749 for_each_cpu(j, span) {
6750 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6751 continue;
6753 cpumask_set_cpu(j, covered);
6754 cpumask_set_cpu(j, sched_group_cpus(sg));
6756 if (!first)
6757 first = sg;
6758 if (last)
6759 last->next = sg;
6760 last = sg;
6762 last->next = first;
6765 #define SD_NODES_PER_DOMAIN 16
6767 #ifdef CONFIG_NUMA
6770 * find_next_best_node - find the next node to include in a sched_domain
6771 * @node: node whose sched_domain we're building
6772 * @used_nodes: nodes already in the sched_domain
6774 * Find the next node to include in a given scheduling domain. Simply
6775 * finds the closest node not already in the @used_nodes map.
6777 * Should use nodemask_t.
6779 static int find_next_best_node(int node, nodemask_t *used_nodes)
6781 int i, n, val, min_val, best_node = 0;
6783 min_val = INT_MAX;
6785 for (i = 0; i < nr_node_ids; i++) {
6786 /* Start at @node */
6787 n = (node + i) % nr_node_ids;
6789 if (!nr_cpus_node(n))
6790 continue;
6792 /* Skip already used nodes */
6793 if (node_isset(n, *used_nodes))
6794 continue;
6796 /* Simple min distance search */
6797 val = node_distance(node, n);
6799 if (val < min_val) {
6800 min_val = val;
6801 best_node = n;
6805 node_set(best_node, *used_nodes);
6806 return best_node;
6810 * sched_domain_node_span - get a cpumask for a node's sched_domain
6811 * @node: node whose cpumask we're constructing
6812 * @span: resulting cpumask
6814 * Given a node, construct a good cpumask for its sched_domain to span. It
6815 * should be one that prevents unnecessary balancing, but also spreads tasks
6816 * out optimally.
6818 static void sched_domain_node_span(int node, struct cpumask *span)
6820 nodemask_t used_nodes;
6821 int i;
6823 cpumask_clear(span);
6824 nodes_clear(used_nodes);
6826 cpumask_or(span, span, cpumask_of_node(node));
6827 node_set(node, used_nodes);
6829 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6830 int next_node = find_next_best_node(node, &used_nodes);
6832 cpumask_or(span, span, cpumask_of_node(next_node));
6835 #endif /* CONFIG_NUMA */
6837 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6840 * The cpus mask in sched_group and sched_domain hangs off the end.
6842 * ( See the the comments in include/linux/sched.h:struct sched_group
6843 * and struct sched_domain. )
6845 struct static_sched_group {
6846 struct sched_group sg;
6847 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6850 struct static_sched_domain {
6851 struct sched_domain sd;
6852 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6855 struct s_data {
6856 #ifdef CONFIG_NUMA
6857 int sd_allnodes;
6858 cpumask_var_t domainspan;
6859 cpumask_var_t covered;
6860 cpumask_var_t notcovered;
6861 #endif
6862 cpumask_var_t nodemask;
6863 cpumask_var_t this_sibling_map;
6864 cpumask_var_t this_core_map;
6865 cpumask_var_t this_book_map;
6866 cpumask_var_t send_covered;
6867 cpumask_var_t tmpmask;
6868 struct sched_group **sched_group_nodes;
6869 struct root_domain *rd;
6872 enum s_alloc {
6873 sa_sched_groups = 0,
6874 sa_rootdomain,
6875 sa_tmpmask,
6876 sa_send_covered,
6877 sa_this_book_map,
6878 sa_this_core_map,
6879 sa_this_sibling_map,
6880 sa_nodemask,
6881 sa_sched_group_nodes,
6882 #ifdef CONFIG_NUMA
6883 sa_notcovered,
6884 sa_covered,
6885 sa_domainspan,
6886 #endif
6887 sa_none,
6891 * SMT sched-domains:
6893 #ifdef CONFIG_SCHED_SMT
6894 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6895 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6897 static int
6898 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6899 struct sched_group **sg, struct cpumask *unused)
6901 if (sg)
6902 *sg = &per_cpu(sched_groups, cpu).sg;
6903 return cpu;
6905 #endif /* CONFIG_SCHED_SMT */
6908 * multi-core sched-domains:
6910 #ifdef CONFIG_SCHED_MC
6911 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6912 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6914 static int
6915 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6916 struct sched_group **sg, struct cpumask *mask)
6918 int group;
6919 #ifdef CONFIG_SCHED_SMT
6920 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6921 group = cpumask_first(mask);
6922 #else
6923 group = cpu;
6924 #endif
6925 if (sg)
6926 *sg = &per_cpu(sched_group_core, group).sg;
6927 return group;
6929 #endif /* CONFIG_SCHED_MC */
6932 * book sched-domains:
6934 #ifdef CONFIG_SCHED_BOOK
6935 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6936 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6938 static int
6939 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6940 struct sched_group **sg, struct cpumask *mask)
6942 int group = cpu;
6943 #ifdef CONFIG_SCHED_MC
6944 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6945 group = cpumask_first(mask);
6946 #elif defined(CONFIG_SCHED_SMT)
6947 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6948 group = cpumask_first(mask);
6949 #endif
6950 if (sg)
6951 *sg = &per_cpu(sched_group_book, group).sg;
6952 return group;
6954 #endif /* CONFIG_SCHED_BOOK */
6956 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6957 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6959 static int
6960 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6961 struct sched_group **sg, struct cpumask *mask)
6963 int group;
6964 #ifdef CONFIG_SCHED_BOOK
6965 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6966 group = cpumask_first(mask);
6967 #elif defined(CONFIG_SCHED_MC)
6968 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6969 group = cpumask_first(mask);
6970 #elif defined(CONFIG_SCHED_SMT)
6971 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6972 group = cpumask_first(mask);
6973 #else
6974 group = cpu;
6975 #endif
6976 if (sg)
6977 *sg = &per_cpu(sched_group_phys, group).sg;
6978 return group;
6981 #ifdef CONFIG_NUMA
6983 * The init_sched_build_groups can't handle what we want to do with node
6984 * groups, so roll our own. Now each node has its own list of groups which
6985 * gets dynamically allocated.
6987 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6988 static struct sched_group ***sched_group_nodes_bycpu;
6990 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6991 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6993 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6994 struct sched_group **sg,
6995 struct cpumask *nodemask)
6997 int group;
6999 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7000 group = cpumask_first(nodemask);
7002 if (sg)
7003 *sg = &per_cpu(sched_group_allnodes, group).sg;
7004 return group;
7007 static void init_numa_sched_groups_power(struct sched_group *group_head)
7009 struct sched_group *sg = group_head;
7010 int j;
7012 if (!sg)
7013 return;
7014 do {
7015 for_each_cpu(j, sched_group_cpus(sg)) {
7016 struct sched_domain *sd;
7018 sd = &per_cpu(phys_domains, j).sd;
7019 if (j != group_first_cpu(sd->groups)) {
7021 * Only add "power" once for each
7022 * physical package.
7024 continue;
7027 sg->cpu_power += sd->groups->cpu_power;
7029 sg = sg->next;
7030 } while (sg != group_head);
7033 static int build_numa_sched_groups(struct s_data *d,
7034 const struct cpumask *cpu_map, int num)
7036 struct sched_domain *sd;
7037 struct sched_group *sg, *prev;
7038 int n, j;
7040 cpumask_clear(d->covered);
7041 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7042 if (cpumask_empty(d->nodemask)) {
7043 d->sched_group_nodes[num] = NULL;
7044 goto out;
7047 sched_domain_node_span(num, d->domainspan);
7048 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7050 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7051 GFP_KERNEL, num);
7052 if (!sg) {
7053 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7054 num);
7055 return -ENOMEM;
7057 d->sched_group_nodes[num] = sg;
7059 for_each_cpu(j, d->nodemask) {
7060 sd = &per_cpu(node_domains, j).sd;
7061 sd->groups = sg;
7064 sg->cpu_power = 0;
7065 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7066 sg->next = sg;
7067 cpumask_or(d->covered, d->covered, d->nodemask);
7069 prev = sg;
7070 for (j = 0; j < nr_node_ids; j++) {
7071 n = (num + j) % nr_node_ids;
7072 cpumask_complement(d->notcovered, d->covered);
7073 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7074 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7075 if (cpumask_empty(d->tmpmask))
7076 break;
7077 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7078 if (cpumask_empty(d->tmpmask))
7079 continue;
7080 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7081 GFP_KERNEL, num);
7082 if (!sg) {
7083 printk(KERN_WARNING
7084 "Can not alloc domain group for node %d\n", j);
7085 return -ENOMEM;
7087 sg->cpu_power = 0;
7088 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7089 sg->next = prev->next;
7090 cpumask_or(d->covered, d->covered, d->tmpmask);
7091 prev->next = sg;
7092 prev = sg;
7094 out:
7095 return 0;
7097 #endif /* CONFIG_NUMA */
7099 #ifdef CONFIG_NUMA
7100 /* Free memory allocated for various sched_group structures */
7101 static void free_sched_groups(const struct cpumask *cpu_map,
7102 struct cpumask *nodemask)
7104 int cpu, i;
7106 for_each_cpu(cpu, cpu_map) {
7107 struct sched_group **sched_group_nodes
7108 = sched_group_nodes_bycpu[cpu];
7110 if (!sched_group_nodes)
7111 continue;
7113 for (i = 0; i < nr_node_ids; i++) {
7114 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7116 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7117 if (cpumask_empty(nodemask))
7118 continue;
7120 if (sg == NULL)
7121 continue;
7122 sg = sg->next;
7123 next_sg:
7124 oldsg = sg;
7125 sg = sg->next;
7126 kfree(oldsg);
7127 if (oldsg != sched_group_nodes[i])
7128 goto next_sg;
7130 kfree(sched_group_nodes);
7131 sched_group_nodes_bycpu[cpu] = NULL;
7134 #else /* !CONFIG_NUMA */
7135 static void free_sched_groups(const struct cpumask *cpu_map,
7136 struct cpumask *nodemask)
7139 #endif /* CONFIG_NUMA */
7142 * Initialize sched groups cpu_power.
7144 * cpu_power indicates the capacity of sched group, which is used while
7145 * distributing the load between different sched groups in a sched domain.
7146 * Typically cpu_power for all the groups in a sched domain will be same unless
7147 * there are asymmetries in the topology. If there are asymmetries, group
7148 * having more cpu_power will pickup more load compared to the group having
7149 * less cpu_power.
7151 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7153 struct sched_domain *child;
7154 struct sched_group *group;
7155 long power;
7156 int weight;
7158 WARN_ON(!sd || !sd->groups);
7160 if (cpu != group_first_cpu(sd->groups))
7161 return;
7163 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7165 child = sd->child;
7167 sd->groups->cpu_power = 0;
7169 if (!child) {
7170 power = SCHED_LOAD_SCALE;
7171 weight = cpumask_weight(sched_domain_span(sd));
7173 * SMT siblings share the power of a single core.
7174 * Usually multiple threads get a better yield out of
7175 * that one core than a single thread would have,
7176 * reflect that in sd->smt_gain.
7178 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7179 power *= sd->smt_gain;
7180 power /= weight;
7181 power >>= SCHED_LOAD_SHIFT;
7183 sd->groups->cpu_power += power;
7184 return;
7188 * Add cpu_power of each child group to this groups cpu_power.
7190 group = child->groups;
7191 do {
7192 sd->groups->cpu_power += group->cpu_power;
7193 group = group->next;
7194 } while (group != child->groups);
7198 * Initializers for schedule domains
7199 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7202 #ifdef CONFIG_SCHED_DEBUG
7203 # define SD_INIT_NAME(sd, type) sd->name = #type
7204 #else
7205 # define SD_INIT_NAME(sd, type) do { } while (0)
7206 #endif
7208 #define SD_INIT(sd, type) sd_init_##type(sd)
7210 #define SD_INIT_FUNC(type) \
7211 static noinline void sd_init_##type(struct sched_domain *sd) \
7213 memset(sd, 0, sizeof(*sd)); \
7214 *sd = SD_##type##_INIT; \
7215 sd->level = SD_LV_##type; \
7216 SD_INIT_NAME(sd, type); \
7219 SD_INIT_FUNC(CPU)
7220 #ifdef CONFIG_NUMA
7221 SD_INIT_FUNC(ALLNODES)
7222 SD_INIT_FUNC(NODE)
7223 #endif
7224 #ifdef CONFIG_SCHED_SMT
7225 SD_INIT_FUNC(SIBLING)
7226 #endif
7227 #ifdef CONFIG_SCHED_MC
7228 SD_INIT_FUNC(MC)
7229 #endif
7230 #ifdef CONFIG_SCHED_BOOK
7231 SD_INIT_FUNC(BOOK)
7232 #endif
7234 static int default_relax_domain_level = -1;
7236 static int __init setup_relax_domain_level(char *str)
7238 unsigned long val;
7240 val = simple_strtoul(str, NULL, 0);
7241 if (val < SD_LV_MAX)
7242 default_relax_domain_level = val;
7244 return 1;
7246 __setup("relax_domain_level=", setup_relax_domain_level);
7248 static void set_domain_attribute(struct sched_domain *sd,
7249 struct sched_domain_attr *attr)
7251 int request;
7253 if (!attr || attr->relax_domain_level < 0) {
7254 if (default_relax_domain_level < 0)
7255 return;
7256 else
7257 request = default_relax_domain_level;
7258 } else
7259 request = attr->relax_domain_level;
7260 if (request < sd->level) {
7261 /* turn off idle balance on this domain */
7262 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7263 } else {
7264 /* turn on idle balance on this domain */
7265 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7269 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7270 const struct cpumask *cpu_map)
7272 switch (what) {
7273 case sa_sched_groups:
7274 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7275 d->sched_group_nodes = NULL;
7276 case sa_rootdomain:
7277 free_rootdomain(d->rd); /* fall through */
7278 case sa_tmpmask:
7279 free_cpumask_var(d->tmpmask); /* fall through */
7280 case sa_send_covered:
7281 free_cpumask_var(d->send_covered); /* fall through */
7282 case sa_this_book_map:
7283 free_cpumask_var(d->this_book_map); /* fall through */
7284 case sa_this_core_map:
7285 free_cpumask_var(d->this_core_map); /* fall through */
7286 case sa_this_sibling_map:
7287 free_cpumask_var(d->this_sibling_map); /* fall through */
7288 case sa_nodemask:
7289 free_cpumask_var(d->nodemask); /* fall through */
7290 case sa_sched_group_nodes:
7291 #ifdef CONFIG_NUMA
7292 kfree(d->sched_group_nodes); /* fall through */
7293 case sa_notcovered:
7294 free_cpumask_var(d->notcovered); /* fall through */
7295 case sa_covered:
7296 free_cpumask_var(d->covered); /* fall through */
7297 case sa_domainspan:
7298 free_cpumask_var(d->domainspan); /* fall through */
7299 #endif
7300 case sa_none:
7301 break;
7305 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7306 const struct cpumask *cpu_map)
7308 #ifdef CONFIG_NUMA
7309 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7310 return sa_none;
7311 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7312 return sa_domainspan;
7313 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7314 return sa_covered;
7315 /* Allocate the per-node list of sched groups */
7316 d->sched_group_nodes = kcalloc(nr_node_ids,
7317 sizeof(struct sched_group *), GFP_KERNEL);
7318 if (!d->sched_group_nodes) {
7319 printk(KERN_WARNING "Can not alloc sched group node list\n");
7320 return sa_notcovered;
7322 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7323 #endif
7324 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7325 return sa_sched_group_nodes;
7326 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7327 return sa_nodemask;
7328 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7329 return sa_this_sibling_map;
7330 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7331 return sa_this_core_map;
7332 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7333 return sa_this_book_map;
7334 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7335 return sa_send_covered;
7336 d->rd = alloc_rootdomain();
7337 if (!d->rd) {
7338 printk(KERN_WARNING "Cannot alloc root domain\n");
7339 return sa_tmpmask;
7341 return sa_rootdomain;
7344 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7345 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7347 struct sched_domain *sd = NULL;
7348 #ifdef CONFIG_NUMA
7349 struct sched_domain *parent;
7351 d->sd_allnodes = 0;
7352 if (cpumask_weight(cpu_map) >
7353 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7354 sd = &per_cpu(allnodes_domains, i).sd;
7355 SD_INIT(sd, ALLNODES);
7356 set_domain_attribute(sd, attr);
7357 cpumask_copy(sched_domain_span(sd), cpu_map);
7358 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7359 d->sd_allnodes = 1;
7361 parent = sd;
7363 sd = &per_cpu(node_domains, i).sd;
7364 SD_INIT(sd, NODE);
7365 set_domain_attribute(sd, attr);
7366 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7367 sd->parent = parent;
7368 if (parent)
7369 parent->child = sd;
7370 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7371 #endif
7372 return sd;
7375 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7376 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7377 struct sched_domain *parent, int i)
7379 struct sched_domain *sd;
7380 sd = &per_cpu(phys_domains, i).sd;
7381 SD_INIT(sd, CPU);
7382 set_domain_attribute(sd, attr);
7383 cpumask_copy(sched_domain_span(sd), d->nodemask);
7384 sd->parent = parent;
7385 if (parent)
7386 parent->child = sd;
7387 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7388 return sd;
7391 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7392 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7393 struct sched_domain *parent, int i)
7395 struct sched_domain *sd = parent;
7396 #ifdef CONFIG_SCHED_BOOK
7397 sd = &per_cpu(book_domains, i).sd;
7398 SD_INIT(sd, BOOK);
7399 set_domain_attribute(sd, attr);
7400 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7401 sd->parent = parent;
7402 parent->child = sd;
7403 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7404 #endif
7405 return sd;
7408 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7409 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7410 struct sched_domain *parent, int i)
7412 struct sched_domain *sd = parent;
7413 #ifdef CONFIG_SCHED_MC
7414 sd = &per_cpu(core_domains, i).sd;
7415 SD_INIT(sd, MC);
7416 set_domain_attribute(sd, attr);
7417 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7418 sd->parent = parent;
7419 parent->child = sd;
7420 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7421 #endif
7422 return sd;
7425 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7426 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7427 struct sched_domain *parent, int i)
7429 struct sched_domain *sd = parent;
7430 #ifdef CONFIG_SCHED_SMT
7431 sd = &per_cpu(cpu_domains, i).sd;
7432 SD_INIT(sd, SIBLING);
7433 set_domain_attribute(sd, attr);
7434 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7435 sd->parent = parent;
7436 parent->child = sd;
7437 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7438 #endif
7439 return sd;
7442 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7443 const struct cpumask *cpu_map, int cpu)
7445 switch (l) {
7446 #ifdef CONFIG_SCHED_SMT
7447 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7448 cpumask_and(d->this_sibling_map, cpu_map,
7449 topology_thread_cpumask(cpu));
7450 if (cpu == cpumask_first(d->this_sibling_map))
7451 init_sched_build_groups(d->this_sibling_map, cpu_map,
7452 &cpu_to_cpu_group,
7453 d->send_covered, d->tmpmask);
7454 break;
7455 #endif
7456 #ifdef CONFIG_SCHED_MC
7457 case SD_LV_MC: /* set up multi-core groups */
7458 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7459 if (cpu == cpumask_first(d->this_core_map))
7460 init_sched_build_groups(d->this_core_map, cpu_map,
7461 &cpu_to_core_group,
7462 d->send_covered, d->tmpmask);
7463 break;
7464 #endif
7465 #ifdef CONFIG_SCHED_BOOK
7466 case SD_LV_BOOK: /* set up book groups */
7467 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7468 if (cpu == cpumask_first(d->this_book_map))
7469 init_sched_build_groups(d->this_book_map, cpu_map,
7470 &cpu_to_book_group,
7471 d->send_covered, d->tmpmask);
7472 break;
7473 #endif
7474 case SD_LV_CPU: /* set up physical groups */
7475 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7476 if (!cpumask_empty(d->nodemask))
7477 init_sched_build_groups(d->nodemask, cpu_map,
7478 &cpu_to_phys_group,
7479 d->send_covered, d->tmpmask);
7480 break;
7481 #ifdef CONFIG_NUMA
7482 case SD_LV_ALLNODES:
7483 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7484 d->send_covered, d->tmpmask);
7485 break;
7486 #endif
7487 default:
7488 break;
7493 * Build sched domains for a given set of cpus and attach the sched domains
7494 * to the individual cpus
7496 static int __build_sched_domains(const struct cpumask *cpu_map,
7497 struct sched_domain_attr *attr)
7499 enum s_alloc alloc_state = sa_none;
7500 struct s_data d;
7501 struct sched_domain *sd;
7502 int i;
7503 #ifdef CONFIG_NUMA
7504 d.sd_allnodes = 0;
7505 #endif
7507 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7508 if (alloc_state != sa_rootdomain)
7509 goto error;
7510 alloc_state = sa_sched_groups;
7513 * Set up domains for cpus specified by the cpu_map.
7515 for_each_cpu(i, cpu_map) {
7516 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7517 cpu_map);
7519 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7520 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7521 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7522 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7523 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7526 for_each_cpu(i, cpu_map) {
7527 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7528 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7529 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7532 /* Set up physical groups */
7533 for (i = 0; i < nr_node_ids; i++)
7534 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7536 #ifdef CONFIG_NUMA
7537 /* Set up node groups */
7538 if (d.sd_allnodes)
7539 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7541 for (i = 0; i < nr_node_ids; i++)
7542 if (build_numa_sched_groups(&d, cpu_map, i))
7543 goto error;
7544 #endif
7546 /* Calculate CPU power for physical packages and nodes */
7547 #ifdef CONFIG_SCHED_SMT
7548 for_each_cpu(i, cpu_map) {
7549 sd = &per_cpu(cpu_domains, i).sd;
7550 init_sched_groups_power(i, sd);
7552 #endif
7553 #ifdef CONFIG_SCHED_MC
7554 for_each_cpu(i, cpu_map) {
7555 sd = &per_cpu(core_domains, i).sd;
7556 init_sched_groups_power(i, sd);
7558 #endif
7559 #ifdef CONFIG_SCHED_BOOK
7560 for_each_cpu(i, cpu_map) {
7561 sd = &per_cpu(book_domains, i).sd;
7562 init_sched_groups_power(i, sd);
7564 #endif
7566 for_each_cpu(i, cpu_map) {
7567 sd = &per_cpu(phys_domains, i).sd;
7568 init_sched_groups_power(i, sd);
7571 #ifdef CONFIG_NUMA
7572 for (i = 0; i < nr_node_ids; i++)
7573 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7575 if (d.sd_allnodes) {
7576 struct sched_group *sg;
7578 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7579 d.tmpmask);
7580 init_numa_sched_groups_power(sg);
7582 #endif
7584 /* Attach the domains */
7585 for_each_cpu(i, cpu_map) {
7586 #ifdef CONFIG_SCHED_SMT
7587 sd = &per_cpu(cpu_domains, i).sd;
7588 #elif defined(CONFIG_SCHED_MC)
7589 sd = &per_cpu(core_domains, i).sd;
7590 #elif defined(CONFIG_SCHED_BOOK)
7591 sd = &per_cpu(book_domains, i).sd;
7592 #else
7593 sd = &per_cpu(phys_domains, i).sd;
7594 #endif
7595 cpu_attach_domain(sd, d.rd, i);
7598 d.sched_group_nodes = NULL; /* don't free this we still need it */
7599 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7600 return 0;
7602 error:
7603 __free_domain_allocs(&d, alloc_state, cpu_map);
7604 return -ENOMEM;
7607 static int build_sched_domains(const struct cpumask *cpu_map)
7609 return __build_sched_domains(cpu_map, NULL);
7612 static cpumask_var_t *doms_cur; /* current sched domains */
7613 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7614 static struct sched_domain_attr *dattr_cur;
7615 /* attribues of custom domains in 'doms_cur' */
7618 * Special case: If a kmalloc of a doms_cur partition (array of
7619 * cpumask) fails, then fallback to a single sched domain,
7620 * as determined by the single cpumask fallback_doms.
7622 static cpumask_var_t fallback_doms;
7625 * arch_update_cpu_topology lets virtualized architectures update the
7626 * cpu core maps. It is supposed to return 1 if the topology changed
7627 * or 0 if it stayed the same.
7629 int __attribute__((weak)) arch_update_cpu_topology(void)
7631 return 0;
7634 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7636 int i;
7637 cpumask_var_t *doms;
7639 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7640 if (!doms)
7641 return NULL;
7642 for (i = 0; i < ndoms; i++) {
7643 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7644 free_sched_domains(doms, i);
7645 return NULL;
7648 return doms;
7651 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7653 unsigned int i;
7654 for (i = 0; i < ndoms; i++)
7655 free_cpumask_var(doms[i]);
7656 kfree(doms);
7660 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7661 * For now this just excludes isolated cpus, but could be used to
7662 * exclude other special cases in the future.
7664 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7666 int err;
7668 arch_update_cpu_topology();
7669 ndoms_cur = 1;
7670 doms_cur = alloc_sched_domains(ndoms_cur);
7671 if (!doms_cur)
7672 doms_cur = &fallback_doms;
7673 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7674 dattr_cur = NULL;
7675 err = build_sched_domains(doms_cur[0]);
7676 register_sched_domain_sysctl();
7678 return err;
7681 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7682 struct cpumask *tmpmask)
7684 free_sched_groups(cpu_map, tmpmask);
7688 * Detach sched domains from a group of cpus specified in cpu_map
7689 * These cpus will now be attached to the NULL domain
7691 static void detach_destroy_domains(const struct cpumask *cpu_map)
7693 /* Save because hotplug lock held. */
7694 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7695 int i;
7697 for_each_cpu(i, cpu_map)
7698 cpu_attach_domain(NULL, &def_root_domain, i);
7699 synchronize_sched();
7700 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7703 /* handle null as "default" */
7704 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7705 struct sched_domain_attr *new, int idx_new)
7707 struct sched_domain_attr tmp;
7709 /* fast path */
7710 if (!new && !cur)
7711 return 1;
7713 tmp = SD_ATTR_INIT;
7714 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7715 new ? (new + idx_new) : &tmp,
7716 sizeof(struct sched_domain_attr));
7720 * Partition sched domains as specified by the 'ndoms_new'
7721 * cpumasks in the array doms_new[] of cpumasks. This compares
7722 * doms_new[] to the current sched domain partitioning, doms_cur[].
7723 * It destroys each deleted domain and builds each new domain.
7725 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7726 * The masks don't intersect (don't overlap.) We should setup one
7727 * sched domain for each mask. CPUs not in any of the cpumasks will
7728 * not be load balanced. If the same cpumask appears both in the
7729 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7730 * it as it is.
7732 * The passed in 'doms_new' should be allocated using
7733 * alloc_sched_domains. This routine takes ownership of it and will
7734 * free_sched_domains it when done with it. If the caller failed the
7735 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7736 * and partition_sched_domains() will fallback to the single partition
7737 * 'fallback_doms', it also forces the domains to be rebuilt.
7739 * If doms_new == NULL it will be replaced with cpu_online_mask.
7740 * ndoms_new == 0 is a special case for destroying existing domains,
7741 * and it will not create the default domain.
7743 * Call with hotplug lock held
7745 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7746 struct sched_domain_attr *dattr_new)
7748 int i, j, n;
7749 int new_topology;
7751 mutex_lock(&sched_domains_mutex);
7753 /* always unregister in case we don't destroy any domains */
7754 unregister_sched_domain_sysctl();
7756 /* Let architecture update cpu core mappings. */
7757 new_topology = arch_update_cpu_topology();
7759 n = doms_new ? ndoms_new : 0;
7761 /* Destroy deleted domains */
7762 for (i = 0; i < ndoms_cur; i++) {
7763 for (j = 0; j < n && !new_topology; j++) {
7764 if (cpumask_equal(doms_cur[i], doms_new[j])
7765 && dattrs_equal(dattr_cur, i, dattr_new, j))
7766 goto match1;
7768 /* no match - a current sched domain not in new doms_new[] */
7769 detach_destroy_domains(doms_cur[i]);
7770 match1:
7774 if (doms_new == NULL) {
7775 ndoms_cur = 0;
7776 doms_new = &fallback_doms;
7777 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7778 WARN_ON_ONCE(dattr_new);
7781 /* Build new domains */
7782 for (i = 0; i < ndoms_new; i++) {
7783 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7784 if (cpumask_equal(doms_new[i], doms_cur[j])
7785 && dattrs_equal(dattr_new, i, dattr_cur, j))
7786 goto match2;
7788 /* no match - add a new doms_new */
7789 __build_sched_domains(doms_new[i],
7790 dattr_new ? dattr_new + i : NULL);
7791 match2:
7795 /* Remember the new sched domains */
7796 if (doms_cur != &fallback_doms)
7797 free_sched_domains(doms_cur, ndoms_cur);
7798 kfree(dattr_cur); /* kfree(NULL) is safe */
7799 doms_cur = doms_new;
7800 dattr_cur = dattr_new;
7801 ndoms_cur = ndoms_new;
7803 register_sched_domain_sysctl();
7805 mutex_unlock(&sched_domains_mutex);
7808 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7809 static void arch_reinit_sched_domains(void)
7811 get_online_cpus();
7813 /* Destroy domains first to force the rebuild */
7814 partition_sched_domains(0, NULL, NULL);
7816 rebuild_sched_domains();
7817 put_online_cpus();
7820 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7822 unsigned int level = 0;
7824 if (sscanf(buf, "%u", &level) != 1)
7825 return -EINVAL;
7828 * level is always be positive so don't check for
7829 * level < POWERSAVINGS_BALANCE_NONE which is 0
7830 * What happens on 0 or 1 byte write,
7831 * need to check for count as well?
7834 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7835 return -EINVAL;
7837 if (smt)
7838 sched_smt_power_savings = level;
7839 else
7840 sched_mc_power_savings = level;
7842 arch_reinit_sched_domains();
7844 return count;
7847 #ifdef CONFIG_SCHED_MC
7848 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7849 struct sysdev_class_attribute *attr,
7850 char *page)
7852 return sprintf(page, "%u\n", sched_mc_power_savings);
7854 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7855 struct sysdev_class_attribute *attr,
7856 const char *buf, size_t count)
7858 return sched_power_savings_store(buf, count, 0);
7860 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7861 sched_mc_power_savings_show,
7862 sched_mc_power_savings_store);
7863 #endif
7865 #ifdef CONFIG_SCHED_SMT
7866 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7867 struct sysdev_class_attribute *attr,
7868 char *page)
7870 return sprintf(page, "%u\n", sched_smt_power_savings);
7872 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7873 struct sysdev_class_attribute *attr,
7874 const char *buf, size_t count)
7876 return sched_power_savings_store(buf, count, 1);
7878 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7879 sched_smt_power_savings_show,
7880 sched_smt_power_savings_store);
7881 #endif
7883 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7885 int err = 0;
7887 #ifdef CONFIG_SCHED_SMT
7888 if (smt_capable())
7889 err = sysfs_create_file(&cls->kset.kobj,
7890 &attr_sched_smt_power_savings.attr);
7891 #endif
7892 #ifdef CONFIG_SCHED_MC
7893 if (!err && mc_capable())
7894 err = sysfs_create_file(&cls->kset.kobj,
7895 &attr_sched_mc_power_savings.attr);
7896 #endif
7897 return err;
7899 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7902 * Update cpusets according to cpu_active mask. If cpusets are
7903 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7904 * around partition_sched_domains().
7906 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7907 void *hcpu)
7909 switch (action & ~CPU_TASKS_FROZEN) {
7910 case CPU_ONLINE:
7911 case CPU_DOWN_FAILED:
7912 cpuset_update_active_cpus();
7913 return NOTIFY_OK;
7914 default:
7915 return NOTIFY_DONE;
7919 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7920 void *hcpu)
7922 switch (action & ~CPU_TASKS_FROZEN) {
7923 case CPU_DOWN_PREPARE:
7924 cpuset_update_active_cpus();
7925 return NOTIFY_OK;
7926 default:
7927 return NOTIFY_DONE;
7931 static int update_runtime(struct notifier_block *nfb,
7932 unsigned long action, void *hcpu)
7934 int cpu = (int)(long)hcpu;
7936 switch (action) {
7937 case CPU_DOWN_PREPARE:
7938 case CPU_DOWN_PREPARE_FROZEN:
7939 disable_runtime(cpu_rq(cpu));
7940 return NOTIFY_OK;
7942 case CPU_DOWN_FAILED:
7943 case CPU_DOWN_FAILED_FROZEN:
7944 case CPU_ONLINE:
7945 case CPU_ONLINE_FROZEN:
7946 enable_runtime(cpu_rq(cpu));
7947 return NOTIFY_OK;
7949 default:
7950 return NOTIFY_DONE;
7954 void __init sched_init_smp(void)
7956 cpumask_var_t non_isolated_cpus;
7958 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7959 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7961 #if defined(CONFIG_NUMA)
7962 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7963 GFP_KERNEL);
7964 BUG_ON(sched_group_nodes_bycpu == NULL);
7965 #endif
7966 get_online_cpus();
7967 mutex_lock(&sched_domains_mutex);
7968 arch_init_sched_domains(cpu_active_mask);
7969 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7970 if (cpumask_empty(non_isolated_cpus))
7971 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7972 mutex_unlock(&sched_domains_mutex);
7973 put_online_cpus();
7975 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7976 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7978 /* RT runtime code needs to handle some hotplug events */
7979 hotcpu_notifier(update_runtime, 0);
7981 init_hrtick();
7983 /* Move init over to a non-isolated CPU */
7984 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7985 BUG();
7986 sched_init_granularity();
7987 free_cpumask_var(non_isolated_cpus);
7989 init_sched_rt_class();
7991 #else
7992 void __init sched_init_smp(void)
7994 sched_init_granularity();
7996 #endif /* CONFIG_SMP */
7998 const_debug unsigned int sysctl_timer_migration = 1;
8000 int in_sched_functions(unsigned long addr)
8002 return in_lock_functions(addr) ||
8003 (addr >= (unsigned long)__sched_text_start
8004 && addr < (unsigned long)__sched_text_end);
8007 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8009 cfs_rq->tasks_timeline = RB_ROOT;
8010 INIT_LIST_HEAD(&cfs_rq->tasks);
8011 #ifdef CONFIG_FAIR_GROUP_SCHED
8012 cfs_rq->rq = rq;
8013 #endif
8014 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8017 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8019 struct rt_prio_array *array;
8020 int i;
8022 array = &rt_rq->active;
8023 for (i = 0; i < MAX_RT_PRIO; i++) {
8024 INIT_LIST_HEAD(array->queue + i);
8025 __clear_bit(i, array->bitmap);
8027 /* delimiter for bitsearch: */
8028 __set_bit(MAX_RT_PRIO, array->bitmap);
8030 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8031 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8032 #ifdef CONFIG_SMP
8033 rt_rq->highest_prio.next = MAX_RT_PRIO;
8034 #endif
8035 #endif
8036 #ifdef CONFIG_SMP
8037 rt_rq->rt_nr_migratory = 0;
8038 rt_rq->overloaded = 0;
8039 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8040 #endif
8042 rt_rq->rt_time = 0;
8043 rt_rq->rt_throttled = 0;
8044 rt_rq->rt_runtime = 0;
8045 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 rt_rq->rt_nr_boosted = 0;
8049 rt_rq->rq = rq;
8050 #endif
8053 #ifdef CONFIG_FAIR_GROUP_SCHED
8054 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8055 struct sched_entity *se, int cpu, int add,
8056 struct sched_entity *parent)
8058 struct rq *rq = cpu_rq(cpu);
8059 tg->cfs_rq[cpu] = cfs_rq;
8060 init_cfs_rq(cfs_rq, rq);
8061 cfs_rq->tg = tg;
8062 if (add)
8063 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8065 tg->se[cpu] = se;
8066 /* se could be NULL for init_task_group */
8067 if (!se)
8068 return;
8070 if (!parent)
8071 se->cfs_rq = &rq->cfs;
8072 else
8073 se->cfs_rq = parent->my_q;
8075 se->my_q = cfs_rq;
8076 se->load.weight = tg->shares;
8077 se->load.inv_weight = 0;
8078 se->parent = parent;
8080 #endif
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8084 struct sched_rt_entity *rt_se, int cpu, int add,
8085 struct sched_rt_entity *parent)
8087 struct rq *rq = cpu_rq(cpu);
8089 tg->rt_rq[cpu] = rt_rq;
8090 init_rt_rq(rt_rq, rq);
8091 rt_rq->tg = tg;
8092 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8093 if (add)
8094 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8096 tg->rt_se[cpu] = rt_se;
8097 if (!rt_se)
8098 return;
8100 if (!parent)
8101 rt_se->rt_rq = &rq->rt;
8102 else
8103 rt_se->rt_rq = parent->my_q;
8105 rt_se->my_q = rt_rq;
8106 rt_se->parent = parent;
8107 INIT_LIST_HEAD(&rt_se->run_list);
8109 #endif
8111 void __init sched_init(void)
8113 int i, j;
8114 unsigned long alloc_size = 0, ptr;
8116 #ifdef CONFIG_FAIR_GROUP_SCHED
8117 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8118 #endif
8119 #ifdef CONFIG_RT_GROUP_SCHED
8120 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8121 #endif
8122 #ifdef CONFIG_CPUMASK_OFFSTACK
8123 alloc_size += num_possible_cpus() * cpumask_size();
8124 #endif
8125 if (alloc_size) {
8126 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8128 #ifdef CONFIG_FAIR_GROUP_SCHED
8129 init_task_group.se = (struct sched_entity **)ptr;
8130 ptr += nr_cpu_ids * sizeof(void **);
8132 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8133 ptr += nr_cpu_ids * sizeof(void **);
8135 #endif /* CONFIG_FAIR_GROUP_SCHED */
8136 #ifdef CONFIG_RT_GROUP_SCHED
8137 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8138 ptr += nr_cpu_ids * sizeof(void **);
8140 init_task_group.rt_rq = (struct rt_rq **)ptr;
8141 ptr += nr_cpu_ids * sizeof(void **);
8143 #endif /* CONFIG_RT_GROUP_SCHED */
8144 #ifdef CONFIG_CPUMASK_OFFSTACK
8145 for_each_possible_cpu(i) {
8146 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8147 ptr += cpumask_size();
8149 #endif /* CONFIG_CPUMASK_OFFSTACK */
8152 #ifdef CONFIG_SMP
8153 init_defrootdomain();
8154 #endif
8156 init_rt_bandwidth(&def_rt_bandwidth,
8157 global_rt_period(), global_rt_runtime());
8159 #ifdef CONFIG_RT_GROUP_SCHED
8160 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8161 global_rt_period(), global_rt_runtime());
8162 #endif /* CONFIG_RT_GROUP_SCHED */
8164 #ifdef CONFIG_CGROUP_SCHED
8165 list_add(&init_task_group.list, &task_groups);
8166 INIT_LIST_HEAD(&init_task_group.children);
8168 #endif /* CONFIG_CGROUP_SCHED */
8170 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
8171 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
8172 __alignof__(unsigned long));
8173 #endif
8174 for_each_possible_cpu(i) {
8175 struct rq *rq;
8177 rq = cpu_rq(i);
8178 raw_spin_lock_init(&rq->lock);
8179 rq->nr_running = 0;
8180 rq->calc_load_active = 0;
8181 rq->calc_load_update = jiffies + LOAD_FREQ;
8182 init_cfs_rq(&rq->cfs, rq);
8183 init_rt_rq(&rq->rt, rq);
8184 #ifdef CONFIG_FAIR_GROUP_SCHED
8185 init_task_group.shares = init_task_group_load;
8186 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8187 #ifdef CONFIG_CGROUP_SCHED
8189 * How much cpu bandwidth does init_task_group get?
8191 * In case of task-groups formed thr' the cgroup filesystem, it
8192 * gets 100% of the cpu resources in the system. This overall
8193 * system cpu resource is divided among the tasks of
8194 * init_task_group and its child task-groups in a fair manner,
8195 * based on each entity's (task or task-group's) weight
8196 * (se->load.weight).
8198 * In other words, if init_task_group has 10 tasks of weight
8199 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8200 * then A0's share of the cpu resource is:
8202 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8204 * We achieve this by letting init_task_group's tasks sit
8205 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8207 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8208 #endif
8209 #endif /* CONFIG_FAIR_GROUP_SCHED */
8211 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8212 #ifdef CONFIG_RT_GROUP_SCHED
8213 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8214 #ifdef CONFIG_CGROUP_SCHED
8215 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8216 #endif
8217 #endif
8219 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8220 rq->cpu_load[j] = 0;
8222 rq->last_load_update_tick = jiffies;
8224 #ifdef CONFIG_SMP
8225 rq->sd = NULL;
8226 rq->rd = NULL;
8227 rq->cpu_power = SCHED_LOAD_SCALE;
8228 rq->post_schedule = 0;
8229 rq->active_balance = 0;
8230 rq->next_balance = jiffies;
8231 rq->push_cpu = 0;
8232 rq->cpu = i;
8233 rq->online = 0;
8234 rq->idle_stamp = 0;
8235 rq->avg_idle = 2*sysctl_sched_migration_cost;
8236 rq_attach_root(rq, &def_root_domain);
8237 #ifdef CONFIG_NO_HZ
8238 rq->nohz_balance_kick = 0;
8239 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8240 #endif
8241 #endif
8242 init_rq_hrtick(rq);
8243 atomic_set(&rq->nr_iowait, 0);
8246 set_load_weight(&init_task);
8248 #ifdef CONFIG_PREEMPT_NOTIFIERS
8249 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8250 #endif
8252 #ifdef CONFIG_SMP
8253 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8254 #endif
8256 #ifdef CONFIG_RT_MUTEXES
8257 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8258 #endif
8261 * The boot idle thread does lazy MMU switching as well:
8263 atomic_inc(&init_mm.mm_count);
8264 enter_lazy_tlb(&init_mm, current);
8267 * Make us the idle thread. Technically, schedule() should not be
8268 * called from this thread, however somewhere below it might be,
8269 * but because we are the idle thread, we just pick up running again
8270 * when this runqueue becomes "idle".
8272 init_idle(current, smp_processor_id());
8274 calc_load_update = jiffies + LOAD_FREQ;
8277 * During early bootup we pretend to be a normal task:
8279 current->sched_class = &fair_sched_class;
8281 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8282 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8283 #ifdef CONFIG_SMP
8284 #ifdef CONFIG_NO_HZ
8285 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8286 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8287 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8288 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8289 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8290 #endif
8291 /* May be allocated at isolcpus cmdline parse time */
8292 if (cpu_isolated_map == NULL)
8293 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8294 #endif /* SMP */
8296 perf_event_init();
8298 scheduler_running = 1;
8301 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8302 static inline int preempt_count_equals(int preempt_offset)
8304 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8306 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8309 void __might_sleep(const char *file, int line, int preempt_offset)
8311 #ifdef in_atomic
8312 static unsigned long prev_jiffy; /* ratelimiting */
8314 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8315 system_state != SYSTEM_RUNNING || oops_in_progress)
8316 return;
8317 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8318 return;
8319 prev_jiffy = jiffies;
8321 printk(KERN_ERR
8322 "BUG: sleeping function called from invalid context at %s:%d\n",
8323 file, line);
8324 printk(KERN_ERR
8325 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8326 in_atomic(), irqs_disabled(),
8327 current->pid, current->comm);
8329 debug_show_held_locks(current);
8330 if (irqs_disabled())
8331 print_irqtrace_events(current);
8332 dump_stack();
8333 #endif
8335 EXPORT_SYMBOL(__might_sleep);
8336 #endif
8338 #ifdef CONFIG_MAGIC_SYSRQ
8339 static void normalize_task(struct rq *rq, struct task_struct *p)
8341 int on_rq;
8343 on_rq = p->se.on_rq;
8344 if (on_rq)
8345 deactivate_task(rq, p, 0);
8346 __setscheduler(rq, p, SCHED_NORMAL, 0);
8347 if (on_rq) {
8348 activate_task(rq, p, 0);
8349 resched_task(rq->curr);
8353 void normalize_rt_tasks(void)
8355 struct task_struct *g, *p;
8356 unsigned long flags;
8357 struct rq *rq;
8359 read_lock_irqsave(&tasklist_lock, flags);
8360 do_each_thread(g, p) {
8362 * Only normalize user tasks:
8364 if (!p->mm)
8365 continue;
8367 p->se.exec_start = 0;
8368 #ifdef CONFIG_SCHEDSTATS
8369 p->se.statistics.wait_start = 0;
8370 p->se.statistics.sleep_start = 0;
8371 p->se.statistics.block_start = 0;
8372 #endif
8374 if (!rt_task(p)) {
8376 * Renice negative nice level userspace
8377 * tasks back to 0:
8379 if (TASK_NICE(p) < 0 && p->mm)
8380 set_user_nice(p, 0);
8381 continue;
8384 raw_spin_lock(&p->pi_lock);
8385 rq = __task_rq_lock(p);
8387 normalize_task(rq, p);
8389 __task_rq_unlock(rq);
8390 raw_spin_unlock(&p->pi_lock);
8391 } while_each_thread(g, p);
8393 read_unlock_irqrestore(&tasklist_lock, flags);
8396 #endif /* CONFIG_MAGIC_SYSRQ */
8398 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8400 * These functions are only useful for the IA64 MCA handling, or kdb.
8402 * They can only be called when the whole system has been
8403 * stopped - every CPU needs to be quiescent, and no scheduling
8404 * activity can take place. Using them for anything else would
8405 * be a serious bug, and as a result, they aren't even visible
8406 * under any other configuration.
8410 * curr_task - return the current task for a given cpu.
8411 * @cpu: the processor in question.
8413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8415 struct task_struct *curr_task(int cpu)
8417 return cpu_curr(cpu);
8420 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8422 #ifdef CONFIG_IA64
8424 * set_curr_task - set the current task for a given cpu.
8425 * @cpu: the processor in question.
8426 * @p: the task pointer to set.
8428 * Description: This function must only be used when non-maskable interrupts
8429 * are serviced on a separate stack. It allows the architecture to switch the
8430 * notion of the current task on a cpu in a non-blocking manner. This function
8431 * must be called with all CPU's synchronized, and interrupts disabled, the
8432 * and caller must save the original value of the current task (see
8433 * curr_task() above) and restore that value before reenabling interrupts and
8434 * re-starting the system.
8436 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8438 void set_curr_task(int cpu, struct task_struct *p)
8440 cpu_curr(cpu) = p;
8443 #endif
8445 #ifdef CONFIG_FAIR_GROUP_SCHED
8446 static void free_fair_sched_group(struct task_group *tg)
8448 int i;
8450 for_each_possible_cpu(i) {
8451 if (tg->cfs_rq)
8452 kfree(tg->cfs_rq[i]);
8453 if (tg->se)
8454 kfree(tg->se[i]);
8457 kfree(tg->cfs_rq);
8458 kfree(tg->se);
8461 static
8462 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8464 struct cfs_rq *cfs_rq;
8465 struct sched_entity *se;
8466 struct rq *rq;
8467 int i;
8469 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8470 if (!tg->cfs_rq)
8471 goto err;
8472 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8473 if (!tg->se)
8474 goto err;
8476 tg->shares = NICE_0_LOAD;
8478 for_each_possible_cpu(i) {
8479 rq = cpu_rq(i);
8481 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8482 GFP_KERNEL, cpu_to_node(i));
8483 if (!cfs_rq)
8484 goto err;
8486 se = kzalloc_node(sizeof(struct sched_entity),
8487 GFP_KERNEL, cpu_to_node(i));
8488 if (!se)
8489 goto err_free_rq;
8491 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8494 return 1;
8496 err_free_rq:
8497 kfree(cfs_rq);
8498 err:
8499 return 0;
8502 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8504 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8505 &cpu_rq(cpu)->leaf_cfs_rq_list);
8508 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8510 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8512 #else /* !CONFG_FAIR_GROUP_SCHED */
8513 static inline void free_fair_sched_group(struct task_group *tg)
8517 static inline
8518 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8520 return 1;
8523 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8527 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8530 #endif /* CONFIG_FAIR_GROUP_SCHED */
8532 #ifdef CONFIG_RT_GROUP_SCHED
8533 static void free_rt_sched_group(struct task_group *tg)
8535 int i;
8537 destroy_rt_bandwidth(&tg->rt_bandwidth);
8539 for_each_possible_cpu(i) {
8540 if (tg->rt_rq)
8541 kfree(tg->rt_rq[i]);
8542 if (tg->rt_se)
8543 kfree(tg->rt_se[i]);
8546 kfree(tg->rt_rq);
8547 kfree(tg->rt_se);
8550 static
8551 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8553 struct rt_rq *rt_rq;
8554 struct sched_rt_entity *rt_se;
8555 struct rq *rq;
8556 int i;
8558 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8559 if (!tg->rt_rq)
8560 goto err;
8561 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8562 if (!tg->rt_se)
8563 goto err;
8565 init_rt_bandwidth(&tg->rt_bandwidth,
8566 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8568 for_each_possible_cpu(i) {
8569 rq = cpu_rq(i);
8571 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8572 GFP_KERNEL, cpu_to_node(i));
8573 if (!rt_rq)
8574 goto err;
8576 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8577 GFP_KERNEL, cpu_to_node(i));
8578 if (!rt_se)
8579 goto err_free_rq;
8581 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8584 return 1;
8586 err_free_rq:
8587 kfree(rt_rq);
8588 err:
8589 return 0;
8592 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8594 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8595 &cpu_rq(cpu)->leaf_rt_rq_list);
8598 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8600 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8602 #else /* !CONFIG_RT_GROUP_SCHED */
8603 static inline void free_rt_sched_group(struct task_group *tg)
8607 static inline
8608 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8610 return 1;
8613 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8617 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8620 #endif /* CONFIG_RT_GROUP_SCHED */
8622 #ifdef CONFIG_CGROUP_SCHED
8623 static void free_sched_group(struct task_group *tg)
8625 free_fair_sched_group(tg);
8626 free_rt_sched_group(tg);
8627 kfree(tg);
8630 /* allocate runqueue etc for a new task group */
8631 struct task_group *sched_create_group(struct task_group *parent)
8633 struct task_group *tg;
8634 unsigned long flags;
8635 int i;
8637 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8638 if (!tg)
8639 return ERR_PTR(-ENOMEM);
8641 if (!alloc_fair_sched_group(tg, parent))
8642 goto err;
8644 if (!alloc_rt_sched_group(tg, parent))
8645 goto err;
8647 spin_lock_irqsave(&task_group_lock, flags);
8648 for_each_possible_cpu(i) {
8649 register_fair_sched_group(tg, i);
8650 register_rt_sched_group(tg, i);
8652 list_add_rcu(&tg->list, &task_groups);
8654 WARN_ON(!parent); /* root should already exist */
8656 tg->parent = parent;
8657 INIT_LIST_HEAD(&tg->children);
8658 list_add_rcu(&tg->siblings, &parent->children);
8659 spin_unlock_irqrestore(&task_group_lock, flags);
8661 return tg;
8663 err:
8664 free_sched_group(tg);
8665 return ERR_PTR(-ENOMEM);
8668 /* rcu callback to free various structures associated with a task group */
8669 static void free_sched_group_rcu(struct rcu_head *rhp)
8671 /* now it should be safe to free those cfs_rqs */
8672 free_sched_group(container_of(rhp, struct task_group, rcu));
8675 /* Destroy runqueue etc associated with a task group */
8676 void sched_destroy_group(struct task_group *tg)
8678 unsigned long flags;
8679 int i;
8681 spin_lock_irqsave(&task_group_lock, flags);
8682 for_each_possible_cpu(i) {
8683 unregister_fair_sched_group(tg, i);
8684 unregister_rt_sched_group(tg, i);
8686 list_del_rcu(&tg->list);
8687 list_del_rcu(&tg->siblings);
8688 spin_unlock_irqrestore(&task_group_lock, flags);
8690 /* wait for possible concurrent references to cfs_rqs complete */
8691 call_rcu(&tg->rcu, free_sched_group_rcu);
8694 /* change task's runqueue when it moves between groups.
8695 * The caller of this function should have put the task in its new group
8696 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8697 * reflect its new group.
8699 void sched_move_task(struct task_struct *tsk)
8701 int on_rq, running;
8702 unsigned long flags;
8703 struct rq *rq;
8705 rq = task_rq_lock(tsk, &flags);
8707 running = task_current(rq, tsk);
8708 on_rq = tsk->se.on_rq;
8710 if (on_rq)
8711 dequeue_task(rq, tsk, 0);
8712 if (unlikely(running))
8713 tsk->sched_class->put_prev_task(rq, tsk);
8715 #ifdef CONFIG_FAIR_GROUP_SCHED
8716 if (tsk->sched_class->task_move_group)
8717 tsk->sched_class->task_move_group(tsk, on_rq);
8718 else
8719 #endif
8720 set_task_rq(tsk, task_cpu(tsk));
8722 if (unlikely(running))
8723 tsk->sched_class->set_curr_task(rq);
8724 if (on_rq)
8725 enqueue_task(rq, tsk, 0);
8727 task_rq_unlock(rq, &flags);
8729 #endif /* CONFIG_CGROUP_SCHED */
8731 #ifdef CONFIG_FAIR_GROUP_SCHED
8732 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8734 struct cfs_rq *cfs_rq = se->cfs_rq;
8735 int on_rq;
8737 on_rq = se->on_rq;
8738 if (on_rq)
8739 dequeue_entity(cfs_rq, se, 0);
8741 se->load.weight = shares;
8742 se->load.inv_weight = 0;
8744 if (on_rq)
8745 enqueue_entity(cfs_rq, se, 0);
8748 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8750 struct cfs_rq *cfs_rq = se->cfs_rq;
8751 struct rq *rq = cfs_rq->rq;
8752 unsigned long flags;
8754 raw_spin_lock_irqsave(&rq->lock, flags);
8755 __set_se_shares(se, shares);
8756 raw_spin_unlock_irqrestore(&rq->lock, flags);
8759 static DEFINE_MUTEX(shares_mutex);
8761 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8763 int i;
8764 unsigned long flags;
8767 * We can't change the weight of the root cgroup.
8769 if (!tg->se[0])
8770 return -EINVAL;
8772 if (shares < MIN_SHARES)
8773 shares = MIN_SHARES;
8774 else if (shares > MAX_SHARES)
8775 shares = MAX_SHARES;
8777 mutex_lock(&shares_mutex);
8778 if (tg->shares == shares)
8779 goto done;
8781 spin_lock_irqsave(&task_group_lock, flags);
8782 for_each_possible_cpu(i)
8783 unregister_fair_sched_group(tg, i);
8784 list_del_rcu(&tg->siblings);
8785 spin_unlock_irqrestore(&task_group_lock, flags);
8787 /* wait for any ongoing reference to this group to finish */
8788 synchronize_sched();
8791 * Now we are free to modify the group's share on each cpu
8792 * w/o tripping rebalance_share or load_balance_fair.
8794 tg->shares = shares;
8795 for_each_possible_cpu(i) {
8797 * force a rebalance
8799 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8800 set_se_shares(tg->se[i], shares);
8804 * Enable load balance activity on this group, by inserting it back on
8805 * each cpu's rq->leaf_cfs_rq_list.
8807 spin_lock_irqsave(&task_group_lock, flags);
8808 for_each_possible_cpu(i)
8809 register_fair_sched_group(tg, i);
8810 list_add_rcu(&tg->siblings, &tg->parent->children);
8811 spin_unlock_irqrestore(&task_group_lock, flags);
8812 done:
8813 mutex_unlock(&shares_mutex);
8814 return 0;
8817 unsigned long sched_group_shares(struct task_group *tg)
8819 return tg->shares;
8821 #endif
8823 #ifdef CONFIG_RT_GROUP_SCHED
8825 * Ensure that the real time constraints are schedulable.
8827 static DEFINE_MUTEX(rt_constraints_mutex);
8829 static unsigned long to_ratio(u64 period, u64 runtime)
8831 if (runtime == RUNTIME_INF)
8832 return 1ULL << 20;
8834 return div64_u64(runtime << 20, period);
8837 /* Must be called with tasklist_lock held */
8838 static inline int tg_has_rt_tasks(struct task_group *tg)
8840 struct task_struct *g, *p;
8842 do_each_thread(g, p) {
8843 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8844 return 1;
8845 } while_each_thread(g, p);
8847 return 0;
8850 struct rt_schedulable_data {
8851 struct task_group *tg;
8852 u64 rt_period;
8853 u64 rt_runtime;
8856 static int tg_schedulable(struct task_group *tg, void *data)
8858 struct rt_schedulable_data *d = data;
8859 struct task_group *child;
8860 unsigned long total, sum = 0;
8861 u64 period, runtime;
8863 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8864 runtime = tg->rt_bandwidth.rt_runtime;
8866 if (tg == d->tg) {
8867 period = d->rt_period;
8868 runtime = d->rt_runtime;
8872 * Cannot have more runtime than the period.
8874 if (runtime > period && runtime != RUNTIME_INF)
8875 return -EINVAL;
8878 * Ensure we don't starve existing RT tasks.
8880 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8881 return -EBUSY;
8883 total = to_ratio(period, runtime);
8886 * Nobody can have more than the global setting allows.
8888 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8889 return -EINVAL;
8892 * The sum of our children's runtime should not exceed our own.
8894 list_for_each_entry_rcu(child, &tg->children, siblings) {
8895 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8896 runtime = child->rt_bandwidth.rt_runtime;
8898 if (child == d->tg) {
8899 period = d->rt_period;
8900 runtime = d->rt_runtime;
8903 sum += to_ratio(period, runtime);
8906 if (sum > total)
8907 return -EINVAL;
8909 return 0;
8912 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8914 struct rt_schedulable_data data = {
8915 .tg = tg,
8916 .rt_period = period,
8917 .rt_runtime = runtime,
8920 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8923 static int tg_set_bandwidth(struct task_group *tg,
8924 u64 rt_period, u64 rt_runtime)
8926 int i, err = 0;
8928 mutex_lock(&rt_constraints_mutex);
8929 read_lock(&tasklist_lock);
8930 err = __rt_schedulable(tg, rt_period, rt_runtime);
8931 if (err)
8932 goto unlock;
8934 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8935 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8936 tg->rt_bandwidth.rt_runtime = rt_runtime;
8938 for_each_possible_cpu(i) {
8939 struct rt_rq *rt_rq = tg->rt_rq[i];
8941 raw_spin_lock(&rt_rq->rt_runtime_lock);
8942 rt_rq->rt_runtime = rt_runtime;
8943 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8945 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8946 unlock:
8947 read_unlock(&tasklist_lock);
8948 mutex_unlock(&rt_constraints_mutex);
8950 return err;
8953 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8955 u64 rt_runtime, rt_period;
8957 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8958 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8959 if (rt_runtime_us < 0)
8960 rt_runtime = RUNTIME_INF;
8962 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8965 long sched_group_rt_runtime(struct task_group *tg)
8967 u64 rt_runtime_us;
8969 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8970 return -1;
8972 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8973 do_div(rt_runtime_us, NSEC_PER_USEC);
8974 return rt_runtime_us;
8977 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8979 u64 rt_runtime, rt_period;
8981 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8982 rt_runtime = tg->rt_bandwidth.rt_runtime;
8984 if (rt_period == 0)
8985 return -EINVAL;
8987 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8990 long sched_group_rt_period(struct task_group *tg)
8992 u64 rt_period_us;
8994 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8995 do_div(rt_period_us, NSEC_PER_USEC);
8996 return rt_period_us;
8999 static int sched_rt_global_constraints(void)
9001 u64 runtime, period;
9002 int ret = 0;
9004 if (sysctl_sched_rt_period <= 0)
9005 return -EINVAL;
9007 runtime = global_rt_runtime();
9008 period = global_rt_period();
9011 * Sanity check on the sysctl variables.
9013 if (runtime > period && runtime != RUNTIME_INF)
9014 return -EINVAL;
9016 mutex_lock(&rt_constraints_mutex);
9017 read_lock(&tasklist_lock);
9018 ret = __rt_schedulable(NULL, 0, 0);
9019 read_unlock(&tasklist_lock);
9020 mutex_unlock(&rt_constraints_mutex);
9022 return ret;
9025 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9027 /* Don't accept realtime tasks when there is no way for them to run */
9028 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9029 return 0;
9031 return 1;
9034 #else /* !CONFIG_RT_GROUP_SCHED */
9035 static int sched_rt_global_constraints(void)
9037 unsigned long flags;
9038 int i;
9040 if (sysctl_sched_rt_period <= 0)
9041 return -EINVAL;
9044 * There's always some RT tasks in the root group
9045 * -- migration, kstopmachine etc..
9047 if (sysctl_sched_rt_runtime == 0)
9048 return -EBUSY;
9050 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9051 for_each_possible_cpu(i) {
9052 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9054 raw_spin_lock(&rt_rq->rt_runtime_lock);
9055 rt_rq->rt_runtime = global_rt_runtime();
9056 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9058 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9060 return 0;
9062 #endif /* CONFIG_RT_GROUP_SCHED */
9064 int sched_rt_handler(struct ctl_table *table, int write,
9065 void __user *buffer, size_t *lenp,
9066 loff_t *ppos)
9068 int ret;
9069 int old_period, old_runtime;
9070 static DEFINE_MUTEX(mutex);
9072 mutex_lock(&mutex);
9073 old_period = sysctl_sched_rt_period;
9074 old_runtime = sysctl_sched_rt_runtime;
9076 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9078 if (!ret && write) {
9079 ret = sched_rt_global_constraints();
9080 if (ret) {
9081 sysctl_sched_rt_period = old_period;
9082 sysctl_sched_rt_runtime = old_runtime;
9083 } else {
9084 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9085 def_rt_bandwidth.rt_period =
9086 ns_to_ktime(global_rt_period());
9089 mutex_unlock(&mutex);
9091 return ret;
9094 #ifdef CONFIG_CGROUP_SCHED
9096 /* return corresponding task_group object of a cgroup */
9097 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9099 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9100 struct task_group, css);
9103 static struct cgroup_subsys_state *
9104 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9106 struct task_group *tg, *parent;
9108 if (!cgrp->parent) {
9109 /* This is early initialization for the top cgroup */
9110 return &init_task_group.css;
9113 parent = cgroup_tg(cgrp->parent);
9114 tg = sched_create_group(parent);
9115 if (IS_ERR(tg))
9116 return ERR_PTR(-ENOMEM);
9118 return &tg->css;
9121 static void
9122 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9124 struct task_group *tg = cgroup_tg(cgrp);
9126 sched_destroy_group(tg);
9129 static int
9130 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9132 #ifdef CONFIG_RT_GROUP_SCHED
9133 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9134 return -EINVAL;
9135 #else
9136 /* We don't support RT-tasks being in separate groups */
9137 if (tsk->sched_class != &fair_sched_class)
9138 return -EINVAL;
9139 #endif
9140 return 0;
9143 static int
9144 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9145 struct task_struct *tsk, bool threadgroup)
9147 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9148 if (retval)
9149 return retval;
9150 if (threadgroup) {
9151 struct task_struct *c;
9152 rcu_read_lock();
9153 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9154 retval = cpu_cgroup_can_attach_task(cgrp, c);
9155 if (retval) {
9156 rcu_read_unlock();
9157 return retval;
9160 rcu_read_unlock();
9162 return 0;
9165 static void
9166 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9167 struct cgroup *old_cont, struct task_struct *tsk,
9168 bool threadgroup)
9170 sched_move_task(tsk);
9171 if (threadgroup) {
9172 struct task_struct *c;
9173 rcu_read_lock();
9174 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9175 sched_move_task(c);
9177 rcu_read_unlock();
9181 #ifdef CONFIG_FAIR_GROUP_SCHED
9182 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9183 u64 shareval)
9185 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9188 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9190 struct task_group *tg = cgroup_tg(cgrp);
9192 return (u64) tg->shares;
9194 #endif /* CONFIG_FAIR_GROUP_SCHED */
9196 #ifdef CONFIG_RT_GROUP_SCHED
9197 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9198 s64 val)
9200 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9203 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9205 return sched_group_rt_runtime(cgroup_tg(cgrp));
9208 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9209 u64 rt_period_us)
9211 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9214 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9216 return sched_group_rt_period(cgroup_tg(cgrp));
9218 #endif /* CONFIG_RT_GROUP_SCHED */
9220 static struct cftype cpu_files[] = {
9221 #ifdef CONFIG_FAIR_GROUP_SCHED
9223 .name = "shares",
9224 .read_u64 = cpu_shares_read_u64,
9225 .write_u64 = cpu_shares_write_u64,
9227 #endif
9228 #ifdef CONFIG_RT_GROUP_SCHED
9230 .name = "rt_runtime_us",
9231 .read_s64 = cpu_rt_runtime_read,
9232 .write_s64 = cpu_rt_runtime_write,
9235 .name = "rt_period_us",
9236 .read_u64 = cpu_rt_period_read_uint,
9237 .write_u64 = cpu_rt_period_write_uint,
9239 #endif
9242 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9244 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9247 struct cgroup_subsys cpu_cgroup_subsys = {
9248 .name = "cpu",
9249 .create = cpu_cgroup_create,
9250 .destroy = cpu_cgroup_destroy,
9251 .can_attach = cpu_cgroup_can_attach,
9252 .attach = cpu_cgroup_attach,
9253 .populate = cpu_cgroup_populate,
9254 .subsys_id = cpu_cgroup_subsys_id,
9255 .early_init = 1,
9258 #endif /* CONFIG_CGROUP_SCHED */
9260 #ifdef CONFIG_CGROUP_CPUACCT
9263 * CPU accounting code for task groups.
9265 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9266 * (balbir@in.ibm.com).
9269 /* track cpu usage of a group of tasks and its child groups */
9270 struct cpuacct {
9271 struct cgroup_subsys_state css;
9272 /* cpuusage holds pointer to a u64-type object on every cpu */
9273 u64 __percpu *cpuusage;
9274 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9275 struct cpuacct *parent;
9278 struct cgroup_subsys cpuacct_subsys;
9280 /* return cpu accounting group corresponding to this container */
9281 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9283 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9284 struct cpuacct, css);
9287 /* return cpu accounting group to which this task belongs */
9288 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9290 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9291 struct cpuacct, css);
9294 /* create a new cpu accounting group */
9295 static struct cgroup_subsys_state *cpuacct_create(
9296 struct cgroup_subsys *ss, struct cgroup *cgrp)
9298 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9299 int i;
9301 if (!ca)
9302 goto out;
9304 ca->cpuusage = alloc_percpu(u64);
9305 if (!ca->cpuusage)
9306 goto out_free_ca;
9308 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9309 if (percpu_counter_init(&ca->cpustat[i], 0))
9310 goto out_free_counters;
9312 if (cgrp->parent)
9313 ca->parent = cgroup_ca(cgrp->parent);
9315 return &ca->css;
9317 out_free_counters:
9318 while (--i >= 0)
9319 percpu_counter_destroy(&ca->cpustat[i]);
9320 free_percpu(ca->cpuusage);
9321 out_free_ca:
9322 kfree(ca);
9323 out:
9324 return ERR_PTR(-ENOMEM);
9327 /* destroy an existing cpu accounting group */
9328 static void
9329 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9331 struct cpuacct *ca = cgroup_ca(cgrp);
9332 int i;
9334 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9335 percpu_counter_destroy(&ca->cpustat[i]);
9336 free_percpu(ca->cpuusage);
9337 kfree(ca);
9340 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9342 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9343 u64 data;
9345 #ifndef CONFIG_64BIT
9347 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9349 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9350 data = *cpuusage;
9351 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9352 #else
9353 data = *cpuusage;
9354 #endif
9356 return data;
9359 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9361 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9363 #ifndef CONFIG_64BIT
9365 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9367 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9368 *cpuusage = val;
9369 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9370 #else
9371 *cpuusage = val;
9372 #endif
9375 /* return total cpu usage (in nanoseconds) of a group */
9376 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9378 struct cpuacct *ca = cgroup_ca(cgrp);
9379 u64 totalcpuusage = 0;
9380 int i;
9382 for_each_present_cpu(i)
9383 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9385 return totalcpuusage;
9388 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9389 u64 reset)
9391 struct cpuacct *ca = cgroup_ca(cgrp);
9392 int err = 0;
9393 int i;
9395 if (reset) {
9396 err = -EINVAL;
9397 goto out;
9400 for_each_present_cpu(i)
9401 cpuacct_cpuusage_write(ca, i, 0);
9403 out:
9404 return err;
9407 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9408 struct seq_file *m)
9410 struct cpuacct *ca = cgroup_ca(cgroup);
9411 u64 percpu;
9412 int i;
9414 for_each_present_cpu(i) {
9415 percpu = cpuacct_cpuusage_read(ca, i);
9416 seq_printf(m, "%llu ", (unsigned long long) percpu);
9418 seq_printf(m, "\n");
9419 return 0;
9422 static const char *cpuacct_stat_desc[] = {
9423 [CPUACCT_STAT_USER] = "user",
9424 [CPUACCT_STAT_SYSTEM] = "system",
9427 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9428 struct cgroup_map_cb *cb)
9430 struct cpuacct *ca = cgroup_ca(cgrp);
9431 int i;
9433 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9434 s64 val = percpu_counter_read(&ca->cpustat[i]);
9435 val = cputime64_to_clock_t(val);
9436 cb->fill(cb, cpuacct_stat_desc[i], val);
9438 return 0;
9441 static struct cftype files[] = {
9443 .name = "usage",
9444 .read_u64 = cpuusage_read,
9445 .write_u64 = cpuusage_write,
9448 .name = "usage_percpu",
9449 .read_seq_string = cpuacct_percpu_seq_read,
9452 .name = "stat",
9453 .read_map = cpuacct_stats_show,
9457 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9459 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9463 * charge this task's execution time to its accounting group.
9465 * called with rq->lock held.
9467 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9469 struct cpuacct *ca;
9470 int cpu;
9472 if (unlikely(!cpuacct_subsys.active))
9473 return;
9475 cpu = task_cpu(tsk);
9477 rcu_read_lock();
9479 ca = task_ca(tsk);
9481 for (; ca; ca = ca->parent) {
9482 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9483 *cpuusage += cputime;
9486 rcu_read_unlock();
9490 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9491 * in cputime_t units. As a result, cpuacct_update_stats calls
9492 * percpu_counter_add with values large enough to always overflow the
9493 * per cpu batch limit causing bad SMP scalability.
9495 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9496 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9497 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9499 #ifdef CONFIG_SMP
9500 #define CPUACCT_BATCH \
9501 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9502 #else
9503 #define CPUACCT_BATCH 0
9504 #endif
9507 * Charge the system/user time to the task's accounting group.
9509 static void cpuacct_update_stats(struct task_struct *tsk,
9510 enum cpuacct_stat_index idx, cputime_t val)
9512 struct cpuacct *ca;
9513 int batch = CPUACCT_BATCH;
9515 if (unlikely(!cpuacct_subsys.active))
9516 return;
9518 rcu_read_lock();
9519 ca = task_ca(tsk);
9521 do {
9522 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9523 ca = ca->parent;
9524 } while (ca);
9525 rcu_read_unlock();
9528 struct cgroup_subsys cpuacct_subsys = {
9529 .name = "cpuacct",
9530 .create = cpuacct_create,
9531 .destroy = cpuacct_destroy,
9532 .populate = cpuacct_populate,
9533 .subsys_id = cpuacct_subsys_id,
9535 #endif /* CONFIG_CGROUP_CPUACCT */
9537 #ifndef CONFIG_SMP
9539 void synchronize_sched_expedited(void)
9541 barrier();
9543 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9545 #else /* #ifndef CONFIG_SMP */
9547 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9549 static int synchronize_sched_expedited_cpu_stop(void *data)
9552 * There must be a full memory barrier on each affected CPU
9553 * between the time that try_stop_cpus() is called and the
9554 * time that it returns.
9556 * In the current initial implementation of cpu_stop, the
9557 * above condition is already met when the control reaches
9558 * this point and the following smp_mb() is not strictly
9559 * necessary. Do smp_mb() anyway for documentation and
9560 * robustness against future implementation changes.
9562 smp_mb(); /* See above comment block. */
9563 return 0;
9567 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9568 * approach to force grace period to end quickly. This consumes
9569 * significant time on all CPUs, and is thus not recommended for
9570 * any sort of common-case code.
9572 * Note that it is illegal to call this function while holding any
9573 * lock that is acquired by a CPU-hotplug notifier. Failing to
9574 * observe this restriction will result in deadlock.
9576 void synchronize_sched_expedited(void)
9578 int snap, trycount = 0;
9580 smp_mb(); /* ensure prior mod happens before capturing snap. */
9581 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9582 get_online_cpus();
9583 while (try_stop_cpus(cpu_online_mask,
9584 synchronize_sched_expedited_cpu_stop,
9585 NULL) == -EAGAIN) {
9586 put_online_cpus();
9587 if (trycount++ < 10)
9588 udelay(trycount * num_online_cpus());
9589 else {
9590 synchronize_sched();
9591 return;
9593 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9594 smp_mb(); /* ensure test happens before caller kfree */
9595 return;
9597 get_online_cpus();
9599 atomic_inc(&synchronize_sched_expedited_count);
9600 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9601 put_online_cpus();
9603 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9605 #endif /* #else #ifndef CONFIG_SMP */