2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
82 * Overloading of page flags that are otherwise used for LRU management.
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
105 #define FROZEN (1 << PG_active)
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG (1 << PG_error)
113 static inline int SlabFrozen(struct page
*page
)
115 return page
->flags
& FROZEN
;
118 static inline void SetSlabFrozen(struct page
*page
)
120 page
->flags
|= FROZEN
;
123 static inline void ClearSlabFrozen(struct page
*page
)
125 page
->flags
&= ~FROZEN
;
128 static inline int SlabDebug(struct page
*page
)
130 return page
->flags
& SLABDEBUG
;
133 static inline void SetSlabDebug(struct page
*page
)
135 page
->flags
|= SLABDEBUG
;
138 static inline void ClearSlabDebug(struct page
*page
)
140 page
->flags
&= ~SLABDEBUG
;
144 * Issues still to be resolved:
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 * - Variable sizing of the per node arrays
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
158 #define MIN_PARTIAL 5
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
165 #define MAX_PARTIAL 10
167 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
171 * Set of flags that will prevent slab merging
173 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
176 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
179 #ifndef ARCH_KMALLOC_MINALIGN
180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
183 #ifndef ARCH_SLAB_MINALIGN
184 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
187 /* Internal SLUB flags */
188 #define __OBJECT_POISON 0x80000000 /* Poison object */
189 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
191 static int kmem_size
= sizeof(struct kmem_cache
);
194 static struct notifier_block slab_notifier
;
198 DOWN
, /* No slab functionality available */
199 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
200 UP
, /* Everything works but does not show up in sysfs */
204 /* A list of all slab caches on the system */
205 static DECLARE_RWSEM(slub_lock
);
206 static LIST_HEAD(slab_caches
);
209 * Tracking user of a slab.
212 void *addr
; /* Called from address */
213 int cpu
; /* Was running on cpu */
214 int pid
; /* Pid context */
215 unsigned long when
; /* When did the operation occur */
218 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
220 #ifdef CONFIG_SLUB_DEBUG
221 static int sysfs_slab_add(struct kmem_cache
*);
222 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
223 static void sysfs_slab_remove(struct kmem_cache
*);
226 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
227 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
229 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
236 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
238 #ifdef CONFIG_SLUB_STATS
243 /********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
247 int slab_is_available(void)
249 return slab_state
>= UP
;
252 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
255 return s
->node
[node
];
257 return &s
->local_node
;
261 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
264 return s
->cpu_slab
[cpu
];
270 /* Verify that a pointer has an address that is valid within a slab page */
271 static inline int check_valid_pointer(struct kmem_cache
*s
,
272 struct page
*page
, const void *object
)
279 base
= page_address(page
);
280 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
281 (object
- base
) % s
->size
) {
289 * Slow version of get and set free pointer.
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
295 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
297 return *(void **)(object
+ s
->offset
);
300 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
302 *(void **)(object
+ s
->offset
) = fp
;
305 /* Loop over all objects in a slab */
306 #define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
311 #define for_each_free_object(__p, __s, __free) \
312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
317 return (p
- addr
) / s
->size
;
320 static inline struct kmem_cache_order_objects
oo_make(int order
,
323 struct kmem_cache_order_objects x
= {
324 (order
<< 16) + (PAGE_SIZE
<< order
) / size
330 static inline int oo_order(struct kmem_cache_order_objects x
)
335 static inline int oo_objects(struct kmem_cache_order_objects x
)
337 return x
.x
& ((1 << 16) - 1);
340 #ifdef CONFIG_SLUB_DEBUG
344 #ifdef CONFIG_SLUB_DEBUG_ON
345 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
347 static int slub_debug
;
350 static char *slub_debug_slabs
;
355 static void print_section(char *text
, u8
*addr
, unsigned int length
)
363 for (i
= 0; i
< length
; i
++) {
365 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
368 printk(KERN_CONT
" %02x", addr
[i
]);
370 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
372 printk(KERN_CONT
" %s\n", ascii
);
379 printk(KERN_CONT
" ");
383 printk(KERN_CONT
" %s\n", ascii
);
387 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
388 enum track_item alloc
)
393 p
= object
+ s
->offset
+ sizeof(void *);
395 p
= object
+ s
->inuse
;
400 static void set_track(struct kmem_cache
*s
, void *object
,
401 enum track_item alloc
, void *addr
)
406 p
= object
+ s
->offset
+ sizeof(void *);
408 p
= object
+ s
->inuse
;
413 p
->cpu
= smp_processor_id();
414 p
->pid
= current
? current
->pid
: -1;
417 memset(p
, 0, sizeof(struct track
));
420 static void init_tracking(struct kmem_cache
*s
, void *object
)
422 if (!(s
->flags
& SLAB_STORE_USER
))
425 set_track(s
, object
, TRACK_FREE
, NULL
);
426 set_track(s
, object
, TRACK_ALLOC
, NULL
);
429 static void print_track(const char *s
, struct track
*t
)
434 printk(KERN_ERR
"INFO: %s in ", s
);
435 __print_symbol("%s", (unsigned long)t
->addr
);
436 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
439 static void print_tracking(struct kmem_cache
*s
, void *object
)
441 if (!(s
->flags
& SLAB_STORE_USER
))
444 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
445 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
448 static void print_page_info(struct page
*page
)
450 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
451 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
455 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
461 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
463 printk(KERN_ERR
"========================================"
464 "=====================================\n");
465 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
466 printk(KERN_ERR
"----------------------------------------"
467 "-------------------------------------\n\n");
470 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
476 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
478 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
481 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
483 unsigned int off
; /* Offset of last byte */
484 u8
*addr
= page_address(page
);
486 print_tracking(s
, p
);
488 print_page_info(page
);
490 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
491 p
, p
- addr
, get_freepointer(s
, p
));
494 print_section("Bytes b4", p
- 16, 16);
496 print_section("Object", p
, min(s
->objsize
, 128));
498 if (s
->flags
& SLAB_RED_ZONE
)
499 print_section("Redzone", p
+ s
->objsize
,
500 s
->inuse
- s
->objsize
);
503 off
= s
->offset
+ sizeof(void *);
507 if (s
->flags
& SLAB_STORE_USER
)
508 off
+= 2 * sizeof(struct track
);
511 /* Beginning of the filler is the free pointer */
512 print_section("Padding", p
+ off
, s
->size
- off
);
517 static void object_err(struct kmem_cache
*s
, struct page
*page
,
518 u8
*object
, char *reason
)
520 slab_bug(s
, "%s", reason
);
521 print_trailer(s
, page
, object
);
524 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
530 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
532 slab_bug(s
, "%s", buf
);
533 print_page_info(page
);
537 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
541 if (s
->flags
& __OBJECT_POISON
) {
542 memset(p
, POISON_FREE
, s
->objsize
- 1);
543 p
[s
->objsize
- 1] = POISON_END
;
546 if (s
->flags
& SLAB_RED_ZONE
)
547 memset(p
+ s
->objsize
,
548 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
549 s
->inuse
- s
->objsize
);
552 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
555 if (*start
!= (u8
)value
)
563 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
564 void *from
, void *to
)
566 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
567 memset(from
, data
, to
- from
);
570 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
571 u8
*object
, char *what
,
572 u8
*start
, unsigned int value
, unsigned int bytes
)
577 fault
= check_bytes(start
, value
, bytes
);
582 while (end
> fault
&& end
[-1] == value
)
585 slab_bug(s
, "%s overwritten", what
);
586 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
587 fault
, end
- 1, fault
[0], value
);
588 print_trailer(s
, page
, object
);
590 restore_bytes(s
, what
, value
, fault
, end
);
598 * Bytes of the object to be managed.
599 * If the freepointer may overlay the object then the free
600 * pointer is the first word of the object.
602 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
605 * object + s->objsize
606 * Padding to reach word boundary. This is also used for Redzoning.
607 * Padding is extended by another word if Redzoning is enabled and
610 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
611 * 0xcc (RED_ACTIVE) for objects in use.
614 * Meta data starts here.
616 * A. Free pointer (if we cannot overwrite object on free)
617 * B. Tracking data for SLAB_STORE_USER
618 * C. Padding to reach required alignment boundary or at mininum
619 * one word if debugging is on to be able to detect writes
620 * before the word boundary.
622 * Padding is done using 0x5a (POISON_INUSE)
625 * Nothing is used beyond s->size.
627 * If slabcaches are merged then the objsize and inuse boundaries are mostly
628 * ignored. And therefore no slab options that rely on these boundaries
629 * may be used with merged slabcaches.
632 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
634 unsigned long off
= s
->inuse
; /* The end of info */
637 /* Freepointer is placed after the object. */
638 off
+= sizeof(void *);
640 if (s
->flags
& SLAB_STORE_USER
)
641 /* We also have user information there */
642 off
+= 2 * sizeof(struct track
);
647 return check_bytes_and_report(s
, page
, p
, "Object padding",
648 p
+ off
, POISON_INUSE
, s
->size
- off
);
651 /* Check the pad bytes at the end of a slab page */
652 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
660 if (!(s
->flags
& SLAB_POISON
))
663 start
= page_address(page
);
664 length
= (PAGE_SIZE
<< compound_order(page
));
665 end
= start
+ length
;
666 remainder
= length
% s
->size
;
670 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
673 while (end
> fault
&& end
[-1] == POISON_INUSE
)
676 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
677 print_section("Padding", end
- remainder
, remainder
);
679 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
683 static int check_object(struct kmem_cache
*s
, struct page
*page
,
684 void *object
, int active
)
687 u8
*endobject
= object
+ s
->objsize
;
689 if (s
->flags
& SLAB_RED_ZONE
) {
691 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
693 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
694 endobject
, red
, s
->inuse
- s
->objsize
))
697 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
698 check_bytes_and_report(s
, page
, p
, "Alignment padding",
699 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
703 if (s
->flags
& SLAB_POISON
) {
704 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
705 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
706 POISON_FREE
, s
->objsize
- 1) ||
707 !check_bytes_and_report(s
, page
, p
, "Poison",
708 p
+ s
->objsize
- 1, POISON_END
, 1)))
711 * check_pad_bytes cleans up on its own.
713 check_pad_bytes(s
, page
, p
);
716 if (!s
->offset
&& active
)
718 * Object and freepointer overlap. Cannot check
719 * freepointer while object is allocated.
723 /* Check free pointer validity */
724 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
725 object_err(s
, page
, p
, "Freepointer corrupt");
727 * No choice but to zap it and thus loose the remainder
728 * of the free objects in this slab. May cause
729 * another error because the object count is now wrong.
731 set_freepointer(s
, p
, NULL
);
737 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
741 VM_BUG_ON(!irqs_disabled());
743 if (!PageSlab(page
)) {
744 slab_err(s
, page
, "Not a valid slab page");
748 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
749 if (page
->objects
> maxobj
) {
750 slab_err(s
, page
, "objects %u > max %u",
751 s
->name
, page
->objects
, maxobj
);
754 if (page
->inuse
> page
->objects
) {
755 slab_err(s
, page
, "inuse %u > max %u",
756 s
->name
, page
->inuse
, page
->objects
);
759 /* Slab_pad_check fixes things up after itself */
760 slab_pad_check(s
, page
);
765 * Determine if a certain object on a page is on the freelist. Must hold the
766 * slab lock to guarantee that the chains are in a consistent state.
768 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
771 void *fp
= page
->freelist
;
773 unsigned long max_objects
;
775 while (fp
&& nr
<= page
->objects
) {
778 if (!check_valid_pointer(s
, page
, fp
)) {
780 object_err(s
, page
, object
,
781 "Freechain corrupt");
782 set_freepointer(s
, object
, NULL
);
785 slab_err(s
, page
, "Freepointer corrupt");
786 page
->freelist
= NULL
;
787 page
->inuse
= page
->objects
;
788 slab_fix(s
, "Freelist cleared");
794 fp
= get_freepointer(s
, object
);
798 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
799 if (max_objects
> 65535)
802 if (page
->objects
!= max_objects
) {
803 slab_err(s
, page
, "Wrong number of objects. Found %d but "
804 "should be %d", page
->objects
, max_objects
);
805 page
->objects
= max_objects
;
806 slab_fix(s
, "Number of objects adjusted.");
808 if (page
->inuse
!= page
->objects
- nr
) {
809 slab_err(s
, page
, "Wrong object count. Counter is %d but "
810 "counted were %d", page
->inuse
, page
->objects
- nr
);
811 page
->inuse
= page
->objects
- nr
;
812 slab_fix(s
, "Object count adjusted.");
814 return search
== NULL
;
817 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
820 if (s
->flags
& SLAB_TRACE
) {
821 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
823 alloc
? "alloc" : "free",
828 print_section("Object", (void *)object
, s
->objsize
);
835 * Tracking of fully allocated slabs for debugging purposes.
837 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
839 spin_lock(&n
->list_lock
);
840 list_add(&page
->lru
, &n
->full
);
841 spin_unlock(&n
->list_lock
);
844 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
846 struct kmem_cache_node
*n
;
848 if (!(s
->flags
& SLAB_STORE_USER
))
851 n
= get_node(s
, page_to_nid(page
));
853 spin_lock(&n
->list_lock
);
854 list_del(&page
->lru
);
855 spin_unlock(&n
->list_lock
);
858 /* Tracking of the number of slabs for debugging purposes */
859 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
861 struct kmem_cache_node
*n
= get_node(s
, node
);
863 return atomic_long_read(&n
->nr_slabs
);
866 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
868 struct kmem_cache_node
*n
= get_node(s
, node
);
871 * May be called early in order to allocate a slab for the
872 * kmem_cache_node structure. Solve the chicken-egg
873 * dilemma by deferring the increment of the count during
874 * bootstrap (see early_kmem_cache_node_alloc).
876 if (!NUMA_BUILD
|| n
) {
877 atomic_long_inc(&n
->nr_slabs
);
878 atomic_long_add(objects
, &n
->total_objects
);
881 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
883 struct kmem_cache_node
*n
= get_node(s
, node
);
885 atomic_long_dec(&n
->nr_slabs
);
886 atomic_long_sub(objects
, &n
->total_objects
);
889 /* Object debug checks for alloc/free paths */
890 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
893 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
896 init_object(s
, object
, 0);
897 init_tracking(s
, object
);
900 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
901 void *object
, void *addr
)
903 if (!check_slab(s
, page
))
906 if (!on_freelist(s
, page
, object
)) {
907 object_err(s
, page
, object
, "Object already allocated");
911 if (!check_valid_pointer(s
, page
, object
)) {
912 object_err(s
, page
, object
, "Freelist Pointer check fails");
916 if (!check_object(s
, page
, object
, 0))
919 /* Success perform special debug activities for allocs */
920 if (s
->flags
& SLAB_STORE_USER
)
921 set_track(s
, object
, TRACK_ALLOC
, addr
);
922 trace(s
, page
, object
, 1);
923 init_object(s
, object
, 1);
927 if (PageSlab(page
)) {
929 * If this is a slab page then lets do the best we can
930 * to avoid issues in the future. Marking all objects
931 * as used avoids touching the remaining objects.
933 slab_fix(s
, "Marking all objects used");
934 page
->inuse
= page
->objects
;
935 page
->freelist
= NULL
;
940 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
941 void *object
, void *addr
)
943 if (!check_slab(s
, page
))
946 if (!check_valid_pointer(s
, page
, object
)) {
947 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
951 if (on_freelist(s
, page
, object
)) {
952 object_err(s
, page
, object
, "Object already free");
956 if (!check_object(s
, page
, object
, 1))
959 if (unlikely(s
!= page
->slab
)) {
960 if (!PageSlab(page
)) {
961 slab_err(s
, page
, "Attempt to free object(0x%p) "
962 "outside of slab", object
);
963 } else if (!page
->slab
) {
965 "SLUB <none>: no slab for object 0x%p.\n",
969 object_err(s
, page
, object
,
970 "page slab pointer corrupt.");
974 /* Special debug activities for freeing objects */
975 if (!SlabFrozen(page
) && !page
->freelist
)
976 remove_full(s
, page
);
977 if (s
->flags
& SLAB_STORE_USER
)
978 set_track(s
, object
, TRACK_FREE
, addr
);
979 trace(s
, page
, object
, 0);
980 init_object(s
, object
, 0);
984 slab_fix(s
, "Object at 0x%p not freed", object
);
988 static int __init
setup_slub_debug(char *str
)
990 slub_debug
= DEBUG_DEFAULT_FLAGS
;
991 if (*str
++ != '=' || !*str
)
993 * No options specified. Switch on full debugging.
999 * No options but restriction on slabs. This means full
1000 * debugging for slabs matching a pattern.
1007 * Switch off all debugging measures.
1012 * Determine which debug features should be switched on
1014 for (; *str
&& *str
!= ','; str
++) {
1015 switch (tolower(*str
)) {
1017 slub_debug
|= SLAB_DEBUG_FREE
;
1020 slub_debug
|= SLAB_RED_ZONE
;
1023 slub_debug
|= SLAB_POISON
;
1026 slub_debug
|= SLAB_STORE_USER
;
1029 slub_debug
|= SLAB_TRACE
;
1032 printk(KERN_ERR
"slub_debug option '%c' "
1033 "unknown. skipped\n", *str
);
1039 slub_debug_slabs
= str
+ 1;
1044 __setup("slub_debug", setup_slub_debug
);
1046 static unsigned long kmem_cache_flags(unsigned long objsize
,
1047 unsigned long flags
, const char *name
,
1048 void (*ctor
)(struct kmem_cache
*, void *))
1051 * Enable debugging if selected on the kernel commandline.
1053 if (slub_debug
&& (!slub_debug_slabs
||
1054 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1055 flags
|= slub_debug
;
1060 static inline void setup_object_debug(struct kmem_cache
*s
,
1061 struct page
*page
, void *object
) {}
1063 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1064 struct page
*page
, void *object
, void *addr
) { return 0; }
1066 static inline int free_debug_processing(struct kmem_cache
*s
,
1067 struct page
*page
, void *object
, void *addr
) { return 0; }
1069 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1071 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1072 void *object
, int active
) { return 1; }
1073 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1074 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1075 unsigned long flags
, const char *name
,
1076 void (*ctor
)(struct kmem_cache
*, void *))
1080 #define slub_debug 0
1082 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1084 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1086 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1091 * Slab allocation and freeing
1093 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1094 struct kmem_cache_order_objects oo
)
1096 int order
= oo_order(oo
);
1099 return alloc_pages(flags
, order
);
1101 return alloc_pages_node(node
, flags
, order
);
1104 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1107 struct kmem_cache_order_objects oo
= s
->oo
;
1109 flags
|= s
->allocflags
;
1111 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1113 if (unlikely(!page
)) {
1116 * Allocation may have failed due to fragmentation.
1117 * Try a lower order alloc if possible
1119 page
= alloc_slab_page(flags
, node
, oo
);
1123 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1125 page
->objects
= oo_objects(oo
);
1126 mod_zone_page_state(page_zone(page
),
1127 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1128 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1134 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1137 setup_object_debug(s
, page
, object
);
1138 if (unlikely(s
->ctor
))
1142 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1149 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1151 page
= allocate_slab(s
,
1152 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1156 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1158 page
->flags
|= 1 << PG_slab
;
1159 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1160 SLAB_STORE_USER
| SLAB_TRACE
))
1163 start
= page_address(page
);
1165 if (unlikely(s
->flags
& SLAB_POISON
))
1166 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1169 for_each_object(p
, s
, start
, page
->objects
) {
1170 setup_object(s
, page
, last
);
1171 set_freepointer(s
, last
, p
);
1174 setup_object(s
, page
, last
);
1175 set_freepointer(s
, last
, NULL
);
1177 page
->freelist
= start
;
1183 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1185 int order
= compound_order(page
);
1186 int pages
= 1 << order
;
1188 if (unlikely(SlabDebug(page
))) {
1191 slab_pad_check(s
, page
);
1192 for_each_object(p
, s
, page_address(page
),
1194 check_object(s
, page
, p
, 0);
1195 ClearSlabDebug(page
);
1198 mod_zone_page_state(page_zone(page
),
1199 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1200 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1203 __ClearPageSlab(page
);
1204 reset_page_mapcount(page
);
1205 __free_pages(page
, order
);
1208 static void rcu_free_slab(struct rcu_head
*h
)
1212 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1213 __free_slab(page
->slab
, page
);
1216 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1218 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1220 * RCU free overloads the RCU head over the LRU
1222 struct rcu_head
*head
= (void *)&page
->lru
;
1224 call_rcu(head
, rcu_free_slab
);
1226 __free_slab(s
, page
);
1229 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1231 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1236 * Per slab locking using the pagelock
1238 static __always_inline
void slab_lock(struct page
*page
)
1240 bit_spin_lock(PG_locked
, &page
->flags
);
1243 static __always_inline
void slab_unlock(struct page
*page
)
1245 __bit_spin_unlock(PG_locked
, &page
->flags
);
1248 static __always_inline
int slab_trylock(struct page
*page
)
1252 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1257 * Management of partially allocated slabs
1259 static void add_partial(struct kmem_cache_node
*n
,
1260 struct page
*page
, int tail
)
1262 spin_lock(&n
->list_lock
);
1265 list_add_tail(&page
->lru
, &n
->partial
);
1267 list_add(&page
->lru
, &n
->partial
);
1268 spin_unlock(&n
->list_lock
);
1271 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1273 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1275 spin_lock(&n
->list_lock
);
1276 list_del(&page
->lru
);
1278 spin_unlock(&n
->list_lock
);
1282 * Lock slab and remove from the partial list.
1284 * Must hold list_lock.
1286 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1289 if (slab_trylock(page
)) {
1290 list_del(&page
->lru
);
1292 SetSlabFrozen(page
);
1299 * Try to allocate a partial slab from a specific node.
1301 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1306 * Racy check. If we mistakenly see no partial slabs then we
1307 * just allocate an empty slab. If we mistakenly try to get a
1308 * partial slab and there is none available then get_partials()
1311 if (!n
|| !n
->nr_partial
)
1314 spin_lock(&n
->list_lock
);
1315 list_for_each_entry(page
, &n
->partial
, lru
)
1316 if (lock_and_freeze_slab(n
, page
))
1320 spin_unlock(&n
->list_lock
);
1325 * Get a page from somewhere. Search in increasing NUMA distances.
1327 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1330 struct zonelist
*zonelist
;
1333 enum zone_type high_zoneidx
= gfp_zone(flags
);
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
1354 if (!s
->remote_node_defrag_ratio
||
1355 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1358 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1359 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1360 struct kmem_cache_node
*n
;
1362 n
= get_node(s
, zone_to_nid(zone
));
1364 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1365 n
->nr_partial
> MIN_PARTIAL
) {
1366 page
= get_partial_node(n
);
1376 * Get a partial page, lock it and return it.
1378 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1381 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1383 page
= get_partial_node(get_node(s
, searchnode
));
1384 if (page
|| (flags
& __GFP_THISNODE
))
1387 return get_any_partial(s
, flags
);
1391 * Move a page back to the lists.
1393 * Must be called with the slab lock held.
1395 * On exit the slab lock will have been dropped.
1397 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1399 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1400 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1402 ClearSlabFrozen(page
);
1405 if (page
->freelist
) {
1406 add_partial(n
, page
, tail
);
1407 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1409 stat(c
, DEACTIVATE_FULL
);
1410 if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1415 stat(c
, DEACTIVATE_EMPTY
);
1416 if (n
->nr_partial
< MIN_PARTIAL
) {
1418 * Adding an empty slab to the partial slabs in order
1419 * to avoid page allocator overhead. This slab needs
1420 * to come after the other slabs with objects in
1421 * so that the others get filled first. That way the
1422 * size of the partial list stays small.
1424 * kmem_cache_shrink can reclaim any empty slabs from
1427 add_partial(n
, page
, 1);
1431 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1432 discard_slab(s
, page
);
1438 * Remove the cpu slab
1440 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1442 struct page
*page
= c
->page
;
1446 stat(c
, DEACTIVATE_REMOTE_FREES
);
1448 * Merge cpu freelist into slab freelist. Typically we get here
1449 * because both freelists are empty. So this is unlikely
1452 while (unlikely(c
->freelist
)) {
1455 tail
= 0; /* Hot objects. Put the slab first */
1457 /* Retrieve object from cpu_freelist */
1458 object
= c
->freelist
;
1459 c
->freelist
= c
->freelist
[c
->offset
];
1461 /* And put onto the regular freelist */
1462 object
[c
->offset
] = page
->freelist
;
1463 page
->freelist
= object
;
1467 unfreeze_slab(s
, page
, tail
);
1470 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1472 stat(c
, CPUSLAB_FLUSH
);
1474 deactivate_slab(s
, c
);
1480 * Called from IPI handler with interrupts disabled.
1482 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1484 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1486 if (likely(c
&& c
->page
))
1490 static void flush_cpu_slab(void *d
)
1492 struct kmem_cache
*s
= d
;
1494 __flush_cpu_slab(s
, smp_processor_id());
1497 static void flush_all(struct kmem_cache
*s
)
1500 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1502 unsigned long flags
;
1504 local_irq_save(flags
);
1506 local_irq_restore(flags
);
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1514 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1517 if (node
!= -1 && c
->node
!= node
)
1524 * Slow path. The lockless freelist is empty or we need to perform
1527 * Interrupts are disabled.
1529 * Processing is still very fast if new objects have been freed to the
1530 * regular freelist. In that case we simply take over the regular freelist
1531 * as the lockless freelist and zap the regular freelist.
1533 * If that is not working then we fall back to the partial lists. We take the
1534 * first element of the freelist as the object to allocate now and move the
1535 * rest of the freelist to the lockless freelist.
1537 * And if we were unable to get a new slab from the partial slab lists then
1538 * we need to allocate a new slab. This is the slowest path since it involves
1539 * a call to the page allocator and the setup of a new slab.
1541 static void *__slab_alloc(struct kmem_cache
*s
,
1542 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1547 /* We handle __GFP_ZERO in the caller */
1548 gfpflags
&= ~__GFP_ZERO
;
1554 if (unlikely(!node_match(c
, node
)))
1557 stat(c
, ALLOC_REFILL
);
1560 object
= c
->page
->freelist
;
1561 if (unlikely(!object
))
1563 if (unlikely(SlabDebug(c
->page
)))
1566 c
->freelist
= object
[c
->offset
];
1567 c
->page
->inuse
= c
->page
->objects
;
1568 c
->page
->freelist
= NULL
;
1569 c
->node
= page_to_nid(c
->page
);
1571 slab_unlock(c
->page
);
1572 stat(c
, ALLOC_SLOWPATH
);
1576 deactivate_slab(s
, c
);
1579 new = get_partial(s
, gfpflags
, node
);
1582 stat(c
, ALLOC_FROM_PARTIAL
);
1586 if (gfpflags
& __GFP_WAIT
)
1589 new = new_slab(s
, gfpflags
, node
);
1591 if (gfpflags
& __GFP_WAIT
)
1592 local_irq_disable();
1595 c
= get_cpu_slab(s
, smp_processor_id());
1596 stat(c
, ALLOC_SLAB
);
1606 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1610 c
->page
->freelist
= object
[c
->offset
];
1616 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1617 * have the fastpath folded into their functions. So no function call
1618 * overhead for requests that can be satisfied on the fastpath.
1620 * The fastpath works by first checking if the lockless freelist can be used.
1621 * If not then __slab_alloc is called for slow processing.
1623 * Otherwise we can simply pick the next object from the lockless free list.
1625 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1626 gfp_t gfpflags
, int node
, void *addr
)
1629 struct kmem_cache_cpu
*c
;
1630 unsigned long flags
;
1632 local_irq_save(flags
);
1633 c
= get_cpu_slab(s
, smp_processor_id());
1634 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1636 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1639 object
= c
->freelist
;
1640 c
->freelist
= object
[c
->offset
];
1641 stat(c
, ALLOC_FASTPATH
);
1643 local_irq_restore(flags
);
1645 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1646 memset(object
, 0, c
->objsize
);
1651 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1653 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1655 EXPORT_SYMBOL(kmem_cache_alloc
);
1658 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1660 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1662 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1666 * Slow patch handling. This may still be called frequently since objects
1667 * have a longer lifetime than the cpu slabs in most processing loads.
1669 * So we still attempt to reduce cache line usage. Just take the slab
1670 * lock and free the item. If there is no additional partial page
1671 * handling required then we can return immediately.
1673 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1674 void *x
, void *addr
, unsigned int offset
)
1677 void **object
= (void *)x
;
1678 struct kmem_cache_cpu
*c
;
1680 c
= get_cpu_slab(s
, raw_smp_processor_id());
1681 stat(c
, FREE_SLOWPATH
);
1684 if (unlikely(SlabDebug(page
)))
1688 prior
= object
[offset
] = page
->freelist
;
1689 page
->freelist
= object
;
1692 if (unlikely(SlabFrozen(page
))) {
1693 stat(c
, FREE_FROZEN
);
1697 if (unlikely(!page
->inuse
))
1701 * Objects left in the slab. If it was not on the partial list before
1704 if (unlikely(!prior
)) {
1705 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1706 stat(c
, FREE_ADD_PARTIAL
);
1716 * Slab still on the partial list.
1718 remove_partial(s
, page
);
1719 stat(c
, FREE_REMOVE_PARTIAL
);
1723 discard_slab(s
, page
);
1727 if (!free_debug_processing(s
, page
, x
, addr
))
1733 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1734 * can perform fastpath freeing without additional function calls.
1736 * The fastpath is only possible if we are freeing to the current cpu slab
1737 * of this processor. This typically the case if we have just allocated
1740 * If fastpath is not possible then fall back to __slab_free where we deal
1741 * with all sorts of special processing.
1743 static __always_inline
void slab_free(struct kmem_cache
*s
,
1744 struct page
*page
, void *x
, void *addr
)
1746 void **object
= (void *)x
;
1747 struct kmem_cache_cpu
*c
;
1748 unsigned long flags
;
1750 local_irq_save(flags
);
1751 c
= get_cpu_slab(s
, smp_processor_id());
1752 debug_check_no_locks_freed(object
, c
->objsize
);
1753 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1754 debug_check_no_obj_freed(object
, s
->objsize
);
1755 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1756 object
[c
->offset
] = c
->freelist
;
1757 c
->freelist
= object
;
1758 stat(c
, FREE_FASTPATH
);
1760 __slab_free(s
, page
, x
, addr
, c
->offset
);
1762 local_irq_restore(flags
);
1765 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1769 page
= virt_to_head_page(x
);
1771 slab_free(s
, page
, x
, __builtin_return_address(0));
1773 EXPORT_SYMBOL(kmem_cache_free
);
1775 /* Figure out on which slab object the object resides */
1776 static struct page
*get_object_page(const void *x
)
1778 struct page
*page
= virt_to_head_page(x
);
1780 if (!PageSlab(page
))
1787 * Object placement in a slab is made very easy because we always start at
1788 * offset 0. If we tune the size of the object to the alignment then we can
1789 * get the required alignment by putting one properly sized object after
1792 * Notice that the allocation order determines the sizes of the per cpu
1793 * caches. Each processor has always one slab available for allocations.
1794 * Increasing the allocation order reduces the number of times that slabs
1795 * must be moved on and off the partial lists and is therefore a factor in
1800 * Mininum / Maximum order of slab pages. This influences locking overhead
1801 * and slab fragmentation. A higher order reduces the number of partial slabs
1802 * and increases the number of allocations possible without having to
1803 * take the list_lock.
1805 static int slub_min_order
;
1806 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1807 static int slub_min_objects
;
1810 * Merge control. If this is set then no merging of slab caches will occur.
1811 * (Could be removed. This was introduced to pacify the merge skeptics.)
1813 static int slub_nomerge
;
1816 * Calculate the order of allocation given an slab object size.
1818 * The order of allocation has significant impact on performance and other
1819 * system components. Generally order 0 allocations should be preferred since
1820 * order 0 does not cause fragmentation in the page allocator. Larger objects
1821 * be problematic to put into order 0 slabs because there may be too much
1822 * unused space left. We go to a higher order if more than 1/16th of the slab
1825 * In order to reach satisfactory performance we must ensure that a minimum
1826 * number of objects is in one slab. Otherwise we may generate too much
1827 * activity on the partial lists which requires taking the list_lock. This is
1828 * less a concern for large slabs though which are rarely used.
1830 * slub_max_order specifies the order where we begin to stop considering the
1831 * number of objects in a slab as critical. If we reach slub_max_order then
1832 * we try to keep the page order as low as possible. So we accept more waste
1833 * of space in favor of a small page order.
1835 * Higher order allocations also allow the placement of more objects in a
1836 * slab and thereby reduce object handling overhead. If the user has
1837 * requested a higher mininum order then we start with that one instead of
1838 * the smallest order which will fit the object.
1840 static inline int slab_order(int size
, int min_objects
,
1841 int max_order
, int fract_leftover
)
1845 int min_order
= slub_min_order
;
1847 if ((PAGE_SIZE
<< min_order
) / size
> 65535)
1848 return get_order(size
* 65535) - 1;
1850 for (order
= max(min_order
,
1851 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1852 order
<= max_order
; order
++) {
1854 unsigned long slab_size
= PAGE_SIZE
<< order
;
1856 if (slab_size
< min_objects
* size
)
1859 rem
= slab_size
% size
;
1861 if (rem
<= slab_size
/ fract_leftover
)
1869 static inline int calculate_order(int size
)
1876 * Attempt to find best configuration for a slab. This
1877 * works by first attempting to generate a layout with
1878 * the best configuration and backing off gradually.
1880 * First we reduce the acceptable waste in a slab. Then
1881 * we reduce the minimum objects required in a slab.
1883 min_objects
= slub_min_objects
;
1885 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1886 while (min_objects
> 1) {
1888 while (fraction
>= 4) {
1889 order
= slab_order(size
, min_objects
,
1890 slub_max_order
, fraction
);
1891 if (order
<= slub_max_order
)
1899 * We were unable to place multiple objects in a slab. Now
1900 * lets see if we can place a single object there.
1902 order
= slab_order(size
, 1, slub_max_order
, 1);
1903 if (order
<= slub_max_order
)
1907 * Doh this slab cannot be placed using slub_max_order.
1909 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1910 if (order
<= MAX_ORDER
)
1916 * Figure out what the alignment of the objects will be.
1918 static unsigned long calculate_alignment(unsigned long flags
,
1919 unsigned long align
, unsigned long size
)
1922 * If the user wants hardware cache aligned objects then follow that
1923 * suggestion if the object is sufficiently large.
1925 * The hardware cache alignment cannot override the specified
1926 * alignment though. If that is greater then use it.
1928 if (flags
& SLAB_HWCACHE_ALIGN
) {
1929 unsigned long ralign
= cache_line_size();
1930 while (size
<= ralign
/ 2)
1932 align
= max(align
, ralign
);
1935 if (align
< ARCH_SLAB_MINALIGN
)
1936 align
= ARCH_SLAB_MINALIGN
;
1938 return ALIGN(align
, sizeof(void *));
1941 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1942 struct kmem_cache_cpu
*c
)
1947 c
->offset
= s
->offset
/ sizeof(void *);
1948 c
->objsize
= s
->objsize
;
1949 #ifdef CONFIG_SLUB_STATS
1950 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1954 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1957 spin_lock_init(&n
->list_lock
);
1958 INIT_LIST_HEAD(&n
->partial
);
1959 #ifdef CONFIG_SLUB_DEBUG
1960 atomic_long_set(&n
->nr_slabs
, 0);
1961 INIT_LIST_HEAD(&n
->full
);
1967 * Per cpu array for per cpu structures.
1969 * The per cpu array places all kmem_cache_cpu structures from one processor
1970 * close together meaning that it becomes possible that multiple per cpu
1971 * structures are contained in one cacheline. This may be particularly
1972 * beneficial for the kmalloc caches.
1974 * A desktop system typically has around 60-80 slabs. With 100 here we are
1975 * likely able to get per cpu structures for all caches from the array defined
1976 * here. We must be able to cover all kmalloc caches during bootstrap.
1978 * If the per cpu array is exhausted then fall back to kmalloc
1979 * of individual cachelines. No sharing is possible then.
1981 #define NR_KMEM_CACHE_CPU 100
1983 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1984 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1986 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1987 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1989 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1990 int cpu
, gfp_t flags
)
1992 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1995 per_cpu(kmem_cache_cpu_free
, cpu
) =
1996 (void *)c
->freelist
;
1998 /* Table overflow: So allocate ourselves */
2000 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2001 flags
, cpu_to_node(cpu
));
2006 init_kmem_cache_cpu(s
, c
);
2010 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2012 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2013 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2017 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2018 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2021 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2025 for_each_online_cpu(cpu
) {
2026 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2029 s
->cpu_slab
[cpu
] = NULL
;
2030 free_kmem_cache_cpu(c
, cpu
);
2035 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2039 for_each_online_cpu(cpu
) {
2040 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2045 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2047 free_kmem_cache_cpus(s
);
2050 s
->cpu_slab
[cpu
] = c
;
2056 * Initialize the per cpu array.
2058 static void init_alloc_cpu_cpu(int cpu
)
2062 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2065 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2066 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2068 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2071 static void __init
init_alloc_cpu(void)
2075 for_each_online_cpu(cpu
)
2076 init_alloc_cpu_cpu(cpu
);
2080 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2081 static inline void init_alloc_cpu(void) {}
2083 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2085 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2092 * No kmalloc_node yet so do it by hand. We know that this is the first
2093 * slab on the node for this slabcache. There are no concurrent accesses
2096 * Note that this function only works on the kmalloc_node_cache
2097 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2098 * memory on a fresh node that has no slab structures yet.
2100 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2104 struct kmem_cache_node
*n
;
2105 unsigned long flags
;
2107 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2109 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2112 if (page_to_nid(page
) != node
) {
2113 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2115 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2116 "in order to be able to continue\n");
2121 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2123 kmalloc_caches
->node
[node
] = n
;
2124 #ifdef CONFIG_SLUB_DEBUG
2125 init_object(kmalloc_caches
, n
, 1);
2126 init_tracking(kmalloc_caches
, n
);
2128 init_kmem_cache_node(n
);
2129 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2132 * lockdep requires consistent irq usage for each lock
2133 * so even though there cannot be a race this early in
2134 * the boot sequence, we still disable irqs.
2136 local_irq_save(flags
);
2137 add_partial(n
, page
, 0);
2138 local_irq_restore(flags
);
2142 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2146 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2147 struct kmem_cache_node
*n
= s
->node
[node
];
2148 if (n
&& n
!= &s
->local_node
)
2149 kmem_cache_free(kmalloc_caches
, n
);
2150 s
->node
[node
] = NULL
;
2154 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2159 if (slab_state
>= UP
)
2160 local_node
= page_to_nid(virt_to_page(s
));
2164 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2165 struct kmem_cache_node
*n
;
2167 if (local_node
== node
)
2170 if (slab_state
== DOWN
) {
2171 n
= early_kmem_cache_node_alloc(gfpflags
,
2175 n
= kmem_cache_alloc_node(kmalloc_caches
,
2179 free_kmem_cache_nodes(s
);
2185 init_kmem_cache_node(n
);
2190 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2194 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2196 init_kmem_cache_node(&s
->local_node
);
2202 * calculate_sizes() determines the order and the distribution of data within
2205 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2207 unsigned long flags
= s
->flags
;
2208 unsigned long size
= s
->objsize
;
2209 unsigned long align
= s
->align
;
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2217 size
= ALIGN(size
, sizeof(void *));
2219 #ifdef CONFIG_SLUB_DEBUG
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2225 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2227 s
->flags
|= __OBJECT_POISON
;
2229 s
->flags
&= ~__OBJECT_POISON
;
2233 * If we are Redzoning then check if there is some space between the
2234 * end of the object and the free pointer. If not then add an
2235 * additional word to have some bytes to store Redzone information.
2237 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2238 size
+= sizeof(void *);
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
2247 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2258 size
+= sizeof(void *);
2261 #ifdef CONFIG_SLUB_DEBUG
2262 if (flags
& SLAB_STORE_USER
)
2264 * Need to store information about allocs and frees after
2267 size
+= 2 * sizeof(struct track
);
2269 if (flags
& SLAB_RED_ZONE
)
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
2274 * corrupted if an user writes before the start
2277 size
+= sizeof(void *);
2281 * Determine the alignment based on various parameters that the
2282 * user specified and the dynamic determination of cache line size
2285 align
= calculate_alignment(flags
, align
, s
->objsize
);
2288 * SLUB stores one object immediately after another beginning from
2289 * offset 0. In order to align the objects we have to simply size
2290 * each object to conform to the alignment.
2292 size
= ALIGN(size
, align
);
2294 if (forced_order
>= 0)
2295 order
= forced_order
;
2297 order
= calculate_order(size
);
2304 s
->allocflags
|= __GFP_COMP
;
2306 if (s
->flags
& SLAB_CACHE_DMA
)
2307 s
->allocflags
|= SLUB_DMA
;
2309 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2310 s
->allocflags
|= __GFP_RECLAIMABLE
;
2313 * Determine the number of objects per slab
2315 s
->oo
= oo_make(order
, size
);
2316 s
->min
= oo_make(get_order(size
), size
);
2317 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2320 return !!oo_objects(s
->oo
);
2324 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2325 const char *name
, size_t size
,
2326 size_t align
, unsigned long flags
,
2327 void (*ctor
)(struct kmem_cache
*, void *))
2329 memset(s
, 0, kmem_size
);
2334 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2336 if (!calculate_sizes(s
, -1))
2341 s
->remote_node_defrag_ratio
= 100;
2343 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2346 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2348 free_kmem_cache_nodes(s
);
2350 if (flags
& SLAB_PANIC
)
2351 panic("Cannot create slab %s size=%lu realsize=%u "
2352 "order=%u offset=%u flags=%lx\n",
2353 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2359 * Check if a given pointer is valid
2361 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2365 page
= get_object_page(object
);
2367 if (!page
|| s
!= page
->slab
)
2368 /* No slab or wrong slab */
2371 if (!check_valid_pointer(s
, page
, object
))
2375 * We could also check if the object is on the slabs freelist.
2376 * But this would be too expensive and it seems that the main
2377 * purpose of kmem_ptr_valid() is to check if the object belongs
2378 * to a certain slab.
2382 EXPORT_SYMBOL(kmem_ptr_validate
);
2385 * Determine the size of a slab object
2387 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2391 EXPORT_SYMBOL(kmem_cache_size
);
2393 const char *kmem_cache_name(struct kmem_cache
*s
)
2397 EXPORT_SYMBOL(kmem_cache_name
);
2399 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2402 #ifdef CONFIG_SLUB_DEBUG
2403 void *addr
= page_address(page
);
2405 DECLARE_BITMAP(map
, page
->objects
);
2407 bitmap_zero(map
, page
->objects
);
2408 slab_err(s
, page
, "%s", text
);
2410 for_each_free_object(p
, s
, page
->freelist
)
2411 set_bit(slab_index(p
, s
, addr
), map
);
2413 for_each_object(p
, s
, addr
, page
->objects
) {
2415 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2416 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2418 print_tracking(s
, p
);
2426 * Attempt to free all partial slabs on a node.
2428 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2430 unsigned long flags
;
2431 struct page
*page
, *h
;
2433 spin_lock_irqsave(&n
->list_lock
, flags
);
2434 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2436 list_del(&page
->lru
);
2437 discard_slab(s
, page
);
2440 list_slab_objects(s
, page
,
2441 "Objects remaining on kmem_cache_close()");
2444 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2448 * Release all resources used by a slab cache.
2450 static inline int kmem_cache_close(struct kmem_cache
*s
)
2456 /* Attempt to free all objects */
2457 free_kmem_cache_cpus(s
);
2458 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2459 struct kmem_cache_node
*n
= get_node(s
, node
);
2462 if (n
->nr_partial
|| slabs_node(s
, node
))
2465 free_kmem_cache_nodes(s
);
2470 * Close a cache and release the kmem_cache structure
2471 * (must be used for caches created using kmem_cache_create)
2473 void kmem_cache_destroy(struct kmem_cache
*s
)
2475 down_write(&slub_lock
);
2479 up_write(&slub_lock
);
2480 if (kmem_cache_close(s
)) {
2481 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2482 "still has objects.\n", s
->name
, __func__
);
2485 sysfs_slab_remove(s
);
2487 up_write(&slub_lock
);
2489 EXPORT_SYMBOL(kmem_cache_destroy
);
2491 /********************************************************************
2493 *******************************************************************/
2495 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2496 EXPORT_SYMBOL(kmalloc_caches
);
2498 static int __init
setup_slub_min_order(char *str
)
2500 get_option(&str
, &slub_min_order
);
2505 __setup("slub_min_order=", setup_slub_min_order
);
2507 static int __init
setup_slub_max_order(char *str
)
2509 get_option(&str
, &slub_max_order
);
2514 __setup("slub_max_order=", setup_slub_max_order
);
2516 static int __init
setup_slub_min_objects(char *str
)
2518 get_option(&str
, &slub_min_objects
);
2523 __setup("slub_min_objects=", setup_slub_min_objects
);
2525 static int __init
setup_slub_nomerge(char *str
)
2531 __setup("slub_nomerge", setup_slub_nomerge
);
2533 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2534 const char *name
, int size
, gfp_t gfp_flags
)
2536 unsigned int flags
= 0;
2538 if (gfp_flags
& SLUB_DMA
)
2539 flags
= SLAB_CACHE_DMA
;
2541 down_write(&slub_lock
);
2542 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2546 list_add(&s
->list
, &slab_caches
);
2547 up_write(&slub_lock
);
2548 if (sysfs_slab_add(s
))
2553 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2556 #ifdef CONFIG_ZONE_DMA
2557 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2559 static void sysfs_add_func(struct work_struct
*w
)
2561 struct kmem_cache
*s
;
2563 down_write(&slub_lock
);
2564 list_for_each_entry(s
, &slab_caches
, list
) {
2565 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2566 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2570 up_write(&slub_lock
);
2573 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2575 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2577 struct kmem_cache
*s
;
2581 s
= kmalloc_caches_dma
[index
];
2585 /* Dynamically create dma cache */
2586 if (flags
& __GFP_WAIT
)
2587 down_write(&slub_lock
);
2589 if (!down_write_trylock(&slub_lock
))
2593 if (kmalloc_caches_dma
[index
])
2596 realsize
= kmalloc_caches
[index
].objsize
;
2597 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2598 (unsigned int)realsize
);
2599 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2601 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2602 realsize
, ARCH_KMALLOC_MINALIGN
,
2603 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2609 list_add(&s
->list
, &slab_caches
);
2610 kmalloc_caches_dma
[index
] = s
;
2612 schedule_work(&sysfs_add_work
);
2615 up_write(&slub_lock
);
2617 return kmalloc_caches_dma
[index
];
2622 * Conversion table for small slabs sizes / 8 to the index in the
2623 * kmalloc array. This is necessary for slabs < 192 since we have non power
2624 * of two cache sizes there. The size of larger slabs can be determined using
2627 static s8 size_index
[24] = {
2654 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2660 return ZERO_SIZE_PTR
;
2662 index
= size_index
[(size
- 1) / 8];
2664 index
= fls(size
- 1);
2666 #ifdef CONFIG_ZONE_DMA
2667 if (unlikely((flags
& SLUB_DMA
)))
2668 return dma_kmalloc_cache(index
, flags
);
2671 return &kmalloc_caches
[index
];
2674 void *__kmalloc(size_t size
, gfp_t flags
)
2676 struct kmem_cache
*s
;
2678 if (unlikely(size
> PAGE_SIZE
))
2679 return kmalloc_large(size
, flags
);
2681 s
= get_slab(size
, flags
);
2683 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2686 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2688 EXPORT_SYMBOL(__kmalloc
);
2690 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2692 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2696 return page_address(page
);
2702 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2704 struct kmem_cache
*s
;
2706 if (unlikely(size
> PAGE_SIZE
))
2707 return kmalloc_large_node(size
, flags
, node
);
2709 s
= get_slab(size
, flags
);
2711 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2714 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2716 EXPORT_SYMBOL(__kmalloc_node
);
2719 size_t ksize(const void *object
)
2722 struct kmem_cache
*s
;
2724 if (unlikely(object
== ZERO_SIZE_PTR
))
2727 page
= virt_to_head_page(object
);
2729 if (unlikely(!PageSlab(page
)))
2730 return PAGE_SIZE
<< compound_order(page
);
2734 #ifdef CONFIG_SLUB_DEBUG
2736 * Debugging requires use of the padding between object
2737 * and whatever may come after it.
2739 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2744 * If we have the need to store the freelist pointer
2745 * back there or track user information then we can
2746 * only use the space before that information.
2748 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2751 * Else we can use all the padding etc for the allocation
2755 EXPORT_SYMBOL(ksize
);
2757 void kfree(const void *x
)
2760 void *object
= (void *)x
;
2762 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2765 page
= virt_to_head_page(x
);
2766 if (unlikely(!PageSlab(page
))) {
2770 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2772 EXPORT_SYMBOL(kfree
);
2775 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2776 * the remaining slabs by the number of items in use. The slabs with the
2777 * most items in use come first. New allocations will then fill those up
2778 * and thus they can be removed from the partial lists.
2780 * The slabs with the least items are placed last. This results in them
2781 * being allocated from last increasing the chance that the last objects
2782 * are freed in them.
2784 int kmem_cache_shrink(struct kmem_cache
*s
)
2788 struct kmem_cache_node
*n
;
2791 int objects
= oo_objects(s
->max
);
2792 struct list_head
*slabs_by_inuse
=
2793 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2794 unsigned long flags
;
2796 if (!slabs_by_inuse
)
2800 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2801 n
= get_node(s
, node
);
2806 for (i
= 0; i
< objects
; i
++)
2807 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2809 spin_lock_irqsave(&n
->list_lock
, flags
);
2812 * Build lists indexed by the items in use in each slab.
2814 * Note that concurrent frees may occur while we hold the
2815 * list_lock. page->inuse here is the upper limit.
2817 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2818 if (!page
->inuse
&& slab_trylock(page
)) {
2820 * Must hold slab lock here because slab_free
2821 * may have freed the last object and be
2822 * waiting to release the slab.
2824 list_del(&page
->lru
);
2827 discard_slab(s
, page
);
2829 list_move(&page
->lru
,
2830 slabs_by_inuse
+ page
->inuse
);
2835 * Rebuild the partial list with the slabs filled up most
2836 * first and the least used slabs at the end.
2838 for (i
= objects
- 1; i
>= 0; i
--)
2839 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2841 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2844 kfree(slabs_by_inuse
);
2847 EXPORT_SYMBOL(kmem_cache_shrink
);
2849 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2850 static int slab_mem_going_offline_callback(void *arg
)
2852 struct kmem_cache
*s
;
2854 down_read(&slub_lock
);
2855 list_for_each_entry(s
, &slab_caches
, list
)
2856 kmem_cache_shrink(s
);
2857 up_read(&slub_lock
);
2862 static void slab_mem_offline_callback(void *arg
)
2864 struct kmem_cache_node
*n
;
2865 struct kmem_cache
*s
;
2866 struct memory_notify
*marg
= arg
;
2869 offline_node
= marg
->status_change_nid
;
2872 * If the node still has available memory. we need kmem_cache_node
2875 if (offline_node
< 0)
2878 down_read(&slub_lock
);
2879 list_for_each_entry(s
, &slab_caches
, list
) {
2880 n
= get_node(s
, offline_node
);
2883 * if n->nr_slabs > 0, slabs still exist on the node
2884 * that is going down. We were unable to free them,
2885 * and offline_pages() function shoudn't call this
2886 * callback. So, we must fail.
2888 BUG_ON(slabs_node(s
, offline_node
));
2890 s
->node
[offline_node
] = NULL
;
2891 kmem_cache_free(kmalloc_caches
, n
);
2894 up_read(&slub_lock
);
2897 static int slab_mem_going_online_callback(void *arg
)
2899 struct kmem_cache_node
*n
;
2900 struct kmem_cache
*s
;
2901 struct memory_notify
*marg
= arg
;
2902 int nid
= marg
->status_change_nid
;
2906 * If the node's memory is already available, then kmem_cache_node is
2907 * already created. Nothing to do.
2913 * We are bringing a node online. No memory is available yet. We must
2914 * allocate a kmem_cache_node structure in order to bring the node
2917 down_read(&slub_lock
);
2918 list_for_each_entry(s
, &slab_caches
, list
) {
2920 * XXX: kmem_cache_alloc_node will fallback to other nodes
2921 * since memory is not yet available from the node that
2924 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2929 init_kmem_cache_node(n
);
2933 up_read(&slub_lock
);
2937 static int slab_memory_callback(struct notifier_block
*self
,
2938 unsigned long action
, void *arg
)
2943 case MEM_GOING_ONLINE
:
2944 ret
= slab_mem_going_online_callback(arg
);
2946 case MEM_GOING_OFFLINE
:
2947 ret
= slab_mem_going_offline_callback(arg
);
2950 case MEM_CANCEL_ONLINE
:
2951 slab_mem_offline_callback(arg
);
2954 case MEM_CANCEL_OFFLINE
:
2958 ret
= notifier_from_errno(ret
);
2962 #endif /* CONFIG_MEMORY_HOTPLUG */
2964 /********************************************************************
2965 * Basic setup of slabs
2966 *******************************************************************/
2968 void __init
kmem_cache_init(void)
2977 * Must first have the slab cache available for the allocations of the
2978 * struct kmem_cache_node's. There is special bootstrap code in
2979 * kmem_cache_open for slab_state == DOWN.
2981 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2982 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2983 kmalloc_caches
[0].refcount
= -1;
2986 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2989 /* Able to allocate the per node structures */
2990 slab_state
= PARTIAL
;
2992 /* Caches that are not of the two-to-the-power-of size */
2993 if (KMALLOC_MIN_SIZE
<= 64) {
2994 create_kmalloc_cache(&kmalloc_caches
[1],
2995 "kmalloc-96", 96, GFP_KERNEL
);
2998 if (KMALLOC_MIN_SIZE
<= 128) {
2999 create_kmalloc_cache(&kmalloc_caches
[2],
3000 "kmalloc-192", 192, GFP_KERNEL
);
3004 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
3005 create_kmalloc_cache(&kmalloc_caches
[i
],
3006 "kmalloc", 1 << i
, GFP_KERNEL
);
3012 * Patch up the size_index table if we have strange large alignment
3013 * requirements for the kmalloc array. This is only the case for
3014 * MIPS it seems. The standard arches will not generate any code here.
3016 * Largest permitted alignment is 256 bytes due to the way we
3017 * handle the index determination for the smaller caches.
3019 * Make sure that nothing crazy happens if someone starts tinkering
3020 * around with ARCH_KMALLOC_MINALIGN
3022 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3023 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3025 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3026 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3030 /* Provide the correct kmalloc names now that the caches are up */
3031 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
3032 kmalloc_caches
[i
]. name
=
3033 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3036 register_cpu_notifier(&slab_notifier
);
3037 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3038 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3040 kmem_size
= sizeof(struct kmem_cache
);
3044 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3045 " CPUs=%d, Nodes=%d\n",
3046 caches
, cache_line_size(),
3047 slub_min_order
, slub_max_order
, slub_min_objects
,
3048 nr_cpu_ids
, nr_node_ids
);
3052 * Find a mergeable slab cache
3054 static int slab_unmergeable(struct kmem_cache
*s
)
3056 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3063 * We may have set a slab to be unmergeable during bootstrap.
3065 if (s
->refcount
< 0)
3071 static struct kmem_cache
*find_mergeable(size_t size
,
3072 size_t align
, unsigned long flags
, const char *name
,
3073 void (*ctor
)(struct kmem_cache
*, void *))
3075 struct kmem_cache
*s
;
3077 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3083 size
= ALIGN(size
, sizeof(void *));
3084 align
= calculate_alignment(flags
, align
, size
);
3085 size
= ALIGN(size
, align
);
3086 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3088 list_for_each_entry(s
, &slab_caches
, list
) {
3089 if (slab_unmergeable(s
))
3095 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3098 * Check if alignment is compatible.
3099 * Courtesy of Adrian Drzewiecki
3101 if ((s
->size
& ~(align
- 1)) != s
->size
)
3104 if (s
->size
- size
>= sizeof(void *))
3112 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3113 size_t align
, unsigned long flags
,
3114 void (*ctor
)(struct kmem_cache
*, void *))
3116 struct kmem_cache
*s
;
3118 down_write(&slub_lock
);
3119 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3125 * Adjust the object sizes so that we clear
3126 * the complete object on kzalloc.
3128 s
->objsize
= max(s
->objsize
, (int)size
);
3131 * And then we need to update the object size in the
3132 * per cpu structures
3134 for_each_online_cpu(cpu
)
3135 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3137 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3138 up_write(&slub_lock
);
3140 if (sysfs_slab_alias(s
, name
))
3145 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3147 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3148 size
, align
, flags
, ctor
)) {
3149 list_add(&s
->list
, &slab_caches
);
3150 up_write(&slub_lock
);
3151 if (sysfs_slab_add(s
))
3157 up_write(&slub_lock
);
3160 if (flags
& SLAB_PANIC
)
3161 panic("Cannot create slabcache %s\n", name
);
3166 EXPORT_SYMBOL(kmem_cache_create
);
3170 * Use the cpu notifier to insure that the cpu slabs are flushed when
3173 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3174 unsigned long action
, void *hcpu
)
3176 long cpu
= (long)hcpu
;
3177 struct kmem_cache
*s
;
3178 unsigned long flags
;
3181 case CPU_UP_PREPARE
:
3182 case CPU_UP_PREPARE_FROZEN
:
3183 init_alloc_cpu_cpu(cpu
);
3184 down_read(&slub_lock
);
3185 list_for_each_entry(s
, &slab_caches
, list
)
3186 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3188 up_read(&slub_lock
);
3191 case CPU_UP_CANCELED
:
3192 case CPU_UP_CANCELED_FROZEN
:
3194 case CPU_DEAD_FROZEN
:
3195 down_read(&slub_lock
);
3196 list_for_each_entry(s
, &slab_caches
, list
) {
3197 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3199 local_irq_save(flags
);
3200 __flush_cpu_slab(s
, cpu
);
3201 local_irq_restore(flags
);
3202 free_kmem_cache_cpu(c
, cpu
);
3203 s
->cpu_slab
[cpu
] = NULL
;
3205 up_read(&slub_lock
);
3213 static struct notifier_block __cpuinitdata slab_notifier
= {
3214 .notifier_call
= slab_cpuup_callback
3219 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3221 struct kmem_cache
*s
;
3223 if (unlikely(size
> PAGE_SIZE
))
3224 return kmalloc_large(size
, gfpflags
);
3226 s
= get_slab(size
, gfpflags
);
3228 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3231 return slab_alloc(s
, gfpflags
, -1, caller
);
3234 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3235 int node
, void *caller
)
3237 struct kmem_cache
*s
;
3239 if (unlikely(size
> PAGE_SIZE
))
3240 return kmalloc_large_node(size
, gfpflags
, node
);
3242 s
= get_slab(size
, gfpflags
);
3244 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3247 return slab_alloc(s
, gfpflags
, node
, caller
);
3250 #ifdef CONFIG_SLUB_DEBUG
3251 static unsigned long count_partial(struct kmem_cache_node
*n
,
3252 int (*get_count
)(struct page
*))
3254 unsigned long flags
;
3255 unsigned long x
= 0;
3258 spin_lock_irqsave(&n
->list_lock
, flags
);
3259 list_for_each_entry(page
, &n
->partial
, lru
)
3260 x
+= get_count(page
);
3261 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3265 static int count_inuse(struct page
*page
)
3270 static int count_total(struct page
*page
)
3272 return page
->objects
;
3275 static int count_free(struct page
*page
)
3277 return page
->objects
- page
->inuse
;
3280 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3284 void *addr
= page_address(page
);
3286 if (!check_slab(s
, page
) ||
3287 !on_freelist(s
, page
, NULL
))
3290 /* Now we know that a valid freelist exists */
3291 bitmap_zero(map
, page
->objects
);
3293 for_each_free_object(p
, s
, page
->freelist
) {
3294 set_bit(slab_index(p
, s
, addr
), map
);
3295 if (!check_object(s
, page
, p
, 0))
3299 for_each_object(p
, s
, addr
, page
->objects
)
3300 if (!test_bit(slab_index(p
, s
, addr
), map
))
3301 if (!check_object(s
, page
, p
, 1))
3306 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3309 if (slab_trylock(page
)) {
3310 validate_slab(s
, page
, map
);
3313 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3316 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3317 if (!SlabDebug(page
))
3318 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3319 "on slab 0x%p\n", s
->name
, page
);
3321 if (SlabDebug(page
))
3322 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3323 "slab 0x%p\n", s
->name
, page
);
3327 static int validate_slab_node(struct kmem_cache
*s
,
3328 struct kmem_cache_node
*n
, unsigned long *map
)
3330 unsigned long count
= 0;
3332 unsigned long flags
;
3334 spin_lock_irqsave(&n
->list_lock
, flags
);
3336 list_for_each_entry(page
, &n
->partial
, lru
) {
3337 validate_slab_slab(s
, page
, map
);
3340 if (count
!= n
->nr_partial
)
3341 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3342 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3344 if (!(s
->flags
& SLAB_STORE_USER
))
3347 list_for_each_entry(page
, &n
->full
, lru
) {
3348 validate_slab_slab(s
, page
, map
);
3351 if (count
!= atomic_long_read(&n
->nr_slabs
))
3352 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3353 "counter=%ld\n", s
->name
, count
,
3354 atomic_long_read(&n
->nr_slabs
));
3357 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3361 static long validate_slab_cache(struct kmem_cache
*s
)
3364 unsigned long count
= 0;
3365 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3366 sizeof(unsigned long), GFP_KERNEL
);
3372 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3373 struct kmem_cache_node
*n
= get_node(s
, node
);
3375 count
+= validate_slab_node(s
, n
, map
);
3381 #ifdef SLUB_RESILIENCY_TEST
3382 static void resiliency_test(void)
3386 printk(KERN_ERR
"SLUB resiliency testing\n");
3387 printk(KERN_ERR
"-----------------------\n");
3388 printk(KERN_ERR
"A. Corruption after allocation\n");
3390 p
= kzalloc(16, GFP_KERNEL
);
3392 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3393 " 0x12->0x%p\n\n", p
+ 16);
3395 validate_slab_cache(kmalloc_caches
+ 4);
3397 /* Hmmm... The next two are dangerous */
3398 p
= kzalloc(32, GFP_KERNEL
);
3399 p
[32 + sizeof(void *)] = 0x34;
3400 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3401 " 0x34 -> -0x%p\n", p
);
3403 "If allocated object is overwritten then not detectable\n\n");
3405 validate_slab_cache(kmalloc_caches
+ 5);
3406 p
= kzalloc(64, GFP_KERNEL
);
3407 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3409 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3412 "If allocated object is overwritten then not detectable\n\n");
3413 validate_slab_cache(kmalloc_caches
+ 6);
3415 printk(KERN_ERR
"\nB. Corruption after free\n");
3416 p
= kzalloc(128, GFP_KERNEL
);
3419 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3420 validate_slab_cache(kmalloc_caches
+ 7);
3422 p
= kzalloc(256, GFP_KERNEL
);
3425 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3427 validate_slab_cache(kmalloc_caches
+ 8);
3429 p
= kzalloc(512, GFP_KERNEL
);
3432 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3433 validate_slab_cache(kmalloc_caches
+ 9);
3436 static void resiliency_test(void) {};
3440 * Generate lists of code addresses where slabcache objects are allocated
3445 unsigned long count
;
3458 unsigned long count
;
3459 struct location
*loc
;
3462 static void free_loc_track(struct loc_track
*t
)
3465 free_pages((unsigned long)t
->loc
,
3466 get_order(sizeof(struct location
) * t
->max
));
3469 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3474 order
= get_order(sizeof(struct location
) * max
);
3476 l
= (void *)__get_free_pages(flags
, order
);
3481 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3489 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3490 const struct track
*track
)
3492 long start
, end
, pos
;
3495 unsigned long age
= jiffies
- track
->when
;
3501 pos
= start
+ (end
- start
+ 1) / 2;
3504 * There is nothing at "end". If we end up there
3505 * we need to add something to before end.
3510 caddr
= t
->loc
[pos
].addr
;
3511 if (track
->addr
== caddr
) {
3517 if (age
< l
->min_time
)
3519 if (age
> l
->max_time
)
3522 if (track
->pid
< l
->min_pid
)
3523 l
->min_pid
= track
->pid
;
3524 if (track
->pid
> l
->max_pid
)
3525 l
->max_pid
= track
->pid
;
3527 cpu_set(track
->cpu
, l
->cpus
);
3529 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3533 if (track
->addr
< caddr
)
3540 * Not found. Insert new tracking element.
3542 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3548 (t
->count
- pos
) * sizeof(struct location
));
3551 l
->addr
= track
->addr
;
3555 l
->min_pid
= track
->pid
;
3556 l
->max_pid
= track
->pid
;
3557 cpus_clear(l
->cpus
);
3558 cpu_set(track
->cpu
, l
->cpus
);
3559 nodes_clear(l
->nodes
);
3560 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3564 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3565 struct page
*page
, enum track_item alloc
)
3567 void *addr
= page_address(page
);
3568 DECLARE_BITMAP(map
, page
->objects
);
3571 bitmap_zero(map
, page
->objects
);
3572 for_each_free_object(p
, s
, page
->freelist
)
3573 set_bit(slab_index(p
, s
, addr
), map
);
3575 for_each_object(p
, s
, addr
, page
->objects
)
3576 if (!test_bit(slab_index(p
, s
, addr
), map
))
3577 add_location(t
, s
, get_track(s
, p
, alloc
));
3580 static int list_locations(struct kmem_cache
*s
, char *buf
,
3581 enum track_item alloc
)
3585 struct loc_track t
= { 0, 0, NULL
};
3588 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3590 return sprintf(buf
, "Out of memory\n");
3592 /* Push back cpu slabs */
3595 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3596 struct kmem_cache_node
*n
= get_node(s
, node
);
3597 unsigned long flags
;
3600 if (!atomic_long_read(&n
->nr_slabs
))
3603 spin_lock_irqsave(&n
->list_lock
, flags
);
3604 list_for_each_entry(page
, &n
->partial
, lru
)
3605 process_slab(&t
, s
, page
, alloc
);
3606 list_for_each_entry(page
, &n
->full
, lru
)
3607 process_slab(&t
, s
, page
, alloc
);
3608 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3611 for (i
= 0; i
< t
.count
; i
++) {
3612 struct location
*l
= &t
.loc
[i
];
3614 if (len
> PAGE_SIZE
- 100)
3616 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3619 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3621 len
+= sprintf(buf
+ len
, "<not-available>");
3623 if (l
->sum_time
!= l
->min_time
) {
3624 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3626 (long)div_u64(l
->sum_time
, l
->count
),
3629 len
+= sprintf(buf
+ len
, " age=%ld",
3632 if (l
->min_pid
!= l
->max_pid
)
3633 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3634 l
->min_pid
, l
->max_pid
);
3636 len
+= sprintf(buf
+ len
, " pid=%ld",
3639 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3640 len
< PAGE_SIZE
- 60) {
3641 len
+= sprintf(buf
+ len
, " cpus=");
3642 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3646 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3647 len
< PAGE_SIZE
- 60) {
3648 len
+= sprintf(buf
+ len
, " nodes=");
3649 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3653 len
+= sprintf(buf
+ len
, "\n");
3658 len
+= sprintf(buf
, "No data\n");
3662 enum slab_stat_type
{
3663 SL_ALL
, /* All slabs */
3664 SL_PARTIAL
, /* Only partially allocated slabs */
3665 SL_CPU
, /* Only slabs used for cpu caches */
3666 SL_OBJECTS
, /* Determine allocated objects not slabs */
3667 SL_TOTAL
/* Determine object capacity not slabs */
3670 #define SO_ALL (1 << SL_ALL)
3671 #define SO_PARTIAL (1 << SL_PARTIAL)
3672 #define SO_CPU (1 << SL_CPU)
3673 #define SO_OBJECTS (1 << SL_OBJECTS)
3674 #define SO_TOTAL (1 << SL_TOTAL)
3676 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3677 char *buf
, unsigned long flags
)
3679 unsigned long total
= 0;
3682 unsigned long *nodes
;
3683 unsigned long *per_cpu
;
3685 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3688 per_cpu
= nodes
+ nr_node_ids
;
3690 if (flags
& SO_CPU
) {
3693 for_each_possible_cpu(cpu
) {
3694 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3696 if (!c
|| c
->node
< 0)
3700 if (flags
& SO_TOTAL
)
3701 x
= c
->page
->objects
;
3702 else if (flags
& SO_OBJECTS
)
3708 nodes
[c
->node
] += x
;
3714 if (flags
& SO_ALL
) {
3715 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3716 struct kmem_cache_node
*n
= get_node(s
, node
);
3718 if (flags
& SO_TOTAL
)
3719 x
= atomic_long_read(&n
->total_objects
);
3720 else if (flags
& SO_OBJECTS
)
3721 x
= atomic_long_read(&n
->total_objects
) -
3722 count_partial(n
, count_free
);
3725 x
= atomic_long_read(&n
->nr_slabs
);
3730 } else if (flags
& SO_PARTIAL
) {
3731 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3732 struct kmem_cache_node
*n
= get_node(s
, node
);
3734 if (flags
& SO_TOTAL
)
3735 x
= count_partial(n
, count_total
);
3736 else if (flags
& SO_OBJECTS
)
3737 x
= count_partial(n
, count_inuse
);
3744 x
= sprintf(buf
, "%lu", total
);
3746 for_each_node_state(node
, N_NORMAL_MEMORY
)
3748 x
+= sprintf(buf
+ x
, " N%d=%lu",
3752 return x
+ sprintf(buf
+ x
, "\n");
3755 static int any_slab_objects(struct kmem_cache
*s
)
3759 for_each_online_node(node
) {
3760 struct kmem_cache_node
*n
= get_node(s
, node
);
3765 if (atomic_long_read(&n
->total_objects
))
3771 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3772 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3774 struct slab_attribute
{
3775 struct attribute attr
;
3776 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3777 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3780 #define SLAB_ATTR_RO(_name) \
3781 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3783 #define SLAB_ATTR(_name) \
3784 static struct slab_attribute _name##_attr = \
3785 __ATTR(_name, 0644, _name##_show, _name##_store)
3787 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3789 return sprintf(buf
, "%d\n", s
->size
);
3791 SLAB_ATTR_RO(slab_size
);
3793 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3795 return sprintf(buf
, "%d\n", s
->align
);
3797 SLAB_ATTR_RO(align
);
3799 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3801 return sprintf(buf
, "%d\n", s
->objsize
);
3803 SLAB_ATTR_RO(object_size
);
3805 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3807 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3809 SLAB_ATTR_RO(objs_per_slab
);
3811 static ssize_t
order_store(struct kmem_cache
*s
,
3812 const char *buf
, size_t length
)
3814 unsigned long order
;
3817 err
= strict_strtoul(buf
, 10, &order
);
3821 if (order
> slub_max_order
|| order
< slub_min_order
)
3824 calculate_sizes(s
, order
);
3828 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3830 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3834 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3837 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3839 return n
+ sprintf(buf
+ n
, "\n");
3845 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3847 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3849 SLAB_ATTR_RO(aliases
);
3851 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3853 return show_slab_objects(s
, buf
, SO_ALL
);
3855 SLAB_ATTR_RO(slabs
);
3857 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3859 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3861 SLAB_ATTR_RO(partial
);
3863 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3865 return show_slab_objects(s
, buf
, SO_CPU
);
3867 SLAB_ATTR_RO(cpu_slabs
);
3869 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3871 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3873 SLAB_ATTR_RO(objects
);
3875 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3877 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3879 SLAB_ATTR_RO(objects_partial
);
3881 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3883 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3885 SLAB_ATTR_RO(total_objects
);
3887 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3889 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3892 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3893 const char *buf
, size_t length
)
3895 s
->flags
&= ~SLAB_DEBUG_FREE
;
3897 s
->flags
|= SLAB_DEBUG_FREE
;
3900 SLAB_ATTR(sanity_checks
);
3902 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3904 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3907 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3910 s
->flags
&= ~SLAB_TRACE
;
3912 s
->flags
|= SLAB_TRACE
;
3917 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3919 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3922 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3923 const char *buf
, size_t length
)
3925 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3927 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3930 SLAB_ATTR(reclaim_account
);
3932 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3934 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3936 SLAB_ATTR_RO(hwcache_align
);
3938 #ifdef CONFIG_ZONE_DMA
3939 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3941 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3943 SLAB_ATTR_RO(cache_dma
);
3946 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3948 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3950 SLAB_ATTR_RO(destroy_by_rcu
);
3952 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3954 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3957 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3958 const char *buf
, size_t length
)
3960 if (any_slab_objects(s
))
3963 s
->flags
&= ~SLAB_RED_ZONE
;
3965 s
->flags
|= SLAB_RED_ZONE
;
3966 calculate_sizes(s
, -1);
3969 SLAB_ATTR(red_zone
);
3971 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3973 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3976 static ssize_t
poison_store(struct kmem_cache
*s
,
3977 const char *buf
, size_t length
)
3979 if (any_slab_objects(s
))
3982 s
->flags
&= ~SLAB_POISON
;
3984 s
->flags
|= SLAB_POISON
;
3985 calculate_sizes(s
, -1);
3990 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3992 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3995 static ssize_t
store_user_store(struct kmem_cache
*s
,
3996 const char *buf
, size_t length
)
3998 if (any_slab_objects(s
))
4001 s
->flags
&= ~SLAB_STORE_USER
;
4003 s
->flags
|= SLAB_STORE_USER
;
4004 calculate_sizes(s
, -1);
4007 SLAB_ATTR(store_user
);
4009 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4014 static ssize_t
validate_store(struct kmem_cache
*s
,
4015 const char *buf
, size_t length
)
4019 if (buf
[0] == '1') {
4020 ret
= validate_slab_cache(s
);
4026 SLAB_ATTR(validate
);
4028 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4033 static ssize_t
shrink_store(struct kmem_cache
*s
,
4034 const char *buf
, size_t length
)
4036 if (buf
[0] == '1') {
4037 int rc
= kmem_cache_shrink(s
);
4047 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4049 if (!(s
->flags
& SLAB_STORE_USER
))
4051 return list_locations(s
, buf
, TRACK_ALLOC
);
4053 SLAB_ATTR_RO(alloc_calls
);
4055 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4057 if (!(s
->flags
& SLAB_STORE_USER
))
4059 return list_locations(s
, buf
, TRACK_FREE
);
4061 SLAB_ATTR_RO(free_calls
);
4064 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4066 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4069 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4070 const char *buf
, size_t length
)
4072 unsigned long ratio
;
4075 err
= strict_strtoul(buf
, 10, &ratio
);
4080 s
->remote_node_defrag_ratio
= ratio
* 10;
4084 SLAB_ATTR(remote_node_defrag_ratio
);
4087 #ifdef CONFIG_SLUB_STATS
4088 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4090 unsigned long sum
= 0;
4093 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4098 for_each_online_cpu(cpu
) {
4099 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4105 len
= sprintf(buf
, "%lu", sum
);
4108 for_each_online_cpu(cpu
) {
4109 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4110 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4114 return len
+ sprintf(buf
+ len
, "\n");
4117 #define STAT_ATTR(si, text) \
4118 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4120 return show_stat(s, buf, si); \
4122 SLAB_ATTR_RO(text); \
4124 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4125 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4126 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4127 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4128 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4129 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4130 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4131 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4132 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4133 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4134 STAT_ATTR(FREE_SLAB
, free_slab
);
4135 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4136 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4137 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4138 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4139 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4140 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4141 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4144 static struct attribute
*slab_attrs
[] = {
4145 &slab_size_attr
.attr
,
4146 &object_size_attr
.attr
,
4147 &objs_per_slab_attr
.attr
,
4150 &objects_partial_attr
.attr
,
4151 &total_objects_attr
.attr
,
4154 &cpu_slabs_attr
.attr
,
4158 &sanity_checks_attr
.attr
,
4160 &hwcache_align_attr
.attr
,
4161 &reclaim_account_attr
.attr
,
4162 &destroy_by_rcu_attr
.attr
,
4163 &red_zone_attr
.attr
,
4165 &store_user_attr
.attr
,
4166 &validate_attr
.attr
,
4168 &alloc_calls_attr
.attr
,
4169 &free_calls_attr
.attr
,
4170 #ifdef CONFIG_ZONE_DMA
4171 &cache_dma_attr
.attr
,
4174 &remote_node_defrag_ratio_attr
.attr
,
4176 #ifdef CONFIG_SLUB_STATS
4177 &alloc_fastpath_attr
.attr
,
4178 &alloc_slowpath_attr
.attr
,
4179 &free_fastpath_attr
.attr
,
4180 &free_slowpath_attr
.attr
,
4181 &free_frozen_attr
.attr
,
4182 &free_add_partial_attr
.attr
,
4183 &free_remove_partial_attr
.attr
,
4184 &alloc_from_partial_attr
.attr
,
4185 &alloc_slab_attr
.attr
,
4186 &alloc_refill_attr
.attr
,
4187 &free_slab_attr
.attr
,
4188 &cpuslab_flush_attr
.attr
,
4189 &deactivate_full_attr
.attr
,
4190 &deactivate_empty_attr
.attr
,
4191 &deactivate_to_head_attr
.attr
,
4192 &deactivate_to_tail_attr
.attr
,
4193 &deactivate_remote_frees_attr
.attr
,
4194 &order_fallback_attr
.attr
,
4199 static struct attribute_group slab_attr_group
= {
4200 .attrs
= slab_attrs
,
4203 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4204 struct attribute
*attr
,
4207 struct slab_attribute
*attribute
;
4208 struct kmem_cache
*s
;
4211 attribute
= to_slab_attr(attr
);
4214 if (!attribute
->show
)
4217 err
= attribute
->show(s
, buf
);
4222 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4223 struct attribute
*attr
,
4224 const char *buf
, size_t len
)
4226 struct slab_attribute
*attribute
;
4227 struct kmem_cache
*s
;
4230 attribute
= to_slab_attr(attr
);
4233 if (!attribute
->store
)
4236 err
= attribute
->store(s
, buf
, len
);
4241 static void kmem_cache_release(struct kobject
*kobj
)
4243 struct kmem_cache
*s
= to_slab(kobj
);
4248 static struct sysfs_ops slab_sysfs_ops
= {
4249 .show
= slab_attr_show
,
4250 .store
= slab_attr_store
,
4253 static struct kobj_type slab_ktype
= {
4254 .sysfs_ops
= &slab_sysfs_ops
,
4255 .release
= kmem_cache_release
4258 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4260 struct kobj_type
*ktype
= get_ktype(kobj
);
4262 if (ktype
== &slab_ktype
)
4267 static struct kset_uevent_ops slab_uevent_ops
= {
4268 .filter
= uevent_filter
,
4271 static struct kset
*slab_kset
;
4273 #define ID_STR_LENGTH 64
4275 /* Create a unique string id for a slab cache:
4277 * Format :[flags-]size
4279 static char *create_unique_id(struct kmem_cache
*s
)
4281 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4288 * First flags affecting slabcache operations. We will only
4289 * get here for aliasable slabs so we do not need to support
4290 * too many flags. The flags here must cover all flags that
4291 * are matched during merging to guarantee that the id is
4294 if (s
->flags
& SLAB_CACHE_DMA
)
4296 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4298 if (s
->flags
& SLAB_DEBUG_FREE
)
4302 p
+= sprintf(p
, "%07d", s
->size
);
4303 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4307 static int sysfs_slab_add(struct kmem_cache
*s
)
4313 if (slab_state
< SYSFS
)
4314 /* Defer until later */
4317 unmergeable
= slab_unmergeable(s
);
4320 * Slabcache can never be merged so we can use the name proper.
4321 * This is typically the case for debug situations. In that
4322 * case we can catch duplicate names easily.
4324 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4328 * Create a unique name for the slab as a target
4331 name
= create_unique_id(s
);
4334 s
->kobj
.kset
= slab_kset
;
4335 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4337 kobject_put(&s
->kobj
);
4341 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4344 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4346 /* Setup first alias */
4347 sysfs_slab_alias(s
, s
->name
);
4353 static void sysfs_slab_remove(struct kmem_cache
*s
)
4355 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4356 kobject_del(&s
->kobj
);
4357 kobject_put(&s
->kobj
);
4361 * Need to buffer aliases during bootup until sysfs becomes
4362 * available lest we loose that information.
4364 struct saved_alias
{
4365 struct kmem_cache
*s
;
4367 struct saved_alias
*next
;
4370 static struct saved_alias
*alias_list
;
4372 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4374 struct saved_alias
*al
;
4376 if (slab_state
== SYSFS
) {
4378 * If we have a leftover link then remove it.
4380 sysfs_remove_link(&slab_kset
->kobj
, name
);
4381 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4384 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4390 al
->next
= alias_list
;
4395 static int __init
slab_sysfs_init(void)
4397 struct kmem_cache
*s
;
4400 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4402 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4408 list_for_each_entry(s
, &slab_caches
, list
) {
4409 err
= sysfs_slab_add(s
);
4411 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4412 " to sysfs\n", s
->name
);
4415 while (alias_list
) {
4416 struct saved_alias
*al
= alias_list
;
4418 alias_list
= alias_list
->next
;
4419 err
= sysfs_slab_alias(al
->s
, al
->name
);
4421 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4422 " %s to sysfs\n", s
->name
);
4430 __initcall(slab_sysfs_init
);
4434 * The /proc/slabinfo ABI
4436 #ifdef CONFIG_SLABINFO
4438 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4439 size_t count
, loff_t
*ppos
)
4445 static void print_slabinfo_header(struct seq_file
*m
)
4447 seq_puts(m
, "slabinfo - version: 2.1\n");
4448 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4449 "<objperslab> <pagesperslab>");
4450 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4451 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4455 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4459 down_read(&slub_lock
);
4461 print_slabinfo_header(m
);
4463 return seq_list_start(&slab_caches
, *pos
);
4466 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4468 return seq_list_next(p
, &slab_caches
, pos
);
4471 static void s_stop(struct seq_file
*m
, void *p
)
4473 up_read(&slub_lock
);
4476 static int s_show(struct seq_file
*m
, void *p
)
4478 unsigned long nr_partials
= 0;
4479 unsigned long nr_slabs
= 0;
4480 unsigned long nr_inuse
= 0;
4481 unsigned long nr_objs
= 0;
4482 unsigned long nr_free
= 0;
4483 struct kmem_cache
*s
;
4486 s
= list_entry(p
, struct kmem_cache
, list
);
4488 for_each_online_node(node
) {
4489 struct kmem_cache_node
*n
= get_node(s
, node
);
4494 nr_partials
+= n
->nr_partial
;
4495 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4496 nr_objs
+= atomic_long_read(&n
->total_objects
);
4497 nr_free
+= count_partial(n
, count_free
);
4500 nr_inuse
= nr_objs
- nr_free
;
4502 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4503 nr_objs
, s
->size
, oo_objects(s
->oo
),
4504 (1 << oo_order(s
->oo
)));
4505 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4506 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4512 const struct seq_operations slabinfo_op
= {
4519 #endif /* CONFIG_SLABINFO */