Merge branch 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / forcedeth.c
blob9788b1ef2e7dc125fdde5d861a0383481135b00a
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 * Changelog:
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42 * irq mask updated
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57 * open.
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61 * the tx length.
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69 * on close.
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
83 * capabilities.
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91 * per-packet flags.
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95 * of nv_remove
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104 * 0.49: 10 Dec 2005: Fix tso for large buffers.
105 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
106 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
110 * Known bugs:
111 * We suspect that on some hardware no TX done interrupts are generated.
112 * This means recovery from netif_stop_queue only happens if the hw timer
113 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
114 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
115 * If your hardware reliably generates tx done interrupts, then you can remove
116 * DEV_NEED_TIMERIRQ from the driver_data flags.
117 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
118 * superfluous timer interrupts from the nic.
120 #define FORCEDETH_VERSION "0.53"
121 #define DRV_NAME "forcedeth"
123 #include <linux/module.h>
124 #include <linux/types.h>
125 #include <linux/pci.h>
126 #include <linux/interrupt.h>
127 #include <linux/netdevice.h>
128 #include <linux/etherdevice.h>
129 #include <linux/delay.h>
130 #include <linux/spinlock.h>
131 #include <linux/ethtool.h>
132 #include <linux/timer.h>
133 #include <linux/skbuff.h>
134 #include <linux/mii.h>
135 #include <linux/random.h>
136 #include <linux/init.h>
137 #include <linux/if_vlan.h>
138 #include <linux/dma-mapping.h>
140 #include <asm/irq.h>
141 #include <asm/io.h>
142 #include <asm/uaccess.h>
143 #include <asm/system.h>
145 #if 0
146 #define dprintk printk
147 #else
148 #define dprintk(x...) do { } while (0)
149 #endif
153 * Hardware access:
156 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
157 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
158 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
159 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
160 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
161 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
162 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
163 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
164 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
166 enum {
167 NvRegIrqStatus = 0x000,
168 #define NVREG_IRQSTAT_MIIEVENT 0x040
169 #define NVREG_IRQSTAT_MASK 0x1ff
170 NvRegIrqMask = 0x004,
171 #define NVREG_IRQ_RX_ERROR 0x0001
172 #define NVREG_IRQ_RX 0x0002
173 #define NVREG_IRQ_RX_NOBUF 0x0004
174 #define NVREG_IRQ_TX_ERR 0x0008
175 #define NVREG_IRQ_TX_OK 0x0010
176 #define NVREG_IRQ_TIMER 0x0020
177 #define NVREG_IRQ_LINK 0x0040
178 #define NVREG_IRQ_RX_FORCED 0x0080
179 #define NVREG_IRQ_TX_FORCED 0x0100
180 #define NVREG_IRQMASK_THROUGHPUT 0x00df
181 #define NVREG_IRQMASK_CPU 0x0040
182 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
183 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
184 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
186 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
187 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
188 NVREG_IRQ_TX_FORCED))
190 NvRegUnknownSetupReg6 = 0x008,
191 #define NVREG_UNKSETUP6_VAL 3
194 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
195 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
197 NvRegPollingInterval = 0x00c,
198 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
199 #define NVREG_POLL_DEFAULT_CPU 13
200 NvRegMSIMap0 = 0x020,
201 NvRegMSIMap1 = 0x024,
202 NvRegMSIIrqMask = 0x030,
203 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
204 NvRegMisc1 = 0x080,
205 #define NVREG_MISC1_HD 0x02
206 #define NVREG_MISC1_FORCE 0x3b0f3c
208 NvRegMacReset = 0x3c,
209 #define NVREG_MAC_RESET_ASSERT 0x0F3
210 NvRegTransmitterControl = 0x084,
211 #define NVREG_XMITCTL_START 0x01
212 NvRegTransmitterStatus = 0x088,
213 #define NVREG_XMITSTAT_BUSY 0x01
215 NvRegPacketFilterFlags = 0x8c,
216 #define NVREG_PFF_ALWAYS 0x7F0008
217 #define NVREG_PFF_PROMISC 0x80
218 #define NVREG_PFF_MYADDR 0x20
220 NvRegOffloadConfig = 0x90,
221 #define NVREG_OFFLOAD_HOMEPHY 0x601
222 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
223 NvRegReceiverControl = 0x094,
224 #define NVREG_RCVCTL_START 0x01
225 NvRegReceiverStatus = 0x98,
226 #define NVREG_RCVSTAT_BUSY 0x01
228 NvRegRandomSeed = 0x9c,
229 #define NVREG_RNDSEED_MASK 0x00ff
230 #define NVREG_RNDSEED_FORCE 0x7f00
231 #define NVREG_RNDSEED_FORCE2 0x2d00
232 #define NVREG_RNDSEED_FORCE3 0x7400
234 NvRegUnknownSetupReg1 = 0xA0,
235 #define NVREG_UNKSETUP1_VAL 0x16070f
236 NvRegUnknownSetupReg2 = 0xA4,
237 #define NVREG_UNKSETUP2_VAL 0x16
238 NvRegMacAddrA = 0xA8,
239 NvRegMacAddrB = 0xAC,
240 NvRegMulticastAddrA = 0xB0,
241 #define NVREG_MCASTADDRA_FORCE 0x01
242 NvRegMulticastAddrB = 0xB4,
243 NvRegMulticastMaskA = 0xB8,
244 NvRegMulticastMaskB = 0xBC,
246 NvRegPhyInterface = 0xC0,
247 #define PHY_RGMII 0x10000000
249 NvRegTxRingPhysAddr = 0x100,
250 NvRegRxRingPhysAddr = 0x104,
251 NvRegRingSizes = 0x108,
252 #define NVREG_RINGSZ_TXSHIFT 0
253 #define NVREG_RINGSZ_RXSHIFT 16
254 NvRegUnknownTransmitterReg = 0x10c,
255 NvRegLinkSpeed = 0x110,
256 #define NVREG_LINKSPEED_FORCE 0x10000
257 #define NVREG_LINKSPEED_10 1000
258 #define NVREG_LINKSPEED_100 100
259 #define NVREG_LINKSPEED_1000 50
260 #define NVREG_LINKSPEED_MASK (0xFFF)
261 NvRegUnknownSetupReg5 = 0x130,
262 #define NVREG_UNKSETUP5_BIT31 (1<<31)
263 NvRegUnknownSetupReg3 = 0x13c,
264 #define NVREG_UNKSETUP3_VAL1 0x200010
265 NvRegTxRxControl = 0x144,
266 #define NVREG_TXRXCTL_KICK 0x0001
267 #define NVREG_TXRXCTL_BIT1 0x0002
268 #define NVREG_TXRXCTL_BIT2 0x0004
269 #define NVREG_TXRXCTL_IDLE 0x0008
270 #define NVREG_TXRXCTL_RESET 0x0010
271 #define NVREG_TXRXCTL_RXCHECK 0x0400
272 #define NVREG_TXRXCTL_DESC_1 0
273 #define NVREG_TXRXCTL_DESC_2 0x02100
274 #define NVREG_TXRXCTL_DESC_3 0x02200
275 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
276 #define NVREG_TXRXCTL_VLANINS 0x00080
277 NvRegTxRingPhysAddrHigh = 0x148,
278 NvRegRxRingPhysAddrHigh = 0x14C,
279 NvRegMIIStatus = 0x180,
280 #define NVREG_MIISTAT_ERROR 0x0001
281 #define NVREG_MIISTAT_LINKCHANGE 0x0008
282 #define NVREG_MIISTAT_MASK 0x000f
283 #define NVREG_MIISTAT_MASK2 0x000f
284 NvRegUnknownSetupReg4 = 0x184,
285 #define NVREG_UNKSETUP4_VAL 8
287 NvRegAdapterControl = 0x188,
288 #define NVREG_ADAPTCTL_START 0x02
289 #define NVREG_ADAPTCTL_LINKUP 0x04
290 #define NVREG_ADAPTCTL_PHYVALID 0x40000
291 #define NVREG_ADAPTCTL_RUNNING 0x100000
292 #define NVREG_ADAPTCTL_PHYSHIFT 24
293 NvRegMIISpeed = 0x18c,
294 #define NVREG_MIISPEED_BIT8 (1<<8)
295 #define NVREG_MIIDELAY 5
296 NvRegMIIControl = 0x190,
297 #define NVREG_MIICTL_INUSE 0x08000
298 #define NVREG_MIICTL_WRITE 0x00400
299 #define NVREG_MIICTL_ADDRSHIFT 5
300 NvRegMIIData = 0x194,
301 NvRegWakeUpFlags = 0x200,
302 #define NVREG_WAKEUPFLAGS_VAL 0x7770
303 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
304 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
305 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
306 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
307 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
308 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
309 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
310 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
311 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
312 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
314 NvRegPatternCRC = 0x204,
315 NvRegPatternMask = 0x208,
316 NvRegPowerCap = 0x268,
317 #define NVREG_POWERCAP_D3SUPP (1<<30)
318 #define NVREG_POWERCAP_D2SUPP (1<<26)
319 #define NVREG_POWERCAP_D1SUPP (1<<25)
320 NvRegPowerState = 0x26c,
321 #define NVREG_POWERSTATE_POWEREDUP 0x8000
322 #define NVREG_POWERSTATE_VALID 0x0100
323 #define NVREG_POWERSTATE_MASK 0x0003
324 #define NVREG_POWERSTATE_D0 0x0000
325 #define NVREG_POWERSTATE_D1 0x0001
326 #define NVREG_POWERSTATE_D2 0x0002
327 #define NVREG_POWERSTATE_D3 0x0003
328 NvRegVlanControl = 0x300,
329 #define NVREG_VLANCONTROL_ENABLE 0x2000
330 NvRegMSIXMap0 = 0x3e0,
331 NvRegMSIXMap1 = 0x3e4,
332 NvRegMSIXIrqStatus = 0x3f0,
334 NvRegPowerState2 = 0x600,
335 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
336 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
339 /* Big endian: should work, but is untested */
340 struct ring_desc {
341 u32 PacketBuffer;
342 u32 FlagLen;
345 struct ring_desc_ex {
346 u32 PacketBufferHigh;
347 u32 PacketBufferLow;
348 u32 TxVlan;
349 u32 FlagLen;
352 typedef union _ring_type {
353 struct ring_desc* orig;
354 struct ring_desc_ex* ex;
355 } ring_type;
357 #define FLAG_MASK_V1 0xffff0000
358 #define FLAG_MASK_V2 0xffffc000
359 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
360 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
362 #define NV_TX_LASTPACKET (1<<16)
363 #define NV_TX_RETRYERROR (1<<19)
364 #define NV_TX_FORCED_INTERRUPT (1<<24)
365 #define NV_TX_DEFERRED (1<<26)
366 #define NV_TX_CARRIERLOST (1<<27)
367 #define NV_TX_LATECOLLISION (1<<28)
368 #define NV_TX_UNDERFLOW (1<<29)
369 #define NV_TX_ERROR (1<<30)
370 #define NV_TX_VALID (1<<31)
372 #define NV_TX2_LASTPACKET (1<<29)
373 #define NV_TX2_RETRYERROR (1<<18)
374 #define NV_TX2_FORCED_INTERRUPT (1<<30)
375 #define NV_TX2_DEFERRED (1<<25)
376 #define NV_TX2_CARRIERLOST (1<<26)
377 #define NV_TX2_LATECOLLISION (1<<27)
378 #define NV_TX2_UNDERFLOW (1<<28)
379 /* error and valid are the same for both */
380 #define NV_TX2_ERROR (1<<30)
381 #define NV_TX2_VALID (1<<31)
382 #define NV_TX2_TSO (1<<28)
383 #define NV_TX2_TSO_SHIFT 14
384 #define NV_TX2_TSO_MAX_SHIFT 14
385 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
386 #define NV_TX2_CHECKSUM_L3 (1<<27)
387 #define NV_TX2_CHECKSUM_L4 (1<<26)
389 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
391 #define NV_RX_DESCRIPTORVALID (1<<16)
392 #define NV_RX_MISSEDFRAME (1<<17)
393 #define NV_RX_SUBSTRACT1 (1<<18)
394 #define NV_RX_ERROR1 (1<<23)
395 #define NV_RX_ERROR2 (1<<24)
396 #define NV_RX_ERROR3 (1<<25)
397 #define NV_RX_ERROR4 (1<<26)
398 #define NV_RX_CRCERR (1<<27)
399 #define NV_RX_OVERFLOW (1<<28)
400 #define NV_RX_FRAMINGERR (1<<29)
401 #define NV_RX_ERROR (1<<30)
402 #define NV_RX_AVAIL (1<<31)
404 #define NV_RX2_CHECKSUMMASK (0x1C000000)
405 #define NV_RX2_CHECKSUMOK1 (0x10000000)
406 #define NV_RX2_CHECKSUMOK2 (0x14000000)
407 #define NV_RX2_CHECKSUMOK3 (0x18000000)
408 #define NV_RX2_DESCRIPTORVALID (1<<29)
409 #define NV_RX2_SUBSTRACT1 (1<<25)
410 #define NV_RX2_ERROR1 (1<<18)
411 #define NV_RX2_ERROR2 (1<<19)
412 #define NV_RX2_ERROR3 (1<<20)
413 #define NV_RX2_ERROR4 (1<<21)
414 #define NV_RX2_CRCERR (1<<22)
415 #define NV_RX2_OVERFLOW (1<<23)
416 #define NV_RX2_FRAMINGERR (1<<24)
417 /* error and avail are the same for both */
418 #define NV_RX2_ERROR (1<<30)
419 #define NV_RX2_AVAIL (1<<31)
421 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
422 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
424 /* Miscelaneous hardware related defines: */
425 #define NV_PCI_REGSZ_VER1 0x270
426 #define NV_PCI_REGSZ_VER2 0x604
428 /* various timeout delays: all in usec */
429 #define NV_TXRX_RESET_DELAY 4
430 #define NV_TXSTOP_DELAY1 10
431 #define NV_TXSTOP_DELAY1MAX 500000
432 #define NV_TXSTOP_DELAY2 100
433 #define NV_RXSTOP_DELAY1 10
434 #define NV_RXSTOP_DELAY1MAX 500000
435 #define NV_RXSTOP_DELAY2 100
436 #define NV_SETUP5_DELAY 5
437 #define NV_SETUP5_DELAYMAX 50000
438 #define NV_POWERUP_DELAY 5
439 #define NV_POWERUP_DELAYMAX 5000
440 #define NV_MIIBUSY_DELAY 50
441 #define NV_MIIPHY_DELAY 10
442 #define NV_MIIPHY_DELAYMAX 10000
443 #define NV_MAC_RESET_DELAY 64
445 #define NV_WAKEUPPATTERNS 5
446 #define NV_WAKEUPMASKENTRIES 4
448 /* General driver defaults */
449 #define NV_WATCHDOG_TIMEO (5*HZ)
451 #define RX_RING 128
452 #define TX_RING 256
454 * If your nic mysteriously hangs then try to reduce the limits
455 * to 1/0: It might be required to set NV_TX_LASTPACKET in the
456 * last valid ring entry. But this would be impossible to
457 * implement - probably a disassembly error.
459 #define TX_LIMIT_STOP 255
460 #define TX_LIMIT_START 254
462 /* rx/tx mac addr + type + vlan + align + slack*/
463 #define NV_RX_HEADERS (64)
464 /* even more slack. */
465 #define NV_RX_ALLOC_PAD (64)
467 /* maximum mtu size */
468 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
469 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
471 #define OOM_REFILL (1+HZ/20)
472 #define POLL_WAIT (1+HZ/100)
473 #define LINK_TIMEOUT (3*HZ)
476 * desc_ver values:
477 * The nic supports three different descriptor types:
478 * - DESC_VER_1: Original
479 * - DESC_VER_2: support for jumbo frames.
480 * - DESC_VER_3: 64-bit format.
482 #define DESC_VER_1 1
483 #define DESC_VER_2 2
484 #define DESC_VER_3 3
486 /* PHY defines */
487 #define PHY_OUI_MARVELL 0x5043
488 #define PHY_OUI_CICADA 0x03f1
489 #define PHYID1_OUI_MASK 0x03ff
490 #define PHYID1_OUI_SHFT 6
491 #define PHYID2_OUI_MASK 0xfc00
492 #define PHYID2_OUI_SHFT 10
493 #define PHY_INIT1 0x0f000
494 #define PHY_INIT2 0x0e00
495 #define PHY_INIT3 0x01000
496 #define PHY_INIT4 0x0200
497 #define PHY_INIT5 0x0004
498 #define PHY_INIT6 0x02000
499 #define PHY_GIGABIT 0x0100
501 #define PHY_TIMEOUT 0x1
502 #define PHY_ERROR 0x2
504 #define PHY_100 0x1
505 #define PHY_1000 0x2
506 #define PHY_HALF 0x100
508 /* FIXME: MII defines that should be added to <linux/mii.h> */
509 #define MII_1000BT_CR 0x09
510 #define MII_1000BT_SR 0x0a
511 #define ADVERTISE_1000FULL 0x0200
512 #define ADVERTISE_1000HALF 0x0100
513 #define LPA_1000FULL 0x0800
514 #define LPA_1000HALF 0x0400
516 /* MSI/MSI-X defines */
517 #define NV_MSI_X_MAX_VECTORS 8
518 #define NV_MSI_X_VECTORS_MASK 0x000f
519 #define NV_MSI_CAPABLE 0x0010
520 #define NV_MSI_X_CAPABLE 0x0020
521 #define NV_MSI_ENABLED 0x0040
522 #define NV_MSI_X_ENABLED 0x0080
524 #define NV_MSI_X_VECTOR_ALL 0x0
525 #define NV_MSI_X_VECTOR_RX 0x0
526 #define NV_MSI_X_VECTOR_TX 0x1
527 #define NV_MSI_X_VECTOR_OTHER 0x2
530 * SMP locking:
531 * All hardware access under dev->priv->lock, except the performance
532 * critical parts:
533 * - rx is (pseudo-) lockless: it relies on the single-threading provided
534 * by the arch code for interrupts.
535 * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
536 * needs dev->priv->lock :-(
537 * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
540 /* in dev: base, irq */
541 struct fe_priv {
542 spinlock_t lock;
544 /* General data:
545 * Locking: spin_lock(&np->lock); */
546 struct net_device_stats stats;
547 int in_shutdown;
548 u32 linkspeed;
549 int duplex;
550 int autoneg;
551 int fixed_mode;
552 int phyaddr;
553 int wolenabled;
554 unsigned int phy_oui;
555 u16 gigabit;
557 /* General data: RO fields */
558 dma_addr_t ring_addr;
559 struct pci_dev *pci_dev;
560 u32 orig_mac[2];
561 u32 irqmask;
562 u32 desc_ver;
563 u32 txrxctl_bits;
564 u32 vlanctl_bits;
565 u32 driver_data;
566 u32 register_size;
568 void __iomem *base;
570 /* rx specific fields.
571 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
573 ring_type rx_ring;
574 unsigned int cur_rx, refill_rx;
575 struct sk_buff *rx_skbuff[RX_RING];
576 dma_addr_t rx_dma[RX_RING];
577 unsigned int rx_buf_sz;
578 unsigned int pkt_limit;
579 struct timer_list oom_kick;
580 struct timer_list nic_poll;
581 u32 nic_poll_irq;
583 /* media detection workaround.
584 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
586 int need_linktimer;
587 unsigned long link_timeout;
589 * tx specific fields.
591 ring_type tx_ring;
592 unsigned int next_tx, nic_tx;
593 struct sk_buff *tx_skbuff[TX_RING];
594 dma_addr_t tx_dma[TX_RING];
595 unsigned int tx_dma_len[TX_RING];
596 u32 tx_flags;
598 /* vlan fields */
599 struct vlan_group *vlangrp;
601 /* msi/msi-x fields */
602 u32 msi_flags;
603 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
607 * Maximum number of loops until we assume that a bit in the irq mask
608 * is stuck. Overridable with module param.
610 static int max_interrupt_work = 5;
613 * Optimization can be either throuput mode or cpu mode
615 * Throughput Mode: Every tx and rx packet will generate an interrupt.
616 * CPU Mode: Interrupts are controlled by a timer.
618 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
619 #define NV_OPTIMIZATION_MODE_CPU 1
620 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
623 * Poll interval for timer irq
625 * This interval determines how frequent an interrupt is generated.
626 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
627 * Min = 0, and Max = 65535
629 static int poll_interval = -1;
632 * Disable MSI interrupts
634 static int disable_msi = 0;
637 * Disable MSIX interrupts
639 static int disable_msix = 0;
641 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
643 return netdev_priv(dev);
646 static inline u8 __iomem *get_hwbase(struct net_device *dev)
648 return ((struct fe_priv *)netdev_priv(dev))->base;
651 static inline void pci_push(u8 __iomem *base)
653 /* force out pending posted writes */
654 readl(base);
657 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
659 return le32_to_cpu(prd->FlagLen)
660 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
663 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
665 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
668 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
669 int delay, int delaymax, const char *msg)
671 u8 __iomem *base = get_hwbase(dev);
673 pci_push(base);
674 do {
675 udelay(delay);
676 delaymax -= delay;
677 if (delaymax < 0) {
678 if (msg)
679 printk(msg);
680 return 1;
682 } while ((readl(base + offset) & mask) != target);
683 return 0;
686 #define NV_SETUP_RX_RING 0x01
687 #define NV_SETUP_TX_RING 0x02
689 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
691 struct fe_priv *np = get_nvpriv(dev);
692 u8 __iomem *base = get_hwbase(dev);
694 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
695 if (rxtx_flags & NV_SETUP_RX_RING) {
696 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
698 if (rxtx_flags & NV_SETUP_TX_RING) {
699 writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
701 } else {
702 if (rxtx_flags & NV_SETUP_RX_RING) {
703 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
704 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
706 if (rxtx_flags & NV_SETUP_TX_RING) {
707 writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
708 writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
713 #define MII_READ (-1)
714 /* mii_rw: read/write a register on the PHY.
716 * Caller must guarantee serialization
718 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
720 u8 __iomem *base = get_hwbase(dev);
721 u32 reg;
722 int retval;
724 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
726 reg = readl(base + NvRegMIIControl);
727 if (reg & NVREG_MIICTL_INUSE) {
728 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
729 udelay(NV_MIIBUSY_DELAY);
732 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
733 if (value != MII_READ) {
734 writel(value, base + NvRegMIIData);
735 reg |= NVREG_MIICTL_WRITE;
737 writel(reg, base + NvRegMIIControl);
739 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
740 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
741 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
742 dev->name, miireg, addr);
743 retval = -1;
744 } else if (value != MII_READ) {
745 /* it was a write operation - fewer failures are detectable */
746 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
747 dev->name, value, miireg, addr);
748 retval = 0;
749 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
750 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
751 dev->name, miireg, addr);
752 retval = -1;
753 } else {
754 retval = readl(base + NvRegMIIData);
755 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
756 dev->name, miireg, addr, retval);
759 return retval;
762 static int phy_reset(struct net_device *dev)
764 struct fe_priv *np = netdev_priv(dev);
765 u32 miicontrol;
766 unsigned int tries = 0;
768 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
769 miicontrol |= BMCR_RESET;
770 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
771 return -1;
774 /* wait for 500ms */
775 msleep(500);
777 /* must wait till reset is deasserted */
778 while (miicontrol & BMCR_RESET) {
779 msleep(10);
780 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
781 /* FIXME: 100 tries seem excessive */
782 if (tries++ > 100)
783 return -1;
785 return 0;
788 static int phy_init(struct net_device *dev)
790 struct fe_priv *np = get_nvpriv(dev);
791 u8 __iomem *base = get_hwbase(dev);
792 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
794 /* set advertise register */
795 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
796 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
797 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
798 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
799 return PHY_ERROR;
802 /* get phy interface type */
803 phyinterface = readl(base + NvRegPhyInterface);
805 /* see if gigabit phy */
806 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
807 if (mii_status & PHY_GIGABIT) {
808 np->gigabit = PHY_GIGABIT;
809 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
810 mii_control_1000 &= ~ADVERTISE_1000HALF;
811 if (phyinterface & PHY_RGMII)
812 mii_control_1000 |= ADVERTISE_1000FULL;
813 else
814 mii_control_1000 &= ~ADVERTISE_1000FULL;
816 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
817 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
818 return PHY_ERROR;
821 else
822 np->gigabit = 0;
824 /* reset the phy */
825 if (phy_reset(dev)) {
826 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
827 return PHY_ERROR;
830 /* phy vendor specific configuration */
831 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
832 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
833 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
834 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
835 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
836 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
837 return PHY_ERROR;
839 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
840 phy_reserved |= PHY_INIT5;
841 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
842 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
843 return PHY_ERROR;
846 if (np->phy_oui == PHY_OUI_CICADA) {
847 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
848 phy_reserved |= PHY_INIT6;
849 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
850 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
851 return PHY_ERROR;
855 /* restart auto negotiation */
856 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
857 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
858 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
859 return PHY_ERROR;
862 return 0;
865 static void nv_start_rx(struct net_device *dev)
867 struct fe_priv *np = netdev_priv(dev);
868 u8 __iomem *base = get_hwbase(dev);
870 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
871 /* Already running? Stop it. */
872 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
873 writel(0, base + NvRegReceiverControl);
874 pci_push(base);
876 writel(np->linkspeed, base + NvRegLinkSpeed);
877 pci_push(base);
878 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
879 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
880 dev->name, np->duplex, np->linkspeed);
881 pci_push(base);
884 static void nv_stop_rx(struct net_device *dev)
886 u8 __iomem *base = get_hwbase(dev);
888 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
889 writel(0, base + NvRegReceiverControl);
890 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
891 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
892 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
894 udelay(NV_RXSTOP_DELAY2);
895 writel(0, base + NvRegLinkSpeed);
898 static void nv_start_tx(struct net_device *dev)
900 u8 __iomem *base = get_hwbase(dev);
902 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
903 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
904 pci_push(base);
907 static void nv_stop_tx(struct net_device *dev)
909 u8 __iomem *base = get_hwbase(dev);
911 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
912 writel(0, base + NvRegTransmitterControl);
913 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
914 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
915 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
917 udelay(NV_TXSTOP_DELAY2);
918 writel(0, base + NvRegUnknownTransmitterReg);
921 static void nv_txrx_reset(struct net_device *dev)
923 struct fe_priv *np = netdev_priv(dev);
924 u8 __iomem *base = get_hwbase(dev);
926 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
927 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
928 pci_push(base);
929 udelay(NV_TXRX_RESET_DELAY);
930 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
931 pci_push(base);
934 static void nv_mac_reset(struct net_device *dev)
936 struct fe_priv *np = netdev_priv(dev);
937 u8 __iomem *base = get_hwbase(dev);
939 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
940 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
941 pci_push(base);
942 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
943 pci_push(base);
944 udelay(NV_MAC_RESET_DELAY);
945 writel(0, base + NvRegMacReset);
946 pci_push(base);
947 udelay(NV_MAC_RESET_DELAY);
948 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
949 pci_push(base);
953 * nv_get_stats: dev->get_stats function
954 * Get latest stats value from the nic.
955 * Called with read_lock(&dev_base_lock) held for read -
956 * only synchronized against unregister_netdevice.
958 static struct net_device_stats *nv_get_stats(struct net_device *dev)
960 struct fe_priv *np = netdev_priv(dev);
962 /* It seems that the nic always generates interrupts and doesn't
963 * accumulate errors internally. Thus the current values in np->stats
964 * are already up to date.
966 return &np->stats;
970 * nv_alloc_rx: fill rx ring entries.
971 * Return 1 if the allocations for the skbs failed and the
972 * rx engine is without Available descriptors
974 static int nv_alloc_rx(struct net_device *dev)
976 struct fe_priv *np = netdev_priv(dev);
977 unsigned int refill_rx = np->refill_rx;
978 int nr;
980 while (np->cur_rx != refill_rx) {
981 struct sk_buff *skb;
983 nr = refill_rx % RX_RING;
984 if (np->rx_skbuff[nr] == NULL) {
986 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
987 if (!skb)
988 break;
990 skb->dev = dev;
991 np->rx_skbuff[nr] = skb;
992 } else {
993 skb = np->rx_skbuff[nr];
995 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
996 skb->end-skb->data, PCI_DMA_FROMDEVICE);
997 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
998 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
999 wmb();
1000 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1001 } else {
1002 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1003 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1004 wmb();
1005 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1007 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1008 dev->name, refill_rx);
1009 refill_rx++;
1011 np->refill_rx = refill_rx;
1012 if (np->cur_rx - refill_rx == RX_RING)
1013 return 1;
1014 return 0;
1017 static void nv_do_rx_refill(unsigned long data)
1019 struct net_device *dev = (struct net_device *) data;
1020 struct fe_priv *np = netdev_priv(dev);
1023 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1024 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1025 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1026 disable_irq(dev->irq);
1027 } else {
1028 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1030 if (nv_alloc_rx(dev)) {
1031 spin_lock(&np->lock);
1032 if (!np->in_shutdown)
1033 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1034 spin_unlock(&np->lock);
1036 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1037 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1038 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1039 enable_irq(dev->irq);
1040 } else {
1041 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1045 static void nv_init_rx(struct net_device *dev)
1047 struct fe_priv *np = netdev_priv(dev);
1048 int i;
1050 np->cur_rx = RX_RING;
1051 np->refill_rx = 0;
1052 for (i = 0; i < RX_RING; i++)
1053 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1054 np->rx_ring.orig[i].FlagLen = 0;
1055 else
1056 np->rx_ring.ex[i].FlagLen = 0;
1059 static void nv_init_tx(struct net_device *dev)
1061 struct fe_priv *np = netdev_priv(dev);
1062 int i;
1064 np->next_tx = np->nic_tx = 0;
1065 for (i = 0; i < TX_RING; i++) {
1066 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1067 np->tx_ring.orig[i].FlagLen = 0;
1068 else
1069 np->tx_ring.ex[i].FlagLen = 0;
1070 np->tx_skbuff[i] = NULL;
1071 np->tx_dma[i] = 0;
1075 static int nv_init_ring(struct net_device *dev)
1077 nv_init_tx(dev);
1078 nv_init_rx(dev);
1079 return nv_alloc_rx(dev);
1082 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1084 struct fe_priv *np = netdev_priv(dev);
1086 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1087 dev->name, skbnr);
1089 if (np->tx_dma[skbnr]) {
1090 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1091 np->tx_dma_len[skbnr],
1092 PCI_DMA_TODEVICE);
1093 np->tx_dma[skbnr] = 0;
1096 if (np->tx_skbuff[skbnr]) {
1097 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1098 np->tx_skbuff[skbnr] = NULL;
1099 return 1;
1100 } else {
1101 return 0;
1105 static void nv_drain_tx(struct net_device *dev)
1107 struct fe_priv *np = netdev_priv(dev);
1108 unsigned int i;
1110 for (i = 0; i < TX_RING; i++) {
1111 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1112 np->tx_ring.orig[i].FlagLen = 0;
1113 else
1114 np->tx_ring.ex[i].FlagLen = 0;
1115 if (nv_release_txskb(dev, i))
1116 np->stats.tx_dropped++;
1120 static void nv_drain_rx(struct net_device *dev)
1122 struct fe_priv *np = netdev_priv(dev);
1123 int i;
1124 for (i = 0; i < RX_RING; i++) {
1125 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1126 np->rx_ring.orig[i].FlagLen = 0;
1127 else
1128 np->rx_ring.ex[i].FlagLen = 0;
1129 wmb();
1130 if (np->rx_skbuff[i]) {
1131 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1132 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1133 PCI_DMA_FROMDEVICE);
1134 dev_kfree_skb(np->rx_skbuff[i]);
1135 np->rx_skbuff[i] = NULL;
1140 static void drain_ring(struct net_device *dev)
1142 nv_drain_tx(dev);
1143 nv_drain_rx(dev);
1147 * nv_start_xmit: dev->hard_start_xmit function
1148 * Called with dev->xmit_lock held.
1150 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1152 struct fe_priv *np = netdev_priv(dev);
1153 u32 tx_flags = 0;
1154 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1155 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1156 unsigned int nr = (np->next_tx - 1) % TX_RING;
1157 unsigned int start_nr = np->next_tx % TX_RING;
1158 unsigned int i;
1159 u32 offset = 0;
1160 u32 bcnt;
1161 u32 size = skb->len-skb->data_len;
1162 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1163 u32 tx_flags_vlan = 0;
1165 /* add fragments to entries count */
1166 for (i = 0; i < fragments; i++) {
1167 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1168 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1171 spin_lock_irq(&np->lock);
1173 if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
1174 spin_unlock_irq(&np->lock);
1175 netif_stop_queue(dev);
1176 return NETDEV_TX_BUSY;
1179 /* setup the header buffer */
1180 do {
1181 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1182 nr = (nr + 1) % TX_RING;
1184 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1185 PCI_DMA_TODEVICE);
1186 np->tx_dma_len[nr] = bcnt;
1188 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1189 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1190 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1191 } else {
1192 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1193 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1194 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1196 tx_flags = np->tx_flags;
1197 offset += bcnt;
1198 size -= bcnt;
1199 } while(size);
1201 /* setup the fragments */
1202 for (i = 0; i < fragments; i++) {
1203 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1204 u32 size = frag->size;
1205 offset = 0;
1207 do {
1208 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1209 nr = (nr + 1) % TX_RING;
1211 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1212 PCI_DMA_TODEVICE);
1213 np->tx_dma_len[nr] = bcnt;
1215 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1216 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1217 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1218 } else {
1219 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1220 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1221 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1223 offset += bcnt;
1224 size -= bcnt;
1225 } while (size);
1228 /* set last fragment flag */
1229 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1230 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1231 } else {
1232 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1235 np->tx_skbuff[nr] = skb;
1237 #ifdef NETIF_F_TSO
1238 if (skb_shinfo(skb)->tso_size)
1239 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1240 else
1241 #endif
1242 tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1244 /* vlan tag */
1245 if (np->vlangrp && vlan_tx_tag_present(skb)) {
1246 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1249 /* set tx flags */
1250 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1251 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1252 } else {
1253 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1254 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1257 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1258 dev->name, np->next_tx, entries, tx_flags_extra);
1260 int j;
1261 for (j=0; j<64; j++) {
1262 if ((j%16) == 0)
1263 dprintk("\n%03x:", j);
1264 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1266 dprintk("\n");
1269 np->next_tx += entries;
1271 dev->trans_start = jiffies;
1272 spin_unlock_irq(&np->lock);
1273 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1274 pci_push(get_hwbase(dev));
1275 return NETDEV_TX_OK;
1279 * nv_tx_done: check for completed packets, release the skbs.
1281 * Caller must own np->lock.
1283 static void nv_tx_done(struct net_device *dev)
1285 struct fe_priv *np = netdev_priv(dev);
1286 u32 Flags;
1287 unsigned int i;
1288 struct sk_buff *skb;
1290 while (np->nic_tx != np->next_tx) {
1291 i = np->nic_tx % TX_RING;
1293 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1294 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1295 else
1296 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1298 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1299 dev->name, np->nic_tx, Flags);
1300 if (Flags & NV_TX_VALID)
1301 break;
1302 if (np->desc_ver == DESC_VER_1) {
1303 if (Flags & NV_TX_LASTPACKET) {
1304 skb = np->tx_skbuff[i];
1305 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1306 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1307 if (Flags & NV_TX_UNDERFLOW)
1308 np->stats.tx_fifo_errors++;
1309 if (Flags & NV_TX_CARRIERLOST)
1310 np->stats.tx_carrier_errors++;
1311 np->stats.tx_errors++;
1312 } else {
1313 np->stats.tx_packets++;
1314 np->stats.tx_bytes += skb->len;
1317 } else {
1318 if (Flags & NV_TX2_LASTPACKET) {
1319 skb = np->tx_skbuff[i];
1320 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1321 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1322 if (Flags & NV_TX2_UNDERFLOW)
1323 np->stats.tx_fifo_errors++;
1324 if (Flags & NV_TX2_CARRIERLOST)
1325 np->stats.tx_carrier_errors++;
1326 np->stats.tx_errors++;
1327 } else {
1328 np->stats.tx_packets++;
1329 np->stats.tx_bytes += skb->len;
1333 nv_release_txskb(dev, i);
1334 np->nic_tx++;
1336 if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1337 netif_wake_queue(dev);
1341 * nv_tx_timeout: dev->tx_timeout function
1342 * Called with dev->xmit_lock held.
1344 static void nv_tx_timeout(struct net_device *dev)
1346 struct fe_priv *np = netdev_priv(dev);
1347 u8 __iomem *base = get_hwbase(dev);
1348 u32 status;
1350 if (np->msi_flags & NV_MSI_X_ENABLED)
1351 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1352 else
1353 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1355 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1358 int i;
1360 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1361 dev->name, (unsigned long)np->ring_addr,
1362 np->next_tx, np->nic_tx);
1363 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1364 for (i=0;i<=np->register_size;i+= 32) {
1365 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1367 readl(base + i + 0), readl(base + i + 4),
1368 readl(base + i + 8), readl(base + i + 12),
1369 readl(base + i + 16), readl(base + i + 20),
1370 readl(base + i + 24), readl(base + i + 28));
1372 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1373 for (i=0;i<TX_RING;i+= 4) {
1374 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1375 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1377 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1378 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1379 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1380 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1381 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1382 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1383 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1384 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1385 } else {
1386 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1388 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1389 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1390 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1391 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1392 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1393 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1394 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1395 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1396 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1397 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1398 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1399 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1404 spin_lock_irq(&np->lock);
1406 /* 1) stop tx engine */
1407 nv_stop_tx(dev);
1409 /* 2) check that the packets were not sent already: */
1410 nv_tx_done(dev);
1412 /* 3) if there are dead entries: clear everything */
1413 if (np->next_tx != np->nic_tx) {
1414 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1415 nv_drain_tx(dev);
1416 np->next_tx = np->nic_tx = 0;
1417 setup_hw_rings(dev, NV_SETUP_TX_RING);
1418 netif_wake_queue(dev);
1421 /* 4) restart tx engine */
1422 nv_start_tx(dev);
1423 spin_unlock_irq(&np->lock);
1427 * Called when the nic notices a mismatch between the actual data len on the
1428 * wire and the len indicated in the 802 header
1430 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1432 int hdrlen; /* length of the 802 header */
1433 int protolen; /* length as stored in the proto field */
1435 /* 1) calculate len according to header */
1436 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1437 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1438 hdrlen = VLAN_HLEN;
1439 } else {
1440 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1441 hdrlen = ETH_HLEN;
1443 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1444 dev->name, datalen, protolen, hdrlen);
1445 if (protolen > ETH_DATA_LEN)
1446 return datalen; /* Value in proto field not a len, no checks possible */
1448 protolen += hdrlen;
1449 /* consistency checks: */
1450 if (datalen > ETH_ZLEN) {
1451 if (datalen >= protolen) {
1452 /* more data on wire than in 802 header, trim of
1453 * additional data.
1455 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1456 dev->name, protolen);
1457 return protolen;
1458 } else {
1459 /* less data on wire than mentioned in header.
1460 * Discard the packet.
1462 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1463 dev->name);
1464 return -1;
1466 } else {
1467 /* short packet. Accept only if 802 values are also short */
1468 if (protolen > ETH_ZLEN) {
1469 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1470 dev->name);
1471 return -1;
1473 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1474 dev->name, datalen);
1475 return datalen;
1479 static void nv_rx_process(struct net_device *dev)
1481 struct fe_priv *np = netdev_priv(dev);
1482 u32 Flags;
1483 u32 vlanflags = 0;
1486 for (;;) {
1487 struct sk_buff *skb;
1488 int len;
1489 int i;
1490 if (np->cur_rx - np->refill_rx >= RX_RING)
1491 break; /* we scanned the whole ring - do not continue */
1493 i = np->cur_rx % RX_RING;
1494 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1495 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1496 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1497 } else {
1498 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1499 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1500 vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1503 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1504 dev->name, np->cur_rx, Flags);
1506 if (Flags & NV_RX_AVAIL)
1507 break; /* still owned by hardware, */
1510 * the packet is for us - immediately tear down the pci mapping.
1511 * TODO: check if a prefetch of the first cacheline improves
1512 * the performance.
1514 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1515 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1516 PCI_DMA_FROMDEVICE);
1519 int j;
1520 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1521 for (j=0; j<64; j++) {
1522 if ((j%16) == 0)
1523 dprintk("\n%03x:", j);
1524 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1526 dprintk("\n");
1528 /* look at what we actually got: */
1529 if (np->desc_ver == DESC_VER_1) {
1530 if (!(Flags & NV_RX_DESCRIPTORVALID))
1531 goto next_pkt;
1533 if (Flags & NV_RX_ERROR) {
1534 if (Flags & NV_RX_MISSEDFRAME) {
1535 np->stats.rx_missed_errors++;
1536 np->stats.rx_errors++;
1537 goto next_pkt;
1539 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1540 np->stats.rx_errors++;
1541 goto next_pkt;
1543 if (Flags & NV_RX_CRCERR) {
1544 np->stats.rx_crc_errors++;
1545 np->stats.rx_errors++;
1546 goto next_pkt;
1548 if (Flags & NV_RX_OVERFLOW) {
1549 np->stats.rx_over_errors++;
1550 np->stats.rx_errors++;
1551 goto next_pkt;
1553 if (Flags & NV_RX_ERROR4) {
1554 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1555 if (len < 0) {
1556 np->stats.rx_errors++;
1557 goto next_pkt;
1560 /* framing errors are soft errors. */
1561 if (Flags & NV_RX_FRAMINGERR) {
1562 if (Flags & NV_RX_SUBSTRACT1) {
1563 len--;
1567 } else {
1568 if (!(Flags & NV_RX2_DESCRIPTORVALID))
1569 goto next_pkt;
1571 if (Flags & NV_RX2_ERROR) {
1572 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1573 np->stats.rx_errors++;
1574 goto next_pkt;
1576 if (Flags & NV_RX2_CRCERR) {
1577 np->stats.rx_crc_errors++;
1578 np->stats.rx_errors++;
1579 goto next_pkt;
1581 if (Flags & NV_RX2_OVERFLOW) {
1582 np->stats.rx_over_errors++;
1583 np->stats.rx_errors++;
1584 goto next_pkt;
1586 if (Flags & NV_RX2_ERROR4) {
1587 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1588 if (len < 0) {
1589 np->stats.rx_errors++;
1590 goto next_pkt;
1593 /* framing errors are soft errors */
1594 if (Flags & NV_RX2_FRAMINGERR) {
1595 if (Flags & NV_RX2_SUBSTRACT1) {
1596 len--;
1600 Flags &= NV_RX2_CHECKSUMMASK;
1601 if (Flags == NV_RX2_CHECKSUMOK1 ||
1602 Flags == NV_RX2_CHECKSUMOK2 ||
1603 Flags == NV_RX2_CHECKSUMOK3) {
1604 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1605 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1606 } else {
1607 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1610 /* got a valid packet - forward it to the network core */
1611 skb = np->rx_skbuff[i];
1612 np->rx_skbuff[i] = NULL;
1614 skb_put(skb, len);
1615 skb->protocol = eth_type_trans(skb, dev);
1616 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1617 dev->name, np->cur_rx, len, skb->protocol);
1618 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1619 vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1620 } else {
1621 netif_rx(skb);
1623 dev->last_rx = jiffies;
1624 np->stats.rx_packets++;
1625 np->stats.rx_bytes += len;
1626 next_pkt:
1627 np->cur_rx++;
1631 static void set_bufsize(struct net_device *dev)
1633 struct fe_priv *np = netdev_priv(dev);
1635 if (dev->mtu <= ETH_DATA_LEN)
1636 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1637 else
1638 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1642 * nv_change_mtu: dev->change_mtu function
1643 * Called with dev_base_lock held for read.
1645 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1647 struct fe_priv *np = netdev_priv(dev);
1648 int old_mtu;
1650 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1651 return -EINVAL;
1653 old_mtu = dev->mtu;
1654 dev->mtu = new_mtu;
1656 /* return early if the buffer sizes will not change */
1657 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1658 return 0;
1659 if (old_mtu == new_mtu)
1660 return 0;
1662 /* synchronized against open : rtnl_lock() held by caller */
1663 if (netif_running(dev)) {
1664 u8 __iomem *base = get_hwbase(dev);
1666 * It seems that the nic preloads valid ring entries into an
1667 * internal buffer. The procedure for flushing everything is
1668 * guessed, there is probably a simpler approach.
1669 * Changing the MTU is a rare event, it shouldn't matter.
1671 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1672 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1673 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1674 disable_irq(dev->irq);
1675 } else {
1676 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1677 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1678 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1680 spin_lock_bh(&dev->xmit_lock);
1681 spin_lock(&np->lock);
1682 /* stop engines */
1683 nv_stop_rx(dev);
1684 nv_stop_tx(dev);
1685 nv_txrx_reset(dev);
1686 /* drain rx queue */
1687 nv_drain_rx(dev);
1688 nv_drain_tx(dev);
1689 /* reinit driver view of the rx queue */
1690 nv_init_rx(dev);
1691 nv_init_tx(dev);
1692 /* alloc new rx buffers */
1693 set_bufsize(dev);
1694 if (nv_alloc_rx(dev)) {
1695 if (!np->in_shutdown)
1696 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1698 /* reinit nic view of the rx queue */
1699 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1700 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1701 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1702 base + NvRegRingSizes);
1703 pci_push(base);
1704 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1705 pci_push(base);
1707 /* restart rx engine */
1708 nv_start_rx(dev);
1709 nv_start_tx(dev);
1710 spin_unlock(&np->lock);
1711 spin_unlock_bh(&dev->xmit_lock);
1712 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1713 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1714 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1715 enable_irq(dev->irq);
1716 } else {
1717 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1718 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1719 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1722 return 0;
1725 static void nv_copy_mac_to_hw(struct net_device *dev)
1727 u8 __iomem *base = get_hwbase(dev);
1728 u32 mac[2];
1730 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1731 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1732 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1734 writel(mac[0], base + NvRegMacAddrA);
1735 writel(mac[1], base + NvRegMacAddrB);
1739 * nv_set_mac_address: dev->set_mac_address function
1740 * Called with rtnl_lock() held.
1742 static int nv_set_mac_address(struct net_device *dev, void *addr)
1744 struct fe_priv *np = netdev_priv(dev);
1745 struct sockaddr *macaddr = (struct sockaddr*)addr;
1747 if(!is_valid_ether_addr(macaddr->sa_data))
1748 return -EADDRNOTAVAIL;
1750 /* synchronized against open : rtnl_lock() held by caller */
1751 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1753 if (netif_running(dev)) {
1754 spin_lock_bh(&dev->xmit_lock);
1755 spin_lock_irq(&np->lock);
1757 /* stop rx engine */
1758 nv_stop_rx(dev);
1760 /* set mac address */
1761 nv_copy_mac_to_hw(dev);
1763 /* restart rx engine */
1764 nv_start_rx(dev);
1765 spin_unlock_irq(&np->lock);
1766 spin_unlock_bh(&dev->xmit_lock);
1767 } else {
1768 nv_copy_mac_to_hw(dev);
1770 return 0;
1774 * nv_set_multicast: dev->set_multicast function
1775 * Called with dev->xmit_lock held.
1777 static void nv_set_multicast(struct net_device *dev)
1779 struct fe_priv *np = netdev_priv(dev);
1780 u8 __iomem *base = get_hwbase(dev);
1781 u32 addr[2];
1782 u32 mask[2];
1783 u32 pff;
1785 memset(addr, 0, sizeof(addr));
1786 memset(mask, 0, sizeof(mask));
1788 if (dev->flags & IFF_PROMISC) {
1789 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1790 pff = NVREG_PFF_PROMISC;
1791 } else {
1792 pff = NVREG_PFF_MYADDR;
1794 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1795 u32 alwaysOff[2];
1796 u32 alwaysOn[2];
1798 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1799 if (dev->flags & IFF_ALLMULTI) {
1800 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1801 } else {
1802 struct dev_mc_list *walk;
1804 walk = dev->mc_list;
1805 while (walk != NULL) {
1806 u32 a, b;
1807 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1808 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1809 alwaysOn[0] &= a;
1810 alwaysOff[0] &= ~a;
1811 alwaysOn[1] &= b;
1812 alwaysOff[1] &= ~b;
1813 walk = walk->next;
1816 addr[0] = alwaysOn[0];
1817 addr[1] = alwaysOn[1];
1818 mask[0] = alwaysOn[0] | alwaysOff[0];
1819 mask[1] = alwaysOn[1] | alwaysOff[1];
1822 addr[0] |= NVREG_MCASTADDRA_FORCE;
1823 pff |= NVREG_PFF_ALWAYS;
1824 spin_lock_irq(&np->lock);
1825 nv_stop_rx(dev);
1826 writel(addr[0], base + NvRegMulticastAddrA);
1827 writel(addr[1], base + NvRegMulticastAddrB);
1828 writel(mask[0], base + NvRegMulticastMaskA);
1829 writel(mask[1], base + NvRegMulticastMaskB);
1830 writel(pff, base + NvRegPacketFilterFlags);
1831 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1832 dev->name);
1833 nv_start_rx(dev);
1834 spin_unlock_irq(&np->lock);
1838 * nv_update_linkspeed: Setup the MAC according to the link partner
1839 * @dev: Network device to be configured
1841 * The function queries the PHY and checks if there is a link partner.
1842 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1843 * set to 10 MBit HD.
1845 * The function returns 0 if there is no link partner and 1 if there is
1846 * a good link partner.
1848 static int nv_update_linkspeed(struct net_device *dev)
1850 struct fe_priv *np = netdev_priv(dev);
1851 u8 __iomem *base = get_hwbase(dev);
1852 int adv, lpa;
1853 int newls = np->linkspeed;
1854 int newdup = np->duplex;
1855 int mii_status;
1856 int retval = 0;
1857 u32 control_1000, status_1000, phyreg;
1859 /* BMSR_LSTATUS is latched, read it twice:
1860 * we want the current value.
1862 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1863 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1865 if (!(mii_status & BMSR_LSTATUS)) {
1866 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1867 dev->name);
1868 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1869 newdup = 0;
1870 retval = 0;
1871 goto set_speed;
1874 if (np->autoneg == 0) {
1875 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1876 dev->name, np->fixed_mode);
1877 if (np->fixed_mode & LPA_100FULL) {
1878 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1879 newdup = 1;
1880 } else if (np->fixed_mode & LPA_100HALF) {
1881 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1882 newdup = 0;
1883 } else if (np->fixed_mode & LPA_10FULL) {
1884 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1885 newdup = 1;
1886 } else {
1887 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1888 newdup = 0;
1890 retval = 1;
1891 goto set_speed;
1893 /* check auto negotiation is complete */
1894 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1895 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1896 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1897 newdup = 0;
1898 retval = 0;
1899 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1900 goto set_speed;
1903 retval = 1;
1904 if (np->gigabit == PHY_GIGABIT) {
1905 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1906 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1908 if ((control_1000 & ADVERTISE_1000FULL) &&
1909 (status_1000 & LPA_1000FULL)) {
1910 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1911 dev->name);
1912 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1913 newdup = 1;
1914 goto set_speed;
1918 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1919 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1920 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1921 dev->name, adv, lpa);
1923 /* FIXME: handle parallel detection properly */
1924 lpa = lpa & adv;
1925 if (lpa & LPA_100FULL) {
1926 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1927 newdup = 1;
1928 } else if (lpa & LPA_100HALF) {
1929 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1930 newdup = 0;
1931 } else if (lpa & LPA_10FULL) {
1932 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1933 newdup = 1;
1934 } else if (lpa & LPA_10HALF) {
1935 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1936 newdup = 0;
1937 } else {
1938 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1939 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1940 newdup = 0;
1943 set_speed:
1944 if (np->duplex == newdup && np->linkspeed == newls)
1945 return retval;
1947 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1948 dev->name, np->linkspeed, np->duplex, newls, newdup);
1950 np->duplex = newdup;
1951 np->linkspeed = newls;
1953 if (np->gigabit == PHY_GIGABIT) {
1954 phyreg = readl(base + NvRegRandomSeed);
1955 phyreg &= ~(0x3FF00);
1956 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1957 phyreg |= NVREG_RNDSEED_FORCE3;
1958 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1959 phyreg |= NVREG_RNDSEED_FORCE2;
1960 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1961 phyreg |= NVREG_RNDSEED_FORCE;
1962 writel(phyreg, base + NvRegRandomSeed);
1965 phyreg = readl(base + NvRegPhyInterface);
1966 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1967 if (np->duplex == 0)
1968 phyreg |= PHY_HALF;
1969 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1970 phyreg |= PHY_100;
1971 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1972 phyreg |= PHY_1000;
1973 writel(phyreg, base + NvRegPhyInterface);
1975 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1976 base + NvRegMisc1);
1977 pci_push(base);
1978 writel(np->linkspeed, base + NvRegLinkSpeed);
1979 pci_push(base);
1981 return retval;
1984 static void nv_linkchange(struct net_device *dev)
1986 if (nv_update_linkspeed(dev)) {
1987 if (!netif_carrier_ok(dev)) {
1988 netif_carrier_on(dev);
1989 printk(KERN_INFO "%s: link up.\n", dev->name);
1990 nv_start_rx(dev);
1992 } else {
1993 if (netif_carrier_ok(dev)) {
1994 netif_carrier_off(dev);
1995 printk(KERN_INFO "%s: link down.\n", dev->name);
1996 nv_stop_rx(dev);
2001 static void nv_link_irq(struct net_device *dev)
2003 u8 __iomem *base = get_hwbase(dev);
2004 u32 miistat;
2006 miistat = readl(base + NvRegMIIStatus);
2007 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2008 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2010 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2011 nv_linkchange(dev);
2012 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2015 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2017 struct net_device *dev = (struct net_device *) data;
2018 struct fe_priv *np = netdev_priv(dev);
2019 u8 __iomem *base = get_hwbase(dev);
2020 u32 events;
2021 int i;
2023 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2025 for (i=0; ; i++) {
2026 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2027 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2028 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2029 } else {
2030 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2031 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2033 pci_push(base);
2034 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2035 if (!(events & np->irqmask))
2036 break;
2038 spin_lock(&np->lock);
2039 nv_tx_done(dev);
2040 spin_unlock(&np->lock);
2042 nv_rx_process(dev);
2043 if (nv_alloc_rx(dev)) {
2044 spin_lock(&np->lock);
2045 if (!np->in_shutdown)
2046 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2047 spin_unlock(&np->lock);
2050 if (events & NVREG_IRQ_LINK) {
2051 spin_lock(&np->lock);
2052 nv_link_irq(dev);
2053 spin_unlock(&np->lock);
2055 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2056 spin_lock(&np->lock);
2057 nv_linkchange(dev);
2058 spin_unlock(&np->lock);
2059 np->link_timeout = jiffies + LINK_TIMEOUT;
2061 if (events & (NVREG_IRQ_TX_ERR)) {
2062 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2063 dev->name, events);
2065 if (events & (NVREG_IRQ_UNKNOWN)) {
2066 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2067 dev->name, events);
2069 if (i > max_interrupt_work) {
2070 spin_lock(&np->lock);
2071 /* disable interrupts on the nic */
2072 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2073 writel(0, base + NvRegIrqMask);
2074 else
2075 writel(np->irqmask, base + NvRegIrqMask);
2076 pci_push(base);
2078 if (!np->in_shutdown) {
2079 np->nic_poll_irq = np->irqmask;
2080 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2082 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2083 spin_unlock(&np->lock);
2084 break;
2088 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2090 return IRQ_RETVAL(i);
2093 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2095 struct net_device *dev = (struct net_device *) data;
2096 struct fe_priv *np = netdev_priv(dev);
2097 u8 __iomem *base = get_hwbase(dev);
2098 u32 events;
2099 int i;
2101 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2103 for (i=0; ; i++) {
2104 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2105 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2106 pci_push(base);
2107 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2108 if (!(events & np->irqmask))
2109 break;
2111 spin_lock(&np->lock);
2112 nv_tx_done(dev);
2113 spin_unlock(&np->lock);
2115 if (events & (NVREG_IRQ_TX_ERR)) {
2116 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2117 dev->name, events);
2119 if (i > max_interrupt_work) {
2120 spin_lock(&np->lock);
2121 /* disable interrupts on the nic */
2122 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2123 pci_push(base);
2125 if (!np->in_shutdown) {
2126 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2127 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2129 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2130 spin_unlock(&np->lock);
2131 break;
2135 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2137 return IRQ_RETVAL(i);
2140 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2142 struct net_device *dev = (struct net_device *) data;
2143 struct fe_priv *np = netdev_priv(dev);
2144 u8 __iomem *base = get_hwbase(dev);
2145 u32 events;
2146 int i;
2148 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2150 for (i=0; ; i++) {
2151 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2152 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2153 pci_push(base);
2154 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2155 if (!(events & np->irqmask))
2156 break;
2158 nv_rx_process(dev);
2159 if (nv_alloc_rx(dev)) {
2160 spin_lock(&np->lock);
2161 if (!np->in_shutdown)
2162 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2163 spin_unlock(&np->lock);
2166 if (i > max_interrupt_work) {
2167 spin_lock(&np->lock);
2168 /* disable interrupts on the nic */
2169 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2170 pci_push(base);
2172 if (!np->in_shutdown) {
2173 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2174 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2176 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2177 spin_unlock(&np->lock);
2178 break;
2182 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2184 return IRQ_RETVAL(i);
2187 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2189 struct net_device *dev = (struct net_device *) data;
2190 struct fe_priv *np = netdev_priv(dev);
2191 u8 __iomem *base = get_hwbase(dev);
2192 u32 events;
2193 int i;
2195 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2197 for (i=0; ; i++) {
2198 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2199 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2200 pci_push(base);
2201 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2202 if (!(events & np->irqmask))
2203 break;
2205 if (events & NVREG_IRQ_LINK) {
2206 spin_lock(&np->lock);
2207 nv_link_irq(dev);
2208 spin_unlock(&np->lock);
2210 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2211 spin_lock(&np->lock);
2212 nv_linkchange(dev);
2213 spin_unlock(&np->lock);
2214 np->link_timeout = jiffies + LINK_TIMEOUT;
2216 if (events & (NVREG_IRQ_UNKNOWN)) {
2217 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2218 dev->name, events);
2220 if (i > max_interrupt_work) {
2221 spin_lock(&np->lock);
2222 /* disable interrupts on the nic */
2223 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2224 pci_push(base);
2226 if (!np->in_shutdown) {
2227 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2228 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2230 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2231 spin_unlock(&np->lock);
2232 break;
2236 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2238 return IRQ_RETVAL(i);
2241 static void nv_do_nic_poll(unsigned long data)
2243 struct net_device *dev = (struct net_device *) data;
2244 struct fe_priv *np = netdev_priv(dev);
2245 u8 __iomem *base = get_hwbase(dev);
2246 u32 mask = 0;
2249 * First disable irq(s) and then
2250 * reenable interrupts on the nic, we have to do this before calling
2251 * nv_nic_irq because that may decide to do otherwise
2254 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
2255 ((np->msi_flags & NV_MSI_X_ENABLED) &&
2256 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
2257 disable_irq(dev->irq);
2258 mask = np->irqmask;
2259 } else {
2260 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2261 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2262 mask |= NVREG_IRQ_RX_ALL;
2264 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2265 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2266 mask |= NVREG_IRQ_TX_ALL;
2268 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2269 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2270 mask |= NVREG_IRQ_OTHER;
2273 np->nic_poll_irq = 0;
2275 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2277 writel(mask, base + NvRegIrqMask);
2278 pci_push(base);
2280 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
2281 ((np->msi_flags & NV_MSI_X_ENABLED) &&
2282 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
2283 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2284 enable_irq(dev->irq);
2285 } else {
2286 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2287 nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2288 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2290 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2291 nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2292 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2294 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2295 nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2296 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2301 #ifdef CONFIG_NET_POLL_CONTROLLER
2302 static void nv_poll_controller(struct net_device *dev)
2304 nv_do_nic_poll((unsigned long) dev);
2306 #endif
2308 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2310 struct fe_priv *np = netdev_priv(dev);
2311 strcpy(info->driver, "forcedeth");
2312 strcpy(info->version, FORCEDETH_VERSION);
2313 strcpy(info->bus_info, pci_name(np->pci_dev));
2316 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2318 struct fe_priv *np = netdev_priv(dev);
2319 wolinfo->supported = WAKE_MAGIC;
2321 spin_lock_irq(&np->lock);
2322 if (np->wolenabled)
2323 wolinfo->wolopts = WAKE_MAGIC;
2324 spin_unlock_irq(&np->lock);
2327 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2329 struct fe_priv *np = netdev_priv(dev);
2330 u8 __iomem *base = get_hwbase(dev);
2332 spin_lock_irq(&np->lock);
2333 if (wolinfo->wolopts == 0) {
2334 writel(0, base + NvRegWakeUpFlags);
2335 np->wolenabled = 0;
2337 if (wolinfo->wolopts & WAKE_MAGIC) {
2338 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
2339 np->wolenabled = 1;
2341 spin_unlock_irq(&np->lock);
2342 return 0;
2345 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2347 struct fe_priv *np = netdev_priv(dev);
2348 int adv;
2350 spin_lock_irq(&np->lock);
2351 ecmd->port = PORT_MII;
2352 if (!netif_running(dev)) {
2353 /* We do not track link speed / duplex setting if the
2354 * interface is disabled. Force a link check */
2355 nv_update_linkspeed(dev);
2357 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2358 case NVREG_LINKSPEED_10:
2359 ecmd->speed = SPEED_10;
2360 break;
2361 case NVREG_LINKSPEED_100:
2362 ecmd->speed = SPEED_100;
2363 break;
2364 case NVREG_LINKSPEED_1000:
2365 ecmd->speed = SPEED_1000;
2366 break;
2368 ecmd->duplex = DUPLEX_HALF;
2369 if (np->duplex)
2370 ecmd->duplex = DUPLEX_FULL;
2372 ecmd->autoneg = np->autoneg;
2374 ecmd->advertising = ADVERTISED_MII;
2375 if (np->autoneg) {
2376 ecmd->advertising |= ADVERTISED_Autoneg;
2377 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2378 } else {
2379 adv = np->fixed_mode;
2381 if (adv & ADVERTISE_10HALF)
2382 ecmd->advertising |= ADVERTISED_10baseT_Half;
2383 if (adv & ADVERTISE_10FULL)
2384 ecmd->advertising |= ADVERTISED_10baseT_Full;
2385 if (adv & ADVERTISE_100HALF)
2386 ecmd->advertising |= ADVERTISED_100baseT_Half;
2387 if (adv & ADVERTISE_100FULL)
2388 ecmd->advertising |= ADVERTISED_100baseT_Full;
2389 if (np->autoneg && np->gigabit == PHY_GIGABIT) {
2390 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2391 if (adv & ADVERTISE_1000FULL)
2392 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2395 ecmd->supported = (SUPPORTED_Autoneg |
2396 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2397 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2398 SUPPORTED_MII);
2399 if (np->gigabit == PHY_GIGABIT)
2400 ecmd->supported |= SUPPORTED_1000baseT_Full;
2402 ecmd->phy_address = np->phyaddr;
2403 ecmd->transceiver = XCVR_EXTERNAL;
2405 /* ignore maxtxpkt, maxrxpkt for now */
2406 spin_unlock_irq(&np->lock);
2407 return 0;
2410 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2412 struct fe_priv *np = netdev_priv(dev);
2414 if (ecmd->port != PORT_MII)
2415 return -EINVAL;
2416 if (ecmd->transceiver != XCVR_EXTERNAL)
2417 return -EINVAL;
2418 if (ecmd->phy_address != np->phyaddr) {
2419 /* TODO: support switching between multiple phys. Should be
2420 * trivial, but not enabled due to lack of test hardware. */
2421 return -EINVAL;
2423 if (ecmd->autoneg == AUTONEG_ENABLE) {
2424 u32 mask;
2426 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2427 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2428 if (np->gigabit == PHY_GIGABIT)
2429 mask |= ADVERTISED_1000baseT_Full;
2431 if ((ecmd->advertising & mask) == 0)
2432 return -EINVAL;
2434 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2435 /* Note: autonegotiation disable, speed 1000 intentionally
2436 * forbidden - noone should need that. */
2438 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2439 return -EINVAL;
2440 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2441 return -EINVAL;
2442 } else {
2443 return -EINVAL;
2446 spin_lock_irq(&np->lock);
2447 if (ecmd->autoneg == AUTONEG_ENABLE) {
2448 int adv, bmcr;
2450 np->autoneg = 1;
2452 /* advertise only what has been requested */
2453 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2454 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2455 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2456 adv |= ADVERTISE_10HALF;
2457 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2458 adv |= ADVERTISE_10FULL;
2459 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2460 adv |= ADVERTISE_100HALF;
2461 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2462 adv |= ADVERTISE_100FULL;
2463 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2465 if (np->gigabit == PHY_GIGABIT) {
2466 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2467 adv &= ~ADVERTISE_1000FULL;
2468 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2469 adv |= ADVERTISE_1000FULL;
2470 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2473 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2474 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2475 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2477 } else {
2478 int adv, bmcr;
2480 np->autoneg = 0;
2482 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2483 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2484 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2485 adv |= ADVERTISE_10HALF;
2486 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2487 adv |= ADVERTISE_10FULL;
2488 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2489 adv |= ADVERTISE_100HALF;
2490 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2491 adv |= ADVERTISE_100FULL;
2492 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2493 np->fixed_mode = adv;
2495 if (np->gigabit == PHY_GIGABIT) {
2496 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2497 adv &= ~ADVERTISE_1000FULL;
2498 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2501 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2502 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2503 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2504 bmcr |= BMCR_FULLDPLX;
2505 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2506 bmcr |= BMCR_SPEED100;
2507 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2509 if (netif_running(dev)) {
2510 /* Wait a bit and then reconfigure the nic. */
2511 udelay(10);
2512 nv_linkchange(dev);
2515 spin_unlock_irq(&np->lock);
2517 return 0;
2520 #define FORCEDETH_REGS_VER 1
2522 static int nv_get_regs_len(struct net_device *dev)
2524 struct fe_priv *np = netdev_priv(dev);
2525 return np->register_size;
2528 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2530 struct fe_priv *np = netdev_priv(dev);
2531 u8 __iomem *base = get_hwbase(dev);
2532 u32 *rbuf = buf;
2533 int i;
2535 regs->version = FORCEDETH_REGS_VER;
2536 spin_lock_irq(&np->lock);
2537 for (i = 0;i <= np->register_size/sizeof(u32); i++)
2538 rbuf[i] = readl(base + i*sizeof(u32));
2539 spin_unlock_irq(&np->lock);
2542 static int nv_nway_reset(struct net_device *dev)
2544 struct fe_priv *np = netdev_priv(dev);
2545 int ret;
2547 spin_lock_irq(&np->lock);
2548 if (np->autoneg) {
2549 int bmcr;
2551 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2552 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2553 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2555 ret = 0;
2556 } else {
2557 ret = -EINVAL;
2559 spin_unlock_irq(&np->lock);
2561 return ret;
2564 static struct ethtool_ops ops = {
2565 .get_drvinfo = nv_get_drvinfo,
2566 .get_link = ethtool_op_get_link,
2567 .get_wol = nv_get_wol,
2568 .set_wol = nv_set_wol,
2569 .get_settings = nv_get_settings,
2570 .set_settings = nv_set_settings,
2571 .get_regs_len = nv_get_regs_len,
2572 .get_regs = nv_get_regs,
2573 .nway_reset = nv_nway_reset,
2574 .get_perm_addr = ethtool_op_get_perm_addr,
2577 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2579 struct fe_priv *np = get_nvpriv(dev);
2581 spin_lock_irq(&np->lock);
2583 /* save vlan group */
2584 np->vlangrp = grp;
2586 if (grp) {
2587 /* enable vlan on MAC */
2588 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
2589 } else {
2590 /* disable vlan on MAC */
2591 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
2592 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
2595 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2597 spin_unlock_irq(&np->lock);
2600 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2602 /* nothing to do */
2605 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2607 u8 __iomem *base = get_hwbase(dev);
2608 int i;
2609 u32 msixmap = 0;
2611 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2612 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2613 * the remaining 8 interrupts.
2615 for (i = 0; i < 8; i++) {
2616 if ((irqmask >> i) & 0x1) {
2617 msixmap |= vector << (i << 2);
2620 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2622 msixmap = 0;
2623 for (i = 0; i < 8; i++) {
2624 if ((irqmask >> (i + 8)) & 0x1) {
2625 msixmap |= vector << (i << 2);
2628 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2631 static int nv_open(struct net_device *dev)
2633 struct fe_priv *np = netdev_priv(dev);
2634 u8 __iomem *base = get_hwbase(dev);
2635 int ret = 1;
2636 int oom, i;
2638 dprintk(KERN_DEBUG "nv_open: begin\n");
2640 /* 1) erase previous misconfiguration */
2641 if (np->driver_data & DEV_HAS_POWER_CNTRL)
2642 nv_mac_reset(dev);
2643 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2644 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2645 writel(0, base + NvRegMulticastAddrB);
2646 writel(0, base + NvRegMulticastMaskA);
2647 writel(0, base + NvRegMulticastMaskB);
2648 writel(0, base + NvRegPacketFilterFlags);
2650 writel(0, base + NvRegTransmitterControl);
2651 writel(0, base + NvRegReceiverControl);
2653 writel(0, base + NvRegAdapterControl);
2655 /* 2) initialize descriptor rings */
2656 set_bufsize(dev);
2657 oom = nv_init_ring(dev);
2659 writel(0, base + NvRegLinkSpeed);
2660 writel(0, base + NvRegUnknownTransmitterReg);
2661 nv_txrx_reset(dev);
2662 writel(0, base + NvRegUnknownSetupReg6);
2664 np->in_shutdown = 0;
2666 /* 3) set mac address */
2667 nv_copy_mac_to_hw(dev);
2669 /* 4) give hw rings */
2670 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2671 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2672 base + NvRegRingSizes);
2674 /* 5) continue setup */
2675 writel(np->linkspeed, base + NvRegLinkSpeed);
2676 writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2677 writel(np->txrxctl_bits, base + NvRegTxRxControl);
2678 writel(np->vlanctl_bits, base + NvRegVlanControl);
2679 pci_push(base);
2680 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2681 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2682 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2683 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2685 writel(0, base + NvRegUnknownSetupReg4);
2686 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2687 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2689 /* 6) continue setup */
2690 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2691 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2692 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2693 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2695 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2696 get_random_bytes(&i, sizeof(i));
2697 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2698 writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2699 writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2700 if (poll_interval == -1) {
2701 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2702 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
2703 else
2704 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
2706 else
2707 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
2708 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2709 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2710 base + NvRegAdapterControl);
2711 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2712 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2713 writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2715 i = readl(base + NvRegPowerState);
2716 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2717 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2719 pci_push(base);
2720 udelay(10);
2721 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2723 writel(0, base + NvRegIrqMask);
2724 pci_push(base);
2725 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2726 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2727 pci_push(base);
2729 if (np->msi_flags & NV_MSI_X_CAPABLE) {
2730 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2731 np->msi_x_entry[i].entry = i;
2733 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2734 np->msi_flags |= NV_MSI_X_ENABLED;
2735 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
2736 /* Request irq for rx handling */
2737 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2738 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2739 pci_disable_msix(np->pci_dev);
2740 np->msi_flags &= ~NV_MSI_X_ENABLED;
2741 goto out_drain;
2743 /* Request irq for tx handling */
2744 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2745 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2746 pci_disable_msix(np->pci_dev);
2747 np->msi_flags &= ~NV_MSI_X_ENABLED;
2748 goto out_drain;
2750 /* Request irq for link and timer handling */
2751 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2752 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2753 pci_disable_msix(np->pci_dev);
2754 np->msi_flags &= ~NV_MSI_X_ENABLED;
2755 goto out_drain;
2758 /* map interrupts to their respective vector */
2759 writel(0, base + NvRegMSIXMap0);
2760 writel(0, base + NvRegMSIXMap1);
2761 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2762 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2763 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2764 } else {
2765 /* Request irq for all interrupts */
2766 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2767 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2768 pci_disable_msix(np->pci_dev);
2769 np->msi_flags &= ~NV_MSI_X_ENABLED;
2770 goto out_drain;
2773 /* map interrupts to vector 0 */
2774 writel(0, base + NvRegMSIXMap0);
2775 writel(0, base + NvRegMSIXMap1);
2779 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2780 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2781 np->msi_flags |= NV_MSI_ENABLED;
2782 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2783 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2784 pci_disable_msi(np->pci_dev);
2785 np->msi_flags &= ~NV_MSI_ENABLED;
2786 goto out_drain;
2789 /* map interrupts to vector 0 */
2790 writel(0, base + NvRegMSIMap0);
2791 writel(0, base + NvRegMSIMap1);
2792 /* enable msi vector 0 */
2793 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2796 if (ret != 0) {
2797 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
2798 goto out_drain;
2801 /* ask for interrupts */
2802 writel(np->irqmask, base + NvRegIrqMask);
2804 spin_lock_irq(&np->lock);
2805 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2806 writel(0, base + NvRegMulticastAddrB);
2807 writel(0, base + NvRegMulticastMaskA);
2808 writel(0, base + NvRegMulticastMaskB);
2809 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2810 /* One manual link speed update: Interrupts are enabled, future link
2811 * speed changes cause interrupts and are handled by nv_link_irq().
2814 u32 miistat;
2815 miistat = readl(base + NvRegMIIStatus);
2816 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2817 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2819 /* set linkspeed to invalid value, thus force nv_update_linkspeed
2820 * to init hw */
2821 np->linkspeed = 0;
2822 ret = nv_update_linkspeed(dev);
2823 nv_start_rx(dev);
2824 nv_start_tx(dev);
2825 netif_start_queue(dev);
2826 if (ret) {
2827 netif_carrier_on(dev);
2828 } else {
2829 printk("%s: no link during initialization.\n", dev->name);
2830 netif_carrier_off(dev);
2832 if (oom)
2833 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2834 spin_unlock_irq(&np->lock);
2836 return 0;
2837 out_drain:
2838 drain_ring(dev);
2839 return ret;
2842 static int nv_close(struct net_device *dev)
2844 struct fe_priv *np = netdev_priv(dev);
2845 u8 __iomem *base;
2846 int i;
2848 spin_lock_irq(&np->lock);
2849 np->in_shutdown = 1;
2850 spin_unlock_irq(&np->lock);
2851 synchronize_irq(dev->irq);
2853 del_timer_sync(&np->oom_kick);
2854 del_timer_sync(&np->nic_poll);
2856 netif_stop_queue(dev);
2857 spin_lock_irq(&np->lock);
2858 nv_stop_tx(dev);
2859 nv_stop_rx(dev);
2860 nv_txrx_reset(dev);
2862 /* disable interrupts on the nic or we will lock up */
2863 base = get_hwbase(dev);
2864 if (np->msi_flags & NV_MSI_X_ENABLED) {
2865 writel(np->irqmask, base + NvRegIrqMask);
2866 } else {
2867 if (np->msi_flags & NV_MSI_ENABLED)
2868 writel(0, base + NvRegMSIIrqMask);
2869 writel(0, base + NvRegIrqMask);
2871 pci_push(base);
2872 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2874 spin_unlock_irq(&np->lock);
2876 if (np->msi_flags & NV_MSI_X_ENABLED) {
2877 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2878 free_irq(np->msi_x_entry[i].vector, dev);
2880 pci_disable_msix(np->pci_dev);
2881 np->msi_flags &= ~NV_MSI_X_ENABLED;
2882 } else {
2883 free_irq(np->pci_dev->irq, dev);
2884 if (np->msi_flags & NV_MSI_ENABLED) {
2885 pci_disable_msi(np->pci_dev);
2886 np->msi_flags &= ~NV_MSI_ENABLED;
2890 drain_ring(dev);
2892 if (np->wolenabled)
2893 nv_start_rx(dev);
2895 /* special op: write back the misordered MAC address - otherwise
2896 * the next nv_probe would see a wrong address.
2898 writel(np->orig_mac[0], base + NvRegMacAddrA);
2899 writel(np->orig_mac[1], base + NvRegMacAddrB);
2901 /* FIXME: power down nic */
2903 return 0;
2906 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2908 struct net_device *dev;
2909 struct fe_priv *np;
2910 unsigned long addr;
2911 u8 __iomem *base;
2912 int err, i;
2913 u32 powerstate;
2915 dev = alloc_etherdev(sizeof(struct fe_priv));
2916 err = -ENOMEM;
2917 if (!dev)
2918 goto out;
2920 np = netdev_priv(dev);
2921 np->pci_dev = pci_dev;
2922 spin_lock_init(&np->lock);
2923 SET_MODULE_OWNER(dev);
2924 SET_NETDEV_DEV(dev, &pci_dev->dev);
2926 init_timer(&np->oom_kick);
2927 np->oom_kick.data = (unsigned long) dev;
2928 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
2929 init_timer(&np->nic_poll);
2930 np->nic_poll.data = (unsigned long) dev;
2931 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
2933 err = pci_enable_device(pci_dev);
2934 if (err) {
2935 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2936 err, pci_name(pci_dev));
2937 goto out_free;
2940 pci_set_master(pci_dev);
2942 err = pci_request_regions(pci_dev, DRV_NAME);
2943 if (err < 0)
2944 goto out_disable;
2946 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
2947 np->register_size = NV_PCI_REGSZ_VER2;
2948 else
2949 np->register_size = NV_PCI_REGSZ_VER1;
2951 err = -EINVAL;
2952 addr = 0;
2953 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2954 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2955 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2956 pci_resource_len(pci_dev, i),
2957 pci_resource_flags(pci_dev, i));
2958 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2959 pci_resource_len(pci_dev, i) >= np->register_size) {
2960 addr = pci_resource_start(pci_dev, i);
2961 break;
2964 if (i == DEVICE_COUNT_RESOURCE) {
2965 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2966 pci_name(pci_dev));
2967 goto out_relreg;
2970 /* copy of driver data */
2971 np->driver_data = id->driver_data;
2973 /* handle different descriptor versions */
2974 if (id->driver_data & DEV_HAS_HIGH_DMA) {
2975 /* packet format 3: supports 40-bit addressing */
2976 np->desc_ver = DESC_VER_3;
2977 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
2978 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2979 pci_name(pci_dev));
2980 } else {
2981 if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2982 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
2983 pci_name(pci_dev));
2984 goto out_relreg;
2985 } else {
2986 dev->features |= NETIF_F_HIGHDMA;
2987 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
2990 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
2991 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2992 /* packet format 2: supports jumbo frames */
2993 np->desc_ver = DESC_VER_2;
2994 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
2995 } else {
2996 /* original packet format */
2997 np->desc_ver = DESC_VER_1;
2998 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
3001 np->pkt_limit = NV_PKTLIMIT_1;
3002 if (id->driver_data & DEV_HAS_LARGEDESC)
3003 np->pkt_limit = NV_PKTLIMIT_2;
3005 if (id->driver_data & DEV_HAS_CHECKSUM) {
3006 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3007 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
3008 #ifdef NETIF_F_TSO
3009 dev->features |= NETIF_F_TSO;
3010 #endif
3013 np->vlanctl_bits = 0;
3014 if (id->driver_data & DEV_HAS_VLAN) {
3015 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
3016 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
3017 dev->vlan_rx_register = nv_vlan_rx_register;
3018 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
3021 np->msi_flags = 0;
3022 if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
3023 np->msi_flags |= NV_MSI_CAPABLE;
3025 if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
3026 np->msi_flags |= NV_MSI_X_CAPABLE;
3029 err = -ENOMEM;
3030 np->base = ioremap(addr, np->register_size);
3031 if (!np->base)
3032 goto out_relreg;
3033 dev->base_addr = (unsigned long)np->base;
3035 dev->irq = pci_dev->irq;
3037 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3038 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
3039 sizeof(struct ring_desc) * (RX_RING + TX_RING),
3040 &np->ring_addr);
3041 if (!np->rx_ring.orig)
3042 goto out_unmap;
3043 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
3044 } else {
3045 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
3046 sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
3047 &np->ring_addr);
3048 if (!np->rx_ring.ex)
3049 goto out_unmap;
3050 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
3053 dev->open = nv_open;
3054 dev->stop = nv_close;
3055 dev->hard_start_xmit = nv_start_xmit;
3056 dev->get_stats = nv_get_stats;
3057 dev->change_mtu = nv_change_mtu;
3058 dev->set_mac_address = nv_set_mac_address;
3059 dev->set_multicast_list = nv_set_multicast;
3060 #ifdef CONFIG_NET_POLL_CONTROLLER
3061 dev->poll_controller = nv_poll_controller;
3062 #endif
3063 SET_ETHTOOL_OPS(dev, &ops);
3064 dev->tx_timeout = nv_tx_timeout;
3065 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
3067 pci_set_drvdata(pci_dev, dev);
3069 /* read the mac address */
3070 base = get_hwbase(dev);
3071 np->orig_mac[0] = readl(base + NvRegMacAddrA);
3072 np->orig_mac[1] = readl(base + NvRegMacAddrB);
3074 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
3075 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
3076 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
3077 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
3078 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
3079 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
3080 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3082 if (!is_valid_ether_addr(dev->perm_addr)) {
3084 * Bad mac address. At least one bios sets the mac address
3085 * to 01:23:45:67:89:ab
3087 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
3088 pci_name(pci_dev),
3089 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3090 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3091 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
3092 dev->dev_addr[0] = 0x00;
3093 dev->dev_addr[1] = 0x00;
3094 dev->dev_addr[2] = 0x6c;
3095 get_random_bytes(&dev->dev_addr[3], 3);
3098 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
3099 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3100 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3102 /* disable WOL */
3103 writel(0, base + NvRegWakeUpFlags);
3104 np->wolenabled = 0;
3106 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
3107 u8 revision_id;
3108 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
3110 /* take phy and nic out of low power mode */
3111 powerstate = readl(base + NvRegPowerState2);
3112 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
3113 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
3114 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
3115 revision_id >= 0xA3)
3116 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
3117 writel(powerstate, base + NvRegPowerState2);
3120 if (np->desc_ver == DESC_VER_1) {
3121 np->tx_flags = NV_TX_VALID;
3122 } else {
3123 np->tx_flags = NV_TX2_VALID;
3125 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3126 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3127 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3128 np->msi_flags |= 0x0003;
3129 } else {
3130 np->irqmask = NVREG_IRQMASK_CPU;
3131 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3132 np->msi_flags |= 0x0001;
3135 if (id->driver_data & DEV_NEED_TIMERIRQ)
3136 np->irqmask |= NVREG_IRQ_TIMER;
3137 if (id->driver_data & DEV_NEED_LINKTIMER) {
3138 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
3139 np->need_linktimer = 1;
3140 np->link_timeout = jiffies + LINK_TIMEOUT;
3141 } else {
3142 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
3143 np->need_linktimer = 0;
3146 /* find a suitable phy */
3147 for (i = 1; i <= 32; i++) {
3148 int id1, id2;
3149 int phyaddr = i & 0x1F;
3151 spin_lock_irq(&np->lock);
3152 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
3153 spin_unlock_irq(&np->lock);
3154 if (id1 < 0 || id1 == 0xffff)
3155 continue;
3156 spin_lock_irq(&np->lock);
3157 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
3158 spin_unlock_irq(&np->lock);
3159 if (id2 < 0 || id2 == 0xffff)
3160 continue;
3162 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
3163 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
3164 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
3165 pci_name(pci_dev), id1, id2, phyaddr);
3166 np->phyaddr = phyaddr;
3167 np->phy_oui = id1 | id2;
3168 break;
3170 if (i == 33) {
3171 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
3172 pci_name(pci_dev));
3173 goto out_freering;
3176 /* reset it */
3177 phy_init(dev);
3179 /* set default link speed settings */
3180 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3181 np->duplex = 0;
3182 np->autoneg = 1;
3184 err = register_netdev(dev);
3185 if (err) {
3186 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
3187 goto out_freering;
3189 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
3190 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
3191 pci_name(pci_dev));
3193 return 0;
3195 out_freering:
3196 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3197 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
3198 np->rx_ring.orig, np->ring_addr);
3199 else
3200 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
3201 np->rx_ring.ex, np->ring_addr);
3202 pci_set_drvdata(pci_dev, NULL);
3203 out_unmap:
3204 iounmap(get_hwbase(dev));
3205 out_relreg:
3206 pci_release_regions(pci_dev);
3207 out_disable:
3208 pci_disable_device(pci_dev);
3209 out_free:
3210 free_netdev(dev);
3211 out:
3212 return err;
3215 static void __devexit nv_remove(struct pci_dev *pci_dev)
3217 struct net_device *dev = pci_get_drvdata(pci_dev);
3218 struct fe_priv *np = netdev_priv(dev);
3220 unregister_netdev(dev);
3222 /* free all structures */
3223 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3224 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
3225 else
3226 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
3227 iounmap(get_hwbase(dev));
3228 pci_release_regions(pci_dev);
3229 pci_disable_device(pci_dev);
3230 free_netdev(dev);
3231 pci_set_drvdata(pci_dev, NULL);
3234 static struct pci_device_id pci_tbl[] = {
3235 { /* nForce Ethernet Controller */
3236 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
3237 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3239 { /* nForce2 Ethernet Controller */
3240 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
3241 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3243 { /* nForce3 Ethernet Controller */
3244 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
3245 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3247 { /* nForce3 Ethernet Controller */
3248 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
3249 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3251 { /* nForce3 Ethernet Controller */
3252 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
3253 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3255 { /* nForce3 Ethernet Controller */
3256 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
3257 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3259 { /* nForce3 Ethernet Controller */
3260 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
3261 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3263 { /* CK804 Ethernet Controller */
3264 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
3265 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3267 { /* CK804 Ethernet Controller */
3268 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
3269 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3271 { /* MCP04 Ethernet Controller */
3272 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
3273 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3275 { /* MCP04 Ethernet Controller */
3276 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
3277 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3279 { /* MCP51 Ethernet Controller */
3280 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
3281 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
3283 { /* MCP51 Ethernet Controller */
3284 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
3285 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
3287 { /* MCP55 Ethernet Controller */
3288 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
3289 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
3291 { /* MCP55 Ethernet Controller */
3292 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
3293 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
3295 {0,},
3298 static struct pci_driver driver = {
3299 .name = "forcedeth",
3300 .id_table = pci_tbl,
3301 .probe = nv_probe,
3302 .remove = __devexit_p(nv_remove),
3306 static int __init init_nic(void)
3308 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
3309 return pci_module_init(&driver);
3312 static void __exit exit_nic(void)
3314 pci_unregister_driver(&driver);
3317 module_param(max_interrupt_work, int, 0);
3318 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
3319 module_param(optimization_mode, int, 0);
3320 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
3321 module_param(poll_interval, int, 0);
3322 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
3323 module_param(disable_msi, int, 0);
3324 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
3325 module_param(disable_msix, int, 0);
3326 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
3328 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
3329 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
3330 MODULE_LICENSE("GPL");
3332 MODULE_DEVICE_TABLE(pci, pci_tbl);
3334 module_init(init_nic);
3335 module_exit(exit_nic);