[TCP]: Set default max buffers from memory pool size
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp.c
blob591e96dffc289a9dbcb373ad6c2baabceb7043c8
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Fixes:
23 * Alan Cox : Numerous verify_area() calls
24 * Alan Cox : Set the ACK bit on a reset
25 * Alan Cox : Stopped it crashing if it closed while
26 * sk->inuse=1 and was trying to connect
27 * (tcp_err()).
28 * Alan Cox : All icmp error handling was broken
29 * pointers passed where wrong and the
30 * socket was looked up backwards. Nobody
31 * tested any icmp error code obviously.
32 * Alan Cox : tcp_err() now handled properly. It
33 * wakes people on errors. poll
34 * behaves and the icmp error race
35 * has gone by moving it into sock.c
36 * Alan Cox : tcp_send_reset() fixed to work for
37 * everything not just packets for
38 * unknown sockets.
39 * Alan Cox : tcp option processing.
40 * Alan Cox : Reset tweaked (still not 100%) [Had
41 * syn rule wrong]
42 * Herp Rosmanith : More reset fixes
43 * Alan Cox : No longer acks invalid rst frames.
44 * Acking any kind of RST is right out.
45 * Alan Cox : Sets an ignore me flag on an rst
46 * receive otherwise odd bits of prattle
47 * escape still
48 * Alan Cox : Fixed another acking RST frame bug.
49 * Should stop LAN workplace lockups.
50 * Alan Cox : Some tidyups using the new skb list
51 * facilities
52 * Alan Cox : sk->keepopen now seems to work
53 * Alan Cox : Pulls options out correctly on accepts
54 * Alan Cox : Fixed assorted sk->rqueue->next errors
55 * Alan Cox : PSH doesn't end a TCP read. Switched a
56 * bit to skb ops.
57 * Alan Cox : Tidied tcp_data to avoid a potential
58 * nasty.
59 * Alan Cox : Added some better commenting, as the
60 * tcp is hard to follow
61 * Alan Cox : Removed incorrect check for 20 * psh
62 * Michael O'Reilly : ack < copied bug fix.
63 * Johannes Stille : Misc tcp fixes (not all in yet).
64 * Alan Cox : FIN with no memory -> CRASH
65 * Alan Cox : Added socket option proto entries.
66 * Also added awareness of them to accept.
67 * Alan Cox : Added TCP options (SOL_TCP)
68 * Alan Cox : Switched wakeup calls to callbacks,
69 * so the kernel can layer network
70 * sockets.
71 * Alan Cox : Use ip_tos/ip_ttl settings.
72 * Alan Cox : Handle FIN (more) properly (we hope).
73 * Alan Cox : RST frames sent on unsynchronised
74 * state ack error.
75 * Alan Cox : Put in missing check for SYN bit.
76 * Alan Cox : Added tcp_select_window() aka NET2E
77 * window non shrink trick.
78 * Alan Cox : Added a couple of small NET2E timer
79 * fixes
80 * Charles Hedrick : TCP fixes
81 * Toomas Tamm : TCP window fixes
82 * Alan Cox : Small URG fix to rlogin ^C ack fight
83 * Charles Hedrick : Rewrote most of it to actually work
84 * Linus : Rewrote tcp_read() and URG handling
85 * completely
86 * Gerhard Koerting: Fixed some missing timer handling
87 * Matthew Dillon : Reworked TCP machine states as per RFC
88 * Gerhard Koerting: PC/TCP workarounds
89 * Adam Caldwell : Assorted timer/timing errors
90 * Matthew Dillon : Fixed another RST bug
91 * Alan Cox : Move to kernel side addressing changes.
92 * Alan Cox : Beginning work on TCP fastpathing
93 * (not yet usable)
94 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
95 * Alan Cox : TCP fast path debugging
96 * Alan Cox : Window clamping
97 * Michael Riepe : Bug in tcp_check()
98 * Matt Dillon : More TCP improvements and RST bug fixes
99 * Matt Dillon : Yet more small nasties remove from the
100 * TCP code (Be very nice to this man if
101 * tcp finally works 100%) 8)
102 * Alan Cox : BSD accept semantics.
103 * Alan Cox : Reset on closedown bug.
104 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
105 * Michael Pall : Handle poll() after URG properly in
106 * all cases.
107 * Michael Pall : Undo the last fix in tcp_read_urg()
108 * (multi URG PUSH broke rlogin).
109 * Michael Pall : Fix the multi URG PUSH problem in
110 * tcp_readable(), poll() after URG
111 * works now.
112 * Michael Pall : recv(...,MSG_OOB) never blocks in the
113 * BSD api.
114 * Alan Cox : Changed the semantics of sk->socket to
115 * fix a race and a signal problem with
116 * accept() and async I/O.
117 * Alan Cox : Relaxed the rules on tcp_sendto().
118 * Yury Shevchuk : Really fixed accept() blocking problem.
119 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
120 * clients/servers which listen in on
121 * fixed ports.
122 * Alan Cox : Cleaned the above up and shrank it to
123 * a sensible code size.
124 * Alan Cox : Self connect lockup fix.
125 * Alan Cox : No connect to multicast.
126 * Ross Biro : Close unaccepted children on master
127 * socket close.
128 * Alan Cox : Reset tracing code.
129 * Alan Cox : Spurious resets on shutdown.
130 * Alan Cox : Giant 15 minute/60 second timer error
131 * Alan Cox : Small whoops in polling before an
132 * accept.
133 * Alan Cox : Kept the state trace facility since
134 * it's handy for debugging.
135 * Alan Cox : More reset handler fixes.
136 * Alan Cox : Started rewriting the code based on
137 * the RFC's for other useful protocol
138 * references see: Comer, KA9Q NOS, and
139 * for a reference on the difference
140 * between specifications and how BSD
141 * works see the 4.4lite source.
142 * A.N.Kuznetsov : Don't time wait on completion of tidy
143 * close.
144 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
145 * Linus Torvalds : Fixed BSD port reuse to work first syn
146 * Alan Cox : Reimplemented timers as per the RFC
147 * and using multiple timers for sanity.
148 * Alan Cox : Small bug fixes, and a lot of new
149 * comments.
150 * Alan Cox : Fixed dual reader crash by locking
151 * the buffers (much like datagram.c)
152 * Alan Cox : Fixed stuck sockets in probe. A probe
153 * now gets fed up of retrying without
154 * (even a no space) answer.
155 * Alan Cox : Extracted closing code better
156 * Alan Cox : Fixed the closing state machine to
157 * resemble the RFC.
158 * Alan Cox : More 'per spec' fixes.
159 * Jorge Cwik : Even faster checksumming.
160 * Alan Cox : tcp_data() doesn't ack illegal PSH
161 * only frames. At least one pc tcp stack
162 * generates them.
163 * Alan Cox : Cache last socket.
164 * Alan Cox : Per route irtt.
165 * Matt Day : poll()->select() match BSD precisely on error
166 * Alan Cox : New buffers
167 * Marc Tamsky : Various sk->prot->retransmits and
168 * sk->retransmits misupdating fixed.
169 * Fixed tcp_write_timeout: stuck close,
170 * and TCP syn retries gets used now.
171 * Mark Yarvis : In tcp_read_wakeup(), don't send an
172 * ack if state is TCP_CLOSED.
173 * Alan Cox : Look up device on a retransmit - routes may
174 * change. Doesn't yet cope with MSS shrink right
175 * but it's a start!
176 * Marc Tamsky : Closing in closing fixes.
177 * Mike Shaver : RFC1122 verifications.
178 * Alan Cox : rcv_saddr errors.
179 * Alan Cox : Block double connect().
180 * Alan Cox : Small hooks for enSKIP.
181 * Alexey Kuznetsov: Path MTU discovery.
182 * Alan Cox : Support soft errors.
183 * Alan Cox : Fix MTU discovery pathological case
184 * when the remote claims no mtu!
185 * Marc Tamsky : TCP_CLOSE fix.
186 * Colin (G3TNE) : Send a reset on syn ack replies in
187 * window but wrong (fixes NT lpd problems)
188 * Pedro Roque : Better TCP window handling, delayed ack.
189 * Joerg Reuter : No modification of locked buffers in
190 * tcp_do_retransmit()
191 * Eric Schenk : Changed receiver side silly window
192 * avoidance algorithm to BSD style
193 * algorithm. This doubles throughput
194 * against machines running Solaris,
195 * and seems to result in general
196 * improvement.
197 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
198 * Willy Konynenberg : Transparent proxying support.
199 * Mike McLagan : Routing by source
200 * Keith Owens : Do proper merging with partial SKB's in
201 * tcp_do_sendmsg to avoid burstiness.
202 * Eric Schenk : Fix fast close down bug with
203 * shutdown() followed by close().
204 * Andi Kleen : Make poll agree with SIGIO
205 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
206 * lingertime == 0 (RFC 793 ABORT Call)
207 * Hirokazu Takahashi : Use copy_from_user() instead of
208 * csum_and_copy_from_user() if possible.
210 * This program is free software; you can redistribute it and/or
211 * modify it under the terms of the GNU General Public License
212 * as published by the Free Software Foundation; either version
213 * 2 of the License, or(at your option) any later version.
215 * Description of States:
217 * TCP_SYN_SENT sent a connection request, waiting for ack
219 * TCP_SYN_RECV received a connection request, sent ack,
220 * waiting for final ack in three-way handshake.
222 * TCP_ESTABLISHED connection established
224 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
225 * transmission of remaining buffered data
227 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * to shutdown
230 * TCP_CLOSING both sides have shutdown but we still have
231 * data we have to finish sending
233 * TCP_TIME_WAIT timeout to catch resent junk before entering
234 * closed, can only be entered from FIN_WAIT2
235 * or CLOSING. Required because the other end
236 * may not have gotten our last ACK causing it
237 * to retransmit the data packet (which we ignore)
239 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
240 * us to finish writing our data and to shutdown
241 * (we have to close() to move on to LAST_ACK)
243 * TCP_LAST_ACK out side has shutdown after remote has
244 * shutdown. There may still be data in our
245 * buffer that we have to finish sending
247 * TCP_CLOSE socket is finished
250 #include <linux/config.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/smp_lock.h>
257 #include <linux/fs.h>
258 #include <linux/random.h>
259 #include <linux/bootmem.h>
261 #include <net/icmp.h>
262 #include <net/tcp.h>
263 #include <net/xfrm.h>
264 #include <net/ip.h>
267 #include <asm/uaccess.h>
268 #include <asm/ioctls.h>
270 int sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
272 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
274 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
276 EXPORT_SYMBOL_GPL(tcp_orphan_count);
278 int sysctl_tcp_mem[3];
279 int sysctl_tcp_wmem[3];
280 int sysctl_tcp_rmem[3];
282 EXPORT_SYMBOL(sysctl_tcp_mem);
283 EXPORT_SYMBOL(sysctl_tcp_rmem);
284 EXPORT_SYMBOL(sysctl_tcp_wmem);
286 atomic_t tcp_memory_allocated; /* Current allocated memory. */
287 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
289 EXPORT_SYMBOL(tcp_memory_allocated);
290 EXPORT_SYMBOL(tcp_sockets_allocated);
293 * Pressure flag: try to collapse.
294 * Technical note: it is used by multiple contexts non atomically.
295 * All the sk_stream_mem_schedule() is of this nature: accounting
296 * is strict, actions are advisory and have some latency.
298 int tcp_memory_pressure;
300 EXPORT_SYMBOL(tcp_memory_pressure);
302 void tcp_enter_memory_pressure(void)
304 if (!tcp_memory_pressure) {
305 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
306 tcp_memory_pressure = 1;
310 EXPORT_SYMBOL(tcp_enter_memory_pressure);
313 * Wait for a TCP event.
315 * Note that we don't need to lock the socket, as the upper poll layers
316 * take care of normal races (between the test and the event) and we don't
317 * go look at any of the socket buffers directly.
319 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
321 unsigned int mask;
322 struct sock *sk = sock->sk;
323 struct tcp_sock *tp = tcp_sk(sk);
325 poll_wait(file, sk->sk_sleep, wait);
326 if (sk->sk_state == TCP_LISTEN)
327 return inet_csk_listen_poll(sk);
329 /* Socket is not locked. We are protected from async events
330 by poll logic and correct handling of state changes
331 made by another threads is impossible in any case.
334 mask = 0;
335 if (sk->sk_err)
336 mask = POLLERR;
339 * POLLHUP is certainly not done right. But poll() doesn't
340 * have a notion of HUP in just one direction, and for a
341 * socket the read side is more interesting.
343 * Some poll() documentation says that POLLHUP is incompatible
344 * with the POLLOUT/POLLWR flags, so somebody should check this
345 * all. But careful, it tends to be safer to return too many
346 * bits than too few, and you can easily break real applications
347 * if you don't tell them that something has hung up!
349 * Check-me.
351 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
352 * our fs/select.c). It means that after we received EOF,
353 * poll always returns immediately, making impossible poll() on write()
354 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
355 * if and only if shutdown has been made in both directions.
356 * Actually, it is interesting to look how Solaris and DUX
357 * solve this dilemma. I would prefer, if PULLHUP were maskable,
358 * then we could set it on SND_SHUTDOWN. BTW examples given
359 * in Stevens' books assume exactly this behaviour, it explains
360 * why PULLHUP is incompatible with POLLOUT. --ANK
362 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
363 * blocking on fresh not-connected or disconnected socket. --ANK
365 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
366 mask |= POLLHUP;
367 if (sk->sk_shutdown & RCV_SHUTDOWN)
368 mask |= POLLIN | POLLRDNORM;
370 /* Connected? */
371 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
372 /* Potential race condition. If read of tp below will
373 * escape above sk->sk_state, we can be illegally awaken
374 * in SYN_* states. */
375 if ((tp->rcv_nxt != tp->copied_seq) &&
376 (tp->urg_seq != tp->copied_seq ||
377 tp->rcv_nxt != tp->copied_seq + 1 ||
378 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
379 mask |= POLLIN | POLLRDNORM;
381 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
382 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
383 mask |= POLLOUT | POLLWRNORM;
384 } else { /* send SIGIO later */
385 set_bit(SOCK_ASYNC_NOSPACE,
386 &sk->sk_socket->flags);
387 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
389 /* Race breaker. If space is freed after
390 * wspace test but before the flags are set,
391 * IO signal will be lost.
393 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
394 mask |= POLLOUT | POLLWRNORM;
398 if (tp->urg_data & TCP_URG_VALID)
399 mask |= POLLPRI;
401 return mask;
404 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
406 struct tcp_sock *tp = tcp_sk(sk);
407 int answ;
409 switch (cmd) {
410 case SIOCINQ:
411 if (sk->sk_state == TCP_LISTEN)
412 return -EINVAL;
414 lock_sock(sk);
415 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
416 answ = 0;
417 else if (sock_flag(sk, SOCK_URGINLINE) ||
418 !tp->urg_data ||
419 before(tp->urg_seq, tp->copied_seq) ||
420 !before(tp->urg_seq, tp->rcv_nxt)) {
421 answ = tp->rcv_nxt - tp->copied_seq;
423 /* Subtract 1, if FIN is in queue. */
424 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
425 answ -=
426 ((struct sk_buff *)sk->sk_receive_queue.prev)->h.th->fin;
427 } else
428 answ = tp->urg_seq - tp->copied_seq;
429 release_sock(sk);
430 break;
431 case SIOCATMARK:
432 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
433 break;
434 case SIOCOUTQ:
435 if (sk->sk_state == TCP_LISTEN)
436 return -EINVAL;
438 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
439 answ = 0;
440 else
441 answ = tp->write_seq - tp->snd_una;
442 break;
443 default:
444 return -ENOIOCTLCMD;
447 return put_user(answ, (int __user *)arg);
450 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
452 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
453 tp->pushed_seq = tp->write_seq;
456 static inline int forced_push(struct tcp_sock *tp)
458 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
461 static inline void skb_entail(struct sock *sk, struct tcp_sock *tp,
462 struct sk_buff *skb)
464 skb->csum = 0;
465 TCP_SKB_CB(skb)->seq = tp->write_seq;
466 TCP_SKB_CB(skb)->end_seq = tp->write_seq;
467 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
468 TCP_SKB_CB(skb)->sacked = 0;
469 skb_header_release(skb);
470 __skb_queue_tail(&sk->sk_write_queue, skb);
471 sk_charge_skb(sk, skb);
472 if (!sk->sk_send_head)
473 sk->sk_send_head = skb;
474 if (tp->nonagle & TCP_NAGLE_PUSH)
475 tp->nonagle &= ~TCP_NAGLE_PUSH;
478 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
479 struct sk_buff *skb)
481 if (flags & MSG_OOB) {
482 tp->urg_mode = 1;
483 tp->snd_up = tp->write_seq;
484 TCP_SKB_CB(skb)->sacked |= TCPCB_URG;
488 static inline void tcp_push(struct sock *sk, struct tcp_sock *tp, int flags,
489 int mss_now, int nonagle)
491 if (sk->sk_send_head) {
492 struct sk_buff *skb = sk->sk_write_queue.prev;
493 if (!(flags & MSG_MORE) || forced_push(tp))
494 tcp_mark_push(tp, skb);
495 tcp_mark_urg(tp, flags, skb);
496 __tcp_push_pending_frames(sk, tp, mss_now,
497 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
501 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
502 size_t psize, int flags)
504 struct tcp_sock *tp = tcp_sk(sk);
505 int mss_now, size_goal;
506 int err;
507 ssize_t copied;
508 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
510 /* Wait for a connection to finish. */
511 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
512 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
513 goto out_err;
515 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
517 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
518 size_goal = tp->xmit_size_goal;
519 copied = 0;
521 err = -EPIPE;
522 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
523 goto do_error;
525 while (psize > 0) {
526 struct sk_buff *skb = sk->sk_write_queue.prev;
527 struct page *page = pages[poffset / PAGE_SIZE];
528 int copy, i, can_coalesce;
529 int offset = poffset % PAGE_SIZE;
530 int size = min_t(size_t, psize, PAGE_SIZE - offset);
532 if (!sk->sk_send_head || (copy = size_goal - skb->len) <= 0) {
533 new_segment:
534 if (!sk_stream_memory_free(sk))
535 goto wait_for_sndbuf;
537 skb = sk_stream_alloc_pskb(sk, 0, 0,
538 sk->sk_allocation);
539 if (!skb)
540 goto wait_for_memory;
542 skb_entail(sk, tp, skb);
543 copy = size_goal;
546 if (copy > size)
547 copy = size;
549 i = skb_shinfo(skb)->nr_frags;
550 can_coalesce = skb_can_coalesce(skb, i, page, offset);
551 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
552 tcp_mark_push(tp, skb);
553 goto new_segment;
555 if (!sk_stream_wmem_schedule(sk, copy))
556 goto wait_for_memory;
558 if (can_coalesce) {
559 skb_shinfo(skb)->frags[i - 1].size += copy;
560 } else {
561 get_page(page);
562 skb_fill_page_desc(skb, i, page, offset, copy);
565 skb->len += copy;
566 skb->data_len += copy;
567 skb->truesize += copy;
568 sk->sk_wmem_queued += copy;
569 sk->sk_forward_alloc -= copy;
570 skb->ip_summed = CHECKSUM_HW;
571 tp->write_seq += copy;
572 TCP_SKB_CB(skb)->end_seq += copy;
573 skb_shinfo(skb)->tso_segs = 0;
575 if (!copied)
576 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
578 copied += copy;
579 poffset += copy;
580 if (!(psize -= copy))
581 goto out;
583 if (skb->len < mss_now || (flags & MSG_OOB))
584 continue;
586 if (forced_push(tp)) {
587 tcp_mark_push(tp, skb);
588 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
589 } else if (skb == sk->sk_send_head)
590 tcp_push_one(sk, mss_now);
591 continue;
593 wait_for_sndbuf:
594 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
595 wait_for_memory:
596 if (copied)
597 tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
599 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
600 goto do_error;
602 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
603 size_goal = tp->xmit_size_goal;
606 out:
607 if (copied)
608 tcp_push(sk, tp, flags, mss_now, tp->nonagle);
609 return copied;
611 do_error:
612 if (copied)
613 goto out;
614 out_err:
615 return sk_stream_error(sk, flags, err);
618 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
619 size_t size, int flags)
621 ssize_t res;
622 struct sock *sk = sock->sk;
624 #define TCP_ZC_CSUM_FLAGS (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
626 if (!(sk->sk_route_caps & NETIF_F_SG) ||
627 !(sk->sk_route_caps & TCP_ZC_CSUM_FLAGS))
628 return sock_no_sendpage(sock, page, offset, size, flags);
630 #undef TCP_ZC_CSUM_FLAGS
632 lock_sock(sk);
633 TCP_CHECK_TIMER(sk);
634 res = do_tcp_sendpages(sk, &page, offset, size, flags);
635 TCP_CHECK_TIMER(sk);
636 release_sock(sk);
637 return res;
640 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
641 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
643 static inline int select_size(struct sock *sk, struct tcp_sock *tp)
645 int tmp = tp->mss_cache;
647 if (sk->sk_route_caps & NETIF_F_SG) {
648 if (sk->sk_route_caps & NETIF_F_TSO)
649 tmp = 0;
650 else {
651 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
653 if (tmp >= pgbreak &&
654 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
655 tmp = pgbreak;
659 return tmp;
662 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
663 size_t size)
665 struct iovec *iov;
666 struct tcp_sock *tp = tcp_sk(sk);
667 struct sk_buff *skb;
668 int iovlen, flags;
669 int mss_now, size_goal;
670 int err, copied;
671 long timeo;
673 lock_sock(sk);
674 TCP_CHECK_TIMER(sk);
676 flags = msg->msg_flags;
677 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
679 /* Wait for a connection to finish. */
680 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
681 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
682 goto out_err;
684 /* This should be in poll */
685 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
687 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
688 size_goal = tp->xmit_size_goal;
690 /* Ok commence sending. */
691 iovlen = msg->msg_iovlen;
692 iov = msg->msg_iov;
693 copied = 0;
695 err = -EPIPE;
696 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
697 goto do_error;
699 while (--iovlen >= 0) {
700 int seglen = iov->iov_len;
701 unsigned char __user *from = iov->iov_base;
703 iov++;
705 while (seglen > 0) {
706 int copy;
708 skb = sk->sk_write_queue.prev;
710 if (!sk->sk_send_head ||
711 (copy = size_goal - skb->len) <= 0) {
713 new_segment:
714 /* Allocate new segment. If the interface is SG,
715 * allocate skb fitting to single page.
717 if (!sk_stream_memory_free(sk))
718 goto wait_for_sndbuf;
720 skb = sk_stream_alloc_pskb(sk, select_size(sk, tp),
721 0, sk->sk_allocation);
722 if (!skb)
723 goto wait_for_memory;
726 * Check whether we can use HW checksum.
728 if (sk->sk_route_caps &
729 (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM |
730 NETIF_F_HW_CSUM))
731 skb->ip_summed = CHECKSUM_HW;
733 skb_entail(sk, tp, skb);
734 copy = size_goal;
737 /* Try to append data to the end of skb. */
738 if (copy > seglen)
739 copy = seglen;
741 /* Where to copy to? */
742 if (skb_tailroom(skb) > 0) {
743 /* We have some space in skb head. Superb! */
744 if (copy > skb_tailroom(skb))
745 copy = skb_tailroom(skb);
746 if ((err = skb_add_data(skb, from, copy)) != 0)
747 goto do_fault;
748 } else {
749 int merge = 0;
750 int i = skb_shinfo(skb)->nr_frags;
751 struct page *page = TCP_PAGE(sk);
752 int off = TCP_OFF(sk);
754 if (skb_can_coalesce(skb, i, page, off) &&
755 off != PAGE_SIZE) {
756 /* We can extend the last page
757 * fragment. */
758 merge = 1;
759 } else if (i == MAX_SKB_FRAGS ||
760 (!i &&
761 !(sk->sk_route_caps & NETIF_F_SG))) {
762 /* Need to add new fragment and cannot
763 * do this because interface is non-SG,
764 * or because all the page slots are
765 * busy. */
766 tcp_mark_push(tp, skb);
767 goto new_segment;
768 } else if (page) {
769 if (off == PAGE_SIZE) {
770 put_page(page);
771 TCP_PAGE(sk) = page = NULL;
772 off = 0;
774 } else
775 off = 0;
777 if (copy > PAGE_SIZE - off)
778 copy = PAGE_SIZE - off;
780 if (!sk_stream_wmem_schedule(sk, copy))
781 goto wait_for_memory;
783 if (!page) {
784 /* Allocate new cache page. */
785 if (!(page = sk_stream_alloc_page(sk)))
786 goto wait_for_memory;
789 /* Time to copy data. We are close to
790 * the end! */
791 err = skb_copy_to_page(sk, from, skb, page,
792 off, copy);
793 if (err) {
794 /* If this page was new, give it to the
795 * socket so it does not get leaked.
797 if (!TCP_PAGE(sk)) {
798 TCP_PAGE(sk) = page;
799 TCP_OFF(sk) = 0;
801 goto do_error;
804 /* Update the skb. */
805 if (merge) {
806 skb_shinfo(skb)->frags[i - 1].size +=
807 copy;
808 } else {
809 skb_fill_page_desc(skb, i, page, off, copy);
810 if (TCP_PAGE(sk)) {
811 get_page(page);
812 } else if (off + copy < PAGE_SIZE) {
813 get_page(page);
814 TCP_PAGE(sk) = page;
818 TCP_OFF(sk) = off + copy;
821 if (!copied)
822 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
824 tp->write_seq += copy;
825 TCP_SKB_CB(skb)->end_seq += copy;
826 skb_shinfo(skb)->tso_segs = 0;
828 from += copy;
829 copied += copy;
830 if ((seglen -= copy) == 0 && iovlen == 0)
831 goto out;
833 if (skb->len < mss_now || (flags & MSG_OOB))
834 continue;
836 if (forced_push(tp)) {
837 tcp_mark_push(tp, skb);
838 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
839 } else if (skb == sk->sk_send_head)
840 tcp_push_one(sk, mss_now);
841 continue;
843 wait_for_sndbuf:
844 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
845 wait_for_memory:
846 if (copied)
847 tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
849 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
850 goto do_error;
852 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
853 size_goal = tp->xmit_size_goal;
857 out:
858 if (copied)
859 tcp_push(sk, tp, flags, mss_now, tp->nonagle);
860 TCP_CHECK_TIMER(sk);
861 release_sock(sk);
862 return copied;
864 do_fault:
865 if (!skb->len) {
866 if (sk->sk_send_head == skb)
867 sk->sk_send_head = NULL;
868 __skb_unlink(skb, &sk->sk_write_queue);
869 sk_stream_free_skb(sk, skb);
872 do_error:
873 if (copied)
874 goto out;
875 out_err:
876 err = sk_stream_error(sk, flags, err);
877 TCP_CHECK_TIMER(sk);
878 release_sock(sk);
879 return err;
883 * Handle reading urgent data. BSD has very simple semantics for
884 * this, no blocking and very strange errors 8)
887 static int tcp_recv_urg(struct sock *sk, long timeo,
888 struct msghdr *msg, int len, int flags,
889 int *addr_len)
891 struct tcp_sock *tp = tcp_sk(sk);
893 /* No URG data to read. */
894 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
895 tp->urg_data == TCP_URG_READ)
896 return -EINVAL; /* Yes this is right ! */
898 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
899 return -ENOTCONN;
901 if (tp->urg_data & TCP_URG_VALID) {
902 int err = 0;
903 char c = tp->urg_data;
905 if (!(flags & MSG_PEEK))
906 tp->urg_data = TCP_URG_READ;
908 /* Read urgent data. */
909 msg->msg_flags |= MSG_OOB;
911 if (len > 0) {
912 if (!(flags & MSG_TRUNC))
913 err = memcpy_toiovec(msg->msg_iov, &c, 1);
914 len = 1;
915 } else
916 msg->msg_flags |= MSG_TRUNC;
918 return err ? -EFAULT : len;
921 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
922 return 0;
924 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
925 * the available implementations agree in this case:
926 * this call should never block, independent of the
927 * blocking state of the socket.
928 * Mike <pall@rz.uni-karlsruhe.de>
930 return -EAGAIN;
933 /* Clean up the receive buffer for full frames taken by the user,
934 * then send an ACK if necessary. COPIED is the number of bytes
935 * tcp_recvmsg has given to the user so far, it speeds up the
936 * calculation of whether or not we must ACK for the sake of
937 * a window update.
939 static void cleanup_rbuf(struct sock *sk, int copied)
941 struct tcp_sock *tp = tcp_sk(sk);
942 int time_to_ack = 0;
944 #if TCP_DEBUG
945 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
947 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
948 #endif
950 if (inet_csk_ack_scheduled(sk)) {
951 const struct inet_connection_sock *icsk = inet_csk(sk);
952 /* Delayed ACKs frequently hit locked sockets during bulk
953 * receive. */
954 if (icsk->icsk_ack.blocked ||
955 /* Once-per-two-segments ACK was not sent by tcp_input.c */
956 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
958 * If this read emptied read buffer, we send ACK, if
959 * connection is not bidirectional, user drained
960 * receive buffer and there was a small segment
961 * in queue.
963 (copied > 0 && (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
964 !icsk->icsk_ack.pingpong && !atomic_read(&sk->sk_rmem_alloc)))
965 time_to_ack = 1;
968 /* We send an ACK if we can now advertise a non-zero window
969 * which has been raised "significantly".
971 * Even if window raised up to infinity, do not send window open ACK
972 * in states, where we will not receive more. It is useless.
974 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
975 __u32 rcv_window_now = tcp_receive_window(tp);
977 /* Optimize, __tcp_select_window() is not cheap. */
978 if (2*rcv_window_now <= tp->window_clamp) {
979 __u32 new_window = __tcp_select_window(sk);
981 /* Send ACK now, if this read freed lots of space
982 * in our buffer. Certainly, new_window is new window.
983 * We can advertise it now, if it is not less than current one.
984 * "Lots" means "at least twice" here.
986 if (new_window && new_window >= 2 * rcv_window_now)
987 time_to_ack = 1;
990 if (time_to_ack)
991 tcp_send_ack(sk);
994 static void tcp_prequeue_process(struct sock *sk)
996 struct sk_buff *skb;
997 struct tcp_sock *tp = tcp_sk(sk);
999 NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1001 /* RX process wants to run with disabled BHs, though it is not
1002 * necessary */
1003 local_bh_disable();
1004 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1005 sk->sk_backlog_rcv(sk, skb);
1006 local_bh_enable();
1008 /* Clear memory counter. */
1009 tp->ucopy.memory = 0;
1012 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1014 struct sk_buff *skb;
1015 u32 offset;
1017 skb_queue_walk(&sk->sk_receive_queue, skb) {
1018 offset = seq - TCP_SKB_CB(skb)->seq;
1019 if (skb->h.th->syn)
1020 offset--;
1021 if (offset < skb->len || skb->h.th->fin) {
1022 *off = offset;
1023 return skb;
1026 return NULL;
1030 * This routine provides an alternative to tcp_recvmsg() for routines
1031 * that would like to handle copying from skbuffs directly in 'sendfile'
1032 * fashion.
1033 * Note:
1034 * - It is assumed that the socket was locked by the caller.
1035 * - The routine does not block.
1036 * - At present, there is no support for reading OOB data
1037 * or for 'peeking' the socket using this routine
1038 * (although both would be easy to implement).
1040 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1041 sk_read_actor_t recv_actor)
1043 struct sk_buff *skb;
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 u32 seq = tp->copied_seq;
1046 u32 offset;
1047 int copied = 0;
1049 if (sk->sk_state == TCP_LISTEN)
1050 return -ENOTCONN;
1051 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1052 if (offset < skb->len) {
1053 size_t used, len;
1055 len = skb->len - offset;
1056 /* Stop reading if we hit a patch of urgent data */
1057 if (tp->urg_data) {
1058 u32 urg_offset = tp->urg_seq - seq;
1059 if (urg_offset < len)
1060 len = urg_offset;
1061 if (!len)
1062 break;
1064 used = recv_actor(desc, skb, offset, len);
1065 if (used <= len) {
1066 seq += used;
1067 copied += used;
1068 offset += used;
1070 if (offset != skb->len)
1071 break;
1073 if (skb->h.th->fin) {
1074 sk_eat_skb(sk, skb);
1075 ++seq;
1076 break;
1078 sk_eat_skb(sk, skb);
1079 if (!desc->count)
1080 break;
1082 tp->copied_seq = seq;
1084 tcp_rcv_space_adjust(sk);
1086 /* Clean up data we have read: This will do ACK frames. */
1087 if (copied)
1088 cleanup_rbuf(sk, copied);
1089 return copied;
1093 * This routine copies from a sock struct into the user buffer.
1095 * Technical note: in 2.3 we work on _locked_ socket, so that
1096 * tricks with *seq access order and skb->users are not required.
1097 * Probably, code can be easily improved even more.
1100 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1101 size_t len, int nonblock, int flags, int *addr_len)
1103 struct tcp_sock *tp = tcp_sk(sk);
1104 int copied = 0;
1105 u32 peek_seq;
1106 u32 *seq;
1107 unsigned long used;
1108 int err;
1109 int target; /* Read at least this many bytes */
1110 long timeo;
1111 struct task_struct *user_recv = NULL;
1113 lock_sock(sk);
1115 TCP_CHECK_TIMER(sk);
1117 err = -ENOTCONN;
1118 if (sk->sk_state == TCP_LISTEN)
1119 goto out;
1121 timeo = sock_rcvtimeo(sk, nonblock);
1123 /* Urgent data needs to be handled specially. */
1124 if (flags & MSG_OOB)
1125 goto recv_urg;
1127 seq = &tp->copied_seq;
1128 if (flags & MSG_PEEK) {
1129 peek_seq = tp->copied_seq;
1130 seq = &peek_seq;
1133 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1135 do {
1136 struct sk_buff *skb;
1137 u32 offset;
1139 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1140 if (tp->urg_data && tp->urg_seq == *seq) {
1141 if (copied)
1142 break;
1143 if (signal_pending(current)) {
1144 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1145 break;
1149 /* Next get a buffer. */
1151 skb = skb_peek(&sk->sk_receive_queue);
1152 do {
1153 if (!skb)
1154 break;
1156 /* Now that we have two receive queues this
1157 * shouldn't happen.
1159 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1160 printk(KERN_INFO "recvmsg bug: copied %X "
1161 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1162 break;
1164 offset = *seq - TCP_SKB_CB(skb)->seq;
1165 if (skb->h.th->syn)
1166 offset--;
1167 if (offset < skb->len)
1168 goto found_ok_skb;
1169 if (skb->h.th->fin)
1170 goto found_fin_ok;
1171 BUG_TRAP(flags & MSG_PEEK);
1172 skb = skb->next;
1173 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1175 /* Well, if we have backlog, try to process it now yet. */
1177 if (copied >= target && !sk->sk_backlog.tail)
1178 break;
1180 if (copied) {
1181 if (sk->sk_err ||
1182 sk->sk_state == TCP_CLOSE ||
1183 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1184 !timeo ||
1185 signal_pending(current) ||
1186 (flags & MSG_PEEK))
1187 break;
1188 } else {
1189 if (sock_flag(sk, SOCK_DONE))
1190 break;
1192 if (sk->sk_err) {
1193 copied = sock_error(sk);
1194 break;
1197 if (sk->sk_shutdown & RCV_SHUTDOWN)
1198 break;
1200 if (sk->sk_state == TCP_CLOSE) {
1201 if (!sock_flag(sk, SOCK_DONE)) {
1202 /* This occurs when user tries to read
1203 * from never connected socket.
1205 copied = -ENOTCONN;
1206 break;
1208 break;
1211 if (!timeo) {
1212 copied = -EAGAIN;
1213 break;
1216 if (signal_pending(current)) {
1217 copied = sock_intr_errno(timeo);
1218 break;
1222 cleanup_rbuf(sk, copied);
1224 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1225 /* Install new reader */
1226 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1227 user_recv = current;
1228 tp->ucopy.task = user_recv;
1229 tp->ucopy.iov = msg->msg_iov;
1232 tp->ucopy.len = len;
1234 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1235 (flags & (MSG_PEEK | MSG_TRUNC)));
1237 /* Ugly... If prequeue is not empty, we have to
1238 * process it before releasing socket, otherwise
1239 * order will be broken at second iteration.
1240 * More elegant solution is required!!!
1242 * Look: we have the following (pseudo)queues:
1244 * 1. packets in flight
1245 * 2. backlog
1246 * 3. prequeue
1247 * 4. receive_queue
1249 * Each queue can be processed only if the next ones
1250 * are empty. At this point we have empty receive_queue.
1251 * But prequeue _can_ be not empty after 2nd iteration,
1252 * when we jumped to start of loop because backlog
1253 * processing added something to receive_queue.
1254 * We cannot release_sock(), because backlog contains
1255 * packets arrived _after_ prequeued ones.
1257 * Shortly, algorithm is clear --- to process all
1258 * the queues in order. We could make it more directly,
1259 * requeueing packets from backlog to prequeue, if
1260 * is not empty. It is more elegant, but eats cycles,
1261 * unfortunately.
1263 if (!skb_queue_empty(&tp->ucopy.prequeue))
1264 goto do_prequeue;
1266 /* __ Set realtime policy in scheduler __ */
1269 if (copied >= target) {
1270 /* Do not sleep, just process backlog. */
1271 release_sock(sk);
1272 lock_sock(sk);
1273 } else
1274 sk_wait_data(sk, &timeo);
1276 if (user_recv) {
1277 int chunk;
1279 /* __ Restore normal policy in scheduler __ */
1281 if ((chunk = len - tp->ucopy.len) != 0) {
1282 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1283 len -= chunk;
1284 copied += chunk;
1287 if (tp->rcv_nxt == tp->copied_seq &&
1288 !skb_queue_empty(&tp->ucopy.prequeue)) {
1289 do_prequeue:
1290 tcp_prequeue_process(sk);
1292 if ((chunk = len - tp->ucopy.len) != 0) {
1293 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1294 len -= chunk;
1295 copied += chunk;
1299 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1300 if (net_ratelimit())
1301 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1302 current->comm, current->pid);
1303 peek_seq = tp->copied_seq;
1305 continue;
1307 found_ok_skb:
1308 /* Ok so how much can we use? */
1309 used = skb->len - offset;
1310 if (len < used)
1311 used = len;
1313 /* Do we have urgent data here? */
1314 if (tp->urg_data) {
1315 u32 urg_offset = tp->urg_seq - *seq;
1316 if (urg_offset < used) {
1317 if (!urg_offset) {
1318 if (!sock_flag(sk, SOCK_URGINLINE)) {
1319 ++*seq;
1320 offset++;
1321 used--;
1322 if (!used)
1323 goto skip_copy;
1325 } else
1326 used = urg_offset;
1330 if (!(flags & MSG_TRUNC)) {
1331 err = skb_copy_datagram_iovec(skb, offset,
1332 msg->msg_iov, used);
1333 if (err) {
1334 /* Exception. Bailout! */
1335 if (!copied)
1336 copied = -EFAULT;
1337 break;
1341 *seq += used;
1342 copied += used;
1343 len -= used;
1345 tcp_rcv_space_adjust(sk);
1347 skip_copy:
1348 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1349 tp->urg_data = 0;
1350 tcp_fast_path_check(sk, tp);
1352 if (used + offset < skb->len)
1353 continue;
1355 if (skb->h.th->fin)
1356 goto found_fin_ok;
1357 if (!(flags & MSG_PEEK))
1358 sk_eat_skb(sk, skb);
1359 continue;
1361 found_fin_ok:
1362 /* Process the FIN. */
1363 ++*seq;
1364 if (!(flags & MSG_PEEK))
1365 sk_eat_skb(sk, skb);
1366 break;
1367 } while (len > 0);
1369 if (user_recv) {
1370 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1371 int chunk;
1373 tp->ucopy.len = copied > 0 ? len : 0;
1375 tcp_prequeue_process(sk);
1377 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1378 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1379 len -= chunk;
1380 copied += chunk;
1384 tp->ucopy.task = NULL;
1385 tp->ucopy.len = 0;
1388 /* According to UNIX98, msg_name/msg_namelen are ignored
1389 * on connected socket. I was just happy when found this 8) --ANK
1392 /* Clean up data we have read: This will do ACK frames. */
1393 cleanup_rbuf(sk, copied);
1395 TCP_CHECK_TIMER(sk);
1396 release_sock(sk);
1397 return copied;
1399 out:
1400 TCP_CHECK_TIMER(sk);
1401 release_sock(sk);
1402 return err;
1404 recv_urg:
1405 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1406 goto out;
1410 * State processing on a close. This implements the state shift for
1411 * sending our FIN frame. Note that we only send a FIN for some
1412 * states. A shutdown() may have already sent the FIN, or we may be
1413 * closed.
1416 static const unsigned char new_state[16] = {
1417 /* current state: new state: action: */
1418 /* (Invalid) */ TCP_CLOSE,
1419 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1420 /* TCP_SYN_SENT */ TCP_CLOSE,
1421 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1422 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1423 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1424 /* TCP_TIME_WAIT */ TCP_CLOSE,
1425 /* TCP_CLOSE */ TCP_CLOSE,
1426 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1427 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1428 /* TCP_LISTEN */ TCP_CLOSE,
1429 /* TCP_CLOSING */ TCP_CLOSING,
1432 static int tcp_close_state(struct sock *sk)
1434 int next = (int)new_state[sk->sk_state];
1435 int ns = next & TCP_STATE_MASK;
1437 tcp_set_state(sk, ns);
1439 return next & TCP_ACTION_FIN;
1443 * Shutdown the sending side of a connection. Much like close except
1444 * that we don't receive shut down or set_sock_flag(sk, SOCK_DEAD).
1447 void tcp_shutdown(struct sock *sk, int how)
1449 /* We need to grab some memory, and put together a FIN,
1450 * and then put it into the queue to be sent.
1451 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1453 if (!(how & SEND_SHUTDOWN))
1454 return;
1456 /* If we've already sent a FIN, or it's a closed state, skip this. */
1457 if ((1 << sk->sk_state) &
1458 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1459 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1460 /* Clear out any half completed packets. FIN if needed. */
1461 if (tcp_close_state(sk))
1462 tcp_send_fin(sk);
1466 void tcp_close(struct sock *sk, long timeout)
1468 struct sk_buff *skb;
1469 int data_was_unread = 0;
1471 lock_sock(sk);
1472 sk->sk_shutdown = SHUTDOWN_MASK;
1474 if (sk->sk_state == TCP_LISTEN) {
1475 tcp_set_state(sk, TCP_CLOSE);
1477 /* Special case. */
1478 inet_csk_listen_stop(sk);
1480 goto adjudge_to_death;
1483 /* We need to flush the recv. buffs. We do this only on the
1484 * descriptor close, not protocol-sourced closes, because the
1485 * reader process may not have drained the data yet!
1487 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1488 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1489 skb->h.th->fin;
1490 data_was_unread += len;
1491 __kfree_skb(skb);
1494 sk_stream_mem_reclaim(sk);
1496 /* As outlined in draft-ietf-tcpimpl-prob-03.txt, section
1497 * 3.10, we send a RST here because data was lost. To
1498 * witness the awful effects of the old behavior of always
1499 * doing a FIN, run an older 2.1.x kernel or 2.0.x, start
1500 * a bulk GET in an FTP client, suspend the process, wait
1501 * for the client to advertise a zero window, then kill -9
1502 * the FTP client, wheee... Note: timeout is always zero
1503 * in such a case.
1505 if (data_was_unread) {
1506 /* Unread data was tossed, zap the connection. */
1507 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1508 tcp_set_state(sk, TCP_CLOSE);
1509 tcp_send_active_reset(sk, GFP_KERNEL);
1510 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1511 /* Check zero linger _after_ checking for unread data. */
1512 sk->sk_prot->disconnect(sk, 0);
1513 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1514 } else if (tcp_close_state(sk)) {
1515 /* We FIN if the application ate all the data before
1516 * zapping the connection.
1519 /* RED-PEN. Formally speaking, we have broken TCP state
1520 * machine. State transitions:
1522 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1523 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1524 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1526 * are legal only when FIN has been sent (i.e. in window),
1527 * rather than queued out of window. Purists blame.
1529 * F.e. "RFC state" is ESTABLISHED,
1530 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1532 * The visible declinations are that sometimes
1533 * we enter time-wait state, when it is not required really
1534 * (harmless), do not send active resets, when they are
1535 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1536 * they look as CLOSING or LAST_ACK for Linux)
1537 * Probably, I missed some more holelets.
1538 * --ANK
1540 tcp_send_fin(sk);
1543 sk_stream_wait_close(sk, timeout);
1545 adjudge_to_death:
1546 /* It is the last release_sock in its life. It will remove backlog. */
1547 release_sock(sk);
1550 /* Now socket is owned by kernel and we acquire BH lock
1551 to finish close. No need to check for user refs.
1553 local_bh_disable();
1554 bh_lock_sock(sk);
1555 BUG_TRAP(!sock_owned_by_user(sk));
1557 sock_hold(sk);
1558 sock_orphan(sk);
1560 /* This is a (useful) BSD violating of the RFC. There is a
1561 * problem with TCP as specified in that the other end could
1562 * keep a socket open forever with no application left this end.
1563 * We use a 3 minute timeout (about the same as BSD) then kill
1564 * our end. If they send after that then tough - BUT: long enough
1565 * that we won't make the old 4*rto = almost no time - whoops
1566 * reset mistake.
1568 * Nope, it was not mistake. It is really desired behaviour
1569 * f.e. on http servers, when such sockets are useless, but
1570 * consume significant resources. Let's do it with special
1571 * linger2 option. --ANK
1574 if (sk->sk_state == TCP_FIN_WAIT2) {
1575 struct tcp_sock *tp = tcp_sk(sk);
1576 if (tp->linger2 < 0) {
1577 tcp_set_state(sk, TCP_CLOSE);
1578 tcp_send_active_reset(sk, GFP_ATOMIC);
1579 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1580 } else {
1581 const int tmo = tcp_fin_time(sk);
1583 if (tmo > TCP_TIMEWAIT_LEN) {
1584 inet_csk_reset_keepalive_timer(sk, tcp_fin_time(sk));
1585 } else {
1586 atomic_inc(sk->sk_prot->orphan_count);
1587 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1588 goto out;
1592 if (sk->sk_state != TCP_CLOSE) {
1593 sk_stream_mem_reclaim(sk);
1594 if (atomic_read(sk->sk_prot->orphan_count) > sysctl_tcp_max_orphans ||
1595 (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
1596 atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])) {
1597 if (net_ratelimit())
1598 printk(KERN_INFO "TCP: too many of orphaned "
1599 "sockets\n");
1600 tcp_set_state(sk, TCP_CLOSE);
1601 tcp_send_active_reset(sk, GFP_ATOMIC);
1602 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1605 atomic_inc(sk->sk_prot->orphan_count);
1607 if (sk->sk_state == TCP_CLOSE)
1608 inet_csk_destroy_sock(sk);
1609 /* Otherwise, socket is reprieved until protocol close. */
1611 out:
1612 bh_unlock_sock(sk);
1613 local_bh_enable();
1614 sock_put(sk);
1617 /* These states need RST on ABORT according to RFC793 */
1619 static inline int tcp_need_reset(int state)
1621 return (1 << state) &
1622 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1623 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1626 int tcp_disconnect(struct sock *sk, int flags)
1628 struct inet_sock *inet = inet_sk(sk);
1629 struct inet_connection_sock *icsk = inet_csk(sk);
1630 struct tcp_sock *tp = tcp_sk(sk);
1631 int err = 0;
1632 int old_state = sk->sk_state;
1634 if (old_state != TCP_CLOSE)
1635 tcp_set_state(sk, TCP_CLOSE);
1637 /* ABORT function of RFC793 */
1638 if (old_state == TCP_LISTEN) {
1639 inet_csk_listen_stop(sk);
1640 } else if (tcp_need_reset(old_state) ||
1641 (tp->snd_nxt != tp->write_seq &&
1642 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1643 /* The last check adjusts for discrepancy of Linux wrt. RFC
1644 * states
1646 tcp_send_active_reset(sk, gfp_any());
1647 sk->sk_err = ECONNRESET;
1648 } else if (old_state == TCP_SYN_SENT)
1649 sk->sk_err = ECONNRESET;
1651 tcp_clear_xmit_timers(sk);
1652 __skb_queue_purge(&sk->sk_receive_queue);
1653 sk_stream_writequeue_purge(sk);
1654 __skb_queue_purge(&tp->out_of_order_queue);
1656 inet->dport = 0;
1658 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1659 inet_reset_saddr(sk);
1661 sk->sk_shutdown = 0;
1662 sock_reset_flag(sk, SOCK_DONE);
1663 tp->srtt = 0;
1664 if ((tp->write_seq += tp->max_window + 2) == 0)
1665 tp->write_seq = 1;
1666 icsk->icsk_backoff = 0;
1667 tp->snd_cwnd = 2;
1668 icsk->icsk_probes_out = 0;
1669 tp->packets_out = 0;
1670 tp->snd_ssthresh = 0x7fffffff;
1671 tp->snd_cwnd_cnt = 0;
1672 tp->bytes_acked = 0;
1673 tcp_set_ca_state(sk, TCP_CA_Open);
1674 tcp_clear_retrans(tp);
1675 inet_csk_delack_init(sk);
1676 sk->sk_send_head = NULL;
1677 tp->rx_opt.saw_tstamp = 0;
1678 tcp_sack_reset(&tp->rx_opt);
1679 __sk_dst_reset(sk);
1681 BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1683 sk->sk_error_report(sk);
1684 return err;
1688 * Socket option code for TCP.
1690 static int do_tcp_setsockopt(struct sock *sk, int level,
1691 int optname, char __user *optval, int optlen)
1693 struct tcp_sock *tp = tcp_sk(sk);
1694 struct inet_connection_sock *icsk = inet_csk(sk);
1695 int val;
1696 int err = 0;
1698 /* This is a string value all the others are int's */
1699 if (optname == TCP_CONGESTION) {
1700 char name[TCP_CA_NAME_MAX];
1702 if (optlen < 1)
1703 return -EINVAL;
1705 val = strncpy_from_user(name, optval,
1706 min(TCP_CA_NAME_MAX-1, optlen));
1707 if (val < 0)
1708 return -EFAULT;
1709 name[val] = 0;
1711 lock_sock(sk);
1712 err = tcp_set_congestion_control(sk, name);
1713 release_sock(sk);
1714 return err;
1717 if (optlen < sizeof(int))
1718 return -EINVAL;
1720 if (get_user(val, (int __user *)optval))
1721 return -EFAULT;
1723 lock_sock(sk);
1725 switch (optname) {
1726 case TCP_MAXSEG:
1727 /* Values greater than interface MTU won't take effect. However
1728 * at the point when this call is done we typically don't yet
1729 * know which interface is going to be used */
1730 if (val < 8 || val > MAX_TCP_WINDOW) {
1731 err = -EINVAL;
1732 break;
1734 tp->rx_opt.user_mss = val;
1735 break;
1737 case TCP_NODELAY:
1738 if (val) {
1739 /* TCP_NODELAY is weaker than TCP_CORK, so that
1740 * this option on corked socket is remembered, but
1741 * it is not activated until cork is cleared.
1743 * However, when TCP_NODELAY is set we make
1744 * an explicit push, which overrides even TCP_CORK
1745 * for currently queued segments.
1747 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
1748 tcp_push_pending_frames(sk, tp);
1749 } else {
1750 tp->nonagle &= ~TCP_NAGLE_OFF;
1752 break;
1754 case TCP_CORK:
1755 /* When set indicates to always queue non-full frames.
1756 * Later the user clears this option and we transmit
1757 * any pending partial frames in the queue. This is
1758 * meant to be used alongside sendfile() to get properly
1759 * filled frames when the user (for example) must write
1760 * out headers with a write() call first and then use
1761 * sendfile to send out the data parts.
1763 * TCP_CORK can be set together with TCP_NODELAY and it is
1764 * stronger than TCP_NODELAY.
1766 if (val) {
1767 tp->nonagle |= TCP_NAGLE_CORK;
1768 } else {
1769 tp->nonagle &= ~TCP_NAGLE_CORK;
1770 if (tp->nonagle&TCP_NAGLE_OFF)
1771 tp->nonagle |= TCP_NAGLE_PUSH;
1772 tcp_push_pending_frames(sk, tp);
1774 break;
1776 case TCP_KEEPIDLE:
1777 if (val < 1 || val > MAX_TCP_KEEPIDLE)
1778 err = -EINVAL;
1779 else {
1780 tp->keepalive_time = val * HZ;
1781 if (sock_flag(sk, SOCK_KEEPOPEN) &&
1782 !((1 << sk->sk_state) &
1783 (TCPF_CLOSE | TCPF_LISTEN))) {
1784 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
1785 if (tp->keepalive_time > elapsed)
1786 elapsed = tp->keepalive_time - elapsed;
1787 else
1788 elapsed = 0;
1789 inet_csk_reset_keepalive_timer(sk, elapsed);
1792 break;
1793 case TCP_KEEPINTVL:
1794 if (val < 1 || val > MAX_TCP_KEEPINTVL)
1795 err = -EINVAL;
1796 else
1797 tp->keepalive_intvl = val * HZ;
1798 break;
1799 case TCP_KEEPCNT:
1800 if (val < 1 || val > MAX_TCP_KEEPCNT)
1801 err = -EINVAL;
1802 else
1803 tp->keepalive_probes = val;
1804 break;
1805 case TCP_SYNCNT:
1806 if (val < 1 || val > MAX_TCP_SYNCNT)
1807 err = -EINVAL;
1808 else
1809 icsk->icsk_syn_retries = val;
1810 break;
1812 case TCP_LINGER2:
1813 if (val < 0)
1814 tp->linger2 = -1;
1815 else if (val > sysctl_tcp_fin_timeout / HZ)
1816 tp->linger2 = 0;
1817 else
1818 tp->linger2 = val * HZ;
1819 break;
1821 case TCP_DEFER_ACCEPT:
1822 icsk->icsk_accept_queue.rskq_defer_accept = 0;
1823 if (val > 0) {
1824 /* Translate value in seconds to number of
1825 * retransmits */
1826 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
1827 val > ((TCP_TIMEOUT_INIT / HZ) <<
1828 icsk->icsk_accept_queue.rskq_defer_accept))
1829 icsk->icsk_accept_queue.rskq_defer_accept++;
1830 icsk->icsk_accept_queue.rskq_defer_accept++;
1832 break;
1834 case TCP_WINDOW_CLAMP:
1835 if (!val) {
1836 if (sk->sk_state != TCP_CLOSE) {
1837 err = -EINVAL;
1838 break;
1840 tp->window_clamp = 0;
1841 } else
1842 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
1843 SOCK_MIN_RCVBUF / 2 : val;
1844 break;
1846 case TCP_QUICKACK:
1847 if (!val) {
1848 icsk->icsk_ack.pingpong = 1;
1849 } else {
1850 icsk->icsk_ack.pingpong = 0;
1851 if ((1 << sk->sk_state) &
1852 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
1853 inet_csk_ack_scheduled(sk)) {
1854 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1855 cleanup_rbuf(sk, 1);
1856 if (!(val & 1))
1857 icsk->icsk_ack.pingpong = 1;
1860 break;
1862 default:
1863 err = -ENOPROTOOPT;
1864 break;
1866 release_sock(sk);
1867 return err;
1870 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
1871 int optlen)
1873 struct inet_connection_sock *icsk = inet_csk(sk);
1875 if (level != SOL_TCP)
1876 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1877 optval, optlen);
1878 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
1881 #ifdef CONFIG_COMPAT
1882 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
1883 char __user *optval, int optlen)
1885 if (level != SOL_TCP)
1886 return inet_csk_compat_setsockopt(sk, level, optname,
1887 optval, optlen);
1888 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
1891 EXPORT_SYMBOL(compat_tcp_setsockopt);
1892 #endif
1894 /* Return information about state of tcp endpoint in API format. */
1895 void tcp_get_info(struct sock *sk, struct tcp_info *info)
1897 struct tcp_sock *tp = tcp_sk(sk);
1898 const struct inet_connection_sock *icsk = inet_csk(sk);
1899 u32 now = tcp_time_stamp;
1901 memset(info, 0, sizeof(*info));
1903 info->tcpi_state = sk->sk_state;
1904 info->tcpi_ca_state = icsk->icsk_ca_state;
1905 info->tcpi_retransmits = icsk->icsk_retransmits;
1906 info->tcpi_probes = icsk->icsk_probes_out;
1907 info->tcpi_backoff = icsk->icsk_backoff;
1909 if (tp->rx_opt.tstamp_ok)
1910 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
1911 if (tp->rx_opt.sack_ok)
1912 info->tcpi_options |= TCPI_OPT_SACK;
1913 if (tp->rx_opt.wscale_ok) {
1914 info->tcpi_options |= TCPI_OPT_WSCALE;
1915 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
1916 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
1919 if (tp->ecn_flags&TCP_ECN_OK)
1920 info->tcpi_options |= TCPI_OPT_ECN;
1922 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
1923 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
1924 info->tcpi_snd_mss = tp->mss_cache;
1925 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
1927 info->tcpi_unacked = tp->packets_out;
1928 info->tcpi_sacked = tp->sacked_out;
1929 info->tcpi_lost = tp->lost_out;
1930 info->tcpi_retrans = tp->retrans_out;
1931 info->tcpi_fackets = tp->fackets_out;
1933 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
1934 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
1935 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
1937 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
1938 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
1939 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
1940 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
1941 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
1942 info->tcpi_snd_cwnd = tp->snd_cwnd;
1943 info->tcpi_advmss = tp->advmss;
1944 info->tcpi_reordering = tp->reordering;
1946 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
1947 info->tcpi_rcv_space = tp->rcvq_space.space;
1949 info->tcpi_total_retrans = tp->total_retrans;
1952 EXPORT_SYMBOL_GPL(tcp_get_info);
1954 static int do_tcp_getsockopt(struct sock *sk, int level,
1955 int optname, char __user *optval, int __user *optlen)
1957 struct inet_connection_sock *icsk = inet_csk(sk);
1958 struct tcp_sock *tp = tcp_sk(sk);
1959 int val, len;
1961 if (get_user(len, optlen))
1962 return -EFAULT;
1964 len = min_t(unsigned int, len, sizeof(int));
1966 if (len < 0)
1967 return -EINVAL;
1969 switch (optname) {
1970 case TCP_MAXSEG:
1971 val = tp->mss_cache;
1972 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
1973 val = tp->rx_opt.user_mss;
1974 break;
1975 case TCP_NODELAY:
1976 val = !!(tp->nonagle&TCP_NAGLE_OFF);
1977 break;
1978 case TCP_CORK:
1979 val = !!(tp->nonagle&TCP_NAGLE_CORK);
1980 break;
1981 case TCP_KEEPIDLE:
1982 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
1983 break;
1984 case TCP_KEEPINTVL:
1985 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
1986 break;
1987 case TCP_KEEPCNT:
1988 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1989 break;
1990 case TCP_SYNCNT:
1991 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
1992 break;
1993 case TCP_LINGER2:
1994 val = tp->linger2;
1995 if (val >= 0)
1996 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
1997 break;
1998 case TCP_DEFER_ACCEPT:
1999 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2000 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2001 break;
2002 case TCP_WINDOW_CLAMP:
2003 val = tp->window_clamp;
2004 break;
2005 case TCP_INFO: {
2006 struct tcp_info info;
2008 if (get_user(len, optlen))
2009 return -EFAULT;
2011 tcp_get_info(sk, &info);
2013 len = min_t(unsigned int, len, sizeof(info));
2014 if (put_user(len, optlen))
2015 return -EFAULT;
2016 if (copy_to_user(optval, &info, len))
2017 return -EFAULT;
2018 return 0;
2020 case TCP_QUICKACK:
2021 val = !icsk->icsk_ack.pingpong;
2022 break;
2024 case TCP_CONGESTION:
2025 if (get_user(len, optlen))
2026 return -EFAULT;
2027 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2028 if (put_user(len, optlen))
2029 return -EFAULT;
2030 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2031 return -EFAULT;
2032 return 0;
2033 default:
2034 return -ENOPROTOOPT;
2037 if (put_user(len, optlen))
2038 return -EFAULT;
2039 if (copy_to_user(optval, &val, len))
2040 return -EFAULT;
2041 return 0;
2044 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2045 int __user *optlen)
2047 struct inet_connection_sock *icsk = inet_csk(sk);
2049 if (level != SOL_TCP)
2050 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2051 optval, optlen);
2052 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2055 #ifdef CONFIG_COMPAT
2056 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2057 char __user *optval, int __user *optlen)
2059 if (level != SOL_TCP)
2060 return inet_csk_compat_getsockopt(sk, level, optname,
2061 optval, optlen);
2062 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2065 EXPORT_SYMBOL(compat_tcp_getsockopt);
2066 #endif
2068 extern void __skb_cb_too_small_for_tcp(int, int);
2069 extern struct tcp_congestion_ops tcp_reno;
2071 static __initdata unsigned long thash_entries;
2072 static int __init set_thash_entries(char *str)
2074 if (!str)
2075 return 0;
2076 thash_entries = simple_strtoul(str, &str, 0);
2077 return 1;
2079 __setup("thash_entries=", set_thash_entries);
2081 void __init tcp_init(void)
2083 struct sk_buff *skb = NULL;
2084 unsigned long limit;
2085 int order, i, max_share;
2087 if (sizeof(struct tcp_skb_cb) > sizeof(skb->cb))
2088 __skb_cb_too_small_for_tcp(sizeof(struct tcp_skb_cb),
2089 sizeof(skb->cb));
2091 tcp_hashinfo.bind_bucket_cachep =
2092 kmem_cache_create("tcp_bind_bucket",
2093 sizeof(struct inet_bind_bucket), 0,
2094 SLAB_HWCACHE_ALIGN, NULL, NULL);
2095 if (!tcp_hashinfo.bind_bucket_cachep)
2096 panic("tcp_init: Cannot alloc tcp_bind_bucket cache.");
2098 /* Size and allocate the main established and bind bucket
2099 * hash tables.
2101 * The methodology is similar to that of the buffer cache.
2103 tcp_hashinfo.ehash =
2104 alloc_large_system_hash("TCP established",
2105 sizeof(struct inet_ehash_bucket),
2106 thash_entries,
2107 (num_physpages >= 128 * 1024) ?
2108 13 : 15,
2109 HASH_HIGHMEM,
2110 &tcp_hashinfo.ehash_size,
2111 NULL,
2113 tcp_hashinfo.ehash_size = (1 << tcp_hashinfo.ehash_size) >> 1;
2114 for (i = 0; i < (tcp_hashinfo.ehash_size << 1); i++) {
2115 rwlock_init(&tcp_hashinfo.ehash[i].lock);
2116 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2119 tcp_hashinfo.bhash =
2120 alloc_large_system_hash("TCP bind",
2121 sizeof(struct inet_bind_hashbucket),
2122 tcp_hashinfo.ehash_size,
2123 (num_physpages >= 128 * 1024) ?
2124 13 : 15,
2125 HASH_HIGHMEM,
2126 &tcp_hashinfo.bhash_size,
2127 NULL,
2128 64 * 1024);
2129 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2130 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2131 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2132 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2135 /* Try to be a bit smarter and adjust defaults depending
2136 * on available memory.
2138 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2139 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2140 order++)
2142 if (order >= 4) {
2143 sysctl_local_port_range[0] = 32768;
2144 sysctl_local_port_range[1] = 61000;
2145 tcp_death_row.sysctl_max_tw_buckets = 180000;
2146 sysctl_tcp_max_orphans = 4096 << (order - 4);
2147 sysctl_max_syn_backlog = 1024;
2148 } else if (order < 3) {
2149 sysctl_local_port_range[0] = 1024 * (3 - order);
2150 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2151 sysctl_tcp_max_orphans >>= (3 - order);
2152 sysctl_max_syn_backlog = 128;
2155 sysctl_tcp_mem[0] = 768 << order;
2156 sysctl_tcp_mem[1] = 1024 << order;
2157 sysctl_tcp_mem[2] = 1536 << order;
2159 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2160 max_share = min(4UL*1024*1024, limit);
2162 sysctl_tcp_wmem[0] = SK_STREAM_MEM_QUANTUM;
2163 sysctl_tcp_wmem[1] = 16*1024;
2164 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2166 sysctl_tcp_rmem[0] = SK_STREAM_MEM_QUANTUM;
2167 sysctl_tcp_rmem[1] = 87380;
2168 sysctl_tcp_rmem[2] = max(87380, max_share);
2170 printk(KERN_INFO "TCP: Hash tables configured "
2171 "(established %d bind %d)\n",
2172 tcp_hashinfo.ehash_size << 1, tcp_hashinfo.bhash_size);
2174 tcp_register_congestion_control(&tcp_reno);
2177 EXPORT_SYMBOL(tcp_close);
2178 EXPORT_SYMBOL(tcp_disconnect);
2179 EXPORT_SYMBOL(tcp_getsockopt);
2180 EXPORT_SYMBOL(tcp_ioctl);
2181 EXPORT_SYMBOL(tcp_poll);
2182 EXPORT_SYMBOL(tcp_read_sock);
2183 EXPORT_SYMBOL(tcp_recvmsg);
2184 EXPORT_SYMBOL(tcp_sendmsg);
2185 EXPORT_SYMBOL(tcp_sendpage);
2186 EXPORT_SYMBOL(tcp_setsockopt);
2187 EXPORT_SYMBOL(tcp_shutdown);
2188 EXPORT_SYMBOL(tcp_statistics);