rt2x00: Move code into seperate functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blob35dd7371752a9448ff6162af9255ac0b0891ec35
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
94 #include <net/wext.h>
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
99 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
100 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
101 unsigned long nr_segs, loff_t pos);
102 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
103 unsigned long nr_segs, loff_t pos);
104 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
106 static int sock_close(struct inode *inode, struct file *file);
107 static unsigned int sock_poll(struct file *file,
108 struct poll_table_struct *wait);
109 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 int offset, size_t size, loff_t *ppos, int more);
117 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
118 struct pipe_inode_info *pipe, size_t len,
119 unsigned int flags);
122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123 * in the operation structures but are done directly via the socketcall() multiplexor.
126 static const struct file_operations socket_file_ops = {
127 .owner = THIS_MODULE,
128 .llseek = no_llseek,
129 .aio_read = sock_aio_read,
130 .aio_write = sock_aio_write,
131 .poll = sock_poll,
132 .unlocked_ioctl = sock_ioctl,
133 #ifdef CONFIG_COMPAT
134 .compat_ioctl = compat_sock_ioctl,
135 #endif
136 .mmap = sock_mmap,
137 .open = sock_no_open, /* special open code to disallow open via /proc */
138 .release = sock_close,
139 .fasync = sock_fasync,
140 .sendpage = sock_sendpage,
141 .splice_write = generic_splice_sendpage,
142 .splice_read = sock_splice_read,
146 * The protocol list. Each protocol is registered in here.
149 static DEFINE_SPINLOCK(net_family_lock);
150 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
153 * Statistics counters of the socket lists
156 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
159 * Support routines.
160 * Move socket addresses back and forth across the kernel/user
161 * divide and look after the messy bits.
164 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
165 16 for IP, 16 for IPX,
166 24 for IPv6,
167 about 80 for AX.25
168 must be at least one bigger than
169 the AF_UNIX size (see net/unix/af_unix.c
170 :unix_mkname()).
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 #define SOCKFS_MAGIC 0x534F434B
240 static struct kmem_cache *sock_inode_cachep __read_mostly;
242 static struct inode *sock_alloc_inode(struct super_block *sb)
244 struct socket_alloc *ei;
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 init_waitqueue_head(&ei->socket.wait);
251 ei->socket.fasync_list = NULL;
252 ei->socket.state = SS_UNCONNECTED;
253 ei->socket.flags = 0;
254 ei->socket.ops = NULL;
255 ei->socket.sk = NULL;
256 ei->socket.file = NULL;
258 return &ei->vfs_inode;
261 static void sock_destroy_inode(struct inode *inode)
263 kmem_cache_free(sock_inode_cachep,
264 container_of(inode, struct socket_alloc, vfs_inode));
267 static void init_once(void *foo)
269 struct socket_alloc *ei = (struct socket_alloc *)foo;
271 inode_init_once(&ei->vfs_inode);
274 static int init_inodecache(void)
276 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
277 sizeof(struct socket_alloc),
279 (SLAB_HWCACHE_ALIGN |
280 SLAB_RECLAIM_ACCOUNT |
281 SLAB_MEM_SPREAD),
282 init_once);
283 if (sock_inode_cachep == NULL)
284 return -ENOMEM;
285 return 0;
288 static struct super_operations sockfs_ops = {
289 .alloc_inode = sock_alloc_inode,
290 .destroy_inode =sock_destroy_inode,
291 .statfs = simple_statfs,
294 static int sockfs_get_sb(struct file_system_type *fs_type,
295 int flags, const char *dev_name, void *data,
296 struct vfsmount *mnt)
298 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
299 mnt);
302 static struct vfsmount *sock_mnt __read_mostly;
304 static struct file_system_type sock_fs_type = {
305 .name = "sockfs",
306 .get_sb = sockfs_get_sb,
307 .kill_sb = kill_anon_super,
310 static int sockfs_delete_dentry(struct dentry *dentry)
313 * At creation time, we pretended this dentry was hashed
314 * (by clearing DCACHE_UNHASHED bit in d_flags)
315 * At delete time, we restore the truth : not hashed.
316 * (so that dput() can proceed correctly)
318 dentry->d_flags |= DCACHE_UNHASHED;
319 return 0;
323 * sockfs_dname() is called from d_path().
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
327 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 dentry->d_inode->i_ino);
331 static struct dentry_operations sockfs_dentry_operations = {
332 .d_delete = sockfs_delete_dentry,
333 .d_dname = sockfs_dname,
337 * Obtains the first available file descriptor and sets it up for use.
339 * These functions create file structures and maps them to fd space
340 * of the current process. On success it returns file descriptor
341 * and file struct implicitly stored in sock->file.
342 * Note that another thread may close file descriptor before we return
343 * from this function. We use the fact that now we do not refer
344 * to socket after mapping. If one day we will need it, this
345 * function will increment ref. count on file by 1.
347 * In any case returned fd MAY BE not valid!
348 * This race condition is unavoidable
349 * with shared fd spaces, we cannot solve it inside kernel,
350 * but we take care of internal coherence yet.
353 static int sock_alloc_fd(struct file **filep, int flags)
355 int fd;
357 fd = get_unused_fd_flags(flags);
358 if (likely(fd >= 0)) {
359 struct file *file = get_empty_filp();
361 *filep = file;
362 if (unlikely(!file)) {
363 put_unused_fd(fd);
364 return -ENFILE;
366 } else
367 *filep = NULL;
368 return fd;
371 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
373 struct dentry *dentry;
374 struct qstr name = { .name = "" };
376 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
377 if (unlikely(!dentry))
378 return -ENOMEM;
380 dentry->d_op = &sockfs_dentry_operations;
382 * We dont want to push this dentry into global dentry hash table.
383 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
384 * This permits a working /proc/$pid/fd/XXX on sockets
386 dentry->d_flags &= ~DCACHE_UNHASHED;
387 d_instantiate(dentry, SOCK_INODE(sock));
389 sock->file = file;
390 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
391 &socket_file_ops);
392 SOCK_INODE(sock)->i_fop = &socket_file_ops;
393 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
394 file->f_pos = 0;
395 file->private_data = sock;
397 return 0;
400 int sock_map_fd(struct socket *sock, int flags)
402 struct file *newfile;
403 int fd = sock_alloc_fd(&newfile, flags);
405 if (likely(fd >= 0)) {
406 int err = sock_attach_fd(sock, newfile, flags);
408 if (unlikely(err < 0)) {
409 put_filp(newfile);
410 put_unused_fd(fd);
411 return err;
413 fd_install(fd, newfile);
415 return fd;
418 static struct socket *sock_from_file(struct file *file, int *err)
420 if (file->f_op == &socket_file_ops)
421 return file->private_data; /* set in sock_map_fd */
423 *err = -ENOTSOCK;
424 return NULL;
428 * sockfd_lookup - Go from a file number to its socket slot
429 * @fd: file handle
430 * @err: pointer to an error code return
432 * The file handle passed in is locked and the socket it is bound
433 * too is returned. If an error occurs the err pointer is overwritten
434 * with a negative errno code and NULL is returned. The function checks
435 * for both invalid handles and passing a handle which is not a socket.
437 * On a success the socket object pointer is returned.
440 struct socket *sockfd_lookup(int fd, int *err)
442 struct file *file;
443 struct socket *sock;
445 file = fget(fd);
446 if (!file) {
447 *err = -EBADF;
448 return NULL;
451 sock = sock_from_file(file, err);
452 if (!sock)
453 fput(file);
454 return sock;
457 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
459 struct file *file;
460 struct socket *sock;
462 *err = -EBADF;
463 file = fget_light(fd, fput_needed);
464 if (file) {
465 sock = sock_from_file(file, err);
466 if (sock)
467 return sock;
468 fput_light(file, *fput_needed);
470 return NULL;
474 * sock_alloc - allocate a socket
476 * Allocate a new inode and socket object. The two are bound together
477 * and initialised. The socket is then returned. If we are out of inodes
478 * NULL is returned.
481 static struct socket *sock_alloc(void)
483 struct inode *inode;
484 struct socket *sock;
486 inode = new_inode(sock_mnt->mnt_sb);
487 if (!inode)
488 return NULL;
490 sock = SOCKET_I(inode);
492 inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 inode->i_uid = current_fsuid();
494 inode->i_gid = current_fsgid();
496 get_cpu_var(sockets_in_use)++;
497 put_cpu_var(sockets_in_use);
498 return sock;
502 * In theory you can't get an open on this inode, but /proc provides
503 * a back door. Remember to keep it shut otherwise you'll let the
504 * creepy crawlies in.
507 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
509 return -ENXIO;
512 const struct file_operations bad_sock_fops = {
513 .owner = THIS_MODULE,
514 .open = sock_no_open,
518 * sock_release - close a socket
519 * @sock: socket to close
521 * The socket is released from the protocol stack if it has a release
522 * callback, and the inode is then released if the socket is bound to
523 * an inode not a file.
526 void sock_release(struct socket *sock)
528 if (sock->ops) {
529 struct module *owner = sock->ops->owner;
531 sock->ops->release(sock);
532 sock->ops = NULL;
533 module_put(owner);
536 if (sock->fasync_list)
537 printk(KERN_ERR "sock_release: fasync list not empty!\n");
539 get_cpu_var(sockets_in_use)--;
540 put_cpu_var(sockets_in_use);
541 if (!sock->file) {
542 iput(SOCK_INODE(sock));
543 return;
545 sock->file = NULL;
548 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
549 struct msghdr *msg, size_t size)
551 struct sock_iocb *si = kiocb_to_siocb(iocb);
552 int err;
554 si->sock = sock;
555 si->scm = NULL;
556 si->msg = msg;
557 si->size = size;
559 err = security_socket_sendmsg(sock, msg, size);
560 if (err)
561 return err;
563 return sock->ops->sendmsg(iocb, sock, msg, size);
566 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
568 struct kiocb iocb;
569 struct sock_iocb siocb;
570 int ret;
572 init_sync_kiocb(&iocb, NULL);
573 iocb.private = &siocb;
574 ret = __sock_sendmsg(&iocb, sock, msg, size);
575 if (-EIOCBQUEUED == ret)
576 ret = wait_on_sync_kiocb(&iocb);
577 return ret;
580 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
581 struct kvec *vec, size_t num, size_t size)
583 mm_segment_t oldfs = get_fs();
584 int result;
586 set_fs(KERNEL_DS);
588 * the following is safe, since for compiler definitions of kvec and
589 * iovec are identical, yielding the same in-core layout and alignment
591 msg->msg_iov = (struct iovec *)vec;
592 msg->msg_iovlen = num;
593 result = sock_sendmsg(sock, msg, size);
594 set_fs(oldfs);
595 return result;
599 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
601 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
602 struct sk_buff *skb)
604 ktime_t kt = skb->tstamp;
606 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
607 struct timeval tv;
608 /* Race occurred between timestamp enabling and packet
609 receiving. Fill in the current time for now. */
610 if (kt.tv64 == 0)
611 kt = ktime_get_real();
612 skb->tstamp = kt;
613 tv = ktime_to_timeval(kt);
614 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
615 } else {
616 struct timespec ts;
617 /* Race occurred between timestamp enabling and packet
618 receiving. Fill in the current time for now. */
619 if (kt.tv64 == 0)
620 kt = ktime_get_real();
621 skb->tstamp = kt;
622 ts = ktime_to_timespec(kt);
623 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
627 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
629 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
630 struct msghdr *msg, size_t size, int flags)
632 int err;
633 struct sock_iocb *si = kiocb_to_siocb(iocb);
635 si->sock = sock;
636 si->scm = NULL;
637 si->msg = msg;
638 si->size = size;
639 si->flags = flags;
641 err = security_socket_recvmsg(sock, msg, size, flags);
642 if (err)
643 return err;
645 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
648 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
649 size_t size, int flags)
651 struct kiocb iocb;
652 struct sock_iocb siocb;
653 int ret;
655 init_sync_kiocb(&iocb, NULL);
656 iocb.private = &siocb;
657 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
658 if (-EIOCBQUEUED == ret)
659 ret = wait_on_sync_kiocb(&iocb);
660 return ret;
663 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
664 struct kvec *vec, size_t num, size_t size, int flags)
666 mm_segment_t oldfs = get_fs();
667 int result;
669 set_fs(KERNEL_DS);
671 * the following is safe, since for compiler definitions of kvec and
672 * iovec are identical, yielding the same in-core layout and alignment
674 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
675 result = sock_recvmsg(sock, msg, size, flags);
676 set_fs(oldfs);
677 return result;
680 static void sock_aio_dtor(struct kiocb *iocb)
682 kfree(iocb->private);
685 static ssize_t sock_sendpage(struct file *file, struct page *page,
686 int offset, size_t size, loff_t *ppos, int more)
688 struct socket *sock;
689 int flags;
691 sock = file->private_data;
693 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
694 if (more)
695 flags |= MSG_MORE;
697 return sock->ops->sendpage(sock, page, offset, size, flags);
700 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
701 struct pipe_inode_info *pipe, size_t len,
702 unsigned int flags)
704 struct socket *sock = file->private_data;
706 if (unlikely(!sock->ops->splice_read))
707 return -EINVAL;
709 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
712 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
713 struct sock_iocb *siocb)
715 if (!is_sync_kiocb(iocb)) {
716 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
717 if (!siocb)
718 return NULL;
719 iocb->ki_dtor = sock_aio_dtor;
722 siocb->kiocb = iocb;
723 iocb->private = siocb;
724 return siocb;
727 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
728 struct file *file, const struct iovec *iov,
729 unsigned long nr_segs)
731 struct socket *sock = file->private_data;
732 size_t size = 0;
733 int i;
735 for (i = 0; i < nr_segs; i++)
736 size += iov[i].iov_len;
738 msg->msg_name = NULL;
739 msg->msg_namelen = 0;
740 msg->msg_control = NULL;
741 msg->msg_controllen = 0;
742 msg->msg_iov = (struct iovec *)iov;
743 msg->msg_iovlen = nr_segs;
744 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
746 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
749 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
750 unsigned long nr_segs, loff_t pos)
752 struct sock_iocb siocb, *x;
754 if (pos != 0)
755 return -ESPIPE;
757 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
758 return 0;
761 x = alloc_sock_iocb(iocb, &siocb);
762 if (!x)
763 return -ENOMEM;
764 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
767 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
768 struct file *file, const struct iovec *iov,
769 unsigned long nr_segs)
771 struct socket *sock = file->private_data;
772 size_t size = 0;
773 int i;
775 for (i = 0; i < nr_segs; i++)
776 size += iov[i].iov_len;
778 msg->msg_name = NULL;
779 msg->msg_namelen = 0;
780 msg->msg_control = NULL;
781 msg->msg_controllen = 0;
782 msg->msg_iov = (struct iovec *)iov;
783 msg->msg_iovlen = nr_segs;
784 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
785 if (sock->type == SOCK_SEQPACKET)
786 msg->msg_flags |= MSG_EOR;
788 return __sock_sendmsg(iocb, sock, msg, size);
791 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
792 unsigned long nr_segs, loff_t pos)
794 struct sock_iocb siocb, *x;
796 if (pos != 0)
797 return -ESPIPE;
799 x = alloc_sock_iocb(iocb, &siocb);
800 if (!x)
801 return -ENOMEM;
803 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
807 * Atomic setting of ioctl hooks to avoid race
808 * with module unload.
811 static DEFINE_MUTEX(br_ioctl_mutex);
812 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
814 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
816 mutex_lock(&br_ioctl_mutex);
817 br_ioctl_hook = hook;
818 mutex_unlock(&br_ioctl_mutex);
821 EXPORT_SYMBOL(brioctl_set);
823 static DEFINE_MUTEX(vlan_ioctl_mutex);
824 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
826 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
828 mutex_lock(&vlan_ioctl_mutex);
829 vlan_ioctl_hook = hook;
830 mutex_unlock(&vlan_ioctl_mutex);
833 EXPORT_SYMBOL(vlan_ioctl_set);
835 static DEFINE_MUTEX(dlci_ioctl_mutex);
836 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
838 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
840 mutex_lock(&dlci_ioctl_mutex);
841 dlci_ioctl_hook = hook;
842 mutex_unlock(&dlci_ioctl_mutex);
845 EXPORT_SYMBOL(dlci_ioctl_set);
848 * With an ioctl, arg may well be a user mode pointer, but we don't know
849 * what to do with it - that's up to the protocol still.
852 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
854 struct socket *sock;
855 struct sock *sk;
856 void __user *argp = (void __user *)arg;
857 int pid, err;
858 struct net *net;
860 sock = file->private_data;
861 sk = sock->sk;
862 net = sock_net(sk);
863 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
864 err = dev_ioctl(net, cmd, argp);
865 } else
866 #ifdef CONFIG_WIRELESS_EXT
867 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
868 err = dev_ioctl(net, cmd, argp);
869 } else
870 #endif /* CONFIG_WIRELESS_EXT */
871 switch (cmd) {
872 case FIOSETOWN:
873 case SIOCSPGRP:
874 err = -EFAULT;
875 if (get_user(pid, (int __user *)argp))
876 break;
877 err = f_setown(sock->file, pid, 1);
878 break;
879 case FIOGETOWN:
880 case SIOCGPGRP:
881 err = put_user(f_getown(sock->file),
882 (int __user *)argp);
883 break;
884 case SIOCGIFBR:
885 case SIOCSIFBR:
886 case SIOCBRADDBR:
887 case SIOCBRDELBR:
888 err = -ENOPKG;
889 if (!br_ioctl_hook)
890 request_module("bridge");
892 mutex_lock(&br_ioctl_mutex);
893 if (br_ioctl_hook)
894 err = br_ioctl_hook(net, cmd, argp);
895 mutex_unlock(&br_ioctl_mutex);
896 break;
897 case SIOCGIFVLAN:
898 case SIOCSIFVLAN:
899 err = -ENOPKG;
900 if (!vlan_ioctl_hook)
901 request_module("8021q");
903 mutex_lock(&vlan_ioctl_mutex);
904 if (vlan_ioctl_hook)
905 err = vlan_ioctl_hook(net, argp);
906 mutex_unlock(&vlan_ioctl_mutex);
907 break;
908 case SIOCADDDLCI:
909 case SIOCDELDLCI:
910 err = -ENOPKG;
911 if (!dlci_ioctl_hook)
912 request_module("dlci");
914 mutex_lock(&dlci_ioctl_mutex);
915 if (dlci_ioctl_hook)
916 err = dlci_ioctl_hook(cmd, argp);
917 mutex_unlock(&dlci_ioctl_mutex);
918 break;
919 default:
920 err = sock->ops->ioctl(sock, cmd, arg);
923 * If this ioctl is unknown try to hand it down
924 * to the NIC driver.
926 if (err == -ENOIOCTLCMD)
927 err = dev_ioctl(net, cmd, argp);
928 break;
930 return err;
933 int sock_create_lite(int family, int type, int protocol, struct socket **res)
935 int err;
936 struct socket *sock = NULL;
938 err = security_socket_create(family, type, protocol, 1);
939 if (err)
940 goto out;
942 sock = sock_alloc();
943 if (!sock) {
944 err = -ENOMEM;
945 goto out;
948 sock->type = type;
949 err = security_socket_post_create(sock, family, type, protocol, 1);
950 if (err)
951 goto out_release;
953 out:
954 *res = sock;
955 return err;
956 out_release:
957 sock_release(sock);
958 sock = NULL;
959 goto out;
962 /* No kernel lock held - perfect */
963 static unsigned int sock_poll(struct file *file, poll_table *wait)
965 struct socket *sock;
968 * We can't return errors to poll, so it's either yes or no.
970 sock = file->private_data;
971 return sock->ops->poll(file, sock, wait);
974 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
976 struct socket *sock = file->private_data;
978 return sock->ops->mmap(file, sock, vma);
981 static int sock_close(struct inode *inode, struct file *filp)
984 * It was possible the inode is NULL we were
985 * closing an unfinished socket.
988 if (!inode) {
989 printk(KERN_DEBUG "sock_close: NULL inode\n");
990 return 0;
992 sock_release(SOCKET_I(inode));
993 return 0;
997 * Update the socket async list
999 * Fasync_list locking strategy.
1001 * 1. fasync_list is modified only under process context socket lock
1002 * i.e. under semaphore.
1003 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1004 * or under socket lock.
1005 * 3. fasync_list can be used from softirq context, so that
1006 * modification under socket lock have to be enhanced with
1007 * write_lock_bh(&sk->sk_callback_lock).
1008 * --ANK (990710)
1011 static int sock_fasync(int fd, struct file *filp, int on)
1013 struct fasync_struct *fa, *fna = NULL, **prev;
1014 struct socket *sock;
1015 struct sock *sk;
1017 if (on) {
1018 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1019 if (fna == NULL)
1020 return -ENOMEM;
1023 sock = filp->private_data;
1025 sk = sock->sk;
1026 if (sk == NULL) {
1027 kfree(fna);
1028 return -EINVAL;
1031 lock_sock(sk);
1033 prev = &(sock->fasync_list);
1035 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1036 if (fa->fa_file == filp)
1037 break;
1039 if (on) {
1040 if (fa != NULL) {
1041 write_lock_bh(&sk->sk_callback_lock);
1042 fa->fa_fd = fd;
1043 write_unlock_bh(&sk->sk_callback_lock);
1045 kfree(fna);
1046 goto out;
1048 fna->fa_file = filp;
1049 fna->fa_fd = fd;
1050 fna->magic = FASYNC_MAGIC;
1051 fna->fa_next = sock->fasync_list;
1052 write_lock_bh(&sk->sk_callback_lock);
1053 sock->fasync_list = fna;
1054 write_unlock_bh(&sk->sk_callback_lock);
1055 } else {
1056 if (fa != NULL) {
1057 write_lock_bh(&sk->sk_callback_lock);
1058 *prev = fa->fa_next;
1059 write_unlock_bh(&sk->sk_callback_lock);
1060 kfree(fa);
1064 out:
1065 release_sock(sock->sk);
1066 return 0;
1069 /* This function may be called only under socket lock or callback_lock */
1071 int sock_wake_async(struct socket *sock, int how, int band)
1073 if (!sock || !sock->fasync_list)
1074 return -1;
1075 switch (how) {
1076 case SOCK_WAKE_WAITD:
1077 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1078 break;
1079 goto call_kill;
1080 case SOCK_WAKE_SPACE:
1081 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1082 break;
1083 /* fall through */
1084 case SOCK_WAKE_IO:
1085 call_kill:
1086 __kill_fasync(sock->fasync_list, SIGIO, band);
1087 break;
1088 case SOCK_WAKE_URG:
1089 __kill_fasync(sock->fasync_list, SIGURG, band);
1091 return 0;
1094 static int __sock_create(struct net *net, int family, int type, int protocol,
1095 struct socket **res, int kern)
1097 int err;
1098 struct socket *sock;
1099 const struct net_proto_family *pf;
1102 * Check protocol is in range
1104 if (family < 0 || family >= NPROTO)
1105 return -EAFNOSUPPORT;
1106 if (type < 0 || type >= SOCK_MAX)
1107 return -EINVAL;
1109 /* Compatibility.
1111 This uglymoron is moved from INET layer to here to avoid
1112 deadlock in module load.
1114 if (family == PF_INET && type == SOCK_PACKET) {
1115 static int warned;
1116 if (!warned) {
1117 warned = 1;
1118 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 current->comm);
1121 family = PF_PACKET;
1124 err = security_socket_create(family, type, protocol, kern);
1125 if (err)
1126 return err;
1129 * Allocate the socket and allow the family to set things up. if
1130 * the protocol is 0, the family is instructed to select an appropriate
1131 * default.
1133 sock = sock_alloc();
1134 if (!sock) {
1135 if (net_ratelimit())
1136 printk(KERN_WARNING "socket: no more sockets\n");
1137 return -ENFILE; /* Not exactly a match, but its the
1138 closest posix thing */
1141 sock->type = type;
1143 #ifdef CONFIG_MODULES
1144 /* Attempt to load a protocol module if the find failed.
1146 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1147 * requested real, full-featured networking support upon configuration.
1148 * Otherwise module support will break!
1150 if (net_families[family] == NULL)
1151 request_module("net-pf-%d", family);
1152 #endif
1154 rcu_read_lock();
1155 pf = rcu_dereference(net_families[family]);
1156 err = -EAFNOSUPPORT;
1157 if (!pf)
1158 goto out_release;
1161 * We will call the ->create function, that possibly is in a loadable
1162 * module, so we have to bump that loadable module refcnt first.
1164 if (!try_module_get(pf->owner))
1165 goto out_release;
1167 /* Now protected by module ref count */
1168 rcu_read_unlock();
1170 err = pf->create(net, sock, protocol);
1171 if (err < 0)
1172 goto out_module_put;
1175 * Now to bump the refcnt of the [loadable] module that owns this
1176 * socket at sock_release time we decrement its refcnt.
1178 if (!try_module_get(sock->ops->owner))
1179 goto out_module_busy;
1182 * Now that we're done with the ->create function, the [loadable]
1183 * module can have its refcnt decremented
1185 module_put(pf->owner);
1186 err = security_socket_post_create(sock, family, type, protocol, kern);
1187 if (err)
1188 goto out_sock_release;
1189 *res = sock;
1191 return 0;
1193 out_module_busy:
1194 err = -EAFNOSUPPORT;
1195 out_module_put:
1196 sock->ops = NULL;
1197 module_put(pf->owner);
1198 out_sock_release:
1199 sock_release(sock);
1200 return err;
1202 out_release:
1203 rcu_read_unlock();
1204 goto out_sock_release;
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1212 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1214 return __sock_create(&init_net, family, type, protocol, res, 1);
1217 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1219 int retval;
1220 struct socket *sock;
1221 int flags;
1223 /* Check the SOCK_* constants for consistency. */
1224 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1225 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1226 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1227 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1229 flags = type & ~SOCK_TYPE_MASK;
1230 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1231 return -EINVAL;
1232 type &= SOCK_TYPE_MASK;
1234 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1235 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1237 retval = sock_create(family, type, protocol, &sock);
1238 if (retval < 0)
1239 goto out;
1241 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1242 if (retval < 0)
1243 goto out_release;
1245 out:
1246 /* It may be already another descriptor 8) Not kernel problem. */
1247 return retval;
1249 out_release:
1250 sock_release(sock);
1251 return retval;
1255 * Create a pair of connected sockets.
1258 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1259 int __user *, usockvec)
1261 struct socket *sock1, *sock2;
1262 int fd1, fd2, err;
1263 struct file *newfile1, *newfile2;
1264 int flags;
1266 flags = type & ~SOCK_TYPE_MASK;
1267 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1268 return -EINVAL;
1269 type &= SOCK_TYPE_MASK;
1271 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1272 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1275 * Obtain the first socket and check if the underlying protocol
1276 * supports the socketpair call.
1279 err = sock_create(family, type, protocol, &sock1);
1280 if (err < 0)
1281 goto out;
1283 err = sock_create(family, type, protocol, &sock2);
1284 if (err < 0)
1285 goto out_release_1;
1287 err = sock1->ops->socketpair(sock1, sock2);
1288 if (err < 0)
1289 goto out_release_both;
1291 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1292 if (unlikely(fd1 < 0)) {
1293 err = fd1;
1294 goto out_release_both;
1297 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1298 if (unlikely(fd2 < 0)) {
1299 err = fd2;
1300 put_filp(newfile1);
1301 put_unused_fd(fd1);
1302 goto out_release_both;
1305 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1306 if (unlikely(err < 0)) {
1307 goto out_fd2;
1310 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1311 if (unlikely(err < 0)) {
1312 fput(newfile1);
1313 goto out_fd1;
1316 audit_fd_pair(fd1, fd2);
1317 fd_install(fd1, newfile1);
1318 fd_install(fd2, newfile2);
1319 /* fd1 and fd2 may be already another descriptors.
1320 * Not kernel problem.
1323 err = put_user(fd1, &usockvec[0]);
1324 if (!err)
1325 err = put_user(fd2, &usockvec[1]);
1326 if (!err)
1327 return 0;
1329 sys_close(fd2);
1330 sys_close(fd1);
1331 return err;
1333 out_release_both:
1334 sock_release(sock2);
1335 out_release_1:
1336 sock_release(sock1);
1337 out:
1338 return err;
1340 out_fd2:
1341 put_filp(newfile1);
1342 sock_release(sock1);
1343 out_fd1:
1344 put_filp(newfile2);
1345 sock_release(sock2);
1346 put_unused_fd(fd1);
1347 put_unused_fd(fd2);
1348 goto out;
1352 * Bind a name to a socket. Nothing much to do here since it's
1353 * the protocol's responsibility to handle the local address.
1355 * We move the socket address to kernel space before we call
1356 * the protocol layer (having also checked the address is ok).
1359 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1361 struct socket *sock;
1362 struct sockaddr_storage address;
1363 int err, fput_needed;
1365 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1366 if (sock) {
1367 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1368 if (err >= 0) {
1369 err = security_socket_bind(sock,
1370 (struct sockaddr *)&address,
1371 addrlen);
1372 if (!err)
1373 err = sock->ops->bind(sock,
1374 (struct sockaddr *)
1375 &address, addrlen);
1377 fput_light(sock->file, fput_needed);
1379 return err;
1383 * Perform a listen. Basically, we allow the protocol to do anything
1384 * necessary for a listen, and if that works, we mark the socket as
1385 * ready for listening.
1388 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1390 struct socket *sock;
1391 int err, fput_needed;
1392 int somaxconn;
1394 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1395 if (sock) {
1396 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1397 if ((unsigned)backlog > somaxconn)
1398 backlog = somaxconn;
1400 err = security_socket_listen(sock, backlog);
1401 if (!err)
1402 err = sock->ops->listen(sock, backlog);
1404 fput_light(sock->file, fput_needed);
1406 return err;
1410 * For accept, we attempt to create a new socket, set up the link
1411 * with the client, wake up the client, then return the new
1412 * connected fd. We collect the address of the connector in kernel
1413 * space and move it to user at the very end. This is unclean because
1414 * we open the socket then return an error.
1416 * 1003.1g adds the ability to recvmsg() to query connection pending
1417 * status to recvmsg. We need to add that support in a way thats
1418 * clean when we restucture accept also.
1421 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1422 int __user *, upeer_addrlen, int, flags)
1424 struct socket *sock, *newsock;
1425 struct file *newfile;
1426 int err, len, newfd, fput_needed;
1427 struct sockaddr_storage address;
1429 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1430 return -EINVAL;
1432 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1433 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1436 if (!sock)
1437 goto out;
1439 err = -ENFILE;
1440 if (!(newsock = sock_alloc()))
1441 goto out_put;
1443 newsock->type = sock->type;
1444 newsock->ops = sock->ops;
1447 * We don't need try_module_get here, as the listening socket (sock)
1448 * has the protocol module (sock->ops->owner) held.
1450 __module_get(newsock->ops->owner);
1452 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1453 if (unlikely(newfd < 0)) {
1454 err = newfd;
1455 sock_release(newsock);
1456 goto out_put;
1459 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1460 if (err < 0)
1461 goto out_fd_simple;
1463 err = security_socket_accept(sock, newsock);
1464 if (err)
1465 goto out_fd;
1467 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1468 if (err < 0)
1469 goto out_fd;
1471 if (upeer_sockaddr) {
1472 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1473 &len, 2) < 0) {
1474 err = -ECONNABORTED;
1475 goto out_fd;
1477 err = move_addr_to_user((struct sockaddr *)&address,
1478 len, upeer_sockaddr, upeer_addrlen);
1479 if (err < 0)
1480 goto out_fd;
1483 /* File flags are not inherited via accept() unlike another OSes. */
1485 fd_install(newfd, newfile);
1486 err = newfd;
1488 security_socket_post_accept(sock, newsock);
1490 out_put:
1491 fput_light(sock->file, fput_needed);
1492 out:
1493 return err;
1494 out_fd_simple:
1495 sock_release(newsock);
1496 put_filp(newfile);
1497 put_unused_fd(newfd);
1498 goto out_put;
1499 out_fd:
1500 fput(newfile);
1501 put_unused_fd(newfd);
1502 goto out_put;
1505 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1506 int __user *, upeer_addrlen)
1508 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1512 * Attempt to connect to a socket with the server address. The address
1513 * is in user space so we verify it is OK and move it to kernel space.
1515 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1516 * break bindings
1518 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1519 * other SEQPACKET protocols that take time to connect() as it doesn't
1520 * include the -EINPROGRESS status for such sockets.
1523 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1524 int, addrlen)
1526 struct socket *sock;
1527 struct sockaddr_storage address;
1528 int err, fput_needed;
1530 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 if (!sock)
1532 goto out;
1533 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1534 if (err < 0)
1535 goto out_put;
1537 err =
1538 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1539 if (err)
1540 goto out_put;
1542 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1543 sock->file->f_flags);
1544 out_put:
1545 fput_light(sock->file, fput_needed);
1546 out:
1547 return err;
1551 * Get the local address ('name') of a socket object. Move the obtained
1552 * name to user space.
1555 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1556 int __user *, usockaddr_len)
1558 struct socket *sock;
1559 struct sockaddr_storage address;
1560 int len, err, fput_needed;
1562 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 if (!sock)
1564 goto out;
1566 err = security_socket_getsockname(sock);
1567 if (err)
1568 goto out_put;
1570 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1571 if (err)
1572 goto out_put;
1573 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1575 out_put:
1576 fput_light(sock->file, fput_needed);
1577 out:
1578 return err;
1582 * Get the remote address ('name') of a socket object. Move the obtained
1583 * name to user space.
1586 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1587 int __user *, usockaddr_len)
1589 struct socket *sock;
1590 struct sockaddr_storage address;
1591 int len, err, fput_needed;
1593 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1594 if (sock != NULL) {
1595 err = security_socket_getpeername(sock);
1596 if (err) {
1597 fput_light(sock->file, fput_needed);
1598 return err;
1601 err =
1602 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1604 if (!err)
1605 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1606 usockaddr_len);
1607 fput_light(sock->file, fput_needed);
1609 return err;
1613 * Send a datagram to a given address. We move the address into kernel
1614 * space and check the user space data area is readable before invoking
1615 * the protocol.
1618 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1619 unsigned, flags, struct sockaddr __user *, addr,
1620 int, addr_len)
1622 struct socket *sock;
1623 struct sockaddr_storage address;
1624 int err;
1625 struct msghdr msg;
1626 struct iovec iov;
1627 int fput_needed;
1629 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1630 if (!sock)
1631 goto out;
1633 iov.iov_base = buff;
1634 iov.iov_len = len;
1635 msg.msg_name = NULL;
1636 msg.msg_iov = &iov;
1637 msg.msg_iovlen = 1;
1638 msg.msg_control = NULL;
1639 msg.msg_controllen = 0;
1640 msg.msg_namelen = 0;
1641 if (addr) {
1642 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1643 if (err < 0)
1644 goto out_put;
1645 msg.msg_name = (struct sockaddr *)&address;
1646 msg.msg_namelen = addr_len;
1648 if (sock->file->f_flags & O_NONBLOCK)
1649 flags |= MSG_DONTWAIT;
1650 msg.msg_flags = flags;
1651 err = sock_sendmsg(sock, &msg, len);
1653 out_put:
1654 fput_light(sock->file, fput_needed);
1655 out:
1656 return err;
1660 * Send a datagram down a socket.
1663 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1664 unsigned, flags)
1666 return sys_sendto(fd, buff, len, flags, NULL, 0);
1670 * Receive a frame from the socket and optionally record the address of the
1671 * sender. We verify the buffers are writable and if needed move the
1672 * sender address from kernel to user space.
1675 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1676 unsigned, flags, struct sockaddr __user *, addr,
1677 int __user *, addr_len)
1679 struct socket *sock;
1680 struct iovec iov;
1681 struct msghdr msg;
1682 struct sockaddr_storage address;
1683 int err, err2;
1684 int fput_needed;
1686 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687 if (!sock)
1688 goto out;
1690 msg.msg_control = NULL;
1691 msg.msg_controllen = 0;
1692 msg.msg_iovlen = 1;
1693 msg.msg_iov = &iov;
1694 iov.iov_len = size;
1695 iov.iov_base = ubuf;
1696 msg.msg_name = (struct sockaddr *)&address;
1697 msg.msg_namelen = sizeof(address);
1698 if (sock->file->f_flags & O_NONBLOCK)
1699 flags |= MSG_DONTWAIT;
1700 err = sock_recvmsg(sock, &msg, size, flags);
1702 if (err >= 0 && addr != NULL) {
1703 err2 = move_addr_to_user((struct sockaddr *)&address,
1704 msg.msg_namelen, addr, addr_len);
1705 if (err2 < 0)
1706 err = err2;
1709 fput_light(sock->file, fput_needed);
1710 out:
1711 return err;
1715 * Receive a datagram from a socket.
1718 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1719 unsigned flags)
1721 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1725 * Set a socket option. Because we don't know the option lengths we have
1726 * to pass the user mode parameter for the protocols to sort out.
1729 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1730 char __user *, optval, int, optlen)
1732 int err, fput_needed;
1733 struct socket *sock;
1735 if (optlen < 0)
1736 return -EINVAL;
1738 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 if (sock != NULL) {
1740 err = security_socket_setsockopt(sock, level, optname);
1741 if (err)
1742 goto out_put;
1744 if (level == SOL_SOCKET)
1745 err =
1746 sock_setsockopt(sock, level, optname, optval,
1747 optlen);
1748 else
1749 err =
1750 sock->ops->setsockopt(sock, level, optname, optval,
1751 optlen);
1752 out_put:
1753 fput_light(sock->file, fput_needed);
1755 return err;
1759 * Get a socket option. Because we don't know the option lengths we have
1760 * to pass a user mode parameter for the protocols to sort out.
1763 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1764 char __user *, optval, int __user *, optlen)
1766 int err, fput_needed;
1767 struct socket *sock;
1769 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 if (sock != NULL) {
1771 err = security_socket_getsockopt(sock, level, optname);
1772 if (err)
1773 goto out_put;
1775 if (level == SOL_SOCKET)
1776 err =
1777 sock_getsockopt(sock, level, optname, optval,
1778 optlen);
1779 else
1780 err =
1781 sock->ops->getsockopt(sock, level, optname, optval,
1782 optlen);
1783 out_put:
1784 fput_light(sock->file, fput_needed);
1786 return err;
1790 * Shutdown a socket.
1793 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1795 int err, fput_needed;
1796 struct socket *sock;
1798 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799 if (sock != NULL) {
1800 err = security_socket_shutdown(sock, how);
1801 if (!err)
1802 err = sock->ops->shutdown(sock, how);
1803 fput_light(sock->file, fput_needed);
1805 return err;
1808 /* A couple of helpful macros for getting the address of the 32/64 bit
1809 * fields which are the same type (int / unsigned) on our platforms.
1811 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1812 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1813 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1816 * BSD sendmsg interface
1819 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1821 struct compat_msghdr __user *msg_compat =
1822 (struct compat_msghdr __user *)msg;
1823 struct socket *sock;
1824 struct sockaddr_storage address;
1825 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1826 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1827 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1828 /* 20 is size of ipv6_pktinfo */
1829 unsigned char *ctl_buf = ctl;
1830 struct msghdr msg_sys;
1831 int err, ctl_len, iov_size, total_len;
1832 int fput_needed;
1834 err = -EFAULT;
1835 if (MSG_CMSG_COMPAT & flags) {
1836 if (get_compat_msghdr(&msg_sys, msg_compat))
1837 return -EFAULT;
1839 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1840 return -EFAULT;
1842 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1843 if (!sock)
1844 goto out;
1846 /* do not move before msg_sys is valid */
1847 err = -EMSGSIZE;
1848 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1849 goto out_put;
1851 /* Check whether to allocate the iovec area */
1852 err = -ENOMEM;
1853 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1854 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1855 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1856 if (!iov)
1857 goto out_put;
1860 /* This will also move the address data into kernel space */
1861 if (MSG_CMSG_COMPAT & flags) {
1862 err = verify_compat_iovec(&msg_sys, iov,
1863 (struct sockaddr *)&address,
1864 VERIFY_READ);
1865 } else
1866 err = verify_iovec(&msg_sys, iov,
1867 (struct sockaddr *)&address,
1868 VERIFY_READ);
1869 if (err < 0)
1870 goto out_freeiov;
1871 total_len = err;
1873 err = -ENOBUFS;
1875 if (msg_sys.msg_controllen > INT_MAX)
1876 goto out_freeiov;
1877 ctl_len = msg_sys.msg_controllen;
1878 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1879 err =
1880 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1881 sizeof(ctl));
1882 if (err)
1883 goto out_freeiov;
1884 ctl_buf = msg_sys.msg_control;
1885 ctl_len = msg_sys.msg_controllen;
1886 } else if (ctl_len) {
1887 if (ctl_len > sizeof(ctl)) {
1888 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1889 if (ctl_buf == NULL)
1890 goto out_freeiov;
1892 err = -EFAULT;
1894 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1895 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1896 * checking falls down on this.
1898 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1899 ctl_len))
1900 goto out_freectl;
1901 msg_sys.msg_control = ctl_buf;
1903 msg_sys.msg_flags = flags;
1905 if (sock->file->f_flags & O_NONBLOCK)
1906 msg_sys.msg_flags |= MSG_DONTWAIT;
1907 err = sock_sendmsg(sock, &msg_sys, total_len);
1909 out_freectl:
1910 if (ctl_buf != ctl)
1911 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1912 out_freeiov:
1913 if (iov != iovstack)
1914 sock_kfree_s(sock->sk, iov, iov_size);
1915 out_put:
1916 fput_light(sock->file, fput_needed);
1917 out:
1918 return err;
1922 * BSD recvmsg interface
1925 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1926 unsigned int, flags)
1928 struct compat_msghdr __user *msg_compat =
1929 (struct compat_msghdr __user *)msg;
1930 struct socket *sock;
1931 struct iovec iovstack[UIO_FASTIOV];
1932 struct iovec *iov = iovstack;
1933 struct msghdr msg_sys;
1934 unsigned long cmsg_ptr;
1935 int err, iov_size, total_len, len;
1936 int fput_needed;
1938 /* kernel mode address */
1939 struct sockaddr_storage addr;
1941 /* user mode address pointers */
1942 struct sockaddr __user *uaddr;
1943 int __user *uaddr_len;
1945 if (MSG_CMSG_COMPAT & flags) {
1946 if (get_compat_msghdr(&msg_sys, msg_compat))
1947 return -EFAULT;
1949 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1950 return -EFAULT;
1952 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1953 if (!sock)
1954 goto out;
1956 err = -EMSGSIZE;
1957 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1958 goto out_put;
1960 /* Check whether to allocate the iovec area */
1961 err = -ENOMEM;
1962 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1963 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1964 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1965 if (!iov)
1966 goto out_put;
1970 * Save the user-mode address (verify_iovec will change the
1971 * kernel msghdr to use the kernel address space)
1974 uaddr = (__force void __user *)msg_sys.msg_name;
1975 uaddr_len = COMPAT_NAMELEN(msg);
1976 if (MSG_CMSG_COMPAT & flags) {
1977 err = verify_compat_iovec(&msg_sys, iov,
1978 (struct sockaddr *)&addr,
1979 VERIFY_WRITE);
1980 } else
1981 err = verify_iovec(&msg_sys, iov,
1982 (struct sockaddr *)&addr,
1983 VERIFY_WRITE);
1984 if (err < 0)
1985 goto out_freeiov;
1986 total_len = err;
1988 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1989 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1991 if (sock->file->f_flags & O_NONBLOCK)
1992 flags |= MSG_DONTWAIT;
1993 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1994 if (err < 0)
1995 goto out_freeiov;
1996 len = err;
1998 if (uaddr != NULL) {
1999 err = move_addr_to_user((struct sockaddr *)&addr,
2000 msg_sys.msg_namelen, uaddr,
2001 uaddr_len);
2002 if (err < 0)
2003 goto out_freeiov;
2005 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2006 COMPAT_FLAGS(msg));
2007 if (err)
2008 goto out_freeiov;
2009 if (MSG_CMSG_COMPAT & flags)
2010 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2011 &msg_compat->msg_controllen);
2012 else
2013 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2014 &msg->msg_controllen);
2015 if (err)
2016 goto out_freeiov;
2017 err = len;
2019 out_freeiov:
2020 if (iov != iovstack)
2021 sock_kfree_s(sock->sk, iov, iov_size);
2022 out_put:
2023 fput_light(sock->file, fput_needed);
2024 out:
2025 return err;
2028 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2030 /* Argument list sizes for sys_socketcall */
2031 #define AL(x) ((x) * sizeof(unsigned long))
2032 static const unsigned char nargs[19]={
2033 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2034 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2035 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2036 AL(4)
2039 #undef AL
2042 * System call vectors.
2044 * Argument checking cleaned up. Saved 20% in size.
2045 * This function doesn't need to set the kernel lock because
2046 * it is set by the callees.
2049 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2051 unsigned long a[6];
2052 unsigned long a0, a1;
2053 int err;
2055 if (call < 1 || call > SYS_ACCEPT4)
2056 return -EINVAL;
2058 /* copy_from_user should be SMP safe. */
2059 if (copy_from_user(a, args, nargs[call]))
2060 return -EFAULT;
2062 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2064 a0 = a[0];
2065 a1 = a[1];
2067 switch (call) {
2068 case SYS_SOCKET:
2069 err = sys_socket(a0, a1, a[2]);
2070 break;
2071 case SYS_BIND:
2072 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2073 break;
2074 case SYS_CONNECT:
2075 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2076 break;
2077 case SYS_LISTEN:
2078 err = sys_listen(a0, a1);
2079 break;
2080 case SYS_ACCEPT:
2081 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2082 (int __user *)a[2], 0);
2083 break;
2084 case SYS_GETSOCKNAME:
2085 err =
2086 sys_getsockname(a0, (struct sockaddr __user *)a1,
2087 (int __user *)a[2]);
2088 break;
2089 case SYS_GETPEERNAME:
2090 err =
2091 sys_getpeername(a0, (struct sockaddr __user *)a1,
2092 (int __user *)a[2]);
2093 break;
2094 case SYS_SOCKETPAIR:
2095 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2096 break;
2097 case SYS_SEND:
2098 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2099 break;
2100 case SYS_SENDTO:
2101 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2102 (struct sockaddr __user *)a[4], a[5]);
2103 break;
2104 case SYS_RECV:
2105 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2106 break;
2107 case SYS_RECVFROM:
2108 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2109 (struct sockaddr __user *)a[4],
2110 (int __user *)a[5]);
2111 break;
2112 case SYS_SHUTDOWN:
2113 err = sys_shutdown(a0, a1);
2114 break;
2115 case SYS_SETSOCKOPT:
2116 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2117 break;
2118 case SYS_GETSOCKOPT:
2119 err =
2120 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2121 (int __user *)a[4]);
2122 break;
2123 case SYS_SENDMSG:
2124 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2125 break;
2126 case SYS_RECVMSG:
2127 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2128 break;
2129 case SYS_ACCEPT4:
2130 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2131 (int __user *)a[2], a[3]);
2132 break;
2133 default:
2134 err = -EINVAL;
2135 break;
2137 return err;
2140 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2143 * sock_register - add a socket protocol handler
2144 * @ops: description of protocol
2146 * This function is called by a protocol handler that wants to
2147 * advertise its address family, and have it linked into the
2148 * socket interface. The value ops->family coresponds to the
2149 * socket system call protocol family.
2151 int sock_register(const struct net_proto_family *ops)
2153 int err;
2155 if (ops->family >= NPROTO) {
2156 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2157 NPROTO);
2158 return -ENOBUFS;
2161 spin_lock(&net_family_lock);
2162 if (net_families[ops->family])
2163 err = -EEXIST;
2164 else {
2165 net_families[ops->family] = ops;
2166 err = 0;
2168 spin_unlock(&net_family_lock);
2170 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2171 return err;
2175 * sock_unregister - remove a protocol handler
2176 * @family: protocol family to remove
2178 * This function is called by a protocol handler that wants to
2179 * remove its address family, and have it unlinked from the
2180 * new socket creation.
2182 * If protocol handler is a module, then it can use module reference
2183 * counts to protect against new references. If protocol handler is not
2184 * a module then it needs to provide its own protection in
2185 * the ops->create routine.
2187 void sock_unregister(int family)
2189 BUG_ON(family < 0 || family >= NPROTO);
2191 spin_lock(&net_family_lock);
2192 net_families[family] = NULL;
2193 spin_unlock(&net_family_lock);
2195 synchronize_rcu();
2197 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2200 static int __init sock_init(void)
2203 * Initialize sock SLAB cache.
2206 sk_init();
2209 * Initialize skbuff SLAB cache
2211 skb_init();
2214 * Initialize the protocols module.
2217 init_inodecache();
2218 register_filesystem(&sock_fs_type);
2219 sock_mnt = kern_mount(&sock_fs_type);
2221 /* The real protocol initialization is performed in later initcalls.
2224 #ifdef CONFIG_NETFILTER
2225 netfilter_init();
2226 #endif
2228 return 0;
2231 core_initcall(sock_init); /* early initcall */
2233 #ifdef CONFIG_PROC_FS
2234 void socket_seq_show(struct seq_file *seq)
2236 int cpu;
2237 int counter = 0;
2239 for_each_possible_cpu(cpu)
2240 counter += per_cpu(sockets_in_use, cpu);
2242 /* It can be negative, by the way. 8) */
2243 if (counter < 0)
2244 counter = 0;
2246 seq_printf(seq, "sockets: used %d\n", counter);
2248 #endif /* CONFIG_PROC_FS */
2250 #ifdef CONFIG_COMPAT
2251 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2252 unsigned long arg)
2254 struct socket *sock = file->private_data;
2255 int ret = -ENOIOCTLCMD;
2256 struct sock *sk;
2257 struct net *net;
2259 sk = sock->sk;
2260 net = sock_net(sk);
2262 if (sock->ops->compat_ioctl)
2263 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2265 if (ret == -ENOIOCTLCMD &&
2266 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2267 ret = compat_wext_handle_ioctl(net, cmd, arg);
2269 return ret;
2271 #endif
2273 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2275 return sock->ops->bind(sock, addr, addrlen);
2278 int kernel_listen(struct socket *sock, int backlog)
2280 return sock->ops->listen(sock, backlog);
2283 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2285 struct sock *sk = sock->sk;
2286 int err;
2288 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2289 newsock);
2290 if (err < 0)
2291 goto done;
2293 err = sock->ops->accept(sock, *newsock, flags);
2294 if (err < 0) {
2295 sock_release(*newsock);
2296 *newsock = NULL;
2297 goto done;
2300 (*newsock)->ops = sock->ops;
2301 __module_get((*newsock)->ops->owner);
2303 done:
2304 return err;
2307 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2308 int flags)
2310 return sock->ops->connect(sock, addr, addrlen, flags);
2313 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2314 int *addrlen)
2316 return sock->ops->getname(sock, addr, addrlen, 0);
2319 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2320 int *addrlen)
2322 return sock->ops->getname(sock, addr, addrlen, 1);
2325 int kernel_getsockopt(struct socket *sock, int level, int optname,
2326 char *optval, int *optlen)
2328 mm_segment_t oldfs = get_fs();
2329 int err;
2331 set_fs(KERNEL_DS);
2332 if (level == SOL_SOCKET)
2333 err = sock_getsockopt(sock, level, optname, optval, optlen);
2334 else
2335 err = sock->ops->getsockopt(sock, level, optname, optval,
2336 optlen);
2337 set_fs(oldfs);
2338 return err;
2341 int kernel_setsockopt(struct socket *sock, int level, int optname,
2342 char *optval, int optlen)
2344 mm_segment_t oldfs = get_fs();
2345 int err;
2347 set_fs(KERNEL_DS);
2348 if (level == SOL_SOCKET)
2349 err = sock_setsockopt(sock, level, optname, optval, optlen);
2350 else
2351 err = sock->ops->setsockopt(sock, level, optname, optval,
2352 optlen);
2353 set_fs(oldfs);
2354 return err;
2357 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2358 size_t size, int flags)
2360 if (sock->ops->sendpage)
2361 return sock->ops->sendpage(sock, page, offset, size, flags);
2363 return sock_no_sendpage(sock, page, offset, size, flags);
2366 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2368 mm_segment_t oldfs = get_fs();
2369 int err;
2371 set_fs(KERNEL_DS);
2372 err = sock->ops->ioctl(sock, cmd, arg);
2373 set_fs(oldfs);
2375 return err;
2378 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2380 return sock->ops->shutdown(sock, how);
2383 EXPORT_SYMBOL(sock_create);
2384 EXPORT_SYMBOL(sock_create_kern);
2385 EXPORT_SYMBOL(sock_create_lite);
2386 EXPORT_SYMBOL(sock_map_fd);
2387 EXPORT_SYMBOL(sock_recvmsg);
2388 EXPORT_SYMBOL(sock_register);
2389 EXPORT_SYMBOL(sock_release);
2390 EXPORT_SYMBOL(sock_sendmsg);
2391 EXPORT_SYMBOL(sock_unregister);
2392 EXPORT_SYMBOL(sock_wake_async);
2393 EXPORT_SYMBOL(sockfd_lookup);
2394 EXPORT_SYMBOL(kernel_sendmsg);
2395 EXPORT_SYMBOL(kernel_recvmsg);
2396 EXPORT_SYMBOL(kernel_bind);
2397 EXPORT_SYMBOL(kernel_listen);
2398 EXPORT_SYMBOL(kernel_accept);
2399 EXPORT_SYMBOL(kernel_connect);
2400 EXPORT_SYMBOL(kernel_getsockname);
2401 EXPORT_SYMBOL(kernel_getpeername);
2402 EXPORT_SYMBOL(kernel_getsockopt);
2403 EXPORT_SYMBOL(kernel_setsockopt);
2404 EXPORT_SYMBOL(kernel_sendpage);
2405 EXPORT_SYMBOL(kernel_sock_ioctl);
2406 EXPORT_SYMBOL(kernel_sock_shutdown);