2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
69 #include <linux/mempolicy.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
90 #include <asm/tlbflush.h>
91 #include <asm/uaccess.h>
94 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
95 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
96 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
98 /* The number of pages to migrate per call to migrate_pages() */
99 #define MIGRATE_CHUNK_SIZE 256
101 static kmem_cache_t
*policy_cache
;
102 static kmem_cache_t
*sn_cache
;
104 #define PDprintk(fmt...)
106 /* Highest zone. An specific allocation for a zone below that is not
108 int policy_zone
= ZONE_DMA
;
110 struct mempolicy default_policy
= {
111 .refcnt
= ATOMIC_INIT(1), /* never free it */
112 .policy
= MPOL_DEFAULT
,
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode
, nodemask_t
*nodes
)
118 int empty
= nodes_empty(*nodes
);
126 case MPOL_INTERLEAVE
:
127 /* Preferred will only use the first bit, but allow
133 return nodes_subset(*nodes
, node_online_map
) ? 0 : -EINVAL
;
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist
*bind_zonelist(nodemask_t
*nodes
)
142 max
= 1 + MAX_NR_ZONES
* nodes_weight(*nodes
);
143 zl
= kmalloc(sizeof(struct zone
*) * max
, GFP_KERNEL
);
147 /* First put in the highest zones from all nodes, then all the next
148 lower zones etc. Avoid empty zones because the memory allocator
149 doesn't like them. If you implement node hot removal you
151 for (k
= policy_zone
; k
>= 0; k
--) {
152 for_each_node_mask(nd
, *nodes
) {
153 struct zone
*z
= &NODE_DATA(nd
)->node_zones
[k
];
154 if (z
->present_pages
> 0)
155 zl
->zones
[num
++] = z
;
158 zl
->zones
[num
] = NULL
;
162 /* Create a new policy */
163 static struct mempolicy
*mpol_new(int mode
, nodemask_t
*nodes
)
165 struct mempolicy
*policy
;
167 PDprintk("setting mode %d nodes[0] %lx\n", mode
, nodes_addr(*nodes
)[0]);
168 if (mode
== MPOL_DEFAULT
)
170 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
172 return ERR_PTR(-ENOMEM
);
173 atomic_set(&policy
->refcnt
, 1);
175 case MPOL_INTERLEAVE
:
176 policy
->v
.nodes
= *nodes
;
177 if (nodes_weight(*nodes
) == 0) {
178 kmem_cache_free(policy_cache
, policy
);
179 return ERR_PTR(-EINVAL
);
183 policy
->v
.preferred_node
= first_node(*nodes
);
184 if (policy
->v
.preferred_node
>= MAX_NUMNODES
)
185 policy
->v
.preferred_node
= -1;
188 policy
->v
.zonelist
= bind_zonelist(nodes
);
189 if (policy
->v
.zonelist
== NULL
) {
190 kmem_cache_free(policy_cache
, policy
);
191 return ERR_PTR(-ENOMEM
);
195 policy
->policy
= mode
;
196 policy
->cpuset_mems_allowed
= cpuset_mems_allowed(current
);
200 static void gather_stats(struct page
*, void *, int pte_dirty
);
201 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
202 unsigned long flags
);
204 /* Scan through pages checking if pages follow certain conditions. */
205 static int check_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
206 unsigned long addr
, unsigned long end
,
207 const nodemask_t
*nodes
, unsigned long flags
,
214 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
219 if (!pte_present(*pte
))
221 page
= vm_normal_page(vma
, addr
, *pte
);
225 * The check for PageReserved here is important to avoid
226 * handling zero pages and other pages that may have been
227 * marked special by the system.
229 * If the PageReserved would not be checked here then f.e.
230 * the location of the zero page could have an influence
231 * on MPOL_MF_STRICT, zero pages would be counted for
232 * the per node stats, and there would be useless attempts
233 * to put zero pages on the migration list.
235 if (PageReserved(page
))
237 nid
= page_to_nid(page
);
238 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
241 if (flags
& MPOL_MF_STATS
)
242 gather_stats(page
, private, pte_dirty(*pte
));
243 else if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
244 migrate_page_add(page
, private, flags
);
247 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
248 pte_unmap_unlock(orig_pte
, ptl
);
252 static inline int check_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
253 unsigned long addr
, unsigned long end
,
254 const nodemask_t
*nodes
, unsigned long flags
,
260 pmd
= pmd_offset(pud
, addr
);
262 next
= pmd_addr_end(addr
, end
);
263 if (pmd_none_or_clear_bad(pmd
))
265 if (check_pte_range(vma
, pmd
, addr
, next
, nodes
,
268 } while (pmd
++, addr
= next
, addr
!= end
);
272 static inline int check_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
273 unsigned long addr
, unsigned long end
,
274 const nodemask_t
*nodes
, unsigned long flags
,
280 pud
= pud_offset(pgd
, addr
);
282 next
= pud_addr_end(addr
, end
);
283 if (pud_none_or_clear_bad(pud
))
285 if (check_pmd_range(vma
, pud
, addr
, next
, nodes
,
288 } while (pud
++, addr
= next
, addr
!= end
);
292 static inline int check_pgd_range(struct vm_area_struct
*vma
,
293 unsigned long addr
, unsigned long end
,
294 const nodemask_t
*nodes
, unsigned long flags
,
300 pgd
= pgd_offset(vma
->vm_mm
, addr
);
302 next
= pgd_addr_end(addr
, end
);
303 if (pgd_none_or_clear_bad(pgd
))
305 if (check_pud_range(vma
, pgd
, addr
, next
, nodes
,
308 } while (pgd
++, addr
= next
, addr
!= end
);
312 /* Check if a vma is migratable */
313 static inline int vma_migratable(struct vm_area_struct
*vma
)
315 if (vma
->vm_flags
& (
316 VM_LOCKED
|VM_IO
|VM_HUGETLB
|VM_PFNMAP
|VM_RESERVED
))
322 * Check if all pages in a range are on a set of nodes.
323 * If pagelist != NULL then isolate pages from the LRU and
324 * put them on the pagelist.
326 static struct vm_area_struct
*
327 check_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
328 const nodemask_t
*nodes
, unsigned long flags
, void *private)
331 struct vm_area_struct
*first
, *vma
, *prev
;
333 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
334 /* Must have swap device for migration */
335 if (nr_swap_pages
<= 0)
336 return ERR_PTR(-ENODEV
);
339 * Clear the LRU lists so pages can be isolated.
340 * Note that pages may be moved off the LRU after we have
341 * drained them. Those pages will fail to migrate like other
342 * pages that may be busy.
347 first
= find_vma(mm
, start
);
349 return ERR_PTR(-EFAULT
);
351 for (vma
= first
; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
352 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
353 if (!vma
->vm_next
&& vma
->vm_end
< end
)
354 return ERR_PTR(-EFAULT
);
355 if (prev
&& prev
->vm_end
< vma
->vm_start
)
356 return ERR_PTR(-EFAULT
);
358 if (!is_vm_hugetlb_page(vma
) &&
359 ((flags
& MPOL_MF_STRICT
) ||
360 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
361 vma_migratable(vma
)))) {
362 unsigned long endvma
= vma
->vm_end
;
366 if (vma
->vm_start
> start
)
367 start
= vma
->vm_start
;
368 err
= check_pgd_range(vma
, start
, endvma
, nodes
,
371 first
= ERR_PTR(err
);
380 /* Apply policy to a single VMA */
381 static int policy_vma(struct vm_area_struct
*vma
, struct mempolicy
*new)
384 struct mempolicy
*old
= vma
->vm_policy
;
386 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
387 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
388 vma
->vm_ops
, vma
->vm_file
,
389 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
391 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
)
392 err
= vma
->vm_ops
->set_policy(vma
, new);
395 vma
->vm_policy
= new;
401 /* Step 2: apply policy to a range and do splits. */
402 static int mbind_range(struct vm_area_struct
*vma
, unsigned long start
,
403 unsigned long end
, struct mempolicy
*new)
405 struct vm_area_struct
*next
;
409 for (; vma
&& vma
->vm_start
< end
; vma
= next
) {
411 if (vma
->vm_start
< start
)
412 err
= split_vma(vma
->vm_mm
, vma
, start
, 1);
413 if (!err
&& vma
->vm_end
> end
)
414 err
= split_vma(vma
->vm_mm
, vma
, end
, 0);
416 err
= policy_vma(vma
, new);
423 static int contextualize_policy(int mode
, nodemask_t
*nodes
)
428 cpuset_update_task_memory_state();
429 if (!cpuset_nodes_subset_current_mems_allowed(*nodes
))
431 return mpol_check_policy(mode
, nodes
);
434 /* Set the process memory policy */
435 long do_set_mempolicy(int mode
, nodemask_t
*nodes
)
437 struct mempolicy
*new;
439 if (contextualize_policy(mode
, nodes
))
441 new = mpol_new(mode
, nodes
);
444 mpol_free(current
->mempolicy
);
445 current
->mempolicy
= new;
446 if (new && new->policy
== MPOL_INTERLEAVE
)
447 current
->il_next
= first_node(new->v
.nodes
);
451 /* Fill a zone bitmap for a policy */
452 static void get_zonemask(struct mempolicy
*p
, nodemask_t
*nodes
)
459 for (i
= 0; p
->v
.zonelist
->zones
[i
]; i
++)
460 node_set(p
->v
.zonelist
->zones
[i
]->zone_pgdat
->node_id
,
465 case MPOL_INTERLEAVE
:
469 /* or use current node instead of online map? */
470 if (p
->v
.preferred_node
< 0)
471 *nodes
= node_online_map
;
473 node_set(p
->v
.preferred_node
, *nodes
);
480 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
485 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
487 err
= page_to_nid(p
);
493 /* Retrieve NUMA policy */
494 long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
495 unsigned long addr
, unsigned long flags
)
498 struct mm_struct
*mm
= current
->mm
;
499 struct vm_area_struct
*vma
= NULL
;
500 struct mempolicy
*pol
= current
->mempolicy
;
502 cpuset_update_task_memory_state();
503 if (flags
& ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
))
505 if (flags
& MPOL_F_ADDR
) {
506 down_read(&mm
->mmap_sem
);
507 vma
= find_vma_intersection(mm
, addr
, addr
+1);
509 up_read(&mm
->mmap_sem
);
512 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
513 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
515 pol
= vma
->vm_policy
;
520 pol
= &default_policy
;
522 if (flags
& MPOL_F_NODE
) {
523 if (flags
& MPOL_F_ADDR
) {
524 err
= lookup_node(mm
, addr
);
528 } else if (pol
== current
->mempolicy
&&
529 pol
->policy
== MPOL_INTERLEAVE
) {
530 *policy
= current
->il_next
;
536 *policy
= pol
->policy
;
539 up_read(¤t
->mm
->mmap_sem
);
545 get_zonemask(pol
, nmask
);
549 up_read(¤t
->mm
->mmap_sem
);
557 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
561 * Avoid migrating a page that is shared with others.
563 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
564 if (isolate_lru_page(page
))
565 list_add_tail(&page
->lru
, pagelist
);
570 * Migrate the list 'pagelist' of pages to a certain destination.
572 * Specify destination with either non-NULL vma or dest_node >= 0
573 * Return the number of pages not migrated or error code
575 static int migrate_pages_to(struct list_head
*pagelist
,
576 struct vm_area_struct
*vma
, int dest
)
582 unsigned long offset
= 0;
589 list_for_each(p
, pagelist
) {
592 * The address passed to alloc_page_vma is used to
593 * generate the proper interleave behavior. We fake
594 * the address here by an increasing offset in order
595 * to get the proper distribution of pages.
597 * No decision has been made as to which page
598 * a certain old page is moved to so we cannot
599 * specify the correct address.
601 page
= alloc_page_vma(GFP_HIGHUSER
, vma
,
602 offset
+ vma
->vm_start
);
606 page
= alloc_pages_node(dest
, GFP_HIGHUSER
, 0);
612 list_add_tail(&page
->lru
, &newlist
);
614 if (nr_pages
> MIGRATE_CHUNK_SIZE
)
617 err
= migrate_pages(pagelist
, &newlist
, &moved
, &failed
);
619 putback_lru_pages(&moved
); /* Call release pages instead ?? */
621 if (err
>= 0 && list_empty(&newlist
) && !list_empty(pagelist
))
624 /* Return leftover allocated pages */
625 while (!list_empty(&newlist
)) {
626 page
= list_entry(newlist
.next
, struct page
, lru
);
627 list_del(&page
->lru
);
630 list_splice(&failed
, pagelist
);
634 /* Calculate number of leftover pages */
636 list_for_each(p
, pagelist
)
642 * Migrate pages from one node to a target node.
643 * Returns error or the number of pages not migrated.
645 int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
, int flags
)
652 node_set(source
, nmask
);
654 check_range(mm
, mm
->mmap
->vm_start
, TASK_SIZE
, &nmask
,
655 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
657 if (!list_empty(&pagelist
)) {
658 err
= migrate_pages_to(&pagelist
, NULL
, dest
);
659 if (!list_empty(&pagelist
))
660 putback_lru_pages(&pagelist
);
666 * Move pages between the two nodesets so as to preserve the physical
667 * layout as much as possible.
669 * Returns the number of page that could not be moved.
671 int do_migrate_pages(struct mm_struct
*mm
,
672 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
679 down_read(&mm
->mmap_sem
);
682 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
683 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
684 * bit in 'tmp', and return that <source, dest> pair for migration.
685 * The pair of nodemasks 'to' and 'from' define the map.
687 * If no pair of bits is found that way, fallback to picking some
688 * pair of 'source' and 'dest' bits that are not the same. If the
689 * 'source' and 'dest' bits are the same, this represents a node
690 * that will be migrating to itself, so no pages need move.
692 * If no bits are left in 'tmp', or if all remaining bits left
693 * in 'tmp' correspond to the same bit in 'to', return false
694 * (nothing left to migrate).
696 * This lets us pick a pair of nodes to migrate between, such that
697 * if possible the dest node is not already occupied by some other
698 * source node, minimizing the risk of overloading the memory on a
699 * node that would happen if we migrated incoming memory to a node
700 * before migrating outgoing memory source that same node.
702 * A single scan of tmp is sufficient. As we go, we remember the
703 * most recent <s, d> pair that moved (s != d). If we find a pair
704 * that not only moved, but what's better, moved to an empty slot
705 * (d is not set in tmp), then we break out then, with that pair.
706 * Otherwise when we finish scannng from_tmp, we at least have the
707 * most recent <s, d> pair that moved. If we get all the way through
708 * the scan of tmp without finding any node that moved, much less
709 * moved to an empty node, then there is nothing left worth migrating.
713 while (!nodes_empty(tmp
)) {
718 for_each_node_mask(s
, tmp
) {
719 d
= node_remap(s
, *from_nodes
, *to_nodes
);
723 source
= s
; /* Node moved. Memorize */
726 /* dest not in remaining from nodes? */
727 if (!node_isset(dest
, tmp
))
733 node_clear(source
, tmp
);
734 err
= migrate_to_node(mm
, source
, dest
, flags
);
741 up_read(&mm
->mmap_sem
);
747 long do_mbind(unsigned long start
, unsigned long len
,
748 unsigned long mode
, nodemask_t
*nmask
, unsigned long flags
)
750 struct vm_area_struct
*vma
;
751 struct mm_struct
*mm
= current
->mm
;
752 struct mempolicy
*new;
757 if ((flags
& ~(unsigned long)(MPOL_MF_STRICT
|
758 MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
761 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
764 if (start
& ~PAGE_MASK
)
767 if (mode
== MPOL_DEFAULT
)
768 flags
&= ~MPOL_MF_STRICT
;
770 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
778 if (mpol_check_policy(mode
, nmask
))
781 new = mpol_new(mode
, nmask
);
786 * If we are using the default policy then operation
787 * on discontinuous address spaces is okay after all
790 flags
|= MPOL_MF_DISCONTIG_OK
;
792 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start
,start
+len
,
793 mode
,nodes_addr(nodes
)[0]);
795 down_write(&mm
->mmap_sem
);
796 vma
= check_range(mm
, start
, end
, nmask
,
797 flags
| MPOL_MF_INVERT
, &pagelist
);
803 err
= mbind_range(vma
, start
, end
, new);
805 if (!list_empty(&pagelist
))
806 nr_failed
= migrate_pages_to(&pagelist
, vma
, -1);
808 if (!err
&& nr_failed
&& (flags
& MPOL_MF_STRICT
))
811 if (!list_empty(&pagelist
))
812 putback_lru_pages(&pagelist
);
814 up_write(&mm
->mmap_sem
);
820 * User space interface with variable sized bitmaps for nodelists.
823 /* Copy a node mask from user space. */
824 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
825 unsigned long maxnode
)
828 unsigned long nlongs
;
829 unsigned long endmask
;
833 if (maxnode
== 0 || !nmask
)
835 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
838 nlongs
= BITS_TO_LONGS(maxnode
);
839 if ((maxnode
% BITS_PER_LONG
) == 0)
842 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
844 /* When the user specified more nodes than supported just check
845 if the non supported part is all zero. */
846 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
847 if (nlongs
> PAGE_SIZE
/sizeof(long))
849 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
851 if (get_user(t
, nmask
+ k
))
853 if (k
== nlongs
- 1) {
859 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
863 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
865 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
869 /* Copy a kernel node mask to user space */
870 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
873 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
874 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
877 if (copy
> PAGE_SIZE
)
879 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
883 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
886 asmlinkage
long sys_mbind(unsigned long start
, unsigned long len
,
888 unsigned long __user
*nmask
, unsigned long maxnode
,
894 err
= get_nodes(&nodes
, nmask
, maxnode
);
897 return do_mbind(start
, len
, mode
, &nodes
, flags
);
900 /* Set the process memory policy */
901 asmlinkage
long sys_set_mempolicy(int mode
, unsigned long __user
*nmask
,
902 unsigned long maxnode
)
907 if (mode
< 0 || mode
> MPOL_MAX
)
909 err
= get_nodes(&nodes
, nmask
, maxnode
);
912 return do_set_mempolicy(mode
, &nodes
);
915 asmlinkage
long sys_migrate_pages(pid_t pid
, unsigned long maxnode
,
916 const unsigned long __user
*old_nodes
,
917 const unsigned long __user
*new_nodes
)
919 struct mm_struct
*mm
;
920 struct task_struct
*task
;
923 nodemask_t task_nodes
;
926 err
= get_nodes(&old
, old_nodes
, maxnode
);
930 err
= get_nodes(&new, new_nodes
, maxnode
);
934 /* Find the mm_struct */
935 read_lock(&tasklist_lock
);
936 task
= pid
? find_task_by_pid(pid
) : current
;
938 read_unlock(&tasklist_lock
);
941 mm
= get_task_mm(task
);
942 read_unlock(&tasklist_lock
);
948 * Check if this process has the right to modify the specified
949 * process. The right exists if the process has administrative
950 * capabilities, superuser priviledges or the same
951 * userid as the target process.
953 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
954 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
955 !capable(CAP_SYS_NICE
)) {
960 task_nodes
= cpuset_mems_allowed(task
);
961 /* Is the user allowed to access the target nodes? */
962 if (!nodes_subset(new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
967 err
= do_migrate_pages(mm
, &old
, &new,
968 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
975 /* Retrieve NUMA policy */
976 asmlinkage
long sys_get_mempolicy(int __user
*policy
,
977 unsigned long __user
*nmask
,
978 unsigned long maxnode
,
979 unsigned long addr
, unsigned long flags
)
984 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
987 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
992 if (policy
&& put_user(pval
, policy
))
996 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1001 #ifdef CONFIG_COMPAT
1003 asmlinkage
long compat_sys_get_mempolicy(int __user
*policy
,
1004 compat_ulong_t __user
*nmask
,
1005 compat_ulong_t maxnode
,
1006 compat_ulong_t addr
, compat_ulong_t flags
)
1009 unsigned long __user
*nm
= NULL
;
1010 unsigned long nr_bits
, alloc_size
;
1011 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1013 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1014 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1017 nm
= compat_alloc_user_space(alloc_size
);
1019 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1021 if (!err
&& nmask
) {
1022 err
= copy_from_user(bm
, nm
, alloc_size
);
1023 /* ensure entire bitmap is zeroed */
1024 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1025 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1031 asmlinkage
long compat_sys_set_mempolicy(int mode
, compat_ulong_t __user
*nmask
,
1032 compat_ulong_t maxnode
)
1035 unsigned long __user
*nm
= NULL
;
1036 unsigned long nr_bits
, alloc_size
;
1037 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1039 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1040 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1043 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1044 nm
= compat_alloc_user_space(alloc_size
);
1045 err
|= copy_to_user(nm
, bm
, alloc_size
);
1051 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1054 asmlinkage
long compat_sys_mbind(compat_ulong_t start
, compat_ulong_t len
,
1055 compat_ulong_t mode
, compat_ulong_t __user
*nmask
,
1056 compat_ulong_t maxnode
, compat_ulong_t flags
)
1059 unsigned long __user
*nm
= NULL
;
1060 unsigned long nr_bits
, alloc_size
;
1063 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1064 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1067 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1068 nm
= compat_alloc_user_space(alloc_size
);
1069 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1075 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1080 /* Return effective policy for a VMA */
1081 static struct mempolicy
* get_vma_policy(struct task_struct
*task
,
1082 struct vm_area_struct
*vma
, unsigned long addr
)
1084 struct mempolicy
*pol
= task
->mempolicy
;
1087 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
1088 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1089 else if (vma
->vm_policy
&&
1090 vma
->vm_policy
->policy
!= MPOL_DEFAULT
)
1091 pol
= vma
->vm_policy
;
1094 pol
= &default_policy
;
1098 /* Return a zonelist representing a mempolicy */
1099 static struct zonelist
*zonelist_policy(gfp_t gfp
, struct mempolicy
*policy
)
1103 switch (policy
->policy
) {
1104 case MPOL_PREFERRED
:
1105 nd
= policy
->v
.preferred_node
;
1107 nd
= numa_node_id();
1110 /* Lower zones don't get a policy applied */
1111 /* Careful: current->mems_allowed might have moved */
1112 if (gfp_zone(gfp
) >= policy_zone
)
1113 if (cpuset_zonelist_valid_mems_allowed(policy
->v
.zonelist
))
1114 return policy
->v
.zonelist
;
1116 case MPOL_INTERLEAVE
: /* should not happen */
1118 nd
= numa_node_id();
1124 return NODE_DATA(nd
)->node_zonelists
+ gfp_zone(gfp
);
1127 /* Do dynamic interleaving for a process */
1128 static unsigned interleave_nodes(struct mempolicy
*policy
)
1131 struct task_struct
*me
= current
;
1134 next
= next_node(nid
, policy
->v
.nodes
);
1135 if (next
>= MAX_NUMNODES
)
1136 next
= first_node(policy
->v
.nodes
);
1142 * Depending on the memory policy provide a node from which to allocate the
1145 unsigned slab_node(struct mempolicy
*policy
)
1147 switch (policy
->policy
) {
1148 case MPOL_INTERLEAVE
:
1149 return interleave_nodes(policy
);
1153 * Follow bind policy behavior and start allocation at the
1156 return policy
->v
.zonelist
->zones
[0]->zone_pgdat
->node_id
;
1158 case MPOL_PREFERRED
:
1159 if (policy
->v
.preferred_node
>= 0)
1160 return policy
->v
.preferred_node
;
1164 return numa_node_id();
1168 /* Do static interleaving for a VMA with known offset. */
1169 static unsigned offset_il_node(struct mempolicy
*pol
,
1170 struct vm_area_struct
*vma
, unsigned long off
)
1172 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1173 unsigned target
= (unsigned)off
% nnodes
;
1179 nid
= next_node(nid
, pol
->v
.nodes
);
1181 } while (c
<= target
);
1185 /* Determine a node number for interleave */
1186 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1187 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1192 off
= vma
->vm_pgoff
;
1193 off
+= (addr
- vma
->vm_start
) >> shift
;
1194 return offset_il_node(pol
, vma
, off
);
1196 return interleave_nodes(pol
);
1199 #ifdef CONFIG_HUGETLBFS
1200 /* Return a zonelist suitable for a huge page allocation. */
1201 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
)
1203 struct mempolicy
*pol
= get_vma_policy(current
, vma
, addr
);
1205 if (pol
->policy
== MPOL_INTERLEAVE
) {
1208 nid
= interleave_nid(pol
, vma
, addr
, HPAGE_SHIFT
);
1209 return NODE_DATA(nid
)->node_zonelists
+ gfp_zone(GFP_HIGHUSER
);
1211 return zonelist_policy(GFP_HIGHUSER
, pol
);
1215 /* Allocate a page in interleaved policy.
1216 Own path because it needs to do special accounting. */
1217 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1220 struct zonelist
*zl
;
1223 zl
= NODE_DATA(nid
)->node_zonelists
+ gfp_zone(gfp
);
1224 page
= __alloc_pages(gfp
, order
, zl
);
1225 if (page
&& page_zone(page
) == zl
->zones
[0]) {
1226 zone_pcp(zl
->zones
[0],get_cpu())->interleave_hit
++;
1233 * alloc_page_vma - Allocate a page for a VMA.
1236 * %GFP_USER user allocation.
1237 * %GFP_KERNEL kernel allocations,
1238 * %GFP_HIGHMEM highmem/user allocations,
1239 * %GFP_FS allocation should not call back into a file system.
1240 * %GFP_ATOMIC don't sleep.
1242 * @vma: Pointer to VMA or NULL if not available.
1243 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1245 * This function allocates a page from the kernel page pool and applies
1246 * a NUMA policy associated with the VMA or the current process.
1247 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1248 * mm_struct of the VMA to prevent it from going away. Should be used for
1249 * all allocations for pages that will be mapped into
1250 * user space. Returns NULL when no page can be allocated.
1252 * Should be called with the mm_sem of the vma hold.
1255 alloc_page_vma(gfp_t gfp
, struct vm_area_struct
*vma
, unsigned long addr
)
1257 struct mempolicy
*pol
= get_vma_policy(current
, vma
, addr
);
1259 cpuset_update_task_memory_state();
1261 if (unlikely(pol
->policy
== MPOL_INTERLEAVE
)) {
1264 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
);
1265 return alloc_page_interleave(gfp
, 0, nid
);
1267 return __alloc_pages(gfp
, 0, zonelist_policy(gfp
, pol
));
1271 * alloc_pages_current - Allocate pages.
1274 * %GFP_USER user allocation,
1275 * %GFP_KERNEL kernel allocation,
1276 * %GFP_HIGHMEM highmem allocation,
1277 * %GFP_FS don't call back into a file system.
1278 * %GFP_ATOMIC don't sleep.
1279 * @order: Power of two of allocation size in pages. 0 is a single page.
1281 * Allocate a page from the kernel page pool. When not in
1282 * interrupt context and apply the current process NUMA policy.
1283 * Returns NULL when no page can be allocated.
1285 * Don't call cpuset_update_task_memory_state() unless
1286 * 1) it's ok to take cpuset_sem (can WAIT), and
1287 * 2) allocating for current task (not interrupt).
1289 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
1291 struct mempolicy
*pol
= current
->mempolicy
;
1293 if ((gfp
& __GFP_WAIT
) && !in_interrupt())
1294 cpuset_update_task_memory_state();
1295 if (!pol
|| in_interrupt())
1296 pol
= &default_policy
;
1297 if (pol
->policy
== MPOL_INTERLEAVE
)
1298 return alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
1299 return __alloc_pages(gfp
, order
, zonelist_policy(gfp
, pol
));
1301 EXPORT_SYMBOL(alloc_pages_current
);
1304 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1305 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1306 * with the mems_allowed returned by cpuset_mems_allowed(). This
1307 * keeps mempolicies cpuset relative after its cpuset moves. See
1308 * further kernel/cpuset.c update_nodemask().
1310 void *cpuset_being_rebound
;
1312 /* Slow path of a mempolicy copy */
1313 struct mempolicy
*__mpol_copy(struct mempolicy
*old
)
1315 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
1318 return ERR_PTR(-ENOMEM
);
1319 if (current_cpuset_is_being_rebound()) {
1320 nodemask_t mems
= cpuset_mems_allowed(current
);
1321 mpol_rebind_policy(old
, &mems
);
1324 atomic_set(&new->refcnt
, 1);
1325 if (new->policy
== MPOL_BIND
) {
1326 int sz
= ksize(old
->v
.zonelist
);
1327 new->v
.zonelist
= kmalloc(sz
, SLAB_KERNEL
);
1328 if (!new->v
.zonelist
) {
1329 kmem_cache_free(policy_cache
, new);
1330 return ERR_PTR(-ENOMEM
);
1332 memcpy(new->v
.zonelist
, old
->v
.zonelist
, sz
);
1337 /* Slow path of a mempolicy comparison */
1338 int __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
1342 if (a
->policy
!= b
->policy
)
1344 switch (a
->policy
) {
1347 case MPOL_INTERLEAVE
:
1348 return nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
1349 case MPOL_PREFERRED
:
1350 return a
->v
.preferred_node
== b
->v
.preferred_node
;
1353 for (i
= 0; a
->v
.zonelist
->zones
[i
]; i
++)
1354 if (a
->v
.zonelist
->zones
[i
] != b
->v
.zonelist
->zones
[i
])
1356 return b
->v
.zonelist
->zones
[i
] == NULL
;
1364 /* Slow path of a mpol destructor. */
1365 void __mpol_free(struct mempolicy
*p
)
1367 if (!atomic_dec_and_test(&p
->refcnt
))
1369 if (p
->policy
== MPOL_BIND
)
1370 kfree(p
->v
.zonelist
);
1371 p
->policy
= MPOL_DEFAULT
;
1372 kmem_cache_free(policy_cache
, p
);
1376 * Shared memory backing store policy support.
1378 * Remember policies even when nobody has shared memory mapped.
1379 * The policies are kept in Red-Black tree linked from the inode.
1380 * They are protected by the sp->lock spinlock, which should be held
1381 * for any accesses to the tree.
1384 /* lookup first element intersecting start-end */
1385 /* Caller holds sp->lock */
1386 static struct sp_node
*
1387 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
1389 struct rb_node
*n
= sp
->root
.rb_node
;
1392 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
1394 if (start
>= p
->end
)
1396 else if (end
<= p
->start
)
1404 struct sp_node
*w
= NULL
;
1405 struct rb_node
*prev
= rb_prev(n
);
1408 w
= rb_entry(prev
, struct sp_node
, nd
);
1409 if (w
->end
<= start
)
1413 return rb_entry(n
, struct sp_node
, nd
);
1416 /* Insert a new shared policy into the list. */
1417 /* Caller holds sp->lock */
1418 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
1420 struct rb_node
**p
= &sp
->root
.rb_node
;
1421 struct rb_node
*parent
= NULL
;
1426 nd
= rb_entry(parent
, struct sp_node
, nd
);
1427 if (new->start
< nd
->start
)
1429 else if (new->end
> nd
->end
)
1430 p
= &(*p
)->rb_right
;
1434 rb_link_node(&new->nd
, parent
, p
);
1435 rb_insert_color(&new->nd
, &sp
->root
);
1436 PDprintk("inserting %lx-%lx: %d\n", new->start
, new->end
,
1437 new->policy
? new->policy
->policy
: 0);
1440 /* Find shared policy intersecting idx */
1442 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
1444 struct mempolicy
*pol
= NULL
;
1447 if (!sp
->root
.rb_node
)
1449 spin_lock(&sp
->lock
);
1450 sn
= sp_lookup(sp
, idx
, idx
+1);
1452 mpol_get(sn
->policy
);
1455 spin_unlock(&sp
->lock
);
1459 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
1461 PDprintk("deleting %lx-l%x\n", n
->start
, n
->end
);
1462 rb_erase(&n
->nd
, &sp
->root
);
1463 mpol_free(n
->policy
);
1464 kmem_cache_free(sn_cache
, n
);
1468 sp_alloc(unsigned long start
, unsigned long end
, struct mempolicy
*pol
)
1470 struct sp_node
*n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
1481 /* Replace a policy range. */
1482 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
1483 unsigned long end
, struct sp_node
*new)
1485 struct sp_node
*n
, *new2
= NULL
;
1488 spin_lock(&sp
->lock
);
1489 n
= sp_lookup(sp
, start
, end
);
1490 /* Take care of old policies in the same range. */
1491 while (n
&& n
->start
< end
) {
1492 struct rb_node
*next
= rb_next(&n
->nd
);
1493 if (n
->start
>= start
) {
1499 /* Old policy spanning whole new range. */
1502 spin_unlock(&sp
->lock
);
1503 new2
= sp_alloc(end
, n
->end
, n
->policy
);
1509 sp_insert(sp
, new2
);
1517 n
= rb_entry(next
, struct sp_node
, nd
);
1521 spin_unlock(&sp
->lock
);
1523 mpol_free(new2
->policy
);
1524 kmem_cache_free(sn_cache
, new2
);
1529 void mpol_shared_policy_init(struct shared_policy
*info
, int policy
,
1530 nodemask_t
*policy_nodes
)
1532 info
->root
= RB_ROOT
;
1533 spin_lock_init(&info
->lock
);
1535 if (policy
!= MPOL_DEFAULT
) {
1536 struct mempolicy
*newpol
;
1538 /* Falls back to MPOL_DEFAULT on any error */
1539 newpol
= mpol_new(policy
, policy_nodes
);
1540 if (!IS_ERR(newpol
)) {
1541 /* Create pseudo-vma that contains just the policy */
1542 struct vm_area_struct pvma
;
1544 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
1545 /* Policy covers entire file */
1546 pvma
.vm_end
= TASK_SIZE
;
1547 mpol_set_shared_policy(info
, &pvma
, newpol
);
1553 int mpol_set_shared_policy(struct shared_policy
*info
,
1554 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
1557 struct sp_node
*new = NULL
;
1558 unsigned long sz
= vma_pages(vma
);
1560 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1562 sz
, npol
? npol
->policy
: -1,
1563 npol
? nodes_addr(npol
->v
.nodes
)[0] : -1);
1566 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
1570 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
1572 kmem_cache_free(sn_cache
, new);
1576 /* Free a backing policy store on inode delete. */
1577 void mpol_free_shared_policy(struct shared_policy
*p
)
1580 struct rb_node
*next
;
1582 if (!p
->root
.rb_node
)
1584 spin_lock(&p
->lock
);
1585 next
= rb_first(&p
->root
);
1587 n
= rb_entry(next
, struct sp_node
, nd
);
1588 next
= rb_next(&n
->nd
);
1589 rb_erase(&n
->nd
, &p
->root
);
1590 mpol_free(n
->policy
);
1591 kmem_cache_free(sn_cache
, n
);
1593 spin_unlock(&p
->lock
);
1596 /* assumes fs == KERNEL_DS */
1597 void __init
numa_policy_init(void)
1599 policy_cache
= kmem_cache_create("numa_policy",
1600 sizeof(struct mempolicy
),
1601 0, SLAB_PANIC
, NULL
, NULL
);
1603 sn_cache
= kmem_cache_create("shared_policy_node",
1604 sizeof(struct sp_node
),
1605 0, SLAB_PANIC
, NULL
, NULL
);
1607 /* Set interleaving policy for system init. This way not all
1608 the data structures allocated at system boot end up in node zero. */
1610 if (do_set_mempolicy(MPOL_INTERLEAVE
, &node_online_map
))
1611 printk("numa_policy_init: interleaving failed\n");
1614 /* Reset policy of current process to default */
1615 void numa_default_policy(void)
1617 do_set_mempolicy(MPOL_DEFAULT
, NULL
);
1620 /* Migrate a policy to a different set of nodes */
1621 void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
1623 nodemask_t
*mpolmask
;
1628 mpolmask
= &pol
->cpuset_mems_allowed
;
1629 if (nodes_equal(*mpolmask
, *newmask
))
1632 switch (pol
->policy
) {
1635 case MPOL_INTERLEAVE
:
1636 nodes_remap(tmp
, pol
->v
.nodes
, *mpolmask
, *newmask
);
1638 *mpolmask
= *newmask
;
1639 current
->il_next
= node_remap(current
->il_next
,
1640 *mpolmask
, *newmask
);
1642 case MPOL_PREFERRED
:
1643 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
1644 *mpolmask
, *newmask
);
1645 *mpolmask
= *newmask
;
1650 struct zonelist
*zonelist
;
1653 for (z
= pol
->v
.zonelist
->zones
; *z
; z
++)
1654 node_set((*z
)->zone_pgdat
->node_id
, nodes
);
1655 nodes_remap(tmp
, nodes
, *mpolmask
, *newmask
);
1658 zonelist
= bind_zonelist(&nodes
);
1660 /* If no mem, then zonelist is NULL and we keep old zonelist.
1661 * If that old zonelist has no remaining mems_allowed nodes,
1662 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1666 /* Good - got mem - substitute new zonelist */
1667 kfree(pol
->v
.zonelist
);
1668 pol
->v
.zonelist
= zonelist
;
1670 *mpolmask
= *newmask
;
1680 * Wrapper for mpol_rebind_policy() that just requires task
1681 * pointer, and updates task mempolicy.
1684 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
1686 mpol_rebind_policy(tsk
->mempolicy
, new);
1690 * Rebind each vma in mm to new nodemask.
1692 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1695 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
1697 struct vm_area_struct
*vma
;
1699 down_write(&mm
->mmap_sem
);
1700 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
1701 mpol_rebind_policy(vma
->vm_policy
, new);
1702 up_write(&mm
->mmap_sem
);
1706 * Display pages allocated per node and memory policy via /proc.
1709 static const char *policy_types
[] = { "default", "prefer", "bind",
1713 * Convert a mempolicy into a string.
1714 * Returns the number of characters in buffer (if positive)
1715 * or an error (negative)
1717 static inline int mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
1722 int mode
= pol
? pol
->policy
: MPOL_DEFAULT
;
1729 case MPOL_PREFERRED
:
1731 node_set(pol
->v
.preferred_node
, nodes
);
1735 get_zonemask(pol
, &nodes
);
1738 case MPOL_INTERLEAVE
:
1739 nodes
= pol
->v
.nodes
;
1747 l
= strlen(policy_types
[mode
]);
1748 if (buffer
+ maxlen
< p
+ l
+ 1)
1751 strcpy(p
, policy_types
[mode
]);
1754 if (!nodes_empty(nodes
)) {
1755 if (buffer
+ maxlen
< p
+ 2)
1758 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);
1764 unsigned long pages
;
1766 unsigned long active
;
1767 unsigned long writeback
;
1768 unsigned long mapcount_max
;
1769 unsigned long dirty
;
1770 unsigned long swapcache
;
1771 unsigned long node
[MAX_NUMNODES
];
1774 static void gather_stats(struct page
*page
, void *private, int pte_dirty
)
1776 struct numa_maps
*md
= private;
1777 int count
= page_mapcount(page
);
1780 if (pte_dirty
|| PageDirty(page
))
1783 if (PageSwapCache(page
))
1786 if (PageActive(page
))
1789 if (PageWriteback(page
))
1795 if (count
> md
->mapcount_max
)
1796 md
->mapcount_max
= count
;
1798 md
->node
[page_to_nid(page
)]++;
1802 #ifdef CONFIG_HUGETLB_PAGE
1803 static void check_huge_range(struct vm_area_struct
*vma
,
1804 unsigned long start
, unsigned long end
,
1805 struct numa_maps
*md
)
1810 for (addr
= start
; addr
< end
; addr
+= HPAGE_SIZE
) {
1811 pte_t
*ptep
= huge_pte_offset(vma
->vm_mm
, addr
& HPAGE_MASK
);
1821 page
= pte_page(pte
);
1825 gather_stats(page
, md
, pte_dirty(*ptep
));
1829 static inline void check_huge_range(struct vm_area_struct
*vma
,
1830 unsigned long start
, unsigned long end
,
1831 struct numa_maps
*md
)
1836 int show_numa_map(struct seq_file
*m
, void *v
)
1838 struct task_struct
*task
= m
->private;
1839 struct vm_area_struct
*vma
= v
;
1840 struct numa_maps
*md
;
1841 struct file
*file
= vma
->vm_file
;
1842 struct mm_struct
*mm
= vma
->vm_mm
;
1849 md
= kzalloc(sizeof(struct numa_maps
), GFP_KERNEL
);
1853 mpol_to_str(buffer
, sizeof(buffer
),
1854 get_vma_policy(task
, vma
, vma
->vm_start
));
1856 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1859 seq_printf(m
, " file=");
1860 seq_path(m
, file
->f_vfsmnt
, file
->f_dentry
, "\n\t= ");
1861 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1862 seq_printf(m
, " heap");
1863 } else if (vma
->vm_start
<= mm
->start_stack
&&
1864 vma
->vm_end
>= mm
->start_stack
) {
1865 seq_printf(m
, " stack");
1868 if (is_vm_hugetlb_page(vma
)) {
1869 check_huge_range(vma
, vma
->vm_start
, vma
->vm_end
, md
);
1870 seq_printf(m
, " huge");
1872 check_pgd_range(vma
, vma
->vm_start
, vma
->vm_end
,
1873 &node_online_map
, MPOL_MF_STATS
, md
);
1880 seq_printf(m
," anon=%lu",md
->anon
);
1883 seq_printf(m
," dirty=%lu",md
->dirty
);
1885 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1886 seq_printf(m
, " mapped=%lu", md
->pages
);
1888 if (md
->mapcount_max
> 1)
1889 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1892 seq_printf(m
," swapcache=%lu", md
->swapcache
);
1894 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1895 seq_printf(m
," active=%lu", md
->active
);
1898 seq_printf(m
," writeback=%lu", md
->writeback
);
1900 for_each_online_node(n
)
1902 seq_printf(m
, " N%d=%lu", n
, md
->node
[n
]);
1907 if (m
->count
< m
->size
)
1908 m
->version
= (vma
!= get_gate_vma(task
)) ? vma
->vm_start
: 0;