2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency
= 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG
;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity
= 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency
= 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly
;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
83 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
86 * The exponential sliding window over which load is averaged for shares
90 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
92 #ifdef CONFIG_CFS_BANDWIDTH
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
101 * default: 5 msec, units: microseconds
103 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
106 static const struct sched_class fair_sched_class
;
108 /**************************************************************
109 * CFS operations on generic schedulable entities:
112 #ifdef CONFIG_FAIR_GROUP_SCHED
114 /* cpu runqueue to which this cfs_rq is attached */
115 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
120 /* An entity is a task if it doesn't "own" a runqueue */
121 #define entity_is_task(se) (!se->my_q)
123 static inline struct task_struct
*task_of(struct sched_entity
*se
)
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se
));
128 return container_of(se
, struct task_struct
, se
);
131 /* Walk up scheduling entities hierarchy */
132 #define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
135 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
140 /* runqueue on which this entity is (to be) queued */
141 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
146 /* runqueue "owned" by this group */
147 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
152 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
154 if (!cfs_rq
->on_list
) {
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
161 if (cfs_rq
->tg
->parent
&&
162 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
163 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
164 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
166 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
167 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
174 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
176 if (cfs_rq
->on_list
) {
177 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
182 /* Iterate thr' all leaf cfs_rq's on a runqueue */
183 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186 /* Do the two (enqueued) entities belong to the same group ? */
188 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
190 if (se
->cfs_rq
== pse
->cfs_rq
)
196 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
201 /* return depth at which a sched entity is present in the hierarchy */
202 static inline int depth_se(struct sched_entity
*se
)
206 for_each_sched_entity(se
)
213 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
215 int se_depth
, pse_depth
;
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
224 /* First walk up until both entities are at same depth */
225 se_depth
= depth_se(*se
);
226 pse_depth
= depth_se(*pse
);
228 while (se_depth
> pse_depth
) {
230 *se
= parent_entity(*se
);
233 while (pse_depth
> se_depth
) {
235 *pse
= parent_entity(*pse
);
238 while (!is_same_group(*se
, *pse
)) {
239 *se
= parent_entity(*se
);
240 *pse
= parent_entity(*pse
);
244 #else /* !CONFIG_FAIR_GROUP_SCHED */
246 static inline struct task_struct
*task_of(struct sched_entity
*se
)
248 return container_of(se
, struct task_struct
, se
);
251 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
253 return container_of(cfs_rq
, struct rq
, cfs
);
256 #define entity_is_task(se) 1
258 #define for_each_sched_entity(se) \
259 for (; se; se = NULL)
261 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
263 return &task_rq(p
)->cfs
;
266 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
268 struct task_struct
*p
= task_of(se
);
269 struct rq
*rq
= task_rq(p
);
274 /* runqueue "owned" by this group */
275 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
280 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
288 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
292 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
297 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
303 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
307 #endif /* CONFIG_FAIR_GROUP_SCHED */
309 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
310 unsigned long delta_exec
);
312 /**************************************************************
313 * Scheduling class tree data structure manipulation methods:
316 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
318 s64 delta
= (s64
)(vruntime
- min_vruntime
);
320 min_vruntime
= vruntime
;
325 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
327 s64 delta
= (s64
)(vruntime
- min_vruntime
);
329 min_vruntime
= vruntime
;
334 static inline int entity_before(struct sched_entity
*a
,
335 struct sched_entity
*b
)
337 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
340 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
342 u64 vruntime
= cfs_rq
->min_vruntime
;
345 vruntime
= cfs_rq
->curr
->vruntime
;
347 if (cfs_rq
->rb_leftmost
) {
348 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
353 vruntime
= se
->vruntime
;
355 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
358 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
361 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
366 * Enqueue an entity into the rb-tree:
368 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
370 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
371 struct rb_node
*parent
= NULL
;
372 struct sched_entity
*entry
;
376 * Find the right place in the rbtree:
380 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
385 if (entity_before(se
, entry
)) {
386 link
= &parent
->rb_left
;
388 link
= &parent
->rb_right
;
394 * Maintain a cache of leftmost tree entries (it is frequently
398 cfs_rq
->rb_leftmost
= &se
->run_node
;
400 rb_link_node(&se
->run_node
, parent
, link
);
401 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
404 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
406 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
407 struct rb_node
*next_node
;
409 next_node
= rb_next(&se
->run_node
);
410 cfs_rq
->rb_leftmost
= next_node
;
413 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
416 static struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
418 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
423 return rb_entry(left
, struct sched_entity
, run_node
);
426 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
428 struct rb_node
*next
= rb_next(&se
->run_node
);
433 return rb_entry(next
, struct sched_entity
, run_node
);
436 #ifdef CONFIG_SCHED_DEBUG
437 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
439 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
444 return rb_entry(last
, struct sched_entity
, run_node
);
447 /**************************************************************
448 * Scheduling class statistics methods:
451 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
452 void __user
*buffer
, size_t *lenp
,
455 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
456 int factor
= get_update_sysctl_factor();
461 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
462 sysctl_sched_min_granularity
);
464 #define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity
);
467 WRT_SYSCTL(sched_latency
);
468 WRT_SYSCTL(sched_wakeup_granularity
);
478 static inline unsigned long
479 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
481 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
482 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
488 * The idea is to set a period in which each task runs once.
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
493 * p = (nr <= nl) ? l : l*nr/nl
495 static u64
__sched_period(unsigned long nr_running
)
497 u64 period
= sysctl_sched_latency
;
498 unsigned long nr_latency
= sched_nr_latency
;
500 if (unlikely(nr_running
> nr_latency
)) {
501 period
= sysctl_sched_min_granularity
;
502 period
*= nr_running
;
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
514 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
516 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
518 for_each_sched_entity(se
) {
519 struct load_weight
*load
;
520 struct load_weight lw
;
522 cfs_rq
= cfs_rq_of(se
);
523 load
= &cfs_rq
->load
;
525 if (unlikely(!se
->on_rq
)) {
528 update_load_add(&lw
, se
->load
.weight
);
531 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
537 * We calculate the vruntime slice of a to be inserted task
541 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
543 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
546 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
);
547 static void update_cfs_shares(struct cfs_rq
*cfs_rq
);
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
554 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
555 unsigned long delta_exec
)
557 unsigned long delta_exec_weighted
;
559 schedstat_set(curr
->statistics
.exec_max
,
560 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
562 curr
->sum_exec_runtime
+= delta_exec
;
563 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
564 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
566 curr
->vruntime
+= delta_exec_weighted
;
567 update_min_vruntime(cfs_rq
);
569 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
570 cfs_rq
->load_unacc_exec_time
+= delta_exec
;
574 static void update_curr(struct cfs_rq
*cfs_rq
)
576 struct sched_entity
*curr
= cfs_rq
->curr
;
577 u64 now
= rq_of(cfs_rq
)->clock_task
;
578 unsigned long delta_exec
;
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
588 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
592 __update_curr(cfs_rq
, curr
, delta_exec
);
593 curr
->exec_start
= now
;
595 if (entity_is_task(curr
)) {
596 struct task_struct
*curtask
= task_of(curr
);
598 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
599 cpuacct_charge(curtask
, delta_exec
);
600 account_group_exec_runtime(curtask
, delta_exec
);
603 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
607 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
609 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
613 * Task is being enqueued - update stats:
615 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
621 if (se
!= cfs_rq
->curr
)
622 update_stats_wait_start(cfs_rq
, se
);
626 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
628 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
629 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
630 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
631 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
632 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
633 #ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se
)) {
635 trace_sched_stat_wait(task_of(se
),
636 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
639 schedstat_set(se
->statistics
.wait_start
, 0);
643 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
646 * Mark the end of the wait period if dequeueing a
649 if (se
!= cfs_rq
->curr
)
650 update_stats_wait_end(cfs_rq
, se
);
654 * We are picking a new current task - update its stats:
657 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
660 * We are starting a new run period:
662 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
665 /**************************************************
666 * Scheduling class queueing methods:
669 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
671 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
673 cfs_rq
->task_weight
+= weight
;
677 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
683 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
685 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
686 if (!parent_entity(se
))
687 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
688 if (entity_is_task(se
)) {
689 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
690 list_add(&se
->group_node
, &cfs_rq
->tasks
);
692 cfs_rq
->nr_running
++;
696 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
698 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
699 if (!parent_entity(se
))
700 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
701 if (entity_is_task(se
)) {
702 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
703 list_del_init(&se
->group_node
);
705 cfs_rq
->nr_running
--;
708 #ifdef CONFIG_FAIR_GROUP_SCHED
709 /* we need this in update_cfs_load and load-balance functions below */
710 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
712 static void update_cfs_rq_load_contribution(struct cfs_rq
*cfs_rq
,
715 struct task_group
*tg
= cfs_rq
->tg
;
718 load_avg
= div64_u64(cfs_rq
->load_avg
, cfs_rq
->load_period
+1);
719 load_avg
-= cfs_rq
->load_contribution
;
721 if (global_update
|| abs(load_avg
) > cfs_rq
->load_contribution
/ 8) {
722 atomic_add(load_avg
, &tg
->load_weight
);
723 cfs_rq
->load_contribution
+= load_avg
;
727 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
729 u64 period
= sysctl_sched_shares_window
;
731 unsigned long load
= cfs_rq
->load
.weight
;
733 if (cfs_rq
->tg
== &root_task_group
|| throttled_hierarchy(cfs_rq
))
736 now
= rq_of(cfs_rq
)->clock_task
;
737 delta
= now
- cfs_rq
->load_stamp
;
739 /* truncate load history at 4 idle periods */
740 if (cfs_rq
->load_stamp
> cfs_rq
->load_last
&&
741 now
- cfs_rq
->load_last
> 4 * period
) {
742 cfs_rq
->load_period
= 0;
743 cfs_rq
->load_avg
= 0;
747 cfs_rq
->load_stamp
= now
;
748 cfs_rq
->load_unacc_exec_time
= 0;
749 cfs_rq
->load_period
+= delta
;
751 cfs_rq
->load_last
= now
;
752 cfs_rq
->load_avg
+= delta
* load
;
755 /* consider updating load contribution on each fold or truncate */
756 if (global_update
|| cfs_rq
->load_period
> period
757 || !cfs_rq
->load_period
)
758 update_cfs_rq_load_contribution(cfs_rq
, global_update
);
760 while (cfs_rq
->load_period
> period
) {
762 * Inline assembly required to prevent the compiler
763 * optimising this loop into a divmod call.
764 * See __iter_div_u64_rem() for another example of this.
766 asm("" : "+rm" (cfs_rq
->load_period
));
767 cfs_rq
->load_period
/= 2;
768 cfs_rq
->load_avg
/= 2;
771 if (!cfs_rq
->curr
&& !cfs_rq
->nr_running
&& !cfs_rq
->load_avg
)
772 list_del_leaf_cfs_rq(cfs_rq
);
775 static inline long calc_tg_weight(struct task_group
*tg
, struct cfs_rq
*cfs_rq
)
780 * Use this CPU's actual weight instead of the last load_contribution
781 * to gain a more accurate current total weight. See
782 * update_cfs_rq_load_contribution().
784 tg_weight
= atomic_read(&tg
->load_weight
);
785 tg_weight
-= cfs_rq
->load_contribution
;
786 tg_weight
+= cfs_rq
->load
.weight
;
791 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
793 long tg_weight
, load
, shares
;
795 tg_weight
= calc_tg_weight(tg
, cfs_rq
);
796 load
= cfs_rq
->load
.weight
;
798 shares
= (tg
->shares
* load
);
802 if (shares
< MIN_SHARES
)
804 if (shares
> tg
->shares
)
810 static void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
812 if (cfs_rq
->load_unacc_exec_time
> sysctl_sched_shares_window
) {
813 update_cfs_load(cfs_rq
, 0);
814 update_cfs_shares(cfs_rq
);
817 # else /* CONFIG_SMP */
818 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
822 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
827 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
830 # endif /* CONFIG_SMP */
831 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
832 unsigned long weight
)
835 /* commit outstanding execution time */
836 if (cfs_rq
->curr
== se
)
838 account_entity_dequeue(cfs_rq
, se
);
841 update_load_set(&se
->load
, weight
);
844 account_entity_enqueue(cfs_rq
, se
);
847 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
849 struct task_group
*tg
;
850 struct sched_entity
*se
;
854 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
855 if (!se
|| throttled_hierarchy(cfs_rq
))
858 if (likely(se
->load
.weight
== tg
->shares
))
861 shares
= calc_cfs_shares(cfs_rq
, tg
);
863 reweight_entity(cfs_rq_of(se
), se
, shares
);
865 #else /* CONFIG_FAIR_GROUP_SCHED */
866 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
870 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
874 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
877 #endif /* CONFIG_FAIR_GROUP_SCHED */
879 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
881 #ifdef CONFIG_SCHEDSTATS
882 struct task_struct
*tsk
= NULL
;
884 if (entity_is_task(se
))
887 if (se
->statistics
.sleep_start
) {
888 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
893 if (unlikely(delta
> se
->statistics
.sleep_max
))
894 se
->statistics
.sleep_max
= delta
;
896 se
->statistics
.sleep_start
= 0;
897 se
->statistics
.sum_sleep_runtime
+= delta
;
900 account_scheduler_latency(tsk
, delta
>> 10, 1);
901 trace_sched_stat_sleep(tsk
, delta
);
904 if (se
->statistics
.block_start
) {
905 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
910 if (unlikely(delta
> se
->statistics
.block_max
))
911 se
->statistics
.block_max
= delta
;
913 se
->statistics
.block_start
= 0;
914 se
->statistics
.sum_sleep_runtime
+= delta
;
917 if (tsk
->in_iowait
) {
918 se
->statistics
.iowait_sum
+= delta
;
919 se
->statistics
.iowait_count
++;
920 trace_sched_stat_iowait(tsk
, delta
);
924 * Blocking time is in units of nanosecs, so shift by
925 * 20 to get a milliseconds-range estimation of the
926 * amount of time that the task spent sleeping:
928 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
929 profile_hits(SLEEP_PROFILING
,
930 (void *)get_wchan(tsk
),
933 account_scheduler_latency(tsk
, delta
>> 10, 0);
939 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
941 #ifdef CONFIG_SCHED_DEBUG
942 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
947 if (d
> 3*sysctl_sched_latency
)
948 schedstat_inc(cfs_rq
, nr_spread_over
);
953 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
955 u64 vruntime
= cfs_rq
->min_vruntime
;
958 * The 'current' period is already promised to the current tasks,
959 * however the extra weight of the new task will slow them down a
960 * little, place the new task so that it fits in the slot that
961 * stays open at the end.
963 if (initial
&& sched_feat(START_DEBIT
))
964 vruntime
+= sched_vslice(cfs_rq
, se
);
966 /* sleeps up to a single latency don't count. */
968 unsigned long thresh
= sysctl_sched_latency
;
971 * Halve their sleep time's effect, to allow
972 * for a gentler effect of sleepers:
974 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
980 /* ensure we never gain time by being placed backwards. */
981 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
983 se
->vruntime
= vruntime
;
986 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
989 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
992 * Update the normalized vruntime before updating min_vruntime
993 * through callig update_curr().
995 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
996 se
->vruntime
+= cfs_rq
->min_vruntime
;
999 * Update run-time statistics of the 'current'.
1001 update_curr(cfs_rq
);
1002 update_cfs_load(cfs_rq
, 0);
1003 account_entity_enqueue(cfs_rq
, se
);
1004 update_cfs_shares(cfs_rq
);
1006 if (flags
& ENQUEUE_WAKEUP
) {
1007 place_entity(cfs_rq
, se
, 0);
1008 enqueue_sleeper(cfs_rq
, se
);
1011 update_stats_enqueue(cfs_rq
, se
);
1012 check_spread(cfs_rq
, se
);
1013 if (se
!= cfs_rq
->curr
)
1014 __enqueue_entity(cfs_rq
, se
);
1017 if (cfs_rq
->nr_running
== 1) {
1018 list_add_leaf_cfs_rq(cfs_rq
);
1019 check_enqueue_throttle(cfs_rq
);
1023 static void __clear_buddies_last(struct sched_entity
*se
)
1025 for_each_sched_entity(se
) {
1026 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1027 if (cfs_rq
->last
== se
)
1028 cfs_rq
->last
= NULL
;
1034 static void __clear_buddies_next(struct sched_entity
*se
)
1036 for_each_sched_entity(se
) {
1037 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1038 if (cfs_rq
->next
== se
)
1039 cfs_rq
->next
= NULL
;
1045 static void __clear_buddies_skip(struct sched_entity
*se
)
1047 for_each_sched_entity(se
) {
1048 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1049 if (cfs_rq
->skip
== se
)
1050 cfs_rq
->skip
= NULL
;
1056 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1058 if (cfs_rq
->last
== se
)
1059 __clear_buddies_last(se
);
1061 if (cfs_rq
->next
== se
)
1062 __clear_buddies_next(se
);
1064 if (cfs_rq
->skip
== se
)
1065 __clear_buddies_skip(se
);
1068 static void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
1071 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1074 * Update run-time statistics of the 'current'.
1076 update_curr(cfs_rq
);
1078 update_stats_dequeue(cfs_rq
, se
);
1079 if (flags
& DEQUEUE_SLEEP
) {
1080 #ifdef CONFIG_SCHEDSTATS
1081 if (entity_is_task(se
)) {
1082 struct task_struct
*tsk
= task_of(se
);
1084 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1085 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
1086 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1087 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
1092 clear_buddies(cfs_rq
, se
);
1094 if (se
!= cfs_rq
->curr
)
1095 __dequeue_entity(cfs_rq
, se
);
1097 update_cfs_load(cfs_rq
, 0);
1098 account_entity_dequeue(cfs_rq
, se
);
1101 * Normalize the entity after updating the min_vruntime because the
1102 * update can refer to the ->curr item and we need to reflect this
1103 * movement in our normalized position.
1105 if (!(flags
& DEQUEUE_SLEEP
))
1106 se
->vruntime
-= cfs_rq
->min_vruntime
;
1108 /* return excess runtime on last dequeue */
1109 return_cfs_rq_runtime(cfs_rq
);
1111 update_min_vruntime(cfs_rq
);
1112 update_cfs_shares(cfs_rq
);
1116 * Preempt the current task with a newly woken task if needed:
1119 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1121 unsigned long ideal_runtime
, delta_exec
;
1122 struct sched_entity
*se
;
1125 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1126 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1127 if (delta_exec
> ideal_runtime
) {
1128 resched_task(rq_of(cfs_rq
)->curr
);
1130 * The current task ran long enough, ensure it doesn't get
1131 * re-elected due to buddy favours.
1133 clear_buddies(cfs_rq
, curr
);
1138 * Ensure that a task that missed wakeup preemption by a
1139 * narrow margin doesn't have to wait for a full slice.
1140 * This also mitigates buddy induced latencies under load.
1142 if (delta_exec
< sysctl_sched_min_granularity
)
1145 se
= __pick_first_entity(cfs_rq
);
1146 delta
= curr
->vruntime
- se
->vruntime
;
1151 if (delta
> ideal_runtime
)
1152 resched_task(rq_of(cfs_rq
)->curr
);
1156 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1158 /* 'current' is not kept within the tree. */
1161 * Any task has to be enqueued before it get to execute on
1162 * a CPU. So account for the time it spent waiting on the
1165 update_stats_wait_end(cfs_rq
, se
);
1166 __dequeue_entity(cfs_rq
, se
);
1169 update_stats_curr_start(cfs_rq
, se
);
1171 #ifdef CONFIG_SCHEDSTATS
1173 * Track our maximum slice length, if the CPU's load is at
1174 * least twice that of our own weight (i.e. dont track it
1175 * when there are only lesser-weight tasks around):
1177 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1178 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1179 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1182 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1186 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1189 * Pick the next process, keeping these things in mind, in this order:
1190 * 1) keep things fair between processes/task groups
1191 * 2) pick the "next" process, since someone really wants that to run
1192 * 3) pick the "last" process, for cache locality
1193 * 4) do not run the "skip" process, if something else is available
1195 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1197 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1198 struct sched_entity
*left
= se
;
1201 * Avoid running the skip buddy, if running something else can
1202 * be done without getting too unfair.
1204 if (cfs_rq
->skip
== se
) {
1205 struct sched_entity
*second
= __pick_next_entity(se
);
1206 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
1211 * Prefer last buddy, try to return the CPU to a preempted task.
1213 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1217 * Someone really wants this to run. If it's not unfair, run it.
1219 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1222 clear_buddies(cfs_rq
, se
);
1227 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
1229 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
1232 * If still on the runqueue then deactivate_task()
1233 * was not called and update_curr() has to be done:
1236 update_curr(cfs_rq
);
1238 /* throttle cfs_rqs exceeding runtime */
1239 check_cfs_rq_runtime(cfs_rq
);
1241 check_spread(cfs_rq
, prev
);
1243 update_stats_wait_start(cfs_rq
, prev
);
1244 /* Put 'current' back into the tree. */
1245 __enqueue_entity(cfs_rq
, prev
);
1247 cfs_rq
->curr
= NULL
;
1251 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
1254 * Update run-time statistics of the 'current'.
1256 update_curr(cfs_rq
);
1259 * Update share accounting for long-running entities.
1261 update_entity_shares_tick(cfs_rq
);
1263 #ifdef CONFIG_SCHED_HRTICK
1265 * queued ticks are scheduled to match the slice, so don't bother
1266 * validating it and just reschedule.
1269 resched_task(rq_of(cfs_rq
)->curr
);
1273 * don't let the period tick interfere with the hrtick preemption
1275 if (!sched_feat(DOUBLE_TICK
) &&
1276 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
1280 if (cfs_rq
->nr_running
> 1)
1281 check_preempt_tick(cfs_rq
, curr
);
1285 /**************************************************
1286 * CFS bandwidth control machinery
1289 #ifdef CONFIG_CFS_BANDWIDTH
1291 * default period for cfs group bandwidth.
1292 * default: 0.1s, units: nanoseconds
1294 static inline u64
default_cfs_period(void)
1296 return 100000000ULL;
1299 static inline u64
sched_cfs_bandwidth_slice(void)
1301 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
1305 * Replenish runtime according to assigned quota and update expiration time.
1306 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1307 * additional synchronization around rq->lock.
1309 * requires cfs_b->lock
1311 static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
1315 if (cfs_b
->quota
== RUNTIME_INF
)
1318 now
= sched_clock_cpu(smp_processor_id());
1319 cfs_b
->runtime
= cfs_b
->quota
;
1320 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
1323 /* returns 0 on failure to allocate runtime */
1324 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1326 struct task_group
*tg
= cfs_rq
->tg
;
1327 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
1328 u64 amount
= 0, min_amount
, expires
;
1330 /* note: this is a positive sum as runtime_remaining <= 0 */
1331 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
1333 raw_spin_lock(&cfs_b
->lock
);
1334 if (cfs_b
->quota
== RUNTIME_INF
)
1335 amount
= min_amount
;
1338 * If the bandwidth pool has become inactive, then at least one
1339 * period must have elapsed since the last consumption.
1340 * Refresh the global state and ensure bandwidth timer becomes
1343 if (!cfs_b
->timer_active
) {
1344 __refill_cfs_bandwidth_runtime(cfs_b
);
1345 __start_cfs_bandwidth(cfs_b
);
1348 if (cfs_b
->runtime
> 0) {
1349 amount
= min(cfs_b
->runtime
, min_amount
);
1350 cfs_b
->runtime
-= amount
;
1354 expires
= cfs_b
->runtime_expires
;
1355 raw_spin_unlock(&cfs_b
->lock
);
1357 cfs_rq
->runtime_remaining
+= amount
;
1359 * we may have advanced our local expiration to account for allowed
1360 * spread between our sched_clock and the one on which runtime was
1363 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
1364 cfs_rq
->runtime_expires
= expires
;
1366 return cfs_rq
->runtime_remaining
> 0;
1370 * Note: This depends on the synchronization provided by sched_clock and the
1371 * fact that rq->clock snapshots this value.
1373 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1375 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1376 struct rq
*rq
= rq_of(cfs_rq
);
1378 /* if the deadline is ahead of our clock, nothing to do */
1379 if (likely((s64
)(rq
->clock
- cfs_rq
->runtime_expires
) < 0))
1382 if (cfs_rq
->runtime_remaining
< 0)
1386 * If the local deadline has passed we have to consider the
1387 * possibility that our sched_clock is 'fast' and the global deadline
1388 * has not truly expired.
1390 * Fortunately we can check determine whether this the case by checking
1391 * whether the global deadline has advanced.
1394 if ((s64
)(cfs_rq
->runtime_expires
- cfs_b
->runtime_expires
) >= 0) {
1395 /* extend local deadline, drift is bounded above by 2 ticks */
1396 cfs_rq
->runtime_expires
+= TICK_NSEC
;
1398 /* global deadline is ahead, expiration has passed */
1399 cfs_rq
->runtime_remaining
= 0;
1403 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
1404 unsigned long delta_exec
)
1406 /* dock delta_exec before expiring quota (as it could span periods) */
1407 cfs_rq
->runtime_remaining
-= delta_exec
;
1408 expire_cfs_rq_runtime(cfs_rq
);
1410 if (likely(cfs_rq
->runtime_remaining
> 0))
1414 * if we're unable to extend our runtime we resched so that the active
1415 * hierarchy can be throttled
1417 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
1418 resched_task(rq_of(cfs_rq
)->curr
);
1421 static __always_inline
void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
1422 unsigned long delta_exec
)
1424 if (!cfs_rq
->runtime_enabled
)
1427 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
1430 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
1432 return cfs_rq
->throttled
;
1435 /* check whether cfs_rq, or any parent, is throttled */
1436 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
1438 return cfs_rq
->throttle_count
;
1442 * Ensure that neither of the group entities corresponding to src_cpu or
1443 * dest_cpu are members of a throttled hierarchy when performing group
1444 * load-balance operations.
1446 static inline int throttled_lb_pair(struct task_group
*tg
,
1447 int src_cpu
, int dest_cpu
)
1449 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
1451 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
1452 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
1454 return throttled_hierarchy(src_cfs_rq
) ||
1455 throttled_hierarchy(dest_cfs_rq
);
1458 /* updated child weight may affect parent so we have to do this bottom up */
1459 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
1461 struct rq
*rq
= data
;
1462 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
1464 cfs_rq
->throttle_count
--;
1466 if (!cfs_rq
->throttle_count
) {
1467 u64 delta
= rq
->clock_task
- cfs_rq
->load_stamp
;
1469 /* leaving throttled state, advance shares averaging windows */
1470 cfs_rq
->load_stamp
+= delta
;
1471 cfs_rq
->load_last
+= delta
;
1473 /* update entity weight now that we are on_rq again */
1474 update_cfs_shares(cfs_rq
);
1481 static int tg_throttle_down(struct task_group
*tg
, void *data
)
1483 struct rq
*rq
= data
;
1484 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
1486 /* group is entering throttled state, record last load */
1487 if (!cfs_rq
->throttle_count
)
1488 update_cfs_load(cfs_rq
, 0);
1489 cfs_rq
->throttle_count
++;
1494 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
1496 struct rq
*rq
= rq_of(cfs_rq
);
1497 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1498 struct sched_entity
*se
;
1499 long task_delta
, dequeue
= 1;
1501 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
1503 /* account load preceding throttle */
1505 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
1508 task_delta
= cfs_rq
->h_nr_running
;
1509 for_each_sched_entity(se
) {
1510 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
1511 /* throttled entity or throttle-on-deactivate */
1516 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
1517 qcfs_rq
->h_nr_running
-= task_delta
;
1519 if (qcfs_rq
->load
.weight
)
1524 rq
->nr_running
-= task_delta
;
1526 cfs_rq
->throttled
= 1;
1527 cfs_rq
->throttled_timestamp
= rq
->clock
;
1528 raw_spin_lock(&cfs_b
->lock
);
1529 list_add_tail_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
1530 raw_spin_unlock(&cfs_b
->lock
);
1533 static void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
1535 struct rq
*rq
= rq_of(cfs_rq
);
1536 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1537 struct sched_entity
*se
;
1541 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
1543 cfs_rq
->throttled
= 0;
1544 raw_spin_lock(&cfs_b
->lock
);
1545 cfs_b
->throttled_time
+= rq
->clock
- cfs_rq
->throttled_timestamp
;
1546 list_del_rcu(&cfs_rq
->throttled_list
);
1547 raw_spin_unlock(&cfs_b
->lock
);
1548 cfs_rq
->throttled_timestamp
= 0;
1550 update_rq_clock(rq
);
1551 /* update hierarchical throttle state */
1552 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
1554 if (!cfs_rq
->load
.weight
)
1557 task_delta
= cfs_rq
->h_nr_running
;
1558 for_each_sched_entity(se
) {
1562 cfs_rq
= cfs_rq_of(se
);
1564 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
1565 cfs_rq
->h_nr_running
+= task_delta
;
1567 if (cfs_rq_throttled(cfs_rq
))
1572 rq
->nr_running
+= task_delta
;
1574 /* determine whether we need to wake up potentially idle cpu */
1575 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
1576 resched_task(rq
->curr
);
1579 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
1580 u64 remaining
, u64 expires
)
1582 struct cfs_rq
*cfs_rq
;
1583 u64 runtime
= remaining
;
1586 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
1588 struct rq
*rq
= rq_of(cfs_rq
);
1590 raw_spin_lock(&rq
->lock
);
1591 if (!cfs_rq_throttled(cfs_rq
))
1594 runtime
= -cfs_rq
->runtime_remaining
+ 1;
1595 if (runtime
> remaining
)
1596 runtime
= remaining
;
1597 remaining
-= runtime
;
1599 cfs_rq
->runtime_remaining
+= runtime
;
1600 cfs_rq
->runtime_expires
= expires
;
1602 /* we check whether we're throttled above */
1603 if (cfs_rq
->runtime_remaining
> 0)
1604 unthrottle_cfs_rq(cfs_rq
);
1607 raw_spin_unlock(&rq
->lock
);
1618 * Responsible for refilling a task_group's bandwidth and unthrottling its
1619 * cfs_rqs as appropriate. If there has been no activity within the last
1620 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1621 * used to track this state.
1623 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
1625 u64 runtime
, runtime_expires
;
1626 int idle
= 1, throttled
;
1628 raw_spin_lock(&cfs_b
->lock
);
1629 /* no need to continue the timer with no bandwidth constraint */
1630 if (cfs_b
->quota
== RUNTIME_INF
)
1633 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
1634 /* idle depends on !throttled (for the case of a large deficit) */
1635 idle
= cfs_b
->idle
&& !throttled
;
1636 cfs_b
->nr_periods
+= overrun
;
1638 /* if we're going inactive then everything else can be deferred */
1642 __refill_cfs_bandwidth_runtime(cfs_b
);
1645 /* mark as potentially idle for the upcoming period */
1650 /* account preceding periods in which throttling occurred */
1651 cfs_b
->nr_throttled
+= overrun
;
1654 * There are throttled entities so we must first use the new bandwidth
1655 * to unthrottle them before making it generally available. This
1656 * ensures that all existing debts will be paid before a new cfs_rq is
1659 runtime
= cfs_b
->runtime
;
1660 runtime_expires
= cfs_b
->runtime_expires
;
1664 * This check is repeated as we are holding onto the new bandwidth
1665 * while we unthrottle. This can potentially race with an unthrottled
1666 * group trying to acquire new bandwidth from the global pool.
1668 while (throttled
&& runtime
> 0) {
1669 raw_spin_unlock(&cfs_b
->lock
);
1670 /* we can't nest cfs_b->lock while distributing bandwidth */
1671 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
1673 raw_spin_lock(&cfs_b
->lock
);
1675 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
1678 /* return (any) remaining runtime */
1679 cfs_b
->runtime
= runtime
;
1681 * While we are ensured activity in the period following an
1682 * unthrottle, this also covers the case in which the new bandwidth is
1683 * insufficient to cover the existing bandwidth deficit. (Forcing the
1684 * timer to remain active while there are any throttled entities.)
1689 cfs_b
->timer_active
= 0;
1690 raw_spin_unlock(&cfs_b
->lock
);
1695 /* a cfs_rq won't donate quota below this amount */
1696 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
1697 /* minimum remaining period time to redistribute slack quota */
1698 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
1699 /* how long we wait to gather additional slack before distributing */
1700 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
1702 /* are we near the end of the current quota period? */
1703 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
1705 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
1708 /* if the call-back is running a quota refresh is already occurring */
1709 if (hrtimer_callback_running(refresh_timer
))
1712 /* is a quota refresh about to occur? */
1713 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
1714 if (remaining
< min_expire
)
1720 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
1722 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
1724 /* if there's a quota refresh soon don't bother with slack */
1725 if (runtime_refresh_within(cfs_b
, min_left
))
1728 start_bandwidth_timer(&cfs_b
->slack_timer
,
1729 ns_to_ktime(cfs_bandwidth_slack_period
));
1732 /* we know any runtime found here is valid as update_curr() precedes return */
1733 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1735 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1736 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
1738 if (slack_runtime
<= 0)
1741 raw_spin_lock(&cfs_b
->lock
);
1742 if (cfs_b
->quota
!= RUNTIME_INF
&&
1743 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
1744 cfs_b
->runtime
+= slack_runtime
;
1746 /* we are under rq->lock, defer unthrottling using a timer */
1747 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
1748 !list_empty(&cfs_b
->throttled_cfs_rq
))
1749 start_cfs_slack_bandwidth(cfs_b
);
1751 raw_spin_unlock(&cfs_b
->lock
);
1753 /* even if it's not valid for return we don't want to try again */
1754 cfs_rq
->runtime_remaining
-= slack_runtime
;
1757 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1759 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
1762 __return_cfs_rq_runtime(cfs_rq
);
1766 * This is done with a timer (instead of inline with bandwidth return) since
1767 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1769 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
1771 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
1774 /* confirm we're still not at a refresh boundary */
1775 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
))
1778 raw_spin_lock(&cfs_b
->lock
);
1779 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
) {
1780 runtime
= cfs_b
->runtime
;
1783 expires
= cfs_b
->runtime_expires
;
1784 raw_spin_unlock(&cfs_b
->lock
);
1789 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
1791 raw_spin_lock(&cfs_b
->lock
);
1792 if (expires
== cfs_b
->runtime_expires
)
1793 cfs_b
->runtime
= runtime
;
1794 raw_spin_unlock(&cfs_b
->lock
);
1798 * When a group wakes up we want to make sure that its quota is not already
1799 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1800 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1802 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
1804 /* an active group must be handled by the update_curr()->put() path */
1805 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
1808 /* ensure the group is not already throttled */
1809 if (cfs_rq_throttled(cfs_rq
))
1812 /* update runtime allocation */
1813 account_cfs_rq_runtime(cfs_rq
, 0);
1814 if (cfs_rq
->runtime_remaining
<= 0)
1815 throttle_cfs_rq(cfs_rq
);
1818 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1819 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1821 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
1825 * it's possible for a throttled entity to be forced into a running
1826 * state (e.g. set_curr_task), in this case we're finished.
1828 if (cfs_rq_throttled(cfs_rq
))
1831 throttle_cfs_rq(cfs_rq
);
1834 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
1835 unsigned long delta_exec
) {}
1836 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
1837 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
1838 static void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
1840 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
1845 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
1850 static inline int throttled_lb_pair(struct task_group
*tg
,
1851 int src_cpu
, int dest_cpu
)
1857 /**************************************************
1858 * CFS operations on tasks:
1861 #ifdef CONFIG_SCHED_HRTICK
1862 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1864 struct sched_entity
*se
= &p
->se
;
1865 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1867 WARN_ON(task_rq(p
) != rq
);
1869 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
1870 u64 slice
= sched_slice(cfs_rq
, se
);
1871 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1872 s64 delta
= slice
- ran
;
1881 * Don't schedule slices shorter than 10000ns, that just
1882 * doesn't make sense. Rely on vruntime for fairness.
1885 delta
= max_t(s64
, 10000LL, delta
);
1887 hrtick_start(rq
, delta
);
1892 * called from enqueue/dequeue and updates the hrtick when the
1893 * current task is from our class and nr_running is low enough
1896 static void hrtick_update(struct rq
*rq
)
1898 struct task_struct
*curr
= rq
->curr
;
1900 if (curr
->sched_class
!= &fair_sched_class
)
1903 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1904 hrtick_start_fair(rq
, curr
);
1906 #else /* !CONFIG_SCHED_HRTICK */
1908 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1912 static inline void hrtick_update(struct rq
*rq
)
1918 * The enqueue_task method is called before nr_running is
1919 * increased. Here we update the fair scheduling stats and
1920 * then put the task into the rbtree:
1923 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1925 struct cfs_rq
*cfs_rq
;
1926 struct sched_entity
*se
= &p
->se
;
1928 for_each_sched_entity(se
) {
1931 cfs_rq
= cfs_rq_of(se
);
1932 enqueue_entity(cfs_rq
, se
, flags
);
1935 * end evaluation on encountering a throttled cfs_rq
1937 * note: in the case of encountering a throttled cfs_rq we will
1938 * post the final h_nr_running increment below.
1940 if (cfs_rq_throttled(cfs_rq
))
1942 cfs_rq
->h_nr_running
++;
1944 flags
= ENQUEUE_WAKEUP
;
1947 for_each_sched_entity(se
) {
1948 cfs_rq
= cfs_rq_of(se
);
1949 cfs_rq
->h_nr_running
++;
1951 if (cfs_rq_throttled(cfs_rq
))
1954 update_cfs_load(cfs_rq
, 0);
1955 update_cfs_shares(cfs_rq
);
1963 static void set_next_buddy(struct sched_entity
*se
);
1966 * The dequeue_task method is called before nr_running is
1967 * decreased. We remove the task from the rbtree and
1968 * update the fair scheduling stats:
1970 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1972 struct cfs_rq
*cfs_rq
;
1973 struct sched_entity
*se
= &p
->se
;
1974 int task_sleep
= flags
& DEQUEUE_SLEEP
;
1976 for_each_sched_entity(se
) {
1977 cfs_rq
= cfs_rq_of(se
);
1978 dequeue_entity(cfs_rq
, se
, flags
);
1981 * end evaluation on encountering a throttled cfs_rq
1983 * note: in the case of encountering a throttled cfs_rq we will
1984 * post the final h_nr_running decrement below.
1986 if (cfs_rq_throttled(cfs_rq
))
1988 cfs_rq
->h_nr_running
--;
1990 /* Don't dequeue parent if it has other entities besides us */
1991 if (cfs_rq
->load
.weight
) {
1993 * Bias pick_next to pick a task from this cfs_rq, as
1994 * p is sleeping when it is within its sched_slice.
1996 if (task_sleep
&& parent_entity(se
))
1997 set_next_buddy(parent_entity(se
));
1999 /* avoid re-evaluating load for this entity */
2000 se
= parent_entity(se
);
2003 flags
|= DEQUEUE_SLEEP
;
2006 for_each_sched_entity(se
) {
2007 cfs_rq
= cfs_rq_of(se
);
2008 cfs_rq
->h_nr_running
--;
2010 if (cfs_rq_throttled(cfs_rq
))
2013 update_cfs_load(cfs_rq
, 0);
2014 update_cfs_shares(cfs_rq
);
2024 static void task_waking_fair(struct task_struct
*p
)
2026 struct sched_entity
*se
= &p
->se
;
2027 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2030 #ifndef CONFIG_64BIT
2031 u64 min_vruntime_copy
;
2034 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
2036 min_vruntime
= cfs_rq
->min_vruntime
;
2037 } while (min_vruntime
!= min_vruntime_copy
);
2039 min_vruntime
= cfs_rq
->min_vruntime
;
2042 se
->vruntime
-= min_vruntime
;
2045 #ifdef CONFIG_FAIR_GROUP_SCHED
2047 * effective_load() calculates the load change as seen from the root_task_group
2049 * Adding load to a group doesn't make a group heavier, but can cause movement
2050 * of group shares between cpus. Assuming the shares were perfectly aligned one
2051 * can calculate the shift in shares.
2053 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2054 * on this @cpu and results in a total addition (subtraction) of @wg to the
2055 * total group weight.
2057 * Given a runqueue weight distribution (rw_i) we can compute a shares
2058 * distribution (s_i) using:
2060 * s_i = rw_i / \Sum rw_j (1)
2062 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2063 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2064 * shares distribution (s_i):
2066 * rw_i = { 2, 4, 1, 0 }
2067 * s_i = { 2/7, 4/7, 1/7, 0 }
2069 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2070 * task used to run on and the CPU the waker is running on), we need to
2071 * compute the effect of waking a task on either CPU and, in case of a sync
2072 * wakeup, compute the effect of the current task going to sleep.
2074 * So for a change of @wl to the local @cpu with an overall group weight change
2075 * of @wl we can compute the new shares distribution (s'_i) using:
2077 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2079 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2080 * differences in waking a task to CPU 0. The additional task changes the
2081 * weight and shares distributions like:
2083 * rw'_i = { 3, 4, 1, 0 }
2084 * s'_i = { 3/8, 4/8, 1/8, 0 }
2086 * We can then compute the difference in effective weight by using:
2088 * dw_i = S * (s'_i - s_i) (3)
2090 * Where 'S' is the group weight as seen by its parent.
2092 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2093 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2094 * 4/7) times the weight of the group.
2096 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
2098 struct sched_entity
*se
= tg
->se
[cpu
];
2100 if (!tg
->parent
) /* the trivial, non-cgroup case */
2103 for_each_sched_entity(se
) {
2109 * W = @wg + \Sum rw_j
2111 W
= wg
+ calc_tg_weight(tg
, se
->my_q
);
2116 w
= se
->my_q
->load
.weight
+ wl
;
2119 * wl = S * s'_i; see (2)
2122 wl
= (w
* tg
->shares
) / W
;
2127 * Per the above, wl is the new se->load.weight value; since
2128 * those are clipped to [MIN_SHARES, ...) do so now. See
2129 * calc_cfs_shares().
2131 if (wl
< MIN_SHARES
)
2135 * wl = dw_i = S * (s'_i - s_i); see (3)
2137 wl
-= se
->load
.weight
;
2140 * Recursively apply this logic to all parent groups to compute
2141 * the final effective load change on the root group. Since
2142 * only the @tg group gets extra weight, all parent groups can
2143 * only redistribute existing shares. @wl is the shift in shares
2144 * resulting from this level per the above.
2153 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
2154 unsigned long wl
, unsigned long wg
)
2161 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
2163 s64 this_load
, load
;
2164 int idx
, this_cpu
, prev_cpu
;
2165 unsigned long tl_per_task
;
2166 struct task_group
*tg
;
2167 unsigned long weight
;
2171 this_cpu
= smp_processor_id();
2172 prev_cpu
= task_cpu(p
);
2173 load
= source_load(prev_cpu
, idx
);
2174 this_load
= target_load(this_cpu
, idx
);
2177 * If sync wakeup then subtract the (maximum possible)
2178 * effect of the currently running task from the load
2179 * of the current CPU:
2182 tg
= task_group(current
);
2183 weight
= current
->se
.load
.weight
;
2185 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
2186 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
2190 weight
= p
->se
.load
.weight
;
2193 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2194 * due to the sync cause above having dropped this_load to 0, we'll
2195 * always have an imbalance, but there's really nothing you can do
2196 * about that, so that's good too.
2198 * Otherwise check if either cpus are near enough in load to allow this
2199 * task to be woken on this_cpu.
2201 if (this_load
> 0) {
2202 s64 this_eff_load
, prev_eff_load
;
2204 this_eff_load
= 100;
2205 this_eff_load
*= power_of(prev_cpu
);
2206 this_eff_load
*= this_load
+
2207 effective_load(tg
, this_cpu
, weight
, weight
);
2209 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
2210 prev_eff_load
*= power_of(this_cpu
);
2211 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
2213 balanced
= this_eff_load
<= prev_eff_load
;
2218 * If the currently running task will sleep within
2219 * a reasonable amount of time then attract this newly
2222 if (sync
&& balanced
)
2225 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
2226 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
2229 (this_load
<= load
&&
2230 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
2232 * This domain has SD_WAKE_AFFINE and
2233 * p is cache cold in this domain, and
2234 * there is no bad imbalance.
2236 schedstat_inc(sd
, ttwu_move_affine
);
2237 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
2245 * find_idlest_group finds and returns the least busy CPU group within the
2248 static struct sched_group
*
2249 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
2250 int this_cpu
, int load_idx
)
2252 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
2253 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2254 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2257 unsigned long load
, avg_load
;
2261 /* Skip over this group if it has no CPUs allowed */
2262 if (!cpumask_intersects(sched_group_cpus(group
),
2263 tsk_cpus_allowed(p
)))
2266 local_group
= cpumask_test_cpu(this_cpu
,
2267 sched_group_cpus(group
));
2269 /* Tally up the load of all CPUs in the group */
2272 for_each_cpu(i
, sched_group_cpus(group
)) {
2273 /* Bias balancing toward cpus of our domain */
2275 load
= source_load(i
, load_idx
);
2277 load
= target_load(i
, load_idx
);
2282 /* Adjust by relative CPU power of the group */
2283 avg_load
= (avg_load
* SCHED_POWER_SCALE
) / group
->sgp
->power
;
2286 this_load
= avg_load
;
2287 } else if (avg_load
< min_load
) {
2288 min_load
= avg_load
;
2291 } while (group
= group
->next
, group
!= sd
->groups
);
2293 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2299 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2302 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2304 unsigned long load
, min_load
= ULONG_MAX
;
2308 /* Traverse only the allowed CPUs */
2309 for_each_cpu_and(i
, sched_group_cpus(group
), tsk_cpus_allowed(p
)) {
2310 load
= weighted_cpuload(i
);
2312 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2322 * Try and locate an idle CPU in the sched_domain.
2324 static int select_idle_sibling(struct task_struct
*p
, int target
)
2326 int cpu
= smp_processor_id();
2327 int prev_cpu
= task_cpu(p
);
2328 struct sched_domain
*sd
;
2329 struct sched_group
*sg
;
2333 * If the task is going to be woken-up on this cpu and if it is
2334 * already idle, then it is the right target.
2336 if (target
== cpu
&& idle_cpu(cpu
))
2340 * If the task is going to be woken-up on the cpu where it previously
2341 * ran and if it is currently idle, then it the right target.
2343 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
2347 * Otherwise, iterate the domains and find an elegible idle cpu.
2351 for_each_domain(target
, sd
) {
2352 if (!smt
&& (sd
->flags
& SD_SHARE_CPUPOWER
))
2355 if (smt
&& !(sd
->flags
& SD_SHARE_CPUPOWER
))
2358 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
2363 if (!cpumask_intersects(sched_group_cpus(sg
),
2364 tsk_cpus_allowed(p
)))
2367 for_each_cpu(i
, sched_group_cpus(sg
)) {
2372 target
= cpumask_first_and(sched_group_cpus(sg
),
2373 tsk_cpus_allowed(p
));
2377 } while (sg
!= sd
->groups
);
2390 * sched_balance_self: balance the current task (running on cpu) in domains
2391 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2394 * Balance, ie. select the least loaded group.
2396 * Returns the target CPU number, or the same CPU if no balancing is needed.
2398 * preempt must be disabled.
2401 select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
2403 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
2404 int cpu
= smp_processor_id();
2405 int prev_cpu
= task_cpu(p
);
2407 int want_affine
= 0;
2409 int sync
= wake_flags
& WF_SYNC
;
2411 if (sd_flag
& SD_BALANCE_WAKE
) {
2412 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
2418 for_each_domain(cpu
, tmp
) {
2419 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
2423 * If power savings logic is enabled for a domain, see if we
2424 * are not overloaded, if so, don't balance wider.
2426 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
2427 unsigned long power
= 0;
2428 unsigned long nr_running
= 0;
2429 unsigned long capacity
;
2432 for_each_cpu(i
, sched_domain_span(tmp
)) {
2433 power
+= power_of(i
);
2434 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
2437 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_POWER_SCALE
);
2439 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2442 if (nr_running
< capacity
)
2447 * If both cpu and prev_cpu are part of this domain,
2448 * cpu is a valid SD_WAKE_AFFINE target.
2450 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
2451 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
2456 if (!want_sd
&& !want_affine
)
2459 if (!(tmp
->flags
& sd_flag
))
2467 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
2470 new_cpu
= select_idle_sibling(p
, prev_cpu
);
2475 int load_idx
= sd
->forkexec_idx
;
2476 struct sched_group
*group
;
2479 if (!(sd
->flags
& sd_flag
)) {
2484 if (sd_flag
& SD_BALANCE_WAKE
)
2485 load_idx
= sd
->wake_idx
;
2487 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
2493 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
2494 if (new_cpu
== -1 || new_cpu
== cpu
) {
2495 /* Now try balancing at a lower domain level of cpu */
2500 /* Now try balancing at a lower domain level of new_cpu */
2502 weight
= sd
->span_weight
;
2504 for_each_domain(cpu
, tmp
) {
2505 if (weight
<= tmp
->span_weight
)
2507 if (tmp
->flags
& sd_flag
)
2510 /* while loop will break here if sd == NULL */
2517 #endif /* CONFIG_SMP */
2519 static unsigned long
2520 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
2522 unsigned long gran
= sysctl_sched_wakeup_granularity
;
2525 * Since its curr running now, convert the gran from real-time
2526 * to virtual-time in his units.
2528 * By using 'se' instead of 'curr' we penalize light tasks, so
2529 * they get preempted easier. That is, if 'se' < 'curr' then
2530 * the resulting gran will be larger, therefore penalizing the
2531 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2532 * be smaller, again penalizing the lighter task.
2534 * This is especially important for buddies when the leftmost
2535 * task is higher priority than the buddy.
2537 return calc_delta_fair(gran
, se
);
2541 * Should 'se' preempt 'curr'.
2555 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
2557 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
2562 gran
= wakeup_gran(curr
, se
);
2569 static void set_last_buddy(struct sched_entity
*se
)
2571 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
2574 for_each_sched_entity(se
)
2575 cfs_rq_of(se
)->last
= se
;
2578 static void set_next_buddy(struct sched_entity
*se
)
2580 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
2583 for_each_sched_entity(se
)
2584 cfs_rq_of(se
)->next
= se
;
2587 static void set_skip_buddy(struct sched_entity
*se
)
2589 for_each_sched_entity(se
)
2590 cfs_rq_of(se
)->skip
= se
;
2594 * Preempt the current task with a newly woken task if needed:
2596 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2598 struct task_struct
*curr
= rq
->curr
;
2599 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
2600 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
2601 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
2602 int next_buddy_marked
= 0;
2604 if (unlikely(se
== pse
))
2608 * This is possible from callers such as pull_task(), in which we
2609 * unconditionally check_prempt_curr() after an enqueue (which may have
2610 * lead to a throttle). This both saves work and prevents false
2611 * next-buddy nomination below.
2613 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
2616 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
2617 set_next_buddy(pse
);
2618 next_buddy_marked
= 1;
2622 * We can come here with TIF_NEED_RESCHED already set from new task
2625 * Note: this also catches the edge-case of curr being in a throttled
2626 * group (e.g. via set_curr_task), since update_curr() (in the
2627 * enqueue of curr) will have resulted in resched being set. This
2628 * prevents us from potentially nominating it as a false LAST_BUDDY
2631 if (test_tsk_need_resched(curr
))
2634 /* Idle tasks are by definition preempted by non-idle tasks. */
2635 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
2636 likely(p
->policy
!= SCHED_IDLE
))
2640 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2641 * is driven by the tick):
2643 if (unlikely(p
->policy
!= SCHED_NORMAL
))
2646 find_matching_se(&se
, &pse
);
2647 update_curr(cfs_rq_of(se
));
2649 if (wakeup_preempt_entity(se
, pse
) == 1) {
2651 * Bias pick_next to pick the sched entity that is
2652 * triggering this preemption.
2654 if (!next_buddy_marked
)
2655 set_next_buddy(pse
);
2664 * Only set the backward buddy when the current task is still
2665 * on the rq. This can happen when a wakeup gets interleaved
2666 * with schedule on the ->pre_schedule() or idle_balance()
2667 * point, either of which can * drop the rq lock.
2669 * Also, during early boot the idle thread is in the fair class,
2670 * for obvious reasons its a bad idea to schedule back to it.
2672 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
2675 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
2679 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
2681 struct task_struct
*p
;
2682 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
2683 struct sched_entity
*se
;
2685 if (!cfs_rq
->nr_running
)
2689 se
= pick_next_entity(cfs_rq
);
2690 set_next_entity(cfs_rq
, se
);
2691 cfs_rq
= group_cfs_rq(se
);
2695 hrtick_start_fair(rq
, p
);
2701 * Account for a descheduled task:
2703 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
2705 struct sched_entity
*se
= &prev
->se
;
2706 struct cfs_rq
*cfs_rq
;
2708 for_each_sched_entity(se
) {
2709 cfs_rq
= cfs_rq_of(se
);
2710 put_prev_entity(cfs_rq
, se
);
2715 * sched_yield() is very simple
2717 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2719 static void yield_task_fair(struct rq
*rq
)
2721 struct task_struct
*curr
= rq
->curr
;
2722 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
2723 struct sched_entity
*se
= &curr
->se
;
2726 * Are we the only task in the tree?
2728 if (unlikely(rq
->nr_running
== 1))
2731 clear_buddies(cfs_rq
, se
);
2733 if (curr
->policy
!= SCHED_BATCH
) {
2734 update_rq_clock(rq
);
2736 * Update run-time statistics of the 'current'.
2738 update_curr(cfs_rq
);
2744 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
2746 struct sched_entity
*se
= &p
->se
;
2748 /* throttled hierarchies are not runnable */
2749 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
2752 /* Tell the scheduler that we'd really like pse to run next. */
2755 yield_task_fair(rq
);
2761 /**************************************************
2762 * Fair scheduling class load-balancing methods:
2766 * pull_task - move a task from a remote runqueue to the local runqueue.
2767 * Both runqueues must be locked.
2769 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2770 struct rq
*this_rq
, int this_cpu
)
2772 deactivate_task(src_rq
, p
, 0);
2773 set_task_cpu(p
, this_cpu
);
2774 activate_task(this_rq
, p
, 0);
2775 check_preempt_curr(this_rq
, p
, 0);
2779 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2782 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2783 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2786 int tsk_cache_hot
= 0;
2788 * We do not migrate tasks that are:
2789 * 1) running (obviously), or
2790 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2791 * 3) are cache-hot on their current CPU.
2793 if (!cpumask_test_cpu(this_cpu
, tsk_cpus_allowed(p
))) {
2794 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
2799 if (task_running(rq
, p
)) {
2800 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
2805 * Aggressive migration if:
2806 * 1) task is cache cold, or
2807 * 2) too many balance attempts have failed.
2810 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
2811 if (!tsk_cache_hot
||
2812 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2813 #ifdef CONFIG_SCHEDSTATS
2814 if (tsk_cache_hot
) {
2815 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2816 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
2822 if (tsk_cache_hot
) {
2823 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
2830 * move_one_task tries to move exactly one task from busiest to this_rq, as
2831 * part of active balancing operations within "domain".
2832 * Returns 1 if successful and 0 otherwise.
2834 * Called with both runqueues locked.
2837 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2838 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2840 struct task_struct
*p
, *n
;
2841 struct cfs_rq
*cfs_rq
;
2844 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
2845 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
2846 if (throttled_lb_pair(task_group(p
),
2847 busiest
->cpu
, this_cpu
))
2850 if (!can_migrate_task(p
, busiest
, this_cpu
,
2854 pull_task(busiest
, p
, this_rq
, this_cpu
);
2856 * Right now, this is only the second place pull_task()
2857 * is called, so we can safely collect pull_task()
2858 * stats here rather than inside pull_task().
2860 schedstat_inc(sd
, lb_gained
[idle
]);
2868 static unsigned long
2869 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2870 unsigned long max_load_move
, struct sched_domain
*sd
,
2871 enum cpu_idle_type idle
, int *all_pinned
,
2872 struct cfs_rq
*busiest_cfs_rq
)
2874 int loops
= 0, pulled
= 0;
2875 long rem_load_move
= max_load_move
;
2876 struct task_struct
*p
, *n
;
2878 if (max_load_move
== 0)
2881 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
2882 if (loops
++ > sysctl_sched_nr_migrate
)
2885 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2886 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
,
2890 pull_task(busiest
, p
, this_rq
, this_cpu
);
2892 rem_load_move
-= p
->se
.load
.weight
;
2894 #ifdef CONFIG_PREEMPT
2896 * NEWIDLE balancing is a source of latency, so preemptible
2897 * kernels will stop after the first task is pulled to minimize
2898 * the critical section.
2900 if (idle
== CPU_NEWLY_IDLE
)
2905 * We only want to steal up to the prescribed amount of
2908 if (rem_load_move
<= 0)
2913 * Right now, this is one of only two places pull_task() is called,
2914 * so we can safely collect pull_task() stats here rather than
2915 * inside pull_task().
2917 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2919 return max_load_move
- rem_load_move
;
2922 #ifdef CONFIG_FAIR_GROUP_SCHED
2924 * update tg->load_weight by folding this cpu's load_avg
2926 static int update_shares_cpu(struct task_group
*tg
, int cpu
)
2928 struct cfs_rq
*cfs_rq
;
2929 unsigned long flags
;
2936 cfs_rq
= tg
->cfs_rq
[cpu
];
2938 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2940 update_rq_clock(rq
);
2941 update_cfs_load(cfs_rq
, 1);
2944 * We need to update shares after updating tg->load_weight in
2945 * order to adjust the weight of groups with long running tasks.
2947 update_cfs_shares(cfs_rq
);
2949 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2954 static void update_shares(int cpu
)
2956 struct cfs_rq
*cfs_rq
;
2957 struct rq
*rq
= cpu_rq(cpu
);
2961 * Iterates the task_group tree in a bottom up fashion, see
2962 * list_add_leaf_cfs_rq() for details.
2964 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
2965 /* throttled entities do not contribute to load */
2966 if (throttled_hierarchy(cfs_rq
))
2969 update_shares_cpu(cfs_rq
->tg
, cpu
);
2975 * Compute the cpu's hierarchical load factor for each task group.
2976 * This needs to be done in a top-down fashion because the load of a child
2977 * group is a fraction of its parents load.
2979 static int tg_load_down(struct task_group
*tg
, void *data
)
2982 long cpu
= (long)data
;
2985 load
= cpu_rq(cpu
)->load
.weight
;
2987 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
2988 load
*= tg
->se
[cpu
]->load
.weight
;
2989 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
2992 tg
->cfs_rq
[cpu
]->h_load
= load
;
2997 static void update_h_load(long cpu
)
2999 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
3002 static unsigned long
3003 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3004 unsigned long max_load_move
,
3005 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3008 long rem_load_move
= max_load_move
;
3009 struct cfs_rq
*busiest_cfs_rq
;
3012 update_h_load(cpu_of(busiest
));
3014 for_each_leaf_cfs_rq(busiest
, busiest_cfs_rq
) {
3015 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
3016 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
3017 u64 rem_load
, moved_load
;
3020 * empty group or part of a throttled hierarchy
3022 if (!busiest_cfs_rq
->task_weight
||
3023 throttled_lb_pair(busiest_cfs_rq
->tg
, cpu_of(busiest
), this_cpu
))
3026 rem_load
= (u64
)rem_load_move
* busiest_weight
;
3027 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
3029 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
3030 rem_load
, sd
, idle
, all_pinned
,
3036 moved_load
*= busiest_h_load
;
3037 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
3039 rem_load_move
-= moved_load
;
3040 if (rem_load_move
< 0)
3045 return max_load_move
- rem_load_move
;
3048 static inline void update_shares(int cpu
)
3052 static unsigned long
3053 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3054 unsigned long max_load_move
,
3055 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3058 return balance_tasks(this_rq
, this_cpu
, busiest
,
3059 max_load_move
, sd
, idle
, all_pinned
,
3065 * move_tasks tries to move up to max_load_move weighted load from busiest to
3066 * this_rq, as part of a balancing operation within domain "sd".
3067 * Returns 1 if successful and 0 otherwise.
3069 * Called with both runqueues locked.
3071 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3072 unsigned long max_load_move
,
3073 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3076 unsigned long total_load_moved
= 0, load_moved
;
3079 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
3080 max_load_move
- total_load_moved
,
3081 sd
, idle
, all_pinned
);
3083 total_load_moved
+= load_moved
;
3085 #ifdef CONFIG_PREEMPT
3087 * NEWIDLE balancing is a source of latency, so preemptible
3088 * kernels will stop after the first task is pulled to minimize
3089 * the critical section.
3091 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3094 if (raw_spin_is_contended(&this_rq
->lock
) ||
3095 raw_spin_is_contended(&busiest
->lock
))
3098 } while (load_moved
&& max_load_move
> total_load_moved
);
3100 return total_load_moved
> 0;
3103 /********** Helpers for find_busiest_group ************************/
3105 * sd_lb_stats - Structure to store the statistics of a sched_domain
3106 * during load balancing.
3108 struct sd_lb_stats
{
3109 struct sched_group
*busiest
; /* Busiest group in this sd */
3110 struct sched_group
*this; /* Local group in this sd */
3111 unsigned long total_load
; /* Total load of all groups in sd */
3112 unsigned long total_pwr
; /* Total power of all groups in sd */
3113 unsigned long avg_load
; /* Average load across all groups in sd */
3115 /** Statistics of this group */
3116 unsigned long this_load
;
3117 unsigned long this_load_per_task
;
3118 unsigned long this_nr_running
;
3119 unsigned long this_has_capacity
;
3120 unsigned int this_idle_cpus
;
3122 /* Statistics of the busiest group */
3123 unsigned int busiest_idle_cpus
;
3124 unsigned long max_load
;
3125 unsigned long busiest_load_per_task
;
3126 unsigned long busiest_nr_running
;
3127 unsigned long busiest_group_capacity
;
3128 unsigned long busiest_has_capacity
;
3129 unsigned int busiest_group_weight
;
3131 int group_imb
; /* Is there imbalance in this sd */
3132 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3133 int power_savings_balance
; /* Is powersave balance needed for this sd */
3134 struct sched_group
*group_min
; /* Least loaded group in sd */
3135 struct sched_group
*group_leader
; /* Group which relieves group_min */
3136 unsigned long min_load_per_task
; /* load_per_task in group_min */
3137 unsigned long leader_nr_running
; /* Nr running of group_leader */
3138 unsigned long min_nr_running
; /* Nr running of group_min */
3143 * sg_lb_stats - stats of a sched_group required for load_balancing
3145 struct sg_lb_stats
{
3146 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3147 unsigned long group_load
; /* Total load over the CPUs of the group */
3148 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3149 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3150 unsigned long group_capacity
;
3151 unsigned long idle_cpus
;
3152 unsigned long group_weight
;
3153 int group_imb
; /* Is there an imbalance in the group ? */
3154 int group_has_capacity
; /* Is there extra capacity in the group? */
3158 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3159 * @group: The group whose first cpu is to be returned.
3161 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3163 return cpumask_first(sched_group_cpus(group
));
3167 * get_sd_load_idx - Obtain the load index for a given sched domain.
3168 * @sd: The sched_domain whose load_idx is to be obtained.
3169 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3171 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3172 enum cpu_idle_type idle
)
3178 load_idx
= sd
->busy_idx
;
3181 case CPU_NEWLY_IDLE
:
3182 load_idx
= sd
->newidle_idx
;
3185 load_idx
= sd
->idle_idx
;
3193 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3195 * init_sd_power_savings_stats - Initialize power savings statistics for
3196 * the given sched_domain, during load balancing.
3198 * @sd: Sched domain whose power-savings statistics are to be initialized.
3199 * @sds: Variable containing the statistics for sd.
3200 * @idle: Idle status of the CPU at which we're performing load-balancing.
3202 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3203 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3206 * Busy processors will not participate in power savings
3209 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3210 sds
->power_savings_balance
= 0;
3212 sds
->power_savings_balance
= 1;
3213 sds
->min_nr_running
= ULONG_MAX
;
3214 sds
->leader_nr_running
= 0;
3219 * update_sd_power_savings_stats - Update the power saving stats for a
3220 * sched_domain while performing load balancing.
3222 * @group: sched_group belonging to the sched_domain under consideration.
3223 * @sds: Variable containing the statistics of the sched_domain
3224 * @local_group: Does group contain the CPU for which we're performing
3226 * @sgs: Variable containing the statistics of the group.
3228 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3229 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3232 if (!sds
->power_savings_balance
)
3236 * If the local group is idle or completely loaded
3237 * no need to do power savings balance at this domain
3239 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3240 !sds
->this_nr_running
))
3241 sds
->power_savings_balance
= 0;
3244 * If a group is already running at full capacity or idle,
3245 * don't include that group in power savings calculations
3247 if (!sds
->power_savings_balance
||
3248 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3249 !sgs
->sum_nr_running
)
3253 * Calculate the group which has the least non-idle load.
3254 * This is the group from where we need to pick up the load
3257 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3258 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3259 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3260 sds
->group_min
= group
;
3261 sds
->min_nr_running
= sgs
->sum_nr_running
;
3262 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3263 sgs
->sum_nr_running
;
3267 * Calculate the group which is almost near its
3268 * capacity but still has some space to pick up some load
3269 * from other group and save more power
3271 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3274 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3275 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3276 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3277 sds
->group_leader
= group
;
3278 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3283 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3284 * @sds: Variable containing the statistics of the sched_domain
3285 * under consideration.
3286 * @this_cpu: Cpu at which we're currently performing load-balancing.
3287 * @imbalance: Variable to store the imbalance.
3290 * Check if we have potential to perform some power-savings balance.
3291 * If yes, set the busiest group to be the least loaded group in the
3292 * sched_domain, so that it's CPUs can be put to idle.
3294 * Returns 1 if there is potential to perform power-savings balance.
3297 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3298 int this_cpu
, unsigned long *imbalance
)
3300 if (!sds
->power_savings_balance
)
3303 if (sds
->this != sds
->group_leader
||
3304 sds
->group_leader
== sds
->group_min
)
3307 *imbalance
= sds
->min_load_per_task
;
3308 sds
->busiest
= sds
->group_min
;
3313 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3314 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3315 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3320 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3321 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3326 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3327 int this_cpu
, unsigned long *imbalance
)
3331 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3334 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3336 return SCHED_POWER_SCALE
;
3339 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3341 return default_scale_freq_power(sd
, cpu
);
3344 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3346 unsigned long weight
= sd
->span_weight
;
3347 unsigned long smt_gain
= sd
->smt_gain
;
3354 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3356 return default_scale_smt_power(sd
, cpu
);
3359 unsigned long scale_rt_power(int cpu
)
3361 struct rq
*rq
= cpu_rq(cpu
);
3362 u64 total
, available
;
3364 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3366 if (unlikely(total
< rq
->rt_avg
)) {
3367 /* Ensures that power won't end up being negative */
3370 available
= total
- rq
->rt_avg
;
3373 if (unlikely((s64
)total
< SCHED_POWER_SCALE
))
3374 total
= SCHED_POWER_SCALE
;
3376 total
>>= SCHED_POWER_SHIFT
;
3378 return div_u64(available
, total
);
3381 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3383 unsigned long weight
= sd
->span_weight
;
3384 unsigned long power
= SCHED_POWER_SCALE
;
3385 struct sched_group
*sdg
= sd
->groups
;
3387 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3388 if (sched_feat(ARCH_POWER
))
3389 power
*= arch_scale_smt_power(sd
, cpu
);
3391 power
*= default_scale_smt_power(sd
, cpu
);
3393 power
>>= SCHED_POWER_SHIFT
;
3396 sdg
->sgp
->power_orig
= power
;
3398 if (sched_feat(ARCH_POWER
))
3399 power
*= arch_scale_freq_power(sd
, cpu
);
3401 power
*= default_scale_freq_power(sd
, cpu
);
3403 power
>>= SCHED_POWER_SHIFT
;
3405 power
*= scale_rt_power(cpu
);
3406 power
>>= SCHED_POWER_SHIFT
;
3411 cpu_rq(cpu
)->cpu_power
= power
;
3412 sdg
->sgp
->power
= power
;
3415 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3417 struct sched_domain
*child
= sd
->child
;
3418 struct sched_group
*group
, *sdg
= sd
->groups
;
3419 unsigned long power
;
3422 update_cpu_power(sd
, cpu
);
3428 group
= child
->groups
;
3430 power
+= group
->sgp
->power
;
3431 group
= group
->next
;
3432 } while (group
!= child
->groups
);
3434 sdg
->sgp
->power
= power
;
3438 * Try and fix up capacity for tiny siblings, this is needed when
3439 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3440 * which on its own isn't powerful enough.
3442 * See update_sd_pick_busiest() and check_asym_packing().
3445 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
3448 * Only siblings can have significantly less than SCHED_POWER_SCALE
3450 if (!(sd
->flags
& SD_SHARE_CPUPOWER
))
3454 * If ~90% of the cpu_power is still there, we're good.
3456 if (group
->sgp
->power
* 32 > group
->sgp
->power_orig
* 29)
3463 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3464 * @sd: The sched_domain whose statistics are to be updated.
3465 * @group: sched_group whose statistics are to be updated.
3466 * @this_cpu: Cpu for which load balance is currently performed.
3467 * @idle: Idle status of this_cpu
3468 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3469 * @local_group: Does group contain this_cpu.
3470 * @cpus: Set of cpus considered for load balancing.
3471 * @balance: Should we balance.
3472 * @sgs: variable to hold the statistics for this group.
3474 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3475 struct sched_group
*group
, int this_cpu
,
3476 enum cpu_idle_type idle
, int load_idx
,
3477 int local_group
, const struct cpumask
*cpus
,
3478 int *balance
, struct sg_lb_stats
*sgs
)
3480 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
3482 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3483 unsigned long avg_load_per_task
= 0;
3486 balance_cpu
= group_first_cpu(group
);
3488 /* Tally up the load of all CPUs in the group */
3490 min_cpu_load
= ~0UL;
3493 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3494 struct rq
*rq
= cpu_rq(i
);
3496 /* Bias balancing toward cpus of our domain */
3498 if (idle_cpu(i
) && !first_idle_cpu
) {
3503 load
= target_load(i
, load_idx
);
3505 load
= source_load(i
, load_idx
);
3506 if (load
> max_cpu_load
) {
3507 max_cpu_load
= load
;
3508 max_nr_running
= rq
->nr_running
;
3510 if (min_cpu_load
> load
)
3511 min_cpu_load
= load
;
3514 sgs
->group_load
+= load
;
3515 sgs
->sum_nr_running
+= rq
->nr_running
;
3516 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3522 * First idle cpu or the first cpu(busiest) in this sched group
3523 * is eligible for doing load balancing at this and above
3524 * domains. In the newly idle case, we will allow all the cpu's
3525 * to do the newly idle load balance.
3527 if (idle
!= CPU_NEWLY_IDLE
&& local_group
) {
3528 if (balance_cpu
!= this_cpu
) {
3532 update_group_power(sd
, this_cpu
);
3535 /* Adjust by relative CPU power of the group */
3536 sgs
->avg_load
= (sgs
->group_load
*SCHED_POWER_SCALE
) / group
->sgp
->power
;
3539 * Consider the group unbalanced when the imbalance is larger
3540 * than the average weight of a task.
3542 * APZ: with cgroup the avg task weight can vary wildly and
3543 * might not be a suitable number - should we keep a
3544 * normalized nr_running number somewhere that negates
3547 if (sgs
->sum_nr_running
)
3548 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
3550 if ((max_cpu_load
- min_cpu_load
) >= avg_load_per_task
&& max_nr_running
> 1)
3553 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->sgp
->power
,
3555 if (!sgs
->group_capacity
)
3556 sgs
->group_capacity
= fix_small_capacity(sd
, group
);
3557 sgs
->group_weight
= group
->group_weight
;
3559 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
3560 sgs
->group_has_capacity
= 1;
3564 * update_sd_pick_busiest - return 1 on busiest group
3565 * @sd: sched_domain whose statistics are to be checked
3566 * @sds: sched_domain statistics
3567 * @sg: sched_group candidate to be checked for being the busiest
3568 * @sgs: sched_group statistics
3569 * @this_cpu: the current cpu
3571 * Determine if @sg is a busier group than the previously selected
3574 static bool update_sd_pick_busiest(struct sched_domain
*sd
,
3575 struct sd_lb_stats
*sds
,
3576 struct sched_group
*sg
,
3577 struct sg_lb_stats
*sgs
,
3580 if (sgs
->avg_load
<= sds
->max_load
)
3583 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
3590 * ASYM_PACKING needs to move all the work to the lowest
3591 * numbered CPUs in the group, therefore mark all groups
3592 * higher than ourself as busy.
3594 if ((sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
3595 this_cpu
< group_first_cpu(sg
)) {
3599 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
3607 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3608 * @sd: sched_domain whose statistics are to be updated.
3609 * @this_cpu: Cpu for which load balance is currently performed.
3610 * @idle: Idle status of this_cpu
3611 * @cpus: Set of cpus considered for load balancing.
3612 * @balance: Should we balance.
3613 * @sds: variable to hold the statistics for this sched_domain.
3615 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3616 enum cpu_idle_type idle
, const struct cpumask
*cpus
,
3617 int *balance
, struct sd_lb_stats
*sds
)
3619 struct sched_domain
*child
= sd
->child
;
3620 struct sched_group
*sg
= sd
->groups
;
3621 struct sg_lb_stats sgs
;
3622 int load_idx
, prefer_sibling
= 0;
3624 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3627 init_sd_power_savings_stats(sd
, sds
, idle
);
3628 load_idx
= get_sd_load_idx(sd
, idle
);
3633 local_group
= cpumask_test_cpu(this_cpu
, sched_group_cpus(sg
));
3634 memset(&sgs
, 0, sizeof(sgs
));
3635 update_sg_lb_stats(sd
, sg
, this_cpu
, idle
, load_idx
,
3636 local_group
, cpus
, balance
, &sgs
);
3638 if (local_group
&& !(*balance
))
3641 sds
->total_load
+= sgs
.group_load
;
3642 sds
->total_pwr
+= sg
->sgp
->power
;
3645 * In case the child domain prefers tasks go to siblings
3646 * first, lower the sg capacity to one so that we'll try
3647 * and move all the excess tasks away. We lower the capacity
3648 * of a group only if the local group has the capacity to fit
3649 * these excess tasks, i.e. nr_running < group_capacity. The
3650 * extra check prevents the case where you always pull from the
3651 * heaviest group when it is already under-utilized (possible
3652 * with a large weight task outweighs the tasks on the system).
3654 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
3655 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
3658 sds
->this_load
= sgs
.avg_load
;
3660 sds
->this_nr_running
= sgs
.sum_nr_running
;
3661 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3662 sds
->this_has_capacity
= sgs
.group_has_capacity
;
3663 sds
->this_idle_cpus
= sgs
.idle_cpus
;
3664 } else if (update_sd_pick_busiest(sd
, sds
, sg
, &sgs
, this_cpu
)) {
3665 sds
->max_load
= sgs
.avg_load
;
3667 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3668 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
3669 sds
->busiest_group_capacity
= sgs
.group_capacity
;
3670 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3671 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
3672 sds
->busiest_group_weight
= sgs
.group_weight
;
3673 sds
->group_imb
= sgs
.group_imb
;
3676 update_sd_power_savings_stats(sg
, sds
, local_group
, &sgs
);
3678 } while (sg
!= sd
->groups
);
3681 int __weak
arch_sd_sibling_asym_packing(void)
3683 return 0*SD_ASYM_PACKING
;
3687 * check_asym_packing - Check to see if the group is packed into the
3690 * This is primarily intended to used at the sibling level. Some
3691 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3692 * case of POWER7, it can move to lower SMT modes only when higher
3693 * threads are idle. When in lower SMT modes, the threads will
3694 * perform better since they share less core resources. Hence when we
3695 * have idle threads, we want them to be the higher ones.
3697 * This packing function is run on idle threads. It checks to see if
3698 * the busiest CPU in this domain (core in the P7 case) has a higher
3699 * CPU number than the packing function is being run on. Here we are
3700 * assuming lower CPU number will be equivalent to lower a SMT thread
3703 * Returns 1 when packing is required and a task should be moved to
3704 * this CPU. The amount of the imbalance is returned in *imbalance.
3706 * @sd: The sched_domain whose packing is to be checked.
3707 * @sds: Statistics of the sched_domain which is to be packed
3708 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3709 * @imbalance: returns amount of imbalanced due to packing.
3711 static int check_asym_packing(struct sched_domain
*sd
,
3712 struct sd_lb_stats
*sds
,
3713 int this_cpu
, unsigned long *imbalance
)
3717 if (!(sd
->flags
& SD_ASYM_PACKING
))
3723 busiest_cpu
= group_first_cpu(sds
->busiest
);
3724 if (this_cpu
> busiest_cpu
)
3727 *imbalance
= DIV_ROUND_CLOSEST(sds
->max_load
* sds
->busiest
->sgp
->power
,
3733 * fix_small_imbalance - Calculate the minor imbalance that exists
3734 * amongst the groups of a sched_domain, during
3736 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3737 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3738 * @imbalance: Variable to store the imbalance.
3740 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3741 int this_cpu
, unsigned long *imbalance
)
3743 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3744 unsigned int imbn
= 2;
3745 unsigned long scaled_busy_load_per_task
;
3747 if (sds
->this_nr_running
) {
3748 sds
->this_load_per_task
/= sds
->this_nr_running
;
3749 if (sds
->busiest_load_per_task
>
3750 sds
->this_load_per_task
)
3753 sds
->this_load_per_task
=
3754 cpu_avg_load_per_task(this_cpu
);
3756 scaled_busy_load_per_task
= sds
->busiest_load_per_task
3757 * SCHED_POWER_SCALE
;
3758 scaled_busy_load_per_task
/= sds
->busiest
->sgp
->power
;
3760 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
3761 (scaled_busy_load_per_task
* imbn
)) {
3762 *imbalance
= sds
->busiest_load_per_task
;
3767 * OK, we don't have enough imbalance to justify moving tasks,
3768 * however we may be able to increase total CPU power used by
3772 pwr_now
+= sds
->busiest
->sgp
->power
*
3773 min(sds
->busiest_load_per_task
, sds
->max_load
);
3774 pwr_now
+= sds
->this->sgp
->power
*
3775 min(sds
->this_load_per_task
, sds
->this_load
);
3776 pwr_now
/= SCHED_POWER_SCALE
;
3778 /* Amount of load we'd subtract */
3779 tmp
= (sds
->busiest_load_per_task
* SCHED_POWER_SCALE
) /
3780 sds
->busiest
->sgp
->power
;
3781 if (sds
->max_load
> tmp
)
3782 pwr_move
+= sds
->busiest
->sgp
->power
*
3783 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3785 /* Amount of load we'd add */
3786 if (sds
->max_load
* sds
->busiest
->sgp
->power
<
3787 sds
->busiest_load_per_task
* SCHED_POWER_SCALE
)
3788 tmp
= (sds
->max_load
* sds
->busiest
->sgp
->power
) /
3789 sds
->this->sgp
->power
;
3791 tmp
= (sds
->busiest_load_per_task
* SCHED_POWER_SCALE
) /
3792 sds
->this->sgp
->power
;
3793 pwr_move
+= sds
->this->sgp
->power
*
3794 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3795 pwr_move
/= SCHED_POWER_SCALE
;
3797 /* Move if we gain throughput */
3798 if (pwr_move
> pwr_now
)
3799 *imbalance
= sds
->busiest_load_per_task
;
3803 * calculate_imbalance - Calculate the amount of imbalance present within the
3804 * groups of a given sched_domain during load balance.
3805 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3806 * @this_cpu: Cpu for which currently load balance is being performed.
3807 * @imbalance: The variable to store the imbalance.
3809 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3810 unsigned long *imbalance
)
3812 unsigned long max_pull
, load_above_capacity
= ~0UL;
3814 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
3815 if (sds
->group_imb
) {
3816 sds
->busiest_load_per_task
=
3817 min(sds
->busiest_load_per_task
, sds
->avg_load
);
3821 * In the presence of smp nice balancing, certain scenarios can have
3822 * max load less than avg load(as we skip the groups at or below
3823 * its cpu_power, while calculating max_load..)
3825 if (sds
->max_load
< sds
->avg_load
) {
3827 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3830 if (!sds
->group_imb
) {
3832 * Don't want to pull so many tasks that a group would go idle.
3834 load_above_capacity
= (sds
->busiest_nr_running
-
3835 sds
->busiest_group_capacity
);
3837 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_POWER_SCALE
);
3839 load_above_capacity
/= sds
->busiest
->sgp
->power
;
3843 * We're trying to get all the cpus to the average_load, so we don't
3844 * want to push ourselves above the average load, nor do we wish to
3845 * reduce the max loaded cpu below the average load. At the same time,
3846 * we also don't want to reduce the group load below the group capacity
3847 * (so that we can implement power-savings policies etc). Thus we look
3848 * for the minimum possible imbalance.
3849 * Be careful of negative numbers as they'll appear as very large values
3850 * with unsigned longs.
3852 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
3854 /* How much load to actually move to equalise the imbalance */
3855 *imbalance
= min(max_pull
* sds
->busiest
->sgp
->power
,
3856 (sds
->avg_load
- sds
->this_load
) * sds
->this->sgp
->power
)
3857 / SCHED_POWER_SCALE
;
3860 * if *imbalance is less than the average load per runnable task
3861 * there is no guarantee that any tasks will be moved so we'll have
3862 * a think about bumping its value to force at least one task to be
3865 if (*imbalance
< sds
->busiest_load_per_task
)
3866 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3870 /******* find_busiest_group() helpers end here *********************/
3873 * find_busiest_group - Returns the busiest group within the sched_domain
3874 * if there is an imbalance. If there isn't an imbalance, and
3875 * the user has opted for power-savings, it returns a group whose
3876 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3877 * such a group exists.
3879 * Also calculates the amount of weighted load which should be moved
3880 * to restore balance.
3882 * @sd: The sched_domain whose busiest group is to be returned.
3883 * @this_cpu: The cpu for which load balancing is currently being performed.
3884 * @imbalance: Variable which stores amount of weighted load which should
3885 * be moved to restore balance/put a group to idle.
3886 * @idle: The idle status of this_cpu.
3887 * @cpus: The set of CPUs under consideration for load-balancing.
3888 * @balance: Pointer to a variable indicating if this_cpu
3889 * is the appropriate cpu to perform load balancing at this_level.
3891 * Returns: - the busiest group if imbalance exists.
3892 * - If no imbalance and user has opted for power-savings balance,
3893 * return the least loaded group whose CPUs can be
3894 * put to idle by rebalancing its tasks onto our group.
3896 static struct sched_group
*
3897 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3898 unsigned long *imbalance
, enum cpu_idle_type idle
,
3899 const struct cpumask
*cpus
, int *balance
)
3901 struct sd_lb_stats sds
;
3903 memset(&sds
, 0, sizeof(sds
));
3906 * Compute the various statistics relavent for load balancing at
3909 update_sd_lb_stats(sd
, this_cpu
, idle
, cpus
, balance
, &sds
);
3912 * this_cpu is not the appropriate cpu to perform load balancing at
3918 if ((idle
== CPU_IDLE
|| idle
== CPU_NEWLY_IDLE
) &&
3919 check_asym_packing(sd
, &sds
, this_cpu
, imbalance
))
3922 /* There is no busy sibling group to pull tasks from */
3923 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3926 sds
.avg_load
= (SCHED_POWER_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3929 * If the busiest group is imbalanced the below checks don't
3930 * work because they assumes all things are equal, which typically
3931 * isn't true due to cpus_allowed constraints and the like.
3936 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3937 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
3938 !sds
.busiest_has_capacity
)
3942 * If the local group is more busy than the selected busiest group
3943 * don't try and pull any tasks.
3945 if (sds
.this_load
>= sds
.max_load
)
3949 * Don't pull any tasks if this group is already above the domain
3952 if (sds
.this_load
>= sds
.avg_load
)
3955 if (idle
== CPU_IDLE
) {
3957 * This cpu is idle. If the busiest group load doesn't
3958 * have more tasks than the number of available cpu's and
3959 * there is no imbalance between this and busiest group
3960 * wrt to idle cpu's, it is balanced.
3962 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
3963 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
3967 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3968 * imbalance_pct to be conservative.
3970 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3975 /* Looks like there is an imbalance. Compute it */
3976 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3981 * There is no obvious imbalance. But check if we can do some balancing
3984 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3992 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3995 find_busiest_queue(struct sched_domain
*sd
, struct sched_group
*group
,
3996 enum cpu_idle_type idle
, unsigned long imbalance
,
3997 const struct cpumask
*cpus
)
3999 struct rq
*busiest
= NULL
, *rq
;
4000 unsigned long max_load
= 0;
4003 for_each_cpu(i
, sched_group_cpus(group
)) {
4004 unsigned long power
= power_of(i
);
4005 unsigned long capacity
= DIV_ROUND_CLOSEST(power
,
4010 capacity
= fix_small_capacity(sd
, group
);
4012 if (!cpumask_test_cpu(i
, cpus
))
4016 wl
= weighted_cpuload(i
);
4019 * When comparing with imbalance, use weighted_cpuload()
4020 * which is not scaled with the cpu power.
4022 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4026 * For the load comparisons with the other cpu's, consider
4027 * the weighted_cpuload() scaled with the cpu power, so that
4028 * the load can be moved away from the cpu that is potentially
4029 * running at a lower capacity.
4031 wl
= (wl
* SCHED_POWER_SCALE
) / power
;
4033 if (wl
> max_load
) {
4043 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4044 * so long as it is large enough.
4046 #define MAX_PINNED_INTERVAL 512
4048 /* Working cpumask for load_balance and load_balance_newidle. */
4049 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4051 static int need_active_balance(struct sched_domain
*sd
, int idle
,
4052 int busiest_cpu
, int this_cpu
)
4054 if (idle
== CPU_NEWLY_IDLE
) {
4057 * ASYM_PACKING needs to force migrate tasks from busy but
4058 * higher numbered CPUs in order to pack all tasks in the
4059 * lowest numbered CPUs.
4061 if ((sd
->flags
& SD_ASYM_PACKING
) && busiest_cpu
> this_cpu
)
4065 * The only task running in a non-idle cpu can be moved to this
4066 * cpu in an attempt to completely freeup the other CPU
4069 * The package power saving logic comes from
4070 * find_busiest_group(). If there are no imbalance, then
4071 * f_b_g() will return NULL. However when sched_mc={1,2} then
4072 * f_b_g() will select a group from which a running task may be
4073 * pulled to this cpu in order to make the other package idle.
4074 * If there is no opportunity to make a package idle and if
4075 * there are no imbalance, then f_b_g() will return NULL and no
4076 * action will be taken in load_balance_newidle().
4078 * Under normal task pull operation due to imbalance, there
4079 * will be more than one task in the source run queue and
4080 * move_tasks() will succeed. ld_moved will be true and this
4081 * active balance code will not be triggered.
4083 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4087 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
4090 static int active_load_balance_cpu_stop(void *data
);
4093 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4094 * tasks if there is an imbalance.
4096 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4097 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4100 int ld_moved
, all_pinned
= 0, active_balance
= 0;
4101 struct sched_group
*group
;
4102 unsigned long imbalance
;
4104 unsigned long flags
;
4105 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4107 cpumask_copy(cpus
, cpu_active_mask
);
4109 schedstat_inc(sd
, lb_count
[idle
]);
4112 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
,
4119 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4123 busiest
= find_busiest_queue(sd
, group
, idle
, imbalance
, cpus
);
4125 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4129 BUG_ON(busiest
== this_rq
);
4131 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4134 if (busiest
->nr_running
> 1) {
4136 * Attempt to move tasks. If find_busiest_group has found
4137 * an imbalance but busiest->nr_running <= 1, the group is
4138 * still unbalanced. ld_moved simply stays zero, so it is
4139 * correctly treated as an imbalance.
4142 local_irq_save(flags
);
4143 double_rq_lock(this_rq
, busiest
);
4144 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4145 imbalance
, sd
, idle
, &all_pinned
);
4146 double_rq_unlock(this_rq
, busiest
);
4147 local_irq_restore(flags
);
4150 * some other cpu did the load balance for us.
4152 if (ld_moved
&& this_cpu
!= smp_processor_id())
4153 resched_cpu(this_cpu
);
4155 /* All tasks on this runqueue were pinned by CPU affinity */
4156 if (unlikely(all_pinned
)) {
4157 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4158 if (!cpumask_empty(cpus
))
4165 schedstat_inc(sd
, lb_failed
[idle
]);
4167 * Increment the failure counter only on periodic balance.
4168 * We do not want newidle balance, which can be very
4169 * frequent, pollute the failure counter causing
4170 * excessive cache_hot migrations and active balances.
4172 if (idle
!= CPU_NEWLY_IDLE
)
4173 sd
->nr_balance_failed
++;
4175 if (need_active_balance(sd
, idle
, cpu_of(busiest
), this_cpu
)) {
4176 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
4178 /* don't kick the active_load_balance_cpu_stop,
4179 * if the curr task on busiest cpu can't be
4182 if (!cpumask_test_cpu(this_cpu
,
4183 tsk_cpus_allowed(busiest
->curr
))) {
4184 raw_spin_unlock_irqrestore(&busiest
->lock
,
4187 goto out_one_pinned
;
4191 * ->active_balance synchronizes accesses to
4192 * ->active_balance_work. Once set, it's cleared
4193 * only after active load balance is finished.
4195 if (!busiest
->active_balance
) {
4196 busiest
->active_balance
= 1;
4197 busiest
->push_cpu
= this_cpu
;
4200 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
4203 stop_one_cpu_nowait(cpu_of(busiest
),
4204 active_load_balance_cpu_stop
, busiest
,
4205 &busiest
->active_balance_work
);
4208 * We've kicked active balancing, reset the failure
4211 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4214 sd
->nr_balance_failed
= 0;
4216 if (likely(!active_balance
)) {
4217 /* We were unbalanced, so reset the balancing interval */
4218 sd
->balance_interval
= sd
->min_interval
;
4221 * If we've begun active balancing, start to back off. This
4222 * case may not be covered by the all_pinned logic if there
4223 * is only 1 task on the busy runqueue (because we don't call
4226 if (sd
->balance_interval
< sd
->max_interval
)
4227 sd
->balance_interval
*= 2;
4233 schedstat_inc(sd
, lb_balanced
[idle
]);
4235 sd
->nr_balance_failed
= 0;
4238 /* tune up the balancing interval */
4239 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4240 (sd
->balance_interval
< sd
->max_interval
))
4241 sd
->balance_interval
*= 2;
4249 * idle_balance is called by schedule() if this_cpu is about to become
4250 * idle. Attempts to pull tasks from other CPUs.
4252 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4254 struct sched_domain
*sd
;
4255 int pulled_task
= 0;
4256 unsigned long next_balance
= jiffies
+ HZ
;
4258 this_rq
->idle_stamp
= this_rq
->clock
;
4260 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
4264 * Drop the rq->lock, but keep IRQ/preempt disabled.
4266 raw_spin_unlock(&this_rq
->lock
);
4268 update_shares(this_cpu
);
4270 for_each_domain(this_cpu
, sd
) {
4271 unsigned long interval
;
4274 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4277 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
4278 /* If we've pulled tasks over stop searching: */
4279 pulled_task
= load_balance(this_cpu
, this_rq
,
4280 sd
, CPU_NEWLY_IDLE
, &balance
);
4283 interval
= msecs_to_jiffies(sd
->balance_interval
);
4284 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4285 next_balance
= sd
->last_balance
+ interval
;
4287 this_rq
->idle_stamp
= 0;
4293 raw_spin_lock(&this_rq
->lock
);
4295 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4297 * We are going idle. next_balance may be set based on
4298 * a busy processor. So reset next_balance.
4300 this_rq
->next_balance
= next_balance
;
4305 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4306 * running tasks off the busiest CPU onto idle CPUs. It requires at
4307 * least 1 task to be running on each physical CPU where possible, and
4308 * avoids physical / logical imbalances.
4310 static int active_load_balance_cpu_stop(void *data
)
4312 struct rq
*busiest_rq
= data
;
4313 int busiest_cpu
= cpu_of(busiest_rq
);
4314 int target_cpu
= busiest_rq
->push_cpu
;
4315 struct rq
*target_rq
= cpu_rq(target_cpu
);
4316 struct sched_domain
*sd
;
4318 raw_spin_lock_irq(&busiest_rq
->lock
);
4320 /* make sure the requested cpu hasn't gone down in the meantime */
4321 if (unlikely(busiest_cpu
!= smp_processor_id() ||
4322 !busiest_rq
->active_balance
))
4325 /* Is there any task to move? */
4326 if (busiest_rq
->nr_running
<= 1)
4330 * This condition is "impossible", if it occurs
4331 * we need to fix it. Originally reported by
4332 * Bjorn Helgaas on a 128-cpu setup.
4334 BUG_ON(busiest_rq
== target_rq
);
4336 /* move a task from busiest_rq to target_rq */
4337 double_lock_balance(busiest_rq
, target_rq
);
4339 /* Search for an sd spanning us and the target CPU. */
4341 for_each_domain(target_cpu
, sd
) {
4342 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4343 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4348 schedstat_inc(sd
, alb_count
);
4350 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4352 schedstat_inc(sd
, alb_pushed
);
4354 schedstat_inc(sd
, alb_failed
);
4357 double_unlock_balance(busiest_rq
, target_rq
);
4359 busiest_rq
->active_balance
= 0;
4360 raw_spin_unlock_irq(&busiest_rq
->lock
);
4366 * idle load balancing details
4367 * - One of the idle CPUs nominates itself as idle load_balancer, while
4369 * - This idle load balancer CPU will also go into tickless mode when
4370 * it is idle, just like all other idle CPUs
4371 * - When one of the busy CPUs notice that there may be an idle rebalancing
4372 * needed, they will kick the idle load balancer, which then does idle
4373 * load balancing for all the idle CPUs.
4376 atomic_t load_balancer
;
4377 atomic_t first_pick_cpu
;
4378 atomic_t second_pick_cpu
;
4379 cpumask_var_t idle_cpus_mask
;
4380 cpumask_var_t grp_idle_mask
;
4381 unsigned long next_balance
; /* in jiffy units */
4382 } nohz ____cacheline_aligned
;
4384 int get_nohz_load_balancer(void)
4386 return atomic_read(&nohz
.load_balancer
);
4389 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4391 * lowest_flag_domain - Return lowest sched_domain containing flag.
4392 * @cpu: The cpu whose lowest level of sched domain is to
4394 * @flag: The flag to check for the lowest sched_domain
4395 * for the given cpu.
4397 * Returns the lowest sched_domain of a cpu which contains the given flag.
4399 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4401 struct sched_domain
*sd
;
4403 for_each_domain(cpu
, sd
)
4404 if (sd
->flags
& flag
)
4411 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4412 * @cpu: The cpu whose domains we're iterating over.
4413 * @sd: variable holding the value of the power_savings_sd
4415 * @flag: The flag to filter the sched_domains to be iterated.
4417 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4418 * set, starting from the lowest sched_domain to the highest.
4420 #define for_each_flag_domain(cpu, sd, flag) \
4421 for (sd = lowest_flag_domain(cpu, flag); \
4422 (sd && (sd->flags & flag)); sd = sd->parent)
4425 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4426 * @ilb_group: group to be checked for semi-idleness
4428 * Returns: 1 if the group is semi-idle. 0 otherwise.
4430 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4431 * and atleast one non-idle CPU. This helper function checks if the given
4432 * sched_group is semi-idle or not.
4434 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4436 cpumask_and(nohz
.grp_idle_mask
, nohz
.idle_cpus_mask
,
4437 sched_group_cpus(ilb_group
));
4440 * A sched_group is semi-idle when it has atleast one busy cpu
4441 * and atleast one idle cpu.
4443 if (cpumask_empty(nohz
.grp_idle_mask
))
4446 if (cpumask_equal(nohz
.grp_idle_mask
, sched_group_cpus(ilb_group
)))
4452 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4453 * @cpu: The cpu which is nominating a new idle_load_balancer.
4455 * Returns: Returns the id of the idle load balancer if it exists,
4456 * Else, returns >= nr_cpu_ids.
4458 * This algorithm picks the idle load balancer such that it belongs to a
4459 * semi-idle powersavings sched_domain. The idea is to try and avoid
4460 * completely idle packages/cores just for the purpose of idle load balancing
4461 * when there are other idle cpu's which are better suited for that job.
4463 static int find_new_ilb(int cpu
)
4465 struct sched_domain
*sd
;
4466 struct sched_group
*ilb_group
;
4467 int ilb
= nr_cpu_ids
;
4470 * Have idle load balancer selection from semi-idle packages only
4471 * when power-aware load balancing is enabled
4473 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4477 * Optimize for the case when we have no idle CPUs or only one
4478 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4480 if (cpumask_weight(nohz
.idle_cpus_mask
) < 2)
4484 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4485 ilb_group
= sd
->groups
;
4488 if (is_semi_idle_group(ilb_group
)) {
4489 ilb
= cpumask_first(nohz
.grp_idle_mask
);
4493 ilb_group
= ilb_group
->next
;
4495 } while (ilb_group
!= sd
->groups
);
4503 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4504 static inline int find_new_ilb(int call_cpu
)
4511 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4512 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4513 * CPU (if there is one).
4515 static void nohz_balancer_kick(int cpu
)
4519 nohz
.next_balance
++;
4521 ilb_cpu
= get_nohz_load_balancer();
4523 if (ilb_cpu
>= nr_cpu_ids
) {
4524 ilb_cpu
= cpumask_first(nohz
.idle_cpus_mask
);
4525 if (ilb_cpu
>= nr_cpu_ids
)
4529 if (!cpu_rq(ilb_cpu
)->nohz_balance_kick
) {
4530 cpu_rq(ilb_cpu
)->nohz_balance_kick
= 1;
4534 * Use smp_send_reschedule() instead of resched_cpu().
4535 * This way we generate a sched IPI on the target cpu which
4536 * is idle. And the softirq performing nohz idle load balance
4537 * will be run before returning from the IPI.
4539 smp_send_reschedule(ilb_cpu
);
4545 * This routine will try to nominate the ilb (idle load balancing)
4546 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4547 * load balancing on behalf of all those cpus.
4549 * When the ilb owner becomes busy, we will not have new ilb owner until some
4550 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4551 * idle load balancing by kicking one of the idle CPUs.
4553 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4554 * ilb owner CPU in future (when there is a need for idle load balancing on
4555 * behalf of all idle CPUs).
4557 void select_nohz_load_balancer(int stop_tick
)
4559 int cpu
= smp_processor_id();
4562 if (!cpu_active(cpu
)) {
4563 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4567 * If we are going offline and still the leader,
4570 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
4577 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
4579 if (atomic_read(&nohz
.first_pick_cpu
) == cpu
)
4580 atomic_cmpxchg(&nohz
.first_pick_cpu
, cpu
, nr_cpu_ids
);
4581 if (atomic_read(&nohz
.second_pick_cpu
) == cpu
)
4582 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
4584 if (atomic_read(&nohz
.load_balancer
) >= nr_cpu_ids
) {
4587 /* make me the ilb owner */
4588 if (atomic_cmpxchg(&nohz
.load_balancer
, nr_cpu_ids
,
4593 * Check to see if there is a more power-efficient
4596 new_ilb
= find_new_ilb(cpu
);
4597 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4598 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
4599 resched_cpu(new_ilb
);
4605 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
4608 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
4610 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4611 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
4619 static DEFINE_SPINLOCK(balancing
);
4621 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
4624 * Scale the max load_balance interval with the number of CPUs in the system.
4625 * This trades load-balance latency on larger machines for less cross talk.
4627 static void update_max_interval(void)
4629 max_load_balance_interval
= HZ
*num_online_cpus()/10;
4633 * It checks each scheduling domain to see if it is due to be balanced,
4634 * and initiates a balancing operation if so.
4636 * Balancing parameters are set up in arch_init_sched_domains.
4638 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4641 struct rq
*rq
= cpu_rq(cpu
);
4642 unsigned long interval
;
4643 struct sched_domain
*sd
;
4644 /* Earliest time when we have to do rebalance again */
4645 unsigned long next_balance
= jiffies
+ 60*HZ
;
4646 int update_next_balance
= 0;
4652 for_each_domain(cpu
, sd
) {
4653 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4656 interval
= sd
->balance_interval
;
4657 if (idle
!= CPU_IDLE
)
4658 interval
*= sd
->busy_factor
;
4660 /* scale ms to jiffies */
4661 interval
= msecs_to_jiffies(interval
);
4662 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
4664 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4666 if (need_serialize
) {
4667 if (!spin_trylock(&balancing
))
4671 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4672 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4674 * We've pulled tasks over so either we're no
4677 idle
= CPU_NOT_IDLE
;
4679 sd
->last_balance
= jiffies
;
4682 spin_unlock(&balancing
);
4684 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4685 next_balance
= sd
->last_balance
+ interval
;
4686 update_next_balance
= 1;
4690 * Stop the load balance at this level. There is another
4691 * CPU in our sched group which is doing load balancing more
4700 * next_balance will be updated only when there is a need.
4701 * When the cpu is attached to null domain for ex, it will not be
4704 if (likely(update_next_balance
))
4705 rq
->next_balance
= next_balance
;
4710 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4711 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4713 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
4715 struct rq
*this_rq
= cpu_rq(this_cpu
);
4719 if (idle
!= CPU_IDLE
|| !this_rq
->nohz_balance_kick
)
4722 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
4723 if (balance_cpu
== this_cpu
)
4727 * If this cpu gets work to do, stop the load balancing
4728 * work being done for other cpus. Next load
4729 * balancing owner will pick it up.
4731 if (need_resched()) {
4732 this_rq
->nohz_balance_kick
= 0;
4736 raw_spin_lock_irq(&this_rq
->lock
);
4737 update_rq_clock(this_rq
);
4738 update_cpu_load(this_rq
);
4739 raw_spin_unlock_irq(&this_rq
->lock
);
4741 rebalance_domains(balance_cpu
, CPU_IDLE
);
4743 rq
= cpu_rq(balance_cpu
);
4744 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4745 this_rq
->next_balance
= rq
->next_balance
;
4747 nohz
.next_balance
= this_rq
->next_balance
;
4748 this_rq
->nohz_balance_kick
= 0;
4752 * Current heuristic for kicking the idle load balancer
4753 * - first_pick_cpu is the one of the busy CPUs. It will kick
4754 * idle load balancer when it has more than one process active. This
4755 * eliminates the need for idle load balancing altogether when we have
4756 * only one running process in the system (common case).
4757 * - If there are more than one busy CPU, idle load balancer may have
4758 * to run for active_load_balance to happen (i.e., two busy CPUs are
4759 * SMT or core siblings and can run better if they move to different
4760 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4761 * which will kick idle load balancer as soon as it has any load.
4763 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
4765 unsigned long now
= jiffies
;
4767 int first_pick_cpu
, second_pick_cpu
;
4769 if (time_before(now
, nohz
.next_balance
))
4775 first_pick_cpu
= atomic_read(&nohz
.first_pick_cpu
);
4776 second_pick_cpu
= atomic_read(&nohz
.second_pick_cpu
);
4778 if (first_pick_cpu
< nr_cpu_ids
&& first_pick_cpu
!= cpu
&&
4779 second_pick_cpu
< nr_cpu_ids
&& second_pick_cpu
!= cpu
)
4782 ret
= atomic_cmpxchg(&nohz
.first_pick_cpu
, nr_cpu_ids
, cpu
);
4783 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
4784 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
4785 if (rq
->nr_running
> 1)
4788 ret
= atomic_cmpxchg(&nohz
.second_pick_cpu
, nr_cpu_ids
, cpu
);
4789 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
4797 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
4801 * run_rebalance_domains is triggered when needed from the scheduler tick.
4802 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4804 static void run_rebalance_domains(struct softirq_action
*h
)
4806 int this_cpu
= smp_processor_id();
4807 struct rq
*this_rq
= cpu_rq(this_cpu
);
4808 enum cpu_idle_type idle
= this_rq
->idle_balance
?
4809 CPU_IDLE
: CPU_NOT_IDLE
;
4811 rebalance_domains(this_cpu
, idle
);
4814 * If this cpu has a pending nohz_balance_kick, then do the
4815 * balancing on behalf of the other idle cpus whose ticks are
4818 nohz_idle_balance(this_cpu
, idle
);
4821 static inline int on_null_domain(int cpu
)
4823 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
4827 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4829 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4831 /* Don't need to rebalance while attached to NULL domain */
4832 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4833 likely(!on_null_domain(cpu
)))
4834 raise_softirq(SCHED_SOFTIRQ
);
4836 else if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
4837 nohz_balancer_kick(cpu
);
4841 static void rq_online_fair(struct rq
*rq
)
4846 static void rq_offline_fair(struct rq
*rq
)
4851 #else /* CONFIG_SMP */
4854 * on UP we do not need to balance between CPUs:
4856 static inline void idle_balance(int cpu
, struct rq
*rq
)
4860 #endif /* CONFIG_SMP */
4863 * scheduler tick hitting a task of our scheduling class:
4865 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
4867 struct cfs_rq
*cfs_rq
;
4868 struct sched_entity
*se
= &curr
->se
;
4870 for_each_sched_entity(se
) {
4871 cfs_rq
= cfs_rq_of(se
);
4872 entity_tick(cfs_rq
, se
, queued
);
4877 * called on fork with the child task as argument from the parent's context
4878 * - child not yet on the tasklist
4879 * - preemption disabled
4881 static void task_fork_fair(struct task_struct
*p
)
4883 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
4884 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
4885 int this_cpu
= smp_processor_id();
4886 struct rq
*rq
= this_rq();
4887 unsigned long flags
;
4889 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4891 update_rq_clock(rq
);
4893 if (unlikely(task_cpu(p
) != this_cpu
)) {
4895 __set_task_cpu(p
, this_cpu
);
4899 update_curr(cfs_rq
);
4902 se
->vruntime
= curr
->vruntime
;
4903 place_entity(cfs_rq
, se
, 1);
4905 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
4907 * Upon rescheduling, sched_class::put_prev_task() will place
4908 * 'current' within the tree based on its new key value.
4910 swap(curr
->vruntime
, se
->vruntime
);
4911 resched_task(rq
->curr
);
4914 se
->vruntime
-= cfs_rq
->min_vruntime
;
4916 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4920 * Priority of the task has changed. Check to see if we preempt
4924 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
4930 * Reschedule if we are currently running on this runqueue and
4931 * our priority decreased, or if we are not currently running on
4932 * this runqueue and our priority is higher than the current's
4934 if (rq
->curr
== p
) {
4935 if (p
->prio
> oldprio
)
4936 resched_task(rq
->curr
);
4938 check_preempt_curr(rq
, p
, 0);
4941 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
4943 struct sched_entity
*se
= &p
->se
;
4944 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4947 * Ensure the task's vruntime is normalized, so that when its
4948 * switched back to the fair class the enqueue_entity(.flags=0) will
4949 * do the right thing.
4951 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4952 * have normalized the vruntime, if it was !on_rq, then only when
4953 * the task is sleeping will it still have non-normalized vruntime.
4955 if (!se
->on_rq
&& p
->state
!= TASK_RUNNING
) {
4957 * Fix up our vruntime so that the current sleep doesn't
4958 * cause 'unlimited' sleep bonus.
4960 place_entity(cfs_rq
, se
, 0);
4961 se
->vruntime
-= cfs_rq
->min_vruntime
;
4966 * We switched to the sched_fair class.
4968 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
4974 * We were most likely switched from sched_rt, so
4975 * kick off the schedule if running, otherwise just see
4976 * if we can still preempt the current task.
4979 resched_task(rq
->curr
);
4981 check_preempt_curr(rq
, p
, 0);
4984 /* Account for a task changing its policy or group.
4986 * This routine is mostly called to set cfs_rq->curr field when a task
4987 * migrates between groups/classes.
4989 static void set_curr_task_fair(struct rq
*rq
)
4991 struct sched_entity
*se
= &rq
->curr
->se
;
4993 for_each_sched_entity(se
) {
4994 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4996 set_next_entity(cfs_rq
, se
);
4997 /* ensure bandwidth has been allocated on our new cfs_rq */
4998 account_cfs_rq_runtime(cfs_rq
, 0);
5002 #ifdef CONFIG_FAIR_GROUP_SCHED
5003 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
5006 * If the task was not on the rq at the time of this cgroup movement
5007 * it must have been asleep, sleeping tasks keep their ->vruntime
5008 * absolute on their old rq until wakeup (needed for the fair sleeper
5009 * bonus in place_entity()).
5011 * If it was on the rq, we've just 'preempted' it, which does convert
5012 * ->vruntime to a relative base.
5014 * Make sure both cases convert their relative position when migrating
5015 * to another cgroup's rq. This does somewhat interfere with the
5016 * fair sleeper stuff for the first placement, but who cares.
5019 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
5020 set_task_rq(p
, task_cpu(p
));
5022 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
5026 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
5028 struct sched_entity
*se
= &task
->se
;
5029 unsigned int rr_interval
= 0;
5032 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5035 if (rq
->cfs
.load
.weight
)
5036 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5042 * All the scheduling class methods:
5044 static const struct sched_class fair_sched_class
= {
5045 .next
= &idle_sched_class
,
5046 .enqueue_task
= enqueue_task_fair
,
5047 .dequeue_task
= dequeue_task_fair
,
5048 .yield_task
= yield_task_fair
,
5049 .yield_to_task
= yield_to_task_fair
,
5051 .check_preempt_curr
= check_preempt_wakeup
,
5053 .pick_next_task
= pick_next_task_fair
,
5054 .put_prev_task
= put_prev_task_fair
,
5057 .select_task_rq
= select_task_rq_fair
,
5059 .rq_online
= rq_online_fair
,
5060 .rq_offline
= rq_offline_fair
,
5062 .task_waking
= task_waking_fair
,
5065 .set_curr_task
= set_curr_task_fair
,
5066 .task_tick
= task_tick_fair
,
5067 .task_fork
= task_fork_fair
,
5069 .prio_changed
= prio_changed_fair
,
5070 .switched_from
= switched_from_fair
,
5071 .switched_to
= switched_to_fair
,
5073 .get_rr_interval
= get_rr_interval_fair
,
5075 #ifdef CONFIG_FAIR_GROUP_SCHED
5076 .task_move_group
= task_move_group_fair
,
5080 #ifdef CONFIG_SCHED_DEBUG
5081 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
5083 struct cfs_rq
*cfs_rq
;
5086 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
5087 print_cfs_rq(m
, cpu
, cfs_rq
);